-
Notifications
You must be signed in to change notification settings - Fork 39
Description
ubuntu:~/Documents/deepsenti/Code/Spark$ python SVMSentimentAnalysis_Spark.py
2018-03-29 12:25:19 WARN Utils:66 - Your hostname, ubuntu resolves to a loopback address: 127.0.1.1; using 192.168.153.129 instead (on interface ens33)
2018-03-29 12:25:19 WARN Utils:66 - Set SPARK_LOCAL_IP if you need to bind to another address
2018-03-29 12:25:20 WARN NativeCodeLoader:62 - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Traceback (most recent call last):
File "/usr/lib/python2.7/logging/init.py", line 861, in emit
msg = self.format(record)
File "/usr/lib/python2.7/logging/init.py", line 734, in format
return fmt.format(record)
File "/usr/lib/python2.7/logging/init.py", line 465, in format
record.message = record.getMessage()
File "/usr/lib/python2.7/logging/init.py", line 329, in getMessage
msg = msg % self.args
TypeError: not all arguments converted during string formatting
Logged from file SVMSentimentAnalysis_Spark.py, line 88
DEBUG:root:Starting Text to Integer Conversion
DEBUG:root:Starting Text to Integer Conversion
DEBUG:root:Starting Text to Integer Conversion
DEBUG:root:Starting Text to Integer Conversion
DEBUG:root:Max Features::0
DEBUG:root:Max Features::0
DEBUG:root:Max Features::0
DEBUG:root:Max Features::0
DEBUG:root:Balance Dataset
DEBUG:root:Balance Dataset
Traceback (most recent call last):
File "SVMSentimentAnalysis_Spark.py", line 221, in
print main("/home/mskarthi96/Documents/deepsenti/Code/Spark/Data/005051808404.txt",True,10,"","","","")
File "SVMSentimentAnalysis_Spark.py", line 189, in main
model.fit(Xtrain,Ytrain)
File "/usr/local/lib/python2.7/dist-packages/sklearn/multiclass.py", line 277, in fit
Y = self.label_binarizer_.fit_transform(y)
File "/usr/local/lib/python2.7/dist-packages/sklearn/base.py", line 455, in fit_transform
return self.fit(X, **fit_params).transform(X)
File "/usr/local/lib/python2.7/dist-packages/sklearn/preprocessing/label.py", line 305, in fit
raise ValueError('y has 0 samples: %r' % y)
ValueError: y has 0 samples: array([], dtype=float64)
how can i overcome this error