Python toolkit for portfolio optimization, risk analysis, and backtesting.
Combine modern portfolio theory, factor adjustments, and advanced risk metrics with visualizations and simulations.
- Fetch historical market data (
yfinance) - Factor adjustments: momentum, volatility, Fama–French
- Portfolio optimization: Max Sharpe, Min Risk, Target Return
- Efficient Frontier visualization & random portfolio generation
- Backtesting vs benchmark (e.g., S&P 500)
- Rebalancing simulation with transaction costs
- Risk metrics: VaR, CVaR, rolling Sharpe, Max Drawdown
git clone https://github.com/yourusername/PortfolioOptimizationToolkit.git
cd PortfolioOptimizationToolkit
python -m venv venv
pip install -r requirements.txt
python main.py