-
Notifications
You must be signed in to change notification settings - Fork 67
Open
Description
Problem Description
I have trained a SiT model on medical images in image space (not latent space) using the --prediction noise setting. When attempting to sample from the trained checkpoint, the generated images do not make any sense.
Sampling command:
python sample.py ODE --prediction noiseCurrent Sampling Code
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
from torchvision.utils import save_image
from diffusers.models import AutoencoderKL
from download import find_model
from models import SiT_models
from train_utils import parse_ode_args, parse_sde_args, parse_transport_args
from transport import create_transport, Sampler
import argparse
import sys
from time import time
def main(mode, args):
# Setup PyTorch:
torch.manual_seed(args.seed)
torch.set_grad_enabled(False)
device = "cuda" if torch.cuda.is_available() else "cpu"
if args.ckpt is None:
assert args.model == "SiT-XL/2", "Only SiT-XL/2 models are available for auto-download."
assert args.image_size in [256, 512]
assert args.num_classes == 1000
assert args.image_size == 256, "512x512 models are not yet available for auto-download."
learn_sigma = args.image_size == 256
else:
learn_sigma = False
# Load model:
latent_size = args.image_size // 1 # <- Is this correct for image-space training?
model = SiT_models[args.model](
input_size=latent_size,
num_classes=args.num_classes,
learn_sigma=learn_sigma,
).to(device)
ckpt_path = args.ckpt or f"SiT-XL-2-{args.image_size}x{args.image_size}.pt"
state_dict = find_model(ckpt_path)
model.load_state_dict(state_dict)
model.eval()
transport = create_transport(
args.path_type,
args.prediction,
args.loss_weight,
args.train_eps,
args.sample_eps
)
sampler = Sampler(transport)
if mode == "ODE":
if args.likelihood:
assert args.cfg_scale == 1, "Likelihood is incompatible with guidance"
sample_fn = sampler.sample_ode_likelihood(
sampling_method=args.sampling_method,
num_steps=args.num_sampling_steps,
atol=args.atol,
rtol=args.rtol,
)
else:
sample_fn = sampler.sample_ode(
sampling_method=args.sampling_method,
num_steps=args.num_sampling_steps,
atol=args.atol,
rtol=args.rtol,
reverse=args.reverse
)
elif mode == "SDE":
sample_fn = sampler.sample_sde(
sampling_method=args.sampling_method,
diffusion_form=args.diffusion_form,
diffusion_norm=args.diffusion_norm,
last_step=args.last_step,
last_step_size=args.last_step_size,
num_steps=args.num_sampling_steps,
)
# Labels to condition the model with:
class_labels = [0, 1]
# Create sampling noise:
n = len(class_labels)
z = torch.randn(n, 1, latent_size, latent_size, device=device) # <- Is 1 channel correct?
y = torch.tensor(class_labels, device=device)
# Setup classifier-free guidance:
use_cfg = args.cfg_scale > 1.0
if use_cfg:
zs = torch.cat([z, z], 0)
y_null = torch.tensor([1000] * n, device=device)
ys = torch.cat([y, y_null], 0)
model_kwargs = dict(y=ys, cfg_scale=args.cfg_scale)
model_fn = model.forward_with_cfg
else:
model_kwargs = dict(y=y)
model_fn = model.forward
# Sample images:
start_time = time()
samples = sample_fn(z, model_fn, **model_kwargs)[-1]
print(f"Sampling took {time() - start_time:.2f} seconds.")
# Save images (VAE is loaded but never used for decoding):
save_image(samples, f"sample.png", nrow=4, normalize=True, value_range=(0, 1))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
if len(sys.argv) < 2:
print("Usage: program.py <mode> [options]")
sys.exit(1)
mode = sys.argv[1]
assert mode[:2] != "--", "Usage: program.py <mode> [options]"
assert mode in ["ODE", "SDE"], "Invalid mode. Please choose 'ODE' or 'SDE'"
parser.add_argument("--model", type=str, choices=list(SiT_models.keys()), default="SiT-B/2")
parser.add_argument("--vae", type=str, choices=["ema", "mse"], default="mse")
parser.add_argument("--image-size", type=int, choices=[256, 512], default=256)
parser.add_argument("--num-classes", type=int, default=1000)
parser.add_argument("--cfg-scale", type=float, default=1.0)
parser.add_argument("--num-sampling-steps", type=int, default=1000)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--ckpt", type=str, default="/home/exouser/SiT/results/002-SiT-B-2-Linear-noise-None/checkpoints/0072000.pt",
help="Optional path to a SiT checkpoint (default: auto-download a pre-trained SiT-XL/2 model).")
parse_transport_args(parser)
if mode == "ODE":
parse_ode_args(parser)
# Further processing for ODE
elif mode == "SDE":
parse_sde_args(parser)
# Further processing for SDE
args = parser.parse_known_args()[0]
main(mode, args)Specific Questions
-
VAE usage with image-space training:
- The pre-trained ImageNet examples seem to use latent diffusion with VAE, but I trained directly on images.
-
Latent size configuration:
- I'm using
latent_size = args.image_size // 1, making them equal. Is this correct for image-space training?
- I'm using
-
Transport parameters alignment:
- How do I ensure
--path_type,--prediction,--train_eps, and--sample_epsmatch between training and sampling? - Are there any other critical hyperparameters that must match?
- How do I ensure
-
Output value range:
- What range should the sampled values be in before saving?
- I'm using
normalize=True, value_range=(0, 1)but unsure if this is correct.
Training Configuration
- Checkpoint: Trained with
--prediction noise - Training space: Image space (no VAE)
- Dataset: Medical imaging (grayscale/range [0,1], float32)
- Image size: 256x256
- Model: SiT-B/2
- Number of classes: 2
Thank you for your help!
Metadata
Metadata
Assignees
Labels
No labels