- Competition: LISA 2025 Challenge – Task 1 (MRI Quality Assessment)
- Result: 2nd-place solution
- Authors: Alya Almsouti*, Ainur Khamitova*, Darya Taratynova*, Mohammad Yaqub
(* equal contribution) - Paper: TBA
For questions, reach out at darya.taratynova@mbzuai.ac.ae
qc_pipeline/– encoder, transforms, utilities, and training/testing modules.scripts/– thin shell wrappers:env.sh,train.sh,test.sh.requirements.txt– dependencies needed by the package.
- Install deps (Python ≥3.9):
pip install -r requirements.txt
- Edit
scripts/env.shto match your data layout, then source it. This setsPYTHONPATHand the env vars read by the helpers:source scripts/env.sh
Run the helper after overriding any variables you need:
CLASS_NAME=Noise \
BATCH_STRATEGY=rotating \
OUTPUT_DIR=./results/noise_rot \
scripts/train.shThe script calls python -m qc_pipeline.training with the env-driven arguments.
Generate predictions with the best checkpoint:
TEST_DATA_DIR=/path/to/test/images \
WEIGHT_DIR=./results/noise_rot \
scripts/test.shOutputs land in ${TEST_OUTPUT_DIR} (defaults to the weight directory).
Alternatively execute the modules yourself:
python -m qc_pipeline.training --help
python -m qc_pipeline.testing --help