From d28b9aa8a902f37b0ff082948c9ca67081176a6e Mon Sep 17 00:00:00 2001 From: Dean Fitzgerald Date: Thu, 5 Feb 2015 08:50:02 -0500 Subject: [PATCH 1/2] cohort data --- Cohort Data.ipynb | 3704 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 3704 insertions(+) create mode 100644 Cohort Data.ipynb diff --git a/Cohort Data.ipynb b/Cohort Data.ipynb new file mode 100644 index 0000000..c1d082f --- /dev/null +++ b/Cohort Data.ipynb @@ -0,0 +1,3704 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:ac628d6315785d46d69c9fffc37cd3da7e1757d4b11c5d7fcdc98b97108f040b" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import numpy as np\n", + "import pandas as pd\n", + "import re\n", + "import matplotlib.pyplot as plt" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 12 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%matplotlib inline" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 13 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "python_data = pd.read_csv(\"cohort_3_python.csv\")\n", + "python_data" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameLecture 1, Jan12Homework 1, Jan13Lecture 2, Jan 13Homework 2, Jan14Lecture 3, Jan 14Homework 3, Jan15Lecture 4, Jan 15Mystery Word, Jan 20Lecture 5, Jan 20...Blackjack2, Jan26Lecture 9, Jan26Random Art, Jan 27Lecture10, Jan27ChartingLecture11, Jan28PigSimLecture12, Jan29Traffic Sim ILecture13,Feb2
0 P01 3.000000 4.000000 3.000000 4.0 4.000000 5.000000 5.000000 5.000000 4... NaN 4.000000 5.000000 NaN NaN NaN NaN NaN NaNNaN
1 P02 4.000000 3.500000 3.000000 5.0 4.000000 4.500000 4.500000 5.000000 5... 5.000000 5.000000 5.000000 NaN NaN 5.0 5.000000 5.0000 NaNNaN
2 P03 NaN 5.000000 3.000000 4.0 5.000000 5.000000 5.000000 5.000000 5... 6.000000 NaN NaN 5.00 5.000000 5.0 NaN NaN NaNNaN
3 P04 3.000000 3.000000 2.000000 3.0 4.000000 4.000000 4.000000 4.000000 5... NaN 1.000000 3.000000 1.00 3.000000 5.0 5.000000 5.0000 5.0NaN
4 P05 NaN 3.000000 3.000000 3.0 3.000000 4.000000 4.000000 4.000000 5... 4.000000 3.000000 6.000000 NaN NaN NaN NaN NaN NaNNaN
5 P06 3.000000 3.500000 3.000000 3.0 3.000000 3.000000 4.000000 4.000000 3... 5.000000 4.000000 5.000000 3.00 4.000000 4.0 4.000000 NaN NaNNaN
6 P07 3.500000 4.000000 3.000000 4.0 5.000000 4.000000 4.500000 4.000000 5... NaN 5.000000 4.000000 4.90 5.000000 4.0 4.000000 4.9000 4.9NaN
7 P08 2.000000 3.000000 2.000000 3.0 4.000000 4.000000 3.000000 4.000000 3... 5.000000 5.000000 5.000000 5.00 5.000000 4.0 4.000000 4.0000 5.0 5
8 P09 NaN 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 3.000000 3... 3.000000 3.000000 2.000000 NaN NaN NaN NaN NaN NaNNaN
9 P10 2.000000 2.000000 2.000000 3.0 NaN 3.000000 3.000000 3.000000 3... 5.000000 4.000000 5.000000 4.00 5.000000 4.0 5.000000 4.0000 NaNNaN
10 P11 2.000000 5.000000 4.000000 3.0 5.000000 4.000000 4.000000 4.000000 4... 4.000000 4.000000 4.000000 4.00 5.000000 5.0 4.000000 5.0000 5.0NaN
11 P12 3.500000 4.000000 4.000000 4.0 4.500000 5.000000 5.000000 5.000000 5... 5.000000 4.000000 4.000000 4.00 6.000000 5.0 5.000000 6.0000 NaNNaN
12 P13 2.500000 3.000000 3.000000 3.0 3.000000 3.000000 4.000000 NaN 3... 4.000000 NaN 5.000000 3.00 NaN NaN NaN NaN NaNNaN
13 P14 3.000000 3.000000 3.000000 3.0 4.000000 3.000000 4.000000 4.000000 4... 4.000000 4.000000 3.000000 NaN NaN NaN NaN NaN NaNNaN
14 P15 2.000000 2.000000 2.000000 2.0 3.000000 3.000000 3.000000 3.000000 3... 3.000000 3.000000 4.000000 3.00 3.000000 3.0 3.000000 3.0000 5.0NaN
15 NaN NaN NaN NaN NaN NaN NaN NaN NaNNaN... NaN NaN NaN NaN NaN NaN NaN NaN NaNNaN
16 Average 2.791667 3.266667 2.733333 3.2 3.821429 3.766667 3.933333 4.071429 4... 4.416667 3.769231 4.285714 3.69 4.555556 4.4 4.333333 4.6125 NaNNaN
17 Min 2.000000 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 3.000000 3... 3.000000 1.000000 2.000000 1.00 3.000000 3.0 3.000000 3.0000 NaNNaN
18 Max 4.000000 5.000000 4.000000 5.0 5.000000 5.000000 5.000000 5.000000 5... 6.000000 5.000000 6.000000 5.00 6.000000 5.0 5.000000 6.0000 NaNNaN
\n", + "

19 rows \u00d7 25 columns

\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 14, + "text": [ + " Name Lecture 1, Jan12 Homework 1, Jan13 Lecture 2, Jan 13 \\\n", + "0 P01 3.000000 4.000000 3.000000 \n", + "1 P02 4.000000 3.500000 3.000000 \n", + "2 P03 NaN 5.000000 3.000000 \n", + "3 P04 3.000000 3.000000 2.000000 \n", + "4 P05 NaN 3.000000 3.000000 \n", + "5 P06 3.000000 3.500000 3.000000 \n", + "6 P07 3.500000 4.000000 3.000000 \n", + "7 P08 2.000000 3.000000 2.000000 \n", + "8 P09 NaN 1.000000 1.000000 \n", + "9 P10 2.000000 2.000000 2.000000 \n", + "10 P11 2.000000 5.000000 4.000000 \n", + "11 P12 3.500000 4.000000 4.000000 \n", + "12 P13 2.500000 3.000000 3.000000 \n", + "13 P14 3.000000 3.000000 3.000000 \n", + "14 P15 2.000000 2.000000 2.000000 \n", + "15 NaN NaN NaN NaN \n", + "16 Average 2.791667 3.266667 2.733333 \n", + "17 Min 2.000000 1.000000 1.000000 \n", + "18 Max 4.000000 5.000000 4.000000 \n", + "\n", + " Homework 2, Jan14 Lecture 3, Jan 14 Homework 3, Jan15 \\\n", + "0 4.0 4.000000 5.000000 \n", + "1 5.0 4.000000 4.500000 \n", + "2 4.0 5.000000 5.000000 \n", + "3 3.0 4.000000 4.000000 \n", + "4 3.0 3.000000 4.000000 \n", + "5 3.0 3.000000 3.000000 \n", + "6 4.0 5.000000 4.000000 \n", + "7 3.0 4.000000 4.000000 \n", + "8 1.0 2.000000 2.000000 \n", + "9 3.0 NaN 3.000000 \n", + "10 3.0 5.000000 4.000000 \n", + "11 4.0 4.500000 5.000000 \n", + "12 3.0 3.000000 3.000000 \n", + "13 3.0 4.000000 3.000000 \n", + "14 2.0 3.000000 3.000000 \n", + "15 NaN NaN NaN \n", + "16 3.2 3.821429 3.766667 \n", + "17 1.0 2.000000 2.000000 \n", + "18 5.0 5.000000 5.000000 \n", + "\n", + " Lecture 4, Jan 15 Mystery Word, Jan 20 Lecture 5, Jan 20 \\\n", + "0 5.000000 5.000000 4 \n", + "1 4.500000 5.000000 5 \n", + "2 5.000000 5.000000 5 \n", + "3 4.000000 4.000000 5 \n", + "4 4.000000 4.000000 5 \n", + "5 4.000000 4.000000 3 \n", + "6 4.500000 4.000000 5 \n", + "7 3.000000 4.000000 3 \n", + "8 2.000000 3.000000 3 \n", + "9 3.000000 3.000000 3 \n", + "10 4.000000 4.000000 4 \n", + "11 5.000000 5.000000 5 \n", + "12 4.000000 NaN 3 \n", + "13 4.000000 4.000000 4 \n", + "14 3.000000 3.000000 3 \n", + "15 NaN NaN NaN \n", + "16 3.933333 4.071429 4 \n", + "17 2.000000 3.000000 3 \n", + "18 5.000000 5.000000 5 \n", + "\n", + " ... Blackjack2, Jan26 Lecture 9, Jan26 Random Art, Jan 27 \\\n", + "0 ... NaN 4.000000 5.000000 \n", + "1 ... 5.000000 5.000000 5.000000 \n", + "2 ... 6.000000 NaN NaN \n", + "3 ... NaN 1.000000 3.000000 \n", + "4 ... 4.000000 3.000000 6.000000 \n", + "5 ... 5.000000 4.000000 5.000000 \n", + "6 ... NaN 5.000000 4.000000 \n", + "7 ... 5.000000 5.000000 5.000000 \n", + "8 ... 3.000000 3.000000 2.000000 \n", + "9 ... 5.000000 4.000000 5.000000 \n", + "10 ... 4.000000 4.000000 4.000000 \n", + "11 ... 5.000000 4.000000 4.000000 \n", + "12 ... 4.000000 NaN 5.000000 \n", + "13 ... 4.000000 4.000000 3.000000 \n", + "14 ... 3.000000 3.000000 4.000000 \n", + "15 ... NaN NaN NaN \n", + "16 ... 4.416667 3.769231 4.285714 \n", + "17 ... 3.000000 1.000000 2.000000 \n", + "18 ... 6.000000 5.000000 6.000000 \n", + "\n", + " Lecture10, Jan27 Charting Lecture11, Jan28 PigSim Lecture12, Jan29 \\\n", + "0 NaN NaN NaN NaN NaN \n", + "1 NaN NaN 5.0 5.000000 5.0000 \n", + "2 5.00 5.000000 5.0 NaN NaN \n", + "3 1.00 3.000000 5.0 5.000000 5.0000 \n", + "4 NaN NaN NaN NaN NaN \n", + "5 3.00 4.000000 4.0 4.000000 NaN \n", + "6 4.90 5.000000 4.0 4.000000 4.9000 \n", + "7 5.00 5.000000 4.0 4.000000 4.0000 \n", + "8 NaN NaN NaN NaN NaN \n", + "9 4.00 5.000000 4.0 5.000000 4.0000 \n", + "10 4.00 5.000000 5.0 4.000000 5.0000 \n", + "11 4.00 6.000000 5.0 5.000000 6.0000 \n", + "12 3.00 NaN NaN NaN NaN \n", + "13 NaN NaN NaN NaN NaN \n", + "14 3.00 3.000000 3.0 3.000000 3.0000 \n", + "15 NaN NaN NaN NaN NaN \n", + "16 3.69 4.555556 4.4 4.333333 4.6125 \n", + "17 1.00 3.000000 3.0 3.000000 3.0000 \n", + "18 5.00 6.000000 5.0 5.000000 6.0000 \n", + "\n", + " Traffic Sim I Lecture13,Feb2 \n", + "0 NaN NaN \n", + "1 NaN NaN \n", + "2 NaN NaN \n", + "3 5.0 NaN \n", + "4 NaN NaN \n", + "5 NaN NaN \n", + "6 4.9 NaN \n", + "7 5.0 5 \n", + "8 NaN NaN \n", + "9 NaN NaN \n", + "10 5.0 NaN \n", + "11 NaN NaN \n", + "12 NaN NaN \n", + "13 NaN NaN \n", + "14 5.0 NaN \n", + "15 NaN NaN \n", + "16 NaN NaN \n", + "17 NaN NaN \n", + "18 NaN NaN \n", + "\n", + "[19 rows x 25 columns]" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "python_data.index = python_data.pop(\"Name\")\n", + "python_data.head()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Lecture 1, Jan12Homework 1, Jan13Lecture 2, Jan 13Homework 2, Jan14Lecture 3, Jan 14Homework 3, Jan15Lecture 4, Jan 15Mystery Word, Jan 20Lecture 5, Jan 20Currency, Jan 21...Blackjack2, Jan26Lecture 9, Jan26Random Art, Jan 27Lecture10, Jan27ChartingLecture11, Jan28PigSimLecture12, Jan29Traffic Sim ILecture13,Feb2
Name
P01 3 4.0 3 4 4 5.0 5.0 5 4 4...NaN 4 5NaNNaNNaNNaNNaNNaNNaN
P02 4 3.5 3 5 4 4.5 4.5 5 5 5... 5 5 5NaNNaN 5 5 5NaNNaN
P03NaN 5.0 3 4 5 5.0 5.0 5 5 5... 6NaNNaN 5 5 5NaNNaNNaNNaN
P04 3 3.0 2 3 4 4.0 4.0 4 5NaN...NaN 1 3 1 3 5 5 5 5NaN
P05NaN 3.0 3 3 3 4.0 4.0 4 5 4... 4 3 6NaNNaNNaNNaNNaNNaNNaN
\n", + "

5 rows \u00d7 24 columns

\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 15, + "text": [ + " Lecture 1, Jan12 Homework 1, Jan13 Lecture 2, Jan 13 \\\n", + "Name \n", + "P01 3 4.0 3 \n", + "P02 4 3.5 3 \n", + "P03 NaN 5.0 3 \n", + "P04 3 3.0 2 \n", + "P05 NaN 3.0 3 \n", + "\n", + " Homework 2, Jan14 Lecture 3, Jan 14 Homework 3, Jan15 \\\n", + "Name \n", + "P01 4 4 5.0 \n", + "P02 5 4 4.5 \n", + "P03 4 5 5.0 \n", + "P04 3 4 4.0 \n", + "P05 3 3 4.0 \n", + "\n", + " Lecture 4, Jan 15 Mystery Word, Jan 20 Lecture 5, Jan 20 \\\n", + "Name \n", + "P01 5.0 5 4 \n", + "P02 4.5 5 5 \n", + "P03 5.0 5 5 \n", + "P04 4.0 4 5 \n", + "P05 4.0 4 5 \n", + "\n", + " Currency, Jan 21 ... Blackjack2, Jan26 Lecture 9, Jan26 \\\n", + "Name ... \n", + "P01 4 ... NaN 4 \n", + "P02 5 ... 5 5 \n", + "P03 5 ... 6 NaN \n", + "P04 NaN ... NaN 1 \n", + "P05 4 ... 4 3 \n", + "\n", + " Random Art, Jan 27 Lecture10, Jan27 Charting Lecture11, Jan28 \\\n", + "Name \n", + "P01 5 NaN NaN NaN \n", + "P02 5 NaN NaN 5 \n", + "P03 NaN 5 5 5 \n", + "P04 3 1 3 5 \n", + "P05 6 NaN NaN NaN \n", + "\n", + " PigSim Lecture12, Jan29 Traffic Sim I Lecture13,Feb2 \n", + "Name \n", + "P01 NaN NaN NaN NaN \n", + "P02 5 5 NaN NaN \n", + "P03 NaN NaN NaN NaN \n", + "P04 5 5 5 NaN \n", + "P05 NaN NaN NaN NaN \n", + "\n", + "[5 rows x 24 columns]" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "python_data.tail()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Lecture 1, Jan12Homework 1, Jan13Lecture 2, Jan 13Homework 2, Jan14Lecture 3, Jan 14Homework 3, Jan15Lecture 4, Jan 15Mystery Word, Jan 20Lecture 5, Jan 20Currency, Jan 21...Blackjack2, Jan26Lecture 9, Jan26Random Art, Jan 27Lecture10, Jan27ChartingLecture11, Jan28PigSimLecture12, Jan29Traffic Sim ILecture13,Feb2
Name
P15 2.000000 2.000000 2.000000 2.0 3.000000 3.000000 3.000000 3.000000 3 3.000000... 3.000000 3.000000 4.000000 3.00 3.000000 3.0 3.000000 3.0000 5NaN
NaN NaN NaN NaN NaN NaN NaN NaN NaNNaN NaN... NaN NaN NaN NaN NaN NaN NaN NaNNaNNaN
Average 2.791667 3.266667 2.733333 3.2 3.821429 3.766667 3.933333 4.071429 4 3.769231... 4.416667 3.769231 4.285714 3.69 4.555556 4.4 4.333333 4.6125NaNNaN
Min 2.000000 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 3.000000 3 2.000000... 3.000000 1.000000 2.000000 1.00 3.000000 3.0 3.000000 3.0000NaNNaN
Max 4.000000 5.000000 4.000000 5.0 5.000000 5.000000 5.000000 5.000000 5 5.000000... 6.000000 5.000000 6.000000 5.00 6.000000 5.0 5.000000 6.0000NaNNaN
\n", + "

5 rows \u00d7 24 columns

\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 16, + "text": [ + " Lecture 1, Jan12 Homework 1, Jan13 Lecture 2, Jan 13 \\\n", + "Name \n", + "P15 2.000000 2.000000 2.000000 \n", + "NaN NaN NaN NaN \n", + "Average 2.791667 3.266667 2.733333 \n", + "Min 2.000000 1.000000 1.000000 \n", + "Max 4.000000 5.000000 4.000000 \n", + "\n", + " Homework 2, Jan14 Lecture 3, Jan 14 Homework 3, Jan15 \\\n", + "Name \n", + "P15 2.0 3.000000 3.000000 \n", + "NaN NaN NaN NaN \n", + "Average 3.2 3.821429 3.766667 \n", + "Min 1.0 2.000000 2.000000 \n", + "Max 5.0 5.000000 5.000000 \n", + "\n", + " Lecture 4, Jan 15 Mystery Word, Jan 20 Lecture 5, Jan 20 \\\n", + "Name \n", + "P15 3.000000 3.000000 3 \n", + "NaN NaN NaN NaN \n", + "Average 3.933333 4.071429 4 \n", + "Min 2.000000 3.000000 3 \n", + "Max 5.000000 5.000000 5 \n", + "\n", + " Currency, Jan 21 ... Blackjack2, Jan26 \\\n", + "Name ... \n", + "P15 3.000000 ... 3.000000 \n", + "NaN NaN ... NaN \n", + "Average 3.769231 ... 4.416667 \n", + "Min 2.000000 ... 3.000000 \n", + "Max 5.000000 ... 6.000000 \n", + "\n", + " Lecture 9, Jan26 Random Art, Jan 27 Lecture10, Jan27 Charting \\\n", + "Name \n", + "P15 3.000000 4.000000 3.00 3.000000 \n", + "NaN NaN NaN NaN NaN \n", + "Average 3.769231 4.285714 3.69 4.555556 \n", + "Min 1.000000 2.000000 1.00 3.000000 \n", + "Max 5.000000 6.000000 5.00 6.000000 \n", + "\n", + " Lecture11, Jan28 PigSim Lecture12, Jan29 Traffic Sim I \\\n", + "Name \n", + "P15 3.0 3.000000 3.0000 5 \n", + "NaN NaN NaN NaN NaN \n", + "Average 4.4 4.333333 4.6125 NaN \n", + "Min 3.0 3.000000 3.0000 NaN \n", + "Max 5.0 5.000000 6.0000 NaN \n", + "\n", + " Lecture13,Feb2 \n", + "Name \n", + "P15 NaN \n", + "NaN NaN \n", + "Average NaN \n", + "Min NaN \n", + "Max NaN \n", + "\n", + "[5 rows x 24 columns]" + ] + } + ], + "prompt_number": 16 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "python_data = python_data.dropna(how=\"all\")\n", + "\n", + "pydata = python_data" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 17 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "pydata = pydata.rename(columns=lambda x: x.replace('Jan', ''))\n", + "pydata = pydata.rename(columns=lambda x: x.replace('Lecture', 'L'))\n", + "pydata = pydata.rename(columns=lambda x: x.replace('Homework', 'H'))\n", + "pydata = pydata.rename(columns=lambda x: x.replace((r\"[0-9]\"), \" \" ))\n", + "pydata\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
L 1, 12H 1, 13L 2, 13H 2, 14L 3, 14H 3, 15L 4, 15Mystery Word, 20L 5, 20Currency, 21...Blackjack2, 26L 9, 26Random Art, 27L10, 27ChartingL11, 28PigSimL12, 29Traffic Sim IL13,Feb2
Name
P01 3.000000 4.000000 3.000000 4.0 4.000000 5.000000 5.000000 5.000000 4 4.000000... NaN 4.000000 5.000000 NaN NaN NaN NaN NaN NaNNaN
P02 4.000000 3.500000 3.000000 5.0 4.000000 4.500000 4.500000 5.000000 5 5.000000... 5.000000 5.000000 5.000000 NaN NaN 5.0 5.000000 5.0000 NaNNaN
P03 NaN 5.000000 3.000000 4.0 5.000000 5.000000 5.000000 5.000000 5 5.000000... 6.000000 NaN NaN 5.00 5.000000 5.0 NaN NaN NaNNaN
P04 3.000000 3.000000 2.000000 3.0 4.000000 4.000000 4.000000 4.000000 5 NaN... NaN 1.000000 3.000000 1.00 3.000000 5.0 5.000000 5.0000 5.0NaN
P05 NaN 3.000000 3.000000 3.0 3.000000 4.000000 4.000000 4.000000 5 4.000000... 4.000000 3.000000 6.000000 NaN NaN NaN NaN NaN NaNNaN
P06 3.000000 3.500000 3.000000 3.0 3.000000 3.000000 4.000000 4.000000 3 3.000000... 5.000000 4.000000 5.000000 3.00 4.000000 4.0 4.000000 NaN NaNNaN
P07 3.500000 4.000000 3.000000 4.0 5.000000 4.000000 4.500000 4.000000 5 5.000000... NaN 5.000000 4.000000 4.90 5.000000 4.0 4.000000 4.9000 4.9NaN
P08 2.000000 3.000000 2.000000 3.0 4.000000 4.000000 3.000000 4.000000 3 3.000000... 5.000000 5.000000 5.000000 5.00 5.000000 4.0 4.000000 4.0000 5.0 5
P09 NaN 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 3.000000 3 2.000000... 3.000000 3.000000 2.000000 NaN NaN NaN NaN NaN NaNNaN
P10 2.000000 2.000000 2.000000 3.0 NaN 3.000000 3.000000 3.000000 3 4.000000... 5.000000 4.000000 5.000000 4.00 5.000000 4.0 5.000000 4.0000 NaNNaN
P11 2.000000 5.000000 4.000000 3.0 5.000000 4.000000 4.000000 4.000000 4 NaN... 4.000000 4.000000 4.000000 4.00 5.000000 5.0 4.000000 5.0000 5.0NaN
P12 3.500000 4.000000 4.000000 4.0 4.500000 5.000000 5.000000 5.000000 5 4.000000... 5.000000 4.000000 4.000000 4.00 6.000000 5.0 5.000000 6.0000 NaNNaN
P13 2.500000 3.000000 3.000000 3.0 3.000000 3.000000 4.000000 NaN 3 3.000000... 4.000000 NaN 5.000000 3.00 NaN NaN NaN NaN NaNNaN
P14 3.000000 3.000000 3.000000 3.0 4.000000 3.000000 4.000000 4.000000 4 4.000000... 4.000000 4.000000 3.000000 NaN NaN NaN NaN NaN NaNNaN
P15 2.000000 2.000000 2.000000 2.0 3.000000 3.000000 3.000000 3.000000 3 3.000000... 3.000000 3.000000 4.000000 3.00 3.000000 3.0 3.000000 3.0000 5.0NaN
Average 2.791667 3.266667 2.733333 3.2 3.821429 3.766667 3.933333 4.071429 4 3.769231... 4.416667 3.769231 4.285714 3.69 4.555556 4.4 4.333333 4.6125 NaNNaN
Min 2.000000 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 3.000000 3 2.000000... 3.000000 1.000000 2.000000 1.00 3.000000 3.0 3.000000 3.0000 NaNNaN
Max 4.000000 5.000000 4.000000 5.0 5.000000 5.000000 5.000000 5.000000 5 5.000000... 6.000000 5.000000 6.000000 5.00 6.000000 5.0 5.000000 6.0000 NaNNaN
\n", + "

18 rows \u00d7 24 columns

\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 18, + "text": [ + " L 1, 12 H 1, 13 L 2, 13 H 2, 14 L 3, 14 H 3, 15 L 4, 15 \\\n", + "Name \n", + "P01 3.000000 4.000000 3.000000 4.0 4.000000 5.000000 5.000000 \n", + "P02 4.000000 3.500000 3.000000 5.0 4.000000 4.500000 4.500000 \n", + "P03 NaN 5.000000 3.000000 4.0 5.000000 5.000000 5.000000 \n", + "P04 3.000000 3.000000 2.000000 3.0 4.000000 4.000000 4.000000 \n", + "P05 NaN 3.000000 3.000000 3.0 3.000000 4.000000 4.000000 \n", + "P06 3.000000 3.500000 3.000000 3.0 3.000000 3.000000 4.000000 \n", + "P07 3.500000 4.000000 3.000000 4.0 5.000000 4.000000 4.500000 \n", + "P08 2.000000 3.000000 2.000000 3.0 4.000000 4.000000 3.000000 \n", + "P09 NaN 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 \n", + "P10 2.000000 2.000000 2.000000 3.0 NaN 3.000000 3.000000 \n", + "P11 2.000000 5.000000 4.000000 3.0 5.000000 4.000000 4.000000 \n", + "P12 3.500000 4.000000 4.000000 4.0 4.500000 5.000000 5.000000 \n", + "P13 2.500000 3.000000 3.000000 3.0 3.000000 3.000000 4.000000 \n", + "P14 3.000000 3.000000 3.000000 3.0 4.000000 3.000000 4.000000 \n", + "P15 2.000000 2.000000 2.000000 2.0 3.000000 3.000000 3.000000 \n", + "Average 2.791667 3.266667 2.733333 3.2 3.821429 3.766667 3.933333 \n", + "Min 2.000000 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 \n", + "Max 4.000000 5.000000 4.000000 5.0 5.000000 5.000000 5.000000 \n", + "\n", + " Mystery Word, 20 L 5, 20 Currency, 21 ... Blackjack2, 26 \\\n", + "Name ... \n", + "P01 5.000000 4 4.000000 ... NaN \n", + "P02 5.000000 5 5.000000 ... 5.000000 \n", + "P03 5.000000 5 5.000000 ... 6.000000 \n", + "P04 4.000000 5 NaN ... NaN \n", + "P05 4.000000 5 4.000000 ... 4.000000 \n", + "P06 4.000000 3 3.000000 ... 5.000000 \n", + "P07 4.000000 5 5.000000 ... NaN \n", + "P08 4.000000 3 3.000000 ... 5.000000 \n", + "P09 3.000000 3 2.000000 ... 3.000000 \n", + "P10 3.000000 3 4.000000 ... 5.000000 \n", + "P11 4.000000 4 NaN ... 4.000000 \n", + "P12 5.000000 5 4.000000 ... 5.000000 \n", + "P13 NaN 3 3.000000 ... 4.000000 \n", + "P14 4.000000 4 4.000000 ... 4.000000 \n", + "P15 3.000000 3 3.000000 ... 3.000000 \n", + "Average 4.071429 4 3.769231 ... 4.416667 \n", + "Min 3.000000 3 2.000000 ... 3.000000 \n", + "Max 5.000000 5 5.000000 ... 6.000000 \n", + "\n", + " L 9, 26 Random Art, 27 L10, 27 Charting L11, 28 PigSim \\\n", + "Name \n", + "P01 4.000000 5.000000 NaN NaN NaN NaN \n", + "P02 5.000000 5.000000 NaN NaN 5.0 5.000000 \n", + "P03 NaN NaN 5.00 5.000000 5.0 NaN \n", + "P04 1.000000 3.000000 1.00 3.000000 5.0 5.000000 \n", + "P05 3.000000 6.000000 NaN NaN NaN NaN \n", + "P06 4.000000 5.000000 3.00 4.000000 4.0 4.000000 \n", + "P07 5.000000 4.000000 4.90 5.000000 4.0 4.000000 \n", + "P08 5.000000 5.000000 5.00 5.000000 4.0 4.000000 \n", + "P09 3.000000 2.000000 NaN NaN NaN NaN \n", + "P10 4.000000 5.000000 4.00 5.000000 4.0 5.000000 \n", + "P11 4.000000 4.000000 4.00 5.000000 5.0 4.000000 \n", + "P12 4.000000 4.000000 4.00 6.000000 5.0 5.000000 \n", + "P13 NaN 5.000000 3.00 NaN NaN NaN \n", + "P14 4.000000 3.000000 NaN NaN NaN NaN \n", + "P15 3.000000 4.000000 3.00 3.000000 3.0 3.000000 \n", + "Average 3.769231 4.285714 3.69 4.555556 4.4 4.333333 \n", + "Min 1.000000 2.000000 1.00 3.000000 3.0 3.000000 \n", + "Max 5.000000 6.000000 5.00 6.000000 5.0 5.000000 \n", + "\n", + " L12, 29 Traffic Sim I L13,Feb2 \n", + "Name \n", + "P01 NaN NaN NaN \n", + "P02 5.0000 NaN NaN \n", + "P03 NaN NaN NaN \n", + "P04 5.0000 5.0 NaN \n", + "P05 NaN NaN NaN \n", + "P06 NaN NaN NaN \n", + "P07 4.9000 4.9 NaN \n", + "P08 4.0000 5.0 5 \n", + "P09 NaN NaN NaN \n", + "P10 4.0000 NaN NaN \n", + "P11 5.0000 5.0 NaN \n", + "P12 6.0000 NaN NaN \n", + "P13 NaN NaN NaN \n", + "P14 NaN NaN NaN \n", + "P15 3.0000 5.0 NaN \n", + "Average 4.6125 NaN NaN \n", + "Min 3.0000 NaN NaN \n", + "Max 6.0000 NaN NaN \n", + "\n", + "[18 rows x 24 columns]" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "pieces = {'Jan 12': pydata.ix[:, [0]], 'Jan 13': pydata.ix[:, [1, 2]], 'Jan 14': pydata.ix[:, [3, 4]],\n", + " 'Jan 15': pydata.ix[:, [5, 6]], 'Jan 16': pydata.ix[:, [7, 8]], 'Jan 17': pydata.ix[:, [9, 10]],\n", + " 'Jan 18': pydata.ix[:, [11, 12]], 'Jan 19': pydata.ix[:, [13, 14]], 'Jan 20': pydata.ix[:, [15, 16]],\n", + " 'Jan 21': pydata.ix[:, [17, 18]], 'Jan 22': pydata.ix[:, [19, 20]], 'Jan 23': pydata.ix[:, [21, 22]],\n", + " 'Jan 24': pydata.ix[:, [23]]}\n", + " \n", + "pydata = pd.concat(pieces, axis=1)\n", + "pydata" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Jan 12Jan 13Jan 14Jan 15Jan 16Jan 17...Jan 19Jan 20Jan 21Jan 22Jan 23Jan 24
L 1, 12H 1, 13L 2, 13H 2, 14L 3, 14H 3, 15L 4, 15Mystery Word, 20L 5, 20Currency, 21...Blackjack2, 26L 9, 26Random Art, 27L10, 27ChartingL11, 28PigSimL12, 29Traffic Sim IL13,Feb2
Name
P01 3.000000 4.000000 3.000000 4.0 4.000000 5.000000 5.000000 5.000000 4 4.000000... NaN 4.000000 5.000000 NaN NaN NaN NaN NaN NaNNaN
P02 4.000000 3.500000 3.000000 5.0 4.000000 4.500000 4.500000 5.000000 5 5.000000... 5.000000 5.000000 5.000000 NaN NaN 5.0 5.000000 5.0000 NaNNaN
P03 NaN 5.000000 3.000000 4.0 5.000000 5.000000 5.000000 5.000000 5 5.000000... 6.000000 NaN NaN 5.00 5.000000 5.0 NaN NaN NaNNaN
P04 3.000000 3.000000 2.000000 3.0 4.000000 4.000000 4.000000 4.000000 5 NaN... NaN 1.000000 3.000000 1.00 3.000000 5.0 5.000000 5.0000 5.0NaN
P05 NaN 3.000000 3.000000 3.0 3.000000 4.000000 4.000000 4.000000 5 4.000000... 4.000000 3.000000 6.000000 NaN NaN NaN NaN NaN NaNNaN
P06 3.000000 3.500000 3.000000 3.0 3.000000 3.000000 4.000000 4.000000 3 3.000000... 5.000000 4.000000 5.000000 3.00 4.000000 4.0 4.000000 NaN NaNNaN
P07 3.500000 4.000000 3.000000 4.0 5.000000 4.000000 4.500000 4.000000 5 5.000000... NaN 5.000000 4.000000 4.90 5.000000 4.0 4.000000 4.9000 4.9NaN
P08 2.000000 3.000000 2.000000 3.0 4.000000 4.000000 3.000000 4.000000 3 3.000000... 5.000000 5.000000 5.000000 5.00 5.000000 4.0 4.000000 4.0000 5.0 5
P09 NaN 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 3.000000 3 2.000000... 3.000000 3.000000 2.000000 NaN NaN NaN NaN NaN NaNNaN
P10 2.000000 2.000000 2.000000 3.0 NaN 3.000000 3.000000 3.000000 3 4.000000... 5.000000 4.000000 5.000000 4.00 5.000000 4.0 5.000000 4.0000 NaNNaN
P11 2.000000 5.000000 4.000000 3.0 5.000000 4.000000 4.000000 4.000000 4 NaN... 4.000000 4.000000 4.000000 4.00 5.000000 5.0 4.000000 5.0000 5.0NaN
P12 3.500000 4.000000 4.000000 4.0 4.500000 5.000000 5.000000 5.000000 5 4.000000... 5.000000 4.000000 4.000000 4.00 6.000000 5.0 5.000000 6.0000 NaNNaN
P13 2.500000 3.000000 3.000000 3.0 3.000000 3.000000 4.000000 NaN 3 3.000000... 4.000000 NaN 5.000000 3.00 NaN NaN NaN NaN NaNNaN
P14 3.000000 3.000000 3.000000 3.0 4.000000 3.000000 4.000000 4.000000 4 4.000000... 4.000000 4.000000 3.000000 NaN NaN NaN NaN NaN NaNNaN
P15 2.000000 2.000000 2.000000 2.0 3.000000 3.000000 3.000000 3.000000 3 3.000000... 3.000000 3.000000 4.000000 3.00 3.000000 3.0 3.000000 3.0000 5.0NaN
Average 2.791667 3.266667 2.733333 3.2 3.821429 3.766667 3.933333 4.071429 4 3.769231... 4.416667 3.769231 4.285714 3.69 4.555556 4.4 4.333333 4.6125 NaNNaN
Min 2.000000 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 3.000000 3 2.000000... 3.000000 1.000000 2.000000 1.00 3.000000 3.0 3.000000 3.0000 NaNNaN
Max 4.000000 5.000000 4.000000 5.0 5.000000 5.000000 5.000000 5.000000 5 5.000000... 6.000000 5.000000 6.000000 5.00 6.000000 5.0 5.000000 6.0000 NaNNaN
\n", + "

18 rows \u00d7 24 columns

\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 21, + "text": [ + " Jan 12 Jan 13 Jan 14 Jan 15 \\\n", + " L 1, 12 H 1, 13 L 2, 13 H 2, 14 L 3, 14 H 3, 15 L 4, 15 \n", + "Name \n", + "P01 3.000000 4.000000 3.000000 4.0 4.000000 5.000000 5.000000 \n", + "P02 4.000000 3.500000 3.000000 5.0 4.000000 4.500000 4.500000 \n", + "P03 NaN 5.000000 3.000000 4.0 5.000000 5.000000 5.000000 \n", + "P04 3.000000 3.000000 2.000000 3.0 4.000000 4.000000 4.000000 \n", + "P05 NaN 3.000000 3.000000 3.0 3.000000 4.000000 4.000000 \n", + "P06 3.000000 3.500000 3.000000 3.0 3.000000 3.000000 4.000000 \n", + "P07 3.500000 4.000000 3.000000 4.0 5.000000 4.000000 4.500000 \n", + "P08 2.000000 3.000000 2.000000 3.0 4.000000 4.000000 3.000000 \n", + "P09 NaN 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 \n", + "P10 2.000000 2.000000 2.000000 3.0 NaN 3.000000 3.000000 \n", + "P11 2.000000 5.000000 4.000000 3.0 5.000000 4.000000 4.000000 \n", + "P12 3.500000 4.000000 4.000000 4.0 4.500000 5.000000 5.000000 \n", + "P13 2.500000 3.000000 3.000000 3.0 3.000000 3.000000 4.000000 \n", + "P14 3.000000 3.000000 3.000000 3.0 4.000000 3.000000 4.000000 \n", + "P15 2.000000 2.000000 2.000000 2.0 3.000000 3.000000 3.000000 \n", + "Average 2.791667 3.266667 2.733333 3.2 3.821429 3.766667 3.933333 \n", + "Min 2.000000 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 \n", + "Max 4.000000 5.000000 4.000000 5.0 5.000000 5.000000 5.000000 \n", + "\n", + " Jan 16 Jan 17 ... Jan 19 \\\n", + " Mystery Word, 20 L 5, 20 Currency, 21 ... Blackjack2, 26 \n", + "Name ... \n", + "P01 5.000000 4 4.000000 ... NaN \n", + "P02 5.000000 5 5.000000 ... 5.000000 \n", + "P03 5.000000 5 5.000000 ... 6.000000 \n", + "P04 4.000000 5 NaN ... NaN \n", + "P05 4.000000 5 4.000000 ... 4.000000 \n", + "P06 4.000000 3 3.000000 ... 5.000000 \n", + "P07 4.000000 5 5.000000 ... NaN \n", + "P08 4.000000 3 3.000000 ... 5.000000 \n", + "P09 3.000000 3 2.000000 ... 3.000000 \n", + "P10 3.000000 3 4.000000 ... 5.000000 \n", + "P11 4.000000 4 NaN ... 4.000000 \n", + "P12 5.000000 5 4.000000 ... 5.000000 \n", + "P13 NaN 3 3.000000 ... 4.000000 \n", + "P14 4.000000 4 4.000000 ... 4.000000 \n", + "P15 3.000000 3 3.000000 ... 3.000000 \n", + "Average 4.071429 4 3.769231 ... 4.416667 \n", + "Min 3.000000 3 2.000000 ... 3.000000 \n", + "Max 5.000000 5 5.000000 ... 6.000000 \n", + "\n", + " Jan 20 Jan 21 Jan 22 Jan 23 \\\n", + " L 9, 26 Random Art, 27 L10, 27 Charting L11, 28 PigSim L12, 29 \n", + "Name \n", + "P01 4.000000 5.000000 NaN NaN NaN NaN NaN \n", + "P02 5.000000 5.000000 NaN NaN 5.0 5.000000 5.0000 \n", + "P03 NaN NaN 5.00 5.000000 5.0 NaN NaN \n", + "P04 1.000000 3.000000 1.00 3.000000 5.0 5.000000 5.0000 \n", + "P05 3.000000 6.000000 NaN NaN NaN NaN NaN \n", + "P06 4.000000 5.000000 3.00 4.000000 4.0 4.000000 NaN \n", + "P07 5.000000 4.000000 4.90 5.000000 4.0 4.000000 4.9000 \n", + "P08 5.000000 5.000000 5.00 5.000000 4.0 4.000000 4.0000 \n", + "P09 3.000000 2.000000 NaN NaN NaN NaN NaN \n", + "P10 4.000000 5.000000 4.00 5.000000 4.0 5.000000 4.0000 \n", + "P11 4.000000 4.000000 4.00 5.000000 5.0 4.000000 5.0000 \n", + "P12 4.000000 4.000000 4.00 6.000000 5.0 5.000000 6.0000 \n", + "P13 NaN 5.000000 3.00 NaN NaN NaN NaN \n", + "P14 4.000000 3.000000 NaN NaN NaN NaN NaN \n", + "P15 3.000000 4.000000 3.00 3.000000 3.0 3.000000 3.0000 \n", + "Average 3.769231 4.285714 3.69 4.555556 4.4 4.333333 4.6125 \n", + "Min 1.000000 2.000000 1.00 3.000000 3.0 3.000000 3.0000 \n", + "Max 5.000000 6.000000 5.00 6.000000 5.0 5.000000 6.0000 \n", + "\n", + " Jan 24 \n", + " Traffic Sim I L13,Feb2 \n", + "Name \n", + "P01 NaN NaN \n", + "P02 NaN NaN \n", + "P03 NaN NaN \n", + "P04 5.0 NaN \n", + "P05 NaN NaN \n", + "P06 NaN NaN \n", + "P07 4.9 NaN \n", + "P08 5.0 5 \n", + "P09 NaN NaN \n", + "P10 NaN NaN \n", + "P11 5.0 NaN \n", + "P12 NaN NaN \n", + "P13 NaN NaN \n", + "P14 NaN NaN \n", + "P15 5.0 NaN \n", + "Average NaN NaN \n", + "Min NaN NaN \n", + "Max NaN NaN \n", + "\n", + "[18 rows x 24 columns]" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "flipped = pydata.transpose()\n", + "flipped" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameP01P02P03P04P05P06P07P08P09P10P11P12P13P14P15AverageMinMax
Jan 12L 1, 12 3.0 4.0NaN 3NaN 3.0 3.5 2.0NaN 2 2 3.5 2.5 3 2 2.791667 2 4.0
Jan 13H 1, 13 4.0 3.5 5 3 3 3.5 4.0 3.0 1 2 5 4.0 3.0 3 2 3.266667 1 5.0
L 2, 13 3.0 3.0 3 2 3 3.0 3.0 2.0 1 2 4 4.0 3.0 3 2 2.733333 1 4.0
Jan 14H 2, 14 4.0 5.0 4 3 3 3.0 4.0 3.0 1 3 3 4.0 3.0 3 2 3.200000 1 5.0
L 3, 14 4.0 4.0 5 4 3 3.0 5.0 4.0 2NaN 5 4.5 3.0 4 3 3.821429 2 5.0
Jan 15H 3, 15 5.0 4.5 5 4 4 3.0 4.0 4.0 2 3 4 5.0 3.0 3 3 3.766667 2 5.0
L 4, 15 5.0 4.5 5 4 4 4.0 4.5 3.0 2 3 4 5.0 4.0 4 3 3.933333 2 5.0
Jan 16Mystery Word, 20 5.0 5.0 5 4 4 4.0 4.0 4.0 3 3 4 5.0 NaN 4 3 4.071429 3 5.0
L 5, 20 4.0 5.0 5 5 5 3.0 5.0 3.0 3 3 4 5.0 3.0 4 3 4.000000 3 5.0
Jan 17Currency, 21 4.0 5.0 5NaN 4 3.0 5.0 3.0 2 4NaN 4.0 3.0 4 3 3.769231 2 5.0
L 6, 21 4.0 5.0 5 4 4 5.0 5.0 5.0 3 4NaN 4.0 3.0 4 3 4.142857 3 5.0
Jan 18Blackjack1, 22 5.5 5.0 5NaN 5 NaN 5.0 5.5 2 4 4 4.0 4.0 4 3 4.307692 2 5.5
L 7, 22 4.0 NaNNaN 4 4 5.0 4.0 4.0 3 4 4 NaN 4.0NaN 3 3.909091 3 5.0
Jan 19L 8, 23 5.5 NaN 5 4 4 5.0 5.0 5.0 3 5 4 5.5 4.0NaN 3 4.461538 3 5.5
Blackjack2, 26 NaN 5.0 6NaN 4 5.0 NaN 5.0 3 5 4 5.0 4.0 4 3 4.416667 3 6.0
Jan 20L 9, 26 4.0 5.0NaN 1 3 4.0 5.0 5.0 3 4 4 4.0 NaN 4 3 3.769231 1 5.0
Random Art, 27 5.0 5.0NaN 3 6 5.0 4.0 5.0 2 5 4 4.0 5.0 3 4 4.285714 2 6.0
Jan 21L10, 27 NaN NaN 5 1NaN 3.0 4.9 5.0NaN 4 4 4.0 3.0NaN 3 3.690000 1 5.0
Charting NaN NaN 5 3NaN 4.0 5.0 5.0NaN 5 5 6.0 NaNNaN 3 4.555556 3 6.0
Jan 22L11, 28 NaN 5.0 5 5NaN 4.0 4.0 4.0NaN 4 5 5.0 NaNNaN 3 4.400000 3 5.0
PigSim NaN 5.0NaN 5NaN 4.0 4.0 4.0NaN 5 4 5.0 NaNNaN 3 4.333333 3 5.0
Jan 23L12, 29 NaN 5.0NaN 5NaN NaN 4.9 4.0NaN 4 5 6.0 NaNNaN 3 4.612500 3 6.0
Traffic Sim I NaN NaNNaN 5NaN NaN 4.9 5.0NaNNaN 5 NaN NaNNaN 5 NaNNaN NaN
Jan 24L13,Feb2 NaN NaNNaNNaNNaN NaN NaN 5.0NaNNaNNaN NaN NaNNaNNaN NaNNaN NaN
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 22, + "text": [ + "Name P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 \\\n", + "Jan 12 L 1, 12 3.0 4.0 NaN 3 NaN 3.0 3.5 2.0 NaN 2 \n", + "Jan 13 H 1, 13 4.0 3.5 5 3 3 3.5 4.0 3.0 1 2 \n", + " L 2, 13 3.0 3.0 3 2 3 3.0 3.0 2.0 1 2 \n", + "Jan 14 H 2, 14 4.0 5.0 4 3 3 3.0 4.0 3.0 1 3 \n", + " L 3, 14 4.0 4.0 5 4 3 3.0 5.0 4.0 2 NaN \n", + "Jan 15 H 3, 15 5.0 4.5 5 4 4 3.0 4.0 4.0 2 3 \n", + " L 4, 15 5.0 4.5 5 4 4 4.0 4.5 3.0 2 3 \n", + "Jan 16 Mystery Word, 20 5.0 5.0 5 4 4 4.0 4.0 4.0 3 3 \n", + " L 5, 20 4.0 5.0 5 5 5 3.0 5.0 3.0 3 3 \n", + "Jan 17 Currency, 21 4.0 5.0 5 NaN 4 3.0 5.0 3.0 2 4 \n", + " L 6, 21 4.0 5.0 5 4 4 5.0 5.0 5.0 3 4 \n", + "Jan 18 Blackjack1, 22 5.5 5.0 5 NaN 5 NaN 5.0 5.5 2 4 \n", + " L 7, 22 4.0 NaN NaN 4 4 5.0 4.0 4.0 3 4 \n", + "Jan 19 L 8, 23 5.5 NaN 5 4 4 5.0 5.0 5.0 3 5 \n", + " Blackjack2, 26 NaN 5.0 6 NaN 4 5.0 NaN 5.0 3 5 \n", + "Jan 20 L 9, 26 4.0 5.0 NaN 1 3 4.0 5.0 5.0 3 4 \n", + " Random Art, 27 5.0 5.0 NaN 3 6 5.0 4.0 5.0 2 5 \n", + "Jan 21 L10, 27 NaN NaN 5 1 NaN 3.0 4.9 5.0 NaN 4 \n", + " Charting NaN NaN 5 3 NaN 4.0 5.0 5.0 NaN 5 \n", + "Jan 22 L11, 28 NaN 5.0 5 5 NaN 4.0 4.0 4.0 NaN 4 \n", + " PigSim NaN 5.0 NaN 5 NaN 4.0 4.0 4.0 NaN 5 \n", + "Jan 23 L12, 29 NaN 5.0 NaN 5 NaN NaN 4.9 4.0 NaN 4 \n", + " Traffic Sim I NaN NaN NaN 5 NaN NaN 4.9 5.0 NaN NaN \n", + "Jan 24 L13,Feb2 NaN NaN NaN NaN NaN NaN NaN 5.0 NaN NaN \n", + "\n", + "Name P11 P12 P13 P14 P15 Average Min Max \n", + "Jan 12 L 1, 12 2 3.5 2.5 3 2 2.791667 2 4.0 \n", + "Jan 13 H 1, 13 5 4.0 3.0 3 2 3.266667 1 5.0 \n", + " L 2, 13 4 4.0 3.0 3 2 2.733333 1 4.0 \n", + "Jan 14 H 2, 14 3 4.0 3.0 3 2 3.200000 1 5.0 \n", + " L 3, 14 5 4.5 3.0 4 3 3.821429 2 5.0 \n", + "Jan 15 H 3, 15 4 5.0 3.0 3 3 3.766667 2 5.0 \n", + " L 4, 15 4 5.0 4.0 4 3 3.933333 2 5.0 \n", + "Jan 16 Mystery Word, 20 4 5.0 NaN 4 3 4.071429 3 5.0 \n", + " L 5, 20 4 5.0 3.0 4 3 4.000000 3 5.0 \n", + "Jan 17 Currency, 21 NaN 4.0 3.0 4 3 3.769231 2 5.0 \n", + " L 6, 21 NaN 4.0 3.0 4 3 4.142857 3 5.0 \n", + "Jan 18 Blackjack1, 22 4 4.0 4.0 4 3 4.307692 2 5.5 \n", + " L 7, 22 4 NaN 4.0 NaN 3 3.909091 3 5.0 \n", + "Jan 19 L 8, 23 4 5.5 4.0 NaN 3 4.461538 3 5.5 \n", + " Blackjack2, 26 4 5.0 4.0 4 3 4.416667 3 6.0 \n", + "Jan 20 L 9, 26 4 4.0 NaN 4 3 3.769231 1 5.0 \n", + " Random Art, 27 4 4.0 5.0 3 4 4.285714 2 6.0 \n", + "Jan 21 L10, 27 4 4.0 3.0 NaN 3 3.690000 1 5.0 \n", + " Charting 5 6.0 NaN NaN 3 4.555556 3 6.0 \n", + "Jan 22 L11, 28 5 5.0 NaN NaN 3 4.400000 3 5.0 \n", + " PigSim 4 5.0 NaN NaN 3 4.333333 3 5.0 \n", + "Jan 23 L12, 29 5 6.0 NaN NaN 3 4.612500 3 6.0 \n", + " Traffic Sim I 5 NaN NaN NaN 5 NaN NaN NaN \n", + "Jan 24 L13,Feb2 NaN NaN NaN NaN NaN NaN NaN NaN " + ] + } + ], + "prompt_number": 22 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "# del flipped[\"Max\"]\n", + "\n", + "flipped" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameP01P02P03P04P05P06P07P08P09P10P11P12P13P14P15
Jan 12L 1, 12 3.0 4.0NaN 3NaN 3.0 3.5 2.0NaN 2 2 3.5 2.5 3 2
Jan 13H 1, 13 4.0 3.5 5 3 3 3.5 4.0 3.0 1 2 5 4.0 3.0 3 2
L 2, 13 3.0 3.0 3 2 3 3.0 3.0 2.0 1 2 4 4.0 3.0 3 2
Jan 14H 2, 14 4.0 5.0 4 3 3 3.0 4.0 3.0 1 3 3 4.0 3.0 3 2
L 3, 14 4.0 4.0 5 4 3 3.0 5.0 4.0 2NaN 5 4.5 3.0 4 3
Jan 15H 3, 15 5.0 4.5 5 4 4 3.0 4.0 4.0 2 3 4 5.0 3.0 3 3
L 4, 15 5.0 4.5 5 4 4 4.0 4.5 3.0 2 3 4 5.0 4.0 4 3
Jan 16Mystery Word, 20 5.0 5.0 5 4 4 4.0 4.0 4.0 3 3 4 5.0 NaN 4 3
L 5, 20 4.0 5.0 5 5 5 3.0 5.0 3.0 3 3 4 5.0 3.0 4 3
Jan 17Currency, 21 4.0 5.0 5NaN 4 3.0 5.0 3.0 2 4NaN 4.0 3.0 4 3
L 6, 21 4.0 5.0 5 4 4 5.0 5.0 5.0 3 4NaN 4.0 3.0 4 3
Jan 18Blackjack1, 22 5.5 5.0 5NaN 5 NaN 5.0 5.5 2 4 4 4.0 4.0 4 3
L 7, 22 4.0 NaNNaN 4 4 5.0 4.0 4.0 3 4 4 NaN 4.0NaN 3
Jan 19L 8, 23 5.5 NaN 5 4 4 5.0 5.0 5.0 3 5 4 5.5 4.0NaN 3
Blackjack2, 26 NaN 5.0 6NaN 4 5.0 NaN 5.0 3 5 4 5.0 4.0 4 3
Jan 20L 9, 26 4.0 5.0NaN 1 3 4.0 5.0 5.0 3 4 4 4.0 NaN 4 3
Random Art, 27 5.0 5.0NaN 3 6 5.0 4.0 5.0 2 5 4 4.0 5.0 3 4
Jan 21L10, 27 NaN NaN 5 1NaN 3.0 4.9 5.0NaN 4 4 4.0 3.0NaN 3
Charting NaN NaN 5 3NaN 4.0 5.0 5.0NaN 5 5 6.0 NaNNaN 3
Jan 22L11, 28 NaN 5.0 5 5NaN 4.0 4.0 4.0NaN 4 5 5.0 NaNNaN 3
PigSim NaN 5.0NaN 5NaN 4.0 4.0 4.0NaN 5 4 5.0 NaNNaN 3
Jan 23L12, 29 NaN 5.0NaN 5NaN NaN 4.9 4.0NaN 4 5 6.0 NaNNaN 3
Traffic Sim I NaN NaNNaN 5NaN NaN 4.9 5.0NaNNaN 5 NaN NaNNaN 5
Jan 24L13,Feb2 NaN NaNNaNNaNNaN NaN NaN 5.0NaNNaNNaN NaN NaNNaNNaN
\n", + "
" + ], + "metadata": {}, + "output_type": "pyout", + "prompt_number": 45, + "text": [ + "Name P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 \\\n", + "Jan 12 L 1, 12 3.0 4.0 NaN 3 NaN 3.0 3.5 2.0 NaN 2 \n", + "Jan 13 H 1, 13 4.0 3.5 5 3 3 3.5 4.0 3.0 1 2 \n", + " L 2, 13 3.0 3.0 3 2 3 3.0 3.0 2.0 1 2 \n", + "Jan 14 H 2, 14 4.0 5.0 4 3 3 3.0 4.0 3.0 1 3 \n", + " L 3, 14 4.0 4.0 5 4 3 3.0 5.0 4.0 2 NaN \n", + "Jan 15 H 3, 15 5.0 4.5 5 4 4 3.0 4.0 4.0 2 3 \n", + " L 4, 15 5.0 4.5 5 4 4 4.0 4.5 3.0 2 3 \n", + "Jan 16 Mystery Word, 20 5.0 5.0 5 4 4 4.0 4.0 4.0 3 3 \n", + " L 5, 20 4.0 5.0 5 5 5 3.0 5.0 3.0 3 3 \n", + "Jan 17 Currency, 21 4.0 5.0 5 NaN 4 3.0 5.0 3.0 2 4 \n", + " L 6, 21 4.0 5.0 5 4 4 5.0 5.0 5.0 3 4 \n", + "Jan 18 Blackjack1, 22 5.5 5.0 5 NaN 5 NaN 5.0 5.5 2 4 \n", + " L 7, 22 4.0 NaN NaN 4 4 5.0 4.0 4.0 3 4 \n", + "Jan 19 L 8, 23 5.5 NaN 5 4 4 5.0 5.0 5.0 3 5 \n", + " Blackjack2, 26 NaN 5.0 6 NaN 4 5.0 NaN 5.0 3 5 \n", + "Jan 20 L 9, 26 4.0 5.0 NaN 1 3 4.0 5.0 5.0 3 4 \n", + " Random Art, 27 5.0 5.0 NaN 3 6 5.0 4.0 5.0 2 5 \n", + "Jan 21 L10, 27 NaN NaN 5 1 NaN 3.0 4.9 5.0 NaN 4 \n", + " Charting NaN NaN 5 3 NaN 4.0 5.0 5.0 NaN 5 \n", + "Jan 22 L11, 28 NaN 5.0 5 5 NaN 4.0 4.0 4.0 NaN 4 \n", + " PigSim NaN 5.0 NaN 5 NaN 4.0 4.0 4.0 NaN 5 \n", + "Jan 23 L12, 29 NaN 5.0 NaN 5 NaN NaN 4.9 4.0 NaN 4 \n", + " Traffic Sim I NaN NaN NaN 5 NaN NaN 4.9 5.0 NaN NaN \n", + "Jan 24 L13,Feb2 NaN NaN NaN NaN NaN NaN NaN 5.0 NaN NaN \n", + "\n", + "Name P11 P12 P13 P14 P15 \n", + "Jan 12 L 1, 12 2 3.5 2.5 3 2 \n", + "Jan 13 H 1, 13 5 4.0 3.0 3 2 \n", + " L 2, 13 4 4.0 3.0 3 2 \n", + "Jan 14 H 2, 14 3 4.0 3.0 3 2 \n", + " L 3, 14 5 4.5 3.0 4 3 \n", + "Jan 15 H 3, 15 4 5.0 3.0 3 3 \n", + " L 4, 15 4 5.0 4.0 4 3 \n", + "Jan 16 Mystery Word, 20 4 5.0 NaN 4 3 \n", + " L 5, 20 4 5.0 3.0 4 3 \n", + "Jan 17 Currency, 21 NaN 4.0 3.0 4 3 \n", + " L 6, 21 NaN 4.0 3.0 4 3 \n", + "Jan 18 Blackjack1, 22 4 4.0 4.0 4 3 \n", + " L 7, 22 4 NaN 4.0 NaN 3 \n", + "Jan 19 L 8, 23 4 5.5 4.0 NaN 3 \n", + " Blackjack2, 26 4 5.0 4.0 4 3 \n", + "Jan 20 L 9, 26 4 4.0 NaN 4 3 \n", + " Random Art, 27 4 4.0 5.0 3 4 \n", + "Jan 21 L10, 27 4 4.0 3.0 NaN 3 \n", + " Charting 5 6.0 NaN NaN 3 \n", + "Jan 22 L11, 28 5 5.0 NaN NaN 3 \n", + " PigSim 4 5.0 NaN NaN 3 \n", + "Jan 23 L12, 29 5 6.0 NaN NaN 3 \n", + " Traffic Sim I 5 NaN NaN NaN 5 \n", + "Jan 24 L13,Feb2 NaN NaN NaN NaN NaN " + ] + } + ], + "prompt_number": 45 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "Jan_12 = flipped.ix[\"Jan 12\"]\n", + "Jan_13 = flipped.ix[\"Jan 13\"]\n", + "# Jan_12.plot(kind=\"bar\")\n", + "mean = (flipped.mean()).mean()\n", + "pd.Series(mean).plot(kind=\"bar\")" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 70, + "text": [ + "" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD7CAYAAABzGc+QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEKtJREFUeJzt3V+InNd9xvHv4z8hgdAuwSASS2EvrEANIWtSFOGm9YS2\n4IhWuTHUgWLWNzYGkzSlJTS4xL3KTaHBCXEEdbpKLmxCLoyTypg0+HXjG7WJJeWP5CJDDFJClAvF\nJrEasJpfL3YsbUa7O+PRu5o54+8Hlp0zczQ6CObR2WfPO5OqQpLUnutmvQBJ0nQMcElqlAEuSY0y\nwCWpUQa4JDXKAJekRk0U4EmuT3IsyTe3ePyRJKeTnEhyW79LlCRtZtId+CeBk8AVh8aTHABuqaq9\nwH3Ao/0tT5K0lbEBnmQ3cAD4VyCbTDkIHAaoqqPAUpJdfS5SknSlSXbg/wL8PfDbLR6/GTizYXwW\n2H2V65IkjbFtgCf5C+AXVXWMzXffl6aOjL0+X5J22A1jHr8dODjsud8O/F6Sr1bVPRvm/BTYs2G8\ne3jf70hiqEvSFKpq0w10Jn0zqyR3AH9XVX85cv8B4MGqOpBkP/D5qtq/yZ8v3zhL8+jhhx/m4Ycf\nnvUypE0l2TLAx+3AR9XwCe8HqKpDVXUkyYEkLwGvAfde1Wqla+zll1+e9RKkqUwc4FX1HPDc8Pah\nkcce7HldkqQxvBJTb3mrq6uzXoI0lYk78Kv+i+zAJelN67MD15xItjvVKc2Wm7VrwwBvmi+SfnTA\nYMZrWCRuLq4VK5RGre/A/ffUPIo78B5tV6H4S0xJapQBLtHNegHSVAxwSWqUHXij7MA1v+zA+2QH\nLkkLyACX7MDVKANckhplB94oO3DNLzvwPtmBS9ICMsAlO3A1ygCXpEbZgTfKDlzzyw68T3bgkrSA\nDHDJDlyNGhvgSd6e5GiS40lOJvncJnMGSV5Ncmz49dDOLFeS9IaxH+hQVb9J8pGqupDkBuD5JB+u\nqudHpj5XVQd3ZpnSThrMegHSVCaqUKrqwvDm24DrgfObTPNjOCTpGpoowJNcl+Q4cA54tqpOjkwp\n4PYkJ5IcSXJr3wuVdk436wVIU5l0B/7bqloBdgN/kmQwMuUFYE9VfQD4AvBkr6uUJF3hTX2ocVW9\nmuTfgT9kw7alqn614fbTSb6U5F1V9TtVy+rqKsvLywAsLS2xsrLCYDAAoOvWn87xZON1HZf72274\n3fGbHw/mbD3tj2f9+mh53HUda2trAJfycitjL+RJchNwsapeSfIO4Bngn6rqOxvm7AJ+UVWVZB/w\n9apaHnkeL+TpkRfyaH55IU+ftruQZ5Id+LuBw0muY71y+VpVfSfJ/QBVdQi4C3ggyUXgAnB3P0uX\nroUOT6KoRV5K3yh34H3qMMD75A68T9vtwA3wRhngml8GeJ98LxRJWkAGuOQ5cDXKAJekRtmBN8oO\nXPPLDrxPduCStIAMcMkOXI0ywCWpUXbgjbID1/yyA++THbgkLSADXLIDV6MMcElqlB14o+zANb/s\nwPtkBy5JC8gAl+zA1SgDXJIaZQfeKDtwzS878D7ZgUvSAjLAJTtwNWrbAE/y9iRHkxxPcjLJ57aY\n90iS00lOJLltZ5YqSdpo20+lr6rfJPlIVV1IcgPwfJIPV9Xzb8xJcgC4par2JvkQ8Ciwf2eXLfVp\nMOsFSFMZW6FU1YXhzbcB1wPnR6YcBA4P5x4FlpLs6nORkqQrjQ3wJNclOQ6cA56tqpMjU24GzmwY\nnwV297dEaad1s16ANJVtKxSAqvotsJLk94FnkgyqqhuZNnrEZdMzRKurqywvLwOwtLTEysoKg8EA\ngK5bf0rHk43XdVz+8b8bfnfsePbjWb8+Wh53Xcfa2hrApbzcyps6B57kH4H/rap/3nDfl4Guqp4Y\njl8E7qiqcyN/1nPgPfIcuOaX58D7NPU58CQ3JVka3n4H8OfAsZFpTwH3DOfsB14ZDW9JUv/GVSjv\nBg4nuY71sP9aVX0nyf0AVXWoqo4kOZDkJeA14N6dXbLUtw5PoqhFXkrfKCuUPnUY4H2yQunTdhWK\nAd4oA1zzywDvk++FIkkLyACXPAeuRhngktQoO/BG2YFrftmB98kOXJIWkAEu2YGrUQa4JDXKDrxR\nduCaX3bgfbIDl6QFZIBLduBqlAEuSY2yA2+UHbjmlx14n+zAJWkBGeCSHbgaZYBLUqPswBtlB675\nZQfeJztwSVpABrhkB65GjQ3wJHuSPJvkx0l+lOQTm8wZJHk1ybHh10M7s1xJ0hvGfSo9wOvAp6rq\neJJ3At9P8u2qOjUy77mqOtj/EqWdNpj1AqSpjN2BV9XPq+r48PavgVPAezaZumnJLknaGW+qA0+y\nDNwGHB15qIDbk5xIciTJrf0sT7oWulkvQJrKJBUKAMP65BvAJ4c78Y1eAPZU1YUkHwWeBN43+hyr\nq6ssLy8DsLS0xMrKCoPBAICu6wAcTzhe13H5x/9u+N2x49mPZ/36aHncdR1ra2sAl/JyKxOdA09y\nI/At4Omq+vwE838CfLCqzm+4z3PgPfIcuOaX58D7dFXnwLOeFI8BJ7cK7yS7hvNIso/1/xjObzZX\nktSPSSqUPwL+GvhBkmPD+z4DvBegqg4BdwEPJLkIXADu3oG1Sjukw5MoapGX0jfKCqVPHQZ4n6xQ\n+rRdhWKAN8oA1/wywPvke6FI0gIywCXPgatRBrgkNcoOvFF24JpfduB9sgOXpAVkgEt24GqUAS5J\njbIDb5QduOaXHXif7MAlaQEZ4JIduBplgEtSo+zAG2UHrvllB94nO3BJWkAGuGQHrkYZ4JLUKDvw\nRtmBa37ZgffJDlySFpABLtmBq1GTfCr9niTPJvlxkh8l+cQW8x5JcjrJiSS39b9USdJGk3wq/evA\np6rqeJJ3At9P8u2qOvXGhCQHgFuqam+SDwGPAvt3ZslS3wazXoA0lbE78Kr6eVUdH97+NXAKeM/I\ntIPA4eGco8BSkl09r1WStMGb6sCTLAO3AUdHHroZOLNhfBbYfTULk66dbtYLkKYySYUCwLA++Qbw\nyeFO/IopI+MrzhGtrq6yvLwMwNLSEisrKwwGAwC6rgNwPOF4XcflH/+74XfHjmc/nvXro+Vx13Ws\nra0BXMrLrUx0DjzJjcC3gKer6vObPP5loKuqJ4bjF4E7qurchjmeA++R58A1vzwH3qerOgee9aR4\nDDi5WXgPPQXcM5y/H3hlY3hLkvo3dgee5MPAfwI/4PKW7zPAewGq6tBw3heBO4HXgHur6oWR53EH\n3iN34H3q8CRKn9yB92m7HbiX0jfKAO9ThwHeJwO8Twb4AjLANb8M8D75XiiStIAMcMlz4GqUAS5J\njbIDb5QduOaXHXif7MAlaQEZ4JIduBplgEtSo+zAG2UHrvllB94nO3BJWkAGuGQHrkYZ4JLUKDvw\nRtmBa37ZgffJDlySFpABLtmBq1EGuCQ1yg68UXbgml924H2yA5ekBWSAS3bgatQkn0r/lSTnkvxw\ni8cHSV5Ncmz49VD/y5QkjZrkU+n/GPg18NWqev8mjw+Av62qg2Oexw68R3bgml924H26qg68qr4L\n/HLc3zHNwiRJ0+ujAy/g9iQnkhxJcmsPzyldQ92sFyBN5YYenuMFYE9VXUjyUeBJ4H2bTVxdXWV5\neRmApaUlVlZWGAwGAHRdB+B4wvG6DhhsuI1jx3MxnvXro+Vx13Wsra0BXMrLrUx0DjzJMvDNzTrw\nTeb+BPhgVZ0fud8OvEd24JpfduB92tFz4El2ZT1NSLKP9f8Uzo/5Y5KkqzS2QknyOHAHcFOSM8Bn\ngRsBquoQcBfwQJKLwAXg7p1brrQTOi5XAVI7vJS+UVYofeowwPtkhdKn7SoUA7xRBrjmlwHeJ98L\nRZIWkAEueQ5cjTLAJalRduCNsgPX/LID75MduCQtIANcsgNXowxwSWqUHXij7MA1v+zA+2QHLkkL\nyACX7MDVKANckhplB94oO3DNLzvwPtmBS9ICMsAlO3A1ygCXpEbZgTfKDlzzyw68T3bgkrSADHDJ\nDlyNGhvgSb6S5FySH24z55Ekp5OcSHJbv0uUJG1mkh34vwF3bvVgkgPALVW1F7gPeLSntUnXyGDW\nC5CmMjbAq+q7wC+3mXIQODycexRYSrKrn+VJkrbSRwd+M3Bmw/gssLuH55WukW7WC5CmckNPzzN6\nxGXTM0Srq6ssLy8DsLS0xMrKCoPBAICu6wAcTzhe13H5x/9u+N2x49mPZ/36aHncdR1ra2sAl/Jy\nKxOdA0+yDHyzqt6/yWNfBrqqemI4fhG4o6rOjczzHHiPPAeu+eU58D7t9Dnwp4B7hn/RfuCV0fCW\nJPVvbIWS5HHgDuCmJGeAzwI3AlTVoao6kuRAkpeA14B7d3LBUv86PImiFnkpfaOsUPrUYYD3yQql\nT9tVKAZ4owxwzS8DvE++F4okLSADXPIcuBplgEtSo+zAG2UHrvllB94nO3BJWkAGuGQHrkYZ4JLU\nKDvwRtmBa37ZgffJDlySFpABLtmBq1EGuCQ1yg68UXbgml924H2yA5ekBWSAS3bgapQBLkmNsgNv\nlB245pcdeJ/swCVpAU0U4EnuTPJiktNJPr3J44MkryY5Nvx6qP+lSjulm/UCpKlM8qHG1wNfBP4M\n+Cnw30meqqpTI1Ofq6qDO7BGSdImJtmB7wNeqqqXq+p14AngY5vM27SjkebfYNYLkKYySYDfDJzZ\nMD47vG+jAm5PciLJkSS39rVASdLmJgnwSX6d/AKwp6o+AHwBePKqViVdU92sFyBNZWwHznrvvWfD\neA/ru/BLqupXG24/neRLSd5VVec3zltdXWV5eRmApaUlVlZWGAwGAHRdB+B4wvG6jss//nfD744d\nz34869dHy+Ou61hbWwO4lJdbGXsOPMkNwP8Afwr8DPgv4OMbf4mZZBfwi6qqJPuAr1fV8sjzeA68\nR54D1/zyHHiftjsHPnYHXlUXkzwIPANcDzxWVaeS3D98/BBwF/BAkovABeDu3lYvSdqUV2I2yh14\nnzo8idInd+B98kpMSVpA7sAb5Q5c88sdeJ/cgUvSAjLAJc+Bq1EGuCQ1yg68UXbgml924H2yA5ek\nBWSAS3bgapQBLkmNsgNvlB245pcdeJ/swCVpARngkh24GmWAS1Kj7MAbZQeu+WUH3ic7cElaQAa4\nZAeuRhngktQoO/BG2YFrftmB98kOXJIW0NgAT3JnkheTnE7y6S3mPDJ8/ESS2/pfprSTulkvQJrK\ntgGe5Hrgi8CdwK3Ax5P8wcicA8AtVbUXuA94dIfWKu2Q47NegDSVcTvwfcBLVfVyVb0OPAF8bGTO\nQeAwQFUdBZaS7Op9pdKOeWXWC5CmMi7AbwbObBifHd43bs7uq1+aJGk74wJ80l8lj/6G1F9BqyEv\nz3oB0lRuGPP4T4E9G8Z7WN9hbzdn9/C+K6wffVN//Pfsz+FZL2Ch+Fq/NsYF+PeAvUmWgZ8BfwV8\nfGTOU8CDwBNJ9gOvVNW50Sfa6hyjJGk62wZ4VV1M8iDwDHA98FhVnUpy//DxQ1V1JMmBJC8BrwH3\n7viqJUnX7kpMSVK/xlUo0kIZXsfwMS6fpjoLPFVVp2a3Kmk6Xkqvt4zhlcSPD4dHh1/XAY8n+YeZ\nLUyakhWK3jKSnAZuHV6UtvH+twEnq+qW2axMmo47cL2V/B9XXogG8J7hY1JT7MD1VvI3wH8MT0y9\ncfXwHmAv60dhpaZYoegtZfgGbftY34kX6xedfa+qLs50YdIUDHBJapQduCQ1ygCXpEYZ4JLUKANc\nkhplgEtSo/4f593AWbHMKnwAAAAASUVORK5CYII=\n", + "text": [ + "" + ] + } + ], + "prompt_number": 70 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "flipped.plot(kind=\"hist\", xticks=[1,5])" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 85, + "text": [ + "" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAFTCAYAAADYwaxQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt0VeWd//H3N1w0gXBIiY5BrEFWFQFjpEAZAU0iEGjT\n4khRu8ZisL/GFqFqdQH2RuiitOO0TmWo6zeVYMi08qs37IC3dgoB+qPoIHJRoHHaQqEiIoSb8wNC\n8vz+SM4xQC6Hw9lnn3P257VWFnn2uezv3px88+TZz36+5pxDRETSW4bfAYiIiPeU7EVEAkDJXkQk\nAJTsRUQCQMleRCQAlOxFRAKgq98BnA8zC/w8Ueec+R2DiKSelEr2AEG+L8BMeV5EYqNhHBGRAFCy\nFxEJACV7EZEACGSyz8jI4OGHH460f/zjHzNv3jwfIxIR8VYgk3337t1Zvnw5Bw8eBHThU0TSXyCT\nfbdu3aioqOBf/uVfznlsxYoVjBw5kqFDhzJu3Dg++OADACorK7n77ru56aabyM/P54UXXuDhhx+m\noKCAiRMncvr0aQDefPNNioqKGDZsGBMmTOD9999P6LGJiLQlkMkeYPr06fzyl7/k6NGjZ2wfM2YM\nGzZsYNOmTdxxxx08+uijkcf+8pe/sHr1av7jP/6Du+66i3HjxrF161YyMzN56aWXaGhoYObMmTz/\n/PNs3LiRadOm8e1vfzvRhyYico6Um2cfL9nZ2UydOpWFCxeSmZkZ2b5nzx5uv/123n//fU6dOsVV\nV10FNA/1TJw4kS5dujBkyBCampooLS0F4LrrrmPXrl3U1dXxzjvvMHbsWAAaGxvp27dv4g9OROQs\ngU32AA888ABDhw5l2rRpkW0zZ87k4YcfpqysjDVr1lBZWRl5rHv37kDzBd5u3bpFtmdkZHD69Gmc\ncwwePJj169cn7BhERKIR2GEcgJycHG6//XaqqqoiF2mPHj0a6Y1XV1dHnhvNnbvXXHMNBw4cYMOG\nDQA0NDSwffv2+AcuInKeApnsW8++eeihh/jwww8j7crKSqZMmcKwYcO45JJLIs81szNed/YMHjOj\nW7duPPfcc8yePZvCwkJuuOEG/vCHP3h8NCIinbNUWmvGzFwqxRtvZqaF0EQkJoHs2YuIBI2SvYhI\nACjZi4gEgJK9iEgAKNmLiASAkr2ISAAo2YuIBICSvYhIACjZx0l+fj5ZWVlkZ2dz2WWXMW3aND76\n6CNOnjzJPffcQygUIi8v75xllSsqKhg4cCBdunRh6dKlPkUvIuku5RdCS0ThkWju2jUzVq5cSUlJ\nCe+99x6lpaXMnz8fgD/96U/89a9/Zd++fRQXFzNo0KDIipmFhYXceeedzJ49W0VURMQzKZ/sm3m5\nhML5J+C+ffsyceJE3n77bTZt2sTSpUsJhUKEQiEqKiqorq6OJPvp06cDcPHFF8c1ahGR1jSME0fh\nvwD27NnDyy+/TP/+/dm3bx/XX3995DkFBQW88847foUoIgGlZB8nzjluvfVWcnJyGDNmDEVFRcya\nNQuAUCgUeV6vXr04duyYX2GKSEClyTCO/8yMX//615SUlES21dfXA81r5Ofm5gJw5MgRsrOzfYlR\nRIJLPXsP5eTkkJeXx+bNmyPbtmzZwpAhQ3yMSkSCSMneY1OnTmX+/PkcPnyYHTt2sHjxYsrLyyOP\nNzQ0cOLECZqamjh16hQnTpyIavaPiMj5ULL32Lx58xgwYABXXnklxcXFzJ49m/Hjx0ceHzduHFlZ\nWWzYsIGKigqysrJYt26djxGLSDpK+UpVyTLPPhFUqUpEYpXyF2iTJRGLiCQzDeOIiASAkr2ISAAo\n2YuIBICSvYhIACjZi4gEgJK9iEgAKNmLiASAkr2ISAAo2cdJLGUJ6+rqmDRpEpdeeil9+vRhwoQJ\n1NXV+XgUIpKuUj7Zm5nnX9HGsXLlSo4dO8amTZvYuHEj8+fPp7KyMlKWcPXq1Tz66KO89tprQPNy\nx7feeit1dXXs37+fESNGMGnSJC9Pl4gEVHqsjVPp4U4ro1uSoX///lRVVUXWs581axY7duyIlCUc\nO3YsAHPnzqWuro5ly5ad8x6HDh0iNzeXgwcPkpOTc87jWhtHRGKV8j37ZHKhZQnXrl1LXl5em4le\nRORCKNnHyYWWJdy7dy8zZszgscceS1jMIhIcKb/qZbK4kLKEBw4cYPz48dx3333ccccdiQtaRAJD\nPXsPRVOWsL6+nvHjx3PrrbfyyCOP+BGmiASAkr3HOipLePToUUpLSxk9ejQLFizwN1ARSWtK9h7r\nqCzh8uXL2bhxI0899RTZ2dlkZ2fTq1cv9u7d63PUIpJu0mPqpceS5Rxp6qWIxCrlL9AmSyIWEUlm\nGsYREQkAJXsRkQBQshcRCQAlexGRAFCyFxEJACV7EZEAULIXEQkAJXsRkQBQso+TWMoSHjx4kFGj\nRpGbm0soFOKGG27gxRdf9PEoRCRdpfwdtMmyXEK4LGFJSQnvvfcepaWlzJ8/HyBSlnDfvn0UFxcz\naNAgSktL6dmzJ0uWLOFTn/oUGRkZ/PrXv2bKlCkcOnSInj17en1YIhIgKZ/sAbxcMCGWXyV9+/Zl\n4sSJvP3225GyhKFQiFAoREVFBdXV1ZSWlnLRRRdxzTXXANDU1ERGRga5ubl07949vgchIoGnYZw4\nirUsYUFBAZmZmZSXl7N8+XIlexGJOyX7OLmQsoRbt27l2LFjVFZWMnnyZI4fP57Q2EUk/SnZx0m4\nLGF9fT27du1i0aJF9OjRA2guUhLWVllCgO7duzNz5kyys7P53e9+l7C4RSQYlOw9FE1ZwrOdPn06\n8ktCRCRe0uICbTILlyUcNmwY+/btY/HixSxduhSA119/nYaGBkaMGEFjYyMLFy7kxIkTjBw50ueo\nRSTdqGfvsY7KEp48eZIZM2aQm5vLJz/5SdauXcurr76qaZciEncqSxiFZDlHKksoIrFK+WGcZEnE\nIiLJTMM4IiIBoGQvIhIASvYiIgGgZC8iEgBK9iIiAaBkLyISAEr2IiIBoGQvIhIASvZxEktZwtZq\namrIyMigqqoqwZGLSBCk/B20ybJcQixlCcPq6+tZsGABQ4YMScjxiEjwpHyyB2D1au/eu7j4vF8S\nbVnCsEceeYT777+fZ555Jp6Ri4hEaBgnjmIpS/jGG2+wadMmvva1ryU8XhEJDs+SvZktMbP9Zrat\n1bYRZvaGmb1lZv9lZsO92n+ixVKWsLGxkfvuu49FixZp+EZEPOXlMM5TwL8CNa22PQp81zn3mplN\nbGmf/zhJEgqXJSwpKYlsq6+vB5rLEubm5gJnliV84oknKCgoYMSIEZHXaBVPEfGCZz1759w6oP6s\nzfuAcDe3N/A3r/afDDorS7hq1SqWL19OXl4eeXl5rF+/noceeohvfOMbfoUsImkq0Rdo5wC/N7Mf\n0/yL5u8TvP+E66gsYXV1NSdPngSae/S33XYbU6ZM4Stf+YqfIYtIGkp0sq8CvuGcW25mU4AlwLgE\nx5BQ8+bN4+tf/zpXXnklmZmZzJkzJ1KWsPVYPkD37t3p1atXZJhHRCRePC1LaGb5wArn3HUt7aPO\nuV4t3xtw2DkXauN17QYV9LKEIiIdaa90aaJ79v9tZjc759YAJUBde09sK8G2leySJREnStCOV6Qz\nlZWVVFZW+h1GUuioQ+hZsjezZcDNQK6Z7QG+B1QAPzOzi4D/19IWEYnZrl27/A4hJXiW7J1zX2rn\noc94tU8REWmb7qAVkZRWXl7udwgpwdMLtLEyM9femH0yxpsoQT9+EelYS45oc+BePXsRSWm1tbV+\nh5ASlOxFRAJAwzgpJOjHLyId0zCOiEjAKdnHSaxlCTMyMujZsyfZ2dlkZ2dTUaFbD0TOh8bso5Py\nlaqSZbmECylLuG3bNvr37+9Z/CIiKZ/sAVbjXVnC4hiW2z/fsoRNTU3xDDltJdPaQLp2kjyKior8\nDiElaBgnjmIpSwhw0003kZeXx+TJk9m9e3dCY049Lgm+RFKPkn2cxFKWEGDt2rXs3r2bnTt30rdv\nX8rKymhsbEx4/CKpSmP20UmLYZxkEEtZQoDRo0cDzb8QHn/8cUKhEDt37mTw4MEJjF5E0p169h7q\nrCzh2cLDQBoPFomexuyjo2TvsXBZwsOHD7Njxw4WL14cWbhp+/btbN68mcbGRo4fP843v/lN+vXr\nx7XXXutv0CKSdpTsPTZv3jwGDBjAlVdeSXFxMbNnz46UJdy/fz933nknoVCIAQMGsGfPHlauXEmX\nLl18jlokdWjMPjqeLZdgZkuAzwEfhMsStmyfCUwHGoGXnHOz23ht1MslJMs8+0QI+nIJzf/XyXD8\nwf5/SDa1tbUaymnR0XIJXib7McBxoKZVDdpi4FvAZ51zDWZ2iXPuQBuv1do4bdDxK9mLdMSXtXGc\nc+uA+rM2fx34oXOuoeU55yR6ERGJv0SP2X8KuMnMNphZrZkNS/D+RSTNaMw+OomeZ98VyHHOjTSz\n4cAzwFUJjkFEJHASnez3Ai8AOOf+y8yazKyPc+7g2U8sLy8nPz8fgN69e1NYWJjQQJNZuCcTvigV\nlPbHwu0in9pnXhRMlvMT1HZ4W7LEk8h2bW0t1dXVAJF82R5Pi5eYWT6wotUF2nuBvs65uWZ2NfCf\nzrlPtvE6XaBtg45fF2hFOuLLBVozWwasB642sz1mNg1YAlxlZtuAZcBUr/YvIsGgMfvoeDaM45z7\nUjsPfdmrfYqISNtUgzaF6Pg1jCPSEdWgTYBYyxI2Njbyne98h8svv5xevXoxdOhQjhw54tNRiEi6\nSvkljpNluYRYyxLOnTuXDRs2sGHDBq644gq2b9/OxRdf7OnxiKQTLZcQnZRP9gCrvatKSPH5VyWM\nuixhfX09jz/+OFu3buWKK64AYNCgQXE+AhERDePE1fmWJdy2bRtdu3bl2WefJS8vj2uuuYYnnnjC\nl9hFUpV69dFJi559MgiXJezatSuhUIiysjJmzZrFokWL2i1LuHfvXo4cOcK7777Lrl27qKur45Zb\nbuHqq69m7Nixfh2KiKQh9ezjJFyWsL6+nl27drFo0SJ69OgBNJclDGtdljAzMxOA733ve1x00UVc\nd9113Hnnnbz88suJPwCRFKV59tFRsvdQZ2UJCwoK2nxdIi46i0iwKNl7rKOyhAMGDGDMmDH84Ac/\n4NSpU+zYsYNf/epXlJWV+Ru0SArRmH10lOw91lFZQoBly5axe/du+vTpQ1lZGfPnz6c4lilAIiId\nSPk7aJNlnn0i6A5a3UEr59I8+491dAdtys/G0Q+diEjnUr5nHyQ6fvXsRTqitXFERAJOyV5EUprm\n2UdHyV5EJAC8rFS1xMz2t1SlOvuxh1rqz37Cq/2LSDBoJk50vOzZPwVMOHujmV0BjAN2e7hvERFp\nxbNk75xbB9S38dBjwCyv9isiwaIx++gkdMzezCYBe51zWxO5XxGRoEtYsjezLOBbwNzWmxO1f6/F\nUpZw3bp1ZGdnn/GVkZHB8uXLfTwSkdSiMfvoJPIO2gFAPrClZYmDfsCbZjbCOffB2U8uLy8nPz8f\ngN69e1NYWNjmmybLcgmxlCUcM2ZMZG17gDVr1vD5z3+eCRPOudRxhvCfreEPeVDaHwu3i3xqn3mL\nfrKcH7WD166traW6uhogki/b4+kdtGaWD6xwzl3XxmN/AT7tnDvUxmMptzZO//79qaqqoqSkBIBZ\ns2axY8eOSFnCcDGSuXPnUldXx7Jly855j2nTppGRkUFVVVWb+9AdtLqDVs6ltXE+5ssdtGa2DFgP\nXG1me8xs2llPSbuflvMtS9jaRx99xPPPP8/dd9+dsHhFJDg8G8Zxzn2pk8ev8mrffoilLGFrL7zw\nApdccgk33XRTIsMWSXnq1Ucn5Ve9TBbhsoThYRyA+vrmmadHjx4lNzcXOLMsYWtLly5l6tSpiQlW\nRAJHyyV4qLOyhGF79uxhzZo1SvYiMdA8++go2Xuso7KEYf/+7//OqFGj6N+/vz9BikjaU7L3WGdl\nCaE52evCrEhsNGYfnZQvXpIsUy8TQVMvNfVSpCNpXbzEOef5l4gkL43ZRyflk72IiHQu5YdxgkTH\nr2EckY6k9TCOiIh0TjdViaSgRExMiJbff+XoXERHyV4kVa1e7XcEUFzsdwRAsgzuJTcN44iIBICS\nvYhIACjZi4gEgJJ9nMRSlhDg97//PcOHDycUCjFgwACefPJJn45ARNJZyl+gTZblEmIpS9jY2Mg/\n/MM/sGDBAr761a+yceNGiouL+cxnPkNBQYHXhyUiAeJpz97MlpjZfjPb1mrbP5vZDjPbYmYvmFmo\no/eIjvPw6/z17duXiRMn8vbbb1NTU8N3v/tdQqEQAwcOpKKiIlIzcv/+/Rw8eJAvf/nLAAwbNoxr\nr72WHTt2xLRfEZH2eD2M8xRwdvXs3wCDnXPXA3XAIx7HkDDnW5YwLy+PgoIClixZQmNjI+vXr2f3\n7t2MHj3al/hFJH15muydc+uA+rO2/dY519TSfB3o52UMiRIuS5iTk8OYMWMoKipi1qxZAO2WJTQz\nfv7znzN37lwuvvhibr75ZhYsWMDll1/uyzGISPrye8z+HmCZzzHERSxlCf/2t79RVlbG008/zbhx\n46irq6OsrIy8vDw++9nPJv4gRCRt+TYbx8y+DZxyzj3tVwxe66ws4fr16+nXrx/jxo0D4Oqrr+Zz\nn/scr7zyii/xikj68qVnb2blwGeBW9p7Tnl5Ofn5+QD07t2bwsLChMQWb+GyhMOGDWPfvn0sXryY\npUuXAjB48GD++Mc/snr1aoqKivjzn//MypUrmT17dofvGV6/O1yhJyjtj4XbRT61m2NKmvMR7kyE\nf0YS3Pb78wHN/0NFrb7Hh3YklgQef21tbWTCRzhftsfzJY7NLB9Y4Zy7rqU9AfgJcLNz7sN2XnOe\nlaq8PIbolrPt378/VVVVZwzjAJw6dYqvf/3rPPfcc2RmZjJnzhweeOCByOM1NTX86Ec/Yu/evYRC\nIe666y5++MMfth2JljgmWVZB8fv/wcySZm2cZDgXyfGp8H8htI6WOPY02ZvZMuBmIBfYD8ylefZN\nd+BQy9P+4JybftbrVJawDUr2SvaRCJTsI5TsW8XQQbL3dBjHOfelNjYvifM+4vl2IiJpScsliIgE\ngJK9iEgAKNmLiASAkr2ISAAo2YuIBICSvYhIACjZi4gEgJK9iEgAKNnHSaxlCVesWMGQIUPIzs5m\n1KhRKlwiIp7we4njC5YsyyXEUpbw3Xff5a677uKVV15h5MiRPProo3zhC19g586ddOnSxevDEpEA\nSflkD0Blcr1367KEmzZtYunSpYRCIUKhUKQsYWlpKa+99hpjxozhxhtvBGD27Nl8//vfZ82aNecs\nqCYiciE0jBNH51uW8OyFzZqamnDORR4XEYkXJfs4iaUs4S233MKaNWtYs2YNp06dYsGCBZw6dYr/\n+Z//8eUYRCR9KdnHSbgsYX19Pbt27WLRokX06NEDaC5LGNa6LOHAgQNZunQpM2bMoG/fvhw8eJBB\ngwbRr19alOUVkSSiZO+hzsoSAkyePJlt27bx4YcfUllZya5duxg+fLgf4YpIGlOy91i4LOHhw4fZ\nsWMHixcvpry8PPL4m2++SWNjIwcOHKCiooJJkyZx9dVX+xewiKQlz5K9mS0xs/1mtq3Vtk+Y2W/N\nrM7MfmNmvb3af7KYN28eAwYM4Morr6S4uJjZs2czfvz4yOMPPPAAOTk5DBw4kD59+vDkk0/6GK2I\npKtOyxKa2WXAD4DLnXMTzGwQ8PfOuapOXjcGOA7UtKo/+yjwoXPuUTObDeQ45+a08VqVJWyDyhKq\nLGEkApUljFBZwlYxdFCWMJqefTXwG6BvS/td4MHOXuScWwfUn7X5C8DSlu+XArdGsf/O9uP5l4hI\nqosm2ec6534FNAI45xqA0zHu7++cc/tbvt8P/F2M7yMiIuchmmR/3Mz6hBtmNhI4cqE7bhmnUbdZ\nRCQBolku4SFgBXCVma0HLgG+GOP+9pvZZc65980sD/igvSeWl5eTn58PQO/evSksLIxxl+mntrYW\ngKKiokC1PxZuF/nUbo4pac5HeGpv+GckwW2/Px/Q/D9U1Op7fGhHYkng8dfW1lJdXQ0QyZft6fQC\nLYCZdQWuofkvgZ0tQznRvC4fWHHWBdqDzrl/MrM5QO8LvUAbJDp+XaCNRKALtBG6QNsqhgu5QGtm\nPYBHgAecc9uAfDMri+J1y4D1wDVmtsfMpgE/AsaZWR1Q0tIWERGPRTOM8xTwJnBjS/s94DlgZUcv\ncs59qZ2HxkYdnYiIxEU0F2gHOOf+CTgF4Jz7yNuQREQk3qJJ9ifNLDPcMLMBwEnvQhIRkXiLJtlX\nAq8C/czsaWAVMNvLoFJRe2UJn3nmGW688UZ69OhBcXHxOa/bvHkzn/70p+nRowfDhg1jy5YtPkQv\nIumuw2RvZhlADjAZmAY8DQxzziXBNIBmZub5V7RxrFy5kmPHjrFp0yY2btzI/Pnz6dOnDw8++CBz\n5pwz6YhTp04xadIkpk6dyuHDh7n77ruZNGkSDQ1RTXYSEYlah8neOdcEzHLOfeicW9nydSBBsUXN\nefgVi759+zJhwgTefvttbrnlFqZMmUJeXt45z6utraWxsZH777+fbt26MXPmTJxzrFq1KsY9i4i0\nLZphnN+a2cNmdkXLqpWfMLNPeB5ZCmpdlvCVV15h6NChHT7/nXfeoaCg4Ixt119/vcoSikjcRTP1\n8k6aO7n3nbW9f/zDSV3hsoRdu3YlFApRVlbGt771rQ5fc/z48TNKFsKZZQtFROKl02TvnMtPQBwp\nL1yWsKSkJOrXZGdnn1GyEJrLFvbq1Sve4YlIwHWa7M1sMucOXx8Btjnn2l3bRs7U1oXewYMH85Of\n/OSMbVu3bmXmzJmJCktSWRuzu4LK+6oWqS+aMft7gMXAPwJ3AU8Cc4D1ZjbVw9jSQlNTEydOnKCh\noYGmpiZOnjwZmW1TVFREly5dWLhwISdPnmThwoVkZGSc118HIgLeTtPwcjpH4kST7LsB1zrnJjvn\nbgMG0Xxkn0Hz7TtVU1NDVlYW06dPZ926dWRmZnLvvfcC0K1bN1588UVqamrIycmhpqaGF198ka5d\no7mUIiISvWjKEu5wzl3bqm3AdufctWb2lnPuhrgHpbKEbdKql1r1MhJBAj730UqOc6HPBXS86mU0\nXcjVZvYS8AzNQ2OTgdqW1TAPxy/M2Ph9ckVEUkE0PfsM4DZgVMum/ws832bXO15BaT37Nun41YOL\nRKCefYQ+F60iuJCevXOuycw2Akecc781syygJ6DJ4CIiKSKa4iUVwLPA/27Z1A940cugREQkvqKZ\njXMfMBo4CuCcqwMuvZCdmtkjZvaOmW0zs6fN7KILeT8REelYVOvZO+ci69e31KONeWCqpS7tV4Gh\nLbVpu9C8JIOIiHgkmmS/xsy+DWSZ2Tiah3RWXMA+jwINLe/XFcgC/nYB7yciIp2IJtnPAQ4A24B7\ngZeB78S6Q+fcIeAnwF9prmd72Dn3n7G+n4iIdK7TqZcAZnYpQDzWwmkpa7gCGEPzGjvPAs85537Z\n6jmaetkGHb+m2EUi0NTLCH0uWkUQy9TLljtl5wIzaB5Xx8wagX8Fvn8B8+yHAeudcwdb3vMF4Ebg\nl62fVF5eTn5+PgC9e/emsLAwxt0lRn5+Ph988AFdunShR48eTJw4kUWLFvHSSy/x05/+lC1btjBi\nxAhWrz6zyFdFRQVr167l3XffZcmSJdx9992d7qu2thZoXlsnSO2PhdtFPrWbY0qe8+Evvz8fLVHg\n3+ch3CaqeOPZrq2tpbq6GiCSL9vTbs/ezL4JTAQqnHN/adl2Fc1TMF91zj3W4Tu3t0Oz62lO7MOB\nE0A18IZz7metnpNyyyX079+fqqoqSkpKeO+99ygtLaWsrIyxY8dy6NAhdu7cyapVq85J9k888QQD\nBw5k9uzZzJw5k6lT219bTj179eAiEahnH6HPRasIYrypaiowrnUZQufcn83sH4HfAjEle+fcFjOr\nATYCTcAm4OexvFfEWQk0rmJYRrZ1WcIf/vCHACxevLjN506fPh2Aiy++OPYYRUQ60dEF2q5t1Ztt\n2XZByzI65x51zg12zl3nnLvbOZcWFbbPtyyhiEiidJS0O0rAaZGc4ymWsoQiIonSUbIvMLP21r/J\n9CKYVBZLWUIRkURpN9k757okMpB0l0wX1EQkeKK5qUouQEdlCQEaGho4ceIETU1NnDp1ihMnTvh+\nRV9E0o+Svcc6KksIMG7cOLKystiwYQMVFRVkZWWxbt06HyMWkXQU1R20iZaK8+wTQfPsNZ86EkES\nDQsmx7nQ5wIuvCxhUvP75IqIpAIN44iIBEDK9+xFRCB5hrWSlZK9iKS81Xi4ZEqUijn/pVUSScM4\nIiIBoGQvIhIASvYiIgGgZC8iEgBK9iIiAeBLsjez3mb2nJntMLPtZjbSjzjiKT8/n6ysLLKzs7ns\nssuYNm0aH330Ec888ww33ngjPXr0oPisQih1dXVMmjSJSy+9lD59+jBhwgTq6up8OgIRSWd+9ewf\nB152zl0LFAA7Yn0jM/P8K9o4Vq5cybFjx9i0aRMbN25k/vz59OnThwcffJA5c+ac85ojR45w6623\nUldXx/79+xkxYgSTJk2K9VSIiLQr4fPszSwEjHHO3Q3gnDsNHLmQ9/Ryjm0sc2ejLUs4fPhwhg8f\nHmk/8MADzJ8/n/r6enJycmIPWkTkLH707PsDB8zsKTPbZGZPmlmWD3HE3YWWJVy7di15eXlK9CIS\nd34k+67AUOAJ59xQ4CPg3DGOFBMuS5iTk8OYMWMoKio6r7KEe/fuZcaMGTz2WEx13EVEOuTHcgl7\ngb3Ouf9qaT9HG8m+vLyc/Px8AHr37k1hYWHCAozFhZQlPHDgAOPHj+e+++7jjjvu6HQ/fgn/5VJb\nWwtAUVFRQtsfC7eLfGo3x5To42//fPjLr+MPtwE2s5lCCiPfAwlv+3E+amtrqa6uBojky/b4sp69\nma0F/pcVQQb8AAAJeUlEQVRzrs7MKoFM59zsVo+f13r2Xo/ZR3OO+vfvT1VVVbvJvqqqil/84hes\nXn1mrPX19ZSUlDBx4kQWLFjQ4T7MDCqjDj2+Kv1fTlrrlreKQOvZR3idA6IVba7wUjKuZz8T+KWZ\ndQf+BEzzKQ7PhcsNti5LmJGRQbdu3Th69CilpaWMHj2600QvInIhfJl66Zzb4pwb7py73jl3m3Pu\ngmbjJLOOyhIuX76cjRs38tRTT5GdnU12dja9evVi7969PkctIulGZQmjkCznSMM4GsaJRKBhnAgN\n43wsGYdx4sbvkysikgq0No6ISAAo2YuIBICSvYhIACjZi4gEgJK9iEgAKNmLiASAkr2ISAAo2YuI\nBICSfZzEUpbw4MGDjBo1itzcXEKhEDfccAMvvviiT0cgIuks5ZN9Kpcl7NmzJ0uWLOGDDz7gyJEj\nVFZWcvvtt3P8+PF4nyYRCbiUXy4BYLWHy2IUn39VwqjLEl500UVcc801QPPqmBkZGeTm5tK9e/cL\nillE5GxpkeyTxdllCSdPnhzV6woKCvjjH/9Iz549efnll5XsRSTulOzjJFyWsGvXroRCIcrKyqIu\nS7h161ZOnTrFv/3bvzF58mR27txJz549PY5YRIIk5cfsk0W4LGF9fT27du1i0aJFXHTRRVG/vnv3\n7sycOZPs7Gx+97vfeRipiASRb8nezLqY2VtmtsKvGBIp2gu9p0+fpkePHh5HIyJB4+cwzv3AdiDb\nxxg811FZwtdff52GhgZGjBhBY2MjCxcu5MSJE4wcOdLvsEUkzfjSszezfsBngcVA8pTc8UBHZQlP\nnjzJjBkzyM3N5ZOf/CRr167l1Vdf1Xi9iMSdL2UJzexZYAHQC3jYOff5sx5XWcI2qCyhyhJGIlBZ\nwgiVJfxYUpUlNLMy4APn3FtmVnSh7+f3yRURSQV+jNnfCHzBzD4LXAz0MrMa59zU1k8qLy8nPz8f\ngN69e1NYWJjwQJNSpd8BQG1tLQBFRUUJbbeKoOXfIp/azTEl+vjbPx/+Soa/MjazmUIKI98DCW+H\nJfLzUFtbS3V1NUAkX7bHl2GcyM7NbuYCh3GCxN9hDP/PvYZxWkWQBAk2mWgYp1lHwzjJMM8+GX56\nRUTSmq930Drn1gBr/IxBRCQIkqFnLyIiHlOyFxEJACV7EZEAULIXEQkAJfs4iaUsYWs1NTVkZGRQ\nVVWVwKhFJChSPtmnclnCsPr6ehYsWMCQIUM0f1pEPJHyyT4ZtS5LeMsttzBlyhTy8vLaff4jjzzC\n/fffT58+fRIYpYgEiZJ9HJ1dlnDo0KGdvuaNN95g06ZNfO1rX/M6PBEJsKQtS9j7kt5+h3BeYilL\n2NjYyH333cfPfvYzDd+IiKeSNtkfmXrk3I2PJT6OaIXLEpaUlET9mieeeIKCggJGjBgR2eb32hoi\nErtk7rQlbbKnl98BxFdbH4JVq1axZs0aXn75ZQAOHTrEW2+9xZYtW1i4cGGiQxSRC+T3gmzFtD/j\nL3mTfZroqCxhdXU1J0+eBJp79LfddhtTpkzhK1/5is9Ri0i6UbL3WE1NDffcc0+knZmZSXl5OUuW\nLCEUCp3x3O7du9OrVy+ys9O6LK+I+MDX9ezbY2auzSIdleeOaQeuLKHWs/c1hmbJci4kzO/hE2ge\nQvE7jpY19ZOjLGG8+f1DJyKSCjTPXkQkAHxJ9mZ2hZmtNrN3zOxtM/uGH3GIiASFX8M4DcCDzrnN\nZtYTeNPMfuuc2+FTPCIiac2Xnr1z7n3n3OaW748DO4C+fsQiIhIEvo/Zm1k+cAPwur+RiIikL1+T\nfcsQznPA/S09fBER8YBvUy/NrBvwPPAL59yL5zxhORBeC+1i4LLExZb8alv+LUpwu6VV29wuKipK\naLtVBDHGH692c0yJPv72z4dsZjOFFEa+BxLebh1Lova/mc28yqsAXNZJkvTlpiprviNkKXDQOfdg\nG49HfVNVkOimKt1UFYlAN1Wdwe+bmSD5b6ryaxhnFHAXUGxmb7V8TfAplriItSxhRkYGPXv2JDs7\nm+zsbCoqKnyIXkTSnS/DOM653xOnXzTJslxCuCxhSUkJ7733HqWlpcyfP5+xY8fy4IMPsnPnTlat\nWtXma7dt20b//v3jHbaISITvs3Hiw3n4df7OtyxhU1NTTPsREYlWmiT75BBLWUKAm266iby8PCZP\nnszu3bu9DFFEAkrJPk7CZQlzcnIYM2YMRUVFnZYlBFi7di27d+9m586d9O3bl7KyMhobGxMQsYgE\nScqvepksYilLCDB69GgAQqEQjz/+OKFQiJ07dzJ48GAvwhSRgFLPPkGiuZAcHgbye1qfiKQfJXuP\nNTU1ceLEiTPKEjY0NACwfft2Nm/eTGNjI8ePH+eb3/wm/fr149prr/U5ahFJN0r2HqupqSErK4vp\n06ezbt06MjMzuffeewHYv38/d955J6FQiAEDBrBnzx5WrlxJly5dfI5aRNKNyhJGIVnOke6g1R20\nkQh0B+0Z/L5zFZL/DtqUv0Dr9w9dkCjBfEznIrkUc+7d6XKmlE/2kjirfe48tbHahG+SoQeXLH/l\n6FyEJXcHQGP2IiIBoGQvIhIASvYiIgGgZC8iEgBK9iIiAZBys3E05U1E5Pz5kuxbqlL9FOgCLHbO\n/VNUL6z0MKizPW48+/Nn+OIXv5jAnZ4reW4kEpFUlvBhHDPrAiwCJgCDgC+ZmRaDERHxkB9j9iOA\n/3bO7XLONQD/B5jkQxwiIoHhR7K/HNjTqr23ZZuIiHjEjzH76AagK70NonMaJxeR9JHwVS/NbCRQ\n6Zyb0NJ+BGhqfZHWzJRpRURi0N6ql34k+67AH4FbgPeAN4AvOed2JDQQEZEASfgwjnPutJnNAF6j\neepllRK9iIi3krJ4iYiIxFdS3UFrZkuAzwEfOOeu8zseEUluZrYLOAo0Ag3OuRH+RpS8kqpnb2Zj\ngONAjZK9iHTGzP4CfNo5d8jvWJJdUi2E5pxbB9T7HYeIpBQtmBWFpEr2IiLnyQH/aWYbzeyrfgeT\nzJJqzF5E5DyNcs7tM7NLgN+a2c6WEQI5i3r2IpKynHP7Wv49ACynee0taYOSvYikJDPLMrPslu97\nAOOBbf5GlbySKtmb2TJgPXC1me0xs2l+xyQiSevvgHVmthl4HVjpnPuNzzElraSaeikiIt5Iqp69\niIh4Q8leRCQAlOxFRAJAyV5EJACU7EVEAkDJXkQkAJTsRUQCQMleRCQA/j++FyBv0lw+TAAAAABJ\nRU5ErkJggg==\n", + "text": [ + "" + ] + } + ], + "prompt_number": 85 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Python Student P08 difficulty over time.\n", + "\n", + "pydata.ix[\"P08\"].plot()\n", + "pydata.ix[\"P08\"].mean()\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 104, + "text": [ + "4.0625" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEACAYAAACznAEdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXm0XFWV8H878wS8BDAhEEhCBkiIvIyEROXRNiq0Qtvq\nJ04YbTGN0tJq0/TXymKtbpe2DdiiDZoWIeinYOOMYguChZg8QqaXeSBkeiEhIXkZCJnz9vfHuZVU\nKlV1a7hT3dq/tWq9unXPPWfXfqfuvmfvc84WVcUwDMMwusQtgGEYhpEMzCAYhmEYgBkEwzAMw8MM\ngmEYhgGYQTAMwzA8zCAYhmEYAHSLo1ER2QjsA44DR1V1St75FuBXwHrvo5+p6leilNEwDKPRiMUg\nAAq0qGpHiTLPqer1UQlkGIbR6MTpMpIazxuGYRgBEpdBUOAPIrJARG4ucn6aiCwRkSdFZEzE8hmG\nYTQccbmMpqvqNhE5F3haRFar6vM55xcBQ1T1gIhcC/wSGBWLpIZhGA2CxL2XkYjcBexX1XtLlNkA\nTMyNOYiIbcJkGIZRBapa0CUfuctIRPqIyBne+77AO4BleWUGioh476fgDNdpAWhVtVeJ11133RW7\nDEl/VaqjY8eUiy9Whg9XHnssfvmTqKNGfNWTjkoRh8toIPAL737fDfiRqj4lIjMBVHUW8H7gFhE5\nBhwAboxBzrpn48aNcYuQeCrV0S9+AQMHQksLrFkTikiJw/qRP2nRUeQGQVU3AM0FPp+V8/5+4P4o\n5TIMP1Th7rvhn/8Z9u2Dp56KWyLDCBZbqZxiZsyYEbcIiacSHT3/POzeDddfD6NHN84IwfqRP2nR\nUexB5WoREa1X2Y365D3vgXe/G2bOdIbhootg714QWzFj1BEigiYlqGxERyaTiVuExFOujlauhPnz\n4aab3HH//tCrF2zbFp5sScH6kT9p0ZEZBMMog3vvhc9+Fnr3PvlZI7mNjMbAXEaG4cO2bTBmDKxb\nB2efffLzT30KJk2Cv/u7+GQzjEoxl5Fh1MC3vw0f+cipxgBshGCkDzMIKSYtfs0w8dPR66/Df/83\nfOELp59rFINg/ciftOjIDIJhlOD734e/+AsYPvz0c41iEIzGwWIIhlGEo0dhxAj46U9h8uTC5884\nw0097dkzevkMoxoshmAYVfD44zBsWGFjANC9u1uLsG5dtHIZRliYQUgxafFrhkkxHWW3qbj99tLX\nN4LbyPqRP2nRkRkEwyjAM8/A4cNw7bWlyzWCQTAaB4shGEYB3vlO+OAH4ZOfLF3uwQfhz3+G2bMj\nEcswasZiCIZRAUuWwLJlbu2BHzZCMNKEGYQUkxa/ZpgU0tG998LnPlfezKGsQUjzYNX6kT9p0ZEZ\nBMPIob0dfvOb8rejOPdcZwx27gxXLsOIAoshGEYO//iP0NkJ3/hG+ddMnQr33ANveUt4chlGUJSK\nIcSRQtMwEsnevfDQQ9DWVtl1WbeRGQSj3jGXUYpJi18zTHJ1NGuWm2Z64YWV1ZH2wLL1I3/SoiMz\nCIYBHDkC993nvxCtEGk3CEbjYDEEw8CtI/jRj+Dppyu/dvlyeP/7YfXqwMUyjMApFUMwg2A0PKow\nbpwLJL/jHZVff+gQNDW5rbK7dw9ePsMIEluY1qCkxa8ZJplMht/9Drp1g2uuqa6OXr1g8GDYuDFQ\n0RKD9SN/0qKjWAyCiGwUkaUislhEXixS5lsi8pKILBGR8VHLaDQO99zjpptKwWem8hg1yuIIRv0T\ni8tIRDYAE1W1o8j564BbVfU6EbkCuE9Vp+aVMZeRUTMLF8Jf/zWsX1+bu+e229zspC9+MTjZDCMM\nkuoyKvU8dj3wCICqzgOaRGRgJFIZDcXdd8M//EPtvn+baWSkgbgMggJ/EJEFInJzgfPnA+05x1uA\nCyKRLEWkxa8ZFhs2wJNPZri5UA+skCgMQmcnHDsW/euZZzKxtFvNq7Mz3P9BMaL+rdXSF0oR10rl\n6aq6TUTOBZ4WkdWq+nxemfwRxGn+oRkzZjB06FAAmpqaaG5upqWlBTj5D2rk47a2tkTJk7TjRx5x\ns4rOPLP2+jo6MixbBhCevJ/8JGza1IIIqLrzIu58mMfOMxtde7Ucn3NOC1u3wvPPu+Oo+lObt7w9\nqvZGjcqwfj106XLq9y/8/8vQ2TnbOx5KKWKfdioidwH7VfXenM++C2RU9THveDVwlapuzyljMQSj\nJj7+cWhpgU98ova6VF1+5VdegbPOqr2+fHbscKOQXbugi80NLMqll8Jjj8Hll8ctSXjs3AkXXwwd\nHdC1a+XXJyqGICJ9ROQM731f4B3AsrxivwZu8spMBfbkGgPDCIL2dhgyJJi6RMKdaTR3Llx5pRkD\nP6ZPhzlz4pYiXObOdRsqVmMM/Iijew0EnheRNmAe8BtVfUpEZorITABVfRJYLyLrgFnAZ2KQs+6x\nGEJpNm+GrVszgdUXZhxh7lyYNi2cuv2op340bZrTVdREqaMw+0LkMQRV3QA0F/h8Vt7xrZEJZTQc\nqrBlC7zpTcHVGaZBmDMHvvKVcOpOE9Onw7/9W9xShMucOXDXXeHUHXsMoVoshmDUwo4dMGZMsIlt\nHn0Ufv5zePzx4OoEOHwYzj4btm+Hvn2DrTttqLqkRUuXutXjaePIERgwALZtczGrakhUDMEwkkCQ\n8YMsYY0QFi6ESy4xY1AOIvG5jaJg0SIYObJ6Y+CHGYQUU0++36jJGoQgdTRqFKxbF/xc+DjjB1B/\n/SgOgxCVjsLuC2YQjIZk8+bgRwj9+rnh/ObNwdY7Z068BqHemDYtvTONwu4LFkMwGpLbb4dzzoE7\n7gi23re/Hf7pn+Cd7wymPlUYNAgWLAjegKWVgwfd/3bnTujdO25pgkPVxUVaW8Fbj1sVFkMwjDzC\niCFA8HGE9euhRw8zBpXQuzdcdpkzomli40YXI7noovDaMIOQYurN9xslYcQQIHiDMGeOm0oZJ/XY\nj6JeoBaFjrJ9oZZt2v0wg2A0JGHEECB4gxB3QLleSeNMoyj6gsUQjIbj2DHo0wfeeCP4lJcbNsDb\n3uZGIEEwbhw8/DBMmhRMfY3C1q3w5jfDa6+F+0QdJZdfDt/7HkyZUls9FkMwjBy2bXOLl8LIf3zh\nhS6Y+cYbtde1Z4/zG6d5o7awGDzYzdVfuzZuSYJh3z54+WVoPm2Ph2Axg5Bi6tH3GwW5AeWgddS1\nK4wYEcyN6IUX3MggDMNVCfXaj6Kcfhq2jl54ASZOdBMMwsQMgtFwhDXDKEtQcYS5c+MPKNcz06en\nJ44QVSzJDEKKySbTME4lN6Acho6CMghJWZBWr/0oysBy2Doyg2AYIVEPI4Rjx2D+fJcDwaiOceNc\nwqKOjrglqY3jx2HevGj6ghmEFFOvvt+waW93wV8IR0dBJMpZtswZrf79g5GpFuq1H3Xt6mbktLaG\n31aYOlq+HM47z62+DhszCEbDEcUIYe1aqGVWdFLcRfVOGvY1inJxohmEFFOvvt+wCTuG0L+/2z5h\n27bq60hSQLme+1FUgeUwdRTl4kQzCEZDcegQ7N0LAweG206tcQQbIQTDFVe4fBJHj8YtSfXYCMEI\nhHr1/YbJli1w/vknk9WHpaNaDMKWLXDggEuEkgTquR+ddRYMHw5tbeG2E5aOtm51i9JGjQql+tMw\ng2A0FGHHD7LUYhCyLoK0bLkQN/UcR5g7180u6hLRndoMQoqpZ99vWOQbhLB0VKtBSEr8AOq/H0UR\nRwhLR1H3BTMIRkMR1i6n+dRiECx+ECzZEUI97oUZ9W63ZhBSTD37fsMif4QQlo6GD3eLog4fruy6\nN96AlSvdvjVJod770bBhbnFX0KlNcwlDRwcPuvUokycHXnVRYjMIItJVRBaLyBMFzrWIyF7v/GIR\n+XIcMhrpI3dRWph07+4yW61bV9l1Cxa4bZvTlPoxbkTqc1+jBQtg7Fi3VXtUxDlCuA1YCRQbyD2n\nquO911cilCs11LvvNwyiiiFAdW6jJLqL0tCPwg4sh6GjOLLlxWIQROQC4DrgQaDYXAqbY2EETlQx\nBKjOICQtoJwW6nGEEEe2vLhGCP8J3A50FjmvwDQRWSIiT4rImOhESw/17vsNmn373KZxufsDhamj\nSg1CZ2cyU2amoR+NH++2E3n99XDqD1pHqvE8HHSLtjkQkXcDO1R1sYi0FCm2CBiiqgdE5Frgl8Bp\nSzNmzJjB0KFDAWhqaqK5ufnE0C37D2rk47a2tkTJE/fxhg0wZEgLIqf/gMNo78ABWLOm/PKbNkH/\n/i0MGpQMfaXpuLU1w7Bh8OKLLbz97cHX3+atfAuqvh/+MEO3bjB4cO31ZTIZZs+eDXDiflmMyHMq\ni8hXgY8Bx4BewJnAz1T1phLXbAAmqmpHzmeWU9moiP/9X/jGN+Cpp6Jpb8cOuOQS2LWrvEVmDz4I\nzz0HP/xh+LI1InfcAf36wZ13xi2JPw8/DE8/DT/+cfB1Jyqnsqr+i6oOUdVhwI3As/nGQEQGirif\nkIhMwRmuOt/V3IibqFYpZzn3XDf037mzvPJJdBeliXpasRxHQBmSsQ5BAURkpojM9D57P7BMRNqA\nb+IMh1Eh+W6RRqdQQDlMHYlUFkeI6ybgR1r60bRpLjdxZ7HIZQ0EraO4Hg5iNQiq+pyqXu+9n6Wq\ns7z396vqZararKrTVPWFOOU00kHUIwQo3yDs3AmvvurmnRvhcO658KY3wYoVcUtSmo4Ot8HhuHHR\nt52EEYIREtkAk+EotCgtbB2VaxBaW2HqVJflK2mkqR+FNf00SB21trpMb90in/JjBsFoIJI8Qkji\ngrQ0Ug9xhDhdh2YQUkxafL9BoFrYIISto3INQpIDymnqR9OmhTNCCFJHcfYFMwhGQ7Bzp9sfqG/f\naNsdMQI2biydsevIEVi0yGX3MsLl0kvdNODt2+OWpDBHj7o9jKZOjad9MwgpJk2+31op5i4KW0e9\nesHgwbBhQ/Eyixc7w3HmmaGKUjVp6kdduriEM0GPEoLSUVub2yn3rLMCqa5izCAYDUFUu5wWws9t\nlNTppmklyfsaxe06NIOQYtLk+62VYiOEKHQ0alRpgxD3TcCPtPWjMALLQeko7ocDMwhGQxDlLqf5\nlBohqMZ/E2g0pkyBJUvg0KG4JTmVbF+wEYIRCmny/dZKXDEEKG0QNm50K5ovuih0Maombf2ob18X\nXF64MLg6g9DR5s0us9vw4bXLUy1mEIyGIKkxhKy7qJzN74zgCGv6aS0koS+YQUgxafP91kKcMYTz\nz3e5kvfsOf1cPbiL0tiPpk8PNo4QhI6S0BfMIBip5/hx2LbN3ZjjQMQFlteuPf1c0gPKaSU7QkjS\nDvpJ6AuR50MICsuHYJTLli0webIzCnHxoQ/BddfBxz528rN9+9wahY4O6NEjPtkalQsvhGeegZEj\n45bEZXIbNMj1hZ49w20rUfkQDCNq4tjDKJ9CcYR582DCBDMGcZGkOMKLL7o0n2EbAz/MIKSYNPp+\nq6FUQDkqHRUyCEnwGZdDWvtRkAvUatVREtxFYAbBaACSOkJIyk2gUUnSzqdJeTiwGIKRem67zc3z\n/8IX4pNh/36XnGX/frefzvHjMGAAvPwynHNOfHI1MkePuv9Bezs0NcUnR2enk2PtWtdHwsZiCEZD\nk4QRQr9+7ke/ebM7Xr4czjvPjEGcdO/uJhu0tsYrx4oVzhBEYQz8MIOQYtLq+62UUgYhSh3luo3q\nyV2U5n4UVGC5Fh0lqS+YQTBST5yrlHPJNQhJ8Rk3OkEvUKuGJPUFiyEYqebwYTjjDDh4MP58xffd\n5/zE99/v9qv57W/dnjpGfOze7R4Wdu+OJ4cxuFwYv/oVjB0bTXsWQzAali1b3OKvuI0BnBwhbNsG\ne/e6YyNe+vd3Ew6WLo2n/e3bXQa3pDwYmEFIMWn2/ZaLX0A5jhjC3Lkua1eXOvn1pb0fBTH9tFod\nJa0vxCaGiHQVkcUi8kSR898SkZdEZImIjI9aPiMdJCV+AE6OnTvhqaeSE0Q04l2xnKSAMsQ7QrgN\nWAmcFggQkeuAEao6Evg08J2IZUsFadvHvhr8RghR6qhrV+cv/slPkhNELIe096MgAsvV6ihJAWWI\nySCIyAXAdcCDQKHgxvXAIwCqOg9oEpGB0UlopIU4M6UVYvRotxX25MlxS2JkGTHCZU9rb4+23UOH\nXOa2KVOibbcUMcXV+U/gduDMIufPB3L/PVuAC4DtIcuVONascYGnati2LcMHP9gSqDylUHVB3CTd\ngNvb3S6jxchkMpE+AY8e7TYx69MnsiZrJmodRY2Ic9v84Afw1rdWV8fixRnGj2+p6Jo1a1wwuW/f\n6toMg8gNgoi8G9ihqotFpKVU0bzj01xLM2bMYOjQoQA0NTXR3Nx8ouNmgzz1fKwKH/xgC6NGwb59\nGe97uvN79pQ+fvXVDEeOtJ0wCFHIu2QJ3HtvC5s3J0N/AO3tLQwZUvx8lqjkufbaFoYNS45+7Ngd\njx+f4Sc/gd//3h37/b7yj7dsaaNfv/LLZ49vuSX875fJZJg9ezbAiftlMSJfhyAiXwU+BhwDeuFG\nCT9T1ZtyynwXyKjqY97xauAqVd2eUyb16xDWroVrroFNmyq/9o033FL4XbugV6/gZSvEV78KX/qS\nkzcpgdz+/WHdOjj77LglMYxkkKh1CKr6L6o6RFWHATcCz+YaA49fAzcBiMhUYE+uMWgUapmBEEYi\ncT/mznWLwJKyx/zrr7uFaQMGxC2JYdQHSZj9qgAiMlNEZgKo6pPAehFZB8wCPhOjfLFR6wyEiy7K\nRLYsv7PTGYKbb45/K4As2RlGpZKW57uOjNMxHfmTFh3FFVQGQFWfA57z3s/KO3drLEIliLlz4ZZb\nqr9+7NjontbXrHHumfe9D/7+76Np048k7HJqGPWE7WWUUDo63JL6WvZYaW+HiRPdLKVST8lB8OCD\n8Nxz8L3vOX/99u1uy+c4efBBN1p5+OF45TCMJJGoGIJRHi+84OYn17Lh1pAhLqC8bl1wchVj7lzn\n3urVC5qbXY7YuEnSKmXDqAfMICSUIJa0ZzKZyNIEzplzUt6kpCYsZ1FaWny/YWI68ictOjKDkFCC\nWtIeZCLxYuzc6VxE2e17o2izHCyGYBiVYTGEBBJkrteFC+HjH3cpG8PiiSfgv/4Lfv97d7x9O1xy\niVsD0SXGR47Ro+EXv4AxY+KTwTCShsUQ6owlS2Do0GASf19+uVsotnt37XUVI9ddBDBwoMsVvHJl\neG36oWojBMOoFDMICSSoLXEzmQzdurmN1F54ofb6ipENKOcS55bC4EYnPXu6hXKlSIvvN0xMR/6k\nRUdmEBJI/hN3rYQZ5D1yBBYtgiuuiK7NcrDRgWFUjhmEBFLoibsashtdhRnkXbwYRo48/Uk87sBy\nuQYhqyOjOKYjf9KiIzMICaO93e2/c/HFwdU5dSrMn++C1UFTbDQzZgy89lr1W3fXio0QDKNyzCAk\njOx00yBWFmf9mmEmEi82munSxeWKbW0Nvs1yKHdRWlp8v2FiOvInLToyg5AwwsqxGoZPX7V0vCPO\nOELSMqUZRj1gBiFhBJljNdevGYZPf+NGN5K56KLC5+OMI1gMIThMR/6kRUdmEBLE/v2wejVMmBB8\n3WFMA826i4q5t6ZMgbY2FxOJGoshGEblmEFIEC++6DaGCyrDWa5fM4xE4n7TY/v1cyuWo0zSA3D8\nOGzdChdc4F82Lb7fMDEd+ZMWHZlBSBBhxQ/gZCLxIEcJ5UyPjWOB2quvuq0/evaMtl3DqHfMICSI\noA1Cvl8zyCDvvn1uW+3m5tLl4ggsV+IuSovvN0xMR/6kRUdmEBJCZ6ebohnWCAGCDfLOm+eS7/To\nUV6bUe5DaPEDw6gOMwgJYdUql2ls4MDg6sz3a06c6NrZv7/2usvdXmPIEOjeHV5+ufY2y6USg5AW\n32+YmI78SYuOzCAkhCCnmxajVy+3++n8+bXXVa57SyT66aeWKc0wqsMMQkIII6BcyK8ZRJD3+HHn\nMrryyvLKRx1YrmRRWlp8v2FiOvInLToyg5AQohghgGuj1iDv8uVw3nku50FUbVaCxRAMozrMICSA\nHTvcRnBBZ/Yq5NfM7i/U2Vl9vZXuxnr55bBhA+zZU32blWAxhGAxHfmTFh1FbhBEpJeIzBORNhFZ\nKSJfK1CmRUT2ishi7/XlqOWMktZWtyNpFOkmBw1yc/RXraq+jkrzNXTvDpMmhZukJ8vhwy45znnn\nhd+WYaSNyA2Cqh4CrlbVZuDNwNUi8pYCRZ9T1fHe6yvRShktYbmLivk1aw3yVhPviCqw/Morzhh0\n7Vpe+bT4fsPEdORPWnQUi8tIVQ94b3sAXYGOAsUC2AC6PghzhXIhalkstm0b7N3rEthH1WYlWPzA\nMKonFoMgIl1EpA3YDvxRVfPTsSswTUSWiMiTIhKwdz05HD7sso7lp6AMgmJ+zVqe1ufOdXGISt1b\nV17p9mo6dqy6dsulUoOQFt9vmJiO/EmLjrrF0aiqdgLNInIW8HsRaVHVTE6RRcAQVT0gItcCvwRG\n5dczY8YMhg4dCkBTUxPNzc0nhm7Zf1DSj3v2bGH0aFiwIPj629raCp4fMwa2bs3wi1/Ae99bWf1z\n5rQwfXrl8ixdmmHAAFi6tIUJE8LTZ3t7C0OGlF8+S1L6gx3X53FbW1ui5Mk9zmQyzJ49G+DE/bIY\nolHuKVBIAJE7gYOqek+JMhuAiarakfOZxi17ENxzD2zaBN/+drTtvutdcMstcMMNlV03dSp8/etw\n1VWVt3nzzW7G0a23Vn5tuXzmM262VphtGEY9IyKoakGXfByzjM4RkSbvfW/gGmBxXpmBIm6XfRGZ\ngjNcheIMdU/U8YMs1SwWO3gQli2DyZOja7NSLFOaYVRPHDGE84BnvRjCPOAJVX1GRGaKyEyvzPuB\nZV6ZbwI3xiBn6KhWPqe/EvLdIrlUs1hswQIYOxb69KlOnigWqFkMIXhMR/6kRUeRxxBUdRlwWk4w\nVZ2V8/5+4P4o5YqD9euhW7d4nminTHHB7MOHy88bUOtoZuRIeOMN2LKlvOQ11WCzjAyjemylcoxk\nb7DFUlDWSjbAVIgzzoBRo2DRovLrq3W9RBhJenLZv9+5tcrdUgPSM388TExH/qRFR2YQYiSq/YuK\nUcn006x7q9Z4R5gL1LKjg7AMrGGkHTMIMRJ2QNnPr1nJYrG1a12O5PPPr02mMBeoVeMuSovvN0xM\nR/6kRUdmEGJizx634ZtfCsowqSSbWVDGa9IkWLnSxRKCxuIHhlEbZhBiIpuCsnv38Nrw82teeKHb\n82fDBv+6gpoN1bs3jBvnZiwFTTUGIS2+3zAxHfmTFh2ZQYiJMKeblks2m1k5LpxKdzgtRVjTT22E\nYBi1YQYhJoK8wRajHL9mObN+OjrcVNFx44KRK6yZRps3V546My2+3zAxHfmTFh2ZQYiBY8fcRm/l\npqAMk3Ke1ltb3bqFbgGtWskahFqS9BTCRgiGURux72VULfW8l9HixfCRj7jgatwcPQr9+7s8Amed\nVbjMl77kYg3/+q/BtTt8OPz2t3DppcHUp+pmQW3bBmeeGUydhpFGErWXkRHf/kWF6N7dBbdLZTML\nY71E0NNPd+92IxgzBoZRPWYQYiCqgHK5fs1Si8WOHnUzgqZODU4uvzaroZr4AaTH9xsmpiN/0qIj\nMwgxEEVAuRJKPa23tTn3TjF3UhhtVoPFDwyjdiyGEDGvvOJyArz2WnK2WNi1C4YNc7OJ8gPH990H\nq1bBd78bbJvHj8OAAfDyy5XtPVSMBx6AJUtg1iz/sobRyFgMIUGEvaFdNZx9ttuSYvny08+FFe/o\n2tWlDW1tDaY+GyEYRu2YQYiYKBekVeLXLDT9VDXcDfiCXKBWrUFIi+83TExH/qRFR2YQIiZp8YMs\nhRaLtbe7oPLw4dG1WS3VBpUNwziJxRAi5MABOPdc2LnT7emTJFavdnmWN248+dmjj8Ljj8PPfx5O\nm/v2weDBLnbRo0dtdQ0bBk8/DSNGBCObYaQViyEkhAUL3PYPSTMGAKNHw+uvu6B3lrDXS5x5pruB\nL17sX7YUnZ2wdWt4WdgMo1EwgxAhUbuLKvFrFspmFoW8QUw/3b7dTYvt1avya9Pi+w0T05E/adGR\nGYQIScIOp6XIXSy2fz+sWeNWMUfVZrVs3mwzjAwjCMwgRERnZ/RbVlS6R3vu0/q8eS55T8+ewctV\nqM1awkHt7dUHlNOyj32YmI78SYuOzCBExNq1zq1x3nlxS1KcyZNhxQoX/I5qNDN0qHNX5QazK8XW\nIBhGMJhBiIg4pptW6tfs3Rsuu8wFv6MazRSKXVRKLQYhLb7fMDEd+ZMWHUVuEESkl4jME5E2EVkp\nIl8rUu5bIvKSiCwRkfFRyxk0SY8fZJk+HZ5/3q0gjsqA1bpAzUYIhhEMkRsEVT0EXK2qzcCbgatF\n5C25ZUTkOmCEqo4EPg18J2o5gyaOLa+r8WtOmwYPPeTWS7zpTcHLVKzNWkYItSxKS4vvN0xMR/6k\nRUexuIxU9YD3tgfQFejIK3I98IhXdh7QJCIDo5MwWHbtcvPkL7ssbkn8mTYN1q+P1niNHw/r1rmF\natVgIwTDCIaAkiJWhoh0ARYBFwPfUdX83GHnA+05x1uAC4Dttba9YoXbWO2SS2qtqXxaW91Gbl27\nRtcmOL9mpU8ugwe7QG+U7q0ePWDCBLjjjsqf9FXdyu9qg/XV6KjRMB35kxYdxWIQVLUTaBaRs4Df\ni0iLqmbyiuUvrT5tYuKMGTMYOnQoAE1NTTQ3N5/4p2SDPPnHDz7YQp8+8OEPFz4fxvGcOTB4cIZM\nJpr2ssdtbW1VXX/ffaAarbw33JBh4ULYt88db9rkzl90kf/xvffCn/9cXftZovh/2HF6j9va2hIl\nT+5xJpNh9uzZACful8WIfS8jEbkTOKiq9+R89l0go6qPecergatUdXtOmar2Mho+HPr0KbzVc1hc\ndRV8+ctwzTXRtWkYhlGIRO1lJCLniEiT9743cA2Qv5vNr4GbvDJTgT25xqBatm2DPXtcEHL37lpr\nK48jR2A+GkWaAAASuUlEQVThQucyMgzDSDJxBJXPA54VkTZgHvCEqj4jIjNFZCaAqj4JrBeRdcAs\n4DNBNJyd6TN5cumk8kHS1uY2cIsj+Xu+W8Q4HdORP6Yjf9Kio8hjCKq6DJhQ4PNZece3Bt121iAc\nPOjeX3tt0C0Ub9MwDCPpxB5DqJZqYghTp8LXv+4Mwn/8Bzz7bEjC5fCBD8ANN8BHPxp+W4ZhGH6U\niiE0jEE4eNAlc3/tNefXHzLExRHyk8oHiarbo//Pf3YJXAzDMOImUUHluFiwAMaOdTOMmprcXPsl\nS8Jtc9Mmt8upz0yv0EiLXzNMTEf+mI78SYuOGsYg5Pvyg8znW6rN6dPdBm6GYRhJp2EMwpw5p66+\nDSJTVzltxhlQzi5SMYpjOvLHdORPWnTUEAZB1T2tX3nlyc+CyNTlR73scGoYhgENYhDWroW+fU9N\nwn7xxXDokNsYLQxefx1eeslt3BYXafFrhonpyB/TkT9p0VFDGIRCT+oi4Y4S5s1zxqBHj3DqNwzD\nCJqGMQiFfPlhBpaT4C5Ki18zTExH/piO/EmLjhrCIOQHlLPUmqnLr01boWwYRj2ReoPQ0QFbtsC4\ncaefmzABVq2CN94Its3jx53LKG6DkBa/ZpiYjvwxHfmTFh2l3iC0tsKUKYVXJPfqBZdfDi++GGyb\nK1bAwIFuZbRhGEa9kHqD4Le5XBiB5STEDyA9fs0wMR35YzryJy06Sr1B8PPlh7FAzeIHhmHUI6k2\nCEePuj2Mpk4tXmbaNOdW6uwMrt2kbHmdFr9mmJiO/DEd+ZMWHaXaICxZ4nYZbWoqXmbgQDj7bBdc\nDoJXX3W7qF5ySTD1GYZhREWqDUKx6ab5BBlHyG6R0SUBmk2LXzNMTEf+mI78SYuOEnDbCo9yXTdB\nLlBLSkDZMAyjUlJrEFTLHyEEGVhOUkA5LX7NMDEd+WM68ictOkqtQWhvd0Hl4cP9y44dCzt2uGxq\ntXDoECxd6tY9GIZh1BupNQjZ0UE5yWm6dHEzkWp1Gy1YAGPGuKxsSSAtfs0wMR35YzryJy06Sq1B\nqHTqZxCB5aRMNzUMw6iG1BqESn35QcQRyo1ZREVa/JphYjryx3TkT1p0FLlBEJEhIvJHEVkhIstF\n5HMFyrSIyF4RWey9vlxJG/v3w5o1MHFi+ddccQW0tcHhw5W0dJJsVjYbIRiGUa+IqkbboMggYJCq\ntolIP2Ah8NequiqnTAvwBVW9vkQ9Wkz2Z5+FO++s/Il/wgR44IHSK5uL8dJL8Jd/CZs2VX6tYRhG\nVIgIqlowuhr5CEFVX1XVNu/9fmAVMLhA0TLCwYWp1nVTi9soSdNNDcMwqiHWGIKIDAXGA/PyTikw\nTUSWiMiTIjKmknqrdd3UElhO4oK0tPg1w8R05I/pyJ+06KhAloBo8NxFPwVu80YKuSwChqjqARG5\nFvglMCq/jhkzZjB06FAAmpqaaG5u5m1va6G1FT796QyZzMnpYNl/WKljEZgzpwVVeO45//K5x089\nlWHSJIDy2wv7uK2tLdb26+E4S1LkseP6PG5ra0uUPLnHmUyG2bNnA5y4XxYj8hgCgIh0B34D/E5V\nv1lG+Q3ARFXtyPmsYAxh+XJ473udT79SVGHIEPjTn8pb0JZl92648EL3t1AiHsMwjKSQqBiCiAjw\nfWBlMWMgIgO9cojIFJzh6ihUNp9afPki1cURSmVlMwzDqBfiiCFMBz4KXJ0zrfRaEZkpIjO9Mu8H\nlolIG/BN4MZyK6/Vl1/NRndJnW6a7xYxTsd05I/pyJ+06CjyZ1pV/TM+hkhV7wfur6b+uXPh9tur\nudIxfTo89FBl18yZA3fcUX2bhmEYSSCWGEIQFIohbN/uEtPs2lV9PoKjR6F/f3jlFTjrrPLKDxjg\nNtMrlYjHMAwjCSQqhhAmra1uUVm1xgCge3eYNAnm5U+ELcLSpTB0qBkDwzDqn1QZhKD2EqoksJzk\nBWlp8WuGienIH9ORP2nRUaoMQlDB3UoWqCU1oGwYhlEpqYkhHDoEZ5/t4gj9+tVW965dMGwYdHT4\nTyUdMgT++EcYMaK2Ng3DMKKgIWIIixa5gHKtxgCcYTn/fLfIrRTt7W531Isvrr1NwzCMuEmNQQja\nlz99un8coZKsbHGQFr9mmJiO/DEd+ZMWHaXGIAS9uVw5C9QsfmAYRppIRQxBFQYNgvnz3Z5CQbBm\nDbzrXbBhQ/EykybBt75lRsEwjPoh9TGEl1+GHj2CMwYAo0bB66/D1q2Fz+/fD6tWuaQ6hmEYaSAV\nBiEM1012o7tibqP58+Hyy6FXr2DbDZK0+DXDxHTkj+nIn7ToKBUGIazk9qUWqIXVpmEYRlykIoYw\nbhw8/DBegprg+NOf3EZ5hbaxuO46uPlml3vBMAyjXigVQ6h7g7Bnj1sc1tHh9iEKkoMH4Zxz4LXX\noE+fk593drq1CqtXw8CBwbZpGIYRJqkOKr/wghsZBG0MAHr3hssugwULTv181SpnEJJuDNLi1wwT\n05E/piN/0qKjujcIYa8FKLRAzeIHhmGkkbo3CGHfnAvNNKqXBWnZhNtGcUxH/piO/EmLjuo6hnD0\nqDJgAGzc6JLUhMHWrS5ovXPnyS0qRo2Cn/3MfW4YhlFPpDaGsHSpCyiHZQwABg+GM890K5cBduxw\nr7Fjw2szKNLi1wwT05E/piN/0qKjujYIUbluct1GQWRlMwzDSCJ1fVuLKltZbmC5ngLKafFrhonp\nyB/TkT9p0VFdG4SgdzgtRu4IoV4CyoZhGJUSuUEQkSEi8kcRWSEiy0Xkc0XKfUtEXhKRJSIyvlCZ\nAwdg5Mhw5QUXPN661b0WL4Yrrgi/zSBIi18zTExH/piO/EmLjuIYIRwFPq+qY4GpwGdF5NLcAiJy\nHTBCVUcCnwa+U6iiadOiSU7TtStMmQL33w+jRweTlS0K2tra4hYh8ZiO/DEd+ZMWHUVuEFT1VVVt\n897vB1YBg/OKXQ884pWZBzSJyGnrgqN03UybBt/5Tn25i/bs2RO3CInHdOSP6ciftOgo1hiCiAwF\nxgP528edD7TnHG8BLsi/Psrg7vTpsHt3/QSUDcMwKiU2gyAi/YCfArd5I4XTiuQdn7aCbuLEMCQr\nzBVXuKmm9TRC2LhxY9wiJB7TkT+mI3/SoqNYViqLSHfgN8DvVPWbBc5/F8io6mPe8WrgKlXdnlOm\nPpdYG4ZhxEyxlcrdohZERAT4PrCykDHw+DVwK/CYiEwF9uQaAyj+hQzDMIzqiHyEICJvAf4ELOWk\nG+hfgAsBVHWWV+6/gHcBbwCfUNVFkQpqGIbRYNTt5naGYRhGsPgGlUWkp4g8J46hIrIsiIZF5APe\n4rTjIjIx5/NrRGSBiCz1/l5dRl2zReR9PmUeEpHt5covIpeISKuIHBKRL+Z8nr+w7vM5+nlQRF4u\np/4y2s/Vz4Scz4eKyEERWey9HiijrtP0IyKnBfJFpJeIzBORNhFZKSJfK6Pugnryzm30/o+LRWR+\nBHrK7UcfztHRYu/8m33qKqcfNYnIT0VklaejqT7lP+ItrlwqInNyZcjvkzm/tW943yuo39rdnrxL\nROTnInJWzrn/6y0AXS0i7yijrnJ0dJuILPN+H7eVUWcpHeXqe5WILAqhDxXUTw33ovVen1uY7R8i\n8lsROdPn2qki8oJ37UoRucv7/D0ickeF3+kZETmjkmsAUNWSL+CTwO3e+6HAMr9rynkBlwCjgD8C\nE3I+bwYGee/HAlvKqOth4G98yrwVN8W1LPmBc4FJwFeAL+Z8Pgho9t73A7YBd3vHLcC+kPVT8f+g\nkH6A14uU7eP97Qa8ALylGj155zYAAwr0o9D1lFfmMuClgPrRI8Anc3R0lk/5K7NlcC7QF4r1yayO\ngJHA0wH+1q4Bunjv/x34d+/9GKAN6O71q3XZctXqyNP1MqAX0NX7HhfXoKNcfX8KuDOEPlRMPzXd\ni7x6l1QgxxpgnPdegEtr+E43A1+o9Lpypp1+CPhV/ofek+qfPCu4UESu9D5vEZGMiDzuWd3/V6hS\nVV2tqmsLfN6mqq96hyuB3uJmJflRMsisqs8Du8uoJ1v+NVVdgFtZnft5/sK6rsBy7/RGoLv3VBOK\nfmqgrCC8qh7w3vbAfbcOn/IF9VSg3dx+tJFo9fRh4DGfMvnynn7CPTm+VVUf8to+pqp7S1Wmqq05\nZeaRs56mQJ/8EPArVX3JK9fFa7dWHT2tqp0FZLgBeFRVj6rqRpxBmFLq+2RVUeLcJcA8VT2kqseB\n54C/KVVZMR3l6xv4IPAT7/1GgutDBfUTwL3oeWCEJ8tGERngvb/TG5E9LyKPysmR9bnAq17bqqqr\nvPIzROTb3vvZIvKAuFH5y953fMQbUTycI8OvgRvLkPUUShoEEekKXFbkB7cduEZVJ3oNfyvnXDNw\nG+4JZLiIVLuc633AQlUtdrOJFREZDgwAfpbz8SHcE0+Y+hnmDSsz4oL0vqICd0uOC4UC6zq879RF\nRNo8+f+oqisrlC0XBf4gIguAyXn9KAo9Zfk/wKNVXpvLMOA1EXnYc118T0T6VHD93wJPFjpR4Le2\nAsjWHaSOPpkjw2Dcos8sW3CLQmthOfBWERng6eavKLCotAS5OjpF38D0PHnD6EO5+smlmnvRe3CT\nZ8D7vYnIZJyBfDNwLTCRk7/F/wTWeG6rT4tIz9xrc2hS1SuBz+Nu/P+BG8GME5HLAdTNyjxHRPpW\nIK/vCOEc4PUi53oAD4rIUuB/gNz9iF5U1a3qxi5tuOFoRYjIWNzwbWal10aBuIV1Pwe266kL647i\nvm9Y+tkKDFHV8cAXgB+X4StU4B9VdXz2RZGnPFXtVNVm3I/4bSLSUoFs+Uz32roJ6CUib805F7ae\nABCRK4ADNRq2LN2ACcADqjoBNwPun8uU42rczaaYLzj/t7YDpxsISEci8iXgiKr+uISoNc0yUdXV\nwNeBp4DfAYuBzpIXnZQvX0cn9I27eR7mVH0H2oeK6afCe9GJhy+ci+tv885NB36pqke8+8YT3ueo\n6r/h3K9P4Ua1/5tzXRb1rgFnfF9V1RXe91uR9/22A0PKkPkE5biMig0PPw9sU9U3475Ez5xzh3Pe\nH6fC9Q4icgHuZvsxVd1Q5mWRTZfyho0/w620PlCgiBKSfryOtNt7vwh4Gedz9hW73Da8uvcCv8XJ\nXhWqus17uwt388x3R4SmpxxuBErdAPMp1Y+24PzI873jn+JuWCURFyT9HnB99n9XrGiR9zXrSERm\nANcBH8n5+BVOvWFc4H3mR8nfmqo+pKqTVPUqYA/ON16SIjrK1/d+Ttd3IH2oiH6quRflPny9s8CD\niFL8/4yqrlfV7wJvBy7PupnyOOL97eTU79fJqd9PqPC+6GcQduICp4U4E8/fhXsC7FpJw3mcUIqI\nNOFuRHeoausphUR+4A25StZRUcMit4rIZ8uRzSt/YmEd8DVO1093nH8zLP2c47kXsi6rkcB677iU\nfvwbcXU3ee9744Jii73jSvXUJ2fkcgA4AxdszBKqnjwZugAfIC9+UG0/8vzJ7SIyyvvoL3FPZUX1\nIyIX4m4oH1XVdSVkz/+tncvJH35NOhKRd+GC1Teo6qGcU78GbhSRHiIyDNeXXvSuqfq3JiJv8v5e\nCLwXzyBXqqM8fe8EmvD07RFIHyqmnxDuRQrMAd4jbkZZP5xLLetO+qucsqOAY1QQ9yzAQE51sflS\n0iB4QaHlIjLa+6gbJy3SA8DHPX/zaJz1PnFpflX5dYvIe0WkHbcF9m9F5HfeqVuBi4G7cnze53jn\nxlH8CWaWiLR7rzkF2nsUmAuM8sp8wjt1Ca6z5Zcf5Mn3eeDLIrLZ+wdOBz4KXA0sAPqKyKe8y7rh\nnk5aQ9TPVcASb0j6ODBTVbNbLZbSj2+bwHnAs57M84AnVPUZ71ylehoEPO/V1Qps8l4QjZ4A3gZs\n9gKmuVTdj4C/B34kIktwfuCvep8X1A9wJ9Af+I7Xl1/Mkf1En8Td2DpyfmuX4Z6uoUYdAd/GGZun\nJWeqsvf0+j+4h5vfAZ/xXA9Qm45+KiIrcAbnM6q6z/u8Yh3h6RtYhHuw+B/v88D6EEX0Q/X3okJt\nKIA3AePXuNjCk7iHpGxA/aMissb7bf8A+Ij3/8i+CtVf8PuJyCBgl6q+UUTGIpL7T1+agbOQ4GYl\nPOZ3TRgv3FPAT0Ko9wmgWw3X5+rnFuCVNOnH9BSNfnJ1hDMQL9pvLZ19COjr/e0DzMebxh6wjJ/G\n5Z2p6Drflcoi0gP4A5DB5Sn4uKouKXlRA5Gnn7/DzbV/JFahEojpyZ8cHXXHBZnfb7+1k6SlD4nI\nj3CznnoBs1X16yG08QzOBVZoJ+ni1/kZBMMwDKMxiDVBjmEYhpEczCAYhmEYgBkEwzAMw8MMgmEY\nhgGYQTAMwzA8zCAYhmEYAPx/lknhjaUywfAAAAAASUVORK5CYII=\n", + "text": [ + "" + ] + } + ], + "prompt_number": 104 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Python Class student mean - Blue\n", + "#Python Class stdev - Green\n", + "\n", + "pydata.mean().plot()\n", + "pydata.std().plot()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 110, + "text": [ + "" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEACAYAAACznAEdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecTNf7B/DPYfW2apAQogQhWSRC8LOIXqKHEERIJfiS\nECm+SbTo7atFWH2tTnRhdaKuvuqqUdYuy+7aNs/vj3OXsWbmTrl35s7s83695rVT7px75tk795l7\nzrnnCiICY4wxlsHTFWCMMWYMnBAYY4wB4ITAGGNMwQmBMcYYAE4IjDHGFJwQGGOMAQD8PF0BW4QQ\nEQBiAKQASCKiap6tEWOM+S5DJwQABCCQiKI8XRHGGPN13tBkJDxdAcYYSw+MnhAIwDYhxGEhRC9P\nV4YxxnyZ0ZuMahLRv0KIggC2CiHOEdFuT1eKMcZ8kaETAhH9q/y9J4RYBaAagN0AIITgSZgYY8wJ\nRGSxKd6wTUZCiOxCiFzK/RwAGgI4ab4MEfHNxm3o0KEer4PRbxwjjpE3xSg2llC1KmH4cOfLsMXI\nRwgvAVglhABkPRcR0RbPVsm7REREeLoKhscxUscxUueOGJlMQLduQIUKwPff67MOwyYEIroCIMDT\n9WCMMSMYOhS4dQvYvh0QOo29NGxCYK7r3r27p6tgeBwjdRwjdXrHaNEiYOFC4OBBIEsW/dYj1NqU\njEoIQd5ad8YYs9e+fUCrVvLIoGJF18sTQoC8rVOZuS40NNTTVTA8jpE6jpE6vWIUEQG0awfMm6dN\nMlDDCYExxgwoJgZo0QIYNAho0sQ96+QmI8YYM5iUFKBlS6BYMWD6dG07kbnJiDHGvMjAgUBCAjBl\nin4jiizhhODDuO1XHcdIHcdInZYxmjUL2LABWLYMyJRJs2LtwsNOGWPMILZvB37+Gdi9G8ib1/3r\n5z4ExhgzgPPngdq1gaVLgcBA/dbDfQiMMWZgUVFA8+bA8OH6JgM1nBB8GLf9quMYqeMYqXMlRklJ\n8lyDFi2Anj21q5MzOCEwxpiHEAFffw3kyAGMHu3p2nAfAmOMecyECUBQELBnD5Arl3vWaasPgUcZ\nMcaYB6xYAYwZA+zf775koIabjHwYt/2q4xip4xipczRGS5bIpqK//gJefVWfOjmDEwJjzCckJMgL\nx1y75uma2DZ3LjBgALBtG1Cliqdr8zzuQ2CM+YQ1a4CvvgISE4GffpK/wDNm9HStnjd9OjBihEwG\nr7/umTrweQiMMZ+3dCnwww+yg3bFCqBmTeDkSfX3ucuECXIk0c6dnksGajgh+DBu+1XHMVLnDTGK\nj5fz/7RtK3e2O3YAn34K1K8vk8STJ/quXy1Gw4cD06YBu3YBr72mb11cwQmBMeb1NmwAqlYFXnpJ\nPs6QAejVCwgLk1NCvPmm/GXubkTAjz8CixfLZFCsmPvr4AjuQ2DMCxABgwcDly8DmTPLW6ZMz+5b\ney71cdWqQKVKnv4U+unQAXj/feCzzyy/vnat7FNo3Fg227hj4jgiOY31338DW7cCBQvqv0572OpD\n4ITAmBeYPx8YPx4YMkR2miYlyb+pN/PHaV+LiwNCQ+XlGN09nbI7PH4MvPwycOkSUKCA9eViYuQo\npFWrgEmT5HQRel1rwGQCevcGDh8GNm/2zMyl1thKCCAir7zJqjNbduzY4ekqGJ43xOjuXaJChYgO\nH3a+jLp1iRYvdu69Ro9RcDBRo0b2L793L1GFCkQtWhBdu6ZNHcxjlJxM1L07Ua1aRA8falO+lpR9\np8X9KvchMGZw/fsDXbrIZh9nffMNMHmydnUykqVLZZORvd57Dzh6FHj7bXkewNSp8pKVWkhKkv+r\na9eATZuA3Lm1KddduMmIMQPbvBn44gvg1Ck5AZqzUlKAMmWA4GCgWjXt6udpMTGyozYiwrlmmbNn\nZb9DcrIcjVSlClCkiHNNSQkJQKdO8u/y5UC2bI6X4Q7ch8CYF4qNBSpWlCczNW7sennjxwNHjgCL\nFrlellEsWiSngfjrL+fLMJmAP/8EQkKA48dlMnjrLSAgQN7eeksOZbXV/xIfL/sksmSR9cmSxfn6\n6I0TQjoVGhqKQE9ebcMLGDlGAwcC//6r3Q78wQM5Bv7UKaBoUfvfZ+QYtWwJtG8PfPyxNuURyZgf\nPy5vYWHy7/XrQPnyzyeJt94C8uSRibt27VCUKxeIefOM33HPs50y5mWOHAEWLND2TFt/f9mkMWMG\n8Ouv2pXrKQ8eyNFTCxZoV6YQMlkWLQo0bfrs+dhY+b9ITRSLF8vHhQoBfn5AqVKyHkabKsNRfITA\nmMEkJ8t2/r59gW7dtC373Dl5icarV/Vt1nj0SI69b9NGv3UEBQGrV8ubJ6SkABcvyqOHevXkyXDe\ngOcyYkwDRMA//wD/+Q/w7rvAwYP6rGfiRCBfPqBrV+3LLldONnkEB2tftrlhw2Sbeni4fusICQE+\n/FC/8tVkzCj7Ft5/33uSgRof+RjMEm+Yg8bT1GJEJNuRhwyRzQIffywvZvL55/IauHv2aFufy5eB\nUaNks45eJ0317StPzLL3ANvR7ejKFWD2bDk6asQIx+tnj/v3gb175f/ACHzlu8Z9CIxZEB4uf0UH\nB8sRJB07AitXyo7E1B11sWKySSQ4WDYZuIoI+PJL4NtvgdKlXS/PmkaNgH795A61Vi3tyx88WJbf\np4/8HJcvaz+h26pVQIMGQM6c2pab3nEfAmOKiAh5klNwMHDnjmyO+PBD2Txk7df6zp1ylMuCBXJH\n64qFC4GxY4FDh/QfqTJ1qqz7smXalrtvn4xZeDiQPbu8LsGdO8CsWdqup0EDef5A+/balpse8LBT\nxqy4eVPuFIOD5Vw47drJo4FatewfMbJ/P9CqFfDHH3IYpDMiI+U5B+vWAe+841wZjnj0CChRAjh2\nDCheXJsyTSagRg05h0/qMNDISKBsWTkyR6v13LsnT7K7dUsmHeYY7lROp3ylXVMvgwYB5cqFIiwM\n+OUXuYOZPh2oU8ex4YM1agDr18tfrMuXO1eX//xHDgl1RzIAZD9I165yjn419m5HwcFy5E3nzs+e\nK1AA6NlTzjCqlRUrgCZNjJUMfOW7xn0ILF2aMUNOibxkCdC8uevlvf22nGaicWM5dYH5TlHN1q1y\nrvxTp1yvhyN69waqVwd+/tn1nWt8vJxJdOHCF0fcDBggT+r64Qc5LYSrli6VczMx7Rm6yUgIkRHA\nYQA3iKhFmte4yciAEhPl/PtGtn078NFHcoSQ1p23Z87I9u3ffgN69FBfPi5OXqdgypTnT4Ryl5Yt\n5UidXr1cK2fECDlhnLUjpH79ZKIYP9619dy+LZPLv/8CWbO6VlZ65bV9CEKI/wCoCiAXEbVM8xon\nBAM5fVqOLtmwQY4oqVxZThRWubK8FSrk6RpKFy7I/oGlS+UJWno4f16OTf/+ezlqyJbvvpMnNi1Z\nok9d1Pz9txyGevKk88Ncb9+W/R8HD8qhuZbcvCkT37lzrm0LU6fK9Wh5dnJ645V9CEKIVwA0BTAb\ngE4jsn2bO9o1b92Svy7r1pVDLx89Ataskb88790Dfv9ddiq+8op8buhQ+fq1a/aPg9dKdLT8NTxs\n2LNkoEeMypaVI3hGj5YXVrfm2DF5tu3EiZpXwW6pw2V37LC+jFqMfv4Z6N7dejIA5AVsOnZ0/Qhh\n6VLPnoxmDfch6G8CgG8BeNmM4ulDTIzc4U2fLhPC+fNyrhwAqFBB3rp0kY+J5JDOo0flTnDmTHk/\nOfnZEUSVKrLJRK/545OS5Jz5TZq43jxij5IlZVKoX1/2KQwe/PzrycmyHr///uw6wJ4ghGyPnzTJ\nuXMpTpyQCd6eM5IHDZL/52+/BfLnd3xdN27II9EGDRx/L7OPIZuMhBDNATQhoq+FEIEABljqQ+jW\nrRtKlCgBAPD390dAQMDTWRlTMzY/1vbxe+8FYuZMYOjQUFSrBsyaFYjixZ0r7/59IFu2QBw7BqxZ\nE4rbt4GtWwPx+uva179161DcugXs3RsIPz/3xats2UDUrw+8+24ounUD6taVr3/1VSj27weOHg2E\nEJ79/8bFAUWKhGLaNKBzZ/vfTwQMHx6IVq2AihXtW9/ChYEoWhSoV8/x+i5fDsTGBmLuXON8H7zh\ncWhoKIKCggAAJUqUwC+//OJdl9AEMALAdQBXAPwLIBbA/DTLOHTZOOYak4lo6VKiUqWIGjcmCgvT\nfh1//EFUsCDR+vXaljt1KlH58kQPHmhbrr3u3CGqVIlo0CAZx8uXifLnJzp/3jP1seS774j693fs\nPX/9RVSuHFFiov3vuXhRfnZn/hfVqxNt3Oj4+9jzYOMSmh7f+avdANQBsM7C8xqHyfdodS3c0FCi\natWIqlQh2rZNkyKt2ruXqEgRopEj5c7TVVu2EL30ktwRWeKu6wVHRsr49e0rE+qIEW5Zrd2uXiXK\nl48oJubF1yzFKDFRJoO//nJ8XR9/TPTbb469JyJCJhJHko87Gf260+ZsJQTDdiqnYbx2rXTg9GnZ\nCdu9uxyJcuiQbBPX03vvyRlFV6yQJ2rFxTlfVni47McICbHd4ekO+fPLET0HDsgRNwMHerY+aRUv\nLvsQ5s+3b/lZs+RAAWeGyg4ZIq/v/OiR/e9Ztgxo3dr4F5/xetYyhdFv4CME3dy4QdSzp2y+GT+e\n6MkT99chLk7+kgwIkL8OHXX/PlGZMkSzZ2tfN1fExcm6GdGuXURlyxKlpNheLiqKqFAh15oNO3Qg\n+v13+5d/+22irVudXx97Bj5whMDc4MwZ4NNP5Zjy/PnlyKH+/T1zfdhs2YB58+T0CtWryxE79kpK\nkpOetWghP4+RZMsmr3VgRLVqATlyyDOubRk+XA4hfvNN59f1449yCKo9R4CXLslhyga9iqdP4YTg\nw1JHGthCJHe2zZvLJoOSJeVVoEaNejaM1FOEkAlp/nw5ZHTaNPVzF4jktMtZs9o3f449MUovUoeg\nTp78/PPmMbp0SZ478dtvrq2rUiU5B9Qff6gvGxICtG0rL1VpVL6yHXFCSKeSk+VJPtWqyYu9fPCB\nPFfgxx+dGyOupwYN5LTK06bJCeQSEqwvO3WqnJJiyRLvv76tJ3TsKM8VOXfO8uuDBsmJ+AoXdn1d\nP/4IjBkDPHlie7mQEPmDgOnPkOch2IOnrnDO48fAnDnyDNpixWTnZvPm3nEJwEePZBPS3buy0znt\nTmnLFnkN4n375JEOc87PPwNRUTK5mtu9W3bSnzsnm7600KyZ3P6sTfFx/rxsKrp+nRO8Vrx2LiNb\n0ktCmDxZnhVcurScA750aSBPHsfL+fdf+QWfNUt+wQYOlBd+8TYmk2yumD1bXsEsdbros2fltNUr\nV+pzFbD05NYt2Y90+fKzZkOTSW4v/fvLiQG1cuCAnIriwgXLkyL+9pucAiVtMxZznlfOZcRk2/64\ncUBsrPxF/Omnck6YQoWAmjXlr+Fhw+Q89EeOAA8fPv/+0NDQpx3Fb7whE8uBA3IInzcmA0AeyQwd\nKncQTZvKSc7u35cdyKNHO54MfKXtV0tFi8opPubMkY9DQ0OxaJGMfceO2q6renU595O1yepCQow5\nd1FavrIdGbibJn0jku21I0Y8P7c+kZxd8uJF+avq4kWZLFLvZ8/+7GgiPFz2C/TuLV83Wt+AK1q3\nlp+xVSs5z37HjvJ8CaaNvn1lTPv2lW38Q4bIHx56NC3+9JOcKrxbt+c7js+cAR48kJ3PzD24ycig\nVq2SV/E6etT+L2HaZOHnJzvjfHne+KgoYPFi2QbNbczaql5dTuF94oS8eM/Spfqtq04deWW11Etv\nAvJI8NEj12dIZc/jPgQvk5ws23AnTpRX4GLME5YskU2WV64Ahw/r21G/bZs8kj19WiZ2InkhnHnz\nvLd506i4D8HLzJ0r23EbNXKtHF9p19QTx8i6tm1lB3PDhqG6j9qqXx/Im/fZFddOnpTDi6tV03e9\nWvGV7Yj7EAwmLg7473+B1audv4IVY1rInFkObLhyRf91CSHPSxg8WJ5lvnSpbO7k74B7cZORwYwc\nKU8MCgnxdE0Ycy8i4O23ZWL49luZFKpW9XStfA/3IXiJ+/eBcuXkiVVlyni6Noy536pVwNdfy9Fy\nFy7wEYIeuA/BS4wcCbRrp10y8JV2TT1xjNS5M0YffCCHR3/4oXclA1/ZjrgPwSCuXpWdyadOebom\njHlOhgzAxo2yg5m5HzcZGUT37nJuIVdnkWSMMVtsNRnxEYIBnDwpfxVduODpmjDG0jPuQzCAIUPk\nLXdubcv1lXZNPXGM1HGM1PlKjPgIwcN27ZL9Bqkn5DDGmKdwH4IHEcmLyn/9tZxnnjHG9MbDTg1q\n9WogPl7b+eUZY8xZnBA8JDlZ9huMGqXf1cp8pV1TTxwjdRwjdb4SI04IHhIUBBQp4voEdowxphXu\nQ/CAuDh5laiVK71nNkfGmG/gPgSDmTxZXgWKkwFjzEg4IbhZVJS86Mjw4fqvy1faNfXEMVLHMVLn\nKzHihOBmqRPYlS3r6ZowxtjzuA/Bja5dAypXlieiFSni6dowxtIj7kMwExsrO3U9YehQeTF4TgaM\nMSNKVwkhIQGoV0/Ote7ug4uTJ4ENG+SVoNzFV9o19cQxUscxUucrMUpXCaFfP3nx+gsXgDVr3Lvu\nIUOA778H8uRx73oZY8xe6aYPIShInhX8zz/AkSNAt27AmTNAzpz61THVzp3yegfnzgFZsui/PsYY\nsybdX1P52DGgYUO5Y65QQT738cdA4cLAmDE6VhLA48dAQIBcT+vW+q6LMcbUpOtO5agooG1b4H//\ne5YMAGDsWGDePNm2r6eBA4FatTyTDHylXVNPHCN1HCN1vhIjn74egskkp5Vu3Rro0OH51156Cfj1\nV+CLL4Ddu/WZYG79emDTJiAsTPuyGWNMa4ZtMhJCZAWwE0AWAJkBrCGi781eV20y+uUXYPt2YNs2\nIFOmF183meT1CHr1Aj79VNPqIzISeOstYPFioE4dbctmjDFneW0fghAiOxHFCSH8AOwBMJCI9iiv\n2UwIGzfKHf3hw7KvwJrjx+WMo6dOAQULalNvInk2csmSsmmKMcaMwmv7EIgo9RSyzAAyAoiy531X\nrshRPcHBtpMBIDt8P/oI+O47V2r6vAULgPPngWHDtCvTGb7SrqknjpE6jpE6X4mRoROCECKDEOI4\ngDsAdhDRGbX3xMfLTuQffpCdufb49VfZrLRrl2v1BYCrV4EBA4CFC4GsWV0vjzHG3MXQTUaphBB5\nAGwGMJiIQpXnXmgyIgJ69JBnJC9aBAiLB0WWrVgB/PyzHKKaObNz9TSZ5JnQTZoAgwY5VwZjjOnJ\nVpORV4wyIqKHQoj1AN4GEJr6fPfu3VGiRAkAgL+/P65fD8Dhw4E4cADYuVMuFhgYCODZIZ21x/ny\nhSJnTmDChEAMGqS+vKXHS5cCKSmBGDjQuffzY37Mj/mx1o9DQ0MRFBQEAE/3l1YRkSFvAAoA8Ffu\nZwOwC0B9s9fJ3MGDRAULEoWHk9MuXSLKn5/oyhXH33vyJFGBArIMo9ixY4enq2B4HCN1HCN13hQj\nZd9pcb9r5D6EIgC2K30IBwGsI6K/LS147x7Qvj3wxx+uXWfgtdeA/v2BPn0cm/wuIUGe7zBqlCyD\nMca8kVf0IViS2oeQkiKHjVarBowY4Xq5CQly5NHIkUCrVva95/vv5bxIq1c71m/BGGPu5rXnIdiS\nmhCGDAEOHZJnBGfMqE3ZoaFA1672TX63Z488OgkLAwoV0mb9jDGmF689D0HNmjVyNNHixdolAwAI\nDJS3X36xvdyjRzJxzJhhzGSQ2rHErOMYqeMYqfOVGHl1QujVC1i2TLszjM2lTn534oT1Zfr3B+rW\nBT74QPv1M8aYu3l1k9GMGYTPP9dvHTNnAvPnW578bu1aecGdsDAgVy796sAYY1ry2T4Ek4l07cQ1\nmYCaNeXEdz17Pnv+7l05cV1ICFC7tn7rZ4wxrflsH4LeI3oyZJD9Az/8IIe2AnI46mefySuuGT0Z\n+Eq7pp44Ruo4Rup8JUZenRDc4a23gM6dn01+N3eunDxPrcOZMca8jVc3Gbmr7o8eyautDRsmr4C2\nfTtQqZJbVs0YY5ry+rmMPC1XLmDiRHmNgzFjOBkwxnwTNxnZqU0bYN06OdTUW/hKu6aeOEbqOEbq\nfCVGfIRgJyGA5s09XQvGGNMP9yEwxlg64rPDThljjGmHE4IP85V2TT1xjNRxjNT5Sow4ITDGGAPA\nfQiMMZaucB8CY4wxVZwQfJivtGvqiWOkjmOkzldixAmBMcYYAO5DYIyxdIX7EBhjjKnihODDfKVd\nU08cI3UcI3W+EiNOCIwxxgBwHwJjjKUr3IfAGGNMFScEH+Yr7Zp64hip4xip85UYcUJgjDEGgPsQ\nGGMsXeE+BMYYY6o4IfgwX2nX1BPHSB3HSJ2vxIgTAmOMMQDch8AYY+kK9yEwxhhTxQnBh/lKu6ae\nOEbqOEbqfCVGnBAYY4wB4D4ExhhLV7yyD0EIUUwIsUMIcVoIcUoI8Y2n68QYY77MsAkBQBKA/kT0\nBoDqAL4WQpT3cJ28iq+0a+qJY6SOY6TOV2Jk2IRARLeJ6Lhy/zGAswCKerZWjDHmu7yiD0EIUQLA\nTgBvKMmB+xAYY8wJXtmHkEoIkRPAcgB9U5MBY4wx7fl5ugK2CCEyAVgBYCERrU77evfu3VGiRAkA\ngL+/PwICAhAYGAjgWZteen58/Phx9OvXzzD1MeLj1OeMUh8jPk4bK0/Xx4iPJ06caNj9T2hoKIKC\nggDg6f7SGsM2GQkhBIB5AO4TUX8Lr3OTkYrQ0NCnGwizjGOkjmOkzptiZKvJyMgJoRaAXQBOAEit\n5PdEtEl5nRMCY4w5yCsTghpOCIwx5jiv7lRmzjNv+2WWcYzUcYzU+UqMOCEwxhgDwE1GjDGWrnCT\nEWOMMVWcEHyYr7Rr6oljpI5jpM5XYsQJgTHGGADuQ2CMsXSF+xAYY4yp4oTgw3ylXVNPHCN1HCN1\nvhIjTgiMMcYAcB8CY4ylK9yHwBhjTBUnBB/mK+2aeuIYqeMYqfOVGHFCYIwxBoD7EBhjLF3hPgTG\nGGOqOCH4MF9p19QTx0gdx0idr8SIEwJjjDEA3IfAGGPpCvchMMYYU8UJwYf5SrumnjhG6jhG6nwl\nRpwQGGOMAeA+BMYYS1e4D4ExZngpphQsCFuA0pNL4+NVHyMxJdHTVUp3OCH4MF9p19QTx0id3jEi\nImy4sAFVZlXBtMPTML3ZdMQkxKDFkhZ4nPhY13VrxVe2I04IjDGPOXDjAOrOq4sBWwbgl8BfsK/H\nPjQo1QArOqzAy7lexvvz38f9uPuerma6wX0IjDG3Oxd5DkP+HoJDtw7hv3X+i24B3eCXwe+5ZYgI\ng7cNxrrz67C5y2YUy1PMQ7X1LdyHwBgzhJsxN9FrbS/Unlsb1V+pjvO9z+PTKp++kAwAueP6vcHv\n6FG5B2rNrYWz9856oMbpCycEH+Yr7Zp64hjZtufaHoxaOAoXoy4i2ZTsdDnR8dEYvG0w3pzxJvJl\ny4fzvc/ju5rfIVumbKrvHfjeQPwa+CvqzquLgzcOOl0HPfnKdvRiWmaMpXtEhN92/YZZR2ahcGRh\nzIicgduPb6Nk3pIom78syuYrK/8qt8I5C0OIF1sh4pPiMfWfqRi9bzRavd4KYV+E4ZXcrzhcn24B\n3ZA/e340X9Ici9osQsNSDbX4mCyNdNeHcPXBVQghUDxPcR1qxZj3i02MxSdrPsG1h9ew6sNVKJKr\nCAC5c78UfQnn759/4RafHP8sQSjJ4nHiYwzbPQzvFH0Hw+sNR/mC5V2u255re9A2pC0mNZ6EjhU7\nulxeemSrDyFdJYQnyU9QZWYVRD+JxuYum/HmS2/qVDvGvNO1h9fQKrgVKr1UCTObz0RWv6x2vS86\nPhoXoi4gPDJcJomo80hITsDgWoNR/ZXqmtbxxJ0TaLqoKQbXGoze1XprWnZ6YCshgIi88iar7piB\nmwdSu5B2FHwymAqNKUQHbxx0uAxvsmPHDk9XwfA4Rs/subqHiowtQmP3jiWTyfT0eSPG6HLUZSo9\nuTT9vP3n5+rqKUaMkTXKvtPifjXd9CHsubYHi04uwokvT6BA9gLInik7mi9ujmXtl6FOiTqerh5j\nHjXn2BwM3jYY81rNQ5MyTTxdHVUl85bE3h570WRRE9yLu4cpTaYgY4aMnq6W10sXTUaPEx/jrRlv\nYUKjCWj5esunz/99+W90XNERC1ovQOPSjfWqKvMxEQ8i0GtdL8z9YK5THaRGkmxKxrdbvsX6C+ux\nttNalCtQztNVckhMQgxaBbdCgewFsKD1AmTxy+LpKhleuu9D+Gr9V4hLikNQq6AXXtt3fR9aBbfC\n9GbT0bZCW41rCZjIhNlHZ+PMvTPo8EYH1HilhsXRGMw73Hp0C/839/9QNFdR+Gf1x5qOa7z2/xkd\nH42OKzqCiLC03VLkzZbX01VyypPkJ+i8sjMePnmIVR+uQq4suTxdJUPzyhPThBBzhBB3hBAnXSln\ny6Ut+Ov8X5jYeKLF198r9h42ddmE3ht7Y0HYAldW9YJTd0+h9tzaCDoeBP+s/ui5tidKTiqJwdsG\nI+x2GPROxr4yNlpPjsQoMi4SDRY0QM8qPbGt6zZcjr6M5WeW61c5HYVHhqP6n9VRoUAFbOi8wWYy\nMPp2lNUvK0LahaBU3lKoN78eouOj3V4Ho8fIbtY6Fzx9A1AbQGUAJ628rtp5Eh0fTcXGF6PNFzer\nLnv67ml6edzLNP3QdNVl1cQlxtGQbUOowOgCNO2faZRiSiEiIpPJRMf/PU6Dtg6iVye8SuWnlqdf\nQ3+lC/cvuLxOS7ypo8tT7I1RdHw0VZ5RmYZsG/L0uX3X9lGRsUXoftx9nWqnj40XNlLB0QXpz6N/\n2rW8t2xHJpOJ+m/qT1VnVqXo+Gi3rttbYkRku1PZ4zt+WzcAJVxJCN1WdaMv//rS7kBdirpEJSeW\npNF7Rtv9nrS2XdpGpSeXpnYh7ehmzE2ry5lMJtp7bS/1Xt+bCo0pRG/PepvG7xtv8z3MMx4nPKb3\n/nyPvtktrqobAAAYRUlEQVTwzQsjWvps6EOfrP7EQzVzjMlkonH7xlGRsUVoz9U9nq6OLkwmE/Xd\n2JfemfUOPYh/4OnqqEr9sehO6TIhrD67ml6b9Bo9SnjkULCuP7xOr0953eHhbHcf36WPV35MxScU\np3Xh6xxaZ1JKEm2+uJm6r+5OeUflpcCgQJp5eCZFxkY6VE56FJsYS+fundOt/PikeKo/rz71WN3D\n4pc35kkMFZ9QnLZe2qpbHbQQnxRP3VZ1o4AZAXT1wVVPV0dXJpOJeq/vTdVnV6eHTx56ujoWPYh/\nQM0WNaMuK7u4fd22EoJXDzvt3r07SpQoAQDw9/dHQEAAAgMDERkXiR6TemBonaHImTkngGdtfIGB\ngaqPd32yCzV+qoEzh84g5NsQCCGsLl+nTh3MD5uPfjP74f2S7+N0v9PImTmnQ+vzy+CHzNczo1ue\nbpg+YDo2XtiISUsnof/M/qhTpw5ezfMqIs9EIqtfVpR7uxyyZcqGGyduIHPGzKhSowqyZ8qO8MPh\nyOKXBbX+rxay+WXD8QPHcfHMRXz/7ffIIDI4VB8jP65Tpw5O3T2Facum4dCtQwjPFY6sflkR8CQA\nfar1QctGLR0qL/U5S68npyRj8t3JKJC9AD7K9RF27dxlsbwZzWag64SumPPBHDR+v7Gh4lWjVg3s\nv7EfX/3vKxTMURB7huxBjsw5HCovbayM9PksPRZCoE22Nrh29xqaLGqCTZ034cj+I7quf+LEiU/3\nP2rLn79/Hu//+j4qFqyIdX7rEJsYi0P7DulWv9DQUAQFBQHA0/2lNYYeZSSEKAFgHRFVsvAaWao7\nEaHD8g54Nc+rGNtwrNPrjoqPQtNFTfHmS29ierPpFsc4X7h/AV+s/wIPnjzArOazULVoVafXZ8mj\nhEfYfGkz7sbeRXxSPOKT4xGXFPf8/eR4q69Fn43Gk1eewD+rP/Jnz4/82fI/+2t+38Jfe89QdYf7\ncfex9fJWbL60GVsubUGWjFnQqFQjNCrdCPVK1kNGkRFD/h6C5WeXY3qz6c8NLVYTGhr69EtkLsWU\ngs4rOyMuKQ4rOqxApoyZbJbTeWVnFM1ZFGMajnH042mKiHDq7ilsvbwVWy9vxd5re1GuQDl8VOkj\n9H23r1MjoqzFyOhMZMKXf32JM5FnsLHzxqc/DvVgb4w2XdyErqu6Yli9Yfis6mdotLARelbuifZv\ntNetbml57bBTZxJC8Klg/LrzVxz9/KjLO7VHCY/QMrgliuYqiqAPgp7uFBJTEjF672hMPDARP9T+\nAX3e7WNx+l4jSDYlIzo+Gvfj7+N+3P2nfyPjIp9/zux+VHwU2ldoj3ENx+GlnC+5vc5JKUk4ePMg\nNl/cjM2XNiP8fjjqvFrnaRIolbeUxR3brqu70GNND9QoVgOTGk9Cvmz5nFq/iUzotbYXrj68ir8+\n+suu7ehe7D1UnF4RGz7aoPkPAzU3Y25i2+Vt2Hp5K7Zd3oacmXPi/dfeR4PXGqBuybpOx8EXmMiE\nz9d9jvNR57Hhow3IkTmHR+pBRBi/fzzG7h+LkHYhqP1qbQDAn0f/xKZLm7Cs/TK31cUrp64AsATA\nLQAJAK4D+CTN6y+0jd2KuUWFxhSif27841zjmgVxiXHUZGET+mDJB/Qk6QntvrqbKvyvAjVb1Iwi\noiM0W4+RPE54TIO2DqKCowvS//75HyWnJOu+zpsxN2nGoRnUOrg1+Y/yp8ozKtPgrYNpx5UdlJCc\nYHc5jxMe0zcbvqGi44rSmnNrHK6HyWSibzZ8Q+/9+Z7D/U/zj8+ngBkBlJic6PB6HRHzJIbWnltL\n32z4hspPLU/5fs9H7ULa0czDM+ly1GVd1+2NUkwp9MnqT6huUF2KTYx1+/rjk+Lp45UfU8CMgBf2\nGZGxkZR7ZG6HtzVXwFs7lW3d0iYEk8lEzRY1o5+2/+R6xNJISE6gdiHtqMzkMlR0XFEKORViiPlT\n1Lg6FO7UnVNUe05temfWO3Tk1hFtKpXGlegr9Pm6zynvqLzUZWUXWhC2gG4/uu1yuTsjdlKpSaWo\ny8ouNoeFpo3RD3//QJVnVHZq2KLJZKKGCxrSyN0jHX6vmhRTCo3fN55qzalFOUfkpHrz6tHI3SPp\n0M1DuidsbxpSaU1ySjJ1XdWV6s+rT3GJcZqXby1GN2NuUrU/qlH7kPb0OOGxxWUaL2xMwSeDNa+T\nNekiIfx59E8KmBHg0K9JRySlJFHQsSC3j292hRZfZJPJRHOPzaWXxrxEfTb00Wwo38X7F6nH6h6U\n7/d8NGTbELoXe0+Tcs3Zc7RgHqORu0dS+anl6e7ju06v80r0Fcr/e346H3ne6TLSepzwmFoFt6La\nc2rTpgub3P4r1xcSApFMCp1XdKYG8xtonhQsxejA9QP08riXadjOYTZ/QM45OofaLG2jaX1s8fmE\nEBEdQQVGF6ATt09oEzH2gsjYSOq5picVHVeUgk8GO32EdO7eOeq6qivl/z0//bz9Z7ec1JV6tNB5\nRWer65tycAqVmlRKk/NAJuyfQHXm1tFkjPmNhzeoyswq1H11d91+7KQnSSlJ1HF5R2q0oBHFJ8Xr\ntp55x+dRgdEFaPXZ1arLRsVFUe6RuSnmSYxu9THn0wkhxZRC9ebVo1G7R2kXMWbVnqt7qNK0StRg\nfgOHfgWfunOKOi3vRAVGF6Dfdv7m9iOt2MRY6ruxLxUdV/SFL+mco3Oo2PhidCX6iibrSk5Jpndm\nvUN/HPnDpXKO3jpKxcYXo5G7R3pFE6W3SEpJog7LOlDTRU3pSdITzcsesHkAvTbpNTp556Td72u6\nqCktPrFY07pY49MJYcrBKVR9dnW3dHx6G70O9ROTE2ns3rGU//f89N8d/7X5Syvsdhi1C2lHhcYU\nolG7R7ntV5A1uyJ2UenJpZ8eLQydM5SKjC2i+cltYbfDqODogk4fcaw5t4YKji5Iy08v17RezvCV\nJiNzicmJ1HZpW2q+uLkmSWHHjh0UFRdFjRY0onrz6jl8UmnQsSBqHdza5XrYw2cTwvnI81RgdAEK\njwzXNGC+Qu8v8rUH16jN0jZUenJp2nJxy3OvHbl1hFoFt6LCYwvT2L1jrXaoeUJsYiz129iPCo8t\nTP5f+NPxf4/rsp4f//7R4bZhk8lEY/eOpaLjimo6Ws4VvpgQiGRSaB3cmlouaelyc9y81fOozOQy\n9M2GbygpJcnh90fHR7ut2chWQjD0eQi2CCGoxuwa6FSxE/q828fT1UnX1p9fj94be+Pdl9/FJwGf\nYMo/U3Ds9jF899536FW1F7Jnyu7pKlp04MYBZM+UXbdLqT5JfoKAGQEYUX8E2pRvo7p8UkoSvt7w\nNQ7ePIh1ndbxdb/dIDElER2WdUAGkQFL2y2FXwY/JJuSkUIpSDGlPL2fbEpGiinF4v3Td0/j6w1f\nY2T9kfi0yqdO16XFkhboVLETPqr0kYaf8EVee2KaLUIIqhtUF9u6bkMGYdhZvNONuKQ4DN81HGvC\n1+Crd75Cj8o9DHW2s6fsvrobHVd0xOmvTsM/q7/V5aLjo9F+WXtk9cuKJW2X8Jz+bpSYkogPl3+I\nNefWgEDIKDLCL4MfMmbI+ML9jBmUx2b3c2bOiYmNJqJm8Zou1WNB2AKsOLsCqzuu1uiTWeazCeFK\n9BWU8C/h6aoYlrdOOeBO7ojRl399iRRKwawWsyy+finqEpotboYmpZtgbMOxhrsUZHrYjogIJjI5\nHXstYvTwyUMUn1gc1/tfR+4suV0qyxavvECOPTgZMG8w6v1R2HhxI0IjQl94bffV3ag5pyb6Ve+H\nCY0nGC4ZpBdCCI/HPk/WPKjzah2sDV/rsTp49RGCt9adpT9rw9di4JaBCPsiDNkyZQMgmwgGbBmA\nhW0WomGphh6uITOChScWIuR0CNZ20i8p+GyTkbfWnaVPHZZ1QKm8pTC8/nD8vONnLD65GOs6rcMb\nhd7wdNWYQcQkxKDYhGK42u+qzT4nV/hskxGzzXwee2aZO2M0uclk/HnsTzRb3Azbr2zHgZ4HvCIZ\n8HakTqsY5c6SG3VL1PVYsxEnBMbcpHDOwpjSZAqK5y6O7d22o1COQp6uEjOgDm90QMjpEI+sm5uM\nGGPMQB4lPMIrE15BRN8I5M2WV/PyucmIMca8RK4suVC/ZH2sCV/j9nVzQvBh3ParjmOkjmOkTusY\nearZiBMCY4wZTPOyzbH3+l5ExUe5db3ch8AYYwbULqQdmpZpih6Ve2haLvchMMaYl/FEsxEnBB/G\nbb/qOEbqOEbq9IhRszLNsP/GftyPu6952dZwQmCMMQPKkTkHGpZqiNXn9J391Bz3ITDGmEEtO70M\ns4/NxuYumzUrk/sQGGPMCzUt0xQHbhxAZFykW9bHCcGHcduvOo6ROo6ROr1ilCNzDjQu3Rirzq7S\npfy0OCEwxpiBdajQASFn3DPaiPsQGGPMwOKS4lB0XFFc6HMBBXMUdLk87kNgjDEvlT1TdjQp0wQr\nz67UfV2cEHwYt/2q4xip4xip0ztG7mo24oTAGGMG17h0Yxy5dQR3Ht/RdT3ch8AYY16g88rOqFWs\nFr5850uXyuE+BMYY83LuaDbihODDuO1XHcdIHcdInTti1Kh0Ixz79xhuP76t2zo4ITDGmBfI6pcV\nzcs2x4ozK3RbB/chMMaYl1gbvhbj9o/Dzu47nS6D+xAYY8wHNCzVECfunMCtR7d0Kd+wCUEI0VgI\ncU4IcUEIMcjT9fFG3ParjmOkjmOkzl0xyuqXFS3KttCt2ciQCUEIkRHAVACNAVQA0EkIUd6ztfI+\nx48f93QVDI9jpI5jpM6dMerwhn6jjQyZEABUA3CRiCKIKAlAMIAPPFwnr/PgwQNPV8HwOEbqOEbq\n3BmjBq81wOm7p3Ez5qbmZRs1IbwM4LrZ4xvKc4wxlq5l8cuCVR+uQu4suTUv20/zErXBw4c0EBER\n4ekqGB7HSB3HSJ27Y1SnRB1dyjXksFMhRHUA/yWixsrj7wGYiOh3s2WMV3HGGPMC1oadGjUh+AEI\nB1AfwC0A/wDoRERnPVoxxhjzYYZsMiKiZCFEbwCbAWQE8CcnA8YY05chjxAYY4y5n+ooIyFEFiHE\nTiGVEEKc1GLFQoj2QojTQogUIURVs+cbCCEOCyFOKH/r2lFWkBCircoyc4QQd+ytvxCinBBivxDi\niRBigNnzxYQQO5S6nxJC9DeLz2whxCV7yrdj/ebxqWL2fAkhRLwQ4phym2ZHWS/ERwjx2MJyWYUQ\nB4UQx4UQZ4QQI+0o22KclNcilP/jMSHEITfEyXw7+sgsRseU199UKcue7chfCLFcCHFWiVF1leU7\nCyHClDjsNa9D2m3S7Ls2XvlcWn3Xxij1DRNCrBRC5DF77Xvl5M9zQoiGdpRlT4z6CiFOKt+PvnaU\naStG5vE+K4Q4qsM2ZDE+LuyLLivb3JHU7UMIsV4IYXNYkBCiuhDigPLeM0KIocrzLYSDJ+cKIf4W\nQuRy5D0AACKyeQPQA8C3yv0SAE6qvceeG4ByAMoC2AGgitnzAQAKK/ffAHDDjrLmAmijskxtAJXt\nrT+AggDeBjAMwACz5wsDCFDu5wTwL4AxyuNAADE6x8fh/4Gl+AB4ZGXZ7MpfPwAHANRyJk7Ka1cA\n5LOwHekepzTLVARwQaPtaB6AHmYxyqOyfI3UZSBPtDxgbZtMjRGAMgC2avhdawAgg3J/FIBRyv0K\nAI4DyKRsVxdTl3M2RkqsTwLICtncuxVAKRdiZB7vngB+0mEbshYfl/ZFSrlhDtQjHEAl5b4AUN6F\nz9QLwH8cfZ895yF0ArAm7ZPKL9VdShY8IoSooTwfKIQIFUIsU7LuQkuFEtE5Ijpv4fnjRJQ6v+sZ\nANmEEJnsqKfFXnOzcncDiLajnNTl7xHRYQBJaZ6/TUTHlfuPITf6U8rLEQAyKb9qdImPC2zGx2y9\nccrdzJCfLUpleYtxsrBe8+0oAu6N00eQJzfaw2qclF+OtYlojrLuZCJ6aKswItpvtsxBAK+YvZZ2\nm+wEYA0RXVCWy6Cs19UYbSUik4U6fABgCRElEVEEZEKoZuvzpIbCxmvlABwkoidElAJgJ4A2tgqz\nFqO08QbwIYClyv0IaLcNWYyPBvui3QBKK3WJEELkU+7/pByR7RZCLBHPjqwLAritrJtI6TcVQnQX\nQkxR7gcJIaYJeVR+SfmM85QjirlmdVgLoKMddX2OzYQg5BQSFa184e4AaEBEVZUVTzZ7LQBAX8hf\nIK8JIWo6WjFFWwBHSJ6tbDhCiNcA5ANgPrHIE8hfPHrGp6RyWBkqhKhlT1UBjBFmTSiwcq6HECKD\nEOK4Uv8dRHTGwbqZIwDbhBCHAbyTZjtyR5xSdQCwxMn3misJ4J4QYq7SdPGHECK7A+//FMAGSy9Y\n+K6dBpBatpYx6mFWh6KQJ32m0uIE0FMAagsh8imxaQazJGgH8xg9F28ANdPUV49tyDw+5pzZF7UA\ncEK5L3/2C/EOZIJ8E0ATAFXx7Ls4AUC40mz1mRAii/l7zfgTUQ0A/SF3/KMhj2AqCSHeAgAiugOg\ngBAihwP1VT1CKADgkZXXMgOYLYQ4ASAEgPlcQ/8Q0S2Sxy7HIQ9HHSKEeAPy8O1zR9/rDkKInABW\nArijHCmkSoL8vHrF5xaAYkRUGcB/ACy2o62QAAwkosqpN1j5lUdEJiIKgPwS/58QItCBuqVVU1lX\nVwBZhRC1zV7TO04AACHEuwDiXExsqfwAVAEwjYiqAIgFMNjOetSF3NlYawtO+127CxkbQKMYCSF+\nAJBIRIttVNWlUSZEdA7A7wC2ANgI4BgAk803Patf2hg9jTfkzjMBz8db023IWnwc3Bc9/fEF2cT1\naZrXagJYTUSJyn5jnfI8iOg3yObXLZBHtZvM3peKlPcAMvneJqLTyuc7nebz3QFQzI46P2VPk5G1\nw8P+AP4lojchP0QWs9cSzO6nwMHhrUKIVyB3th8T0RU73+a24VLKYeMKAMsBxFlYhKBTfJQNKVq5\nfxTAJcg2Z9Vq27sOpeyHANZD1t0pRPSvcvc+5M4zbXOEbnEy0xGArR1gWra2oxuQ7ciHlMfLIXdY\nNgnZSfoHgJap/ztri1q573KMhBDdATQF0Nns6Zt4fofxivKcGpvfNSKaQ0RvE1EdAA8g28ZtshKj\ntPF+jBfjrck2ZCU+zuyLzH98NbLwQ4Rg/f8MIrpMRDMgz8F6K7WZKY1E5a8Jz38+E57/fAIO7hfV\nEkIkZMepJbmhtHdB/gLM6MiK03gaFCGEP+SOaBAR7X9uISHmK4dcNstwaMVC9BZCfG1P3ZTlBYA/\nIdsUR+LF+GSCbN/UKz4FlOaF1CarMgAuK49txUd9JbJsf+V+NshOsWPKY0fjlN3syCUOQC7IzsZU\nusZJqUMGAO2Rpv/A2e1IaU++LoQoqzz1PuSvMqvxEUIUh9yhdCGiizbqnva7VhDPvvguxUgI0Riy\ns/oDInpi9tJaAB2FEJmFECUht6V/lPc4/V0TQhRS/hYH0BpKQnY0RmniHQnAH0q8FZpsQ9bio8O+\niADsBdBCyBFlOSGb1FKbk5qZLVsWQDIc6Pe04CU838SmymZCUDqFTgkhXlee8sOzjDQNQDelvfl1\nyOz99K1pi0pbthCitRDiOoDqANYLITYqL/UGUArAULM27wLKa5Vg/RfMTCHEdeW218L6lgDYB6Cs\nsswnykvlIDe2tMsXVurXH8CPQohryj+wJoAuAOoCOAwghxCip/I2P8hfJ/t1jE8dAGHKIekyAJ8T\nUepUi7bio7pOAEUAbFfqfBDAOiL6W3nN0TgVBrBbKWs/gKvKDXBPnADg/wBcUzpMzTm9HQHoA2CR\nECIMsh14hPK8xfgA+AlAXgDTlW35H7O6P90mIXdsUWbftYqQv64BF2MEYApkstkqzIYqK79eQyB/\n3GwE8JXS9AC4FqPlQojTkAnnKyKKUZ53OEZQ4g3gKOQPi9R5nzXbhmAlPnB+X2RpHQQAygCMtZB9\nCxsgfySldqh3EUKEK9/t+QA6K/+P1Jul8i1+PiFEYQD3iSjWSh2t1Fx9+FJ3yAwJyFEJwWrv0eMG\n+StgqQ7lrgPg58L7zePzJYCbvhQfjpN74mMeI8gE8Q9/13xzGwKQQ/mbHcAhKMPYNa7jZwD6O/o+\n1TOVhRCZAWwDEAqgJYBuRBRm803pSJr4fAE51n6eRytlQBwndWYxygTZydyOv2vP+Mo2JIRYBDnq\nKSuAIDKbtFPDdfwN2QT2wgmoNt+nlhAYY4ylD0a9QA5jjDE344TAGGMMACcExhhjCk4IjDHGAHBC\nYIwxpuCEwBhjDADw/znVb9VoeRM1AAAAAElFTkSuQmCC\n", + "text": [ + "" + ] + } + ], + "prompt_number": 110 + } + ], + "metadata": {} + } + ] +} \ No newline at end of file From 9dce91da4c2eeacf4973eb5fa80c80f65bd28dd5 Mon Sep 17 00:00:00 2001 From: Dean Fitzgerald Date: Mon, 11 Apr 2016 14:26:40 -0400 Subject: [PATCH 2/2] Updated to Jupyter --- Cohort Data.ipynb | 6571 ++++++++++++++++++++------------------------- 1 file changed, 2904 insertions(+), 3667 deletions(-) diff --git a/Cohort Data.ipynb b/Cohort Data.ipynb index c1d082f..76448bc 100644 --- a/Cohort Data.ipynb +++ b/Cohort Data.ipynb @@ -1,3704 +1,2941 @@ { - "metadata": { - "name": "", - "signature": "sha256:ac628d6315785d46d69c9fffc37cd3da7e1757d4b11c5d7fcdc98b97108f040b" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import re\n", + "import matplotlib.pyplot as plt\n", + "import bokeh" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, { - "cells": [ + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "code", - "collapsed": false, - "input": [ - "import numpy as np\n", - "import pandas as pd\n", - "import re\n", - "import matplotlib.pyplot as plt" - ], - "language": "python", + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameLecture 1, Jan12Homework 1, Jan13Lecture 2, Jan 13Homework 2, Jan14Lecture 3, Jan 14Homework 3, Jan15Lecture 4, Jan 15Mystery Word, Jan 20Lecture 5, Jan 20...Blackjack2, Jan26Lecture 9, Jan26Random Art, Jan 27Lecture10, Jan27ChartingLecture11, Jan28PigSimLecture12, Jan29Traffic Sim ILecture13,Feb2
0 P01 3 4.0 3 4 4 5.0 5.0 5 4...NaN 4 5NaNNaNNaNNaNNaNNaNNaN
1 P02 4 3.5 3 5 4 4.5 4.5 5 5... 5 5 5NaNNaN 5 5 5NaNNaN
2 P03NaN 5.0 3 4 5 5.0 5.0 5 5... 6NaNNaN 5 5 5NaNNaNNaNNaN
3 P04 3 3.0 2 3 4 4.0 4.0 4 5...NaN 1 3 1 3 5 5 5 5NaN
4 P05NaN 3.0 3 3 3 4.0 4.0 4 5... 4 3 6NaNNaNNaNNaNNaNNaNNaN
\n", + "

5 rows × 25 columns

\n", + "
" + ], + "text/plain": [ + " Name Lecture 1, Jan12 Homework 1, Jan13 Lecture 2, Jan 13 \\\n", + "0 P01 3 4.0 3 \n", + "1 P02 4 3.5 3 \n", + "2 P03 NaN 5.0 3 \n", + "3 P04 3 3.0 2 \n", + "4 P05 NaN 3.0 3 \n", + "\n", + " Homework 2, Jan14 Lecture 3, Jan 14 Homework 3, Jan15 Lecture 4, Jan 15 \\\n", + "0 4 4 5.0 5.0 \n", + "1 5 4 4.5 4.5 \n", + "2 4 5 5.0 5.0 \n", + "3 3 4 4.0 4.0 \n", + "4 3 3 4.0 4.0 \n", + "\n", + " Mystery Word, Jan 20 Lecture 5, Jan 20 ... Blackjack2, Jan26 \\\n", + "0 5 4 ... NaN \n", + "1 5 5 ... 5 \n", + "2 5 5 ... 6 \n", + "3 4 5 ... NaN \n", + "4 4 5 ... 4 \n", + "\n", + " Lecture 9, Jan26 Random Art, Jan 27 Lecture10, Jan27 Charting \\\n", + "0 4 5 NaN NaN \n", + "1 5 5 NaN NaN \n", + "2 NaN NaN 5 5 \n", + "3 1 3 1 3 \n", + "4 3 6 NaN NaN \n", + "\n", + " Lecture11, Jan28 PigSim Lecture12, Jan29 Traffic Sim I Lecture13,Feb2 \n", + "0 NaN NaN NaN NaN NaN \n", + "1 5 5 5 NaN NaN \n", + "2 5 NaN NaN NaN NaN \n", + "3 5 5 5 5 NaN \n", + "4 NaN NaN NaN NaN NaN \n", + "\n", + "[5 rows x 25 columns]" + ] + }, + "execution_count": 3, "metadata": {}, - "outputs": [], - "prompt_number": 12 - }, + "output_type": "execute_result" + } + ], + "source": [ + "python_data = pd.read_csv(\"cohort_3_python.csv\")\n", + "python_data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "code", - "collapsed": false, - "input": [ - "%matplotlib inline" - ], - "language": "python", + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Lecture 1, Jan12Homework 1, Jan13Lecture 2, Jan 13Homework 2, Jan14Lecture 3, Jan 14Homework 3, Jan15Lecture 4, Jan 15Mystery Word, Jan 20Lecture 5, Jan 20Currency, Jan 21...Blackjack2, Jan26Lecture 9, Jan26Random Art, Jan 27Lecture10, Jan27ChartingLecture11, Jan28PigSimLecture12, Jan29Traffic Sim ILecture13,Feb2
Name
P01 3 4.0 3 4 4 5.0 5.0 5 4 4...NaN 4 5NaNNaNNaNNaNNaNNaNNaN
P02 4 3.5 3 5 4 4.5 4.5 5 5 5... 5 5 5NaNNaN 5 5 5NaNNaN
P03NaN 5.0 3 4 5 5.0 5.0 5 5 5... 6NaNNaN 5 5 5NaNNaNNaNNaN
P04 3 3.0 2 3 4 4.0 4.0 4 5NaN...NaN 1 3 1 3 5 5 5 5NaN
P05NaN 3.0 3 3 3 4.0 4.0 4 5 4... 4 3 6NaNNaNNaNNaNNaNNaNNaN
\n", + "

5 rows × 24 columns

\n", + "
" + ], + "text/plain": [ + " Lecture 1, Jan12 Homework 1, Jan13 Lecture 2, Jan 13 \\\n", + "Name \n", + "P01 3 4.0 3 \n", + "P02 4 3.5 3 \n", + "P03 NaN 5.0 3 \n", + "P04 3 3.0 2 \n", + "P05 NaN 3.0 3 \n", + "\n", + " Homework 2, Jan14 Lecture 3, Jan 14 Homework 3, Jan15 \\\n", + "Name \n", + "P01 4 4 5.0 \n", + "P02 5 4 4.5 \n", + "P03 4 5 5.0 \n", + "P04 3 4 4.0 \n", + "P05 3 3 4.0 \n", + "\n", + " Lecture 4, Jan 15 Mystery Word, Jan 20 Lecture 5, Jan 20 \\\n", + "Name \n", + "P01 5.0 5 4 \n", + "P02 4.5 5 5 \n", + "P03 5.0 5 5 \n", + "P04 4.0 4 5 \n", + "P05 4.0 4 5 \n", + "\n", + " Currency, Jan 21 ... Blackjack2, Jan26 Lecture 9, Jan26 \\\n", + "Name ... \n", + "P01 4 ... NaN 4 \n", + "P02 5 ... 5 5 \n", + "P03 5 ... 6 NaN \n", + "P04 NaN ... NaN 1 \n", + "P05 4 ... 4 3 \n", + "\n", + " Random Art, Jan 27 Lecture10, Jan27 Charting Lecture11, Jan28 \\\n", + "Name \n", + "P01 5 NaN NaN NaN \n", + "P02 5 NaN NaN 5 \n", + "P03 NaN 5 5 5 \n", + "P04 3 1 3 5 \n", + "P05 6 NaN NaN NaN \n", + "\n", + " PigSim Lecture12, Jan29 Traffic Sim I Lecture13,Feb2 \n", + "Name \n", + "P01 NaN NaN NaN NaN \n", + "P02 5 5 NaN NaN \n", + "P03 NaN NaN NaN NaN \n", + "P04 5 5 5 NaN \n", + "P05 NaN NaN NaN NaN \n", + "\n", + "[5 rows x 24 columns]" + ] + }, + "execution_count": 4, "metadata": {}, - "outputs": [], - "prompt_number": 13 - }, + "output_type": "execute_result" + } + ], + "source": [ + "python_data.index = python_data.pop(\"Name\")\n", + "python_data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "code", - "collapsed": false, - "input": [ - "python_data = pd.read_csv(\"cohort_3_python.csv\")\n", - "python_data" - ], - "language": "python", + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Lecture 1, Jan12Homework 1, Jan13Lecture 2, Jan 13Homework 2, Jan14Lecture 3, Jan 14Homework 3, Jan15Lecture 4, Jan 15Mystery Word, Jan 20Lecture 5, Jan 20Currency, Jan 21...Blackjack2, Jan26Lecture 9, Jan26Random Art, Jan 27Lecture10, Jan27ChartingLecture11, Jan28PigSimLecture12, Jan29Traffic Sim ILecture13,Feb2
Name
P15 2.000000 2.000000 2.000000 2.0 3.000000 3.000000 3.000000 3.000000 3 3.000000... 3.000000 3.000000 4.000000 3.00 3.000000 3.0 3.000000 3.0000 5NaN
NaN NaN NaN NaN NaN NaN NaN NaN NaNNaN NaN... NaN NaN NaN NaN NaN NaN NaN NaNNaNNaN
Average 2.791667 3.266667 2.733333 3.2 3.821429 3.766667 3.933333 4.071429 4 3.769231... 4.416667 3.769231 4.285714 3.69 4.555556 4.4 4.333333 4.6125NaNNaN
Min 2.000000 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 3.000000 3 2.000000... 3.000000 1.000000 2.000000 1.00 3.000000 3.0 3.000000 3.0000NaNNaN
Max 4.000000 5.000000 4.000000 5.0 5.000000 5.000000 5.000000 5.000000 5 5.000000... 6.000000 5.000000 6.000000 5.00 6.000000 5.0 5.000000 6.0000NaNNaN
\n", + "

5 rows × 24 columns

\n", + "
" + ], + "text/plain": [ + " Lecture 1, Jan12 Homework 1, Jan13 Lecture 2, Jan 13 \\\n", + "Name \n", + "P15 2.000000 2.000000 2.000000 \n", + "NaN NaN NaN NaN \n", + "Average 2.791667 3.266667 2.733333 \n", + "Min 2.000000 1.000000 1.000000 \n", + "Max 4.000000 5.000000 4.000000 \n", + "\n", + " Homework 2, Jan14 Lecture 3, Jan 14 Homework 3, Jan15 \\\n", + "Name \n", + "P15 2.0 3.000000 3.000000 \n", + "NaN NaN NaN NaN \n", + "Average 3.2 3.821429 3.766667 \n", + "Min 1.0 2.000000 2.000000 \n", + "Max 5.0 5.000000 5.000000 \n", + "\n", + " Lecture 4, Jan 15 Mystery Word, Jan 20 Lecture 5, Jan 20 \\\n", + "Name \n", + "P15 3.000000 3.000000 3 \n", + "NaN NaN NaN NaN \n", + "Average 3.933333 4.071429 4 \n", + "Min 2.000000 3.000000 3 \n", + "Max 5.000000 5.000000 5 \n", + "\n", + " Currency, Jan 21 ... Blackjack2, Jan26 \\\n", + "Name ... \n", + "P15 3.000000 ... 3.000000 \n", + "NaN NaN ... NaN \n", + "Average 3.769231 ... 4.416667 \n", + "Min 2.000000 ... 3.000000 \n", + "Max 5.000000 ... 6.000000 \n", + "\n", + " Lecture 9, Jan26 Random Art, Jan 27 Lecture10, Jan27 Charting \\\n", + "Name \n", + "P15 3.000000 4.000000 3.00 3.000000 \n", + "NaN NaN NaN NaN NaN \n", + "Average 3.769231 4.285714 3.69 4.555556 \n", + "Min 1.000000 2.000000 1.00 3.000000 \n", + "Max 5.000000 6.000000 5.00 6.000000 \n", + "\n", + " Lecture11, Jan28 PigSim Lecture12, Jan29 Traffic Sim I \\\n", + "Name \n", + "P15 3.0 3.000000 3.0000 5 \n", + "NaN NaN NaN NaN NaN \n", + "Average 4.4 4.333333 4.6125 NaN \n", + "Min 3.0 3.000000 3.0000 NaN \n", + "Max 5.0 5.000000 6.0000 NaN \n", + "\n", + " Lecture13,Feb2 \n", + "Name \n", + "P15 NaN \n", + "NaN NaN \n", + "Average NaN \n", + "Min NaN \n", + "Max NaN \n", + "\n", + "[5 rows x 24 columns]" + ] + }, + "execution_count": 5, "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
NameLecture 1, Jan12Homework 1, Jan13Lecture 2, Jan 13Homework 2, Jan14Lecture 3, Jan 14Homework 3, Jan15Lecture 4, Jan 15Mystery Word, Jan 20Lecture 5, Jan 20...Blackjack2, Jan26Lecture 9, Jan26Random Art, Jan 27Lecture10, Jan27ChartingLecture11, Jan28PigSimLecture12, Jan29Traffic Sim ILecture13,Feb2
0 P01 3.000000 4.000000 3.000000 4.0 4.000000 5.000000 5.000000 5.000000 4... NaN 4.000000 5.000000 NaN NaN NaN NaN NaN NaNNaN
1 P02 4.000000 3.500000 3.000000 5.0 4.000000 4.500000 4.500000 5.000000 5... 5.000000 5.000000 5.000000 NaN NaN 5.0 5.000000 5.0000 NaNNaN
2 P03 NaN 5.000000 3.000000 4.0 5.000000 5.000000 5.000000 5.000000 5... 6.000000 NaN NaN 5.00 5.000000 5.0 NaN NaN NaNNaN
3 P04 3.000000 3.000000 2.000000 3.0 4.000000 4.000000 4.000000 4.000000 5... NaN 1.000000 3.000000 1.00 3.000000 5.0 5.000000 5.0000 5.0NaN
4 P05 NaN 3.000000 3.000000 3.0 3.000000 4.000000 4.000000 4.000000 5... 4.000000 3.000000 6.000000 NaN NaN NaN NaN NaN NaNNaN
5 P06 3.000000 3.500000 3.000000 3.0 3.000000 3.000000 4.000000 4.000000 3... 5.000000 4.000000 5.000000 3.00 4.000000 4.0 4.000000 NaN NaNNaN
6 P07 3.500000 4.000000 3.000000 4.0 5.000000 4.000000 4.500000 4.000000 5... NaN 5.000000 4.000000 4.90 5.000000 4.0 4.000000 4.9000 4.9NaN
7 P08 2.000000 3.000000 2.000000 3.0 4.000000 4.000000 3.000000 4.000000 3... 5.000000 5.000000 5.000000 5.00 5.000000 4.0 4.000000 4.0000 5.0 5
8 P09 NaN 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 3.000000 3... 3.000000 3.000000 2.000000 NaN NaN NaN NaN NaN NaNNaN
9 P10 2.000000 2.000000 2.000000 3.0 NaN 3.000000 3.000000 3.000000 3... 5.000000 4.000000 5.000000 4.00 5.000000 4.0 5.000000 4.0000 NaNNaN
10 P11 2.000000 5.000000 4.000000 3.0 5.000000 4.000000 4.000000 4.000000 4... 4.000000 4.000000 4.000000 4.00 5.000000 5.0 4.000000 5.0000 5.0NaN
11 P12 3.500000 4.000000 4.000000 4.0 4.500000 5.000000 5.000000 5.000000 5... 5.000000 4.000000 4.000000 4.00 6.000000 5.0 5.000000 6.0000 NaNNaN
12 P13 2.500000 3.000000 3.000000 3.0 3.000000 3.000000 4.000000 NaN 3... 4.000000 NaN 5.000000 3.00 NaN NaN NaN NaN NaNNaN
13 P14 3.000000 3.000000 3.000000 3.0 4.000000 3.000000 4.000000 4.000000 4... 4.000000 4.000000 3.000000 NaN NaN NaN NaN NaN NaNNaN
14 P15 2.000000 2.000000 2.000000 2.0 3.000000 3.000000 3.000000 3.000000 3... 3.000000 3.000000 4.000000 3.00 3.000000 3.0 3.000000 3.0000 5.0NaN
15 NaN NaN NaN NaN NaN NaN NaN NaN NaNNaN... NaN NaN NaN NaN NaN NaN NaN NaN NaNNaN
16 Average 2.791667 3.266667 2.733333 3.2 3.821429 3.766667 3.933333 4.071429 4... 4.416667 3.769231 4.285714 3.69 4.555556 4.4 4.333333 4.6125 NaNNaN
17 Min 2.000000 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 3.000000 3... 3.000000 1.000000 2.000000 1.00 3.000000 3.0 3.000000 3.0000 NaNNaN
18 Max 4.000000 5.000000 4.000000 5.0 5.000000 5.000000 5.000000 5.000000 5... 6.000000 5.000000 6.000000 5.00 6.000000 5.0 5.000000 6.0000 NaNNaN
\n", - "

19 rows \u00d7 25 columns

\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 14, - "text": [ - " Name Lecture 1, Jan12 Homework 1, Jan13 Lecture 2, Jan 13 \\\n", - "0 P01 3.000000 4.000000 3.000000 \n", - "1 P02 4.000000 3.500000 3.000000 \n", - "2 P03 NaN 5.000000 3.000000 \n", - "3 P04 3.000000 3.000000 2.000000 \n", - "4 P05 NaN 3.000000 3.000000 \n", - "5 P06 3.000000 3.500000 3.000000 \n", - "6 P07 3.500000 4.000000 3.000000 \n", - "7 P08 2.000000 3.000000 2.000000 \n", - "8 P09 NaN 1.000000 1.000000 \n", - "9 P10 2.000000 2.000000 2.000000 \n", - "10 P11 2.000000 5.000000 4.000000 \n", - "11 P12 3.500000 4.000000 4.000000 \n", - "12 P13 2.500000 3.000000 3.000000 \n", - "13 P14 3.000000 3.000000 3.000000 \n", - "14 P15 2.000000 2.000000 2.000000 \n", - "15 NaN NaN NaN NaN \n", - "16 Average 2.791667 3.266667 2.733333 \n", - "17 Min 2.000000 1.000000 1.000000 \n", - "18 Max 4.000000 5.000000 4.000000 \n", - "\n", - " Homework 2, Jan14 Lecture 3, Jan 14 Homework 3, Jan15 \\\n", - "0 4.0 4.000000 5.000000 \n", - "1 5.0 4.000000 4.500000 \n", - "2 4.0 5.000000 5.000000 \n", - "3 3.0 4.000000 4.000000 \n", - "4 3.0 3.000000 4.000000 \n", - "5 3.0 3.000000 3.000000 \n", - "6 4.0 5.000000 4.000000 \n", - "7 3.0 4.000000 4.000000 \n", - "8 1.0 2.000000 2.000000 \n", - "9 3.0 NaN 3.000000 \n", - "10 3.0 5.000000 4.000000 \n", - "11 4.0 4.500000 5.000000 \n", - "12 3.0 3.000000 3.000000 \n", - "13 3.0 4.000000 3.000000 \n", - "14 2.0 3.000000 3.000000 \n", - "15 NaN NaN NaN \n", - "16 3.2 3.821429 3.766667 \n", - "17 1.0 2.000000 2.000000 \n", - "18 5.0 5.000000 5.000000 \n", - "\n", - " Lecture 4, Jan 15 Mystery Word, Jan 20 Lecture 5, Jan 20 \\\n", - "0 5.000000 5.000000 4 \n", - "1 4.500000 5.000000 5 \n", - "2 5.000000 5.000000 5 \n", - "3 4.000000 4.000000 5 \n", - "4 4.000000 4.000000 5 \n", - "5 4.000000 4.000000 3 \n", - "6 4.500000 4.000000 5 \n", - "7 3.000000 4.000000 3 \n", - "8 2.000000 3.000000 3 \n", - "9 3.000000 3.000000 3 \n", - "10 4.000000 4.000000 4 \n", - "11 5.000000 5.000000 5 \n", - "12 4.000000 NaN 3 \n", - "13 4.000000 4.000000 4 \n", - "14 3.000000 3.000000 3 \n", - "15 NaN NaN NaN \n", - "16 3.933333 4.071429 4 \n", - "17 2.000000 3.000000 3 \n", - "18 5.000000 5.000000 5 \n", - "\n", - " ... Blackjack2, Jan26 Lecture 9, Jan26 Random Art, Jan 27 \\\n", - "0 ... NaN 4.000000 5.000000 \n", - "1 ... 5.000000 5.000000 5.000000 \n", - "2 ... 6.000000 NaN NaN \n", - "3 ... NaN 1.000000 3.000000 \n", - "4 ... 4.000000 3.000000 6.000000 \n", - "5 ... 5.000000 4.000000 5.000000 \n", - "6 ... NaN 5.000000 4.000000 \n", - "7 ... 5.000000 5.000000 5.000000 \n", - "8 ... 3.000000 3.000000 2.000000 \n", - "9 ... 5.000000 4.000000 5.000000 \n", - "10 ... 4.000000 4.000000 4.000000 \n", - "11 ... 5.000000 4.000000 4.000000 \n", - "12 ... 4.000000 NaN 5.000000 \n", - "13 ... 4.000000 4.000000 3.000000 \n", - "14 ... 3.000000 3.000000 4.000000 \n", - "15 ... NaN NaN NaN \n", - "16 ... 4.416667 3.769231 4.285714 \n", - "17 ... 3.000000 1.000000 2.000000 \n", - "18 ... 6.000000 5.000000 6.000000 \n", - "\n", - " Lecture10, Jan27 Charting Lecture11, Jan28 PigSim Lecture12, Jan29 \\\n", - "0 NaN NaN NaN NaN NaN \n", - "1 NaN NaN 5.0 5.000000 5.0000 \n", - "2 5.00 5.000000 5.0 NaN NaN \n", - "3 1.00 3.000000 5.0 5.000000 5.0000 \n", - "4 NaN NaN NaN NaN NaN \n", - "5 3.00 4.000000 4.0 4.000000 NaN \n", - "6 4.90 5.000000 4.0 4.000000 4.9000 \n", - "7 5.00 5.000000 4.0 4.000000 4.0000 \n", - "8 NaN NaN NaN NaN NaN \n", - "9 4.00 5.000000 4.0 5.000000 4.0000 \n", - "10 4.00 5.000000 5.0 4.000000 5.0000 \n", - "11 4.00 6.000000 5.0 5.000000 6.0000 \n", - "12 3.00 NaN NaN NaN NaN \n", - "13 NaN NaN NaN NaN NaN \n", - "14 3.00 3.000000 3.0 3.000000 3.0000 \n", - "15 NaN NaN NaN NaN NaN \n", - "16 3.69 4.555556 4.4 4.333333 4.6125 \n", - "17 1.00 3.000000 3.0 3.000000 3.0000 \n", - "18 5.00 6.000000 5.0 5.000000 6.0000 \n", - "\n", - " Traffic Sim I Lecture13,Feb2 \n", - "0 NaN NaN \n", - "1 NaN NaN \n", - "2 NaN NaN \n", - "3 5.0 NaN \n", - "4 NaN NaN \n", - "5 NaN NaN \n", - "6 4.9 NaN \n", - "7 5.0 5 \n", - "8 NaN NaN \n", - "9 NaN NaN \n", - "10 5.0 NaN \n", - "11 NaN NaN \n", - "12 NaN NaN \n", - "13 NaN NaN \n", - "14 5.0 NaN \n", - "15 NaN NaN \n", - "16 NaN NaN \n", - "17 NaN NaN \n", - "18 NaN NaN \n", - "\n", - "[19 rows x 25 columns]" - ] - } - ], - "prompt_number": 14 - }, + "output_type": "execute_result" + } + ], + "source": [ + "python_data.tail()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "python_data = python_data.dropna(how=\"all\")\n", + "\n", + "pydata = python_data" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "code", - "collapsed": false, - "input": [ - "python_data.index = python_data.pop(\"Name\")\n", - "python_data.head()" - ], - "language": "python", + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
L 1, 12H 1, 13L 2, 13H 2, 14L 3, 14H 3, 15L 4, 15Mystery Word, 20L 5, 20Currency, 21...Blackjack2, 26L 9, 26Random Art, 27L10, 27ChartingL11, 28PigSimL12, 29Traffic Sim IL13,Feb2
Name
P01 3.000000 4.000000 3.000000 4.0 4.000000 5.000000 5.000000 5.000000 4 4.000000... NaN 4.000000 5.000000 NaN NaN NaN NaN NaN NaNNaN
P02 4.000000 3.500000 3.000000 5.0 4.000000 4.500000 4.500000 5.000000 5 5.000000... 5.000000 5.000000 5.000000 NaN NaN 5.0 5.000000 5.0000 NaNNaN
P03 NaN 5.000000 3.000000 4.0 5.000000 5.000000 5.000000 5.000000 5 5.000000... 6.000000 NaN NaN 5.00 5.000000 5.0 NaN NaN NaNNaN
P04 3.000000 3.000000 2.000000 3.0 4.000000 4.000000 4.000000 4.000000 5 NaN... NaN 1.000000 3.000000 1.00 3.000000 5.0 5.000000 5.0000 5.0NaN
P05 NaN 3.000000 3.000000 3.0 3.000000 4.000000 4.000000 4.000000 5 4.000000... 4.000000 3.000000 6.000000 NaN NaN NaN NaN NaN NaNNaN
P06 3.000000 3.500000 3.000000 3.0 3.000000 3.000000 4.000000 4.000000 3 3.000000... 5.000000 4.000000 5.000000 3.00 4.000000 4.0 4.000000 NaN NaNNaN
P07 3.500000 4.000000 3.000000 4.0 5.000000 4.000000 4.500000 4.000000 5 5.000000... NaN 5.000000 4.000000 4.90 5.000000 4.0 4.000000 4.9000 4.9NaN
P08 2.000000 3.000000 2.000000 3.0 4.000000 4.000000 3.000000 4.000000 3 3.000000... 5.000000 5.000000 5.000000 5.00 5.000000 4.0 4.000000 4.0000 5.0 5
P09 NaN 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 3.000000 3 2.000000... 3.000000 3.000000 2.000000 NaN NaN NaN NaN NaN NaNNaN
P10 2.000000 2.000000 2.000000 3.0 NaN 3.000000 3.000000 3.000000 3 4.000000... 5.000000 4.000000 5.000000 4.00 5.000000 4.0 5.000000 4.0000 NaNNaN
P11 2.000000 5.000000 4.000000 3.0 5.000000 4.000000 4.000000 4.000000 4 NaN... 4.000000 4.000000 4.000000 4.00 5.000000 5.0 4.000000 5.0000 5.0NaN
P12 3.500000 4.000000 4.000000 4.0 4.500000 5.000000 5.000000 5.000000 5 4.000000... 5.000000 4.000000 4.000000 4.00 6.000000 5.0 5.000000 6.0000 NaNNaN
P13 2.500000 3.000000 3.000000 3.0 3.000000 3.000000 4.000000 NaN 3 3.000000... 4.000000 NaN 5.000000 3.00 NaN NaN NaN NaN NaNNaN
P14 3.000000 3.000000 3.000000 3.0 4.000000 3.000000 4.000000 4.000000 4 4.000000... 4.000000 4.000000 3.000000 NaN NaN NaN NaN NaN NaNNaN
P15 2.000000 2.000000 2.000000 2.0 3.000000 3.000000 3.000000 3.000000 3 3.000000... 3.000000 3.000000 4.000000 3.00 3.000000 3.0 3.000000 3.0000 5.0NaN
Average 2.791667 3.266667 2.733333 3.2 3.821429 3.766667 3.933333 4.071429 4 3.769231... 4.416667 3.769231 4.285714 3.69 4.555556 4.4 4.333333 4.6125 NaNNaN
Min 2.000000 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 3.000000 3 2.000000... 3.000000 1.000000 2.000000 1.00 3.000000 3.0 3.000000 3.0000 NaNNaN
Max 4.000000 5.000000 4.000000 5.0 5.000000 5.000000 5.000000 5.000000 5 5.000000... 6.000000 5.000000 6.000000 5.00 6.000000 5.0 5.000000 6.0000 NaNNaN
\n", + "

18 rows × 24 columns

\n", + "
" + ], + "text/plain": [ + " L 1, 12 H 1, 13 L 2, 13 H 2, 14 L 3, 14 H 3, 15 L 4, 15 \\\n", + "Name \n", + "P01 3.000000 4.000000 3.000000 4.0 4.000000 5.000000 5.000000 \n", + "P02 4.000000 3.500000 3.000000 5.0 4.000000 4.500000 4.500000 \n", + "P03 NaN 5.000000 3.000000 4.0 5.000000 5.000000 5.000000 \n", + "P04 3.000000 3.000000 2.000000 3.0 4.000000 4.000000 4.000000 \n", + "P05 NaN 3.000000 3.000000 3.0 3.000000 4.000000 4.000000 \n", + "P06 3.000000 3.500000 3.000000 3.0 3.000000 3.000000 4.000000 \n", + "P07 3.500000 4.000000 3.000000 4.0 5.000000 4.000000 4.500000 \n", + "P08 2.000000 3.000000 2.000000 3.0 4.000000 4.000000 3.000000 \n", + "P09 NaN 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 \n", + "P10 2.000000 2.000000 2.000000 3.0 NaN 3.000000 3.000000 \n", + "P11 2.000000 5.000000 4.000000 3.0 5.000000 4.000000 4.000000 \n", + "P12 3.500000 4.000000 4.000000 4.0 4.500000 5.000000 5.000000 \n", + "P13 2.500000 3.000000 3.000000 3.0 3.000000 3.000000 4.000000 \n", + "P14 3.000000 3.000000 3.000000 3.0 4.000000 3.000000 4.000000 \n", + "P15 2.000000 2.000000 2.000000 2.0 3.000000 3.000000 3.000000 \n", + "Average 2.791667 3.266667 2.733333 3.2 3.821429 3.766667 3.933333 \n", + "Min 2.000000 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 \n", + "Max 4.000000 5.000000 4.000000 5.0 5.000000 5.000000 5.000000 \n", + "\n", + " Mystery Word, 20 L 5, 20 Currency, 21 ... Blackjack2, 26 \\\n", + "Name ... \n", + "P01 5.000000 4 4.000000 ... NaN \n", + "P02 5.000000 5 5.000000 ... 5.000000 \n", + "P03 5.000000 5 5.000000 ... 6.000000 \n", + "P04 4.000000 5 NaN ... NaN \n", + "P05 4.000000 5 4.000000 ... 4.000000 \n", + "P06 4.000000 3 3.000000 ... 5.000000 \n", + "P07 4.000000 5 5.000000 ... NaN \n", + "P08 4.000000 3 3.000000 ... 5.000000 \n", + "P09 3.000000 3 2.000000 ... 3.000000 \n", + "P10 3.000000 3 4.000000 ... 5.000000 \n", + "P11 4.000000 4 NaN ... 4.000000 \n", + "P12 5.000000 5 4.000000 ... 5.000000 \n", + "P13 NaN 3 3.000000 ... 4.000000 \n", + "P14 4.000000 4 4.000000 ... 4.000000 \n", + "P15 3.000000 3 3.000000 ... 3.000000 \n", + "Average 4.071429 4 3.769231 ... 4.416667 \n", + "Min 3.000000 3 2.000000 ... 3.000000 \n", + "Max 5.000000 5 5.000000 ... 6.000000 \n", + "\n", + " L 9, 26 Random Art, 27 L10, 27 Charting L11, 28 PigSim \\\n", + "Name \n", + "P01 4.000000 5.000000 NaN NaN NaN NaN \n", + "P02 5.000000 5.000000 NaN NaN 5.0 5.000000 \n", + "P03 NaN NaN 5.00 5.000000 5.0 NaN \n", + "P04 1.000000 3.000000 1.00 3.000000 5.0 5.000000 \n", + "P05 3.000000 6.000000 NaN NaN NaN NaN \n", + "P06 4.000000 5.000000 3.00 4.000000 4.0 4.000000 \n", + "P07 5.000000 4.000000 4.90 5.000000 4.0 4.000000 \n", + "P08 5.000000 5.000000 5.00 5.000000 4.0 4.000000 \n", + "P09 3.000000 2.000000 NaN NaN NaN NaN \n", + "P10 4.000000 5.000000 4.00 5.000000 4.0 5.000000 \n", + "P11 4.000000 4.000000 4.00 5.000000 5.0 4.000000 \n", + "P12 4.000000 4.000000 4.00 6.000000 5.0 5.000000 \n", + "P13 NaN 5.000000 3.00 NaN NaN NaN \n", + "P14 4.000000 3.000000 NaN NaN NaN NaN \n", + "P15 3.000000 4.000000 3.00 3.000000 3.0 3.000000 \n", + "Average 3.769231 4.285714 3.69 4.555556 4.4 4.333333 \n", + "Min 1.000000 2.000000 1.00 3.000000 3.0 3.000000 \n", + "Max 5.000000 6.000000 5.00 6.000000 5.0 5.000000 \n", + "\n", + " L12, 29 Traffic Sim I L13,Feb2 \n", + "Name \n", + "P01 NaN NaN NaN \n", + "P02 5.0000 NaN NaN \n", + "P03 NaN NaN NaN \n", + "P04 5.0000 5.0 NaN \n", + "P05 NaN NaN NaN \n", + "P06 NaN NaN NaN \n", + "P07 4.9000 4.9 NaN \n", + "P08 4.0000 5.0 5 \n", + "P09 NaN NaN NaN \n", + "P10 4.0000 NaN NaN \n", + "P11 5.0000 5.0 NaN \n", + "P12 6.0000 NaN NaN \n", + "P13 NaN NaN NaN \n", + "P14 NaN NaN NaN \n", + "P15 3.0000 5.0 NaN \n", + "Average 4.6125 NaN NaN \n", + "Min 3.0000 NaN NaN \n", + "Max 6.0000 NaN NaN \n", + "\n", + "[18 rows x 24 columns]" + ] + }, + "execution_count": 7, "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Lecture 1, Jan12Homework 1, Jan13Lecture 2, Jan 13Homework 2, Jan14Lecture 3, Jan 14Homework 3, Jan15Lecture 4, Jan 15Mystery Word, Jan 20Lecture 5, Jan 20Currency, Jan 21...Blackjack2, Jan26Lecture 9, Jan26Random Art, Jan 27Lecture10, Jan27ChartingLecture11, Jan28PigSimLecture12, Jan29Traffic Sim ILecture13,Feb2
Name
P01 3 4.0 3 4 4 5.0 5.0 5 4 4...NaN 4 5NaNNaNNaNNaNNaNNaNNaN
P02 4 3.5 3 5 4 4.5 4.5 5 5 5... 5 5 5NaNNaN 5 5 5NaNNaN
P03NaN 5.0 3 4 5 5.0 5.0 5 5 5... 6NaNNaN 5 5 5NaNNaNNaNNaN
P04 3 3.0 2 3 4 4.0 4.0 4 5NaN...NaN 1 3 1 3 5 5 5 5NaN
P05NaN 3.0 3 3 3 4.0 4.0 4 5 4... 4 3 6NaNNaNNaNNaNNaNNaNNaN
\n", - "

5 rows \u00d7 24 columns

\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 15, - "text": [ - " Lecture 1, Jan12 Homework 1, Jan13 Lecture 2, Jan 13 \\\n", - "Name \n", - "P01 3 4.0 3 \n", - "P02 4 3.5 3 \n", - "P03 NaN 5.0 3 \n", - "P04 3 3.0 2 \n", - "P05 NaN 3.0 3 \n", - "\n", - " Homework 2, Jan14 Lecture 3, Jan 14 Homework 3, Jan15 \\\n", - "Name \n", - "P01 4 4 5.0 \n", - "P02 5 4 4.5 \n", - "P03 4 5 5.0 \n", - "P04 3 4 4.0 \n", - "P05 3 3 4.0 \n", - "\n", - " Lecture 4, Jan 15 Mystery Word, Jan 20 Lecture 5, Jan 20 \\\n", - "Name \n", - "P01 5.0 5 4 \n", - "P02 4.5 5 5 \n", - "P03 5.0 5 5 \n", - "P04 4.0 4 5 \n", - "P05 4.0 4 5 \n", - "\n", - " Currency, Jan 21 ... Blackjack2, Jan26 Lecture 9, Jan26 \\\n", - "Name ... \n", - "P01 4 ... NaN 4 \n", - "P02 5 ... 5 5 \n", - "P03 5 ... 6 NaN \n", - "P04 NaN ... NaN 1 \n", - "P05 4 ... 4 3 \n", - "\n", - " Random Art, Jan 27 Lecture10, Jan27 Charting Lecture11, Jan28 \\\n", - "Name \n", - "P01 5 NaN NaN NaN \n", - "P02 5 NaN NaN 5 \n", - "P03 NaN 5 5 5 \n", - "P04 3 1 3 5 \n", - "P05 6 NaN NaN NaN \n", - "\n", - " PigSim Lecture12, Jan29 Traffic Sim I Lecture13,Feb2 \n", - "Name \n", - "P01 NaN NaN NaN NaN \n", - "P02 5 5 NaN NaN \n", - "P03 NaN NaN NaN NaN \n", - "P04 5 5 5 NaN \n", - "P05 NaN NaN NaN NaN \n", - "\n", - "[5 rows x 24 columns]" - ] - } - ], - "prompt_number": 15 - }, + "output_type": "execute_result" + } + ], + "source": [ + "pydata = pydata.rename(columns=lambda x: x.replace('Jan', ''))\n", + "pydata = pydata.rename(columns=lambda x: x.replace('Lecture', 'L'))\n", + "pydata = pydata.rename(columns=lambda x: x.replace('Homework', 'H'))\n", + "pydata = pydata.rename(columns=lambda x: x.replace((r\"[0-9]\"), \" \" ))\n", + "pydata\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "code", - "collapsed": false, - "input": [ - "python_data.tail()" - ], - "language": "python", + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Jan 12Jan 13Jan 14Jan 15Jan 16Jan 17...Jan 19Jan 20Jan 21Jan 22Jan 23Jan 24
L 1, 12H 1, 13L 2, 13H 2, 14L 3, 14H 3, 15L 4, 15Mystery Word, 20L 5, 20Currency, 21...Blackjack2, 26L 9, 26Random Art, 27L10, 27ChartingL11, 28PigSimL12, 29Traffic Sim IL13,Feb2
Name
P01 3.000000 4.000000 3.000000 4.0 4.000000 5.000000 5.000000 5.000000 4 4.000000... NaN 4.000000 5.000000 NaN NaN NaN NaN NaN NaNNaN
P02 4.000000 3.500000 3.000000 5.0 4.000000 4.500000 4.500000 5.000000 5 5.000000... 5.000000 5.000000 5.000000 NaN NaN 5.0 5.000000 5.0000 NaNNaN
P03 NaN 5.000000 3.000000 4.0 5.000000 5.000000 5.000000 5.000000 5 5.000000... 6.000000 NaN NaN 5.00 5.000000 5.0 NaN NaN NaNNaN
P04 3.000000 3.000000 2.000000 3.0 4.000000 4.000000 4.000000 4.000000 5 NaN... NaN 1.000000 3.000000 1.00 3.000000 5.0 5.000000 5.0000 5.0NaN
P05 NaN 3.000000 3.000000 3.0 3.000000 4.000000 4.000000 4.000000 5 4.000000... 4.000000 3.000000 6.000000 NaN NaN NaN NaN NaN NaNNaN
P06 3.000000 3.500000 3.000000 3.0 3.000000 3.000000 4.000000 4.000000 3 3.000000... 5.000000 4.000000 5.000000 3.00 4.000000 4.0 4.000000 NaN NaNNaN
P07 3.500000 4.000000 3.000000 4.0 5.000000 4.000000 4.500000 4.000000 5 5.000000... NaN 5.000000 4.000000 4.90 5.000000 4.0 4.000000 4.9000 4.9NaN
P08 2.000000 3.000000 2.000000 3.0 4.000000 4.000000 3.000000 4.000000 3 3.000000... 5.000000 5.000000 5.000000 5.00 5.000000 4.0 4.000000 4.0000 5.0 5
P09 NaN 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 3.000000 3 2.000000... 3.000000 3.000000 2.000000 NaN NaN NaN NaN NaN NaNNaN
P10 2.000000 2.000000 2.000000 3.0 NaN 3.000000 3.000000 3.000000 3 4.000000... 5.000000 4.000000 5.000000 4.00 5.000000 4.0 5.000000 4.0000 NaNNaN
P11 2.000000 5.000000 4.000000 3.0 5.000000 4.000000 4.000000 4.000000 4 NaN... 4.000000 4.000000 4.000000 4.00 5.000000 5.0 4.000000 5.0000 5.0NaN
P12 3.500000 4.000000 4.000000 4.0 4.500000 5.000000 5.000000 5.000000 5 4.000000... 5.000000 4.000000 4.000000 4.00 6.000000 5.0 5.000000 6.0000 NaNNaN
P13 2.500000 3.000000 3.000000 3.0 3.000000 3.000000 4.000000 NaN 3 3.000000... 4.000000 NaN 5.000000 3.00 NaN NaN NaN NaN NaNNaN
P14 3.000000 3.000000 3.000000 3.0 4.000000 3.000000 4.000000 4.000000 4 4.000000... 4.000000 4.000000 3.000000 NaN NaN NaN NaN NaN NaNNaN
P15 2.000000 2.000000 2.000000 2.0 3.000000 3.000000 3.000000 3.000000 3 3.000000... 3.000000 3.000000 4.000000 3.00 3.000000 3.0 3.000000 3.0000 5.0NaN
Average 2.791667 3.266667 2.733333 3.2 3.821429 3.766667 3.933333 4.071429 4 3.769231... 4.416667 3.769231 4.285714 3.69 4.555556 4.4 4.333333 4.6125 NaNNaN
Min 2.000000 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 3.000000 3 2.000000... 3.000000 1.000000 2.000000 1.00 3.000000 3.0 3.000000 3.0000 NaNNaN
Max 4.000000 5.000000 4.000000 5.0 5.000000 5.000000 5.000000 5.000000 5 5.000000... 6.000000 5.000000 6.000000 5.00 6.000000 5.0 5.000000 6.0000 NaNNaN
\n", + "

18 rows × 24 columns

\n", + "
" + ], + "text/plain": [ + " Jan 12 Jan 13 Jan 14 Jan 15 \\\n", + " L 1, 12 H 1, 13 L 2, 13 H 2, 14 L 3, 14 H 3, 15 L 4, 15 \n", + "Name \n", + "P01 3.000000 4.000000 3.000000 4.0 4.000000 5.000000 5.000000 \n", + "P02 4.000000 3.500000 3.000000 5.0 4.000000 4.500000 4.500000 \n", + "P03 NaN 5.000000 3.000000 4.0 5.000000 5.000000 5.000000 \n", + "P04 3.000000 3.000000 2.000000 3.0 4.000000 4.000000 4.000000 \n", + "P05 NaN 3.000000 3.000000 3.0 3.000000 4.000000 4.000000 \n", + "P06 3.000000 3.500000 3.000000 3.0 3.000000 3.000000 4.000000 \n", + "P07 3.500000 4.000000 3.000000 4.0 5.000000 4.000000 4.500000 \n", + "P08 2.000000 3.000000 2.000000 3.0 4.000000 4.000000 3.000000 \n", + "P09 NaN 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 \n", + "P10 2.000000 2.000000 2.000000 3.0 NaN 3.000000 3.000000 \n", + "P11 2.000000 5.000000 4.000000 3.0 5.000000 4.000000 4.000000 \n", + "P12 3.500000 4.000000 4.000000 4.0 4.500000 5.000000 5.000000 \n", + "P13 2.500000 3.000000 3.000000 3.0 3.000000 3.000000 4.000000 \n", + "P14 3.000000 3.000000 3.000000 3.0 4.000000 3.000000 4.000000 \n", + "P15 2.000000 2.000000 2.000000 2.0 3.000000 3.000000 3.000000 \n", + "Average 2.791667 3.266667 2.733333 3.2 3.821429 3.766667 3.933333 \n", + "Min 2.000000 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 \n", + "Max 4.000000 5.000000 4.000000 5.0 5.000000 5.000000 5.000000 \n", + "\n", + " Jan 16 Jan 17 ... Jan 19 \\\n", + " Mystery Word, 20 L 5, 20 Currency, 21 ... Blackjack2, 26 \n", + "Name ... \n", + "P01 5.000000 4 4.000000 ... NaN \n", + "P02 5.000000 5 5.000000 ... 5.000000 \n", + "P03 5.000000 5 5.000000 ... 6.000000 \n", + "P04 4.000000 5 NaN ... NaN \n", + "P05 4.000000 5 4.000000 ... 4.000000 \n", + "P06 4.000000 3 3.000000 ... 5.000000 \n", + "P07 4.000000 5 5.000000 ... NaN \n", + "P08 4.000000 3 3.000000 ... 5.000000 \n", + "P09 3.000000 3 2.000000 ... 3.000000 \n", + "P10 3.000000 3 4.000000 ... 5.000000 \n", + "P11 4.000000 4 NaN ... 4.000000 \n", + "P12 5.000000 5 4.000000 ... 5.000000 \n", + "P13 NaN 3 3.000000 ... 4.000000 \n", + "P14 4.000000 4 4.000000 ... 4.000000 \n", + "P15 3.000000 3 3.000000 ... 3.000000 \n", + "Average 4.071429 4 3.769231 ... 4.416667 \n", + "Min 3.000000 3 2.000000 ... 3.000000 \n", + "Max 5.000000 5 5.000000 ... 6.000000 \n", + "\n", + " Jan 20 Jan 21 Jan 22 Jan 23 \\\n", + " L 9, 26 Random Art, 27 L10, 27 Charting L11, 28 PigSim L12, 29 \n", + "Name \n", + "P01 4.000000 5.000000 NaN NaN NaN NaN NaN \n", + "P02 5.000000 5.000000 NaN NaN 5.0 5.000000 5.0000 \n", + "P03 NaN NaN 5.00 5.000000 5.0 NaN NaN \n", + "P04 1.000000 3.000000 1.00 3.000000 5.0 5.000000 5.0000 \n", + "P05 3.000000 6.000000 NaN NaN NaN NaN NaN \n", + "P06 4.000000 5.000000 3.00 4.000000 4.0 4.000000 NaN \n", + "P07 5.000000 4.000000 4.90 5.000000 4.0 4.000000 4.9000 \n", + "P08 5.000000 5.000000 5.00 5.000000 4.0 4.000000 4.0000 \n", + "P09 3.000000 2.000000 NaN NaN NaN NaN NaN \n", + "P10 4.000000 5.000000 4.00 5.000000 4.0 5.000000 4.0000 \n", + "P11 4.000000 4.000000 4.00 5.000000 5.0 4.000000 5.0000 \n", + "P12 4.000000 4.000000 4.00 6.000000 5.0 5.000000 6.0000 \n", + "P13 NaN 5.000000 3.00 NaN NaN NaN NaN \n", + "P14 4.000000 3.000000 NaN NaN NaN NaN NaN \n", + "P15 3.000000 4.000000 3.00 3.000000 3.0 3.000000 3.0000 \n", + "Average 3.769231 4.285714 3.69 4.555556 4.4 4.333333 4.6125 \n", + "Min 1.000000 2.000000 1.00 3.000000 3.0 3.000000 3.0000 \n", + "Max 5.000000 6.000000 5.00 6.000000 5.0 5.000000 6.0000 \n", + "\n", + " Jan 24 \n", + " Traffic Sim I L13,Feb2 \n", + "Name \n", + "P01 NaN NaN \n", + "P02 NaN NaN \n", + "P03 NaN NaN \n", + "P04 5.0 NaN \n", + "P05 NaN NaN \n", + "P06 NaN NaN \n", + "P07 4.9 NaN \n", + "P08 5.0 5 \n", + "P09 NaN NaN \n", + "P10 NaN NaN \n", + "P11 5.0 NaN \n", + "P12 NaN NaN \n", + "P13 NaN NaN \n", + "P14 NaN NaN \n", + "P15 5.0 NaN \n", + "Average NaN NaN \n", + "Min NaN NaN \n", + "Max NaN NaN \n", + "\n", + "[18 rows x 24 columns]" + ] + }, + "execution_count": 8, "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Lecture 1, Jan12Homework 1, Jan13Lecture 2, Jan 13Homework 2, Jan14Lecture 3, Jan 14Homework 3, Jan15Lecture 4, Jan 15Mystery Word, Jan 20Lecture 5, Jan 20Currency, Jan 21...Blackjack2, Jan26Lecture 9, Jan26Random Art, Jan 27Lecture10, Jan27ChartingLecture11, Jan28PigSimLecture12, Jan29Traffic Sim ILecture13,Feb2
Name
P15 2.000000 2.000000 2.000000 2.0 3.000000 3.000000 3.000000 3.000000 3 3.000000... 3.000000 3.000000 4.000000 3.00 3.000000 3.0 3.000000 3.0000 5NaN
NaN NaN NaN NaN NaN NaN NaN NaN NaNNaN NaN... NaN NaN NaN NaN NaN NaN NaN NaNNaNNaN
Average 2.791667 3.266667 2.733333 3.2 3.821429 3.766667 3.933333 4.071429 4 3.769231... 4.416667 3.769231 4.285714 3.69 4.555556 4.4 4.333333 4.6125NaNNaN
Min 2.000000 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 3.000000 3 2.000000... 3.000000 1.000000 2.000000 1.00 3.000000 3.0 3.000000 3.0000NaNNaN
Max 4.000000 5.000000 4.000000 5.0 5.000000 5.000000 5.000000 5.000000 5 5.000000... 6.000000 5.000000 6.000000 5.00 6.000000 5.0 5.000000 6.0000NaNNaN
\n", - "

5 rows \u00d7 24 columns

\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 16, - "text": [ - " Lecture 1, Jan12 Homework 1, Jan13 Lecture 2, Jan 13 \\\n", - "Name \n", - "P15 2.000000 2.000000 2.000000 \n", - "NaN NaN NaN NaN \n", - "Average 2.791667 3.266667 2.733333 \n", - "Min 2.000000 1.000000 1.000000 \n", - "Max 4.000000 5.000000 4.000000 \n", - "\n", - " Homework 2, Jan14 Lecture 3, Jan 14 Homework 3, Jan15 \\\n", - "Name \n", - "P15 2.0 3.000000 3.000000 \n", - "NaN NaN NaN NaN \n", - "Average 3.2 3.821429 3.766667 \n", - "Min 1.0 2.000000 2.000000 \n", - "Max 5.0 5.000000 5.000000 \n", - "\n", - " Lecture 4, Jan 15 Mystery Word, Jan 20 Lecture 5, Jan 20 \\\n", - "Name \n", - "P15 3.000000 3.000000 3 \n", - "NaN NaN NaN NaN \n", - "Average 3.933333 4.071429 4 \n", - "Min 2.000000 3.000000 3 \n", - "Max 5.000000 5.000000 5 \n", - "\n", - " Currency, Jan 21 ... Blackjack2, Jan26 \\\n", - "Name ... \n", - "P15 3.000000 ... 3.000000 \n", - "NaN NaN ... NaN \n", - "Average 3.769231 ... 4.416667 \n", - "Min 2.000000 ... 3.000000 \n", - "Max 5.000000 ... 6.000000 \n", - "\n", - " Lecture 9, Jan26 Random Art, Jan 27 Lecture10, Jan27 Charting \\\n", - "Name \n", - "P15 3.000000 4.000000 3.00 3.000000 \n", - "NaN NaN NaN NaN NaN \n", - "Average 3.769231 4.285714 3.69 4.555556 \n", - "Min 1.000000 2.000000 1.00 3.000000 \n", - "Max 5.000000 6.000000 5.00 6.000000 \n", - "\n", - " Lecture11, Jan28 PigSim Lecture12, Jan29 Traffic Sim I \\\n", - "Name \n", - "P15 3.0 3.000000 3.0000 5 \n", - "NaN NaN NaN NaN NaN \n", - "Average 4.4 4.333333 4.6125 NaN \n", - "Min 3.0 3.000000 3.0000 NaN \n", - "Max 5.0 5.000000 6.0000 NaN \n", - "\n", - " Lecture13,Feb2 \n", - "Name \n", - "P15 NaN \n", - "NaN NaN \n", - "Average NaN \n", - "Min NaN \n", - "Max NaN \n", - "\n", - "[5 rows x 24 columns]" - ] - } - ], - "prompt_number": 16 - }, + "output_type": "execute_result" + } + ], + "source": [ + "pieces = {'Jan 12': pydata.ix[:, [0]], 'Jan 13': pydata.ix[:, [1, 2]], 'Jan 14': pydata.ix[:, [3, 4]],\n", + " 'Jan 15': pydata.ix[:, [5, 6]], 'Jan 16': pydata.ix[:, [7, 8]], 'Jan 17': pydata.ix[:, [9, 10]],\n", + " 'Jan 18': pydata.ix[:, [11, 12]], 'Jan 19': pydata.ix[:, [13, 14]], 'Jan 20': pydata.ix[:, [15, 16]],\n", + " 'Jan 21': pydata.ix[:, [17, 18]], 'Jan 22': pydata.ix[:, [19, 20]], 'Jan 23': pydata.ix[:, [21, 22]],\n", + " 'Jan 24': pydata.ix[:, [23]]}\n", + " \n", + "pydata = pd.concat(pieces, axis=1)\n", + "pydata" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "code", - "collapsed": false, - "input": [ - "python_data = python_data.dropna(how=\"all\")\n", - "\n", - "pydata = python_data" - ], - "language": "python", + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameP01P02P03P04P05P06P07P08P09P10P11P12P13P14P15AverageMinMax
Jan 12L 1, 12 3.0 4.0NaN 3NaN 3.0 3.5 2.0NaN 2 2 3.5 2.5 3 2 2.791667 2 4.0
Jan 13H 1, 13 4.0 3.5 5 3 3 3.5 4.0 3.0 1 2 5 4.0 3.0 3 2 3.266667 1 5.0
L 2, 13 3.0 3.0 3 2 3 3.0 3.0 2.0 1 2 4 4.0 3.0 3 2 2.733333 1 4.0
Jan 14H 2, 14 4.0 5.0 4 3 3 3.0 4.0 3.0 1 3 3 4.0 3.0 3 2 3.200000 1 5.0
L 3, 14 4.0 4.0 5 4 3 3.0 5.0 4.0 2NaN 5 4.5 3.0 4 3 3.821429 2 5.0
Jan 15H 3, 15 5.0 4.5 5 4 4 3.0 4.0 4.0 2 3 4 5.0 3.0 3 3 3.766667 2 5.0
L 4, 15 5.0 4.5 5 4 4 4.0 4.5 3.0 2 3 4 5.0 4.0 4 3 3.933333 2 5.0
Jan 16Mystery Word, 20 5.0 5.0 5 4 4 4.0 4.0 4.0 3 3 4 5.0 NaN 4 3 4.071429 3 5.0
L 5, 20 4.0 5.0 5 5 5 3.0 5.0 3.0 3 3 4 5.0 3.0 4 3 4.000000 3 5.0
Jan 17Currency, 21 4.0 5.0 5NaN 4 3.0 5.0 3.0 2 4NaN 4.0 3.0 4 3 3.769231 2 5.0
L 6, 21 4.0 5.0 5 4 4 5.0 5.0 5.0 3 4NaN 4.0 3.0 4 3 4.142857 3 5.0
Jan 18Blackjack1, 22 5.5 5.0 5NaN 5 NaN 5.0 5.5 2 4 4 4.0 4.0 4 3 4.307692 2 5.5
L 7, 22 4.0 NaNNaN 4 4 5.0 4.0 4.0 3 4 4 NaN 4.0NaN 3 3.909091 3 5.0
Jan 19L 8, 23 5.5 NaN 5 4 4 5.0 5.0 5.0 3 5 4 5.5 4.0NaN 3 4.461538 3 5.5
Blackjack2, 26 NaN 5.0 6NaN 4 5.0 NaN 5.0 3 5 4 5.0 4.0 4 3 4.416667 3 6.0
Jan 20L 9, 26 4.0 5.0NaN 1 3 4.0 5.0 5.0 3 4 4 4.0 NaN 4 3 3.769231 1 5.0
Random Art, 27 5.0 5.0NaN 3 6 5.0 4.0 5.0 2 5 4 4.0 5.0 3 4 4.285714 2 6.0
Jan 21L10, 27 NaN NaN 5 1NaN 3.0 4.9 5.0NaN 4 4 4.0 3.0NaN 3 3.690000 1 5.0
Charting NaN NaN 5 3NaN 4.0 5.0 5.0NaN 5 5 6.0 NaNNaN 3 4.555556 3 6.0
Jan 22L11, 28 NaN 5.0 5 5NaN 4.0 4.0 4.0NaN 4 5 5.0 NaNNaN 3 4.400000 3 5.0
PigSim NaN 5.0NaN 5NaN 4.0 4.0 4.0NaN 5 4 5.0 NaNNaN 3 4.333333 3 5.0
Jan 23L12, 29 NaN 5.0NaN 5NaN NaN 4.9 4.0NaN 4 5 6.0 NaNNaN 3 4.612500 3 6.0
Traffic Sim I NaN NaNNaN 5NaN NaN 4.9 5.0NaNNaN 5 NaN NaNNaN 5 NaNNaN NaN
Jan 24L13,Feb2 NaN NaNNaNNaNNaN NaN NaN 5.0NaNNaNNaN NaN NaNNaNNaN NaNNaN NaN
\n", + "
" + ], + "text/plain": [ + "Name P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 \\\n", + "Jan 12 L 1, 12 3.0 4.0 NaN 3 NaN 3.0 3.5 2.0 NaN 2 \n", + "Jan 13 H 1, 13 4.0 3.5 5 3 3 3.5 4.0 3.0 1 2 \n", + " L 2, 13 3.0 3.0 3 2 3 3.0 3.0 2.0 1 2 \n", + "Jan 14 H 2, 14 4.0 5.0 4 3 3 3.0 4.0 3.0 1 3 \n", + " L 3, 14 4.0 4.0 5 4 3 3.0 5.0 4.0 2 NaN \n", + "Jan 15 H 3, 15 5.0 4.5 5 4 4 3.0 4.0 4.0 2 3 \n", + " L 4, 15 5.0 4.5 5 4 4 4.0 4.5 3.0 2 3 \n", + "Jan 16 Mystery Word, 20 5.0 5.0 5 4 4 4.0 4.0 4.0 3 3 \n", + " L 5, 20 4.0 5.0 5 5 5 3.0 5.0 3.0 3 3 \n", + "Jan 17 Currency, 21 4.0 5.0 5 NaN 4 3.0 5.0 3.0 2 4 \n", + " L 6, 21 4.0 5.0 5 4 4 5.0 5.0 5.0 3 4 \n", + "Jan 18 Blackjack1, 22 5.5 5.0 5 NaN 5 NaN 5.0 5.5 2 4 \n", + " L 7, 22 4.0 NaN NaN 4 4 5.0 4.0 4.0 3 4 \n", + "Jan 19 L 8, 23 5.5 NaN 5 4 4 5.0 5.0 5.0 3 5 \n", + " Blackjack2, 26 NaN 5.0 6 NaN 4 5.0 NaN 5.0 3 5 \n", + "Jan 20 L 9, 26 4.0 5.0 NaN 1 3 4.0 5.0 5.0 3 4 \n", + " Random Art, 27 5.0 5.0 NaN 3 6 5.0 4.0 5.0 2 5 \n", + "Jan 21 L10, 27 NaN NaN 5 1 NaN 3.0 4.9 5.0 NaN 4 \n", + " Charting NaN NaN 5 3 NaN 4.0 5.0 5.0 NaN 5 \n", + "Jan 22 L11, 28 NaN 5.0 5 5 NaN 4.0 4.0 4.0 NaN 4 \n", + " PigSim NaN 5.0 NaN 5 NaN 4.0 4.0 4.0 NaN 5 \n", + "Jan 23 L12, 29 NaN 5.0 NaN 5 NaN NaN 4.9 4.0 NaN 4 \n", + " Traffic Sim I NaN NaN NaN 5 NaN NaN 4.9 5.0 NaN NaN \n", + "Jan 24 L13,Feb2 NaN NaN NaN NaN NaN NaN NaN 5.0 NaN NaN \n", + "\n", + "Name P11 P12 P13 P14 P15 Average Min Max \n", + "Jan 12 L 1, 12 2 3.5 2.5 3 2 2.791667 2 4.0 \n", + "Jan 13 H 1, 13 5 4.0 3.0 3 2 3.266667 1 5.0 \n", + " L 2, 13 4 4.0 3.0 3 2 2.733333 1 4.0 \n", + "Jan 14 H 2, 14 3 4.0 3.0 3 2 3.200000 1 5.0 \n", + " L 3, 14 5 4.5 3.0 4 3 3.821429 2 5.0 \n", + "Jan 15 H 3, 15 4 5.0 3.0 3 3 3.766667 2 5.0 \n", + " L 4, 15 4 5.0 4.0 4 3 3.933333 2 5.0 \n", + "Jan 16 Mystery Word, 20 4 5.0 NaN 4 3 4.071429 3 5.0 \n", + " L 5, 20 4 5.0 3.0 4 3 4.000000 3 5.0 \n", + "Jan 17 Currency, 21 NaN 4.0 3.0 4 3 3.769231 2 5.0 \n", + " L 6, 21 NaN 4.0 3.0 4 3 4.142857 3 5.0 \n", + "Jan 18 Blackjack1, 22 4 4.0 4.0 4 3 4.307692 2 5.5 \n", + " L 7, 22 4 NaN 4.0 NaN 3 3.909091 3 5.0 \n", + "Jan 19 L 8, 23 4 5.5 4.0 NaN 3 4.461538 3 5.5 \n", + " Blackjack2, 26 4 5.0 4.0 4 3 4.416667 3 6.0 \n", + "Jan 20 L 9, 26 4 4.0 NaN 4 3 3.769231 1 5.0 \n", + " Random Art, 27 4 4.0 5.0 3 4 4.285714 2 6.0 \n", + "Jan 21 L10, 27 4 4.0 3.0 NaN 3 3.690000 1 5.0 \n", + " Charting 5 6.0 NaN NaN 3 4.555556 3 6.0 \n", + "Jan 22 L11, 28 5 5.0 NaN NaN 3 4.400000 3 5.0 \n", + " PigSim 4 5.0 NaN NaN 3 4.333333 3 5.0 \n", + "Jan 23 L12, 29 5 6.0 NaN NaN 3 4.612500 3 6.0 \n", + " Traffic Sim I 5 NaN NaN NaN 5 NaN NaN NaN \n", + "Jan 24 L13,Feb2 NaN NaN NaN NaN NaN NaN NaN NaN " + ] + }, + "execution_count": 9, "metadata": {}, - "outputs": [], - "prompt_number": 17 - }, + "output_type": "execute_result" + } + ], + "source": [ + "flipped = pydata.transpose()\n", + "flipped" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "code", - "collapsed": false, - "input": [ - "pydata = pydata.rename(columns=lambda x: x.replace('Jan', ''))\n", - "pydata = pydata.rename(columns=lambda x: x.replace('Lecture', 'L'))\n", - "pydata = pydata.rename(columns=lambda x: x.replace('Homework', 'H'))\n", - "pydata = pydata.rename(columns=lambda x: x.replace((r\"[0-9]\"), \" \" ))\n", - "pydata\n" - ], - "language": "python", + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameP01P02P03P04P05P06P07P08P09P10P11P12P13P14P15AverageMin
Jan 12L 1, 12 3 4.0NaN 3NaN 3.0 3.5 2NaN 2 2 3.5 2.5 3 2 2.791667 2
Jan 13H 1, 13 4 3.5 5 3 3 3.5 4.0 3 1 2 5 4.0 3.0 3 2 3.266667 1
L 2, 13 3 3.0 3 2 3 3.0 3.0 2 1 2 4 4.0 3.0 3 2 2.733333 1
Jan 14H 2, 14 4 5.0 4 3 3 3.0 4.0 3 1 3 3 4.0 3.0 3 2 3.200000 1
L 3, 14 4 4.0 5 4 3 3.0 5.0 4 2NaN 5 4.5 3.0 4 3 3.821429 2
\n", + "
" + ], + "text/plain": [ + "Name P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 \\\n", + "Jan 12 L 1, 12 3 4.0 NaN 3 NaN 3.0 3.5 2 NaN 2 2 3.5 \n", + "Jan 13 H 1, 13 4 3.5 5 3 3 3.5 4.0 3 1 2 5 4.0 \n", + " L 2, 13 3 3.0 3 2 3 3.0 3.0 2 1 2 4 4.0 \n", + "Jan 14 H 2, 14 4 5.0 4 3 3 3.0 4.0 3 1 3 3 4.0 \n", + " L 3, 14 4 4.0 5 4 3 3.0 5.0 4 2 NaN 5 4.5 \n", + "\n", + "Name P13 P14 P15 Average Min \n", + "Jan 12 L 1, 12 2.5 3 2 2.791667 2 \n", + "Jan 13 H 1, 13 3.0 3 2 3.266667 1 \n", + " L 2, 13 3.0 3 2 2.733333 1 \n", + "Jan 14 H 2, 14 3.0 3 2 3.200000 1 \n", + " L 3, 14 3.0 4 3 3.821429 2 " + ] + }, + "execution_count": 14, "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
L 1, 12H 1, 13L 2, 13H 2, 14L 3, 14H 3, 15L 4, 15Mystery Word, 20L 5, 20Currency, 21...Blackjack2, 26L 9, 26Random Art, 27L10, 27ChartingL11, 28PigSimL12, 29Traffic Sim IL13,Feb2
Name
P01 3.000000 4.000000 3.000000 4.0 4.000000 5.000000 5.000000 5.000000 4 4.000000... NaN 4.000000 5.000000 NaN NaN NaN NaN NaN NaNNaN
P02 4.000000 3.500000 3.000000 5.0 4.000000 4.500000 4.500000 5.000000 5 5.000000... 5.000000 5.000000 5.000000 NaN NaN 5.0 5.000000 5.0000 NaNNaN
P03 NaN 5.000000 3.000000 4.0 5.000000 5.000000 5.000000 5.000000 5 5.000000... 6.000000 NaN NaN 5.00 5.000000 5.0 NaN NaN NaNNaN
P04 3.000000 3.000000 2.000000 3.0 4.000000 4.000000 4.000000 4.000000 5 NaN... NaN 1.000000 3.000000 1.00 3.000000 5.0 5.000000 5.0000 5.0NaN
P05 NaN 3.000000 3.000000 3.0 3.000000 4.000000 4.000000 4.000000 5 4.000000... 4.000000 3.000000 6.000000 NaN NaN NaN NaN NaN NaNNaN
P06 3.000000 3.500000 3.000000 3.0 3.000000 3.000000 4.000000 4.000000 3 3.000000... 5.000000 4.000000 5.000000 3.00 4.000000 4.0 4.000000 NaN NaNNaN
P07 3.500000 4.000000 3.000000 4.0 5.000000 4.000000 4.500000 4.000000 5 5.000000... NaN 5.000000 4.000000 4.90 5.000000 4.0 4.000000 4.9000 4.9NaN
P08 2.000000 3.000000 2.000000 3.0 4.000000 4.000000 3.000000 4.000000 3 3.000000... 5.000000 5.000000 5.000000 5.00 5.000000 4.0 4.000000 4.0000 5.0 5
P09 NaN 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 3.000000 3 2.000000... 3.000000 3.000000 2.000000 NaN NaN NaN NaN NaN NaNNaN
P10 2.000000 2.000000 2.000000 3.0 NaN 3.000000 3.000000 3.000000 3 4.000000... 5.000000 4.000000 5.000000 4.00 5.000000 4.0 5.000000 4.0000 NaNNaN
P11 2.000000 5.000000 4.000000 3.0 5.000000 4.000000 4.000000 4.000000 4 NaN... 4.000000 4.000000 4.000000 4.00 5.000000 5.0 4.000000 5.0000 5.0NaN
P12 3.500000 4.000000 4.000000 4.0 4.500000 5.000000 5.000000 5.000000 5 4.000000... 5.000000 4.000000 4.000000 4.00 6.000000 5.0 5.000000 6.0000 NaNNaN
P13 2.500000 3.000000 3.000000 3.0 3.000000 3.000000 4.000000 NaN 3 3.000000... 4.000000 NaN 5.000000 3.00 NaN NaN NaN NaN NaNNaN
P14 3.000000 3.000000 3.000000 3.0 4.000000 3.000000 4.000000 4.000000 4 4.000000... 4.000000 4.000000 3.000000 NaN NaN NaN NaN NaN NaNNaN
P15 2.000000 2.000000 2.000000 2.0 3.000000 3.000000 3.000000 3.000000 3 3.000000... 3.000000 3.000000 4.000000 3.00 3.000000 3.0 3.000000 3.0000 5.0NaN
Average 2.791667 3.266667 2.733333 3.2 3.821429 3.766667 3.933333 4.071429 4 3.769231... 4.416667 3.769231 4.285714 3.69 4.555556 4.4 4.333333 4.6125 NaNNaN
Min 2.000000 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 3.000000 3 2.000000... 3.000000 1.000000 2.000000 1.00 3.000000 3.0 3.000000 3.0000 NaNNaN
Max 4.000000 5.000000 4.000000 5.0 5.000000 5.000000 5.000000 5.000000 5 5.000000... 6.000000 5.000000 6.000000 5.00 6.000000 5.0 5.000000 6.0000 NaNNaN
\n", - "

18 rows \u00d7 24 columns

\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 18, - "text": [ - " L 1, 12 H 1, 13 L 2, 13 H 2, 14 L 3, 14 H 3, 15 L 4, 15 \\\n", - "Name \n", - "P01 3.000000 4.000000 3.000000 4.0 4.000000 5.000000 5.000000 \n", - "P02 4.000000 3.500000 3.000000 5.0 4.000000 4.500000 4.500000 \n", - "P03 NaN 5.000000 3.000000 4.0 5.000000 5.000000 5.000000 \n", - "P04 3.000000 3.000000 2.000000 3.0 4.000000 4.000000 4.000000 \n", - "P05 NaN 3.000000 3.000000 3.0 3.000000 4.000000 4.000000 \n", - "P06 3.000000 3.500000 3.000000 3.0 3.000000 3.000000 4.000000 \n", - "P07 3.500000 4.000000 3.000000 4.0 5.000000 4.000000 4.500000 \n", - "P08 2.000000 3.000000 2.000000 3.0 4.000000 4.000000 3.000000 \n", - "P09 NaN 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 \n", - "P10 2.000000 2.000000 2.000000 3.0 NaN 3.000000 3.000000 \n", - "P11 2.000000 5.000000 4.000000 3.0 5.000000 4.000000 4.000000 \n", - "P12 3.500000 4.000000 4.000000 4.0 4.500000 5.000000 5.000000 \n", - "P13 2.500000 3.000000 3.000000 3.0 3.000000 3.000000 4.000000 \n", - "P14 3.000000 3.000000 3.000000 3.0 4.000000 3.000000 4.000000 \n", - "P15 2.000000 2.000000 2.000000 2.0 3.000000 3.000000 3.000000 \n", - "Average 2.791667 3.266667 2.733333 3.2 3.821429 3.766667 3.933333 \n", - "Min 2.000000 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 \n", - "Max 4.000000 5.000000 4.000000 5.0 5.000000 5.000000 5.000000 \n", - "\n", - " Mystery Word, 20 L 5, 20 Currency, 21 ... Blackjack2, 26 \\\n", - "Name ... \n", - "P01 5.000000 4 4.000000 ... NaN \n", - "P02 5.000000 5 5.000000 ... 5.000000 \n", - "P03 5.000000 5 5.000000 ... 6.000000 \n", - "P04 4.000000 5 NaN ... NaN \n", - "P05 4.000000 5 4.000000 ... 4.000000 \n", - "P06 4.000000 3 3.000000 ... 5.000000 \n", - "P07 4.000000 5 5.000000 ... NaN \n", - "P08 4.000000 3 3.000000 ... 5.000000 \n", - "P09 3.000000 3 2.000000 ... 3.000000 \n", - "P10 3.000000 3 4.000000 ... 5.000000 \n", - "P11 4.000000 4 NaN ... 4.000000 \n", - "P12 5.000000 5 4.000000 ... 5.000000 \n", - "P13 NaN 3 3.000000 ... 4.000000 \n", - "P14 4.000000 4 4.000000 ... 4.000000 \n", - "P15 3.000000 3 3.000000 ... 3.000000 \n", - "Average 4.071429 4 3.769231 ... 4.416667 \n", - "Min 3.000000 3 2.000000 ... 3.000000 \n", - "Max 5.000000 5 5.000000 ... 6.000000 \n", - "\n", - " L 9, 26 Random Art, 27 L10, 27 Charting L11, 28 PigSim \\\n", - "Name \n", - "P01 4.000000 5.000000 NaN NaN NaN NaN \n", - "P02 5.000000 5.000000 NaN NaN 5.0 5.000000 \n", - "P03 NaN NaN 5.00 5.000000 5.0 NaN \n", - "P04 1.000000 3.000000 1.00 3.000000 5.0 5.000000 \n", - "P05 3.000000 6.000000 NaN NaN NaN NaN \n", - "P06 4.000000 5.000000 3.00 4.000000 4.0 4.000000 \n", - "P07 5.000000 4.000000 4.90 5.000000 4.0 4.000000 \n", - "P08 5.000000 5.000000 5.00 5.000000 4.0 4.000000 \n", - "P09 3.000000 2.000000 NaN NaN NaN NaN \n", - "P10 4.000000 5.000000 4.00 5.000000 4.0 5.000000 \n", - "P11 4.000000 4.000000 4.00 5.000000 5.0 4.000000 \n", - "P12 4.000000 4.000000 4.00 6.000000 5.0 5.000000 \n", - "P13 NaN 5.000000 3.00 NaN NaN NaN \n", - "P14 4.000000 3.000000 NaN NaN NaN NaN \n", - "P15 3.000000 4.000000 3.00 3.000000 3.0 3.000000 \n", - "Average 3.769231 4.285714 3.69 4.555556 4.4 4.333333 \n", - "Min 1.000000 2.000000 1.00 3.000000 3.0 3.000000 \n", - "Max 5.000000 6.000000 5.00 6.000000 5.0 5.000000 \n", - "\n", - " L12, 29 Traffic Sim I L13,Feb2 \n", - "Name \n", - "P01 NaN NaN NaN \n", - "P02 5.0000 NaN NaN \n", - "P03 NaN NaN NaN \n", - "P04 5.0000 5.0 NaN \n", - "P05 NaN NaN NaN \n", - "P06 NaN NaN NaN \n", - "P07 4.9000 4.9 NaN \n", - "P08 4.0000 5.0 5 \n", - "P09 NaN NaN NaN \n", - "P10 4.0000 NaN NaN \n", - "P11 5.0000 5.0 NaN \n", - "P12 6.0000 NaN NaN \n", - "P13 NaN NaN NaN \n", - "P14 NaN NaN NaN \n", - "P15 3.0000 5.0 NaN \n", - "Average 4.6125 NaN NaN \n", - "Min 3.0000 NaN NaN \n", - "Max 6.0000 NaN NaN \n", - "\n", - "[18 rows x 24 columns]" - ] - } - ], - "prompt_number": 18 - }, + "output_type": "execute_result" + } + ], + "source": [ + "# del flipped[\"Max\"]\n", + "# Deleted column 'Max' in place. Will get error if re-run.\n", + "flipped.head()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "code", - "collapsed": false, - "input": [ - "pieces = {'Jan 12': pydata.ix[:, [0]], 'Jan 13': pydata.ix[:, [1, 2]], 'Jan 14': pydata.ix[:, [3, 4]],\n", - " 'Jan 15': pydata.ix[:, [5, 6]], 'Jan 16': pydata.ix[:, [7, 8]], 'Jan 17': pydata.ix[:, [9, 10]],\n", - " 'Jan 18': pydata.ix[:, [11, 12]], 'Jan 19': pydata.ix[:, [13, 14]], 'Jan 20': pydata.ix[:, [15, 16]],\n", - " 'Jan 21': pydata.ix[:, [17, 18]], 'Jan 22': pydata.ix[:, [19, 20]], 'Jan 23': pydata.ix[:, [21, 22]],\n", - " 'Jan 24': pydata.ix[:, [23]]}\n", - " \n", - "pydata = pd.concat(pieces, axis=1)\n", - "pydata" - ], - "language": "python", + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Jan 12Jan 13Jan 14Jan 15Jan 16Jan 17...Jan 19Jan 20Jan 21Jan 22Jan 23Jan 24
L 1, 12H 1, 13L 2, 13H 2, 14L 3, 14H 3, 15L 4, 15Mystery Word, 20L 5, 20Currency, 21...Blackjack2, 26L 9, 26Random Art, 27L10, 27ChartingL11, 28PigSimL12, 29Traffic Sim IL13,Feb2
Name
P01 3.000000 4.000000 3.000000 4.0 4.000000 5.000000 5.000000 5.000000 4 4.000000... NaN 4.000000 5.000000 NaN NaN NaN NaN NaN NaNNaN
P02 4.000000 3.500000 3.000000 5.0 4.000000 4.500000 4.500000 5.000000 5 5.000000... 5.000000 5.000000 5.000000 NaN NaN 5.0 5.000000 5.0000 NaNNaN
P03 NaN 5.000000 3.000000 4.0 5.000000 5.000000 5.000000 5.000000 5 5.000000... 6.000000 NaN NaN 5.00 5.000000 5.0 NaN NaN NaNNaN
P04 3.000000 3.000000 2.000000 3.0 4.000000 4.000000 4.000000 4.000000 5 NaN... NaN 1.000000 3.000000 1.00 3.000000 5.0 5.000000 5.0000 5.0NaN
P05 NaN 3.000000 3.000000 3.0 3.000000 4.000000 4.000000 4.000000 5 4.000000... 4.000000 3.000000 6.000000 NaN NaN NaN NaN NaN NaNNaN
P06 3.000000 3.500000 3.000000 3.0 3.000000 3.000000 4.000000 4.000000 3 3.000000... 5.000000 4.000000 5.000000 3.00 4.000000 4.0 4.000000 NaN NaNNaN
P07 3.500000 4.000000 3.000000 4.0 5.000000 4.000000 4.500000 4.000000 5 5.000000... NaN 5.000000 4.000000 4.90 5.000000 4.0 4.000000 4.9000 4.9NaN
P08 2.000000 3.000000 2.000000 3.0 4.000000 4.000000 3.000000 4.000000 3 3.000000... 5.000000 5.000000 5.000000 5.00 5.000000 4.0 4.000000 4.0000 5.0 5
P09 NaN 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 3.000000 3 2.000000... 3.000000 3.000000 2.000000 NaN NaN NaN NaN NaN NaNNaN
P10 2.000000 2.000000 2.000000 3.0 NaN 3.000000 3.000000 3.000000 3 4.000000... 5.000000 4.000000 5.000000 4.00 5.000000 4.0 5.000000 4.0000 NaNNaN
P11 2.000000 5.000000 4.000000 3.0 5.000000 4.000000 4.000000 4.000000 4 NaN... 4.000000 4.000000 4.000000 4.00 5.000000 5.0 4.000000 5.0000 5.0NaN
P12 3.500000 4.000000 4.000000 4.0 4.500000 5.000000 5.000000 5.000000 5 4.000000... 5.000000 4.000000 4.000000 4.00 6.000000 5.0 5.000000 6.0000 NaNNaN
P13 2.500000 3.000000 3.000000 3.0 3.000000 3.000000 4.000000 NaN 3 3.000000... 4.000000 NaN 5.000000 3.00 NaN NaN NaN NaN NaNNaN
P14 3.000000 3.000000 3.000000 3.0 4.000000 3.000000 4.000000 4.000000 4 4.000000... 4.000000 4.000000 3.000000 NaN NaN NaN NaN NaN NaNNaN
P15 2.000000 2.000000 2.000000 2.0 3.000000 3.000000 3.000000 3.000000 3 3.000000... 3.000000 3.000000 4.000000 3.00 3.000000 3.0 3.000000 3.0000 5.0NaN
Average 2.791667 3.266667 2.733333 3.2 3.821429 3.766667 3.933333 4.071429 4 3.769231... 4.416667 3.769231 4.285714 3.69 4.555556 4.4 4.333333 4.6125 NaNNaN
Min 2.000000 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 3.000000 3 2.000000... 3.000000 1.000000 2.000000 1.00 3.000000 3.0 3.000000 3.0000 NaNNaN
Max 4.000000 5.000000 4.000000 5.0 5.000000 5.000000 5.000000 5.000000 5 5.000000... 6.000000 5.000000 6.000000 5.00 6.000000 5.0 5.000000 6.0000 NaNNaN
\n", - "

18 rows \u00d7 24 columns

\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 21, - "text": [ - " Jan 12 Jan 13 Jan 14 Jan 15 \\\n", - " L 1, 12 H 1, 13 L 2, 13 H 2, 14 L 3, 14 H 3, 15 L 4, 15 \n", - "Name \n", - "P01 3.000000 4.000000 3.000000 4.0 4.000000 5.000000 5.000000 \n", - "P02 4.000000 3.500000 3.000000 5.0 4.000000 4.500000 4.500000 \n", - "P03 NaN 5.000000 3.000000 4.0 5.000000 5.000000 5.000000 \n", - "P04 3.000000 3.000000 2.000000 3.0 4.000000 4.000000 4.000000 \n", - "P05 NaN 3.000000 3.000000 3.0 3.000000 4.000000 4.000000 \n", - "P06 3.000000 3.500000 3.000000 3.0 3.000000 3.000000 4.000000 \n", - "P07 3.500000 4.000000 3.000000 4.0 5.000000 4.000000 4.500000 \n", - "P08 2.000000 3.000000 2.000000 3.0 4.000000 4.000000 3.000000 \n", - "P09 NaN 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 \n", - "P10 2.000000 2.000000 2.000000 3.0 NaN 3.000000 3.000000 \n", - "P11 2.000000 5.000000 4.000000 3.0 5.000000 4.000000 4.000000 \n", - "P12 3.500000 4.000000 4.000000 4.0 4.500000 5.000000 5.000000 \n", - "P13 2.500000 3.000000 3.000000 3.0 3.000000 3.000000 4.000000 \n", - "P14 3.000000 3.000000 3.000000 3.0 4.000000 3.000000 4.000000 \n", - "P15 2.000000 2.000000 2.000000 2.0 3.000000 3.000000 3.000000 \n", - "Average 2.791667 3.266667 2.733333 3.2 3.821429 3.766667 3.933333 \n", - "Min 2.000000 1.000000 1.000000 1.0 2.000000 2.000000 2.000000 \n", - "Max 4.000000 5.000000 4.000000 5.0 5.000000 5.000000 5.000000 \n", - "\n", - " Jan 16 Jan 17 ... Jan 19 \\\n", - " Mystery Word, 20 L 5, 20 Currency, 21 ... Blackjack2, 26 \n", - "Name ... \n", - "P01 5.000000 4 4.000000 ... NaN \n", - "P02 5.000000 5 5.000000 ... 5.000000 \n", - "P03 5.000000 5 5.000000 ... 6.000000 \n", - "P04 4.000000 5 NaN ... NaN \n", - "P05 4.000000 5 4.000000 ... 4.000000 \n", - "P06 4.000000 3 3.000000 ... 5.000000 \n", - "P07 4.000000 5 5.000000 ... NaN \n", - "P08 4.000000 3 3.000000 ... 5.000000 \n", - "P09 3.000000 3 2.000000 ... 3.000000 \n", - "P10 3.000000 3 4.000000 ... 5.000000 \n", - "P11 4.000000 4 NaN ... 4.000000 \n", - "P12 5.000000 5 4.000000 ... 5.000000 \n", - "P13 NaN 3 3.000000 ... 4.000000 \n", - "P14 4.000000 4 4.000000 ... 4.000000 \n", - "P15 3.000000 3 3.000000 ... 3.000000 \n", - "Average 4.071429 4 3.769231 ... 4.416667 \n", - "Min 3.000000 3 2.000000 ... 3.000000 \n", - "Max 5.000000 5 5.000000 ... 6.000000 \n", - "\n", - " Jan 20 Jan 21 Jan 22 Jan 23 \\\n", - " L 9, 26 Random Art, 27 L10, 27 Charting L11, 28 PigSim L12, 29 \n", - "Name \n", - "P01 4.000000 5.000000 NaN NaN NaN NaN NaN \n", - "P02 5.000000 5.000000 NaN NaN 5.0 5.000000 5.0000 \n", - "P03 NaN NaN 5.00 5.000000 5.0 NaN NaN \n", - "P04 1.000000 3.000000 1.00 3.000000 5.0 5.000000 5.0000 \n", - "P05 3.000000 6.000000 NaN NaN NaN NaN NaN \n", - "P06 4.000000 5.000000 3.00 4.000000 4.0 4.000000 NaN \n", - "P07 5.000000 4.000000 4.90 5.000000 4.0 4.000000 4.9000 \n", - "P08 5.000000 5.000000 5.00 5.000000 4.0 4.000000 4.0000 \n", - "P09 3.000000 2.000000 NaN NaN NaN NaN NaN \n", - "P10 4.000000 5.000000 4.00 5.000000 4.0 5.000000 4.0000 \n", - "P11 4.000000 4.000000 4.00 5.000000 5.0 4.000000 5.0000 \n", - "P12 4.000000 4.000000 4.00 6.000000 5.0 5.000000 6.0000 \n", - "P13 NaN 5.000000 3.00 NaN NaN NaN NaN \n", - "P14 4.000000 3.000000 NaN NaN NaN NaN NaN \n", - "P15 3.000000 4.000000 3.00 3.000000 3.0 3.000000 3.0000 \n", - "Average 3.769231 4.285714 3.69 4.555556 4.4 4.333333 4.6125 \n", - "Min 1.000000 2.000000 1.00 3.000000 3.0 3.000000 3.0000 \n", - "Max 5.000000 6.000000 5.00 6.000000 5.0 5.000000 6.0000 \n", - "\n", - " Jan 24 \n", - " Traffic Sim I L13,Feb2 \n", - "Name \n", - "P01 NaN NaN \n", - "P02 NaN NaN \n", - "P03 NaN NaN \n", - "P04 5.0 NaN \n", - "P05 NaN NaN \n", - "P06 NaN NaN \n", - "P07 4.9 NaN \n", - "P08 5.0 5 \n", - "P09 NaN NaN \n", - "P10 NaN NaN \n", - "P11 5.0 NaN \n", - "P12 NaN NaN \n", - "P13 NaN NaN \n", - "P14 NaN NaN \n", - "P15 5.0 NaN \n", - "Average NaN NaN \n", - "Min NaN NaN \n", - "Max NaN NaN \n", - "\n", - "[18 rows x 24 columns]" - ] - } - ], - "prompt_number": 21 + "output_type": "execute_result" }, { - "cell_type": "code", - "collapsed": false, - "input": [ - "flipped = pydata.transpose()\n", - "flipped" - ], - "language": "python", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD7CAYAAABzGc+QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEKNJREFUeJzt3V+InNd9xvHvY8shgdAuwSASS2EvrEANIWtSFOGm9YS2\n4IhWuTHUgWLWNzYGkzSlJTS4xL3KTaHBCXEEdbpKLmxCLoyTypg0+HXjG7WJJeWP5GJDDHJClAvF\nJrEasJpfL3YsbUa7O+PRu5o5o+8Hlp0zczQ6CObR2WfPO5OqQpLUnutmvQBJ0nQMcElqlAEuSY0y\nwCWpUQa4JDXKAJekRk0U4EmuT3I8yTe3ePzhJC8mOZnk1n6XKEnazKQ78E8Cp4DLDo0nOQjcXFX7\ngHuBR/pbniRpK2MDPMke4CDwr0A2mXIIOAJQVceApSS7+1ykJOlyk+zA/wX4e+C3Wzx+E3Bmw/gV\nYM8VrkuSNMa2AZ7kL4BfVNVxNt99X5w6Mvb6fEnaYbvGPH4bcGjYc78d+L0kX62quzfM+Smwd8N4\nz/C+35HEUJekKVTVphvoTPpmVkluB/6uqv5y5P6DwANVdTDJAeDzVXVgkz9fvnGW5tFDDz3EQw89\nNOtlSJtKsmWAj9uBj6rhE94HUFWHq+pokoNJXgJeB+65otVKV9nLL7886yVIU5k4wKvqWeDZ4e3D\nI4890PO6JEljeCWmrnmrq6uzXoI0lYk78Cv+i+zAJekt264Ddweua17XdbNegjQVA1ySGmWFIklz\nzApFkhaQAa5rnh24WvVWL+TRnEi2e2saabasS68OA7xpvkg0j9xcXC1WKJLUKANcopv1AqSpGOCS\n1CjPgTdq/ZeY/ntqHsVfYvbIc+CStIAMcMkOXI0ywCWpUXbgjbID1/yyA++THbgkLSADXLIDV6PG\nBniStyc5luREklNJPrfJnEGS15IcH349uDPLlSS9aex7oVTVb5J8pKrOJ9kFPJfkw1X13MjUZ6vq\n0M4sU9pJg1kvQJrKRBVKVZ0f3nwbcD1wbpNpvoONJF1FEwV4kuuSnADOAs9U1amRKQXcluRkkqNJ\nbul7odLO6Wa9AGkqk+7Af1tVK8Ae4E+SDEamPA/sraoPAF8Anuh1lZKky7yl9wOvqteS/Dvwh2zY\ntlTVrzbcfirJl5K8q6p+p2pZXV1leXkZgKWlJVZWVhgMBsClT0VxPNl4Xcel/rYbfnf81seDOVtP\n++NZvz5aHnddx9raGsDFvNzK2At5ktwIXKiqV5O8A3ga+Keq+s6GObuBX1RVJdkPfL2qlkeexwt5\neuSFPJpfXsjTp+0u5JlkB/5u4EiS61ivXL5WVd9Jch9AVR0G7gTuT3IBOA/c1c/Spauhw5MoapGX\n0jfKHXifOgzwPrkD79N2O3ADvFEGuOaXAd4n3wtFkhaQAS55DlyNMsAlqVF24I2yA9f8sgPvkx24\nJC0gA1yyA1ejDHBJapQdeKPswDW/7MD7ZAcuSQvIAJfswNUoA1ySGmUH3ig7cM0vO/A+2YFL0gIy\nwCU7cDXKAJekRtmBN8oOXPPLDrxPduCStIAMcMkOXI3aNsCTvD3JsSQnkpxK8rkt5j2c5MUkJ5Pc\nujNLlSRttO2n0lfVb5J8pKrOJ9kFPJfkw1X13JtzkhwEbq6qfUk+BDwCHNjZZUt9Gsx6AdJUxlYo\nVXV+ePNtwPXAuZEph4Ajw7nHgKUku/tcpCTpcmMDPMl1SU4AZ4FnqurUyJSbgDMbxq8Ae/pborTT\nulkvQJrKthUKQFX9FlhJ8vvA00kGVdWNTBs94rLpGaLV1VWWl5cBWFpaYmVlhcFgAEDXrT+l48nG\n6zou/fjfDb87djz78axfHy2Pu65jbW0N4GJebuUtnQNP8o/A/1bVP2+478tAV1WPD8cvALdX1dmR\nP+s58B55Dlzzy3PgfZr6HHiSG5MsDW+/A/hz4PjItCeBu4dzDgCvjoa3JKl/4yqUdwNHklzHeth/\nraq+k+Q+gKo6XFVHkxxM8hLwOnDPzi5Z6luHJ1HUIi+lb5QVSp86DPA+WaH0absKxQBvlAGu+WWA\n98n3QpGkBWSAS54DV6MMcElqlB14o+zANb/swPtkBy5JC8gAl+zA1SgDXJIaZQfeKDtwzS878D7Z\ngUvSAjLAJTtwNcoAl6RG2YE3yg5c88sOvE924JK0gAxwyQ5cjTLAJalRduCNsgPX/LID75MduCQt\nIANcsgNXo8YGeJK9SZ5J8uMkP0ryiU3mDJK8luT48OvBnVmuJOlN4z6VHuAN4FNVdSLJO4HvJ/l2\nVZ0emfdsVR3qf4nSThvMegHSVMbuwKvq51V1Ynj718Bp4D2bTN20ZJck7Yy31IEnWQZuBY6NPFTA\nbUlOJjma5JZ+liddDd2sFyBNZZIKBYBhffIN4JPDnfhGzwN7q+p8ko8CTwDvG32O1dVVlpeXAVha\nWmJlZYXBYABA13UAjiccr+u49ON/N/zu2PHsx7N+fbQ87rqOtbU1gIt5uZWJzoEnuQH4FvBUVX1+\ngvk/AT5YVec23Oc58B55Dlzzy3Pgfbqic+BZT4pHgVNbhXeS3cN5JNnP+n8M5zabK0nqxyQVyh8B\nfw38IMnx4X2fAd4LUFWHgTuB+5NcAM4Dd+3AWqUd0uFJFLXIS+kbZYXSpw4DvE9WKH3arkIxwBtl\ngGt+GeB98r1QJGkBGeCS58DVKANckhplB94oO3DNLzvwPtmBS9ICMsAlO3A1ygCXpEbZgTfKDlzz\nyw68T3bgkrSADHDJDlyNMsAlqVF24I2yA9f8sgPvkx24JC0gA1yyA1ejDHBJapQdeKPswDW/7MD7\nZAcuSQvIAJfswNWoST6Vfm+SZ5L8OMmPknxii3kPJ3kxyckkt/a/VEnSRpN8Kv0bwKeq6kSSdwLf\nT/Ltqjr95oQkB4Gbq2pfkg8BjwAHdmbJUt8Gs16ANJWxO/Cq+nlVnRje/jVwGnjPyLRDwJHhnGPA\nUpLdPa9VkrTBW+rAkywDtwLHRh66CTizYfwKsOdKFiZdPd2sFyBNZZIKBYBhffIN4JPDnfhlU0bG\nl50jWl1dZXl5GYClpSVWVlYYDAYAdF0H4HjC8bqOSz/+d8Pvjh3Pfjzr10fL467rWFtbA7iYl1uZ\n6Bx4khuAbwFPVdXnN3n8y0BXVY8Pxy8At1fV2Q1zPAfeI8+Ba355DrxPV3QOPOtJ8ShwarPwHnoS\nuHs4/wDw6sbwliT1b+wOPMmHgf8EfsClLd9ngPcCVNXh4bwvAncArwP3VNXzI8/jDrxH7sD71OFJ\nlD65A+/TdjtwL6VvlAHepw4DvE8GeJ8M8AVkgGt+GeB98r1QJGkBGeCS58DVKANckhplB94oO3DN\nLzvwPtmBS9ICMsAlO3A1ygCXpEbZgTfKDlzzyw68T3bgkrSADHDJDlyNMsAlqVF24I2yA9f8sgPv\nkx24JC0gA1yyA1ejDHBJapQdeKPswDW/7MD7ZAcuSQvIAJfswNWoST6V/itJzib54RaPD5K8luT4\n8OvB/pcpSRo1yafS/zHwa+CrVfX+TR4fAH9bVYfGPI8deI/swDW/7MD7dEUdeFV9F/jluL9jmoVJ\nkqbXRwdewG1JTiY5muSWHp5Tuoq6WS9AmsquHp7jeWBvVZ1P8lHgCeB9m01cXV1leXkZgKWlJVZW\nVhgMBgB0XQfgeMLxug4YbLiNY8dzMZ7166Plcdd1rK2tAVzMy61MdA48yTLwzc068E3m/gT4YFWd\nG7nfDrxHduCaX3bgfdrRc+BJdmc9TUiyn/X/FM6N+WOSpCs0tkJJ8hhwO3BjkjPAZ4EbAKrqMHAn\ncH+SC8B54K6dW660EzouVQFSO7yUvlFWKH3qMMD7ZIXSp+0qFAO8UQa45pcB3iffC0WSFpABLnkO\nXI0ywCWpUXbgjbID1/yyA++THbgkLSADXLIDV6MMcElqlB14o+zANb/swPtkBy5JC8gAl+zA1SgD\nXJIaZQfeKDtwzS878D7ZgUvSAjLAJTtwNcoAl6RG2YE3yg5c88sOvE924JK0gAxwyQ5cjRob4Em+\nkuRskh9uM+fhJC8mOZnk1n6XKEnazCQ78H8D7tjqwSQHgZurah9wL/BIT2uTrpLBrBcgTWVsgFfV\nd4FfbjPlEHBkOPcYsJRkdz/LkyRtpY8O/CbgzIbxK8CeHp5Xukq6WS9Amsqunp5n9IjLpmeIVldX\nWV5eBmBpaYmVlRUGgwEAXdcBOJ5wvK7j0o//3fC7Y8ezH8/69dHyuOs61tbWAC7m5VYmOgeeZBn4\nZlW9f5PHvgx0VfX4cPwCcHtVnR2Z5znwHnkOXPPLc+B92ulz4E8Cdw//ogPAq6PhLUnq39gKJclj\nwO3AjUnOAJ8FbgCoqsNVdTTJwSQvAa8D9+zkgqX+dXgSRS3yUvpGWaH0qcMA75MVSp+2q1AM8EYZ\n4JpfBniffC8USVpABrjkOXA1ygCXpEbZgTfKDlzzyw68T3bgkrSADHDJDlyNMsAlqVF24I2yA9f8\nsgPvkx24JC0gA1yyA1ejDHBJapQdeKPswDW/7MD7ZAcuSQvIAJfswNUoA1ySGmUH3ig7cM0vO/A+\n2YFL0gKaKMCT3JHkhSQvJvn0Jo8PkryW5Pjw68H+lyrtlG7WC5CmMsmHGl8PfBH4M+CnwH8nebKq\nTo9MfbaqDu3AGiVJm5hkB74feKmqXq6qN4DHgY9tMm/Tjkaaf4NZL0CayiQBfhNwZsP4leF9GxVw\nW5KTSY4muaWvBUqSNjdJgE/y6+Tngb1V9QHgC8ATV7Qq6arqZr0AaSpjO3DWe++9G8Z7Wd+FX1RV\nv9pw+6kkX0ryrqo6t3He6uoqy8vLACwtLbGyssJgMACg6zoAxxOO13Vc+vG/G3537Hj241m/Ploe\nd13H2toawMW83MrYc+BJdgH/A/wp8DPgv4CPb/wlZpLdwC+qqpLsB75eVcsjz+M58B55Dlzzy3Pg\nfdruHPjYHXhVXUjyAPA0cD3waFWdTnLf8PHDwJ3A/UkuAOeBu3pbvSRpU16J2Sh34H3q8CRKn9yB\n98krMSVpAbkDb5Q7cM0vd+B9cgcuSQvIAJc8B65GGeCS1Cg78EbZgWt+2YH3yQ5ckhaQAS7ZgatR\nBrgkNcoOvFF24JpfduB9sgOXpAVkgEt24GqUAS5JjbIDb5QduOaXHXif7MAlaQEZ4JIduBplgEtS\no+zAG2UHrvllB94nO3BJWkBjAzzJHUleSPJikk9vMefh4eMnk9za/zKlndTNegHSVLYN8CTXA18E\n7gBuAT6e5A9G5hwEbq6qfcC9wCM7tFZph5yY9QKkqYzbge8HXqqql6vqDeBx4GMjcw4BRwCq6hiw\nlGR37yuVdsyrs16ANJVxAX4TcGbD+JXhfePm7LnypUmStjMuwCf9VfLob0j9FbQa8vKsFyBNZdeY\nx38K7N0w3sv6Dnu7OXuG911m/eib+uO/Z3+OzHoBC8XX+tUxLsC/B+xLsgz8DPgr4OMjc54EHgAe\nT3IAeLWqzo4+0VbnGCVJ09k2wKvqQpIHgKeB64FHq+p0kvuGjx+uqqNJDiZ5CXgduGfHVy1JunpX\nYkqS+jWuQpEWyvA6ho9x6TTVK8CTVXV6dquSpuOl9LpmDK8kfmw4PDb8ug54LMk/zGxh0pSsUHTN\nSPIicMvworSN978NOFVVN89mZdJ03IHrWvJ/XH4hGsB7ho9JTbED17Xkb4D/GJ6YevPq4b3APtaP\nwkpNsULRNWX4Bm37Wd+JF+sXnX2vqi7MdGHSFAxwSWqUHbgkNcoAl6RGGeCS1CgDXJIaZYBLUqP+\nH7vLsR14DO63AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
NameP01P02P03P04P05P06P07P08P09P10P11P12P13P14P15AverageMinMax
Jan 12L 1, 12 3.0 4.0NaN 3NaN 3.0 3.5 2.0NaN 2 2 3.5 2.5 3 2 2.791667 2 4.0
Jan 13H 1, 13 4.0 3.5 5 3 3 3.5 4.0 3.0 1 2 5 4.0 3.0 3 2 3.266667 1 5.0
L 2, 13 3.0 3.0 3 2 3 3.0 3.0 2.0 1 2 4 4.0 3.0 3 2 2.733333 1 4.0
Jan 14H 2, 14 4.0 5.0 4 3 3 3.0 4.0 3.0 1 3 3 4.0 3.0 3 2 3.200000 1 5.0
L 3, 14 4.0 4.0 5 4 3 3.0 5.0 4.0 2NaN 5 4.5 3.0 4 3 3.821429 2 5.0
Jan 15H 3, 15 5.0 4.5 5 4 4 3.0 4.0 4.0 2 3 4 5.0 3.0 3 3 3.766667 2 5.0
L 4, 15 5.0 4.5 5 4 4 4.0 4.5 3.0 2 3 4 5.0 4.0 4 3 3.933333 2 5.0
Jan 16Mystery Word, 20 5.0 5.0 5 4 4 4.0 4.0 4.0 3 3 4 5.0 NaN 4 3 4.071429 3 5.0
L 5, 20 4.0 5.0 5 5 5 3.0 5.0 3.0 3 3 4 5.0 3.0 4 3 4.000000 3 5.0
Jan 17Currency, 21 4.0 5.0 5NaN 4 3.0 5.0 3.0 2 4NaN 4.0 3.0 4 3 3.769231 2 5.0
L 6, 21 4.0 5.0 5 4 4 5.0 5.0 5.0 3 4NaN 4.0 3.0 4 3 4.142857 3 5.0
Jan 18Blackjack1, 22 5.5 5.0 5NaN 5 NaN 5.0 5.5 2 4 4 4.0 4.0 4 3 4.307692 2 5.5
L 7, 22 4.0 NaNNaN 4 4 5.0 4.0 4.0 3 4 4 NaN 4.0NaN 3 3.909091 3 5.0
Jan 19L 8, 23 5.5 NaN 5 4 4 5.0 5.0 5.0 3 5 4 5.5 4.0NaN 3 4.461538 3 5.5
Blackjack2, 26 NaN 5.0 6NaN 4 5.0 NaN 5.0 3 5 4 5.0 4.0 4 3 4.416667 3 6.0
Jan 20L 9, 26 4.0 5.0NaN 1 3 4.0 5.0 5.0 3 4 4 4.0 NaN 4 3 3.769231 1 5.0
Random Art, 27 5.0 5.0NaN 3 6 5.0 4.0 5.0 2 5 4 4.0 5.0 3 4 4.285714 2 6.0
Jan 21L10, 27 NaN NaN 5 1NaN 3.0 4.9 5.0NaN 4 4 4.0 3.0NaN 3 3.690000 1 5.0
Charting NaN NaN 5 3NaN 4.0 5.0 5.0NaN 5 5 6.0 NaNNaN 3 4.555556 3 6.0
Jan 22L11, 28 NaN 5.0 5 5NaN 4.0 4.0 4.0NaN 4 5 5.0 NaNNaN 3 4.400000 3 5.0
PigSim NaN 5.0NaN 5NaN 4.0 4.0 4.0NaN 5 4 5.0 NaNNaN 3 4.333333 3 5.0
Jan 23L12, 29 NaN 5.0NaN 5NaN NaN 4.9 4.0NaN 4 5 6.0 NaNNaN 3 4.612500 3 6.0
Traffic Sim I NaN NaNNaN 5NaN NaN 4.9 5.0NaNNaN 5 NaN NaNNaN 5 NaNNaN NaN
Jan 24L13,Feb2 NaN NaNNaNNaNNaN NaN NaN 5.0NaNNaNNaN NaN NaNNaNNaN NaNNaN NaN
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 22, - "text": [ - "Name P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 \\\n", - "Jan 12 L 1, 12 3.0 4.0 NaN 3 NaN 3.0 3.5 2.0 NaN 2 \n", - "Jan 13 H 1, 13 4.0 3.5 5 3 3 3.5 4.0 3.0 1 2 \n", - " L 2, 13 3.0 3.0 3 2 3 3.0 3.0 2.0 1 2 \n", - "Jan 14 H 2, 14 4.0 5.0 4 3 3 3.0 4.0 3.0 1 3 \n", - " L 3, 14 4.0 4.0 5 4 3 3.0 5.0 4.0 2 NaN \n", - "Jan 15 H 3, 15 5.0 4.5 5 4 4 3.0 4.0 4.0 2 3 \n", - " L 4, 15 5.0 4.5 5 4 4 4.0 4.5 3.0 2 3 \n", - "Jan 16 Mystery Word, 20 5.0 5.0 5 4 4 4.0 4.0 4.0 3 3 \n", - " L 5, 20 4.0 5.0 5 5 5 3.0 5.0 3.0 3 3 \n", - "Jan 17 Currency, 21 4.0 5.0 5 NaN 4 3.0 5.0 3.0 2 4 \n", - " L 6, 21 4.0 5.0 5 4 4 5.0 5.0 5.0 3 4 \n", - "Jan 18 Blackjack1, 22 5.5 5.0 5 NaN 5 NaN 5.0 5.5 2 4 \n", - " L 7, 22 4.0 NaN NaN 4 4 5.0 4.0 4.0 3 4 \n", - "Jan 19 L 8, 23 5.5 NaN 5 4 4 5.0 5.0 5.0 3 5 \n", - " Blackjack2, 26 NaN 5.0 6 NaN 4 5.0 NaN 5.0 3 5 \n", - "Jan 20 L 9, 26 4.0 5.0 NaN 1 3 4.0 5.0 5.0 3 4 \n", - " Random Art, 27 5.0 5.0 NaN 3 6 5.0 4.0 5.0 2 5 \n", - "Jan 21 L10, 27 NaN NaN 5 1 NaN 3.0 4.9 5.0 NaN 4 \n", - " Charting NaN NaN 5 3 NaN 4.0 5.0 5.0 NaN 5 \n", - "Jan 22 L11, 28 NaN 5.0 5 5 NaN 4.0 4.0 4.0 NaN 4 \n", - " PigSim NaN 5.0 NaN 5 NaN 4.0 4.0 4.0 NaN 5 \n", - "Jan 23 L12, 29 NaN 5.0 NaN 5 NaN NaN 4.9 4.0 NaN 4 \n", - " Traffic Sim I NaN NaN NaN 5 NaN NaN 4.9 5.0 NaN NaN \n", - "Jan 24 L13,Feb2 NaN NaN NaN NaN NaN NaN NaN 5.0 NaN NaN \n", - "\n", - "Name P11 P12 P13 P14 P15 Average Min Max \n", - "Jan 12 L 1, 12 2 3.5 2.5 3 2 2.791667 2 4.0 \n", - "Jan 13 H 1, 13 5 4.0 3.0 3 2 3.266667 1 5.0 \n", - " L 2, 13 4 4.0 3.0 3 2 2.733333 1 4.0 \n", - "Jan 14 H 2, 14 3 4.0 3.0 3 2 3.200000 1 5.0 \n", - " L 3, 14 5 4.5 3.0 4 3 3.821429 2 5.0 \n", - "Jan 15 H 3, 15 4 5.0 3.0 3 3 3.766667 2 5.0 \n", - " L 4, 15 4 5.0 4.0 4 3 3.933333 2 5.0 \n", - "Jan 16 Mystery Word, 20 4 5.0 NaN 4 3 4.071429 3 5.0 \n", - " L 5, 20 4 5.0 3.0 4 3 4.000000 3 5.0 \n", - "Jan 17 Currency, 21 NaN 4.0 3.0 4 3 3.769231 2 5.0 \n", - " L 6, 21 NaN 4.0 3.0 4 3 4.142857 3 5.0 \n", - "Jan 18 Blackjack1, 22 4 4.0 4.0 4 3 4.307692 2 5.5 \n", - " L 7, 22 4 NaN 4.0 NaN 3 3.909091 3 5.0 \n", - "Jan 19 L 8, 23 4 5.5 4.0 NaN 3 4.461538 3 5.5 \n", - " Blackjack2, 26 4 5.0 4.0 4 3 4.416667 3 6.0 \n", - "Jan 20 L 9, 26 4 4.0 NaN 4 3 3.769231 1 5.0 \n", - " Random Art, 27 4 4.0 5.0 3 4 4.285714 2 6.0 \n", - "Jan 21 L10, 27 4 4.0 3.0 NaN 3 3.690000 1 5.0 \n", - " Charting 5 6.0 NaN NaN 3 4.555556 3 6.0 \n", - "Jan 22 L11, 28 5 5.0 NaN NaN 3 4.400000 3 5.0 \n", - " PigSim 4 5.0 NaN NaN 3 4.333333 3 5.0 \n", - "Jan 23 L12, 29 5 6.0 NaN NaN 3 4.612500 3 6.0 \n", - " Traffic Sim I 5 NaN NaN NaN 5 NaN NaN NaN \n", - "Jan 24 L13,Feb2 NaN NaN NaN NaN NaN NaN NaN NaN " - ] - } - ], - "prompt_number": 22 - }, + "output_type": "display_data" + } + ], + "source": [ + "Jan_12 = flipped.ix[\"Jan 12\"]\n", + "Jan_13 = flipped.ix[\"Jan 13\"]\n", + "# Jan_12.plot(kind=\"bar\")\n", + "mean = (flipped.mean()).mean()\n", + "pd.Series(mean).plot(kind=\"bar\")" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "code", - "collapsed": false, - "input": [ - "# del flipped[\"Max\"]\n", - "\n", - "flipped" - ], - "language": "python", + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, "metadata": {}, - "outputs": [ - { - "html": [ - "
\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
NameP01P02P03P04P05P06P07P08P09P10P11P12P13P14P15
Jan 12L 1, 12 3.0 4.0NaN 3NaN 3.0 3.5 2.0NaN 2 2 3.5 2.5 3 2
Jan 13H 1, 13 4.0 3.5 5 3 3 3.5 4.0 3.0 1 2 5 4.0 3.0 3 2
L 2, 13 3.0 3.0 3 2 3 3.0 3.0 2.0 1 2 4 4.0 3.0 3 2
Jan 14H 2, 14 4.0 5.0 4 3 3 3.0 4.0 3.0 1 3 3 4.0 3.0 3 2
L 3, 14 4.0 4.0 5 4 3 3.0 5.0 4.0 2NaN 5 4.5 3.0 4 3
Jan 15H 3, 15 5.0 4.5 5 4 4 3.0 4.0 4.0 2 3 4 5.0 3.0 3 3
L 4, 15 5.0 4.5 5 4 4 4.0 4.5 3.0 2 3 4 5.0 4.0 4 3
Jan 16Mystery Word, 20 5.0 5.0 5 4 4 4.0 4.0 4.0 3 3 4 5.0 NaN 4 3
L 5, 20 4.0 5.0 5 5 5 3.0 5.0 3.0 3 3 4 5.0 3.0 4 3
Jan 17Currency, 21 4.0 5.0 5NaN 4 3.0 5.0 3.0 2 4NaN 4.0 3.0 4 3
L 6, 21 4.0 5.0 5 4 4 5.0 5.0 5.0 3 4NaN 4.0 3.0 4 3
Jan 18Blackjack1, 22 5.5 5.0 5NaN 5 NaN 5.0 5.5 2 4 4 4.0 4.0 4 3
L 7, 22 4.0 NaNNaN 4 4 5.0 4.0 4.0 3 4 4 NaN 4.0NaN 3
Jan 19L 8, 23 5.5 NaN 5 4 4 5.0 5.0 5.0 3 5 4 5.5 4.0NaN 3
Blackjack2, 26 NaN 5.0 6NaN 4 5.0 NaN 5.0 3 5 4 5.0 4.0 4 3
Jan 20L 9, 26 4.0 5.0NaN 1 3 4.0 5.0 5.0 3 4 4 4.0 NaN 4 3
Random Art, 27 5.0 5.0NaN 3 6 5.0 4.0 5.0 2 5 4 4.0 5.0 3 4
Jan 21L10, 27 NaN NaN 5 1NaN 3.0 4.9 5.0NaN 4 4 4.0 3.0NaN 3
Charting NaN NaN 5 3NaN 4.0 5.0 5.0NaN 5 5 6.0 NaNNaN 3
Jan 22L11, 28 NaN 5.0 5 5NaN 4.0 4.0 4.0NaN 4 5 5.0 NaNNaN 3
PigSim NaN 5.0NaN 5NaN 4.0 4.0 4.0NaN 5 4 5.0 NaNNaN 3
Jan 23L12, 29 NaN 5.0NaN 5NaN NaN 4.9 4.0NaN 4 5 6.0 NaNNaN 3
Traffic Sim I NaN NaNNaN 5NaN NaN 4.9 5.0NaNNaN 5 NaN NaNNaN 5
Jan 24L13,Feb2 NaN NaNNaNNaNNaN NaN NaN 5.0NaNNaNNaN NaN NaNNaNNaN
\n", - "
" - ], - "metadata": {}, - "output_type": "pyout", - "prompt_number": 45, - "text": [ - "Name P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 \\\n", - "Jan 12 L 1, 12 3.0 4.0 NaN 3 NaN 3.0 3.5 2.0 NaN 2 \n", - "Jan 13 H 1, 13 4.0 3.5 5 3 3 3.5 4.0 3.0 1 2 \n", - " L 2, 13 3.0 3.0 3 2 3 3.0 3.0 2.0 1 2 \n", - "Jan 14 H 2, 14 4.0 5.0 4 3 3 3.0 4.0 3.0 1 3 \n", - " L 3, 14 4.0 4.0 5 4 3 3.0 5.0 4.0 2 NaN \n", - "Jan 15 H 3, 15 5.0 4.5 5 4 4 3.0 4.0 4.0 2 3 \n", - " L 4, 15 5.0 4.5 5 4 4 4.0 4.5 3.0 2 3 \n", - "Jan 16 Mystery Word, 20 5.0 5.0 5 4 4 4.0 4.0 4.0 3 3 \n", - " L 5, 20 4.0 5.0 5 5 5 3.0 5.0 3.0 3 3 \n", - "Jan 17 Currency, 21 4.0 5.0 5 NaN 4 3.0 5.0 3.0 2 4 \n", - " L 6, 21 4.0 5.0 5 4 4 5.0 5.0 5.0 3 4 \n", - "Jan 18 Blackjack1, 22 5.5 5.0 5 NaN 5 NaN 5.0 5.5 2 4 \n", - " L 7, 22 4.0 NaN NaN 4 4 5.0 4.0 4.0 3 4 \n", - "Jan 19 L 8, 23 5.5 NaN 5 4 4 5.0 5.0 5.0 3 5 \n", - " Blackjack2, 26 NaN 5.0 6 NaN 4 5.0 NaN 5.0 3 5 \n", - "Jan 20 L 9, 26 4.0 5.0 NaN 1 3 4.0 5.0 5.0 3 4 \n", - " Random Art, 27 5.0 5.0 NaN 3 6 5.0 4.0 5.0 2 5 \n", - "Jan 21 L10, 27 NaN NaN 5 1 NaN 3.0 4.9 5.0 NaN 4 \n", - " Charting NaN NaN 5 3 NaN 4.0 5.0 5.0 NaN 5 \n", - "Jan 22 L11, 28 NaN 5.0 5 5 NaN 4.0 4.0 4.0 NaN 4 \n", - " PigSim NaN 5.0 NaN 5 NaN 4.0 4.0 4.0 NaN 5 \n", - "Jan 23 L12, 29 NaN 5.0 NaN 5 NaN NaN 4.9 4.0 NaN 4 \n", - " Traffic Sim I NaN NaN NaN 5 NaN NaN 4.9 5.0 NaN NaN \n", - "Jan 24 L13,Feb2 NaN NaN NaN NaN NaN NaN NaN 5.0 NaN NaN \n", - "\n", - "Name P11 P12 P13 P14 P15 \n", - "Jan 12 L 1, 12 2 3.5 2.5 3 2 \n", - "Jan 13 H 1, 13 5 4.0 3.0 3 2 \n", - " L 2, 13 4 4.0 3.0 3 2 \n", - "Jan 14 H 2, 14 3 4.0 3.0 3 2 \n", - " L 3, 14 5 4.5 3.0 4 3 \n", - "Jan 15 H 3, 15 4 5.0 3.0 3 3 \n", - " L 4, 15 4 5.0 4.0 4 3 \n", - "Jan 16 Mystery Word, 20 4 5.0 NaN 4 3 \n", - " L 5, 20 4 5.0 3.0 4 3 \n", - "Jan 17 Currency, 21 NaN 4.0 3.0 4 3 \n", - " L 6, 21 NaN 4.0 3.0 4 3 \n", - "Jan 18 Blackjack1, 22 4 4.0 4.0 4 3 \n", - " L 7, 22 4 NaN 4.0 NaN 3 \n", - "Jan 19 L 8, 23 4 5.5 4.0 NaN 3 \n", - " Blackjack2, 26 4 5.0 4.0 4 3 \n", - "Jan 20 L 9, 26 4 4.0 NaN 4 3 \n", - " Random Art, 27 4 4.0 5.0 3 4 \n", - "Jan 21 L10, 27 4 4.0 3.0 NaN 3 \n", - " Charting 5 6.0 NaN NaN 3 \n", - "Jan 22 L11, 28 5 5.0 NaN NaN 3 \n", - " PigSim 4 5.0 NaN NaN 3 \n", - "Jan 23 L12, 29 5 6.0 NaN NaN 3 \n", - " Traffic Sim I 5 NaN NaN NaN 5 \n", - "Jan 24 L13,Feb2 NaN NaN NaN NaN NaN " - ] - } - ], - "prompt_number": 45 + "output_type": "execute_result" }, { - "cell_type": "code", - "collapsed": false, - "input": [ - "Jan_12 = flipped.ix[\"Jan 12\"]\n", - "Jan_13 = flipped.ix[\"Jan 13\"]\n", - "# Jan_12.plot(kind=\"bar\")\n", - "mean = (flipped.mean()).mean()\n", - "pd.Series(mean).plot(kind=\"bar\")" - ], - "language": "python", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAF5CAYAAAB+9ooAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt4VeWZ///3k3AwgRCQiIaDBBhPQWNEoFRBE+Q4RUAZ\n0M4XMWgNlYPiYURaW0Ivyvy0HR0dvvYggSTTSkutaEWgtZUADoMMIich4tchCIKIEI4tEJLn90eS\n3RBz2Nnstdfae31e17Uv8qx9WPdaJHdWnrXWfRtrLSIiEtvi3A5AREScp2QvIuIDSvYiIj6gZC8i\n4gNK9iIiPqBkLyLiAy3cDqA5jDG6TjTCrLXG7RhE5OJFVbIH0H0BkWOM8rxIrNA0joiIDyjZi4j4\ngJK9iIgPKNk3Q1xcHE8++WRg/NOf/pS5c+e6GJGISHCU7JuhVatWLFu2jCNHjgA6gSki0UPJvhla\ntmxJbm4uL7zwwteee+uttxgwYAB9+vRh6NChfPnllwDk5eVx//33c9ttt5GWlsbrr7/Ok08+SUZG\nBiNHjuT8+fMAfPDBB2RlZdG3b19GjBjBF198EdFtE5HYpmTfTFOnTuXXv/41J06cuGD5oEGD2LBh\nA5s3b+aee+7hueeeCzy3Z88eVq9ezR/+8AcmTpzI0KFD2bZtGwkJCbz99tuUl5czY8YMfv/737Np\n0yYmT57M97///UhvmojEsKi7zt5tSUlJTJo0iZdeeomEhITA8n379jFhwgS++OILzp07R8+ePYGq\nqZ6RI0cSHx/P9ddfT2VlJcOHDwfghhtuoLS0lN27d/PRRx8xZMgQACoqKujcuXPkN05EYpaSfQhm\nzpxJnz59mDx5cmDZjBkzePLJJxk1ahRr1qwhLy8v8FyrVq2AqhO8LVu2DCyPi4vj/PnzWGvp3bs3\n69evj9g2iIi/aBonBB06dGDChAnk5+cHTtKeOHEicDReUFAQeG0wd/xec801HD58mA0bNgBQXl7O\nzp07wx+4iPiWkn0z1L765oknnuCrr74KjPPy8hg/fjx9+/blsssuC7zWGHPB++pewWOMoWXLlrz2\n2mvMmjWLzMxMbrrpJv77v//b4a0RET8x0VRrxhhjoyneaGeMUSE0kRihI3sRER9QshcR8QElexER\nH1CyFxHxASV7EREfULIXEfEBJXsRER9QshcR8QEl+zBJS0sjMTGRpKQkrrjiCiZPnszp06c5e/Ys\nDzzwAMnJyaSmpn6tPHJubi7XXnst8fHxFBYWuhS9iMS6qC+EFokGIsHctWuMYfny5QwePJgDBw4w\nfPhw5s2bB8Cnn37KZ599xsGDB8nOziY9PT1Q+TIzM5N7772XWbNmqRmKiDgm6pN9FSdLKDQ/AXfu\n3JmRI0eyY8cONm/eTGFhIcnJySQnJ5Obm0tBQUEg2U+dOhWASy65JKxRi4jUpmmcMKr5C2Dfvn2s\nWLGCHj16cPDgQW688cbAazIyMvjoo4/cClFEfErJPkystYwdO5YOHTowaNAgsrKyeOqppwBITk4O\nvK5du3acPHnSrTBFxKdiZBrHfcYY3nzzTQYPHhxYVlZWBlTVuk9JSQHg+PHjJCUluRKjiPiXjuwd\n1KFDB1JTU9myZUtg2datW7n++utdjEpE/EjJ3mGTJk1i3rx5HDt2jF27drFw4UJycnICz5eXl3Pm\nzBkqKys5d+4cZ86cCerqHxGR5lCyd9jcuXPp1asX3bt3Jzs7m1mzZjFs2LDA80OHDiUxMZENGzaQ\nm5tLYmIi69atczFiEYlFUd+pyivX2ccidaoSiR1Rf4LWr4lYRKQ5NI0jIuIDSvYiIj6gZC8i4gNK\n9iIiPqBkLyLiA0r2IiI+oGQvIuIDSvYiIj6gZB8mobQl3L17N2PGjKFTp0507NiRESNGsHv3bhe3\nQkRiVdQne2OM449g41i+fDknT55k8+bNbNq0iXnz5pGXlxdoS7h69Wqee+45/vjHPwJV5Y7Hjh3L\n7t27OXToEP3792fMmDFO7i4R8anYqI2T5+BK84IrydCjRw/y8/MD9eyfeuopdu3aFWhLOGTIEADm\nzJnD7t27WbJkydc+4+jRo6SkpHDkyBE6dOgQ1s0IhWrjiMSOqD+y95KLbUu4du1aUlNTPZHoRSS2\nKNmHycW2Jdy/fz/Tp0/n+eefj1jMIuIfUV/10isupi3h4cOHGTZsGNOmTeOee+6JXNAi4hs6sndQ\nMG0Jy8rKGDZsGGPHjmX27NluhCkiPqBk77DG2hKeOHGC4cOHM3DgQObPn+9uoCIS05TsHdZYW8Jl\ny5axadMmFi9eTFJSEklJSbRr1479+/e7HLWIxJrYuPTSYdG0j8JJl16KxI6oP0Hr10QsItIcmsYR\nEfEBJXsRER9QshcR8QElexERH1CyFxHxASV7EREfULIXEfEBJXsRER9Qsg+TUNoSHjlyhFtvvZWU\nlBSSk5O56aabeOONN1zcChGJVVF/B61XyiXUtCUcPHgwBw4cYPjw4cybNw8g0Jbw4MGDZGdnk56e\nzvDhw2nbti2LFi3iqquuIi4ujjfffJPx48dz9OhR2rZt6/RmiYiPRH2yB3CyYEIov0o6d+7MyJEj\n2bFjR6AtYXJyMsnJyeTm5lJQUMDw4cNp3bo111xzDQCVlZXExcWRkpJCq1atwrsRIuJ7msYJo1Db\nEmZkZJCQkEBOTg7Lli1TsheRsFOyD5OLaUu4bds2Tp48SV5eHuPGjePUqVMRjV1EYp+SfZjUtCUs\nKyujtLSUBQsW0KZNG6CqSUmN+toSArRq1YoZM2aQlJTEX/7yl4jFLSL+oGTvoGDaEtZ1/vz5wC8J\nEZFwiYkTtF5W05awb9++HDx4kIULF1JYWAjA+++/T3l5Of3796eiooKXXnqJM2fOMGDAAJejFpFY\noyN7hzXWlvDs2bNMnz6dlJQUrrzyStauXcuqVat02aWIhJ3aEgYhmvZROKktoUjsiPppHL8mYhGR\n5tA0joiIDyjZi4j4gJK9iIgPKNmLiPiAkr2IiA8o2YuI+ICSvYiIDyjZi4j4gJJ9mITSlrC2oqIi\n4uLiyM/Pj3DkIuIHUX8HrVfKJYTSlrBGWVkZ8+fP5/rrr4/I9oiI/0R9sgdg9WrnPjs7u9lvCbYt\nYY3Zs2fz6KOPsnTp0nBGLiISoGmcMAqlLeHGjRvZvHkz3/3udyMer4j4h5J9mITSlrCiooJp06ax\nYMECTd+IiKNiYxrHA2raEg4ePDiwrKysDKhqS5iSkgJc2Jbw5ZdfJiMjg/79+wfeoyqeIuIEHdk7\nqKm2hO+++y7Lli0jNTWV1NRU1q9fzxNPPMEjjzziVsgiEqN0ZO+wxtoSFhQUcPbsWaDqiP7uu+9m\n/PjxPPjgg26GLCIxSMneYXPnzuXhhx+me/fuJCQk8PTTTwfaEtaeywdo1aoV7dq1C0zziIiEi9oS\nBiGa9lE4qS2hSOyI+iN7vyZiEZHm0AlaEREfULIXEfEBJXsRER9QshcR8QElexERH1CyFxHxASV7\nEREfULIXEfEBJfswCbUtYVxcHG3btiUpKYmkpCRyc3Nd2gIRiWVRfwetV8olXExbwu3bt9OjRw/H\n4hcRifpkD7Aa59oSZuN8W8LKyspwhiwi8jWaxgmjUNoSAtx2222kpqYybtw49u7dG9GYRcQflOzD\nJJS2hABr165l7969lJSU0LlzZ0aNGkVFRUXE4xeR2BYT0zheEEpbQoCBAwcCVb8QXnzxRZKTkykp\nKaF3794RjF5EYp2O7B3UVFvCumqmgVS2WUTCTcneYTVtCY8dO8auXbtYuHAhOTk5AOzcuZMtW7ZQ\nUVHBqVOnePzxx+natSvXXXedu0GLSMxRsnfY3Llz6dWrF927dyc7O5tZs2YF2hIeOnSIe++9l+Tk\nZHr16sW+fftYvnw58fHxLkctIrFGbQmDEE37KJzUllAkdkT9CVq/JmIRkebQNI6IiA8o2YuI+ICS\nvYiIDyjZi4j4gJK9iIgPKNmLiPiAkr2IiA8o2YuI+ICSfZiE2pawoqKCZ555hi5dutCuXTv69OnD\n8ePHXdoKEYlVUX8HrVfKJYTalnDOnDls2LCBDRs20K1bN3bu3Mkll1zi6PaIiP9EfbIHWO1cV0Ky\nm9+VMOi2hGVlZbz44ots27aNbt26AZCenh7mLRAR0TROWDW3LeH27dtp0aIFv/vd70hNTeWaa67h\n5ZdfdiV2EYltjiV7Y8wiY8whY8z2Wsv6G2M2GmM+NMb8jzGmn1Prj7RQ2hLu37+f48eP88knn1Ba\nWsprr71GXl4ef/7zn13ZBhGJXU4e2S8GRtRZ9hzwA2vtTcAPq8cxoaYtYVlZGaWlpSxYsIA2bdoA\nVW0Ja9RuS5iQkADAD3/4Q1q3bs0NN9zAvffey4oVKyK/ASIS0xxL9tbadUBZncUHgZrD3PbA506t\n3wuaakuYkZFR7/sicdJZRPwl0nP2TwP/Zoz5DPgJMDvC64+4xtoS9urVi0GDBvHjH/+Yc+fOsWvX\nLn77298yatQod4MWkZgT6WSfDzxirb0SeAxYFOH1R1xjbQkBlixZwt69e+nYsSOjRo1i3rx5ZIdy\nCZCISCMcbUtojEkD3rLW3lA9PmGtbVf9tQGOWWuT63lfg0GpLWHkaDpJJPo01Eo00tfZ/z9jzO3W\n2jXAYGB3Qy+sL8HWl3z8mogjRftXvC4vL4+8vDy3w/CExg7QHEv2xpglwO1AijFmH1VX3+QC/9cY\n0xr4W/VYRCRkpaWlbocQFRxL9tbabzfw1DecWqeIiNRPd9CKSFSrubpNGufoCdpQGWNsQ3P2Xow3\nVml/i0SX6p/ZeifudWQvIlGtuLjY7RCigpK9iIgPaBpHGqT9LRJdNI0jIuJzSvZhEkpbwnXr1pGU\nlHTBIy4ujmXLlrm4JSLRRXP2wYn6TlVeKZcQSlvCQYMGBWrbA6xZs4Y777yTESPqVoYWEbk4UZ/s\nvSjYtoR1FRQUMH78+ECde7mQl2r16FyGd2RlZbkdQlTQNE4YNbctYW2nT5/m97//Pffff3/E4o1O\n1gMPkeijZB8mobQlrO3111/nsssu47bbbotYzCKxQHP2wdE0TpjUtCUcPHhwYFlZWVWjrhMnTpCS\nkgJc2JawtsLCQiZNmhSZYEXEd3Rk76Cm2hLW2LdvH2vWrFGyFwmB5uyDo2TvsMbaEtb4z//8T269\n9VZ69OjhTpAiEvOU7B3WVFtCqEr2OjErEhrN2QfHsXIJxphFwLeAL2vaElYvnwFMBSqAt621s+p5\nb9DlErxynX0s8lq5hKr/ay/E46394nfFxcWayqnWWLkEJ5P9IOAUUFSrB2028D3gH6215caYy6y1\nh+t5r2rjeIDX9reSvUjjXKmNY61dB5TVWfww8K/W2vLq13wt0YuISPhFes7+KuA2Y8wGY0yxMaZv\nhNcvIjFGc/bBifR19i2ADtbaAcaYfsBSoGeEYxAR8Z1IJ/v9wOsA1tr/McZUGmM6WmuP1H1hTk4O\naWlpALRv357MzMyIBip/V3PkVHMSzK1xrYiq/81yaXzhSUGv7B+/jmuWeSWeSI6Li4spKCgACOTL\nhjjavMQYkwa8VesE7RSgs7V2jjHmauDP1tor63mfTtB6gNf2t07QijTOlRO0xpglwHrgamPMPmPM\nZGAR0NMYsx1YAuiWURG5KJqzD45j0zjW2m838NR9Tq1TRETqpx600iCv7W9N44g0Tj1oIyCUtoQA\n7733Hv369SM5OZlevXrxyiuvuLQFIhLLor7EsVfKJYTSlrCiooK77rqL+fPn89BDD7Fp0yays7P5\nxje+QUZGhtObJRITVC4hODFyZO+trkS12xIWFRXxgx/8gOTkZK699tpAW0KAQ4cOceTIEe67r+o0\nRt++fbnuuuvYtWtXSOsVEWlIjCR7b2huW8LU1FQyMjJYtGgRFRUVrF+/nr179zJw4EBX4heJRjqq\nD46SfZiE0pbQGMMvf/lL5syZwyWXXMLtt9/O/Pnz6dKliyvbICKxS8k+TGraEpaVlVFaWsqCBQto\n06YNUNWWsEbttoSff/45o0aN4tVXX6W8vJyPPvqIZ599lhUrVriyDSLRSNfZB0fJ3kFNtSVcv349\nXbt2ZejQoQBcffXVfOtb32LlypWuxCsisUvJ3mGNtSXs3bs3H3/8MatXr8Zay6effsry5csvmOMX\nkcZpzj44UX/ppdfNnTuXhx9+mO7du5OQkMDTTz8daEuYnp7Oz372M6ZNm8b+/ftJTk5m4sSJfOc7\n33E5ahGJNVF/B61XrrOPRbqDtiHe2i9+p+vs/66xO2ij/sheP3QiIk2L+iN7cY7X9reO7EUap9o4\nIiI+p2QvIlFN19kHR8leRMQHnOxUtcgYc6i6K1Xd556o7j97qVPrFxF/0JU4wXHyyH4xMKLuQmNM\nN2AosNfBdYuISC2OJXtr7TqgrJ6nngeecmq9IuIvmrMPTkTn7I0xY4D91tptkVyviIjfRSzZG2MS\nge8Bc2ovjtT6nRZqW8K33nqL66+/nqSkJG699VY1LhFpJs3ZByeSd9D2AtKArdUlDroCHxhj+ltr\nv6z74pycHNLS0gBo3749mZmZ9X6oV8olhNKW8JNPPmHixImsXLmSAQMG8NxzzzF69GhKSkqIj493\nerOCVvNncs0PlVvjWhFV/5vl0vjCW/S9sn809t+4uLg40PmuJl82xNE7aI0xacBb1tob6nluD3Cz\ntfZoPc81rzZOXpgCrk9ecMm+R48e5OfnM3jwYACeeuopdu3axebNmyksLGTIkCEAzJkzh927d7Nk\nyRIWLFjAqlWrWL58OVC1njZt2gR+abhNd9A2xFv7xe9UG+fvXLmD1hizBFgPXG2M2WeMmVznJTH3\n09LctoR1k2llZSXW2sDzIiLh4uTVON+21na21ra21naz1i6u83zP+o7qo1UobQnvuOMO1qxZw5o1\nazh37hzz58/n3Llz/PWvf3VlG0SikY7qg6M7aMMklLaE1157LYWFhUyfPp3OnTtz5MgR0tPT6dq1\nqyvbICKxS8neQU21JQQYN24c27dv56uvviIvL4/S0lL69evnRrgiUUnX2QdHyd5hjbUlBPjggw+o\nqKjg8OHD5ObmMmbMGK6++mr3AhaRmKRk77C5c+fSq1cvunfvTnZ2NrNmzQq0JQSYOXMmHTp04Npr\nr6Vjx4688sorLkYrEn00Zx+cqG9e4pXr7GORLr1siLf2i0iNmG5eYq11/CEi3qU5++BEfbIXEZGm\nRf00jjjHa/tb0zgijYvpaRwREWlaJAuhiUiYROLChGC5/VeO9kVwlOxFotXq1W5HANnZbkcAeGVy\nz9s0jSMi4gNK9iIiPqBkLyLiA0r2YdJQW8KlS5dyyy230KZNG7Lrmd/csmULN998M23atKFv375s\n3brVhehFJNZFfbI3xjj+CDaO5cuXc/LkSTZv3symTZuYN28eHTt25LHHHuPpp5/+2nvOnTvHmDFj\nmDRpEseOHeP+++9nzJgxlJeXh3s3iYjPOZrsjTGLjDGHjDHbay37iTFmlzFmqzHmdWNMcmOfEQzr\n4CMUnTt3ZsSIEezYsYM77riD8ePHk5qa+rXXFRcXU1FRwaOPPkrLli2ZMWMG1lrefffdENcsIlI/\np4/sFwMj6iz7E9DbWnsjsBuY7XAMEVO7LeHKlSvp06dPo6//6KOPyMjIuGDZjTfeqLaEIhJ2jl5n\nb61dV910vPayd2oN3wfGORlDpNS0JWzRogXJycmMGjWK733ve42+59SpUxe0LIQL2xaKiISL2zdV\nPQAscTmGsKhpSzh48OCg35OUlHRBy0KoalvYrl27cIcnIj7n2glaY8z3gXPW2lfdiiGS6jvR27t3\nb7Zt23bBsm3bttG7d+9IhSUiPuHKkb0xJgf4R+COhl6Tk5NDWloaAO3btyczMzMisYVbZWUl586d\no7y8nMrKSs6ePUtcXBwtW7YkKyuL+Ph4XnrpJaZMmcIvfvEL4uLimvXXQSTU1Auv6Qjk1rhWRNX/\nZrk0rorJM/ujpsdxzc9IhMduf39A1f9QVq2vcWEciCWC219cXExBQQFAIF82xPESx9Vz9m9Za2+o\nHo8A/g243Vr7VQPvaVanKie3wBBccaMePXqQn5//tURdUFDAAw88cMGynJwcFi1aBFRdZ/+d73yH\nnTt3kp6eTn5+PjfeeGPY4r8YKnHcEPf3izHGM7VxvLAvvPFd4X4htMZKHDua7I0xS4DbgRTgEDCH\nqqtvWgFHq1/239baqXXep7aEHqBk3xD394uS/d8p2deKoZFk7/TVON+uZ/GiMK8jnB8nIhKTov4O\nWhERaZqSvYiIDyjZi4j4gJK9iIgPKNmLiPiAkr2IiA8o2YuI+ICSvYiIDyjZh0mobQlzc3O59tpr\niY+Pp7Cw0IXIRcQPoj7ZR3NbQoDMzExefvll+vTpE5HSDyLiT27Xsw8PJ2uE1HM03pTabQn/9V//\nFYCFCxfW+9qpU6vKAl1yySWhxygi0oSoP7L3kua2JRQRiZTYOLL3gFDaEoqIRIqSfZiE0pZQRCRS\nNI0TITr5KiJuUrJ3WGVlJWfOnLmgLWF5eXng+fLycs6cORNoX3jmzBnV6BeRsHMs2RtjFhljDhlj\nttdadqkx5h1jzG5jzJ+MMe2dWr9XFBUVkZiYyNSpU1m3bh0JCQlMmTIl8PzQoUNJTExkw4YN5Obm\nkpiYyLp161yMWERiUZNtCY0xVwA/BrpYa0cYY9KBb1pr85t43yDgFFBUq//sc8BX1trnjDGzgA7W\n2q9dgK62hN6gtoQNcX+/qC3h36ktYa0YGmlLGMyRfQHwJ6Bz9fgT4LGm3mStXQeU1Vk8Gqi5TbQQ\nGBvE+ptaj+MPEZFoF0yyT7HW/haoALDWlgPnQ1zf5dbaQ9VfHwIuD/FzRESkGYJJ9qeMMR1rBsaY\nAcDxi11x9TyNDptFRCIgmOvsnwDeAnoaY9YDlwH/FOL6DhljrrDWfmGMSQW+bOiFOTk5pKWlAdC+\nfXsyMzNDXKVcrOLiYgCysrJcHVfxxiWsxcXFHtkfwJYtVf/W/IxEeOz29wdAMZBV62tcGAdiieD2\nFxcXU1BQABDIlw1p8gQtgDGmBXANVX8JlFRP5QTzvjTgrTonaI9Ya581xjwNtL/YE7TiHK/tb52I\nqxWDTtAG6PuiVgwXc4LWGNMGmA3MtNZuB9KMMaOCeN8SYD1wjTFmnzFmMvD/AUONMbuBwdVjERFx\nWDDTOIuBD4BbqscHgNeA5Y29yVr77QaeGhJ0dCIiEhbBnKDtZa19FjgHYK097WxIIiISbsEk+7PG\nmISagTGmF3DWuZBERCTcgkn2ecAqoKsx5lXgXWCWk0FFo1DaEu7evZsxY8bQqVMnOnbsyIgRI9i9\ne7dLWyAisazRZG+MiQM6AOOAycCrQF9rrQcuA6gSzW0Jjx8/ztixY9m9ezeHDh2if//+jBkzJty7\nSESk8RO01tpKY8xT1XfQNnpC1k2rce53TzbOtSXs168f/fr1C4xnzpzJvHnzKCsro0OHDqEHLSJS\nRzDTOO8YY540xnSrrlp5qTHmUscji0IX25Zw7dq1pKamKtGLSNgFc+nlvVSVNZhWZ3mP8IcTvS62\nLeH+/fuZPn06zz//vINRiohfNZnsrbVpEYgj6l1MW8LDhw8zbNgwpk2bxj333ONAdCLid00me2PM\nOL5esOw4sN1a22BtG7lQQyd6y8rKGDZsGGPHjmX27NkRjkqiWnbzzyfFKm9UTPK2YKZxHgC+Caym\nap/eDmwGehhjfmStLXIwvqhX026wdlvCuLg4WrZsyYkTJxg+fDgDBw5k/vz5bocq0SbP7QDwRgyA\nNwroevtXTjAnaFsC11lrx1lr7wbSqdqz30DX2zepsbaEy5YtY9OmTSxevJikpCSSkpJo164d+/fv\ndzlqEYk1wbQl3GWtva7W2AA7rbXXGWM+tNbeFPag1JbQE1T1sn5eqW7oiaPqPI/sC498Z3hhXzRU\n9TKYaZzVxpi3gaVUfZ+PA4qrq2EeC1+YoXF754qIRINgkv104G7g1upxIfD76kNvnSESEYkCwVx6\nWWmM2QQct9a+Y4xJBNoCJx2PTkREwiKY5iW5wO+An1cv6gq84WRQIiISXsFcjTMNGAicALDW7gY6\nXcxKjTGzjTEfGWO2G2NeNca0vpjPExGRxgVVz95aG6hfX92PNuSzotV9aR8C+lT3po2nqiSDiIg4\nJJhkv8YY830g0RgzlKopnbcuYp0ngPLqz2sBJAKfX8TniYhIE4JJ9k8Dh4HtwBRgBfBMqCu01h4F\n/g34jKp+tsestX8O9fNERKRpwVyNU2GMeQN4Ixy1cKrbGs4E0qiqsfM7Y8z/sdb++mI/W0RE6tdg\nsq++U3YOVdfZx1cvqwD+A/hRvbe4BqcvsN5ae6T6M18HbgEuSPY5OTmkpaUB0L59ezIzM0NcXWSk\npaXx5ZdfEh8fT5s2bRg5ciQLFizg7bff5t///d/ZunUr/fv3Z/XqvzdaOXLkCKNHj+bjjz+mvLyc\nnj17MmfOHMaOHevilnxdcXExAFlZWa6OA/FU/5vl0rgmJq/sD/ZU/9vDnbHb3x/VUeDed0TNmKDi\nDee4uLiYgoICgEC+bEiD5RKMMY8DI4Fca+2e6mU9qboEc5W1NqTC68aYG6lK7P2AM0ABsNFa+39r\nvSbqyiX06NGD/Px8Bg8ezIEDBxg+fDijRo1iyJAhHD16lJKSEt59990Lkv3Zs2cpLS3lqquuIi4u\njjfffJPx48dz9OhR2rZt6+QmBUXlEuqncgm15HlkX3jkO8ML+yKUcgmTgKHW2sM1C6y1/2uM+T/A\nO0BIyd5au9UYUwRsAiqpqqD5y1A+q0at/Bl2oVSRDbYtYevWrbnmmmuAquqYcXFxpKSk0KpVq4uK\nWUSkrsaSfYvaib6GtfZw9VU0IbPWPgc8dzGf4UV12xKOGzcuqPdlZGTw8ccf07ZtW1asWKFkLyJh\n11jSLg/xOV+6mLaE27Zt49y5c/ziF79g3LhxlJSUeGIaR0RiR2OXXmYYY07W9wBuiFSA0aKmLWFZ\nWRmlpaWjvA0dAAAPyklEQVQsWLCA1q2DvzG4VatWzJgxg6SkJP7yl784GKmI+FGDR/bW2vhIBhLr\ngj2RfP78edq0aeNwNCLiNxc19y5Na6wt4fvvv095eTn9+/enoqKCl156iTNnzjBgwAC3wxaRGKNk\n77CioiIeeOCBwDghIYGcnBwWLVrE2bNneeSRR/jf//1fWrduTf/+/Vm1apXm60Uk7JpsS+iGaLzO\nPhbpOvv66Tr7WvI8si888p3hhX1xMW0JPc3tnSsiEg2CKYQmIiJRLuqP7MVZtafJ9FfU30Vi+lCa\nQ/8fTVGyl0bVpHf9KNWR5/P1e8xqHKyZEqRsQqitEkGaxhER8QElexERH1CyFxHxASV7EREfULIX\nEfEBV5K9Maa9MeY1Y8wuY8xOY0zUF4NJS0sjMTGRpKQkrrjiCiZPnszp06dZunQpt9xyC23atCG7\nkU4oRUVFxMXFkZ+fH8GoRcQv3DqyfxFYYa29DsgAdoX6QcYYxx/BxrF8+XJOnjzJ5s2b2bRpE/Pm\nzaNjx4489thjPP300w2+t6ysjPnz53P99dfr+m0RcUTEk70xJhkYZK1dBGCtPW+tPR7pOJxUuy3h\nHXfcwfjx40lNTW3w9bNnz+bRRx+lY8eOEYxSRPzEjSP7HsBhY8xiY8xmY8wrxphEF+IIu7ptCfv0\n6dPkezZu3MjmzZv57ne/63R4IuJjbiT7FkAf4GVrbR/gNNDwHEeUqGlL2KFDBwYNGkRWVlaTbQkr\nKiqYNm0aCxYs0PSNiDjKjXIJ+4H91tr/qR6/Rj3JPicnh7S0NADat29PZmZmxAIMRU1bwsGDBwf9\nnpdffpmMjAz69+8fWObF+jPFdcfFVUuysrIiOq4bT5ZLYwD2UPU3as3XuDCmiecjNHbr+6FmDLCF\nLWSSGfgaiPi4RiS3v7i4mIKCAoBAvmyIK/XsjTFrge9Ya3cbY/KABGvtrFrPR109+x49epCfn99g\nss/Pz+dXv/oVq1f/vYbHXXfdxZo1awK9ao8ePUpCQgKTJk3ipZdeCk/wF6F2/Xiv1HD3wq9CA+7X\npsnzQAzgmXr2XqmN44V94bV69jOAXxtjWgGfApNdisNxjbUlLCgo4OzZs0DVD8zdd9/N+PHjefDB\nB12OWkRijSvJ3lq7FejnxrojrbG2hMnJyRe8tlWrVrRr146kpKRIhykiMU5tCYPgxX0UCZrGqZ+m\ncWrJ88b3haZxqnhxGids3N65IiLRQLVxRER8QMleRMQHlOxFRHxAyV5ExAeU7EVEfEDJXkTEBzx7\n6eWdt93mdggiIjHDs8k+d926ry1b7kIcIiKxwLPTOHfW8/CyUNsSxsXF0bZtW5KSkkhKSiI3N9eF\n6EUk1nn2yD5YXimXUNOWcPDgwRw4cIDhw4czb948hgwZwmOPPUZJSQnvvvtuve/dvn07PXr0qPc5\nEZFw8OyRffNYBx/N19y2hJWVlSGtR0QkWDGS7L0hlLaEALfddhupqamMGzeOvXv3OhmiiPiUkn2Y\nhNKWEGDt2rXs3buXkpISOnfuzKhRo6ioqIhAxCLiJ1E/Z+8VobQlBBg4cCAAycnJvPjiiyQnJ1NS\nUkLv3r2dCFNEfMq1I3tjTLwx5kNjzFtuxRBJwZxIrpkGUtlmEQk3N6dxHgV2EupZ0ChRWVnJmTNn\nLmhLWF5eDsDOnTvZsmULFRUVnDp1iscff5yuXbty3XXXuRy1iMQaV5K9MaYr8I/AQqob/8SqoqIi\nEhMTmTp1KuvWrSMhIYEpU6YAcOjQIe69916Sk5Pp1asX+/btY/ny5cTHx7sctYjEGrfm7F8A/gVo\nF56Pc//3xZ49e+pdnpOTQ05OTr3PZWdnU1JS4mBUIiJVIp7sjTGjgC+ttR8aY7Iu9vM0vy0i0jQ3\njuxvAUYbY/4RuARoZ4wpstZOqv2iHCCt+uv2QGYkI5QLFNcdF1ctycrKiui4bjxZLo0B2AP0qPU1\nLoxp4vkIjSNxF3tTtrCFzOossYUtABEf14jkz0dxcTEFBQVAVcmWxhg3j4yNMbcDT1pr76yzvN6o\nDDqSjyRjTODsuRf2fe143GQA8lwOIs8DMYA3YgBWs9rtEMgm2xs/I9bW+9vXCzdVeeHnV0Qkprl6\nU5W1dg2wxs0YRET8wAtH9iIi4jAlexERH1CyFxHxASV7EREfULJ3QFZWFpdeeinnzp1zOxQRESAG\nkr0xxvFHc5SWlrJx40Y6derEH/7wh7Bu6/nz58P6eSLiH7FRzz7PO59dVFTEkCFD+MY3vkFhYSGj\nR4+mU6dO/Nd//VegRv3hw4fp3r07n332GSkpKSxfvpxnnnmGvXv3kp6ezs9//nNuuOEGoOquuKlT\np/KrX/2KTz75hFOnTvGTn/yEhQsX8uWXX9KtWzd+/OMfM3bsWKCqyua//Mu/UFRURFJSEo8//jiP\nPPII58+fJy4ujuPHj/P444+zcuVK4uLimDx5MnPnziUuLup/74tII/QTHmZFRUXcc889TJgwgT/+\n8Y8cO3aMcePGsWTJksBrli5dSlZWFikpKXz44Yc8+OCDvPLKKxw9epQpU6YwevToQBlkgN/85jes\nXLmSY8eOER8fzz/8wz/w3nvvceLECebMmcPEiRM5dOgQAL/85S9ZtWoVW7duZfPmzbzxxhsX/HWS\nk5NDq1at+PTTT/nwww/505/+xMKFCyO3g0TEFUr2YfTee+/x+eefM3r0aK666irS09N59dVX+ed/\n/md+85vfBF5XswyqkvOUKVPo168fxhgmTZpE69at2bBhA1A1TfXII4/QpUsXWrduDcA//dM/ccUV\nVwAwYcIErrrqKjZu3AhU/SKZOXMmnTt3pn379syePTtwC/ehQ4dYuXIlL7zwAgkJCVx22WXMnDnz\ngthEJDbFxjSORxQWFjJs2DCSkpIAGD9+PIWFhXzwwQf89a9/Dczlb926lbvuuguAvXv3UlRUxH/8\nx38EPqe8vJwDBw4Ext26dbtgPUVFRbzwwguUlpYCcOrUKb766isADh48eMHru3btGvh67969lJeX\nk5qaGlhWWVnJlVdeGaY9IOJvXigK1xAl+zD529/+xtKlS6msrAwk07Nnz3L8+HF27NjBhAkTWLJk\nCZ06deLOO++kTZs2AFx55ZV8//vfb7Q5ee1voL1795Kbm8u7777LN7/5TYwx3HTTTYGj99TUVPbt\n2xd4fe2vu3XrRuvWrTly5Ijm6EUc4HZBtmyyG3xOP/Fh8sYbb9CiRQt27drF1q1b2bp1K7t27WLg\nwIEUFRUFpnJqT+EAPPTQQ/z85z9n48aNWGs5ffo0b7/9NqdOnap3PadPn8YYQ0pKCpWVlSxevJgd\nO3YEnp8wYQIvvvgiBw4c4NixYzz77LOBXxapqakMGzaMxx9/nJMnT1JZWcmnn37K2rVrnd05IuI6\nJfswKSoq4oEHHqBr16506tSJTp06cfnllzN9+nReffVVbr75Ztq2bcvBgwcZOXJk4H0333wzr7zy\nCtOnT+fSSy/lqquuoqioqME/B9PT03niiSf45je/yRVXXMGOHTsYOHBg4PmHHnqIYcOGkZGRwc03\n38y3vvUt4uPjA0fyRUVFnDt3jvT0dC699FLGjx/PF1984ezOERHXuVrPviHNqWcfiTkyL+6jYK1c\nuZKHH344ML/fHKpnXz/Vs68lz+0Aqrg9fQJVUyhux1FdU9+z9ewvirXW8Uc0OXPmDCtWrOD8+fN8\n/vnnzJ07l7vvvtvtsETEZVGf7OVC1lry8vK49NJL6dOnD7179+ZHP/qR22GJiMtcuRrHGNMNKAI6\nUdWp6pfW2pfciCXWJCQkBK65FxGp4dall+XAY9baLcaYtsAHxph3rLW7XIpHRCSmuTKNY639wlq7\npfrrU8AuoLMbsYiI+IHrc/bGmDTgJuB9dyMREYldrib76imc14BHq4/wRUTEAa6VSzDGtAR+D/zK\nWvtG3edzgLTqr9sDmRGLTOoqrv7XK3U/iqv/zXJpDMAeoEetr3FhTBPPR2rsAVvYQmZ1ltjCFoCI\nj2vHEqn1b2ELq1gFwBVc0eg+cuWmKlOVNQqBI9bax+p5PuibqqLJww8/TJcuXXjmmWfcDiUodW+q\ncv0Gmjx0U1WNPA/EAN6II083VdWOoaGbqtw6sr8VmAhsM8Z8WL1strV2lUvxXLS0tDQOHjzIgQMH\n6NixY2D5TTfdxNatWyktLeVnP/uZixGKiJ+5dTXOe9baOGttprX2pupHSIneK20JjTH07NnzgiYl\n27dv529/+5tnpj9ExL9cvxonHKyDj+aYOHEiRUVFgXFhYSGTJk0KlF3IycnhBz/4AQDFxcV07dqV\n559/nssvv5zOnTtTUFAQyuaLiDQpJpK9VwwYMIATJ05QUlJCRUUFv/3tb5k4cWLg+bp/KRw6dIgT\nJ05w4MAB8vPzmTZtGsePH3cjdBGJcUr2YXbfffdRVFTEO++8Q3p6Ol26dLng+donmFu2bMkPf/hD\n4uPjGTlyJG3btuXjjz+OdMgi4gPqVBVGxhjuu+8+Bg0axJ49ewJTOA3p2LHjBR2jEhMTG2xaIiJy\nMXRkH2ZXXnklPXv2ZOXKlSotLCKeoSN7B+Tn53Ps2DESEhI4f/58YHk03yMgItFNyd4BPXv2vGBc\nc1K27glaXZIpIpESE8neCylzz56697BXadGiBRUVFQAsXrw4sDwrK4vPPvssqM8QEblYUZ/sNTUi\nItlkux2C50V9shcR8VDVJM/S1TgiIj6gZC8i4gNK9iIiPqBkLyLiA0r2IiI+EHVX4+hGJBGR5nPl\nyN4YM8IYU2KM+cQYMyvY9zlZt77u40rgpz/9aaAWvVuPSG/3xdTzFxHviniyN8bEAwuAEUA68G1j\nzHWRjkNExE/cOLLvD/w/a22ptbYc+A0wxoU4RER8w41k3wXYV2u8v3qZiIg4xI0TtEFNBd/mdBRN\n+MLl9YuIhJOJdCExY8wAIM9aO6J6PBuotNY+W+s1OjcoIhICa229lyy6kexbAB8DdwAHgI3At621\nuyIaiIiIj0R8Gsdae94YMx34IxAP5CvRi4g4K+JH9iIiEnmeuoPWGLMI+BbwpbX2BrfjERFvM8aU\nAieACqDcWtvf3Yi8y1NH9saYQcApoEjJXkSaYozZA9xsrT3qdixe56lCaNbadUCZ23GISFRRwawg\neCrZi4g0kwX+bIzZZIx5yO1gvMxTc/YiIs10q7X2oDHmMuAdY0xJ9QyB1KEjexGJWtbag9X/HgaW\nUVV7S+qhZC8iUckYk2iMSar+ug0wDNjublTe5alkb4xZAqwHrjbG7DPGTHY7JhHxrMuBdcaYLcD7\nwHJr7Z9cjsmzPHXppYiIOMNTR/YiIuIMJXsRER9QshcR8QElexERH1CyFxHxASV7EREfULIXEfEB\nJXsRER/4/wHPVyb8thoa2AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 70, - "text": [ - "" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD7CAYAAABzGc+QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEKtJREFUeJzt3V+InNd9xvHv4z8hgdAuwSASS2EvrEANIWtSFOGm9YS2\n4IhWuTHUgWLWNzYGkzSlJTS4xL3KTaHBCXEEdbpKLmxCLoyTypg0+HXjG7WJJeWP5CJDDFJClAvF\nJrEasJpfL3YsbUa7O+PRu5o54+8Hlp0zczQ6CObR2WfPO5OqQpLUnutmvQBJ0nQMcElqlAEuSY0y\nwCWpUQa4JDXKAJekRk0U4EmuT3IsyTe3ePyRJKeTnEhyW79LlCRtZtId+CeBk8AVh8aTHABuqaq9\nwH3Ao/0tT5K0lbEBnmQ3cAD4VyCbTDkIHAaoqqPAUpJdfS5SknSlSXbg/wL8PfDbLR6/GTizYXwW\n2H2V65IkjbFtgCf5C+AXVXWMzXffl6aOjL0+X5J22A1jHr8dODjsud8O/F6Sr1bVPRvm/BTYs2G8\ne3jf70hiqEvSFKpq0w10Jn0zqyR3AH9XVX85cv8B4MGqOpBkP/D5qtq/yZ8v3zhL8+jhhx/m4Ycf\nnvUypE0l2TLAx+3AR9XwCe8HqKpDVXUkyYEkLwGvAfde1Wqla+zll1+e9RKkqUwc4FX1HPDc8Pah\nkcce7HldkqQxvBJTb3mrq6uzXoI0lYk78Kv+i+zAJelN67MD15xItjvVKc2Wm7VrwwBvmi+SfnTA\nYMZrWCRuLq4VK5RGre/A/ffUPIo78B5tV6H4S0xJapQBLtHNegHSVAxwSWqUHXij7MA1v+zA+2QH\nLkkLyACX7MDVKANckhplB94oO3DNLzvwPtmBS9ICMsAlO3A1ygCXpEbZgTfKDlzzyw68T3bgkrSA\nDHDJDlyNGhvgSd6e5GiS40lOJvncJnMGSV5Ncmz49dDOLFeS9IaxH+hQVb9J8pGqupDkBuD5JB+u\nqudHpj5XVQd3ZpnSThrMegHSVCaqUKrqwvDm24DrgfObTPNjOCTpGpoowJNcl+Q4cA54tqpOjkwp\n4PYkJ5IcSXJr3wuVdk436wVIU5l0B/7bqloBdgN/kmQwMuUFYE9VfQD4AvBkr6uUJF3hTX2ocVW9\nmuTfgT9kw7alqn614fbTSb6U5F1V9TtVy+rqKsvLywAsLS2xsrLCYDAAoOvWn87xZON1HZf72274\n3fGbHw/mbD3tj2f9+mh53HUda2trAJfycitjL+RJchNwsapeSfIO4Bngn6rqOxvm7AJ+UVWVZB/w\n9apaHnkeL+TpkRfyaH55IU+ftruQZ5Id+LuBw0muY71y+VpVfSfJ/QBVdQi4C3ggyUXgAnB3P0uX\nroUOT6KoRV5K3yh34H3qMMD75A68T9vtwA3wRhngml8GeJ98LxRJWkAGuOQ5cDXKAJekRtmBN8oO\nXPPLDrxPduCStIAMcMkOXI0ywCWpUXbgjbID1/yyA++THbgkLSADXLIDV6MMcElqlB14o+zANb/s\nwPtkBy5JC8gAl+zA1SgDXJIaZQfeKDtwzS878D7ZgUvSAjLAJTtwNWrbAE/y9iRHkxxPcjLJ57aY\n90iS00lOJLltZ5YqSdpo20+lr6rfJPlIVV1IcgPwfJIPV9Xzb8xJcgC4par2JvkQ8Ciwf2eXLfVp\nMOsFSFMZW6FU1YXhzbcB1wPnR6YcBA4P5x4FlpLs6nORkqQrjQ3wJNclOQ6cA56tqpMjU24GzmwY\nnwV297dEaad1s16ANJVtKxSAqvotsJLk94FnkgyqqhuZNnrEZdMzRKurqywvLwOwtLTEysoKg8EA\ngK5bf0rHk43XdVz+8b8bfnfsePbjWb8+Wh53Xcfa2hrApbzcyps6B57kH4H/rap/3nDfl4Guqp4Y\njl8E7qiqcyN/1nPgPfIcuOaX58D7NPU58CQ3JVka3n4H8OfAsZFpTwH3DOfsB14ZDW9JUv/GVSjv\nBg4nuY71sP9aVX0nyf0AVXWoqo4kOZDkJeA14N6dXbLUtw5PoqhFXkrfKCuUPnUY4H2yQunTdhWK\nAd4oA1zzywDvk++FIkkLyACXPAeuRhngktQoO/BG2YFrftmB98kOXJIWkAEu2YGrUQa4JDXKDrxR\nduCaX3bgfbIDl6QFZIBLduBqlAEuSY2yA2+UHbjmlx14n+zAJWkBGeCSHbgaZYBLUqPswBtlB675\nZQfeJztwSVpABrhkB65GjQ3wJHuSPJvkx0l+lOQTm8wZJHk1ybHh10M7s1xJ0hvGfSo9wOvAp6rq\neJJ3At9P8u2qOjUy77mqOtj/EqWdNpj1AqSpjN2BV9XPq+r48PavgVPAezaZumnJLknaGW+qA0+y\nDNwGHB15qIDbk5xIciTJrf0sT7oWulkvQJrKJBUKAMP65BvAJ4c78Y1eAPZU1YUkHwWeBN43+hyr\nq6ssLy8DsLS0xMrKCoPBAICu6wAcTzhe13H5x/9u+N2x49mPZ/36aHncdR1ra2sAl/JyKxOdA09y\nI/At4Omq+vwE838CfLCqzm+4z3PgPfIcuOaX58D7dFXnwLOeFI8BJ7cK7yS7hvNIso/1/xjObzZX\nktSPSSqUPwL+GvhBkmPD+z4DvBegqg4BdwEPJLkIXADu3oG1Sjukw5MoapGX0jfKCqVPHQZ4n6xQ\n+rRdhWKAN8oA1/wywPvke6FI0gIywCXPgatRBrgkNcoOvFF24JpfduB9sgOXpAVkgEt24GqUAS5J\njbIDb5QduOaXHXif7MAlaQEZ4JIduBplgEtSo+zAG2UHrvllB94nO3BJWkAGuGQHrkYZ4JLUKDvw\nRtmBa37ZgffJDlySFpABLtmBq1GTfCr9niTPJvlxkh8l+cQW8x5JcjrJiSS39b9USdJGk3wq/evA\np6rqeJJ3At9P8u2qOvXGhCQHgFuqam+SDwGPAvt3ZslS3wazXoA0lbE78Kr6eVUdH97+NXAKeM/I\ntIPA4eGco8BSkl09r1WStMGb6sCTLAO3AUdHHroZOLNhfBbYfTULk66dbtYLkKYySYUCwLA++Qbw\nyeFO/IopI+MrzhGtrq6yvLwMwNLSEisrKwwGAwC6rgNwPOF4XcflH/+74XfHjmc/nvXro+Vx13Ws\nra0BXMrLrUx0DjzJjcC3gKer6vObPP5loKuqJ4bjF4E7qurchjmeA++R58A1vzwH3qerOgee9aR4\nDDi5WXgPPQXcM5y/H3hlY3hLkvo3dgee5MPAfwI/4PKW7zPAewGq6tBw3heBO4HXgHur6oWR53EH\n3iN34H3q8CRKn9yB92m7HbiX0jfKAO9ThwHeJwO8Twb4AjLANb8M8D75XiiStIAMcMlz4GqUAS5J\njbIDb5QduOaXHXif7MAlaQEZ4JIduBplgEtSo+zAG2UHrvllB94nO3BJWkAGuGQHrkYZ4JLUKDvw\nRtmBa37ZgffJDlySFpABLtmBq1EGuCQ1yg68UXbgml924H2yA5ekBWSAS3bgatQkn0r/lSTnkvxw\ni8cHSV5Ncmz49VD/y5QkjZrkU+n/GPg18NWqev8mjw+Av62qg2Oexw68R3bgml924H26qg68qr4L\n/HLc3zHNwiRJ0+ujAy/g9iQnkhxJcmsPzyldQ92sFyBN5YYenuMFYE9VXUjyUeBJ4H2bTVxdXWV5\neRmApaUlVlZWGAwGAHRdB+B4wvG6DhhsuI1jx3MxnvXro+Vx13Wsra0BXMrLrUx0DjzJMvDNzTrw\nTeb+BPhgVZ0fud8OvEd24JpfduB92tFz4El2ZT1NSLKP9f8Uzo/5Y5KkqzS2QknyOHAHcFOSM8Bn\ngRsBquoQcBfwQJKLwAXg7p1brrQTOi5XAVI7vJS+UVYofeowwPtkhdKn7SoUA7xRBrjmlwHeJ98L\nRZIWkAEueQ5cjTLAJalRduCNsgPX/LID75MduCQtIANcsgNXowxwSWqUHXij7MA1v+zA+2QHLkkL\nyACX7MDVKANckhplB94oO3DNLzvwPtmBS9ICMsAlO3A1ygCXpEbZgTfKDlzzyw68T3bgkrSADHDJ\nDlyNGhvgSb6S5FySH24z55Ekp5OcSHJbv0uUJG1mkh34vwF3bvVgkgPALVW1F7gPeLSntUnXyGDW\nC5CmMjbAq+q7wC+3mXIQODycexRYSrKrn+VJkrbSRwd+M3Bmw/gssLuH55WukW7WC5CmckNPzzN6\nxGXTM0Srq6ssLy8DsLS0xMrKCoPBAICu6wAcTzhe13H5x/9u+N2x49mPZ/36aHncdR1ra2sAl/Jy\nKxOdA0+yDHyzqt6/yWNfBrqqemI4fhG4o6rOjczzHHiPPAeu+eU58D7t9Dnwp4B7hn/RfuCV0fCW\nJPVvbIWS5HHgDuCmJGeAzwI3AlTVoao6kuRAkpeA14B7d3LBUv86PImiFnkpfaOsUPrUYYD3yQql\nT9tVKAZ4owxwzS8DvE++F4okLSADXPIcuBplgEtSo+zAG2UHrvllB94nO3BJWkAGuGQHrkYZ4JLU\nKDvwRtmBa37ZgffJDlySFpABLtmBq1EGuCQ1yg68UXbgml924H2yA5ekBWSAS3bgapQBLkmNsgNv\nlB245pcdeJ/swCVpAU0U4EnuTPJiktNJPr3J44MkryY5Nvx6qP+lSjulm/UCpKlM8qHG1wNfBP4M\n+Cnw30meqqpTI1Ofq6qDO7BGSdImJtmB7wNeqqqXq+p14AngY5vM27SjkebfYNYLkKYySYDfDJzZ\nMD47vG+jAm5PciLJkSS39rVASdLmJgnwSX6d/AKwp6o+AHwBePKqViVdU92sFyBNZWwHznrvvWfD\neA/ru/BLqupXG24/neRLSd5VVec3zltdXWV5eRmApaUlVlZWGAwGAHRdB+B4wvG6jss//nfD744d\nz34869dHy+Ou61hbWwO4lJdbGXsOPMkNwP8Afwr8DPgv4OMbf4mZZBfwi6qqJPuAr1fV8sjzeA68\nR54D1/zyHHiftjsHPnYHXlUXkzwIPANcDzxWVaeS3D98/BBwF/BAkovABeDu3lYvSdqUV2I2yh14\nnzo8idInd+B98kpMSVpA7sAb5Q5c88sdeJ/cgUvSAjLAJc+Bq1EGuCQ1yg68UXbgml924H2yA5ek\nBWSAS3bgapQBLkmNsgNvlB245pcdeJ/swCVpARngkh24GmWAS1Kj7MAbZQeu+WUH3ic7cElaQAa4\nZAeuRhngktQoO/BG2YFrftmB98kOXJIW0NgAT3JnkheTnE7y6S3mPDJ8/ESS2/pfprSTulkvQJrK\ntgGe5Hrgi8CdwK3Ax5P8wcicA8AtVbUXuA94dIfWKu2Q47NegDSVcTvwfcBLVfVyVb0OPAF8bGTO\nQeAwQFUdBZaS7Op9pdKOeWXWC5CmMi7AbwbObBifHd43bs7uq1+aJGk74wJ80l8lj/6G1F9BqyEv\nz3oB0lRuGPP4T4E9G8Z7WN9hbzdn9/C+K6wffVN//Pfsz+FZL2Ch+Fq/NsYF+PeAvUmWgZ8BfwV8\nfGTOU8CDwBNJ9gOvVNW50Sfa6hyjJGk62wZ4VV1M8iDwDHA98FhVnUpy//DxQ1V1JMmBJC8BrwH3\n7viqJUnX7kpMSVK/xlUo0kIZXsfwMS6fpjoLPFVVp2a3Kmk6Xkqvt4zhlcSPD4dHh1/XAY8n+YeZ\nLUyakhWK3jKSnAZuHV6UtvH+twEnq+qW2axMmo47cL2V/B9XXogG8J7hY1JT7MD1VvI3wH8MT0y9\ncfXwHmAv60dhpaZYoegtZfgGbftY34kX6xedfa+qLs50YdIUDHBJapQduCQ1ygCXpEYZ4JLUKANc\nkhplgEtSo/4f593AWbHMKnwAAAAASUVORK5CYII=\n", - "text": [ - "" - ] - } - ], - "prompt_number": 70 - }, + "output_type": "display_data" + } + ], + "source": [ + "flipped.plot(kind=\"hist\", xticks=[1,5])" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ { - "cell_type": "code", - "collapsed": false, - "input": [ - "flipped.plot(kind=\"hist\", xticks=[1,5])" - ], - "language": "python", + "data": { + "text/plain": [ + "4.0625" + ] + }, + "execution_count": 17, "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 85, - "text": [ - "" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAFTCAYAAADYwaxQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt0VeWd//H3N1w0gXBIiY5BrEFWFQFjpEAZAU0iEGjT\n4khRu8ZisL/GFqFqdQH2RuiitOO0TmWo6zeVYMi08qs37IC3dgoB+qPoIHJRoHHaQqEiIoSb8wNC\n8vz+SM4xQC6Hw9lnn3P257VWFnn2uezv3px88+TZz36+5pxDRETSW4bfAYiIiPeU7EVEAkDJXkQk\nAJTsRUQCQMleRCQAlOxFRAKgq98BnA8zC/w8Ueec+R2DiKSelEr2AEG+L8BMeV5EYqNhHBGRAFCy\nFxEJACV7EZEACGSyz8jI4OGHH460f/zjHzNv3jwfIxIR8VYgk3337t1Zvnw5Bw8eBHThU0TSXyCT\nfbdu3aioqOBf/uVfznlsxYoVjBw5kqFDhzJu3Dg++OADACorK7n77ru56aabyM/P54UXXuDhhx+m\noKCAiRMncvr0aQDefPNNioqKGDZsGBMmTOD9999P6LGJiLQlkMkeYPr06fzyl7/k6NGjZ2wfM2YM\nGzZsYNOmTdxxxx08+uijkcf+8pe/sHr1av7jP/6Du+66i3HjxrF161YyMzN56aWXaGhoYObMmTz/\n/PNs3LiRadOm8e1vfzvRhyYico6Um2cfL9nZ2UydOpWFCxeSmZkZ2b5nzx5uv/123n//fU6dOsVV\nV10FNA/1TJw4kS5dujBkyBCampooLS0F4LrrrmPXrl3U1dXxzjvvMHbsWAAaGxvp27dv4g9OROQs\ngU32AA888ABDhw5l2rRpkW0zZ87k4YcfpqysjDVr1lBZWRl5rHv37kDzBd5u3bpFtmdkZHD69Gmc\ncwwePJj169cn7BhERKIR2GEcgJycHG6//XaqqqoiF2mPHj0a6Y1XV1dHnhvNnbvXXHMNBw4cYMOG\nDQA0NDSwffv2+AcuInKeApnsW8++eeihh/jwww8j7crKSqZMmcKwYcO45JJLIs81szNed/YMHjOj\nW7duPPfcc8yePZvCwkJuuOEG/vCHP3h8NCIinbNUWmvGzFwqxRtvZqaF0EQkJoHs2YuIBI2SvYhI\nACjZi4gEgJK9iEgAKNmLiASAkr2ISAAo2YuIBICSvYhIACjZx0l+fj5ZWVlkZ2dz2WWXMW3aND76\n6CNOnjzJPffcQygUIi8v75xllSsqKhg4cCBdunRh6dKlPkUvIuku5RdCS0ThkWju2jUzVq5cSUlJ\nCe+99x6lpaXMnz8fgD/96U/89a9/Zd++fRQXFzNo0KDIipmFhYXceeedzJ49W0VURMQzKZ/sm3m5\nhML5J+C+ffsyceJE3n77bTZt2sTSpUsJhUKEQiEqKiqorq6OJPvp06cDcPHFF8c1ahGR1jSME0fh\nvwD27NnDyy+/TP/+/dm3bx/XX3995DkFBQW88847foUoIgGlZB8nzjluvfVWcnJyGDNmDEVFRcya\nNQuAUCgUeV6vXr04duyYX2GKSEClyTCO/8yMX//615SUlES21dfXA81r5Ofm5gJw5MgRsrOzfYlR\nRIJLPXsP5eTkkJeXx+bNmyPbtmzZwpAhQ3yMSkSCSMneY1OnTmX+/PkcPnyYHTt2sHjxYsrLyyOP\nNzQ0cOLECZqamjh16hQnTpyIavaPiMj5ULL32Lx58xgwYABXXnklxcXFzJ49m/Hjx0ceHzduHFlZ\nWWzYsIGKigqysrJYt26djxGLSDpK+UpVyTLPPhFUqUpEYpXyF2iTJRGLiCQzDeOIiASAkr2ISAAo\n2YuIBICSvYhIACjZi4gEgJK9iEgAKNmLiASAkr2ISAAo2cdJLGUJ6+rqmDRpEpdeeil9+vRhwoQJ\n1NXV+XgUIpKuUj7Zm5nnX9HGsXLlSo4dO8amTZvYuHEj8+fPp7KyMlKWcPXq1Tz66KO89tprQPNy\nx7feeit1dXXs37+fESNGMGnSJC9Pl4gEVHqsjVPp4U4ro1uSoX///lRVVUXWs581axY7duyIlCUc\nO3YsAHPnzqWuro5ly5ad8x6HDh0iNzeXgwcPkpOTc87jWhtHRGKV8j37ZHKhZQnXrl1LXl5em4le\nRORCKNnHyYWWJdy7dy8zZszgscceS1jMIhIcKb/qZbK4kLKEBw4cYPz48dx3333ccccdiQtaRAJD\nPXsPRVOWsL6+nvHjx3PrrbfyyCOP+BGmiASAkr3HOipLePToUUpLSxk9ejQLFizwN1ARSWtK9h7r\nqCzh8uXL2bhxI0899RTZ2dlkZ2fTq1cv9u7d63PUIpJu0mPqpceS5Rxp6qWIxCrlL9AmSyIWEUlm\nGsYREQkAJXsRkQBQshcRCQAlexGRAFCyFxEJACV7EZEAULIXEQkAJXsRkQBQso+TWMoSHjx4kFGj\nRpGbm0soFOKGG27gxRdf9PEoRCRdpfwdtMmyXEK4LGFJSQnvvfcepaWlzJ8/HyBSlnDfvn0UFxcz\naNAgSktL6dmzJ0uWLOFTn/oUGRkZ/PrXv2bKlCkcOnSInj17en1YIhIgKZ/sAbxcMCGWXyV9+/Zl\n4sSJvP3225GyhKFQiFAoREVFBdXV1ZSWlnLRRRdxzTXXANDU1ERGRga5ubl07949vgchIoGnYZw4\nirUsYUFBAZmZmZSXl7N8+XIlexGJOyX7OLmQsoRbt27l2LFjVFZWMnnyZI4fP57Q2EUk/SnZx0m4\nLGF9fT27du1i0aJF9OjRA2guUhLWVllCgO7duzNz5kyys7P53e9+l7C4RSQYlOw9FE1ZwrOdPn06\n8ktCRCRe0uICbTILlyUcNmwY+/btY/HixSxduhSA119/nYaGBkaMGEFjYyMLFy7kxIkTjBw50ueo\nRSTdqGfvsY7KEp48eZIZM2aQm5vLJz/5SdauXcurr76qaZciEncqSxiFZDlHKksoIrFK+WGcZEnE\nIiLJTMM4IiIBoGQvIhIASvYiIgGgZC8iEgBK9iIiAaBkLyISAEr2IiIBoGQvIhIASvZxEktZwtZq\namrIyMigqqoqwZGLSBCk/B20ybJcQixlCcPq6+tZsGABQ4YMScjxiEjwpHyyB2D1au/eu7j4vF8S\nbVnCsEceeYT777+fZ555Jp6Ri4hEaBgnjmIpS/jGG2+wadMmvva1ryU8XhEJDs+SvZktMbP9Zrat\n1bYRZvaGmb1lZv9lZsO92n+ixVKWsLGxkfvuu49FixZp+EZEPOXlMM5TwL8CNa22PQp81zn3mplN\nbGmf/zhJEgqXJSwpKYlsq6+vB5rLEubm5gJnliV84oknKCgoYMSIEZHXaBVPEfGCZz1759w6oP6s\nzfuAcDe3N/A3r/afDDorS7hq1SqWL19OXl4eeXl5rF+/noceeohvfOMbfoUsImkq0Rdo5wC/N7Mf\n0/yL5u8TvP+E66gsYXV1NSdPngSae/S33XYbU6ZM4Stf+YqfIYtIGkp0sq8CvuGcW25mU4AlwLgE\nx5BQ8+bN4+tf/zpXXnklmZmZzJkzJ1KWsPVYPkD37t3p1atXZJhHRCRePC1LaGb5wArn3HUt7aPO\nuV4t3xtw2DkXauN17QYV9LKEIiIdaa90aaJ79v9tZjc759YAJUBde09sK8G2leySJREnStCOV6Qz\nlZWVVFZW+h1GUuioQ+hZsjezZcDNQK6Z7QG+B1QAPzOzi4D/19IWEYnZrl27/A4hJXiW7J1zX2rn\noc94tU8REWmb7qAVkZRWXl7udwgpwdMLtLEyM9femH0yxpsoQT9+EelYS45oc+BePXsRSWm1tbV+\nh5ASlOxFRAJAwzgpJOjHLyId0zCOiEjAKdnHSaxlCTMyMujZsyfZ2dlkZ2dTUaFbD0TOh8bso5Py\nlaqSZbmECylLuG3bNvr37+9Z/CIiKZ/sAVbjXVnC4hiW2z/fsoRNTU3xDDltJdPaQLp2kjyKior8\nDiElaBgnjmIpSwhw0003kZeXx+TJk9m9e3dCY049Lgm+RFKPkn2cxFKWEGDt2rXs3r2bnTt30rdv\nX8rKymhsbEx4/CKpSmP20UmLYZxkEEtZQoDRo0cDzb8QHn/8cUKhEDt37mTw4MEJjF5E0p169h7q\nrCzh2cLDQBoPFomexuyjo2TvsXBZwsOHD7Njxw4WL14cWbhp+/btbN68mcbGRo4fP843v/lN+vXr\nx7XXXutv0CKSdpTsPTZv3jwGDBjAlVdeSXFxMbNnz46UJdy/fz933nknoVCIAQMGsGfPHlauXEmX\nLl18jlokdWjMPjqeLZdgZkuAzwEfhMsStmyfCUwHGoGXnHOz23ht1MslJMs8+0QI+nIJzf/XyXD8\nwf5/SDa1tbUaymnR0XIJXib7McBxoKZVDdpi4FvAZ51zDWZ2iXPuQBuv1do4bdDxK9mLdMSXtXGc\nc+uA+rM2fx34oXOuoeU55yR6ERGJv0SP2X8KuMnMNphZrZkNS/D+RSTNaMw+OomeZ98VyHHOjTSz\n4cAzwFUJjkFEJHASnez3Ai8AOOf+y8yazKyPc+7g2U8sLy8nPz8fgN69e1NYWJjQQJNZuCcTvigV\nlPbHwu0in9pnXhRMlvMT1HZ4W7LEk8h2bW0t1dXVAJF82R5Pi5eYWT6wotUF2nuBvs65uWZ2NfCf\nzrlPtvE6XaBtg45fF2hFOuLLBVozWwasB642sz1mNg1YAlxlZtuAZcBUr/YvIsGgMfvoeDaM45z7\nUjsPfdmrfYqISNtUgzaF6Pg1jCPSEdWgTYBYyxI2Njbyne98h8svv5xevXoxdOhQjhw54tNRiEi6\nSvkljpNluYRYyxLOnTuXDRs2sGHDBq644gq2b9/OxRdf7OnxiKQTLZcQnZRP9gCrvatKSPH5VyWM\nuixhfX09jz/+OFu3buWKK64AYNCgQXE+AhERDePE1fmWJdy2bRtdu3bl2WefJS8vj2uuuYYnnnjC\nl9hFUpV69dFJi559MgiXJezatSuhUIiysjJmzZrFokWL2i1LuHfvXo4cOcK7777Lrl27qKur45Zb\nbuHqq69m7Nixfh2KiKQh9ezjJFyWsL6+nl27drFo0SJ69OgBNJclDGtdljAzMxOA733ve1x00UVc\nd9113Hnnnbz88suJPwCRFKV59tFRsvdQZ2UJCwoK2nxdIi46i0iwKNl7rKOyhAMGDGDMmDH84Ac/\n4NSpU+zYsYNf/epXlJWV+Ru0SArRmH10lOw91lFZQoBly5axe/du+vTpQ1lZGfPnz6c4lilAIiId\nSPk7aJNlnn0i6A5a3UEr59I8+491dAdtys/G0Q+diEjnUr5nHyQ6fvXsRTqitXFERAJOyV5EUprm\n2UdHyV5EJAC8rFS1xMz2t1SlOvuxh1rqz37Cq/2LSDBoJk50vOzZPwVMOHujmV0BjAN2e7hvERFp\nxbNk75xbB9S38dBjwCyv9isiwaIx++gkdMzezCYBe51zWxO5XxGRoEtYsjezLOBbwNzWmxO1f6/F\nUpZw3bp1ZGdnn/GVkZHB8uXLfTwSkdSiMfvoJPIO2gFAPrClZYmDfsCbZjbCOffB2U8uLy8nPz8f\ngN69e1NYWNjmmybLcgmxlCUcM2ZMZG17gDVr1vD5z3+eCRPOudRxhvCfreEPeVDaHwu3i3xqn3mL\nfrKcH7WD166traW6uhogki/b4+kdtGaWD6xwzl3XxmN/AT7tnDvUxmMptzZO//79qaqqoqSkBIBZ\ns2axY8eOSFnCcDGSuXPnUldXx7Jly855j2nTppGRkUFVVVWb+9AdtLqDVs6ltXE+5ssdtGa2DFgP\nXG1me8xs2llPSbuflvMtS9jaRx99xPPPP8/dd9+dsHhFJDg8G8Zxzn2pk8ev8mrffoilLGFrL7zw\nApdccgk33XRTIsMWSXnq1Ucn5Ve9TBbhsoThYRyA+vrmmadHjx4lNzcXOLMsYWtLly5l6tSpiQlW\nRAJHyyV4qLOyhGF79uxhzZo1SvYiMdA8++go2Xuso7KEYf/+7//OqFGj6N+/vz9BikjaU7L3WGdl\nCaE52evCrEhsNGYfnZQvXpIsUy8TQVMvNfVSpCNpXbzEOef5l4gkL43ZRyflk72IiHQu5YdxgkTH\nr2EckY6k9TCOiIh0TjdViaSgRExMiJbff+XoXERHyV4kVa1e7XcEUFzsdwRAsgzuJTcN44iIBICS\nvYhIACjZi4gEgJJ9nMRSlhDg97//PcOHDycUCjFgwACefPJJn45ARNJZyl+gTZblEmIpS9jY2Mg/\n/MM/sGDBAr761a+yceNGiouL+cxnPkNBQYHXhyUiAeJpz97MlpjZfjPb1mrbP5vZDjPbYmYvmFmo\no/eIjvPw6/z17duXiRMn8vbbb1NTU8N3v/tdQqEQAwcOpKKiIlIzcv/+/Rw8eJAvf/nLAAwbNoxr\nr72WHTt2xLRfEZH2eD2M8xRwdvXs3wCDnXPXA3XAIx7HkDDnW5YwLy+PgoIClixZQmNjI+vXr2f3\n7t2MHj3al/hFJH15muydc+uA+rO2/dY519TSfB3o52UMiRIuS5iTk8OYMWMoKipi1qxZAO2WJTQz\nfv7znzN37lwuvvhibr75ZhYsWMDll1/uyzGISPrye8z+HmCZzzHERSxlCf/2t79RVlbG008/zbhx\n46irq6OsrIy8vDw++9nPJv4gRCRt+TYbx8y+DZxyzj3tVwxe66ws4fr16+nXrx/jxo0D4Oqrr+Zz\nn/scr7zyii/xikj68qVnb2blwGeBW9p7Tnl5Ofn5+QD07t2bwsLChMQWb+GyhMOGDWPfvn0sXryY\npUuXAjB48GD++Mc/snr1aoqKivjzn//MypUrmT17dofvGV6/O1yhJyjtj4XbRT61m2NKmvMR7kyE\nf0YS3Pb78wHN/0NFrb7Hh3YklgQef21tbWTCRzhftsfzJY7NLB9Y4Zy7rqU9AfgJcLNz7sN2XnOe\nlaq8PIbolrPt378/VVVVZwzjAJw6dYqvf/3rPPfcc2RmZjJnzhweeOCByOM1NTX86Ec/Yu/evYRC\nIe666y5++MMfth2JljgmWVZB8fv/wcySZm2cZDgXyfGp8H8htI6WOPY02ZvZMuBmIBfYD8ylefZN\nd+BQy9P+4JybftbrVJawDUr2SvaRCJTsI5TsW8XQQbL3dBjHOfelNjYvifM+4vl2IiJpScsliIgE\ngJK9iEgAKNmLiASAkr2ISAAo2YuIBICSvYhIACjZi4gEgJK9iEgAKNnHSaxlCVesWMGQIUPIzs5m\n1KhRKlwiIp7we4njC5YsyyXEUpbw3Xff5a677uKVV15h5MiRPProo3zhC19g586ddOnSxevDEpEA\nSflkD0Blcr1367KEmzZtYunSpYRCIUKhUKQsYWlpKa+99hpjxozhxhtvBGD27Nl8//vfZ82aNecs\nqCYiciE0jBNH51uW8OyFzZqamnDORR4XEYkXJfs4iaUs4S233MKaNWtYs2YNp06dYsGCBZw6dYr/\n+Z//8eUYRCR9KdnHSbgsYX19Pbt27WLRokX06NEDaC5LGNa6LOHAgQNZunQpM2bMoG/fvhw8eJBB\ngwbRr19alOUVkSSiZO+hzsoSAkyePJlt27bx4YcfUllZya5duxg+fLgf4YpIGlOy91i4LOHhw4fZ\nsWMHixcvpry8PPL4m2++SWNjIwcOHKCiooJJkyZx9dVX+xewiKQlz5K9mS0xs/1mtq3Vtk+Y2W/N\nrM7MfmNmvb3af7KYN28eAwYM4Morr6S4uJjZs2czfvz4yOMPPPAAOTk5DBw4kD59+vDkk0/6GK2I\npKtOyxKa2WXAD4DLnXMTzGwQ8PfOuapOXjcGOA7UtKo/+yjwoXPuUTObDeQ45+a08VqVJWyDyhKq\nLGEkApUljFBZwlYxdFCWMJqefTXwG6BvS/td4MHOXuScWwfUn7X5C8DSlu+XArdGsf/O9uP5l4hI\nqosm2ec6534FNAI45xqA0zHu7++cc/tbvt8P/F2M7yMiIuchmmR/3Mz6hBtmNhI4cqE7bhmnUbdZ\nRCQBolku4SFgBXCVma0HLgG+GOP+9pvZZc65980sD/igvSeWl5eTn58PQO/evSksLIxxl+mntrYW\ngKKiokC1PxZuF/nUbo4pac5HeGpv+GckwW2/Px/Q/D9U1Op7fGhHYkng8dfW1lJdXQ0QyZft6fQC\nLYCZdQWuofkvgZ0tQznRvC4fWHHWBdqDzrl/MrM5QO8LvUAbJDp+XaCNRKALtBG6QNsqhgu5QGtm\nPYBHgAecc9uAfDMri+J1y4D1wDVmtsfMpgE/AsaZWR1Q0tIWERGPRTOM8xTwJnBjS/s94DlgZUcv\ncs59qZ2HxkYdnYiIxEU0F2gHOOf+CTgF4Jz7yNuQREQk3qJJ9ifNLDPcMLMBwEnvQhIRkXiLJtlX\nAq8C/czsaWAVMNvLoFJRe2UJn3nmGW688UZ69OhBcXHxOa/bvHkzn/70p+nRowfDhg1jy5YtPkQv\nIumuw2RvZhlADjAZmAY8DQxzziXBNIBmZub5V7RxrFy5kmPHjrFp0yY2btzI/Pnz6dOnDw8++CBz\n5pwz6YhTp04xadIkpk6dyuHDh7n77ruZNGkSDQ1RTXYSEYlah8neOdcEzHLOfeicW9nydSBBsUXN\nefgVi759+zJhwgTefvttbrnlFqZMmUJeXt45z6utraWxsZH777+fbt26MXPmTJxzrFq1KsY9i4i0\nLZphnN+a2cNmdkXLqpWfMLNPeB5ZCmpdlvCVV15h6NChHT7/nXfeoaCg4Ixt119/vcoSikjcRTP1\n8k6aO7n3nbW9f/zDSV3hsoRdu3YlFApRVlbGt771rQ5fc/z48TNKFsKZZQtFROKl02TvnMtPQBwp\nL1yWsKSkJOrXZGdnn1GyEJrLFvbq1Sve4YlIwHWa7M1sMucOXx8Btjnn2l3bRs7U1oXewYMH85Of\n/OSMbVu3bmXmzJmJCktSWRuzu4LK+6oWqS+aMft7gMXAPwJ3AU8Cc4D1ZjbVw9jSQlNTEydOnKCh\noYGmpiZOnjwZmW1TVFREly5dWLhwISdPnmThwoVkZGSc118HIgLeTtPwcjpH4kST7LsB1zrnJjvn\nbgMG0Xxkn0Hz7TtVU1NDVlYW06dPZ926dWRmZnLvvfcC0K1bN1588UVqamrIycmhpqaGF198ka5d\no7mUIiISvWjKEu5wzl3bqm3AdufctWb2lnPuhrgHpbKEbdKql1r1MhJBAj730UqOc6HPBXS86mU0\nXcjVZvYS8AzNQ2OTgdqW1TAPxy/M2Ph9ckVEUkE0PfsM4DZgVMum/ws832bXO15BaT37Nun41YOL\nRKCefYQ+F60iuJCevXOuycw2Akecc781syygJ6DJ4CIiKSKa4iUVwLPA/27Z1A940cugREQkvqKZ\njXMfMBo4CuCcqwMuvZCdmtkjZvaOmW0zs6fN7KILeT8REelYVOvZO+ci69e31KONeWCqpS7tV4Gh\nLbVpu9C8JIOIiHgkmmS/xsy+DWSZ2Tiah3RWXMA+jwINLe/XFcgC/nYB7yciIp2IJtnPAQ4A24B7\ngZeB78S6Q+fcIeAnwF9prmd72Dn3n7G+n4iIdK7TqZcAZnYpQDzWwmkpa7gCGEPzGjvPAs85537Z\n6jmaetkGHb+m2EUi0NTLCH0uWkUQy9TLljtl5wIzaB5Xx8wagX8Fvn8B8+yHAeudcwdb3vMF4Ebg\nl62fVF5eTn5+PgC9e/emsLAwxt0lRn5+Ph988AFdunShR48eTJw4kUWLFvHSSy/x05/+lC1btjBi\nxAhWrz6zyFdFRQVr167l3XffZcmSJdx9992d7qu2thZoXlsnSO2PhdtFPrWbY0qe8+Evvz8fLVHg\n3+ch3CaqeOPZrq2tpbq6GiCSL9vTbs/ezL4JTAQqnHN/adl2Fc1TMF91zj3W4Tu3t0Oz62lO7MOB\nE0A18IZz7metnpNyyyX079+fqqoqSkpKeO+99ygtLaWsrIyxY8dy6NAhdu7cyapVq85J9k888QQD\nBw5k9uzZzJw5k6lT219bTj179eAiEahnH6HPRasIYrypaiowrnUZQufcn83sH4HfAjEle+fcFjOr\nATYCTcAm4OexvFfEWQk0rmJYRrZ1WcIf/vCHACxevLjN506fPh2Aiy++OPYYRUQ60dEF2q5t1Ztt\n2XZByzI65x51zg12zl3nnLvbOZcWFbbPtyyhiEiidJS0O0rAaZGc4ymWsoQiIonSUbIvMLP21r/J\n9CKYVBZLWUIRkURpN9k757okMpB0l0wX1EQkeKK5qUouQEdlCQEaGho4ceIETU1NnDp1ihMnTvh+\nRV9E0o+Svcc6KksIMG7cOLKystiwYQMVFRVkZWWxbt06HyMWkXQU1R20iZaK8+wTQfPsNZ86EkES\nDQsmx7nQ5wIuvCxhUvP75IqIpAIN44iIBEDK9+xFRCB5hrWSlZK9iKS81Xi4ZEqUijn/pVUSScM4\nIiIBoGQvIhIASvYiIgGgZC8iEgBK9iIiAeBLsjez3mb2nJntMLPtZjbSjzjiKT8/n6ysLLKzs7ns\nssuYNm0aH330Ec888ww33ngjPXr0oPisQih1dXVMmjSJSy+9lD59+jBhwgTq6up8OgIRSWd+9ewf\nB152zl0LFAA7Yn0jM/P8K9o4Vq5cybFjx9i0aRMbN25k/vz59OnThwcffJA5c+ac85ojR45w6623\nUldXx/79+xkxYgSTJk2K9VSIiLQr4fPszSwEjHHO3Q3gnDsNHLmQ9/Ryjm0sc2ejLUs4fPhwhg8f\nHmk/8MADzJ8/n/r6enJycmIPWkTkLH707PsDB8zsKTPbZGZPmlmWD3HE3YWWJVy7di15eXlK9CIS\nd34k+67AUOAJ59xQ4CPg3DGOFBMuS5iTk8OYMWMoKio6r7KEe/fuZcaMGTz2WEx13EVEOuTHcgl7\ngb3Ouf9qaT9HG8m+vLyc/Px8AHr37k1hYWHCAozFhZQlPHDgAOPHj+e+++7jjjvu6HQ/fgn/5VJb\nWwtAUVFRQtsfC7eLfGo3x5To42//fPjLr+MPtwE2s5lCCiPfAwlv+3E+amtrqa6uBojky/b4sp69\nma0F/pcVQQb8AAAJeUlEQVRzrs7MKoFM59zsVo+f13r2Xo/ZR3OO+vfvT1VVVbvJvqqqil/84hes\nXn1mrPX19ZSUlDBx4kQWLFjQ4T7MDCqjDj2+Kv1fTlrrlreKQOvZR3idA6IVba7wUjKuZz8T+KWZ\ndQf+BEzzKQ7PhcsNti5LmJGRQbdu3Th69CilpaWMHj2600QvInIhfJl66Zzb4pwb7py73jl3m3Pu\ngmbjJLOOyhIuX76cjRs38tRTT5GdnU12dja9evVi7969PkctIulGZQmjkCznSMM4GsaJRKBhnAgN\n43wsGYdx4sbvkysikgq0No6ISAAo2YuIBICSvYhIACjZi4gEgJK9iEgAKNmLiASAkr2ISAAo2YuI\nBICSfZzEUpbw4MGDjBo1itzcXEKhEDfccAMvvviiT0cgIuks5ZN9Kpcl7NmzJ0uWLOGDDz7gyJEj\nVFZWcvvtt3P8+PF4nyYRCbiUXy4BYLWHy2IUn39VwqjLEl500UVcc801QPPqmBkZGeTm5tK9e/cL\nillE5GxpkeyTxdllCSdPnhzV6woKCvjjH/9Iz549efnll5XsRSTulOzjJFyWsGvXroRCIcrKyqIu\nS7h161ZOnTrFv/3bvzF58mR27txJz549PY5YRIIk5cfsk0W4LGF9fT27du1i0aJFXHTRRVG/vnv3\n7sycOZPs7Gx+97vfeRipiASRb8nezLqY2VtmtsKvGBIp2gu9p0+fpkePHh5HIyJB4+cwzv3AdiDb\nxxg811FZwtdff52GhgZGjBhBY2MjCxcu5MSJE4wcOdLvsEUkzfjSszezfsBngcVA8pTc8UBHZQlP\nnjzJjBkzyM3N5ZOf/CRr167l1Vdf1Xi9iMSdL2UJzexZYAHQC3jYOff5sx5XWcI2qCyhyhJGIlBZ\nwgiVJfxYUpUlNLMy4APn3FtmVnSh7+f3yRURSQV+jNnfCHzBzD4LXAz0MrMa59zU1k8qLy8nPz8f\ngN69e1NYWJjwQJNSpd8BQG1tLQBFRUUJbbeKoOXfIp/azTEl+vjbPx/+Soa/MjazmUIKI98DCW+H\nJfLzUFtbS3V1NUAkX7bHl2GcyM7NbuYCh3GCxN9hDP/PvYZxWkWQBAk2mWgYp1lHwzjJMM8+GX56\nRUTSmq930Drn1gBr/IxBRCQIkqFnLyIiHlOyFxEJACV7EZEAULIXEQkAJfs4iaUsYWs1NTVkZGRQ\nVVWVwKhFJChSPtmnclnCsPr6ehYsWMCQIUM0f1pEPJHyyT4ZtS5LeMsttzBlyhTy8vLaff4jjzzC\n/fffT58+fRIYpYgEiZJ9HJ1dlnDo0KGdvuaNN95g06ZNfO1rX/M6PBEJsKQtS9j7kt5+h3BeYilL\n2NjYyH333cfPfvYzDd+IiKeSNtkfmXrk3I2PJT6OaIXLEpaUlET9mieeeIKCggJGjBgR2eb32hoi\nErtk7rQlbbKnl98BxFdbH4JVq1axZs0aXn75ZQAOHTrEW2+9xZYtW1i4cGGiQxSRC+T3gmzFtD/j\nL3mTfZroqCxhdXU1J0+eBJp79LfddhtTpkzhK1/5is9Ri0i6UbL3WE1NDffcc0+knZmZSXl5OUuW\nLCEUCp3x3O7du9OrVy+ys9O6LK+I+MDX9ezbY2auzSIdleeOaQeuLKHWs/c1hmbJci4kzO/hE2ge\nQvE7jpY19ZOjLGG8+f1DJyKSCjTPXkQkAHxJ9mZ2hZmtNrN3zOxtM/uGH3GIiASFX8M4DcCDzrnN\nZtYTeNPMfuuc2+FTPCIiac2Xnr1z7n3n3OaW748DO4C+fsQiIhIEvo/Zm1k+cAPwur+RiIikL1+T\nfcsQznPA/S09fBER8YBvUy/NrBvwPPAL59yL5zxhORBeC+1i4LLExZb8alv+LUpwu6VV29wuKipK\naLtVBDHGH692c0yJPv72z4dsZjOFFEa+BxLebh1Lova/mc28yqsAXNZJkvTlpiprviNkKXDQOfdg\nG49HfVNVkOimKt1UFYlAN1Wdwe+bmSD5b6ryaxhnFHAXUGxmb7V8TfAplriItSxhRkYGPXv2JDs7\nm+zsbCoqKnyIXkTSnS/DOM653xOnXzTJslxCuCxhSUkJ7733HqWlpcyfP5+xY8fy4IMPsnPnTlat\nWtXma7dt20b//v3jHbaISITvs3Hiw3n4df7OtyxhU1NTTPsREYlWmiT75BBLWUKAm266iby8PCZP\nnszu3bu9DFFEAkrJPk7CZQlzcnIYM2YMRUVFnZYlBFi7di27d+9m586d9O3bl7KyMhobGxMQsYgE\nScqvepksYilLCDB69GgAQqEQjz/+OKFQiJ07dzJ48GAvwhSRgFLPPkGiuZAcHgbye1qfiKQfJXuP\nNTU1ceLEiTPKEjY0NACwfft2Nm/eTGNjI8ePH+eb3/wm/fr149prr/U5ahFJN0r2HqupqSErK4vp\n06ezbt06MjMzuffeewHYv38/d955J6FQiAEDBrBnzx5WrlxJly5dfI5aRNKNyhJGIVnOke6g1R20\nkQh0B+0Z/L5zFZL/DtqUv0Dr9w9dkCjBfEznIrkUc+7d6XKmlE/2kjirfe48tbHahG+SoQeXLH/l\n6FyEJXcHQGP2IiIBoGQvIhIASvYiIgGgZC8iEgBK9iIiAZBys3E05U1E5Pz5kuxbqlL9FOgCLHbO\n/VNUL6z0MKizPW48+/Nn+OIXv5jAnZ4reW4kEpFUlvBhHDPrAiwCJgCDgC+ZmRaDERHxkB9j9iOA\n/3bO7XLONQD/B5jkQxwiIoHhR7K/HNjTqr23ZZuIiHjEjzH76AagK70NonMaJxeR9JHwVS/NbCRQ\n6Zyb0NJ+BGhqfZHWzJRpRURi0N6ql34k+67AH4FbgPeAN4AvOed2JDQQEZEASfgwjnPutJnNAF6j\neepllRK9iIi3krJ4iYiIxFdS3UFrZkuAzwEfOOeu8zseEUluZrYLOAo0Ag3OuRH+RpS8kqpnb2Zj\ngONAjZK9iHTGzP4CfNo5d8jvWJJdUi2E5pxbB9T7HYeIpBQtmBWFpEr2IiLnyQH/aWYbzeyrfgeT\nzJJqzF5E5DyNcs7tM7NLgN+a2c6WEQI5i3r2IpKynHP7Wv49ACynee0taYOSvYikJDPLMrPslu97\nAOOBbf5GlbySKtmb2TJgPXC1me0xs2l+xyQiSevvgHVmthl4HVjpnPuNzzElraSaeikiIt5Iqp69\niIh4Q8leRCQAlOxFRAJAyV5EJACU7EVEAkDJXkQkAJTsRUQCQMleRCQA/j++FyBv0lw+TAAAAABJ\nRU5ErkJggg==\n", - "text": [ - "" - ] - } - ], - "prompt_number": 85 + "output_type": "execute_result" }, { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Python Student P08 difficulty over time.\n", - "\n", - "pydata.ix[\"P08\"].plot()\n", - "pydata.ix[\"P08\"].mean()\n" - ], - "language": "python", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEACAYAAACznAEdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXm0XFWV8H878wS8BDAhEEhCBkiIvIyEROXRNiq0Qtvq\nJ04YbTGN0tJq0/TXymKtbpe2DdiiDZoWIeinYOOMYguChZg8QqaXeSBkeiEhIXkZCJnz9vfHuZVU\nKlV1a7hT3dq/tWq9unXPPWfXfqfuvmfvc84WVcUwDMMwusQtgGEYhpEMzCAYhmEYgBkEwzAMw8MM\ngmEYhgGYQTAMwzA8zCAYhmEYAHSLo1ER2QjsA44DR1V1St75FuBXwHrvo5+p6leilNEwDKPRiMUg\nAAq0qGpHiTLPqer1UQlkGIbR6MTpMpIazxuGYRgBEpdBUOAPIrJARG4ucn6aiCwRkSdFZEzE8hmG\nYTQccbmMpqvqNhE5F3haRFar6vM55xcBQ1T1gIhcC/wSGBWLpIZhGA2CxL2XkYjcBexX1XtLlNkA\nTMyNOYiIbcJkGIZRBapa0CUfuctIRPqIyBne+77AO4BleWUGioh476fgDNdpAWhVtVeJ11133RW7\nDEl/VaqjY8eUiy9Whg9XHnssfvmTqKNGfNWTjkoRh8toIPAL737fDfiRqj4lIjMBVHUW8H7gFhE5\nBhwAboxBzrpn48aNcYuQeCrV0S9+AQMHQksLrFkTikiJw/qRP2nRUeQGQVU3AM0FPp+V8/5+4P4o\n5TIMP1Th7rvhn/8Z9u2Dp56KWyLDCBZbqZxiZsyYEbcIiacSHT3/POzeDddfD6NHN84IwfqRP2nR\nUexB5WoREa1X2Y365D3vgXe/G2bOdIbhootg714QWzFj1BEigiYlqGxERyaTiVuExFOujlauhPnz\n4aab3HH//tCrF2zbFp5sScH6kT9p0ZEZBMMog3vvhc9+Fnr3PvlZI7mNjMbAXEaG4cO2bTBmDKxb\nB2efffLzT30KJk2Cv/u7+GQzjEoxl5Fh1MC3vw0f+cipxgBshGCkDzMIKSYtfs0w8dPR66/Df/83\nfOELp59rFINg/ciftOjIDIJhlOD734e/+AsYPvz0c41iEIzGwWIIhlGEo0dhxAj46U9h8uTC5884\nw0097dkzevkMoxoshmAYVfD44zBsWGFjANC9u1uLsG5dtHIZRliYQUgxafFrhkkxHWW3qbj99tLX\nN4LbyPqRP2nRkRkEwyjAM8/A4cNw7bWlyzWCQTAaB4shGEYB3vlO+OAH4ZOfLF3uwQfhz3+G2bMj\nEcswasZiCIZRAUuWwLJlbu2BHzZCMNKEGYQUkxa/ZpgU0tG998LnPlfezKGsQUjzYNX6kT9p0ZEZ\nBMPIob0dfvOb8rejOPdcZwx27gxXLsOIAoshGEYO//iP0NkJ3/hG+ddMnQr33ANveUt4chlGUJSK\nIcSRQtMwEsnevfDQQ9DWVtl1WbeRGQSj3jGXUYpJi18zTHJ1NGuWm2Z64YWV1ZH2wLL1I3/SoiMz\nCIYBHDkC993nvxCtEGk3CEbjYDEEw8CtI/jRj+Dppyu/dvlyeP/7YfXqwMUyjMApFUMwg2A0PKow\nbpwLJL/jHZVff+gQNDW5rbK7dw9ePsMIEluY1qCkxa8ZJplMht/9Drp1g2uuqa6OXr1g8GDYuDFQ\n0RKD9SN/0qKjWAyCiGwUkaUislhEXixS5lsi8pKILBGR8VHLaDQO99zjpptKwWem8hg1yuIIRv0T\ni8tIRDYAE1W1o8j564BbVfU6EbkCuE9Vp+aVMZeRUTMLF8Jf/zWsX1+bu+e229zspC9+MTjZDCMM\nkuoyKvU8dj3wCICqzgOaRGRgJFIZDcXdd8M//EPtvn+baWSkgbgMggJ/EJEFInJzgfPnA+05x1uA\nCyKRLEWkxa8ZFhs2wJNPZri5UA+skCgMQmcnHDsW/euZZzKxtFvNq7Mz3P9BMaL+rdXSF0oR10rl\n6aq6TUTOBZ4WkdWq+nxemfwRxGn+oRkzZjB06FAAmpqaaG5upqWlBTj5D2rk47a2tkTJk7TjRx5x\ns4rOPLP2+jo6MixbBhCevJ/8JGza1IIIqLrzIu58mMfOMxtde7Ucn3NOC1u3wvPPu+Oo+lObt7w9\nqvZGjcqwfj106XLq9y/8/8vQ2TnbOx5KKWKfdioidwH7VfXenM++C2RU9THveDVwlapuzyljMQSj\nJj7+cWhpgU98ova6VF1+5VdegbPOqr2+fHbscKOQXbugi80NLMqll8Jjj8Hll8ctSXjs3AkXXwwd\nHdC1a+XXJyqGICJ9ROQM731f4B3AsrxivwZu8spMBfbkGgPDCIL2dhgyJJi6RMKdaTR3Llx5pRkD\nP6ZPhzlz4pYiXObOdRsqVmMM/Iijew0EnheRNmAe8BtVfUpEZorITABVfRJYLyLrgFnAZ2KQs+6x\nGEJpNm+GrVszgdUXZhxh7lyYNi2cuv2op340bZrTVdREqaMw+0LkMQRV3QA0F/h8Vt7xrZEJZTQc\nqrBlC7zpTcHVGaZBmDMHvvKVcOpOE9Onw7/9W9xShMucOXDXXeHUHXsMoVoshmDUwo4dMGZMsIlt\nHn0Ufv5zePzx4OoEOHwYzj4btm+Hvn2DrTttqLqkRUuXutXjaePIERgwALZtczGrakhUDMEwkkCQ\n8YMsYY0QFi6ESy4xY1AOIvG5jaJg0SIYObJ6Y+CHGYQUU0++36jJGoQgdTRqFKxbF/xc+DjjB1B/\n/SgOgxCVjsLuC2YQjIZk8+bgRwj9+rnh/ObNwdY7Z068BqHemDYtvTONwu4LFkMwGpLbb4dzzoE7\n7gi23re/Hf7pn+Cd7wymPlUYNAgWLAjegKWVgwfd/3bnTujdO25pgkPVxUVaW8Fbj1sVFkMwjDzC\niCFA8HGE9euhRw8zBpXQuzdcdpkzomli40YXI7noovDaMIOQYurN9xslYcQQIHiDMGeOm0oZJ/XY\nj6JeoBaFjrJ9oZZt2v0wg2A0JGHEECB4gxB3QLleSeNMoyj6gsUQjIbj2DHo0wfeeCP4lJcbNsDb\n3uZGIEEwbhw8/DBMmhRMfY3C1q3w5jfDa6+F+0QdJZdfDt/7HkyZUls9FkMwjBy2bXOLl8LIf3zh\nhS6Y+cYbtde1Z4/zG6d5o7awGDzYzdVfuzZuSYJh3z54+WVoPm2Ph2Axg5Bi6tH3GwW5AeWgddS1\nK4wYEcyN6IUX3MggDMNVCfXaj6Kcfhq2jl54ASZOdBMMwsQMgtFwhDXDKEtQcYS5c+MPKNcz06en\nJ44QVSzJDEKKySbTME4lN6Acho6CMghJWZBWr/0oysBy2Doyg2AYIVEPI4Rjx2D+fJcDwaiOceNc\nwqKOjrglqY3jx2HevGj6ghmEFFOvvt+waW93wV8IR0dBJMpZtswZrf79g5GpFuq1H3Xt6mbktLaG\n31aYOlq+HM47z62+DhszCEbDEcUIYe1aqGVWdFLcRfVOGvY1inJxohmEFFOvvt+wCTuG0L+/2z5h\n27bq60hSQLme+1FUgeUwdRTl4kQzCEZDcegQ7N0LAweG206tcQQbIQTDFVe4fBJHj8YtSfXYCMEI\nhHr1/YbJli1w/vknk9WHpaNaDMKWLXDggEuEkgTquR+ddRYMHw5tbeG2E5aOtm51i9JGjQql+tMw\ng2A0FGHHD7LUYhCyLoK0bLkQN/UcR5g7180u6hLRndoMQoqpZ99vWOQbhLB0VKtBSEr8AOq/H0UR\nRwhLR1H3BTMIRkMR1i6n+dRiECx+ECzZEUI97oUZ9W63ZhBSTD37fsMif4QQlo6GD3eLog4fruy6\nN96AlSvdvjVJod770bBhbnFX0KlNcwlDRwcPuvUokycHXnVRYjMIItJVRBaLyBMFzrWIyF7v/GIR\n+XIcMhrpI3dRWph07+4yW61bV9l1Cxa4bZvTlPoxbkTqc1+jBQtg7Fi3VXtUxDlCuA1YCRQbyD2n\nquO911cilCs11LvvNwyiiiFAdW6jJLqL0tCPwg4sh6GjOLLlxWIQROQC4DrgQaDYXAqbY2EETlQx\nBKjOICQtoJwW6nGEEEe2vLhGCP8J3A50FjmvwDQRWSIiT4rImOhESw/17vsNmn373KZxufsDhamj\nSg1CZ2cyU2amoR+NH++2E3n99XDqD1pHqvE8HHSLtjkQkXcDO1R1sYi0FCm2CBiiqgdE5Frgl8Bp\nSzNmzJjB0KFDAWhqaqK5ufnE0C37D2rk47a2tkTJE/fxhg0wZEgLIqf/gMNo78ABWLOm/PKbNkH/\n/i0MGpQMfaXpuLU1w7Bh8OKLLbz97cHX3+atfAuqvh/+MEO3bjB4cO31ZTIZZs+eDXDiflmMyHMq\ni8hXgY8Bx4BewJnAz1T1phLXbAAmqmpHzmeWU9moiP/9X/jGN+Cpp6Jpb8cOuOQS2LWrvEVmDz4I\nzz0HP/xh+LI1InfcAf36wZ13xi2JPw8/DE8/DT/+cfB1Jyqnsqr+i6oOUdVhwI3As/nGQEQGirif\nkIhMwRmuOt/V3IibqFYpZzn3XDf037mzvPJJdBeliXpasRxHQBmSsQ5BAURkpojM9D57P7BMRNqA\nb+IMh1Eh+W6RRqdQQDlMHYlUFkeI6ybgR1r60bRpLjdxZ7HIZQ0EraO4Hg5iNQiq+pyqXu+9n6Wq\ns7z396vqZararKrTVPWFOOU00kHUIwQo3yDs3AmvvurmnRvhcO658KY3wYoVcUtSmo4Ot8HhuHHR\nt52EEYIREtkAk+EotCgtbB2VaxBaW2HqVJflK2mkqR+FNf00SB21trpMb90in/JjBsFoIJI8Qkji\ngrQ0Ug9xhDhdh2YQUkxafL9BoFrYIISto3INQpIDymnqR9OmhTNCCFJHcfYFMwhGQ7Bzp9sfqG/f\naNsdMQI2biydsevIEVi0yGX3MsLl0kvdNODt2+OWpDBHj7o9jKZOjad9MwgpJk2+31op5i4KW0e9\nesHgwbBhQ/Eyixc7w3HmmaGKUjVp6kdduriEM0GPEoLSUVub2yn3rLMCqa5izCAYDUFUu5wWws9t\nlNTppmklyfsaxe06NIOQYtLk+62VYiOEKHQ0alRpgxD3TcCPtPWjMALLQeko7ocDMwhGQxDlLqf5\nlBohqMZ/E2g0pkyBJUvg0KG4JTmVbF+wEYIRCmny/dZKXDEEKG0QNm50K5ovuih0Maombf2ob18X\nXF64MLg6g9DR5s0us9vw4bXLUy1mEIyGIKkxhKy7qJzN74zgCGv6aS0koS+YQUgxafP91kKcMYTz\nz3e5kvfsOf1cPbiL0tiPpk8PNo4QhI6S0BfMIBip5/hx2LbN3ZjjQMQFlteuPf1c0gPKaSU7QkjS\nDvpJ6AuR50MICsuHYJTLli0webIzCnHxoQ/BddfBxz528rN9+9wahY4O6NEjPtkalQsvhGeegZEj\n45bEZXIbNMj1hZ49w20rUfkQDCNq4tjDKJ9CcYR582DCBDMGcZGkOMKLL7o0n2EbAz/MIKSYNPp+\nq6FUQDkqHRUyCEnwGZdDWvtRkAvUatVREtxFYAbBaACSOkJIyk2gUUnSzqdJeTiwGIKRem67zc3z\n/8IX4pNh/36XnGX/frefzvHjMGAAvPwynHNOfHI1MkePuv9Bezs0NcUnR2enk2PtWtdHwsZiCEZD\nk4QRQr9+7ke/ebM7Xr4czjvPjEGcdO/uJhu0tsYrx4oVzhBEYQz8MIOQYtLq+62UUgYhSh3luo3q\nyV2U5n4UVGC5Fh0lqS+YQTBST5yrlHPJNQhJ8Rk3OkEvUKuGJPUFiyEYqebwYTjjDDh4MP58xffd\n5/zE99/v9qv57W/dnjpGfOze7R4Wdu+OJ4cxuFwYv/oVjB0bTXsWQzAali1b3OKvuI0BnBwhbNsG\ne/e6YyNe+vd3Ew6WLo2n/e3bXQa3pDwYmEFIMWn2/ZaLX0A5jhjC3Lkua1eXOvn1pb0fBTH9tFod\nJa0vxCaGiHQVkcUi8kSR898SkZdEZImIjI9aPiMdJCV+AE6OnTvhqaeSE0Q04l2xnKSAMsQ7QrgN\nWAmcFggQkeuAEao6Evg08J2IZUsFadvHvhr8RghR6qhrV+cv/slPkhNELIe096MgAsvV6ihJAWWI\nySCIyAXAdcCDQKHgxvXAIwCqOg9oEpGB0UlopIU4M6UVYvRotxX25MlxS2JkGTHCZU9rb4+23UOH\nXOa2KVOibbcUMcXV+U/gduDMIufPB3L/PVuAC4DtIcuVONascYGnati2LcMHP9gSqDylUHVB3CTd\ngNvb3S6jxchkMpE+AY8e7TYx69MnsiZrJmodRY2Ic9v84Afw1rdWV8fixRnGj2+p6Jo1a1wwuW/f\n6toMg8gNgoi8G9ihqotFpKVU0bzj01xLM2bMYOjQoQA0NTXR3Nx8ouNmgzz1fKwKH/xgC6NGwb59\nGe97uvN79pQ+fvXVDEeOtJ0wCFHIu2QJ3HtvC5s3J0N/AO3tLQwZUvx8lqjkufbaFoYNS45+7Ngd\njx+f4Sc/gd//3h37/b7yj7dsaaNfv/LLZ49vuSX875fJZJg9ezbAiftlMSJfhyAiXwU+BhwDeuFG\nCT9T1ZtyynwXyKjqY97xauAqVd2eUyb16xDWroVrroFNmyq/9o033FL4XbugV6/gZSvEV78KX/qS\nkzcpgdz+/WHdOjj77LglMYxkkKh1CKr6L6o6RFWHATcCz+YaA49fAzcBiMhUYE+uMWgUapmBEEYi\ncT/mznWLwJKyx/zrr7uFaQMGxC2JYdQHSZj9qgAiMlNEZgKo6pPAehFZB8wCPhOjfLFR6wyEiy7K\nRLYsv7PTGYKbb45/K4As2RlGpZKW57uOjNMxHfmTFh3FFVQGQFWfA57z3s/KO3drLEIliLlz4ZZb\nqr9+7NjontbXrHHumfe9D/7+76Np048k7HJqGPWE7WWUUDo63JL6WvZYaW+HiRPdLKVST8lB8OCD\n8Nxz8L3vOX/99u1uy+c4efBBN1p5+OF45TCMJJGoGIJRHi+84OYn17Lh1pAhLqC8bl1wchVj7lzn\n3urVC5qbXY7YuEnSKmXDqAfMICSUIJa0ZzKZyNIEzplzUt6kpCYsZ1FaWny/YWI68ictOjKDkFCC\nWtIeZCLxYuzc6VxE2e17o2izHCyGYBiVYTGEBBJkrteFC+HjH3cpG8PiiSfgv/4Lfv97d7x9O1xy\niVsD0SXGR47Ro+EXv4AxY+KTwTCShsUQ6owlS2Do0GASf19+uVsotnt37XUVI9ddBDBwoMsVvHJl\neG36oWojBMOoFDMICSSoLXEzmQzdurmN1F54ofb6ipENKOcS55bC4EYnPXu6hXKlSIvvN0xMR/6k\nRUdmEBJI/hN3rYQZ5D1yBBYtgiuuiK7NcrDRgWFUjhmEBFLoibsashtdhRnkXbwYRo48/Uk87sBy\nuQYhqyOjOKYjf9KiIzMICaO93e2/c/HFwdU5dSrMn++C1UFTbDQzZgy89lr1W3fXio0QDKNyzCAk\njOx00yBWFmf9mmEmEi82munSxeWKbW0Nvs1yKHdRWlp8v2FiOvInLToyg5AwwsqxGoZPX7V0vCPO\nOELSMqUZRj1gBiFhBJljNdevGYZPf+NGN5K56KLC5+OMI1gMIThMR/6kRUdmEBLE/v2wejVMmBB8\n3WFMA826i4q5t6ZMgbY2FxOJGoshGEblmEFIEC++6DaGCyrDWa5fM4xE4n7TY/v1cyuWo0zSA3D8\nOGzdChdc4F82Lb7fMDEd+ZMWHZlBSBBhxQ/gZCLxIEcJ5UyPjWOB2quvuq0/evaMtl3DqHfMICSI\noA1Cvl8zyCDvvn1uW+3m5tLl4ggsV+IuSovvN0xMR/6kRUdmEBJCZ6ebohnWCAGCDfLOm+eS7/To\nUV6bUe5DaPEDw6gOMwgJYdUql2ls4MDg6sz3a06c6NrZv7/2usvdXmPIEOjeHV5+ufY2y6USg5AW\n32+YmI78SYuOzCAkhCCnmxajVy+3++n8+bXXVa57SyT66aeWKc0wqsMMQkIII6BcyK8ZRJD3+HHn\nMrryyvLKRx1YrmRRWlp8v2FiOvInLToyg5AQohghgGuj1iDv8uVw3nku50FUbVaCxRAMozrMICSA\nHTvcRnBBZ/Yq5NfM7i/U2Vl9vZXuxnr55bBhA+zZU32blWAxhGAxHfmTFh1FbhBEpJeIzBORNhFZ\nKSJfK1CmRUT2ishi7/XlqOWMktZWtyNpFOkmBw1yc/RXraq+jkrzNXTvDpMmhZukJ8vhwy45znnn\nhd+WYaSNyA2Cqh4CrlbVZuDNwNUi8pYCRZ9T1fHe6yvRShktYbmLivk1aw3yVhPviCqw/Morzhh0\n7Vpe+bT4fsPEdORPWnQUi8tIVQ94b3sAXYGOAsUC2AC6PghzhXIhalkstm0b7N3rEthH1WYlWPzA\nMKonFoMgIl1EpA3YDvxRVfPTsSswTUSWiMiTIhKwdz05HD7sso7lp6AMgmJ+zVqe1ufOdXGISt1b\nV17p9mo6dqy6dsulUoOQFt9vmJiO/EmLjrrF0aiqdgLNInIW8HsRaVHVTE6RRcAQVT0gItcCvwRG\n5dczY8YMhg4dCkBTUxPNzc0nhm7Zf1DSj3v2bGH0aFiwIPj629raCp4fMwa2bs3wi1/Ae99bWf1z\n5rQwfXrl8ixdmmHAAFi6tIUJE8LTZ3t7C0OGlF8+S1L6gx3X53FbW1ui5Mk9zmQyzJ49G+DE/bIY\nolHuKVBIAJE7gYOqek+JMhuAiarakfOZxi17ENxzD2zaBN/+drTtvutdcMstcMMNlV03dSp8/etw\n1VWVt3nzzW7G0a23Vn5tuXzmM262VphtGEY9IyKoakGXfByzjM4RkSbvfW/gGmBxXpmBIm6XfRGZ\ngjNcheIMdU/U8YMs1SwWO3gQli2DyZOja7NSLFOaYVRPHDGE84BnvRjCPOAJVX1GRGaKyEyvzPuB\nZV6ZbwI3xiBn6KhWPqe/EvLdIrlUs1hswQIYOxb69KlOnigWqFkMIXhMR/6kRUeRxxBUdRlwWk4w\nVZ2V8/5+4P4o5YqD9euhW7d4nminTHHB7MOHy88bUOtoZuRIeOMN2LKlvOQ11WCzjAyjemylcoxk\nb7DFUlDWSjbAVIgzzoBRo2DRovLrq3W9RBhJenLZv9+5tcrdUgPSM388TExH/qRFR2YQYiSq/YuK\nUcn006x7q9Z4R5gL1LKjg7AMrGGkHTMIMRJ2QNnPr1nJYrG1a12O5PPPr02mMBeoVeMuSovvN0xM\nR/6kRUdmEGJizx634ZtfCsowqSSbWVDGa9IkWLnSxRKCxuIHhlEbZhBiIpuCsnv38Nrw82teeKHb\n82fDBv+6gpoN1bs3jBvnZiwFTTUGIS2+3zAxHfmTFh2ZQYiJMKeblks2m1k5LpxKdzgtRVjTT22E\nYBi1YQYhJoK8wRajHL9mObN+OjrcVNFx44KRK6yZRps3V546My2+3zAxHfmTFh2ZQYiBY8fcRm/l\npqAMk3Ke1ltb3bqFbgGtWskahFqS9BTCRgiGURux72VULfW8l9HixfCRj7jgatwcPQr9+7s8Amed\nVbjMl77kYg3/+q/BtTt8OPz2t3DppcHUp+pmQW3bBmeeGUydhpFGErWXkRHf/kWF6N7dBbdLZTML\nY71E0NNPd+92IxgzBoZRPWYQYiCqgHK5fs1Si8WOHnUzgqZODU4uvzaroZr4AaTH9xsmpiN/0qIj\nMwgxEEVAuRJKPa23tTn3TjF3UhhtVoPFDwyjdiyGEDGvvOJyArz2WnK2WNi1C4YNc7OJ8gPH990H\nq1bBd78bbJvHj8OAAfDyy5XtPVSMBx6AJUtg1iz/sobRyFgMIUGEvaFdNZx9ttuSYvny08+FFe/o\n2tWlDW1tDaY+GyEYRu2YQYiYKBekVeLXLDT9VDXcDfiCXKBWrUFIi+83TExH/qRFR2YQIiZp8YMs\nhRaLtbe7oPLw4dG1WS3VBpUNwziJxRAi5MABOPdc2LnT7emTJFavdnmWN248+dmjj8Ljj8PPfx5O\nm/v2weDBLnbRo0dtdQ0bBk8/DSNGBCObYaQViyEkhAUL3PYPSTMGAKNHw+uvu6B3lrDXS5x5pruB\nL17sX7YUnZ2wdWt4WdgMo1EwgxAhUbuLKvFrFspmFoW8QUw/3b7dTYvt1avya9Pi+w0T05E/adGR\nGYQIScIOp6XIXSy2fz+sWeNWMUfVZrVs3mwzjAwjCMwgRERnZ/RbVlS6R3vu0/q8eS55T8+ewctV\nqM1awkHt7dUHlNOyj32YmI78SYuOzCBExNq1zq1x3nlxS1KcyZNhxQoX/I5qNDN0qHNX5QazK8XW\nIBhGMJhBiIg4pptW6tfs3Rsuu8wFv6MazRSKXVRKLQYhLb7fMDEd+ZMWHUVuEESkl4jME5E2EVkp\nIl8rUu5bIvKSiCwRkfFRyxk0SY8fZJk+HZ5/3q0gjsqA1bpAzUYIhhEMkRsEVT0EXK2qzcCbgatF\n5C25ZUTkOmCEqo4EPg18J2o5gyaOLa+r8WtOmwYPPeTWS7zpTcHLVKzNWkYItSxKS4vvN0xMR/6k\nRUexuIxU9YD3tgfQFejIK3I98IhXdh7QJCIDo5MwWHbtcvPkL7ssbkn8mTYN1q+P1niNHw/r1rmF\natVgIwTDCIaAkiJWhoh0ARYBFwPfUdX83GHnA+05x1uAC4Dttba9YoXbWO2SS2qtqXxaW91Gbl27\nRtcmOL9mpU8ugwe7QG+U7q0ePWDCBLjjjsqf9FXdyu9qg/XV6KjRMB35kxYdxWIQVLUTaBaRs4Df\ni0iLqmbyiuUvrT5tYuKMGTMYOnQoAE1NTTQ3N5/4p2SDPPnHDz7YQp8+8OEPFz4fxvGcOTB4cIZM\nJpr2ssdtbW1VXX/ffaAarbw33JBh4ULYt88db9rkzl90kf/xvffCn/9cXftZovh/2HF6j9va2hIl\nT+5xJpNh9uzZACful8WIfS8jEbkTOKiq9+R89l0go6qPecergatUdXtOmar2Mho+HPr0KbzVc1hc\ndRV8+ctwzTXRtWkYhlGIRO1lJCLniEiT9743cA2Qv5vNr4GbvDJTgT25xqBatm2DPXtcEHL37lpr\nK48jR2A+GkWaAAASuUlEQVThQucyMgzDSDJxBJXPA54VkTZgHvCEqj4jIjNFZCaAqj4JrBeRdcAs\n4DNBNJyd6TN5cumk8kHS1uY2cIsj+Xu+W8Q4HdORP6Yjf9Kio8hjCKq6DJhQ4PNZece3Bt121iAc\nPOjeX3tt0C0Ub9MwDCPpxB5DqJZqYghTp8LXv+4Mwn/8Bzz7bEjC5fCBD8ANN8BHPxp+W4ZhGH6U\niiE0jEE4eNAlc3/tNefXHzLExRHyk8oHiarbo//Pf3YJXAzDMOImUUHluFiwAMaOdTOMmprcXPsl\nS8Jtc9Mmt8upz0yv0EiLXzNMTEf+mI78SYuOGsYg5Pvyg8znW6rN6dPdBm6GYRhJp2EMwpw5p66+\nDSJTVzltxhlQzi5SMYpjOvLHdORPWnTUEAZB1T2tX3nlyc+CyNTlR73scGoYhgENYhDWroW+fU9N\nwn7xxXDokNsYLQxefx1eeslt3BYXafFrhonpyB/TkT9p0VFDGIRCT+oi4Y4S5s1zxqBHj3DqNwzD\nCJqGMQiFfPlhBpaT4C5Ki18zTExH/piO/EmLjhrCIOQHlLPUmqnLr01boWwYRj2ReoPQ0QFbtsC4\ncaefmzABVq2CN94Its3jx53LKG6DkBa/ZpiYjvwxHfmTFh2l3iC0tsKUKYVXJPfqBZdfDi++GGyb\nK1bAwIFuZbRhGEa9kHqD4Le5XBiB5STEDyA9fs0wMR35YzryJy06Sr1B8PPlh7FAzeIHhmHUI6k2\nCEePuj2Mpk4tXmbaNOdW6uwMrt2kbHmdFr9mmJiO/DEd+ZMWHaXaICxZ4nYZbWoqXmbgQDj7bBdc\nDoJXX3W7qF5ySTD1GYZhREWqDUKx6ab5BBlHyG6R0SUBmk2LXzNMTEf+mI78SYuOEnDbCo9yXTdB\nLlBLSkDZMAyjUlJrEFTLHyEEGVhOUkA5LX7NMDEd+WM68ictOkqtQWhvd0Hl4cP9y44dCzt2uGxq\ntXDoECxd6tY9GIZh1BupNQjZ0UE5yWm6dHEzkWp1Gy1YAGPGuKxsSSAtfs0wMR35YzryJy06Sq1B\nqHTqZxCB5aRMNzUMw6iG1BqESn35QcQRyo1ZREVa/JphYjryx3TkT1p0FLlBEJEhIvJHEVkhIstF\n5HMFyrSIyF4RWey9vlxJG/v3w5o1MHFi+ddccQW0tcHhw5W0dJJsVjYbIRiGUa+IqkbboMggYJCq\ntolIP2Ah8NequiqnTAvwBVW9vkQ9Wkz2Z5+FO++s/Il/wgR44IHSK5uL8dJL8Jd/CZs2VX6tYRhG\nVIgIqlowuhr5CEFVX1XVNu/9fmAVMLhA0TLCwYWp1nVTi9soSdNNDcMwqiHWGIKIDAXGA/PyTikw\nTUSWiMiTIjKmknqrdd3UElhO4oK0tPg1w8R05I/pyJ+06KhAloBo8NxFPwVu80YKuSwChqjqARG5\nFvglMCq/jhkzZjB06FAAmpqaaG5u5m1va6G1FT796QyZzMnpYNl/WKljEZgzpwVVeO45//K5x089\nlWHSJIDy2wv7uK2tLdb26+E4S1LkseP6PG5ra0uUPLnHmUyG2bNnA5y4XxYj8hgCgIh0B34D/E5V\nv1lG+Q3ARFXtyPmsYAxh+XJ473udT79SVGHIEPjTn8pb0JZl92648EL3t1AiHsMwjKSQqBiCiAjw\nfWBlMWMgIgO9cojIFJzh6ihUNp9afPki1cURSmVlMwzDqBfiiCFMBz4KXJ0zrfRaEZkpIjO9Mu8H\nlolIG/BN4MZyK6/Vl1/NRndJnW6a7xYxTsd05I/pyJ+06CjyZ1pV/TM+hkhV7wfur6b+uXPh9tur\nudIxfTo89FBl18yZA3fcUX2bhmEYSSCWGEIQFIohbN/uEtPs2lV9PoKjR6F/f3jlFTjrrPLKDxjg\nNtMrlYjHMAwjCSQqhhAmra1uUVm1xgCge3eYNAnm5U+ELcLSpTB0qBkDwzDqn1QZhKD2EqoksJzk\nBWlp8WuGienIH9ORP2nRUaoMQlDB3UoWqCU1oGwYhlEpqYkhHDoEZ5/t4gj9+tVW965dMGwYdHT4\nTyUdMgT++EcYMaK2Ng3DMKKgIWIIixa5gHKtxgCcYTn/fLfIrRTt7W531Isvrr1NwzCMuEmNQQja\nlz99un8coZKsbHGQFr9mmJiO/DEd+ZMWHaXGIAS9uVw5C9QsfmAYRppIRQxBFQYNgvnz3Z5CQbBm\nDbzrXbBhQ/EykybBt75lRsEwjPoh9TGEl1+GHj2CMwYAo0bB66/D1q2Fz+/fD6tWuaQ6hmEYaSAV\nBiEM1012o7tibqP58+Hyy6FXr2DbDZK0+DXDxHTkj+nIn7ToKBUGIazk9qUWqIXVpmEYRlykIoYw\nbhw8/DBegprg+NOf3EZ5hbaxuO46uPlml3vBMAyjXigVQ6h7g7Bnj1sc1tHh9iEKkoMH4Zxz4LXX\noE+fk593drq1CqtXw8CBwbZpGIYRJqkOKr/wghsZBG0MAHr3hssugwULTv181SpnEJJuDNLi1wwT\n05E/piN/0qKjujcIYa8FKLRAzeIHhmGkkbo3CGHfnAvNNKqXBWnZhNtGcUxH/piO/EmLjuo6hnD0\nqDJgAGzc6JLUhMHWrS5ovXPnyS0qRo2Cn/3MfW4YhlFPpDaGsHSpCyiHZQwABg+GM890K5cBduxw\nr7Fjw2szKNLi1wwT05E/piN/0qKjujYIUbluct1GQWRlMwzDSCJ1fVuLKltZbmC5ngLKafFrhonp\nyB/TkT9p0VFdG4SgdzgtRu4IoV4CyoZhGJUSuUEQkSEi8kcRWSEiy0Xkc0XKfUtEXhKRJSIyvlCZ\nAwdg5Mhw5QUXPN661b0WL4Yrrgi/zSBIi18zTExH/piO/EmLjuIYIRwFPq+qY4GpwGdF5NLcAiJy\nHTBCVUcCnwa+U6iiadOiSU7TtStMmQL33w+jRweTlS0K2tra4hYh8ZiO/DEd+ZMWHUVuEFT1VVVt\n897vB1YBg/OKXQ884pWZBzSJyGnrgqN03UybBt/5Tn25i/bs2RO3CInHdOSP6ciftOgo1hiCiAwF\nxgP528edD7TnHG8BLsi/Psrg7vTpsHt3/QSUDcMwKiU2gyAi/YCfArd5I4XTiuQdn7aCbuLEMCQr\nzBVXuKmm9TRC2LhxY9wiJB7TkT+mI3/SoqNYViqLSHfgN8DvVPWbBc5/F8io6mPe8WrgKlXdnlOm\nPpdYG4ZhxEyxlcrdohZERAT4PrCykDHw+DVwK/CYiEwF9uQaAyj+hQzDMIzqiHyEICJvAf4ELOWk\nG+hfgAsBVHWWV+6/gHcBbwCfUNVFkQpqGIbRYNTt5naGYRhGsPgGlUWkp4g8J46hIrIsiIZF5APe\n4rTjIjIx5/NrRGSBiCz1/l5dRl2zReR9PmUeEpHt5covIpeISKuIHBKRL+Z8nr+w7vM5+nlQRF4u\np/4y2s/Vz4Scz4eKyEERWey9HiijrtP0IyKnBfJFpJeIzBORNhFZKSJfK6Pugnryzm30/o+LRWR+\nBHrK7UcfztHRYu/8m33qKqcfNYnIT0VklaejqT7lP+ItrlwqInNyZcjvkzm/tW943yuo39rdnrxL\nROTnInJWzrn/6y0AXS0i7yijrnJ0dJuILPN+H7eVUWcpHeXqe5WILAqhDxXUTw33ovVen1uY7R8i\n8lsROdPn2qki8oJ37UoRucv7/D0ickeF3+kZETmjkmsAUNWSL+CTwO3e+6HAMr9rynkBlwCjgD8C\nE3I+bwYGee/HAlvKqOth4G98yrwVN8W1LPmBc4FJwFeAL+Z8Pgho9t73A7YBd3vHLcC+kPVT8f+g\nkH6A14uU7eP97Qa8ALylGj155zYAAwr0o9D1lFfmMuClgPrRI8Anc3R0lk/5K7NlcC7QF4r1yayO\ngJHA0wH+1q4Bunjv/x34d+/9GKAN6O71q3XZctXqyNP1MqAX0NX7HhfXoKNcfX8KuDOEPlRMPzXd\ni7x6l1QgxxpgnPdegEtr+E43A1+o9Lpypp1+CPhV/ofek+qfPCu4UESu9D5vEZGMiDzuWd3/V6hS\nVV2tqmsLfN6mqq96hyuB3uJmJflRMsisqs8Du8uoJ1v+NVVdgFtZnft5/sK6rsBy7/RGoLv3VBOK\nfmqgrCC8qh7w3vbAfbcOn/IF9VSg3dx+tJFo9fRh4DGfMvnynn7CPTm+VVUf8to+pqp7S1Wmqq05\nZeaRs56mQJ/8EPArVX3JK9fFa7dWHT2tqp0FZLgBeFRVj6rqRpxBmFLq+2RVUeLcJcA8VT2kqseB\n54C/KVVZMR3l6xv4IPAT7/1GgutDBfUTwL3oeWCEJ8tGERngvb/TG5E9LyKPysmR9bnAq17bqqqr\nvPIzROTb3vvZIvKAuFH5y953fMQbUTycI8OvgRvLkPUUShoEEekKXFbkB7cduEZVJ3oNfyvnXDNw\nG+4JZLiIVLuc633AQlUtdrOJFREZDgwAfpbz8SHcE0+Y+hnmDSsz4oL0vqICd0uOC4UC6zq879RF\nRNo8+f+oqisrlC0XBf4gIguAyXn9KAo9Zfk/wKNVXpvLMOA1EXnYc118T0T6VHD93wJPFjpR4Le2\nAsjWHaSOPpkjw2Dcos8sW3CLQmthOfBWERng6eavKLCotAS5OjpF38D0PHnD6EO5+smlmnvRe3CT\nZ8D7vYnIZJyBfDNwLTCRk7/F/wTWeG6rT4tIz9xrc2hS1SuBz+Nu/P+BG8GME5HLAdTNyjxHRPpW\nIK/vCOEc4PUi53oAD4rIUuB/gNz9iF5U1a3qxi5tuOFoRYjIWNzwbWal10aBuIV1Pwe266kL647i\nvm9Y+tkKDFHV8cAXgB+X4StU4B9VdXz2RZGnPFXtVNVm3I/4bSLSUoFs+Uz32roJ6CUib805F7ae\nABCRK4ADNRq2LN2ACcADqjoBNwPun8uU42rczaaYLzj/t7YDpxsISEci8iXgiKr+uISoNc0yUdXV\nwNeBp4DfAYuBzpIXnZQvX0cn9I27eR7mVH0H2oeK6afCe9GJhy+ci+tv885NB36pqke8+8YT3ueo\n6r/h3K9P4Ua1/5tzXRb1rgFnfF9V1RXe91uR9/22A0PKkPkE5biMig0PPw9sU9U3475Ez5xzh3Pe\nH6fC9Q4icgHuZvsxVd1Q5mWRTZfyho0/w620PlCgiBKSfryOtNt7vwh4Gedz9hW73Da8uvcCv8XJ\nXhWqus17uwt388x3R4SmpxxuBErdAPMp1Y+24PzI873jn+JuWCURFyT9HnB99n9XrGiR9zXrSERm\nANcBH8n5+BVOvWFc4H3mR8nfmqo+pKqTVPUqYA/ON16SIjrK1/d+Ttd3IH2oiH6quRflPny9s8CD\niFL8/4yqrlfV7wJvBy7PupnyOOL97eTU79fJqd9PqPC+6GcQduICp4U4E8/fhXsC7FpJw3mcUIqI\nNOFuRHeoausphUR+4A25StZRUcMit4rIZ8uRzSt/YmEd8DVO1093nH8zLP2c47kXsi6rkcB677iU\nfvwbcXU3ee9744Jii73jSvXUJ2fkcgA4AxdszBKqnjwZugAfIC9+UG0/8vzJ7SIyyvvoL3FPZUX1\nIyIX4m4oH1XVdSVkz/+tncvJH35NOhKRd+GC1Teo6qGcU78GbhSRHiIyDNeXXvSuqfq3JiJv8v5e\nCLwXzyBXqqM8fe8EmvD07RFIHyqmnxDuRQrMAd4jbkZZP5xLLetO+qucsqOAY1QQ9yzAQE51sflS\n0iB4QaHlIjLa+6gbJy3SA8DHPX/zaJz1PnFpflX5dYvIe0WkHbcF9m9F5HfeqVuBi4G7cnze53jn\nxlH8CWaWiLR7rzkF2nsUmAuM8sp8wjt1Ca6z5Zcf5Mn3eeDLIrLZ+wdOBz4KXA0sAPqKyKe8y7rh\nnk5aQ9TPVcASb0j6ODBTVbNbLZbSj2+bwHnAs57M84AnVPUZ71ylehoEPO/V1Qps8l4QjZ4A3gZs\n9gKmuVTdj4C/B34kIktwfuCvep8X1A9wJ9Af+I7Xl1/Mkf1En8Td2DpyfmuX4Z6uoUYdAd/GGZun\nJWeqsvf0+j+4h5vfAZ/xXA9Qm45+KiIrcAbnM6q6z/u8Yh3h6RtYhHuw+B/v88D6EEX0Q/X3okJt\nKIA3AePXuNjCk7iHpGxA/aMissb7bf8A+Ij3/8i+CtVf8PuJyCBgl6q+UUTGIpL7T1+agbOQ4GYl\nPOZ3TRgv3FPAT0Ko9wmgWw3X5+rnFuCVNOnH9BSNfnJ1hDMQL9pvLZ19COjr/e0DzMebxh6wjJ/G\n5Z2p6Drflcoi0gP4A5DB5Sn4uKouKXlRA5Gnn7/DzbV/JFahEojpyZ8cHXXHBZnfb7+1k6SlD4nI\nj3CznnoBs1X16yG08QzOBVZoJ+ni1/kZBMMwDKMxiDVBjmEYhpEczCAYhmEYgBkEwzAMw8MMgmEY\nhgGYQTAMwzA8zCAYhmEYAPx/lknhjaUywfAAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Python Student P08 difficulty over time.\n", + "\n", + "pydata.ix[\"P08\"].plot()\n", + "pydata.ix[\"P08\"].mean()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 18, "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 104, - "text": [ - "4.0625" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEACAYAAACznAEdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXm0XFWV8H878wS8BDAhEEhCBkiIvIyEROXRNiq0Qtvq\nJ04YbTGN0tJq0/TXymKtbpe2DdiiDZoWIeinYOOMYguChZg8QqaXeSBkeiEhIXkZCJnz9vfHuZVU\nKlV1a7hT3dq/tWq9unXPPWfXfqfuvmfvc84WVcUwDMMwusQtgGEYhpEMzCAYhmEYgBkEwzAMw8MM\ngmEYhgGYQTAMwzA8zCAYhmEYAHSLo1ER2QjsA44DR1V1St75FuBXwHrvo5+p6leilNEwDKPRiMUg\nAAq0qGpHiTLPqer1UQlkGIbR6MTpMpIazxuGYRgBEpdBUOAPIrJARG4ucn6aiCwRkSdFZEzE8hmG\nYTQccbmMpqvqNhE5F3haRFar6vM55xcBQ1T1gIhcC/wSGBWLpIZhGA2CxL2XkYjcBexX1XtLlNkA\nTMyNOYiIbcJkGIZRBapa0CUfuctIRPqIyBne+77AO4BleWUGioh476fgDNdpAWhVtVeJ11133RW7\nDEl/VaqjY8eUiy9Whg9XHnssfvmTqKNGfNWTjkoRh8toIPAL737fDfiRqj4lIjMBVHUW8H7gFhE5\nBhwAboxBzrpn48aNcYuQeCrV0S9+AQMHQksLrFkTikiJw/qRP2nRUeQGQVU3AM0FPp+V8/5+4P4o\n5TIMP1Th7rvhn/8Z9u2Dp56KWyLDCBZbqZxiZsyYEbcIiacSHT3/POzeDddfD6NHN84IwfqRP2nR\nUexB5WoREa1X2Y365D3vgXe/G2bOdIbhootg714QWzFj1BEigiYlqGxERyaTiVuExFOujlauhPnz\n4aab3HH//tCrF2zbFp5sScH6kT9p0ZEZBMMog3vvhc9+Fnr3PvlZI7mNjMbAXEaG4cO2bTBmDKxb\nB2efffLzT30KJk2Cv/u7+GQzjEoxl5Fh1MC3vw0f+cipxgBshGCkDzMIKSYtfs0w8dPR66/Df/83\nfOELp59rFINg/ciftOjIDIJhlOD734e/+AsYPvz0c41iEIzGwWIIhlGEo0dhxAj46U9h8uTC5884\nw0097dkzevkMoxoshmAYVfD44zBsWGFjANC9u1uLsG5dtHIZRliYQUgxafFrhkkxHWW3qbj99tLX\nN4LbyPqRP2nRkRkEwyjAM8/A4cNw7bWlyzWCQTAaB4shGEYB3vlO+OAH4ZOfLF3uwQfhz3+G2bMj\nEcswasZiCIZRAUuWwLJlbu2BHzZCMNKEGYQUkxa/ZpgU0tG998LnPlfezKGsQUjzYNX6kT9p0ZEZ\nBMPIob0dfvOb8rejOPdcZwx27gxXLsOIAoshGEYO//iP0NkJ3/hG+ddMnQr33ANveUt4chlGUJSK\nIcSRQtMwEsnevfDQQ9DWVtl1WbeRGQSj3jGXUYpJi18zTHJ1NGuWm2Z64YWV1ZH2wLL1I3/SoiMz\nCIYBHDkC993nvxCtEGk3CEbjYDEEw8CtI/jRj+Dppyu/dvlyeP/7YfXqwMUyjMApFUMwg2A0PKow\nbpwLJL/jHZVff+gQNDW5rbK7dw9ePsMIEluY1qCkxa8ZJplMht/9Drp1g2uuqa6OXr1g8GDYuDFQ\n0RKD9SN/0qKjWAyCiGwUkaUislhEXixS5lsi8pKILBGR8VHLaDQO99zjpptKwWem8hg1yuIIRv0T\ni8tIRDYAE1W1o8j564BbVfU6EbkCuE9Vp+aVMZeRUTMLF8Jf/zWsX1+bu+e229zspC9+MTjZDCMM\nkuoyKvU8dj3wCICqzgOaRGRgJFIZDcXdd8M//EPtvn+baWSkgbgMggJ/EJEFInJzgfPnA+05x1uA\nCyKRLEWkxa8ZFhs2wJNPZri5UA+skCgMQmcnHDsW/euZZzKxtFvNq7Mz3P9BMaL+rdXSF0oR10rl\n6aq6TUTOBZ4WkdWq+nxemfwRxGn+oRkzZjB06FAAmpqaaG5upqWlBTj5D2rk47a2tkTJk7TjRx5x\ns4rOPLP2+jo6MixbBhCevJ/8JGza1IIIqLrzIu58mMfOMxtde7Ucn3NOC1u3wvPPu+Oo+lObt7w9\nqvZGjcqwfj106XLq9y/8/8vQ2TnbOx5KKWKfdioidwH7VfXenM++C2RU9THveDVwlapuzyljMQSj\nJj7+cWhpgU98ova6VF1+5VdegbPOqr2+fHbscKOQXbugi80NLMqll8Jjj8Hll8ctSXjs3AkXXwwd\nHdC1a+XXJyqGICJ9ROQM731f4B3AsrxivwZu8spMBfbkGgPDCIL2dhgyJJi6RMKdaTR3Llx5pRkD\nP6ZPhzlz4pYiXObOdRsqVmMM/Iijew0EnheRNmAe8BtVfUpEZorITABVfRJYLyLrgFnAZ2KQs+6x\nGEJpNm+GrVszgdUXZhxh7lyYNi2cuv2op340bZrTVdREqaMw+0LkMQRV3QA0F/h8Vt7xrZEJZTQc\nqrBlC7zpTcHVGaZBmDMHvvKVcOpOE9Onw7/9W9xShMucOXDXXeHUHXsMoVoshmDUwo4dMGZMsIlt\nHn0Ufv5zePzx4OoEOHwYzj4btm+Hvn2DrTttqLqkRUuXutXjaePIERgwALZtczGrakhUDMEwkkCQ\n8YMsYY0QFi6ESy4xY1AOIvG5jaJg0SIYObJ6Y+CHGYQUU0++36jJGoQgdTRqFKxbF/xc+DjjB1B/\n/SgOgxCVjsLuC2YQjIZk8+bgRwj9+rnh/ObNwdY7Z068BqHemDYtvTONwu4LFkMwGpLbb4dzzoE7\n7gi23re/Hf7pn+Cd7wymPlUYNAgWLAjegKWVgwfd/3bnTujdO25pgkPVxUVaW8Fbj1sVFkMwjDzC\niCFA8HGE9euhRw8zBpXQuzdcdpkzomli40YXI7noovDaMIOQYurN9xslYcQQIHiDMGeOm0oZJ/XY\nj6JeoBaFjrJ9oZZt2v0wg2A0JGHEECB4gxB3QLleSeNMoyj6gsUQjIbj2DHo0wfeeCP4lJcbNsDb\n3uZGIEEwbhw8/DBMmhRMfY3C1q3w5jfDa6+F+0QdJZdfDt/7HkyZUls9FkMwjBy2bXOLl8LIf3zh\nhS6Y+cYbtde1Z4/zG6d5o7awGDzYzdVfuzZuSYJh3z54+WVoPm2Ph2Axg5Bi6tH3GwW5AeWgddS1\nK4wYEcyN6IUX3MggDMNVCfXaj6Kcfhq2jl54ASZOdBMMwsQMgtFwhDXDKEtQcYS5c+MPKNcz06en\nJ44QVSzJDEKKySbTME4lN6Acho6CMghJWZBWr/0oysBy2Doyg2AYIVEPI4Rjx2D+fJcDwaiOceNc\nwqKOjrglqY3jx2HevGj6ghmEFFOvvt+waW93wV8IR0dBJMpZtswZrf79g5GpFuq1H3Xt6mbktLaG\n31aYOlq+HM47z62+DhszCEbDEcUIYe1aqGVWdFLcRfVOGvY1inJxohmEFFOvvt+wCTuG0L+/2z5h\n27bq60hSQLme+1FUgeUwdRTl4kQzCEZDcegQ7N0LAweG206tcQQbIQTDFVe4fBJHj8YtSfXYCMEI\nhHr1/YbJli1w/vknk9WHpaNaDMKWLXDggEuEkgTquR+ddRYMHw5tbeG2E5aOtm51i9JGjQql+tMw\ng2A0FGHHD7LUYhCyLoK0bLkQN/UcR5g7180u6hLRndoMQoqpZ99vWOQbhLB0VKtBSEr8AOq/H0UR\nRwhLR1H3BTMIRkMR1i6n+dRiECx+ECzZEUI97oUZ9W63ZhBSTD37fsMif4QQlo6GD3eLog4fruy6\nN96AlSvdvjVJod770bBhbnFX0KlNcwlDRwcPuvUokycHXnVRYjMIItJVRBaLyBMFzrWIyF7v/GIR\n+XIcMhrpI3dRWph07+4yW61bV9l1Cxa4bZvTlPoxbkTqc1+jBQtg7Fi3VXtUxDlCuA1YCRQbyD2n\nquO911cilCs11LvvNwyiiiFAdW6jJLqL0tCPwg4sh6GjOLLlxWIQROQC4DrgQaDYXAqbY2EETlQx\nBKjOICQtoJwW6nGEEEe2vLhGCP8J3A50FjmvwDQRWSIiT4rImOhESw/17vsNmn373KZxufsDhamj\nSg1CZ2cyU2amoR+NH++2E3n99XDqD1pHqvE8HHSLtjkQkXcDO1R1sYi0FCm2CBiiqgdE5Frgl8Bp\nSzNmzJjB0KFDAWhqaqK5ufnE0C37D2rk47a2tkTJE/fxhg0wZEgLIqf/gMNo78ABWLOm/PKbNkH/\n/i0MGpQMfaXpuLU1w7Bh8OKLLbz97cHX3+atfAuqvh/+MEO3bjB4cO31ZTIZZs+eDXDiflmMyHMq\ni8hXgY8Bx4BewJnAz1T1phLXbAAmqmpHzmeWU9moiP/9X/jGN+Cpp6Jpb8cOuOQS2LWrvEVmDz4I\nzz0HP/xh+LI1InfcAf36wZ13xi2JPw8/DE8/DT/+cfB1Jyqnsqr+i6oOUdVhwI3As/nGQEQGirif\nkIhMwRmuOt/V3IibqFYpZzn3XDf037mzvPJJdBeliXpasRxHQBmSsQ5BAURkpojM9D57P7BMRNqA\nb+IMh1Eh+W6RRqdQQDlMHYlUFkeI6ybgR1r60bRpLjdxZ7HIZQ0EraO4Hg5iNQiq+pyqXu+9n6Wq\ns7z396vqZararKrTVPWFOOU00kHUIwQo3yDs3AmvvurmnRvhcO658KY3wYoVcUtSmo4Ot8HhuHHR\nt52EEYIREtkAk+EotCgtbB2VaxBaW2HqVJflK2mkqR+FNf00SB21trpMb90in/JjBsFoIJI8Qkji\ngrQ0Ug9xhDhdh2YQUkxafL9BoFrYIISto3INQpIDymnqR9OmhTNCCFJHcfYFMwhGQ7Bzp9sfqG/f\naNsdMQI2biydsevIEVi0yGX3MsLl0kvdNODt2+OWpDBHj7o9jKZOjad9MwgpJk2+31op5i4KW0e9\nesHgwbBhQ/Eyixc7w3HmmaGKUjVp6kdduriEM0GPEoLSUVub2yn3rLMCqa5izCAYDUFUu5wWws9t\nlNTppmklyfsaxe06NIOQYtLk+62VYiOEKHQ0alRpgxD3TcCPtPWjMALLQeko7ocDMwhGQxDlLqf5\nlBohqMZ/E2g0pkyBJUvg0KG4JTmVbF+wEYIRCmny/dZKXDEEKG0QNm50K5ovuih0Maombf2ob18X\nXF64MLg6g9DR5s0us9vw4bXLUy1mEIyGIKkxhKy7qJzN74zgCGv6aS0koS+YQUgxafP91kKcMYTz\nz3e5kvfsOf1cPbiL0tiPpk8PNo4QhI6S0BfMIBip5/hx2LbN3ZjjQMQFlteuPf1c0gPKaSU7QkjS\nDvpJ6AuR50MICsuHYJTLli0webIzCnHxoQ/BddfBxz528rN9+9wahY4O6NEjPtkalQsvhGeegZEj\n45bEZXIbNMj1hZ49w20rUfkQDCNq4tjDKJ9CcYR582DCBDMGcZGkOMKLL7o0n2EbAz/MIKSYNPp+\nq6FUQDkqHRUyCEnwGZdDWvtRkAvUatVREtxFYAbBaACSOkJIyk2gUUnSzqdJeTiwGIKRem67zc3z\n/8IX4pNh/36XnGX/frefzvHjMGAAvPwynHNOfHI1MkePuv9Bezs0NcUnR2enk2PtWtdHwsZiCEZD\nk4QRQr9+7ke/ebM7Xr4czjvPjEGcdO/uJhu0tsYrx4oVzhBEYQz8MIOQYtLq+62UUgYhSh3luo3q\nyV2U5n4UVGC5Fh0lqS+YQTBST5yrlHPJNQhJ8Rk3OkEvUKuGJPUFiyEYqebwYTjjDDh4MP58xffd\n5/zE99/v9qv57W/dnjpGfOze7R4Wdu+OJ4cxuFwYv/oVjB0bTXsWQzAali1b3OKvuI0BnBwhbNsG\ne/e6YyNe+vd3Ew6WLo2n/e3bXQa3pDwYmEFIMWn2/ZaLX0A5jhjC3Lkua1eXOvn1pb0fBTH9tFod\nJa0vxCaGiHQVkcUi8kSR898SkZdEZImIjI9aPiMdJCV+AE6OnTvhqaeSE0Q04l2xnKSAMsQ7QrgN\nWAmcFggQkeuAEao6Evg08J2IZUsFadvHvhr8RghR6qhrV+cv/slPkhNELIe096MgAsvV6ihJAWWI\nySCIyAXAdcCDQKHgxvXAIwCqOg9oEpGB0UlopIU4M6UVYvRotxX25MlxS2JkGTHCZU9rb4+23UOH\nXOa2KVOibbcUMcXV+U/gduDMIufPB3L/PVuAC4DtIcuVONascYGnati2LcMHP9gSqDylUHVB3CTd\ngNvb3S6jxchkMpE+AY8e7TYx69MnsiZrJmodRY2Ic9v84Afw1rdWV8fixRnGj2+p6Jo1a1wwuW/f\n6toMg8gNgoi8G9ihqotFpKVU0bzj01xLM2bMYOjQoQA0NTXR3Nx8ouNmgzz1fKwKH/xgC6NGwb59\nGe97uvN79pQ+fvXVDEeOtJ0wCFHIu2QJ3HtvC5s3J0N/AO3tLQwZUvx8lqjkufbaFoYNS45+7Ngd\njx+f4Sc/gd//3h37/b7yj7dsaaNfv/LLZ49vuSX875fJZJg9ezbAiftlMSJfhyAiXwU+BhwDeuFG\nCT9T1ZtyynwXyKjqY97xauAqVd2eUyb16xDWroVrroFNmyq/9o033FL4XbugV6/gZSvEV78KX/qS\nkzcpgdz+/WHdOjj77LglMYxkkKh1CKr6L6o6RFWHATcCz+YaA49fAzcBiMhUYE+uMWgUapmBEEYi\ncT/mznWLwJKyx/zrr7uFaQMGxC2JYdQHSZj9qgAiMlNEZgKo6pPAehFZB8wCPhOjfLFR6wyEiy7K\nRLYsv7PTGYKbb45/K4As2RlGpZKW57uOjNMxHfmTFh3FFVQGQFWfA57z3s/KO3drLEIliLlz4ZZb\nqr9+7NjontbXrHHumfe9D/7+76Np048k7HJqGPWE7WWUUDo63JL6WvZYaW+HiRPdLKVST8lB8OCD\n8Nxz8L3vOX/99u1uy+c4efBBN1p5+OF45TCMJJGoGIJRHi+84OYn17Lh1pAhLqC8bl1wchVj7lzn\n3urVC5qbXY7YuEnSKmXDqAfMICSUIJa0ZzKZyNIEzplzUt6kpCYsZ1FaWny/YWI68ictOjKDkFCC\nWtIeZCLxYuzc6VxE2e17o2izHCyGYBiVYTGEBBJkrteFC+HjH3cpG8PiiSfgv/4Lfv97d7x9O1xy\niVsD0SXGR47Ro+EXv4AxY+KTwTCShsUQ6owlS2Do0GASf19+uVsotnt37XUVI9ddBDBwoMsVvHJl\neG36oWojBMOoFDMICSSoLXEzmQzdurmN1F54ofb6ipENKOcS55bC4EYnPXu6hXKlSIvvN0xMR/6k\nRUdmEBJI/hN3rYQZ5D1yBBYtgiuuiK7NcrDRgWFUjhmEBFLoibsashtdhRnkXbwYRo48/Uk87sBy\nuQYhqyOjOKYjf9KiIzMICaO93e2/c/HFwdU5dSrMn++C1UFTbDQzZgy89lr1W3fXio0QDKNyzCAk\njOx00yBWFmf9mmEmEi82munSxeWKbW0Nvs1yKHdRWlp8v2FiOvInLToyg5AwwsqxGoZPX7V0vCPO\nOELSMqUZRj1gBiFhBJljNdevGYZPf+NGN5K56KLC5+OMI1gMIThMR/6kRUdmEBLE/v2wejVMmBB8\n3WFMA826i4q5t6ZMgbY2FxOJGoshGEblmEFIEC++6DaGCyrDWa5fM4xE4n7TY/v1cyuWo0zSA3D8\nOGzdChdc4F82Lb7fMDEd+ZMWHZlBSBBhxQ/gZCLxIEcJ5UyPjWOB2quvuq0/evaMtl3DqHfMICSI\noA1Cvl8zyCDvvn1uW+3m5tLl4ggsV+IuSovvN0xMR/6kRUdmEBJCZ6ebohnWCAGCDfLOm+eS7/To\nUV6bUe5DaPEDw6gOMwgJYdUql2ls4MDg6sz3a06c6NrZv7/2usvdXmPIEOjeHV5+ufY2y6USg5AW\n32+YmI78SYuOzCAkhCCnmxajVy+3++n8+bXXVa57SyT66aeWKc0wqsMMQkIII6BcyK8ZRJD3+HHn\nMrryyvLKRx1YrmRRWlp8v2FiOvInLToyg5AQohghgGuj1iDv8uVw3nku50FUbVaCxRAMozrMICSA\nHTvcRnBBZ/Yq5NfM7i/U2Vl9vZXuxnr55bBhA+zZU32blWAxhGAxHfmTFh1FbhBEpJeIzBORNhFZ\nKSJfK1CmRUT2ishi7/XlqOWMktZWtyNpFOkmBw1yc/RXraq+jkrzNXTvDpMmhZukJ8vhwy45znnn\nhd+WYaSNyA2Cqh4CrlbVZuDNwNUi8pYCRZ9T1fHe6yvRShktYbmLivk1aw3yVhPviCqw/Morzhh0\n7Vpe+bT4fsPEdORPWnQUi8tIVQ94b3sAXYGOAsUC2AC6PghzhXIhalkstm0b7N3rEthH1WYlWPzA\nMKonFoMgIl1EpA3YDvxRVfPTsSswTUSWiMiTIhKwdz05HD7sso7lp6AMgmJ+zVqe1ufOdXGISt1b\nV17p9mo6dqy6dsulUoOQFt9vmJiO/EmLjrrF0aiqdgLNInIW8HsRaVHVTE6RRcAQVT0gItcCvwRG\n5dczY8YMhg4dCkBTUxPNzc0nhm7Zf1DSj3v2bGH0aFiwIPj629raCp4fMwa2bs3wi1/Ae99bWf1z\n5rQwfXrl8ixdmmHAAFi6tIUJE8LTZ3t7C0OGlF8+S1L6gx3X53FbW1ui5Mk9zmQyzJ49G+DE/bIY\nolHuKVBIAJE7gYOqek+JMhuAiarakfOZxi17ENxzD2zaBN/+drTtvutdcMstcMMNlV03dSp8/etw\n1VWVt3nzzW7G0a23Vn5tuXzmM262VphtGEY9IyKoakGXfByzjM4RkSbvfW/gGmBxXpmBIm6XfRGZ\ngjNcheIMdU/U8YMs1SwWO3gQli2DyZOja7NSLFOaYVRPHDGE84BnvRjCPOAJVX1GRGaKyEyvzPuB\nZV6ZbwI3xiBn6KhWPqe/EvLdIrlUs1hswQIYOxb69KlOnigWqFkMIXhMR/6kRUeRxxBUdRlwWk4w\nVZ2V8/5+4P4o5YqD9euhW7d4nminTHHB7MOHy88bUOtoZuRIeOMN2LKlvOQ11WCzjAyjemylcoxk\nb7DFUlDWSjbAVIgzzoBRo2DRovLrq3W9RBhJenLZv9+5tcrdUgPSM388TExH/qRFR2YQYiSq/YuK\nUcn006x7q9Z4R5gL1LKjg7AMrGGkHTMIMRJ2QNnPr1nJYrG1a12O5PPPr02mMBeoVeMuSovvN0xM\nR/6kRUdmEGJizx634ZtfCsowqSSbWVDGa9IkWLnSxRKCxuIHhlEbZhBiIpuCsnv38Nrw82teeKHb\n82fDBv+6gpoN1bs3jBvnZiwFTTUGIS2+3zAxHfmTFh2ZQYiJMKeblks2m1k5LpxKdzgtRVjTT22E\nYBi1YQYhJoK8wRajHL9mObN+OjrcVNFx44KRK6yZRps3V546My2+3zAxHfmTFh2ZQYiBY8fcRm/l\npqAMk3Ke1ltb3bqFbgGtWskahFqS9BTCRgiGURux72VULfW8l9HixfCRj7jgatwcPQr9+7s8Amed\nVbjMl77kYg3/+q/BtTt8OPz2t3DppcHUp+pmQW3bBmeeGUydhpFGErWXkRHf/kWF6N7dBbdLZTML\nY71E0NNPd+92IxgzBoZRPWYQYiCqgHK5fs1Si8WOHnUzgqZODU4uvzaroZr4AaTH9xsmpiN/0qIj\nMwgxEEVAuRJKPa23tTn3TjF3UhhtVoPFDwyjdiyGEDGvvOJyArz2WnK2WNi1C4YNc7OJ8gPH990H\nq1bBd78bbJvHj8OAAfDyy5XtPVSMBx6AJUtg1iz/sobRyFgMIUGEvaFdNZx9ttuSYvny08+FFe/o\n2tWlDW1tDaY+GyEYRu2YQYiYKBekVeLXLDT9VDXcDfiCXKBWrUFIi+83TExH/qRFR2YQIiZp8YMs\nhRaLtbe7oPLw4dG1WS3VBpUNwziJxRAi5MABOPdc2LnT7emTJFavdnmWN248+dmjj8Ljj8PPfx5O\nm/v2weDBLnbRo0dtdQ0bBk8/DSNGBCObYaQViyEkhAUL3PYPSTMGAKNHw+uvu6B3lrDXS5x5pruB\nL17sX7YUnZ2wdWt4WdgMo1EwgxAhUbuLKvFrFspmFoW8QUw/3b7dTYvt1avya9Pi+w0T05E/adGR\nGYQIScIOp6XIXSy2fz+sWeNWMUfVZrVs3mwzjAwjCMwgRERnZ/RbVlS6R3vu0/q8eS55T8+ewctV\nqM1awkHt7dUHlNOyj32YmI78SYuOzCBExNq1zq1x3nlxS1KcyZNhxQoX/I5qNDN0qHNX5QazK8XW\nIBhGMJhBiIg4pptW6tfs3Rsuu8wFv6MazRSKXVRKLQYhLb7fMDEd+ZMWHUVuEESkl4jME5E2EVkp\nIl8rUu5bIvKSiCwRkfFRyxk0SY8fZJk+HZ5/3q0gjsqA1bpAzUYIhhEMkRsEVT0EXK2qzcCbgatF\n5C25ZUTkOmCEqo4EPg18J2o5gyaOLa+r8WtOmwYPPeTWS7zpTcHLVKzNWkYItSxKS4vvN0xMR/6k\nRUexuIxU9YD3tgfQFejIK3I98IhXdh7QJCIDo5MwWHbtcvPkL7ssbkn8mTYN1q+P1niNHw/r1rmF\natVgIwTDCIaAkiJWhoh0ARYBFwPfUdX83GHnA+05x1uAC4Dttba9YoXbWO2SS2qtqXxaW91Gbl27\nRtcmOL9mpU8ugwe7QG+U7q0ePWDCBLjjjsqf9FXdyu9qg/XV6KjRMB35kxYdxWIQVLUTaBaRs4Df\ni0iLqmbyiuUvrT5tYuKMGTMYOnQoAE1NTTQ3N5/4p2SDPPnHDz7YQp8+8OEPFz4fxvGcOTB4cIZM\nJpr2ssdtbW1VXX/ffaAarbw33JBh4ULYt88db9rkzl90kf/xvffCn/9cXftZovh/2HF6j9va2hIl\nT+5xJpNh9uzZACful8WIfS8jEbkTOKiq9+R89l0go6qPecergatUdXtOmar2Mho+HPr0KbzVc1hc\ndRV8+ctwzTXRtWkYhlGIRO1lJCLniEiT9743cA2Qv5vNr4GbvDJTgT25xqBatm2DPXtcEHL37lpr\nK48jR2A+GkWaAAASuUlEQVThQucyMgzDSDJxBJXPA54VkTZgHvCEqj4jIjNFZCaAqj4JrBeRdcAs\n4DNBNJyd6TN5cumk8kHS1uY2cIsj+Xu+W8Q4HdORP6Yjf9Kio8hjCKq6DJhQ4PNZece3Bt121iAc\nPOjeX3tt0C0Ub9MwDCPpxB5DqJZqYghTp8LXv+4Mwn/8Bzz7bEjC5fCBD8ANN8BHPxp+W4ZhGH6U\niiE0jEE4eNAlc3/tNefXHzLExRHyk8oHiarbo//Pf3YJXAzDMOImUUHluFiwAMaOdTOMmprcXPsl\nS8Jtc9Mmt8upz0yv0EiLXzNMTEf+mI78SYuOGsYg5Pvyg8znW6rN6dPdBm6GYRhJp2EMwpw5p66+\nDSJTVzltxhlQzi5SMYpjOvLHdORPWnTUEAZB1T2tX3nlyc+CyNTlR73scGoYhgENYhDWroW+fU9N\nwn7xxXDokNsYLQxefx1eeslt3BYXafFrhonpyB/TkT9p0VFDGIRCT+oi4Y4S5s1zxqBHj3DqNwzD\nCJqGMQiFfPlhBpaT4C5Ki18zTExH/piO/EmLjhrCIOQHlLPUmqnLr01boWwYRj2ReoPQ0QFbtsC4\ncaefmzABVq2CN94Its3jx53LKG6DkBa/ZpiYjvwxHfmTFh2l3iC0tsKUKYVXJPfqBZdfDi++GGyb\nK1bAwIFuZbRhGEa9kHqD4Le5XBiB5STEDyA9fs0wMR35YzryJy06Sr1B8PPlh7FAzeIHhmHUI6k2\nCEePuj2Mpk4tXmbaNOdW6uwMrt2kbHmdFr9mmJiO/DEd+ZMWHaXaICxZ4nYZbWoqXmbgQDj7bBdc\nDoJXX3W7qF5ySTD1GYZhREWqDUKx6ab5BBlHyG6R0SUBmk2LXzNMTEf+mI78SYuOEnDbCo9yXTdB\nLlBLSkDZMAyjUlJrEFTLHyEEGVhOUkA5LX7NMDEd+WM68ictOkqtQWhvd0Hl4cP9y44dCzt2uGxq\ntXDoECxd6tY9GIZh1BupNQjZ0UE5yWm6dHEzkWp1Gy1YAGPGuKxsSSAtfs0wMR35YzryJy06Sq1B\nqHTqZxCB5aRMNzUMw6iG1BqESn35QcQRyo1ZREVa/JphYjryx3TkT1p0FLlBEJEhIvJHEVkhIstF\n5HMFyrSIyF4RWey9vlxJG/v3w5o1MHFi+ddccQW0tcHhw5W0dJJsVjYbIRiGUa+IqkbboMggYJCq\ntolIP2Ah8NequiqnTAvwBVW9vkQ9Wkz2Z5+FO++s/Il/wgR44IHSK5uL8dJL8Jd/CZs2VX6tYRhG\nVIgIqlowuhr5CEFVX1XVNu/9fmAVMLhA0TLCwYWp1nVTi9soSdNNDcMwqiHWGIKIDAXGA/PyTikw\nTUSWiMiTIjKmknqrdd3UElhO4oK0tPg1w8R05I/pyJ+06KhAloBo8NxFPwVu80YKuSwChqjqARG5\nFvglMCq/jhkzZjB06FAAmpqaaG5u5m1va6G1FT796QyZzMnpYNl/WKljEZgzpwVVeO45//K5x089\nlWHSJIDy2wv7uK2tLdb26+E4S1LkseP6PG5ra0uUPLnHmUyG2bNnA5y4XxYj8hgCgIh0B34D/E5V\nv1lG+Q3ARFXtyPmsYAxh+XJ473udT79SVGHIEPjTn8pb0JZl92648EL3t1AiHsMwjKSQqBiCiAjw\nfWBlMWMgIgO9cojIFJzh6ihUNp9afPki1cURSmVlMwzDqBfiiCFMBz4KXJ0zrfRaEZkpIjO9Mu8H\nlolIG/BN4MZyK6/Vl1/NRndJnW6a7xYxTsd05I/pyJ+06CjyZ1pV/TM+hkhV7wfur6b+uXPh9tur\nudIxfTo89FBl18yZA3fcUX2bhmEYSSCWGEIQFIohbN/uEtPs2lV9PoKjR6F/f3jlFTjrrPLKDxjg\nNtMrlYjHMAwjCSQqhhAmra1uUVm1xgCge3eYNAnm5U+ELcLSpTB0qBkDwzDqn1QZhKD2EqoksJzk\nBWlp8WuGienIH9ORP2nRUaoMQlDB3UoWqCU1oGwYhlEpqYkhHDoEZ5/t4gj9+tVW965dMGwYdHT4\nTyUdMgT++EcYMaK2Ng3DMKKgIWIIixa5gHKtxgCcYTn/fLfIrRTt7W531Isvrr1NwzCMuEmNQQja\nlz99un8coZKsbHGQFr9mmJiO/DEd+ZMWHaXGIAS9uVw5C9QsfmAYRppIRQxBFQYNgvnz3Z5CQbBm\nDbzrXbBhQ/EykybBt75lRsEwjPoh9TGEl1+GHj2CMwYAo0bB66/D1q2Fz+/fD6tWuaQ6hmEYaSAV\nBiEM1012o7tibqP58+Hyy6FXr2DbDZK0+DXDxHTkj+nIn7ToKBUGIazk9qUWqIXVpmEYRlykIoYw\nbhw8/DBegprg+NOf3EZ5hbaxuO46uPlml3vBMAyjXigVQ6h7g7Bnj1sc1tHh9iEKkoMH4Zxz4LXX\noE+fk593drq1CqtXw8CBwbZpGIYRJqkOKr/wghsZBG0MAHr3hssugwULTv181SpnEJJuDNLi1wwT\n05E/piN/0qKjujcIYa8FKLRAzeIHhmGkkbo3CGHfnAvNNKqXBWnZhNtGcUxH/piO/EmLjuo6hnD0\nqDJgAGzc6JLUhMHWrS5ovXPnyS0qRo2Cn/3MfW4YhlFPpDaGsHSpCyiHZQwABg+GM890K5cBduxw\nr7Fjw2szKNLi1wwT05E/piN/0qKjujYIUbluct1GQWRlMwzDSCJ1fVuLKltZbmC5ngLKafFrhonp\nyB/TkT9p0VFdG4SgdzgtRu4IoV4CyoZhGJUSuUEQkSEi8kcRWSEiy0Xkc0XKfUtEXhKRJSIyvlCZ\nAwdg5Mhw5QUXPN661b0WL4Yrrgi/zSBIi18zTExH/piO/EmLjuIYIRwFPq+qY4GpwGdF5NLcAiJy\nHTBCVUcCnwa+U6iiadOiSU7TtStMmQL33w+jRweTlS0K2tra4hYh8ZiO/DEd+ZMWHUVuEFT1VVVt\n897vB1YBg/OKXQ884pWZBzSJyGnrgqN03UybBt/5Tn25i/bs2RO3CInHdOSP6ciftOgo1hiCiAwF\nxgP528edD7TnHG8BLsi/Psrg7vTpsHt3/QSUDcMwKiU2gyAi/YCfArd5I4XTiuQdn7aCbuLEMCQr\nzBVXuKmm9TRC2LhxY9wiJB7TkT+mI3/SoqNYViqLSHfgN8DvVPWbBc5/F8io6mPe8WrgKlXdnlOm\nPpdYG4ZhxEyxlcrdohZERAT4PrCykDHw+DVwK/CYiEwF9uQaAyj+hQzDMIzqiHyEICJvAf4ELOWk\nG+hfgAsBVHWWV+6/gHcBbwCfUNVFkQpqGIbRYNTt5naGYRhGsPgGlUWkp4g8J46hIrIsiIZF5APe\n4rTjIjIx5/NrRGSBiCz1/l5dRl2zReR9PmUeEpHt5covIpeISKuIHBKRL+Z8nr+w7vM5+nlQRF4u\np/4y2s/Vz4Scz4eKyEERWey9HiijrtP0IyKnBfJFpJeIzBORNhFZKSJfK6Pugnryzm30/o+LRWR+\nBHrK7UcfztHRYu/8m33qKqcfNYnIT0VklaejqT7lP+ItrlwqInNyZcjvkzm/tW943yuo39rdnrxL\nROTnInJWzrn/6y0AXS0i7yijrnJ0dJuILPN+H7eVUWcpHeXqe5WILAqhDxXUTw33ovVen1uY7R8i\n8lsROdPn2qki8oJ37UoRucv7/D0ickeF3+kZETmjkmsAUNWSL+CTwO3e+6HAMr9rynkBlwCjgD8C\nE3I+bwYGee/HAlvKqOth4G98yrwVN8W1LPmBc4FJwFeAL+Z8Pgho9t73A7YBd3vHLcC+kPVT8f+g\nkH6A14uU7eP97Qa8ALylGj155zYAAwr0o9D1lFfmMuClgPrRI8Anc3R0lk/5K7NlcC7QF4r1yayO\ngJHA0wH+1q4Bunjv/x34d+/9GKAN6O71q3XZctXqyNP1MqAX0NX7HhfXoKNcfX8KuDOEPlRMPzXd\ni7x6l1QgxxpgnPdegEtr+E43A1+o9Lpypp1+CPhV/ofek+qfPCu4UESu9D5vEZGMiDzuWd3/V6hS\nVV2tqmsLfN6mqq96hyuB3uJmJflRMsisqs8Du8uoJ1v+NVVdgFtZnft5/sK6rsBy7/RGoLv3VBOK\nfmqgrCC8qh7w3vbAfbcOn/IF9VSg3dx+tJFo9fRh4DGfMvnynn7CPTm+VVUf8to+pqp7S1Wmqq05\nZeaRs56mQJ/8EPArVX3JK9fFa7dWHT2tqp0FZLgBeFRVj6rqRpxBmFLq+2RVUeLcJcA8VT2kqseB\n54C/KVVZMR3l6xv4IPAT7/1GgutDBfUTwL3oeWCEJ8tGERngvb/TG5E9LyKPysmR9bnAq17bqqqr\nvPIzROTb3vvZIvKAuFH5y953fMQbUTycI8OvgRvLkPUUShoEEekKXFbkB7cduEZVJ3oNfyvnXDNw\nG+4JZLiIVLuc633AQlUtdrOJFREZDgwAfpbz8SHcE0+Y+hnmDSsz4oL0vqICd0uOC4UC6zq879RF\nRNo8+f+oqisrlC0XBf4gIguAyXn9KAo9Zfk/wKNVXpvLMOA1EXnYc118T0T6VHD93wJPFjpR4Le2\nAsjWHaSOPpkjw2Dcos8sW3CLQmthOfBWERng6eavKLCotAS5OjpF38D0PHnD6EO5+smlmnvRe3CT\nZ8D7vYnIZJyBfDNwLTCRk7/F/wTWeG6rT4tIz9xrc2hS1SuBz+Nu/P+BG8GME5HLAdTNyjxHRPpW\nIK/vCOEc4PUi53oAD4rIUuB/gNz9iF5U1a3qxi5tuOFoRYjIWNzwbWal10aBuIV1Pwe266kL647i\nvm9Y+tkKDFHV8cAXgB+X4StU4B9VdXz2RZGnPFXtVNVm3I/4bSLSUoFs+Uz32roJ6CUib805F7ae\nABCRK4ADNRq2LN2ACcADqjoBNwPun8uU42rczaaYLzj/t7YDpxsISEci8iXgiKr+uISoNc0yUdXV\nwNeBp4DfAYuBzpIXnZQvX0cn9I27eR7mVH0H2oeK6afCe9GJhy+ci+tv885NB36pqke8+8YT3ueo\n6r/h3K9P4Ua1/5tzXRb1rgFnfF9V1RXe91uR9/22A0PKkPkE5biMig0PPw9sU9U3475Ez5xzh3Pe\nH6fC9Q4icgHuZvsxVd1Q5mWRTZfyho0/w620PlCgiBKSfryOtNt7vwh4Gedz9hW73Da8uvcCv8XJ\nXhWqus17uwt388x3R4SmpxxuBErdAPMp1Y+24PzI873jn+JuWCURFyT9HnB99n9XrGiR9zXrSERm\nANcBH8n5+BVOvWFc4H3mR8nfmqo+pKqTVPUqYA/ON16SIjrK1/d+Ttd3IH2oiH6quRflPny9s8CD\niFL8/4yqrlfV7wJvBy7PupnyOOL97eTU79fJqd9PqPC+6GcQduICp4U4E8/fhXsC7FpJw3mcUIqI\nNOFuRHeoausphUR+4A25StZRUcMit4rIZ8uRzSt/YmEd8DVO1093nH8zLP2c47kXsi6rkcB677iU\nfvwbcXU3ee9744Jii73jSvXUJ2fkcgA4AxdszBKqnjwZugAfIC9+UG0/8vzJ7SIyyvvoL3FPZUX1\nIyIX4m4oH1XVdSVkz/+tncvJH35NOhKRd+GC1Teo6qGcU78GbhSRHiIyDNeXXvSuqfq3JiJv8v5e\nCLwXzyBXqqM8fe8EmvD07RFIHyqmnxDuRQrMAd4jbkZZP5xLLetO+qucsqOAY1QQ9yzAQE51sflS\n0iB4QaHlIjLa+6gbJy3SA8DHPX/zaJz1PnFpflX5dYvIe0WkHbcF9m9F5HfeqVuBi4G7cnze53jn\nxlH8CWaWiLR7rzkF2nsUmAuM8sp8wjt1Ca6z5Zcf5Mn3eeDLIrLZ+wdOBz4KXA0sAPqKyKe8y7rh\nnk5aQ9TPVcASb0j6ODBTVbNbLZbSj2+bwHnAs57M84AnVPUZ71ylehoEPO/V1Qps8l4QjZ4A3gZs\n9gKmuVTdj4C/B34kIktwfuCvep8X1A9wJ9Af+I7Xl1/Mkf1En8Td2DpyfmuX4Z6uoUYdAd/GGZun\nJWeqsvf0+j+4h5vfAZ/xXA9Qm45+KiIrcAbnM6q6z/u8Yh3h6RtYhHuw+B/v88D6EEX0Q/X3okJt\nKIA3AePXuNjCk7iHpGxA/aMissb7bf8A+Ij3/8i+CtVf8PuJyCBgl6q+UUTGIpL7T1+agbOQ4GYl\nPOZ3TRgv3FPAT0Ko9wmgWw3X5+rnFuCVNOnH9BSNfnJ1hDMQL9pvLZ19COjr/e0DzMebxh6wjJ/G\n5Z2p6Drflcoi0gP4A5DB5Sn4uKouKXlRA5Gnn7/DzbV/JFahEojpyZ8cHXXHBZnfb7+1k6SlD4nI\nj3CznnoBs1X16yG08QzOBVZoJ+ni1/kZBMMwDKMxiDVBjmEYhpEczCAYhmEYgBkEwzAMw8MMgmEY\nhgGYQTAMwzA8zCAYhmEYAPx/lknhjaUywfAAAAAASUVORK5CYII=\n", - "text": [ - "" - ] - } - ], - "prompt_number": 104 + "output_type": "execute_result" }, { - "cell_type": "code", - "collapsed": false, - "input": [ - "#Python Class student mean - Blue\n", - "#Python Class stdev - Green\n", - "\n", - "pydata.mean().plot()\n", - "pydata.std().plot()" - ], - "language": "python", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEACAYAAACznAEdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecTNf7B/DPYfW2apAQogQhWSRC8LOIXqKHEERIJfiS\nECm+SbTo7atFWH2tTnRhdaKuvuqqUdYuy+7aNs/vj3OXsWbmTrl35s7s83695rVT7px75tk795l7\nzrnnCiICY4wxlsHTFWCMMWYMnBAYY4wB4ITAGGNMwQmBMcYYAE4IjDHGFJwQGGOMAQD8PF0BW4QQ\nEQBiAKQASCKiap6tEWOM+S5DJwQABCCQiKI8XRHGGPN13tBkJDxdAcYYSw+MnhAIwDYhxGEhRC9P\nV4YxxnyZ0ZuMahLRv0KIggC2CiHOEdFuT1eKMcZ8kaETAhH9q/y9J4RYBaAagN0AIITgSZgYY8wJ\nRGSxKd6wTUZCiOxCiFzK/RwAGgI4ab4MEfHNxm3o0KEer4PRbxwjjpE3xSg2llC1KmH4cOfLsMXI\nRwgvAVglhABkPRcR0RbPVsm7REREeLoKhscxUscxUueOGJlMQLduQIUKwPff67MOwyYEIroCIMDT\n9WCMMSMYOhS4dQvYvh0QOo29NGxCYK7r3r27p6tgeBwjdRwjdXrHaNEiYOFC4OBBIEsW/dYj1NqU\njEoIQd5ad8YYs9e+fUCrVvLIoGJF18sTQoC8rVOZuS40NNTTVTA8jpE6jpE6vWIUEQG0awfMm6dN\nMlDDCYExxgwoJgZo0QIYNAho0sQ96+QmI8YYM5iUFKBlS6BYMWD6dG07kbnJiDHGvMjAgUBCAjBl\nin4jiizhhODDuO1XHcdIHcdInZYxmjUL2LABWLYMyJRJs2LtwsNOGWPMILZvB37+Gdi9G8ib1/3r\n5z4ExhgzgPPngdq1gaVLgcBA/dbDfQiMMWZgUVFA8+bA8OH6JgM1nBB8GLf9quMYqeMYqXMlRklJ\n8lyDFi2Anj21q5MzOCEwxpiHEAFffw3kyAGMHu3p2nAfAmOMecyECUBQELBnD5Arl3vWaasPgUcZ\nMcaYB6xYAYwZA+zf775koIabjHwYt/2q4xip4xipczRGS5bIpqK//gJefVWfOjmDEwJjzCckJMgL\nx1y75uma2DZ3LjBgALBtG1Cliqdr8zzuQ2CM+YQ1a4CvvgISE4GffpK/wDNm9HStnjd9OjBihEwG\nr7/umTrweQiMMZ+3dCnwww+yg3bFCqBmTeDkSfX3ucuECXIk0c6dnksGajgh+DBu+1XHMVLnDTGK\nj5fz/7RtK3e2O3YAn34K1K8vk8STJ/quXy1Gw4cD06YBu3YBr72mb11cwQmBMeb1NmwAqlYFXnpJ\nPs6QAejVCwgLk1NCvPmm/GXubkTAjz8CixfLZFCsmPvr4AjuQ2DMCxABgwcDly8DmTPLW6ZMz+5b\ney71cdWqQKVKnv4U+unQAXj/feCzzyy/vnat7FNo3Fg227hj4jgiOY31338DW7cCBQvqv0572OpD\n4ITAmBeYPx8YPx4YMkR2miYlyb+pN/PHaV+LiwNCQ+XlGN09nbI7PH4MvPwycOkSUKCA9eViYuQo\npFWrgEmT5HQRel1rwGQCevcGDh8GNm/2zMyl1thKCCAir7zJqjNbduzY4ekqGJ43xOjuXaJChYgO\nH3a+jLp1iRYvdu69Ro9RcDBRo0b2L793L1GFCkQtWhBdu6ZNHcxjlJxM1L07Ua1aRA8falO+lpR9\np8X9KvchMGZw/fsDXbrIZh9nffMNMHmydnUykqVLZZORvd57Dzh6FHj7bXkewNSp8pKVWkhKkv+r\na9eATZuA3Lm1KddduMmIMQPbvBn44gvg1Ck5AZqzUlKAMmWA4GCgWjXt6udpMTGyozYiwrlmmbNn\nZb9DcrIcjVSlClCkiHNNSQkJQKdO8u/y5UC2bI6X4Q7ch8CYF4qNBSpWlCczNW7sennjxwNHjgCL\nFrlellEsWiSngfjrL+fLMJmAP/8EQkKA48dlMnjrLSAgQN7eeksOZbXV/xIfL/sksmSR9cmSxfn6\n6I0TQjoVGhqKQE9ebcMLGDlGAwcC//6r3Q78wQM5Bv7UKaBoUfvfZ+QYtWwJtG8PfPyxNuURyZgf\nPy5vYWHy7/XrQPnyzyeJt94C8uSRibt27VCUKxeIefOM33HPs50y5mWOHAEWLND2TFt/f9mkMWMG\n8Ouv2pXrKQ8eyNFTCxZoV6YQMlkWLQo0bfrs+dhY+b9ITRSLF8vHhQoBfn5AqVKyHkabKsNRfITA\nmMEkJ8t2/r59gW7dtC373Dl5icarV/Vt1nj0SI69b9NGv3UEBQGrV8ubJ6SkABcvyqOHevXkyXDe\ngOcyYkwDRMA//wD/+Q/w7rvAwYP6rGfiRCBfPqBrV+3LLldONnkEB2tftrlhw2Sbeni4fusICQE+\n/FC/8tVkzCj7Ft5/33uSgRof+RjMEm+Yg8bT1GJEJNuRhwyRzQIffywvZvL55/IauHv2aFufy5eB\nUaNks45eJ0317StPzLL3ANvR7ejKFWD2bDk6asQIx+tnj/v3gb175f/ACHzlu8Z9CIxZEB4uf0UH\nB8sRJB07AitXyo7E1B11sWKySSQ4WDYZuIoI+PJL4NtvgdKlXS/PmkaNgH795A61Vi3tyx88WJbf\np4/8HJcvaz+h26pVQIMGQM6c2pab3nEfAmOKiAh5klNwMHDnjmyO+PBD2Txk7df6zp1ylMuCBXJH\n64qFC4GxY4FDh/QfqTJ1qqz7smXalrtvn4xZeDiQPbu8LsGdO8CsWdqup0EDef5A+/balpse8LBT\nxqy4eVPuFIOD5Vw47drJo4FatewfMbJ/P9CqFfDHH3IYpDMiI+U5B+vWAe+841wZjnj0CChRAjh2\nDCheXJsyTSagRg05h0/qMNDISKBsWTkyR6v13LsnT7K7dUsmHeYY7lROp3ylXVMvgwYB5cqFIiwM\n+OUXuYOZPh2oU8ex4YM1agDr18tfrMuXO1eX//xHDgl1RzIAZD9I165yjn419m5HwcFy5E3nzs+e\nK1AA6NlTzjCqlRUrgCZNjJUMfOW7xn0ILF2aMUNOibxkCdC8uevlvf22nGaicWM5dYH5TlHN1q1y\nrvxTp1yvhyN69waqVwd+/tn1nWt8vJxJdOHCF0fcDBggT+r64Qc5LYSrli6VczMx7Rm6yUgIkRHA\nYQA3iKhFmte4yciAEhPl/PtGtn078NFHcoSQ1p23Z87I9u3ffgN69FBfPi5OXqdgypTnT4Ryl5Yt\n5UidXr1cK2fECDlhnLUjpH79ZKIYP9619dy+LZPLv/8CWbO6VlZ65bV9CEKI/wCoCiAXEbVM8xon\nBAM5fVqOLtmwQY4oqVxZThRWubK8FSrk6RpKFy7I/oGlS+UJWno4f16OTf/+ezlqyJbvvpMnNi1Z\nok9d1Pz9txyGevKk88Ncb9+W/R8HD8qhuZbcvCkT37lzrm0LU6fK9Wh5dnJ645V9CEKIVwA0BTAb\ngE4jsn2bO9o1b92Svy7r1pVDLx89Ataskb88790Dfv9ddiq+8op8buhQ+fq1a/aPg9dKdLT8NTxs\n2LNkoEeMypaVI3hGj5YXVrfm2DF5tu3EiZpXwW6pw2V37LC+jFqMfv4Z6N7dejIA5AVsOnZ0/Qhh\n6VLPnoxmDfch6G8CgG8BeNmM4ulDTIzc4U2fLhPC+fNyrhwAqFBB3rp0kY+J5JDOo0flTnDmTHk/\nOfnZEUSVKrLJRK/545OS5Jz5TZq43jxij5IlZVKoX1/2KQwe/PzrycmyHr///uw6wJ4ghGyPnzTJ\nuXMpTpyQCd6eM5IHDZL/52+/BfLnd3xdN27II9EGDRx/L7OPIZuMhBDNATQhoq+FEIEABljqQ+jW\nrRtKlCgBAPD390dAQMDTWRlTMzY/1vbxe+8FYuZMYOjQUFSrBsyaFYjixZ0r7/59IFu2QBw7BqxZ\nE4rbt4GtWwPx+uva179161DcugXs3RsIPz/3xats2UDUrw+8+24ounUD6taVr3/1VSj27weOHg2E\nEJ79/8bFAUWKhGLaNKBzZ/vfTwQMHx6IVq2AihXtW9/ChYEoWhSoV8/x+i5fDsTGBmLuXON8H7zh\ncWhoKIKCggAAJUqUwC+//OJdl9AEMALAdQBXAPwLIBbA/DTLOHTZOOYak4lo6VKiUqWIGjcmCgvT\nfh1//EFUsCDR+vXaljt1KlH58kQPHmhbrr3u3CGqVIlo0CAZx8uXifLnJzp/3jP1seS774j693fs\nPX/9RVSuHFFiov3vuXhRfnZn/hfVqxNt3Oj4+9jzYOMSmh7f+avdANQBsM7C8xqHyfdodS3c0FCi\natWIqlQh2rZNkyKt2ruXqEgRopEj5c7TVVu2EL30ktwRWeKu6wVHRsr49e0rE+qIEW5Zrd2uXiXK\nl48oJubF1yzFKDFRJoO//nJ8XR9/TPTbb469JyJCJhJHko87Gf260+ZsJQTDdiqnYbx2rXTg9GnZ\nCdu9uxyJcuiQbBPX03vvyRlFV6yQJ2rFxTlfVni47McICbHd4ekO+fPLET0HDsgRNwMHerY+aRUv\nLvsQ5s+3b/lZs+RAAWeGyg4ZIq/v/OiR/e9Ztgxo3dr4F5/xetYyhdFv4CME3dy4QdSzp2y+GT+e\n6MkT99chLk7+kgwIkL8OHXX/PlGZMkSzZ2tfN1fExcm6GdGuXURlyxKlpNheLiqKqFAh15oNO3Qg\n+v13+5d/+22irVudXx97Bj5whMDc4MwZ4NNP5Zjy/PnlyKH+/T1zfdhs2YB58+T0CtWryxE79kpK\nkpOetWghP4+RZMsmr3VgRLVqATlyyDOubRk+XA4hfvNN59f1449yCKo9R4CXLslhyga9iqdP4YTg\nw1JHGthCJHe2zZvLJoOSJeVVoEaNejaM1FOEkAlp/nw5ZHTaNPVzF4jktMtZs9o3f449MUovUoeg\nTp78/PPmMbp0SZ478dtvrq2rUiU5B9Qff6gvGxICtG0rL1VpVL6yHXFCSKeSk+VJPtWqyYu9fPCB\nPFfgxx+dGyOupwYN5LTK06bJCeQSEqwvO3WqnJJiyRLvv76tJ3TsKM8VOXfO8uuDBsmJ+AoXdn1d\nP/4IjBkDPHlie7mQEPmDgOnPkOch2IOnrnDO48fAnDnyDNpixWTnZvPm3nEJwEePZBPS3buy0znt\nTmnLFnkN4n375JEOc87PPwNRUTK5mtu9W3bSnzsnm7600KyZ3P6sTfFx/rxsKrp+nRO8Vrx2LiNb\n0ktCmDxZnhVcurScA750aSBPHsfL+fdf+QWfNUt+wQYOlBd+8TYmk2yumD1bXsEsdbros2fltNUr\nV+pzFbD05NYt2Y90+fKzZkOTSW4v/fvLiQG1cuCAnIriwgXLkyL+9pucAiVtMxZznlfOZcRk2/64\ncUBsrPxF/Omnck6YQoWAmjXlr+Fhw+Q89EeOAA8fPv/+0NDQpx3Fb7whE8uBA3IInzcmA0AeyQwd\nKncQTZvKSc7u35cdyKNHO54MfKXtV0tFi8opPubMkY9DQ0OxaJGMfceO2q6renU595O1yepCQow5\nd1FavrIdGbibJn0jku21I0Y8P7c+kZxd8uJF+avq4kWZLFLvZ8/+7GgiPFz2C/TuLV83Wt+AK1q3\nlp+xVSs5z37HjvJ8CaaNvn1lTPv2lW38Q4bIHx56NC3+9JOcKrxbt+c7js+cAR48kJ3PzD24ycig\nVq2SV/E6etT+L2HaZOHnJzvjfHne+KgoYPFi2QbNbczaql5dTuF94oS8eM/Spfqtq04deWW11Etv\nAvJI8NEj12dIZc/jPgQvk5ws23AnTpRX4GLME5YskU2WV64Ahw/r21G/bZs8kj19WiZ2InkhnHnz\nvLd506i4D8HLzJ0r23EbNXKtHF9p19QTx8i6tm1lB3PDhqG6j9qqXx/Im/fZFddOnpTDi6tV03e9\nWvGV7Yj7EAwmLg7473+B1audv4IVY1rInFkObLhyRf91CSHPSxg8WJ5lvnSpbO7k74B7cZORwYwc\nKU8MCgnxdE0Ycy8i4O23ZWL49luZFKpW9XStfA/3IXiJ+/eBcuXkiVVlyni6Noy536pVwNdfy9Fy\nFy7wEYIeuA/BS4wcCbRrp10y8JV2TT1xjNS5M0YffCCHR3/4oXclA1/ZjrgPwSCuXpWdyadOebom\njHlOhgzAxo2yg5m5HzcZGUT37nJuIVdnkWSMMVtsNRnxEYIBnDwpfxVduODpmjDG0jPuQzCAIUPk\nLXdubcv1lXZNPXGM1HGM1PlKjPgIwcN27ZL9Bqkn5DDGmKdwH4IHEcmLyn/9tZxnnjHG9MbDTg1q\n9WogPl7b+eUZY8xZnBA8JDlZ9huMGqXf1cp8pV1TTxwjdRwjdb4SI04IHhIUBBQp4voEdowxphXu\nQ/CAuDh5laiVK71nNkfGmG/gPgSDmTxZXgWKkwFjzEg4IbhZVJS86Mjw4fqvy1faNfXEMVLHMVLn\nKzHihOBmqRPYlS3r6ZowxtjzuA/Bja5dAypXlieiFSni6dowxtIj7kMwExsrO3U9YehQeTF4TgaM\nMSNKVwkhIQGoV0/Ote7ug4uTJ4ENG+SVoNzFV9o19cQxUscxUucrMUpXCaFfP3nx+gsXgDVr3Lvu\nIUOA778H8uRx73oZY8xe6aYPIShInhX8zz/AkSNAt27AmTNAzpz61THVzp3yegfnzgFZsui/PsYY\nsybdX1P52DGgYUO5Y65QQT738cdA4cLAmDE6VhLA48dAQIBcT+vW+q6LMcbUpOtO5agooG1b4H//\ne5YMAGDsWGDePNm2r6eBA4FatTyTDHylXVNPHCN1HCN1vhIjn74egskkp5Vu3Rro0OH51156Cfj1\nV+CLL4Ddu/WZYG79emDTJiAsTPuyGWNMa4ZtMhJCZAWwE0AWAJkBrCGi781eV20y+uUXYPt2YNs2\nIFOmF183meT1CHr1Aj79VNPqIzISeOstYPFioE4dbctmjDFneW0fghAiOxHFCSH8AOwBMJCI9iiv\n2UwIGzfKHf3hw7KvwJrjx+WMo6dOAQULalNvInk2csmSsmmKMcaMwmv7EIgo9RSyzAAyAoiy531X\nrshRPcHBtpMBIDt8P/oI+O47V2r6vAULgPPngWHDtCvTGb7SrqknjpE6jpE6X4mRoROCECKDEOI4\ngDsAdhDRGbX3xMfLTuQffpCdufb49VfZrLRrl2v1BYCrV4EBA4CFC4GsWV0vjzHG3MXQTUaphBB5\nAGwGMJiIQpXnXmgyIgJ69JBnJC9aBAiLB0WWrVgB/PyzHKKaObNz9TSZ5JnQTZoAgwY5VwZjjOnJ\nVpORV4wyIqKHQoj1AN4GEJr6fPfu3VGiRAkAgL+/P65fD8Dhw4E4cADYuVMuFhgYCODZIZ21x/ny\nhSJnTmDChEAMGqS+vKXHS5cCKSmBGDjQuffzY37Mj/mx1o9DQ0MRFBQEAE/3l1YRkSFvAAoA8Ffu\nZwOwC0B9s9fJ3MGDRAULEoWHk9MuXSLKn5/oyhXH33vyJFGBArIMo9ixY4enq2B4HCN1HCN13hQj\nZd9pcb9r5D6EIgC2K30IBwGsI6K/LS147x7Qvj3wxx+uXWfgtdeA/v2BPn0cm/wuIUGe7zBqlCyD\nMca8kVf0IViS2oeQkiKHjVarBowY4Xq5CQly5NHIkUCrVva95/vv5bxIq1c71m/BGGPu5rXnIdiS\nmhCGDAEOHZJnBGfMqE3ZoaFA1672TX63Z488OgkLAwoV0mb9jDGmF689D0HNmjVyNNHixdolAwAI\nDJS3X36xvdyjRzJxzJhhzGSQ2rHErOMYqeMYqfOVGHl1QujVC1i2TLszjM2lTn534oT1Zfr3B+rW\nBT74QPv1M8aYu3l1k9GMGYTPP9dvHTNnAvPnW578bu1aecGdsDAgVy796sAYY1ry2T4Ek4l07cQ1\nmYCaNeXEdz17Pnv+7l05cV1ICFC7tn7rZ4wxrflsH4LeI3oyZJD9Az/8IIe2AnI46mefySuuGT0Z\n+Eq7pp44Ruo4Rup8JUZenRDc4a23gM6dn01+N3eunDxPrcOZMca8jVc3Gbmr7o8eyautDRsmr4C2\nfTtQqZJbVs0YY5ry+rmMPC1XLmDiRHmNgzFjOBkwxnwTNxnZqU0bYN06OdTUW/hKu6aeOEbqOEbq\nfCVGfIRgJyGA5s09XQvGGNMP9yEwxlg64rPDThljjGmHE4IP85V2TT1xjNRxjNT5Sow4ITDGGAPA\nfQiMMZaucB8CY4wxVZwQfJivtGvqiWOkjmOkzldixAmBMcYYAO5DYIyxdIX7EBhjjKnihODDfKVd\nU08cI3UcI3W+EiNOCIwxxgBwHwJjjKUr3IfAGGNMFScEH+Yr7Zp64hip4xip85UYcUJgjDEGgPsQ\nGGMsXeE+BMYYY6o4IfgwX2nX1BPHSB3HSJ2vxIgTAmOMMQDch8AYY+kK9yEwxhhTxQnBh/lKu6ae\nOEbqOEbqfCVGnBAYY4wB4D4ExhhLV7yyD0EIUUwIsUMIcVoIcUoI8Y2n68QYY77MsAkBQBKA/kT0\nBoDqAL4WQpT3cJ28iq+0a+qJY6SOY6TOV2Jk2IRARLeJ6Lhy/zGAswCKerZWjDHmu7yiD0EIUQLA\nTgBvKMmB+xAYY8wJXtmHkEoIkRPAcgB9U5MBY4wx7fl5ugK2CCEyAVgBYCERrU77evfu3VGiRAkA\ngL+/PwICAhAYGAjgWZteen58/Phx9OvXzzD1MeLj1OeMUh8jPk4bK0/Xx4iPJ06caNj9T2hoKIKC\nggDg6f7SGsM2GQkhBIB5AO4TUX8Lr3OTkYrQ0NCnGwizjGOkjmOkzptiZKvJyMgJoRaAXQBOAEit\n5PdEtEl5nRMCY4w5yCsTghpOCIwx5jiv7lRmzjNv+2WWcYzUcYzU+UqMOCEwxhgDwE1GjDGWrnCT\nEWOMMVWcEHyYr7Rr6oljpI5jpM5XYsQJgTHGGADuQ2CMsXSF+xAYY4yp4oTgw3ylXVNPHCN1HCN1\nvhIjTgiMMcYAcB8CY4ylK9yHwBhjTBUnBB/mK+2aeuIYqeMYqfOVGHFCYIwxBoD7EBhjLF3hPgTG\nGGOqOCH4MF9p19QTx0gdx0idr8SIEwJjjDEA3IfAGGPpCvchMMYYU8UJwYf5SrumnjhG6jhG6nwl\nRpwQGGOMAeA+BMYYS1e4D4ExZngpphQsCFuA0pNL4+NVHyMxJdHTVUp3OCH4MF9p19QTx0id3jEi\nImy4sAFVZlXBtMPTML3ZdMQkxKDFkhZ4nPhY13VrxVe2I04IjDGPOXDjAOrOq4sBWwbgl8BfsK/H\nPjQo1QArOqzAy7lexvvz38f9uPuerma6wX0IjDG3Oxd5DkP+HoJDtw7hv3X+i24B3eCXwe+5ZYgI\ng7cNxrrz67C5y2YUy1PMQ7X1LdyHwBgzhJsxN9FrbS/Unlsb1V+pjvO9z+PTKp++kAwAueP6vcHv\n6FG5B2rNrYWz9856oMbpCycEH+Yr7Zp64hjZtufaHoxaOAoXoy4i2ZTsdDnR8dEYvG0w3pzxJvJl\ny4fzvc/ju5rfIVumbKrvHfjeQPwa+CvqzquLgzcOOl0HPfnKdvRiWmaMpXtEhN92/YZZR2ahcGRh\nzIicgduPb6Nk3pIom78syuYrK/8qt8I5C0OIF1sh4pPiMfWfqRi9bzRavd4KYV+E4ZXcrzhcn24B\n3ZA/e340X9Ici9osQsNSDbX4mCyNdNeHcPXBVQghUDxPcR1qxZj3i02MxSdrPsG1h9ew6sNVKJKr\nCAC5c78UfQnn759/4RafHP8sQSjJ4nHiYwzbPQzvFH0Hw+sNR/mC5V2u255re9A2pC0mNZ6EjhU7\nulxeemSrDyFdJYQnyU9QZWYVRD+JxuYum/HmS2/qVDvGvNO1h9fQKrgVKr1UCTObz0RWv6x2vS86\nPhoXoi4gPDJcJomo80hITsDgWoNR/ZXqmtbxxJ0TaLqoKQbXGoze1XprWnZ6YCshgIi88iar7piB\nmwdSu5B2FHwymAqNKUQHbxx0uAxvsmPHDk9XwfA4Rs/subqHiowtQmP3jiWTyfT0eSPG6HLUZSo9\nuTT9vP3n5+rqKUaMkTXKvtPifjXd9CHsubYHi04uwokvT6BA9gLInik7mi9ujmXtl6FOiTqerh5j\nHjXn2BwM3jYY81rNQ5MyTTxdHVUl85bE3h570WRRE9yLu4cpTaYgY4aMnq6W10sXTUaPEx/jrRlv\nYUKjCWj5esunz/99+W90XNERC1ovQOPSjfWqKvMxEQ8i0GtdL8z9YK5THaRGkmxKxrdbvsX6C+ux\nttNalCtQztNVckhMQgxaBbdCgewFsKD1AmTxy+LpKhleuu9D+Gr9V4hLikNQq6AXXtt3fR9aBbfC\n9GbT0bZCW41rCZjIhNlHZ+PMvTPo8EYH1HilhsXRGMw73Hp0C/839/9QNFdR+Gf1x5qOa7z2/xkd\nH42OKzqCiLC03VLkzZbX01VyypPkJ+i8sjMePnmIVR+uQq4suTxdJUPzyhPThBBzhBB3hBAnXSln\ny6Ut+Ov8X5jYeKLF198r9h42ddmE3ht7Y0HYAldW9YJTd0+h9tzaCDoeBP+s/ui5tidKTiqJwdsG\nI+x2GPROxr4yNlpPjsQoMi4SDRY0QM8qPbGt6zZcjr6M5WeW61c5HYVHhqP6n9VRoUAFbOi8wWYy\nMPp2lNUvK0LahaBU3lKoN78eouOj3V4Ho8fIbtY6Fzx9A1AbQGUAJ628rtp5Eh0fTcXGF6PNFzer\nLnv67ml6edzLNP3QdNVl1cQlxtGQbUOowOgCNO2faZRiSiEiIpPJRMf/PU6Dtg6iVye8SuWnlqdf\nQ3+lC/cvuLxOS7ypo8tT7I1RdHw0VZ5RmYZsG/L0uX3X9lGRsUXoftx9nWqnj40XNlLB0QXpz6N/\n2rW8t2xHJpOJ+m/qT1VnVqXo+Gi3rttbYkRku1PZ4zt+WzcAJVxJCN1WdaMv//rS7kBdirpEJSeW\npNF7Rtv9nrS2XdpGpSeXpnYh7ehmzE2ry5lMJtp7bS/1Xt+bCo0pRG/PepvG7xtv8z3MMx4nPKb3\n/nyPvtktrqobAAAYRUlEQVTwzQsjWvps6EOfrP7EQzVzjMlkonH7xlGRsUVoz9U9nq6OLkwmE/Xd\n2JfemfUOPYh/4OnqqEr9sehO6TIhrD67ml6b9Bo9SnjkULCuP7xOr0953eHhbHcf36WPV35MxScU\np3Xh6xxaZ1JKEm2+uJm6r+5OeUflpcCgQJp5eCZFxkY6VE56FJsYS+fundOt/PikeKo/rz71WN3D\n4pc35kkMFZ9QnLZe2qpbHbQQnxRP3VZ1o4AZAXT1wVVPV0dXJpOJeq/vTdVnV6eHTx56ujoWPYh/\nQM0WNaMuK7u4fd22EoJXDzvt3r07SpQoAQDw9/dHQEAAAgMDERkXiR6TemBonaHImTkngGdtfIGB\ngaqPd32yCzV+qoEzh84g5NsQCCGsLl+nTh3MD5uPfjP74f2S7+N0v9PImTmnQ+vzy+CHzNczo1ue\nbpg+YDo2XtiISUsnof/M/qhTpw5ezfMqIs9EIqtfVpR7uxyyZcqGGyduIHPGzKhSowqyZ8qO8MPh\nyOKXBbX+rxay+WXD8QPHcfHMRXz/7ffIIDI4VB8jP65Tpw5O3T2Facum4dCtQwjPFY6sflkR8CQA\nfar1QctGLR0qL/U5S68npyRj8t3JKJC9AD7K9RF27dxlsbwZzWag64SumPPBHDR+v7Gh4lWjVg3s\nv7EfX/3vKxTMURB7huxBjsw5HCovbayM9PksPRZCoE22Nrh29xqaLGqCTZ034cj+I7quf+LEiU/3\nP2rLn79/Hu//+j4qFqyIdX7rEJsYi0P7DulWv9DQUAQFBQHA0/2lNYYeZSSEKAFgHRFVsvAaWao7\nEaHD8g54Nc+rGNtwrNPrjoqPQtNFTfHmS29ierPpFsc4X7h/AV+s/wIPnjzArOazULVoVafXZ8mj\nhEfYfGkz7sbeRXxSPOKT4xGXFPf8/eR4q69Fn43Gk1eewD+rP/Jnz4/82fI/+2t+38Jfe89QdYf7\ncfex9fJWbL60GVsubUGWjFnQqFQjNCrdCPVK1kNGkRFD/h6C5WeXY3qz6c8NLVYTGhr69EtkLsWU\ngs4rOyMuKQ4rOqxApoyZbJbTeWVnFM1ZFGMajnH042mKiHDq7ilsvbwVWy9vxd5re1GuQDl8VOkj\n9H23r1MjoqzFyOhMZMKXf32JM5FnsLHzxqc/DvVgb4w2XdyErqu6Yli9Yfis6mdotLARelbuifZv\ntNetbml57bBTZxJC8Klg/LrzVxz9/KjLO7VHCY/QMrgliuYqiqAPgp7uFBJTEjF672hMPDARP9T+\nAX3e7WNx+l4jSDYlIzo+Gvfj7+N+3P2nfyPjIp9/zux+VHwU2ldoj3ENx+GlnC+5vc5JKUk4ePMg\nNl/cjM2XNiP8fjjqvFrnaRIolbeUxR3brqu70GNND9QoVgOTGk9Cvmz5nFq/iUzotbYXrj68ir8+\n+suu7ehe7D1UnF4RGz7aoPkPAzU3Y25i2+Vt2Hp5K7Zd3oacmXPi/dfeR4PXGqBuybpOx8EXmMiE\nz9d9jvNR57Hhow3IkTmHR+pBRBi/fzzG7h+LkHYhqP1qbQDAn0f/xKZLm7Cs/TK31cUrp64AsATA\nLQAJAK4D+CTN6y+0jd2KuUWFxhSif27841zjmgVxiXHUZGET+mDJB/Qk6QntvrqbKvyvAjVb1Iwi\noiM0W4+RPE54TIO2DqKCowvS//75HyWnJOu+zpsxN2nGoRnUOrg1+Y/yp8ozKtPgrYNpx5UdlJCc\nYHc5jxMe0zcbvqGi44rSmnNrHK6HyWSibzZ8Q+/9+Z7D/U/zj8+ngBkBlJic6PB6HRHzJIbWnltL\n32z4hspPLU/5fs9H7ULa0czDM+ly1GVd1+2NUkwp9MnqT6huUF2KTYx1+/rjk+Lp45UfU8CMgBf2\nGZGxkZR7ZG6HtzVXwFs7lW3d0iYEk8lEzRY1o5+2/+R6xNJISE6gdiHtqMzkMlR0XFEKORViiPlT\n1Lg6FO7UnVNUe05temfWO3Tk1hFtKpXGlegr9Pm6zynvqLzUZWUXWhC2gG4/uu1yuTsjdlKpSaWo\ny8ouNoeFpo3RD3//QJVnVHZq2KLJZKKGCxrSyN0jHX6vmhRTCo3fN55qzalFOUfkpHrz6tHI3SPp\n0M1DuidsbxpSaU1ySjJ1XdWV6s+rT3GJcZqXby1GN2NuUrU/qlH7kPb0OOGxxWUaL2xMwSeDNa+T\nNekiIfx59E8KmBHg0K9JRySlJFHQsSC3j292hRZfZJPJRHOPzaWXxrxEfTb00Wwo38X7F6nH6h6U\n7/d8NGTbELoXe0+Tcs3Zc7RgHqORu0dS+anl6e7ju06v80r0Fcr/e346H3ne6TLSepzwmFoFt6La\nc2rTpgub3P4r1xcSApFMCp1XdKYG8xtonhQsxejA9QP08riXadjOYTZ/QM45OofaLG2jaX1s8fmE\nEBEdQQVGF6ATt09oEzH2gsjYSOq5picVHVeUgk8GO32EdO7eOeq6qivl/z0//bz9Z7ec1JV6tNB5\nRWer65tycAqVmlRKk/NAJuyfQHXm1tFkjPmNhzeoyswq1H11d91+7KQnSSlJ1HF5R2q0oBHFJ8Xr\ntp55x+dRgdEFaPXZ1arLRsVFUe6RuSnmSYxu9THn0wkhxZRC9ebVo1G7R2kXMWbVnqt7qNK0StRg\nfgOHfgWfunOKOi3vRAVGF6Dfdv7m9iOt2MRY6ruxLxUdV/SFL+mco3Oo2PhidCX6iibrSk5Jpndm\nvUN/HPnDpXKO3jpKxcYXo5G7R3pFE6W3SEpJog7LOlDTRU3pSdITzcsesHkAvTbpNTp556Td72u6\nqCktPrFY07pY49MJYcrBKVR9dnW3dHx6G70O9ROTE2ns3rGU//f89N8d/7X5Syvsdhi1C2lHhcYU\nolG7R7ntV5A1uyJ2UenJpZ8eLQydM5SKjC2i+cltYbfDqODogk4fcaw5t4YKji5Iy08v17RezvCV\nJiNzicmJ1HZpW2q+uLkmSWHHjh0UFRdFjRY0onrz6jl8UmnQsSBqHdza5XrYw2cTwvnI81RgdAEK\njwzXNGC+Qu8v8rUH16jN0jZUenJp2nJxy3OvHbl1hFoFt6LCYwvT2L1jrXaoeUJsYiz129iPCo8t\nTP5f+NPxf4/rsp4f//7R4bZhk8lEY/eOpaLjimo6Ws4VvpgQiGRSaB3cmlouaelyc9y81fOozOQy\n9M2GbygpJcnh90fHR7ut2chWQjD0eQi2CCGoxuwa6FSxE/q828fT1UnX1p9fj94be+Pdl9/FJwGf\nYMo/U3Ds9jF899536FW1F7Jnyu7pKlp04MYBZM+UXbdLqT5JfoKAGQEYUX8E2pRvo7p8UkoSvt7w\nNQ7ePIh1ndbxdb/dIDElER2WdUAGkQFL2y2FXwY/JJuSkUIpSDGlPL2fbEpGiinF4v3Td0/j6w1f\nY2T9kfi0yqdO16XFkhboVLETPqr0kYaf8EVee2KaLUIIqhtUF9u6bkMGYdhZvNONuKQ4DN81HGvC\n1+Crd75Cj8o9DHW2s6fsvrobHVd0xOmvTsM/q7/V5aLjo9F+WXtk9cuKJW2X8Jz+bpSYkogPl3+I\nNefWgEDIKDLCL4MfMmbI+ML9jBmUx2b3c2bOiYmNJqJm8Zou1WNB2AKsOLsCqzuu1uiTWeazCeFK\n9BWU8C/h6aoYlrdOOeBO7ojRl399iRRKwawWsyy+finqEpotboYmpZtgbMOxhrsUZHrYjogIJjI5\nHXstYvTwyUMUn1gc1/tfR+4suV0qyxavvECOPTgZMG8w6v1R2HhxI0IjQl94bffV3ag5pyb6Ve+H\nCY0nGC4ZpBdCCI/HPk/WPKjzah2sDV/rsTp49RGCt9adpT9rw9di4JaBCPsiDNkyZQMgmwgGbBmA\nhW0WomGphh6uITOChScWIuR0CNZ20i8p+GyTkbfWnaVPHZZ1QKm8pTC8/nD8vONnLD65GOs6rcMb\nhd7wdNWYQcQkxKDYhGK42u+qzT4nV/hskxGzzXwee2aZO2M0uclk/HnsTzRb3Azbr2zHgZ4HvCIZ\n8HakTqsY5c6SG3VL1PVYsxEnBMbcpHDOwpjSZAqK5y6O7d22o1COQp6uEjOgDm90QMjpEI+sm5uM\nGGPMQB4lPMIrE15BRN8I5M2WV/PyucmIMca8RK4suVC/ZH2sCV/j9nVzQvBh3ParjmOkjmOkTusY\nearZiBMCY4wZTPOyzbH3+l5ExUe5db3ch8AYYwbULqQdmpZpih6Ve2haLvchMMaYl/FEsxEnBB/G\nbb/qOEbqOEbq9IhRszLNsP/GftyPu6952dZwQmCMMQPKkTkHGpZqiNXn9J391Bz3ITDGmEEtO70M\ns4/NxuYumzUrk/sQGGPMCzUt0xQHbhxAZFykW9bHCcGHcduvOo6ROo6ROr1ilCNzDjQu3Rirzq7S\npfy0OCEwxpiBdajQASFn3DPaiPsQGGPMwOKS4lB0XFFc6HMBBXMUdLk87kNgjDEvlT1TdjQp0wQr\nz67UfV2cEHwYt/2q4xip4xip0ztG7mo24oTAGGMG17h0Yxy5dQR3Ht/RdT3ch8AYY16g88rOqFWs\nFr5850uXyuE+BMYY83LuaDbihODDuO1XHcdIHcdInTti1Kh0Ixz79xhuP76t2zo4ITDGmBfI6pcV\nzcs2x4ozK3RbB/chMMaYl1gbvhbj9o/Dzu47nS6D+xAYY8wHNCzVECfunMCtR7d0Kd+wCUEI0VgI\ncU4IcUEIMcjT9fFG3ParjmOkjmOkzl0xyuqXFS3KttCt2ciQCUEIkRHAVACNAVQA0EkIUd6ztfI+\nx48f93QVDI9jpI5jpM6dMerwhn6jjQyZEABUA3CRiCKIKAlAMIAPPFwnr/PgwQNPV8HwOEbqOEbq\n3BmjBq81wOm7p3Ez5qbmZRs1IbwM4LrZ4xvKc4wxlq5l8cuCVR+uQu4suTUv20/zErXBw4c0EBER\n4ekqGB7HSB3HSJ27Y1SnRB1dyjXksFMhRHUA/yWixsrj7wGYiOh3s2WMV3HGGPMC1oadGjUh+AEI\nB1AfwC0A/wDoRERnPVoxxhjzYYZsMiKiZCFEbwCbAWQE8CcnA8YY05chjxAYY4y5n+ooIyFEFiHE\nTiGVEEKc1GLFQoj2QojTQogUIURVs+cbCCEOCyFOKH/r2lFWkBCircoyc4QQd+ytvxCinBBivxDi\niRBigNnzxYQQO5S6nxJC9DeLz2whxCV7yrdj/ebxqWL2fAkhRLwQ4phym2ZHWS/ERwjx2MJyWYUQ\nB4UQx4UQZ4QQI+0o22KclNcilP/jMSHEITfEyXw7+sgsRseU199UKcue7chfCLFcCHFWiVF1leU7\nCyHClDjsNa9D2m3S7Ls2XvlcWn3Xxij1DRNCrBRC5DF77Xvl5M9zQoiGdpRlT4z6CiFOKt+PvnaU\naStG5vE+K4Q4qsM2ZDE+LuyLLivb3JHU7UMIsV4IYXNYkBCiuhDigPLeM0KIocrzLYSDJ+cKIf4W\nQuRy5D0AACKyeQPQA8C3yv0SAE6qvceeG4ByAMoC2AGgitnzAQAKK/ffAHDDjrLmAmijskxtAJXt\nrT+AggDeBjAMwACz5wsDCFDu5wTwL4AxyuNAADE6x8fh/4Gl+AB4ZGXZ7MpfPwAHANRyJk7Ka1cA\n5LOwHekepzTLVARwQaPtaB6AHmYxyqOyfI3UZSBPtDxgbZtMjRGAMgC2avhdawAgg3J/FIBRyv0K\nAI4DyKRsVxdTl3M2RkqsTwLICtncuxVAKRdiZB7vngB+0mEbshYfl/ZFSrlhDtQjHEAl5b4AUN6F\nz9QLwH8cfZ895yF0ArAm7ZPKL9VdShY8IoSooTwfKIQIFUIsU7LuQkuFEtE5Ijpv4fnjRJQ6v+sZ\nANmEEJnsqKfFXnOzcncDiLajnNTl7xHRYQBJaZ6/TUTHlfuPITf6U8rLEQAyKb9qdImPC2zGx2y9\nccrdzJCfLUpleYtxsrBe8+0oAu6N00eQJzfaw2qclF+OtYlojrLuZCJ6aKswItpvtsxBAK+YvZZ2\nm+wEYA0RXVCWy6Cs19UYbSUik4U6fABgCRElEVEEZEKoZuvzpIbCxmvlABwkoidElAJgJ4A2tgqz\nFqO08QbwIYClyv0IaLcNWYyPBvui3QBKK3WJEELkU+7/pByR7RZCLBHPjqwLAritrJtI6TcVQnQX\nQkxR7gcJIaYJeVR+SfmM85QjirlmdVgLoKMddX2OzYQg5BQSFa184e4AaEBEVZUVTzZ7LQBAX8hf\nIK8JIWo6WjFFWwBHSJ6tbDhCiNcA5ANgPrHIE8hfPHrGp6RyWBkqhKhlT1UBjBFmTSiwcq6HECKD\nEOK4Uv8dRHTGwbqZIwDbhBCHAbyTZjtyR5xSdQCwxMn3misJ4J4QYq7SdPGHECK7A+//FMAGSy9Y\n+K6dBpBatpYx6mFWh6KQJ32m0uIE0FMAagsh8imxaQazJGgH8xg9F28ANdPUV49tyDw+5pzZF7UA\ncEK5L3/2C/EOZIJ8E0ATAFXx7Ls4AUC40mz1mRAii/l7zfgTUQ0A/SF3/KMhj2AqCSHeAgAiugOg\ngBAihwP1VT1CKADgkZXXMgOYLYQ4ASAEgPlcQ/8Q0S2Sxy7HIQ9HHSKEeAPy8O1zR9/rDkKInABW\nArijHCmkSoL8vHrF5xaAYkRUGcB/ACy2o62QAAwkosqpN1j5lUdEJiIKgPwS/58QItCBuqVVU1lX\nVwBZhRC1zV7TO04AACHEuwDiXExsqfwAVAEwjYiqAIgFMNjOetSF3NlYawtO+127CxkbQKMYCSF+\nAJBIRIttVNWlUSZEdA7A7wC2ANgI4BgAk803Patf2hg9jTfkzjMBz8db023IWnwc3Bc9/fEF2cT1\naZrXagJYTUSJyn5jnfI8iOg3yObXLZBHtZvM3peKlPcAMvneJqLTyuc7nebz3QFQzI46P2VPk5G1\nw8P+AP4lojchP0QWs9cSzO6nwMHhrUKIVyB3th8T0RU73+a24VLKYeMKAMsBxFlYhKBTfJQNKVq5\nfxTAJcg2Z9Vq27sOpeyHANZD1t0pRPSvcvc+5M4zbXOEbnEy0xGArR1gWra2oxuQ7ciHlMfLIXdY\nNgnZSfoHgJap/ztri1q573KMhBDdATQF0Nns6Zt4fofxivKcGpvfNSKaQ0RvE1EdAA8g28ZtshKj\ntPF+jBfjrck2ZCU+zuyLzH98NbLwQ4Rg/f8MIrpMRDMgz8F6K7WZKY1E5a8Jz38+E57/fAIO7hfV\nEkIkZMepJbmhtHdB/gLM6MiK03gaFCGEP+SOaBAR7X9uISHmK4dcNstwaMVC9BZCfG1P3ZTlBYA/\nIdsUR+LF+GSCbN/UKz4FlOaF1CarMgAuK49txUd9JbJsf+V+NshOsWPKY0fjlN3syCUOQC7IzsZU\nusZJqUMGAO2Rpv/A2e1IaU++LoQoqzz1PuSvMqvxEUIUh9yhdCGiizbqnva7VhDPvvguxUgI0Riy\ns/oDInpi9tJaAB2FEJmFECUht6V/lPc4/V0TQhRS/hYH0BpKQnY0RmniHQnAH0q8FZpsQ9bio8O+\niADsBdBCyBFlOSGb1FKbk5qZLVsWQDIc6Pe04CU838SmymZCUDqFTgkhXlee8sOzjDQNQDelvfl1\nyOz99K1pi0pbthCitRDiOoDqANYLITYqL/UGUArAULM27wLKa5Vg/RfMTCHEdeW218L6lgDYB6Cs\nsswnykvlIDe2tMsXVurXH8CPQohryj+wJoAuAOoCOAwghxCip/I2P8hfJ/t1jE8dAGHKIekyAJ8T\nUepUi7bio7pOAEUAbFfqfBDAOiL6W3nN0TgVBrBbKWs/gKvKDXBPnADg/wBcUzpMzTm9HQHoA2CR\nECIMsh14hPK8xfgA+AlAXgDTlW35H7O6P90mIXdsUWbftYqQv64BF2MEYApkstkqzIYqK79eQyB/\n3GwE8JXS9AC4FqPlQojTkAnnKyKKUZ53OEZQ4g3gKOQPi9R5nzXbhmAlPnB+X2RpHQQAygCMtZB9\nCxsgfySldqh3EUKEK9/t+QA6K/+P1Jul8i1+PiFEYQD3iSjWSh2t1Fx9+FJ3yAwJyFEJwWrv0eMG\n+StgqQ7lrgPg58L7zePzJYCbvhQfjpN74mMeI8gE8Q9/13xzGwKQQ/mbHcAhKMPYNa7jZwD6O/o+\n1TOVhRCZAWwDEAqgJYBuRBRm803pSJr4fAE51n6eRytlQBwndWYxygTZydyOv2vP+Mo2JIRYBDnq\nKSuAIDKbtFPDdfwN2QT2wgmoNt+nlhAYY4ylD0a9QA5jjDE344TAGGMMACcExhhjCk4IjDHGAHBC\nYIwxpuCEwBhjDADw/znVb9VoeRM1AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 110, - "text": [ - "" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEACAYAAACznAEdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecTNf7B/DPYfW2apAQogQhWSRC8LOIXqKHEERIJfiS\nECm+SbTo7atFWH2tTnRhdaKuvuqqUdYuy+7aNs/vj3OXsWbmTrl35s7s83695rVT7px75tk795l7\nzrnnCiICY4wxlsHTFWCMMWYMnBAYY4wB4ITAGGNMwQmBMcYYAE4IjDHGFJwQGGOMAQD8PF0BW4QQ\nEQBiAKQASCKiap6tEWOM+S5DJwQABCCQiKI8XRHGGPN13tBkJDxdAcYYSw+MnhAIwDYhxGEhRC9P\nV4YxxnyZ0ZuMahLRv0KIggC2CiHOEdFuT1eKMcZ8kaETAhH9q/y9J4RYBaAagN0AIITgSZgYY8wJ\nRGSxKd6wTUZCiOxCiFzK/RwAGgI4ab4MEfHNxm3o0KEer4PRbxwjjpE3xSg2llC1KmH4cOfLsMXI\nRwgvAVglhABkPRcR0RbPVsm7REREeLoKhscxUscxUueOGJlMQLduQIUKwPff67MOwyYEIroCIMDT\n9WCMMSMYOhS4dQvYvh0QOo29NGxCYK7r3r27p6tgeBwjdRwjdXrHaNEiYOFC4OBBIEsW/dYj1NqU\njEoIQd5ad8YYs9e+fUCrVvLIoGJF18sTQoC8rVOZuS40NNTTVTA8jpE6jpE6vWIUEQG0awfMm6dN\nMlDDCYExxgwoJgZo0QIYNAho0sQ96+QmI8YYM5iUFKBlS6BYMWD6dG07kbnJiDHGvMjAgUBCAjBl\nin4jiizhhODDuO1XHcdIHcdInZYxmjUL2LABWLYMyJRJs2LtwsNOGWPMILZvB37+Gdi9G8ib1/3r\n5z4ExhgzgPPngdq1gaVLgcBA/dbDfQiMMWZgUVFA8+bA8OH6JgM1nBB8GLf9quMYqeMYqXMlRklJ\n8lyDFi2Anj21q5MzOCEwxpiHEAFffw3kyAGMHu3p2nAfAmOMecyECUBQELBnD5Arl3vWaasPgUcZ\nMcaYB6xYAYwZA+zf775koIabjHwYt/2q4xip4xipczRGS5bIpqK//gJefVWfOjmDEwJjzCckJMgL\nx1y75uma2DZ3LjBgALBtG1Cliqdr8zzuQ2CM+YQ1a4CvvgISE4GffpK/wDNm9HStnjd9OjBihEwG\nr7/umTrweQiMMZ+3dCnwww+yg3bFCqBmTeDkSfX3ucuECXIk0c6dnksGajgh+DBu+1XHMVLnDTGK\nj5fz/7RtK3e2O3YAn34K1K8vk8STJ/quXy1Gw4cD06YBu3YBr72mb11cwQmBMeb1NmwAqlYFXnpJ\nPs6QAejVCwgLk1NCvPmm/GXubkTAjz8CixfLZFCsmPvr4AjuQ2DMCxABgwcDly8DmTPLW6ZMz+5b\ney71cdWqQKVKnv4U+unQAXj/feCzzyy/vnat7FNo3Fg227hj4jgiOY31338DW7cCBQvqv0572OpD\n4ITAmBeYPx8YPx4YMkR2miYlyb+pN/PHaV+LiwNCQ+XlGN09nbI7PH4MvPwycOkSUKCA9eViYuQo\npFWrgEmT5HQRel1rwGQCevcGDh8GNm/2zMyl1thKCCAir7zJqjNbduzY4ekqGJ43xOjuXaJChYgO\nH3a+jLp1iRYvdu69Ro9RcDBRo0b2L793L1GFCkQtWhBdu6ZNHcxjlJxM1L07Ua1aRA8falO+lpR9\np8X9KvchMGZw/fsDXbrIZh9nffMNMHmydnUykqVLZZORvd57Dzh6FHj7bXkewNSp8pKVWkhKkv+r\na9eATZuA3Lm1KddduMmIMQPbvBn44gvg1Ck5AZqzUlKAMmWA4GCgWjXt6udpMTGyozYiwrlmmbNn\nZb9DcrIcjVSlClCkiHNNSQkJQKdO8u/y5UC2bI6X4Q7ch8CYF4qNBSpWlCczNW7sennjxwNHjgCL\nFrlellEsWiSngfjrL+fLMJmAP/8EQkKA48dlMnjrLSAgQN7eeksOZbXV/xIfL/sksmSR9cmSxfn6\n6I0TQjoVGhqKQE9ebcMLGDlGAwcC//6r3Q78wQM5Bv7UKaBoUfvfZ+QYtWwJtG8PfPyxNuURyZgf\nPy5vYWHy7/XrQPnyzyeJt94C8uSRibt27VCUKxeIefOM33HPs50y5mWOHAEWLND2TFt/f9mkMWMG\n8Ouv2pXrKQ8eyNFTCxZoV6YQMlkWLQo0bfrs+dhY+b9ITRSLF8vHhQoBfn5AqVKyHkabKsNRfITA\nmMEkJ8t2/r59gW7dtC373Dl5icarV/Vt1nj0SI69b9NGv3UEBQGrV8ubJ6SkABcvyqOHevXkyXDe\ngOcyYkwDRMA//wD/+Q/w7rvAwYP6rGfiRCBfPqBrV+3LLldONnkEB2tftrlhw2Sbeni4fusICQE+\n/FC/8tVkzCj7Ft5/33uSgRof+RjMEm+Yg8bT1GJEJNuRhwyRzQIffywvZvL55/IauHv2aFufy5eB\nUaNks45eJ0317StPzLL3ANvR7ejKFWD2bDk6asQIx+tnj/v3gb175f/ACHzlu8Z9CIxZEB4uf0UH\nB8sRJB07AitXyo7E1B11sWKySSQ4WDYZuIoI+PJL4NtvgdKlXS/PmkaNgH795A61Vi3tyx88WJbf\np4/8HJcvaz+h26pVQIMGQM6c2pab3nEfAmOKiAh5klNwMHDnjmyO+PBD2Txk7df6zp1ylMuCBXJH\n64qFC4GxY4FDh/QfqTJ1qqz7smXalrtvn4xZeDiQPbu8LsGdO8CsWdqup0EDef5A+/balpse8LBT\nxqy4eVPuFIOD5Vw47drJo4FatewfMbJ/P9CqFfDHH3IYpDMiI+U5B+vWAe+841wZjnj0CChRAjh2\nDCheXJsyTSagRg05h0/qMNDISKBsWTkyR6v13LsnT7K7dUsmHeYY7lROp3ylXVMvgwYB5cqFIiwM\n+OUXuYOZPh2oU8ex4YM1agDr18tfrMuXO1eX//xHDgl1RzIAZD9I165yjn419m5HwcFy5E3nzs+e\nK1AA6NlTzjCqlRUrgCZNjJUMfOW7xn0ILF2aMUNOibxkCdC8uevlvf22nGaicWM5dYH5TlHN1q1y\nrvxTp1yvhyN69waqVwd+/tn1nWt8vJxJdOHCF0fcDBggT+r64Qc5LYSrli6VczMx7Rm6yUgIkRHA\nYQA3iKhFmte4yciAEhPl/PtGtn078NFHcoSQ1p23Z87I9u3ffgN69FBfPi5OXqdgypTnT4Ryl5Yt\n5UidXr1cK2fECDlhnLUjpH79ZKIYP9619dy+LZPLv/8CWbO6VlZ65bV9CEKI/wCoCiAXEbVM8xon\nBAM5fVqOLtmwQY4oqVxZThRWubK8FSrk6RpKFy7I/oGlS+UJWno4f16OTf/+ezlqyJbvvpMnNi1Z\nok9d1Pz9txyGevKk88Ncb9+W/R8HD8qhuZbcvCkT37lzrm0LU6fK9Wh5dnJ645V9CEKIVwA0BTAb\ngE4jsn2bO9o1b92Svy7r1pVDLx89Ataskb88790Dfv9ddiq+8op8buhQ+fq1a/aPg9dKdLT8NTxs\n2LNkoEeMypaVI3hGj5YXVrfm2DF5tu3EiZpXwW6pw2V37LC+jFqMfv4Z6N7dejIA5AVsOnZ0/Qhh\n6VLPnoxmDfch6G8CgG8BeNmM4ulDTIzc4U2fLhPC+fNyrhwAqFBB3rp0kY+J5JDOo0flTnDmTHk/\nOfnZEUSVKrLJRK/545OS5Jz5TZq43jxij5IlZVKoX1/2KQwe/PzrycmyHr///uw6wJ4ghGyPnzTJ\nuXMpTpyQCd6eM5IHDZL/52+/BfLnd3xdN27II9EGDRx/L7OPIZuMhBDNATQhoq+FEIEABljqQ+jW\nrRtKlCgBAPD390dAQMDTWRlTMzY/1vbxe+8FYuZMYOjQUFSrBsyaFYjixZ0r7/59IFu2QBw7BqxZ\nE4rbt4GtWwPx+uva179161DcugXs3RsIPz/3xats2UDUrw+8+24ounUD6taVr3/1VSj27weOHg2E\nEJ79/8bFAUWKhGLaNKBzZ/vfTwQMHx6IVq2AihXtW9/ChYEoWhSoV8/x+i5fDsTGBmLuXON8H7zh\ncWhoKIKCggAAJUqUwC+//OJdl9AEMALAdQBXAPwLIBbA/DTLOHTZOOYak4lo6VKiUqWIGjcmCgvT\nfh1//EFUsCDR+vXaljt1KlH58kQPHmhbrr3u3CGqVIlo0CAZx8uXifLnJzp/3jP1seS774j693fs\nPX/9RVSuHFFiov3vuXhRfnZn/hfVqxNt3Oj4+9jzYOMSmh7f+avdANQBsM7C8xqHyfdodS3c0FCi\natWIqlQh2rZNkyKt2ruXqEgRopEj5c7TVVu2EL30ktwRWeKu6wVHRsr49e0rE+qIEW5Zrd2uXiXK\nl48oJubF1yzFKDFRJoO//nJ8XR9/TPTbb469JyJCJhJHko87Gf260+ZsJQTDdiqnYbx2rXTg9GnZ\nCdu9uxyJcuiQbBPX03vvyRlFV6yQJ2rFxTlfVni47McICbHd4ekO+fPLET0HDsgRNwMHerY+aRUv\nLvsQ5s+3b/lZs+RAAWeGyg4ZIq/v/OiR/e9Ztgxo3dr4F5/xetYyhdFv4CME3dy4QdSzp2y+GT+e\n6MkT99chLk7+kgwIkL8OHXX/PlGZMkSzZ2tfN1fExcm6GdGuXURlyxKlpNheLiqKqFAh15oNO3Qg\n+v13+5d/+22irVudXx97Bj5whMDc4MwZ4NNP5Zjy/PnlyKH+/T1zfdhs2YB58+T0CtWryxE79kpK\nkpOetWghP4+RZMsmr3VgRLVqATlyyDOubRk+XA4hfvNN59f1449yCKo9R4CXLslhyga9iqdP4YTg\nw1JHGthCJHe2zZvLJoOSJeVVoEaNejaM1FOEkAlp/nw5ZHTaNPVzF4jktMtZs9o3f449MUovUoeg\nTp78/PPmMbp0SZ478dtvrq2rUiU5B9Qff6gvGxICtG0rL1VpVL6yHXFCSKeSk+VJPtWqyYu9fPCB\nPFfgxx+dGyOupwYN5LTK06bJCeQSEqwvO3WqnJJiyRLvv76tJ3TsKM8VOXfO8uuDBsmJ+AoXdn1d\nP/4IjBkDPHlie7mQEPmDgOnPkOch2IOnrnDO48fAnDnyDNpixWTnZvPm3nEJwEePZBPS3buy0znt\nTmnLFnkN4n375JEOc87PPwNRUTK5mtu9W3bSnzsnm7600KyZ3P6sTfFx/rxsKrp+nRO8Vrx2LiNb\n0ktCmDxZnhVcurScA750aSBPHsfL+fdf+QWfNUt+wQYOlBd+8TYmk2yumD1bXsEsdbros2fltNUr\nV+pzFbD05NYt2Y90+fKzZkOTSW4v/fvLiQG1cuCAnIriwgXLkyL+9pucAiVtMxZznlfOZcRk2/64\ncUBsrPxF/Omnck6YQoWAmjXlr+Fhw+Q89EeOAA8fPv/+0NDQpx3Fb7whE8uBA3IInzcmA0AeyQwd\nKncQTZvKSc7u35cdyKNHO54MfKXtV0tFi8opPubMkY9DQ0OxaJGMfceO2q6renU595O1yepCQow5\nd1FavrIdGbibJn0jku21I0Y8P7c+kZxd8uJF+avq4kWZLFLvZ8/+7GgiPFz2C/TuLV83Wt+AK1q3\nlp+xVSs5z37HjvJ8CaaNvn1lTPv2lW38Q4bIHx56NC3+9JOcKrxbt+c7js+cAR48kJ3PzD24ycig\nVq2SV/E6etT+L2HaZOHnJzvjfHne+KgoYPFi2QbNbczaql5dTuF94oS8eM/Spfqtq04deWW11Etv\nAvJI8NEj12dIZc/jPgQvk5ws23AnTpRX4GLME5YskU2WV64Ahw/r21G/bZs8kj19WiZ2InkhnHnz\nvLd506i4D8HLzJ0r23EbNXKtHF9p19QTx8i6tm1lB3PDhqG6j9qqXx/Im/fZFddOnpTDi6tV03e9\nWvGV7Yj7EAwmLg7473+B1audv4IVY1rInFkObLhyRf91CSHPSxg8WJ5lvnSpbO7k74B7cZORwYwc\nKU8MCgnxdE0Ycy8i4O23ZWL49luZFKpW9XStfA/3IXiJ+/eBcuXkiVVlyni6Noy536pVwNdfy9Fy\nFy7wEYIeuA/BS4wcCbRrp10y8JV2TT1xjNS5M0YffCCHR3/4oXclA1/ZjrgPwSCuXpWdyadOebom\njHlOhgzAxo2yg5m5HzcZGUT37nJuIVdnkWSMMVtsNRnxEYIBnDwpfxVduODpmjDG0jPuQzCAIUPk\nLXdubcv1lXZNPXGM1HGM1PlKjPgIwcN27ZL9Bqkn5DDGmKdwH4IHEcmLyn/9tZxnnjHG9MbDTg1q\n9WogPl7b+eUZY8xZnBA8JDlZ9huMGqXf1cp8pV1TTxwjdRwjdb4SI04IHhIUBBQp4voEdowxphXu\nQ/CAuDh5laiVK71nNkfGmG/gPgSDmTxZXgWKkwFjzEg4IbhZVJS86Mjw4fqvy1faNfXEMVLHMVLn\nKzHihOBmqRPYlS3r6ZowxtjzuA/Bja5dAypXlieiFSni6dowxtIj7kMwExsrO3U9YehQeTF4TgaM\nMSNKVwkhIQGoV0/Ote7ug4uTJ4ENG+SVoNzFV9o19cQxUscxUucrMUpXCaFfP3nx+gsXgDVr3Lvu\nIUOA778H8uRx73oZY8xe6aYPIShInhX8zz/AkSNAt27AmTNAzpz61THVzp3yegfnzgFZsui/PsYY\nsybdX1P52DGgYUO5Y65QQT738cdA4cLAmDE6VhLA48dAQIBcT+vW+q6LMcbUpOtO5agooG1b4H//\ne5YMAGDsWGDePNm2r6eBA4FatTyTDHylXVNPHCN1HCN1vhIjn74egskkp5Vu3Rro0OH51156Cfj1\nV+CLL4Ddu/WZYG79emDTJiAsTPuyGWNMa4ZtMhJCZAWwE0AWAJkBrCGi781eV20y+uUXYPt2YNs2\nIFOmF183meT1CHr1Aj79VNPqIzISeOstYPFioE4dbctmjDFneW0fghAiOxHFCSH8AOwBMJCI9iiv\n2UwIGzfKHf3hw7KvwJrjx+WMo6dOAQULalNvInk2csmSsmmKMcaMwmv7EIgo9RSyzAAyAoiy531X\nrshRPcHBtpMBIDt8P/oI+O47V2r6vAULgPPngWHDtCvTGb7SrqknjpE6jpE6X4mRoROCECKDEOI4\ngDsAdhDRGbX3xMfLTuQffpCdufb49VfZrLRrl2v1BYCrV4EBA4CFC4GsWV0vjzHG3MXQTUaphBB5\nAGwGMJiIQpXnXmgyIgJ69JBnJC9aBAiLB0WWrVgB/PyzHKKaObNz9TSZ5JnQTZoAgwY5VwZjjOnJ\nVpORV4wyIqKHQoj1AN4GEJr6fPfu3VGiRAkAgL+/P65fD8Dhw4E4cADYuVMuFhgYCODZIZ21x/ny\nhSJnTmDChEAMGqS+vKXHS5cCKSmBGDjQuffzY37Mj/mx1o9DQ0MRFBQEAE/3l1YRkSFvAAoA8Ffu\nZwOwC0B9s9fJ3MGDRAULEoWHk9MuXSLKn5/oyhXH33vyJFGBArIMo9ixY4enq2B4HCN1HCN13hQj\nZd9pcb9r5D6EIgC2K30IBwGsI6K/LS147x7Qvj3wxx+uXWfgtdeA/v2BPn0cm/wuIUGe7zBqlCyD\nMca8kVf0IViS2oeQkiKHjVarBowY4Xq5CQly5NHIkUCrVva95/vv5bxIq1c71m/BGGPu5rXnIdiS\nmhCGDAEOHZJnBGfMqE3ZoaFA1672TX63Z488OgkLAwoV0mb9jDGmF689D0HNmjVyNNHixdolAwAI\nDJS3X36xvdyjRzJxzJhhzGSQ2rHErOMYqeMYqfOVGHl1QujVC1i2TLszjM2lTn534oT1Zfr3B+rW\nBT74QPv1M8aYu3l1k9GMGYTPP9dvHTNnAvPnW578bu1aecGdsDAgVy796sAYY1ry2T4Ek4l07cQ1\nmYCaNeXEdz17Pnv+7l05cV1ICFC7tn7rZ4wxrflsH4LeI3oyZJD9Az/8IIe2AnI46mefySuuGT0Z\n+Eq7pp44Ruo4Rup8JUZenRDc4a23gM6dn01+N3eunDxPrcOZMca8jVc3Gbmr7o8eyautDRsmr4C2\nfTtQqZJbVs0YY5ry+rmMPC1XLmDiRHmNgzFjOBkwxnwTNxnZqU0bYN06OdTUW/hKu6aeOEbqOEbq\nfCVGfIRgJyGA5s09XQvGGNMP9yEwxlg64rPDThljjGmHE4IP85V2TT1xjNRxjNT5Sow4ITDGGAPA\nfQiMMZaucB8CY4wxVZwQfJivtGvqiWOkjmOkzldixAmBMcYYAO5DYIyxdIX7EBhjjKnihODDfKVd\nU08cI3UcI3W+EiNOCIwxxgBwHwJjjKUr3IfAGGNMFScEH+Yr7Zp64hip4xip85UYcUJgjDEGgPsQ\nGGMsXeE+BMYYY6o4IfgwX2nX1BPHSB3HSJ2vxIgTAmOMMQDch8AYY+kK9yEwxhhTxQnBh/lKu6ae\nOEbqOEbqfCVGnBAYY4wB4D4ExhhLV7yyD0EIUUwIsUMIcVoIcUoI8Y2n68QYY77MsAkBQBKA/kT0\nBoDqAL4WQpT3cJ28iq+0a+qJY6SOY6TOV2Jk2IRARLeJ6Lhy/zGAswCKerZWjDHmu7yiD0EIUQLA\nTgBvKMmB+xAYY8wJXtmHkEoIkRPAcgB9U5MBY4wx7fl5ugK2CCEyAVgBYCERrU77evfu3VGiRAkA\ngL+/PwICAhAYGAjgWZteen58/Phx9OvXzzD1MeLj1OeMUh8jPk4bK0/Xx4iPJ06caNj9T2hoKIKC\nggDg6f7SGsM2GQkhBIB5AO4TUX8Lr3OTkYrQ0NCnGwizjGOkjmOkzptiZKvJyMgJoRaAXQBOAEit\n5PdEtEl5nRMCY4w5yCsTghpOCIwx5jiv7lRmzjNv+2WWcYzUcYzU+UqMOCEwxhgDwE1GjDGWrnCT\nEWOMMVWcEHyYr7Rr6oljpI5jpM5XYsQJgTHGGADuQ2CMsXSF+xAYY4yp4oTgw3ylXVNPHCN1HCN1\nvhIjTgiMMcYAcB8CY4ylK9yHwBhjTBUnBB/mK+2aeuIYqeMYqfOVGHFCYIwxBoD7EBhjLF3hPgTG\nGGOqOCH4MF9p19QTx0gdx0idr8SIEwJjjDEA3IfAGGPpCvchMMYYU8UJwYf5SrumnjhG6jhG6nwl\nRpwQGGOMAeA+BMYYS1e4D4ExZngpphQsCFuA0pNL4+NVHyMxJdHTVUp3OCH4MF9p19QTx0id3jEi\nImy4sAFVZlXBtMPTML3ZdMQkxKDFkhZ4nPhY13VrxVe2I04IjDGPOXDjAOrOq4sBWwbgl8BfsK/H\nPjQo1QArOqzAy7lexvvz38f9uPuerma6wX0IjDG3Oxd5DkP+HoJDtw7hv3X+i24B3eCXwe+5ZYgI\ng7cNxrrz67C5y2YUy1PMQ7X1LdyHwBgzhJsxN9FrbS/Unlsb1V+pjvO9z+PTKp++kAwAueP6vcHv\n6FG5B2rNrYWz9856oMbpCycEH+Yr7Zp64hjZtufaHoxaOAoXoy4i2ZTsdDnR8dEYvG0w3pzxJvJl\ny4fzvc/ju5rfIVumbKrvHfjeQPwa+CvqzquLgzcOOl0HPfnKdvRiWmaMpXtEhN92/YZZR2ahcGRh\nzIicgduPb6Nk3pIom78syuYrK/8qt8I5C0OIF1sh4pPiMfWfqRi9bzRavd4KYV+E4ZXcrzhcn24B\n3ZA/e340X9Ici9osQsNSDbX4mCyNdNeHcPXBVQghUDxPcR1qxZj3i02MxSdrPsG1h9ew6sNVKJKr\nCAC5c78UfQnn759/4RafHP8sQSjJ4nHiYwzbPQzvFH0Hw+sNR/mC5V2u255re9A2pC0mNZ6EjhU7\nulxeemSrDyFdJYQnyU9QZWYVRD+JxuYum/HmS2/qVDvGvNO1h9fQKrgVKr1UCTObz0RWv6x2vS86\nPhoXoi4gPDJcJomo80hITsDgWoNR/ZXqmtbxxJ0TaLqoKQbXGoze1XprWnZ6YCshgIi88iar7piB\nmwdSu5B2FHwymAqNKUQHbxx0uAxvsmPHDk9XwfA4Rs/subqHiowtQmP3jiWTyfT0eSPG6HLUZSo9\nuTT9vP3n5+rqKUaMkTXKvtPifjXd9CHsubYHi04uwokvT6BA9gLInik7mi9ujmXtl6FOiTqerh5j\nHjXn2BwM3jYY81rNQ5MyTTxdHVUl85bE3h570WRRE9yLu4cpTaYgY4aMnq6W10sXTUaPEx/jrRlv\nYUKjCWj5esunz/99+W90XNERC1ovQOPSjfWqKvMxEQ8i0GtdL8z9YK5THaRGkmxKxrdbvsX6C+ux\nttNalCtQztNVckhMQgxaBbdCgewFsKD1AmTxy+LpKhleuu9D+Gr9V4hLikNQq6AXXtt3fR9aBbfC\n9GbT0bZCW41rCZjIhNlHZ+PMvTPo8EYH1HilhsXRGMw73Hp0C/839/9QNFdR+Gf1x5qOa7z2/xkd\nH42OKzqCiLC03VLkzZbX01VyypPkJ+i8sjMePnmIVR+uQq4suTxdJUPzyhPThBBzhBB3hBAnXSln\ny6Ut+Ov8X5jYeKLF198r9h42ddmE3ht7Y0HYAldW9YJTd0+h9tzaCDoeBP+s/ui5tidKTiqJwdsG\nI+x2GPROxr4yNlpPjsQoMi4SDRY0QM8qPbGt6zZcjr6M5WeW61c5HYVHhqP6n9VRoUAFbOi8wWYy\nMPp2lNUvK0LahaBU3lKoN78eouOj3V4Ho8fIbtY6Fzx9A1AbQGUAJ628rtp5Eh0fTcXGF6PNFzer\nLnv67ml6edzLNP3QdNVl1cQlxtGQbUOowOgCNO2faZRiSiEiIpPJRMf/PU6Dtg6iVye8SuWnlqdf\nQ3+lC/cvuLxOS7ypo8tT7I1RdHw0VZ5RmYZsG/L0uX3X9lGRsUXoftx9nWqnj40XNlLB0QXpz6N/\n2rW8t2xHJpOJ+m/qT1VnVqXo+Gi3rttbYkRku1PZ4zt+WzcAJVxJCN1WdaMv//rS7kBdirpEJSeW\npNF7Rtv9nrS2XdpGpSeXpnYh7ehmzE2ry5lMJtp7bS/1Xt+bCo0pRG/PepvG7xtv8z3MMx4nPKb3\n/nyPvtktrqobAAAYRUlEQVTwzQsjWvps6EOfrP7EQzVzjMlkonH7xlGRsUVoz9U9nq6OLkwmE/Xd\n2JfemfUOPYh/4OnqqEr9sehO6TIhrD67ml6b9Bo9SnjkULCuP7xOr0953eHhbHcf36WPV35MxScU\np3Xh6xxaZ1JKEm2+uJm6r+5OeUflpcCgQJp5eCZFxkY6VE56FJsYS+fundOt/PikeKo/rz71WN3D\n4pc35kkMFZ9QnLZe2qpbHbQQnxRP3VZ1o4AZAXT1wVVPV0dXJpOJeq/vTdVnV6eHTx56ujoWPYh/\nQM0WNaMuK7u4fd22EoJXDzvt3r07SpQoAQDw9/dHQEAAAgMDERkXiR6TemBonaHImTkngGdtfIGB\ngaqPd32yCzV+qoEzh84g5NsQCCGsLl+nTh3MD5uPfjP74f2S7+N0v9PImTmnQ+vzy+CHzNczo1ue\nbpg+YDo2XtiISUsnof/M/qhTpw5ezfMqIs9EIqtfVpR7uxyyZcqGGyduIHPGzKhSowqyZ8qO8MPh\nyOKXBbX+rxay+WXD8QPHcfHMRXz/7ffIIDI4VB8jP65Tpw5O3T2Facum4dCtQwjPFY6sflkR8CQA\nfar1QctGLR0qL/U5S68npyRj8t3JKJC9AD7K9RF27dxlsbwZzWag64SumPPBHDR+v7Gh4lWjVg3s\nv7EfX/3vKxTMURB7huxBjsw5HCovbayM9PksPRZCoE22Nrh29xqaLGqCTZ034cj+I7quf+LEiU/3\nP2rLn79/Hu//+j4qFqyIdX7rEJsYi0P7DulWv9DQUAQFBQHA0/2lNYYeZSSEKAFgHRFVsvAaWao7\nEaHD8g54Nc+rGNtwrNPrjoqPQtNFTfHmS29ierPpFsc4X7h/AV+s/wIPnjzArOazULVoVafXZ8mj\nhEfYfGkz7sbeRXxSPOKT4xGXFPf8/eR4q69Fn43Gk1eewD+rP/Jnz4/82fI/+2t+38Jfe89QdYf7\ncfex9fJWbL60GVsubUGWjFnQqFQjNCrdCPVK1kNGkRFD/h6C5WeXY3qz6c8NLVYTGhr69EtkLsWU\ngs4rOyMuKQ4rOqxApoyZbJbTeWVnFM1ZFGMajnH042mKiHDq7ilsvbwVWy9vxd5re1GuQDl8VOkj\n9H23r1MjoqzFyOhMZMKXf32JM5FnsLHzxqc/DvVgb4w2XdyErqu6Yli9Yfis6mdotLARelbuifZv\ntNetbml57bBTZxJC8Klg/LrzVxz9/KjLO7VHCY/QMrgliuYqiqAPgp7uFBJTEjF672hMPDARP9T+\nAX3e7WNx+l4jSDYlIzo+Gvfj7+N+3P2nfyPjIp9/zux+VHwU2ldoj3ENx+GlnC+5vc5JKUk4ePMg\nNl/cjM2XNiP8fjjqvFrnaRIolbeUxR3brqu70GNND9QoVgOTGk9Cvmz5nFq/iUzotbYXrj68ir8+\n+suu7ehe7D1UnF4RGz7aoPkPAzU3Y25i2+Vt2Hp5K7Zd3oacmXPi/dfeR4PXGqBuybpOx8EXmMiE\nz9d9jvNR57Hhow3IkTmHR+pBRBi/fzzG7h+LkHYhqP1qbQDAn0f/xKZLm7Cs/TK31cUrp64AsATA\nLQAJAK4D+CTN6y+0jd2KuUWFxhSif27841zjmgVxiXHUZGET+mDJB/Qk6QntvrqbKvyvAjVb1Iwi\noiM0W4+RPE54TIO2DqKCowvS//75HyWnJOu+zpsxN2nGoRnUOrg1+Y/yp8ozKtPgrYNpx5UdlJCc\nYHc5jxMe0zcbvqGi44rSmnNrHK6HyWSibzZ8Q+/9+Z7D/U/zj8+ngBkBlJic6PB6HRHzJIbWnltL\n32z4hspPLU/5fs9H7ULa0czDM+ly1GVd1+2NUkwp9MnqT6huUF2KTYx1+/rjk+Lp45UfU8CMgBf2\nGZGxkZR7ZG6HtzVXwFs7lW3d0iYEk8lEzRY1o5+2/+R6xNJISE6gdiHtqMzkMlR0XFEKORViiPlT\n1Lg6FO7UnVNUe05temfWO3Tk1hFtKpXGlegr9Pm6zynvqLzUZWUXWhC2gG4/uu1yuTsjdlKpSaWo\ny8ouNoeFpo3RD3//QJVnVHZq2KLJZKKGCxrSyN0jHX6vmhRTCo3fN55qzalFOUfkpHrz6tHI3SPp\n0M1DuidsbxpSaU1ySjJ1XdWV6s+rT3GJcZqXby1GN2NuUrU/qlH7kPb0OOGxxWUaL2xMwSeDNa+T\nNekiIfx59E8KmBHg0K9JRySlJFHQsSC3j292hRZfZJPJRHOPzaWXxrxEfTb00Wwo38X7F6nH6h6U\n7/d8NGTbELoXe0+Tcs3Zc7RgHqORu0dS+anl6e7ju06v80r0Fcr/e346H3ne6TLSepzwmFoFt6La\nc2rTpgub3P4r1xcSApFMCp1XdKYG8xtonhQsxejA9QP08riXadjOYTZ/QM45OofaLG2jaX1s8fmE\nEBEdQQVGF6ATt09oEzH2gsjYSOq5picVHVeUgk8GO32EdO7eOeq6qivl/z0//bz9Z7ec1JV6tNB5\nRWer65tycAqVmlRKk/NAJuyfQHXm1tFkjPmNhzeoyswq1H11d91+7KQnSSlJ1HF5R2q0oBHFJ8Xr\ntp55x+dRgdEFaPXZ1arLRsVFUe6RuSnmSYxu9THn0wkhxZRC9ebVo1G7R2kXMWbVnqt7qNK0StRg\nfgOHfgWfunOKOi3vRAVGF6Dfdv7m9iOt2MRY6ruxLxUdV/SFL+mco3Oo2PhidCX6iibrSk5Jpndm\nvUN/HPnDpXKO3jpKxcYXo5G7R3pFE6W3SEpJog7LOlDTRU3pSdITzcsesHkAvTbpNTp556Td72u6\nqCktPrFY07pY49MJYcrBKVR9dnW3dHx6G70O9ROTE2ns3rGU//f89N8d/7X5Syvsdhi1C2lHhcYU\nolG7R7ntV5A1uyJ2UenJpZ8eLQydM5SKjC2i+cltYbfDqODogk4fcaw5t4YKji5Iy08v17RezvCV\nJiNzicmJ1HZpW2q+uLkmSWHHjh0UFRdFjRY0onrz6jl8UmnQsSBqHdza5XrYw2cTwvnI81RgdAEK\njwzXNGC+Qu8v8rUH16jN0jZUenJp2nJxy3OvHbl1hFoFt6LCYwvT2L1jrXaoeUJsYiz129iPCo8t\nTP5f+NPxf4/rsp4f//7R4bZhk8lEY/eOpaLjimo6Ws4VvpgQiGRSaB3cmlouaelyc9y81fOozOQy\n9M2GbygpJcnh90fHR7ut2chWQjD0eQi2CCGoxuwa6FSxE/q828fT1UnX1p9fj94be+Pdl9/FJwGf\nYMo/U3Ds9jF899536FW1F7Jnyu7pKlp04MYBZM+UXbdLqT5JfoKAGQEYUX8E2pRvo7p8UkoSvt7w\nNQ7ePIh1ndbxdb/dIDElER2WdUAGkQFL2y2FXwY/JJuSkUIpSDGlPL2fbEpGiinF4v3Td0/j6w1f\nY2T9kfi0yqdO16XFkhboVLETPqr0kYaf8EVee2KaLUIIqhtUF9u6bkMGYdhZvNONuKQ4DN81HGvC\n1+Crd75Cj8o9DHW2s6fsvrobHVd0xOmvTsM/q7/V5aLjo9F+WXtk9cuKJW2X8Jz+bpSYkogPl3+I\nNefWgEDIKDLCL4MfMmbI+ML9jBmUx2b3c2bOiYmNJqJm8Zou1WNB2AKsOLsCqzuu1uiTWeazCeFK\n9BWU8C/h6aoYlrdOOeBO7ojRl399iRRKwawWsyy+finqEpotboYmpZtgbMOxhrsUZHrYjogIJjI5\nHXstYvTwyUMUn1gc1/tfR+4suV0qyxavvECOPTgZMG8w6v1R2HhxI0IjQl94bffV3ag5pyb6Ve+H\nCY0nGC4ZpBdCCI/HPk/WPKjzah2sDV/rsTp49RGCt9adpT9rw9di4JaBCPsiDNkyZQMgmwgGbBmA\nhW0WomGphh6uITOChScWIuR0CNZ20i8p+GyTkbfWnaVPHZZ1QKm8pTC8/nD8vONnLD65GOs6rcMb\nhd7wdNWYQcQkxKDYhGK42u+qzT4nV/hskxGzzXwee2aZO2M0uclk/HnsTzRb3Azbr2zHgZ4HvCIZ\n8HakTqsY5c6SG3VL1PVYsxEnBMbcpHDOwpjSZAqK5y6O7d22o1COQp6uEjOgDm90QMjpEI+sm5uM\nGGPMQB4lPMIrE15BRN8I5M2WV/PyucmIMca8RK4suVC/ZH2sCV/j9nVzQvBh3ParjmOkjmOkTusY\nearZiBMCY4wZTPOyzbH3+l5ExUe5db3ch8AYYwbULqQdmpZpih6Ve2haLvchMMaYl/FEsxEnBB/G\nbb/qOEbqOEbq9IhRszLNsP/GftyPu6952dZwQmCMMQPKkTkHGpZqiNXn9J391Bz3ITDGmEEtO70M\ns4/NxuYumzUrk/sQGGPMCzUt0xQHbhxAZFykW9bHCcGHcduvOo6ROo6ROr1ilCNzDjQu3Rirzq7S\npfy0OCEwxpiBdajQASFn3DPaiPsQGGPMwOKS4lB0XFFc6HMBBXMUdLk87kNgjDEvlT1TdjQp0wQr\nz67UfV2cEHwYt/2q4xip4xip0ztG7mo24oTAGGMG17h0Yxy5dQR3Ht/RdT3ch8AYY16g88rOqFWs\nFr5850uXyuE+BMYY83LuaDbihODDuO1XHcdIHcdInTti1Kh0Ixz79xhuP76t2zo4ITDGmBfI6pcV\nzcs2x4ozK3RbB/chMMaYl1gbvhbj9o/Dzu47nS6D+xAYY8wHNCzVECfunMCtR7d0Kd+wCUEI0VgI\ncU4IcUEIMcjT9fFG3ParjmOkjmOkzl0xyuqXFS3KttCt2ciQCUEIkRHAVACNAVQA0EkIUd6ztfI+\nx48f93QVDI9jpI5jpM6dMerwhn6jjQyZEABUA3CRiCKIKAlAMIAPPFwnr/PgwQNPV8HwOEbqOEbq\n3BmjBq81wOm7p3Ez5qbmZRs1IbwM4LrZ4xvKc4wxlq5l8cuCVR+uQu4suTUv20/zErXBw4c0EBER\n4ekqGB7HSB3HSJ27Y1SnRB1dyjXksFMhRHUA/yWixsrj7wGYiOh3s2WMV3HGGPMC1oadGjUh+AEI\nB1AfwC0A/wDoRERnPVoxxhjzYYZsMiKiZCFEbwCbAWQE8CcnA8YY05chjxAYY4y5n+ooIyFEFiHE\nTiGVEEKc1GLFQoj2QojTQogUIURVs+cbCCEOCyFOKH/r2lFWkBCircoyc4QQd+ytvxCinBBivxDi\niRBigNnzxYQQO5S6nxJC9DeLz2whxCV7yrdj/ebxqWL2fAkhRLwQ4phym2ZHWS/ERwjx2MJyWYUQ\nB4UQx4UQZ4QQI+0o22KclNcilP/jMSHEITfEyXw7+sgsRseU199UKcue7chfCLFcCHFWiVF1leU7\nCyHClDjsNa9D2m3S7Ls2XvlcWn3Xxij1DRNCrBRC5DF77Xvl5M9zQoiGdpRlT4z6CiFOKt+PvnaU\naStG5vE+K4Q4qsM2ZDE+LuyLLivb3JHU7UMIsV4IYXNYkBCiuhDigPLeM0KIocrzLYSDJ+cKIf4W\nQuRy5D0AACKyeQPQA8C3yv0SAE6qvceeG4ByAMoC2AGgitnzAQAKK/ffAHDDjrLmAmijskxtAJXt\nrT+AggDeBjAMwACz5wsDCFDu5wTwL4AxyuNAADE6x8fh/4Gl+AB4ZGXZ7MpfPwAHANRyJk7Ka1cA\n5LOwHekepzTLVARwQaPtaB6AHmYxyqOyfI3UZSBPtDxgbZtMjRGAMgC2avhdawAgg3J/FIBRyv0K\nAI4DyKRsVxdTl3M2RkqsTwLICtncuxVAKRdiZB7vngB+0mEbshYfl/ZFSrlhDtQjHEAl5b4AUN6F\nz9QLwH8cfZ895yF0ArAm7ZPKL9VdShY8IoSooTwfKIQIFUIsU7LuQkuFEtE5Ijpv4fnjRJQ6v+sZ\nANmEEJnsqKfFXnOzcncDiLajnNTl7xHRYQBJaZ6/TUTHlfuPITf6U8rLEQAyKb9qdImPC2zGx2y9\nccrdzJCfLUpleYtxsrBe8+0oAu6N00eQJzfaw2qclF+OtYlojrLuZCJ6aKswItpvtsxBAK+YvZZ2\nm+wEYA0RXVCWy6Cs19UYbSUik4U6fABgCRElEVEEZEKoZuvzpIbCxmvlABwkoidElAJgJ4A2tgqz\nFqO08QbwIYClyv0IaLcNWYyPBvui3QBKK3WJEELkU+7/pByR7RZCLBHPjqwLAritrJtI6TcVQnQX\nQkxR7gcJIaYJeVR+SfmM85QjirlmdVgLoKMddX2OzYQg5BQSFa184e4AaEBEVZUVTzZ7LQBAX8hf\nIK8JIWo6WjFFWwBHSJ6tbDhCiNcA5ANgPrHIE8hfPHrGp6RyWBkqhKhlT1UBjBFmTSiwcq6HECKD\nEOK4Uv8dRHTGwbqZIwDbhBCHAbyTZjtyR5xSdQCwxMn3misJ4J4QYq7SdPGHECK7A+//FMAGSy9Y\n+K6dBpBatpYx6mFWh6KQJ32m0uIE0FMAagsh8imxaQazJGgH8xg9F28ANdPUV49tyDw+5pzZF7UA\ncEK5L3/2C/EOZIJ8E0ATAFXx7Ls4AUC40mz1mRAii/l7zfgTUQ0A/SF3/KMhj2AqCSHeAgAiugOg\ngBAihwP1VT1CKADgkZXXMgOYLYQ4ASAEgPlcQ/8Q0S2Sxy7HIQ9HHSKEeAPy8O1zR9/rDkKInABW\nArijHCmkSoL8vHrF5xaAYkRUGcB/ACy2o62QAAwkosqpN1j5lUdEJiIKgPwS/58QItCBuqVVU1lX\nVwBZhRC1zV7TO04AACHEuwDiXExsqfwAVAEwjYiqAIgFMNjOetSF3NlYawtO+127CxkbQKMYCSF+\nAJBIRIttVNWlUSZEdA7A7wC2ANgI4BgAk803Patf2hg9jTfkzjMBz8db023IWnwc3Bc9/fEF2cT1\naZrXagJYTUSJyn5jnfI8iOg3yObXLZBHtZvM3peKlPcAMvneJqLTyuc7nebz3QFQzI46P2VPk5G1\nw8P+AP4lojchP0QWs9cSzO6nwMHhrUKIVyB3th8T0RU73+a24VLKYeMKAMsBxFlYhKBTfJQNKVq5\nfxTAJcg2Z9Vq27sOpeyHANZD1t0pRPSvcvc+5M4zbXOEbnEy0xGArR1gWra2oxuQ7ciHlMfLIXdY\nNgnZSfoHgJap/ztri1q573KMhBDdATQF0Nns6Zt4fofxivKcGpvfNSKaQ0RvE1EdAA8g28ZtshKj\ntPF+jBfjrck2ZCU+zuyLzH98NbLwQ4Rg/f8MIrpMRDMgz8F6K7WZKY1E5a8Jz38+E57/fAIO7hfV\nEkIkZMepJbmhtHdB/gLM6MiK03gaFCGEP+SOaBAR7X9uISHmK4dcNstwaMVC9BZCfG1P3ZTlBYA/\nIdsUR+LF+GSCbN/UKz4FlOaF1CarMgAuK49txUd9JbJsf+V+NshOsWPKY0fjlN3syCUOQC7IzsZU\nusZJqUMGAO2Rpv/A2e1IaU++LoQoqzz1PuSvMqvxEUIUh9yhdCGiizbqnva7VhDPvvguxUgI0Riy\ns/oDInpi9tJaAB2FEJmFECUht6V/lPc4/V0TQhRS/hYH0BpKQnY0RmniHQnAH0q8FZpsQ9bio8O+\niADsBdBCyBFlOSGb1FKbk5qZLVsWQDIc6Pe04CU838SmymZCUDqFTgkhXlee8sOzjDQNQDelvfl1\nyOz99K1pi0pbthCitRDiOoDqANYLITYqL/UGUArAULM27wLKa5Vg/RfMTCHEdeW218L6lgDYB6Cs\nsswnykvlIDe2tMsXVurXH8CPQohryj+wJoAuAOoCOAwghxCip/I2P8hfJ/t1jE8dAGHKIekyAJ8T\nUepUi7bio7pOAEUAbFfqfBDAOiL6W3nN0TgVBrBbKWs/gKvKDXBPnADg/wBcUzpMzTm9HQHoA2CR\nECIMsh14hPK8xfgA+AlAXgDTlW35H7O6P90mIXdsUWbftYqQv64BF2MEYApkstkqzIYqK79eQyB/\n3GwE8JXS9AC4FqPlQojTkAnnKyKKUZ53OEZQ4g3gKOQPi9R5nzXbhmAlPnB+X2RpHQQAygCMtZB9\nCxsgfySldqh3EUKEK9/t+QA6K/+P1Jul8i1+PiFEYQD3iSjWSh2t1Fx9+FJ3yAwJyFEJwWrv0eMG\n+StgqQ7lrgPg58L7zePzJYCbvhQfjpN74mMeI8gE8Q9/13xzGwKQQ/mbHcAhKMPYNa7jZwD6O/o+\n1TOVhRCZAWwDEAqgJYBuRBRm803pSJr4fAE51n6eRytlQBwndWYxygTZydyOv2vP+Mo2JIRYBDnq\nKSuAIDKbtFPDdfwN2QT2wgmoNt+nlhAYY4ylD0a9QA5jjDE344TAGGMMACcExhhjCk4IjDHGAHBC\nYIwxpuCEwBhjDADw/znVb9VoeRM1AAAAAElFTkSuQmCC\n", - "text": [ - "" - ] - } - ], - "prompt_number": 110 + "output_type": "display_data" } ], - "metadata": {} + "source": [ + "#Python Class student mean - Blue\n", + "#Python Class stdev - Green\n", + "\n", + "pydata.mean().plot()\n", + "pydata.std().plot()" + ] } - ] -} \ No newline at end of file + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.4.2" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +}