Skip to content

SaaS Customer Acquisition Cost (CAC) and Lifetime Value (LTV) Analysis with Interactive Dashboard - Comprehensive performance marketing intelligence platform for data-driven business decisions

Notifications You must be signed in to change notification settings

419vive/CAC_LTV_Model_Analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

1 Commit
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ“ˆ SaaS CAC-LTV Model Analysis

Comprehensive Customer Acquisition Cost (CAC) and Lifetime Value (LTV) Analysis with Interactive Dashboard

A full-stack business intelligence platform that transforms raw customer data into actionable performance marketing insights for SaaS businesses.

🌐 Live Demo

πŸš€ Interactive Dashboard: https://mzhyi8c17zzl.manus.space/

πŸ“Š Key Performance Insights

  • LTV:CAC Ratio: 2.67:1 overall performance
  • Champion Channel: Referral Program (6.32x ROI)
  • Customer Analysis: 1,000 customers across 6 global markets
  • Revenue Analysis: $524k total revenue analyzed
  • Market Coverage: ARPU ranging from $21.64 (Africa) to $65.38 (Europe)

🎯 Features

Advanced Performance Marketing Intelligence

  • ARPU vs CAC Efficiency Matrix: Channel-specific revenue quality analysis
  • CAC Payback Period Analysis: 1.2 months (Referral) to 5.7 months (Paid Search)
  • LTV:CAC Ratio Optimization: Tier-based channel performance scoring
  • Marketing Spend Planning Framework: Data-driven budget allocation strategies

Interactive Dashboard

  • Real-time KPI metrics across 6 global markets
  • Interactive channel performance analysis with ROI calculations
  • Regional market insights with ARPU breakdowns
  • Cohort retention analysis with predictive modeling
  • Dynamic filtering by channels and regions

Executive Communication

  • Performance marketing-focused CEO briefings
  • Board-ready reporting with industry benchmarks
  • Professional PowerPoint presentations
  • Technical documentation and API framework

πŸ”§ Technical Stack

  • Backend: Python Flask with Pandas analytics
  • Frontend: HTML5, CSS3, JavaScript with Chart.js
  • API: RESTful design with 6 real-time endpoints
  • Data Processing: NumPy, Pandas, Matplotlib, Seaborn
  • Performance: Optimized for executive use (<500ms response)

πŸ“ Project Structure

CAC_LTV_Model_Analysis/
β”œβ”€β”€ cac_ltv_analysis.py          # Core analysis and visualizations
β”œβ”€β”€ dashboard_api.py             # Flask REST API backend
β”œβ”€β”€ templates/dashboard.html     # Interactive frontend
β”œβ”€β”€ cac_ltv_model.csv           # Sample dataset (1,000 customers)
β”œβ”€β”€ CEO_PR_MESSAGE.md           # Executive performance marketing brief
β”œβ”€β”€ DASHBOARD_SHARE_LINK.md     # Public sharing documentation
β”œβ”€β”€ comprehensive_fact_check.py  # Data verification system
β”œβ”€β”€ requirements.txt            # Python dependencies
β”œβ”€β”€ plots/                      # Generated visualizations
β”‚   β”œβ”€β”€ plot1_cohort_heatmap.png
β”‚   β”œβ”€β”€ plot2_ltv_vs_cac.png
β”‚   β”œβ”€β”€ plot3_ltv_cac_ratio.png
β”‚   └── plot4_arpu_by_region.png
└── presentations/              # Executive materials
    β”œβ”€β”€ SaaS_Dashboard_Fixed.pptx
    └── saas-dashboard-presentation.html

πŸš€ Quick Start

1. Clone Repository

git clone https://github.com/419vive/CAC_LTV_Model_Analysis.git
cd CAC_LTV_Model_Analysis

2. Install Dependencies

pip install -r requirements.txt

3. Run Analysis

python cac_ltv_analysis.py

4. Launch Dashboard

python dashboard_api.py

Visit http://localhost:5001 to view the interactive dashboard.

5. Verify Data Integrity

python comprehensive_fact_check.py

πŸ“ˆ Business Impact

Channel Performance (ROI)

  1. Referral Program: 6.32x ROI ($52.91 CAC, $334.14 LTV)
  2. Organic Search: 4.39x ROI ($77.12 CAC, $338.48 LTV)
  3. Direct Traffic: 3.58x ROI ($91.38 CAC, $327.46 LTV)
  4. Email Marketing: 2.99x ROI ($114.94 CAC, $343.40 LTV)
  5. Paid Social: 1.92x ROI ($180.27 CAC, $346.75 LTV)
  6. Paid Search: 1.36x ROI ($237.52 CAC, $323.10 LTV)

Regional Market Opportunities

  • Europe: $65.38 ARPU (Premium market)
  • North America: $52.59 ARPU (Mature market)
  • Middle East: $49.54 ARPU (Developing market)
  • Asia Pacific: $40.36 ARPU (Growth market)
  • Latin America: $30.69 ARPU (Emerging market)
  • Africa: $21.64 ARPU (Early-stage opportunity)

🎯 API Endpoints

The Flask backend provides 6 real-time endpoints:

  • GET /api/summary - Overall business metrics
  • GET /api/channels - Channel performance analysis
  • GET /api/regions - Regional ARPU breakdown
  • GET /api/cohorts - Customer retention analysis
  • GET /api/filter - Dynamic filtering capabilities
  • GET /api/trends - Performance trend analysis

πŸ’Ό Executive Documentation

πŸ” Data Verification

All metrics are verified through comprehensive fact-checking:

  • Cross-file consistency validation
  • API endpoint accuracy verification
  • Mathematical precision confirmation
  • Business logic integrity checks

Run python comprehensive_fact_check.py for complete data verification.

🎨 Visualizations

The analysis generates professional visualizations:

  • Cohort Retention Heatmap: Customer behavior over time
  • LTV vs CAC Comparison: Channel efficiency analysis
  • LTV:CAC Ratio Chart: ROI performance ranking
  • Regional ARPU Analysis: Market opportunity mapping

πŸ“Š Performance Marketing Insights

CAC Payback Analysis

  • Referral: 1.2 months (exceptional)
  • Organic: 1.7 months (excellent)
  • Direct: 2.1 months (good)
  • Email: 2.6 months (acceptable)
  • Paid Social: 3.9 months (concerning)
  • Paid Search: 5.7 months (dangerous)

Budget Allocation Framework

  • 60% to channels with <2 month payback
  • 30% to channels with 2-3 month payback
  • 10% to channels with >3 month payback

πŸ† Professional Impact

This platform demonstrates:

  • Full-stack development expertise
  • Business intelligence capabilities
  • Executive communication skills
  • Production-ready architecture
  • Data-driven optimization strategies

πŸ“„ License

This project is open source and available under the MIT License.

πŸ‘€ Author

Jerry Lai - Data Science & Engineering Portfolio

  • GitHub: @419vive
  • Project Type: SaaS Business Intelligence Platform

Transforming raw customer data into actionable performance marketing intelligence for sustainable SaaS growth.

About

SaaS Customer Acquisition Cost (CAC) and Lifetime Value (LTV) Analysis with Interactive Dashboard - Comprehensive performance marketing intelligence platform for data-driven business decisions

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •