Skip to content

「訓練」と「学習」の表記ゆれ #31

@chie8842

Description

@chie8842

同じ意味で使われていると思われるtrainingが「学習」と訳されている部分と「訓練」と訳されている部分があるように見受けられる。
例えば「学習データ」と「訓練データ」
範囲が広いので相談したい。
以下は「学習」と「訓練」が含まれるファイルの一覧。
ただし「学習」の検索結果には「過学習」なども含まれる。

[site] %ag -l 学習 
ja/guide/autograph.ipynb
ja/tfx/guide/index.md
ja/probability/overview.md
ja/js/tutorials/learning/ml.md
ja/js/tutorials/training/linear_regression.md
ja/js/tutorials/transfer/what_is_transfer_learning.md
ja/js/tutorials/transfer/audio_recognizer.md
ja/js/tutorials/transfer/image_classification.md
ja/js/tutorials/index.md
ja/r1/guide/eager.ipynb
ja/r1/guide/keras.ipynb
ja/r1/tutorials/keras/basic_classification.ipynb
ja/r1/tutorials/keras/basic_regression.ipynb
ja/r1/tutorials/keras/README.md
ja/r1/tutorials/keras/save_and_restore_models.ipynb
ja/r1/tutorials/keras/overfit_and_underfit.ipynb
ja/r1/tutorials/keras/basic_text_classification.ipynb
ja/r1/tutorials/non-ml/mandelbrot.md
ja/r1/tutorials/images/hub_with_keras.ipynb
ja/r1/tutorials/non-ml/pdes.md
ja/r1/tutorials/load_data/images.ipynb
ja/tutorials/keras/regression.ipynb
ja/tutorials/customization/autodiff.ipynb
ja/tutorials/images/cnn.ipynb
ja/tutorials/images/classification.ipynb
ja/tutorials/keras/overfit_and_underfit.ipynb
ja/tutorials/structured_data/feature_columns.ipynb
ja/tutorials/load_data/text.ipynb
ja/tutorials/keras/save_and_load.ipynb
ja/tutorials/load_data/csv.ipynb
ja/tutorials/load_data/images.ipynb
ja/tutorials/keras/text_classification.ipynb
ja/tutorials/keras/classification.ipynb
ja/tutorials/customization/custom_layers.ipynb
[site] %ag -l 訓練
ja/tfx/guide/index.md
ja/js/tutorials/setup.md
ja/js/tutorials/training/linear_regression.md
ja/js/tutorials/training/handwritten_digit_cnn.md
ja/js/tutorials/transfer/what_is_transfer_learning.md
ja/js/tutorials/transfer/image_classification.md
ja/js/tutorials/index.md
ja/js/tutorials/transfer/audio_recognizer.md
ja/lite/convert/python_api.md
ja/r1/guide/keras.ipynb
ja/r1/tutorials/keras/README.md
ja/r1/tutorials/keras/overfit_and_underfit.ipynb
ja/r1/tutorials/keras/basic_regression.ipynb
ja/r1/tutorials/keras/basic_classification.ipynb
ja/r1/tutorials/keras/basic_text_classification.ipynb
ja/r1/tutorials/keras/save_and_restore_models.ipynb
ja/r1/tutorials/load_data/images.ipynb
ja/r1/tutorials/load_data/tf_records.ipynb
ja/tutorials/keras/classification.ipynb
ja/tutorials/keras/regression.ipynb
ja/tutorials/keras/text_classification.ipynb
ja/tutorials/keras/save_and_load.ipynb
ja/tutorials/quickstart/beginner.ipynb
ja/tutorials/quickstart/advanced.ipynb
ja/tutorials/load_data/images.ipynb
ja/tutorials/structured_data/feature_columns.ipynb
ja/tutorials/customization/autodiff.ipynb
ja/tutorials/keras/overfit_and_underfit.ipynb
ja/tutorials/load_data/csv.ipynb
ja/tutorials/load_data/numpy.ipynb
ja/tutorials/load_data/text.ipynb
ja/tutorials/customization/basics.ipynb
ja/tutorials/customization/custom_layers.ipynb
ja/tutorials/load_data/tfrecord.ipynb

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions