Skip to content

t_lag not correctly used with small datasets #68

@sdevries0

Description

@sdevries0

Hi,

Amazing package!

I was testing PyDaddy with a very low number of datapoints, but the Characterize function throws an error. I think I have found out why.
In _validate_inputs, you check if self.t_lag is larger than the number of data points and update it accordingly:

if self.t_lag >= len(self._X):
			print('Warning : t_lag ({}) is greater that the length of data; setting t_lag as {}\n'.format(
				self.t_lag,
				len(self._data[0]) - 1))
			self.t_lag = len(self._X) - 1

However, in def _get_autocorr_time(self, X, t_lag=1000, update=True) still the default value of t_lag is used, because this function is called with: self._get_autocorr_time(self._M_square).

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions