Skip to content

AmanpreetSingh0071/Predict_Energy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

6 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

β˜€οΈ PV Energy Output Prediction

A web-based machine learning app that predicts photovoltaic (PV) solar energy output using weather features and trained regression models. Ideal for solar engineers, data scientists, and renewable energy analysts.

πŸ”— Live Demo: (https://predict-energy-aman-007.streamlit.app/) πŸ“¦ Built With: Streamlit, scikit-learn, joblib, pandas, XGBoost


πŸš€ Features

  • πŸ“ˆ Predict solar energy output in real-time
  • ☁️ Uses weather features like temperature, humidity, wind speed, and irradiation
  • 🧠 Trained ML model using XGBoost for accurate forecasting
  • πŸ–₯️ Deployed as a lightweight web application using Streamlit

πŸ“‚ Project Structure

Predict_Energy/
β”‚
β”œβ”€β”€ app.py                  # Streamlit web application
β”œβ”€β”€ pv_model.joblib         # Pretrained regression model (XGBoost)
β”œβ”€β”€ requirements.txt        # Python dependencies
└── solarPower_50m.csv      # Sample dataset used for training/testing

βš™οΈ How to Run

1. Clone the repository

git clone https://github.com/yourusername/Predict_Energy.git
cd Predict_Energy

2. Install dependencies

pip install -r requirements.txt

3. Launch the app

streamlit run app.py

πŸ“Š Sample Input Features

  • Temperature (Β°C)
  • Humidity (%)
  • Wind Speed (m/s)
  • Solar Irradiance (W/mΒ²)

πŸ“¦ Model Training (Optional)

If you wish to retrain the model:

# Load data
df = pd.read_csv("solarPower_50m.csv")

# Define features/target and train with XGBoost
...

πŸ‘€ Author

Amanpreet Ahluwalia Portfolio | LinkedIn


🌟 Give it a star if you found it helpful!

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages