Skip to content

A Python toolkit for portfolio optimization, including risk-return analysis, efficient frontier computation, and visualizations for multiple assets.

License

Notifications You must be signed in to change notification settings

AZEY4/PortfolioOptimizationToolkit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Portfolio Optimization Toolkit

Python toolkit for portfolio optimization, risk analysis, and backtesting.
Combine modern portfolio theory, factor adjustments, and advanced risk metrics with visualizations and simulations.


Features

  • Fetch historical market data (yfinance)
  • Factor adjustments: momentum, volatility, Fama–French
  • Portfolio optimization: Max Sharpe, Min Risk, Target Return
  • Efficient Frontier visualization & random portfolio generation
  • Backtesting vs benchmark (e.g., S&P 500)
  • Rebalancing simulation with transaction costs
  • Risk metrics: VaR, CVaR, rolling Sharpe, Max Drawdown

Quickstart

git clone https://github.com/yourusername/PortfolioOptimizationToolkit.git

cd PortfolioOptimizationToolkit

python -m venv venv

pip install -r requirements.txt

python main.py

About

A Python toolkit for portfolio optimization, including risk-return analysis, efficient frontier computation, and visualizations for multiple assets.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages