Skip to content

size mismatch for classifier.bias: copying a param with shape torch.Size #20

@Jorigorn

Description

@Jorigorn

请问可以直接执行分类任务吗?还是必须finetun.
我下载了所有数据,直接执行这个报错:

python run_sequence_level_classification.py
--task_name ChnSentiCorp
--do_train
--do_eval
--do_lower_case
--data_dir /path/to/dataset/ChnSentiCorp
--bert_model /path/to/zen_model
--max_seq_length 512
--train_batch_size 32
--learning_rate 2e-5
--num_train_epochs 30.0

07/20/2020 22:14:06 - INFO - ZEN.tokenization - loading vocabulary file /data/ceph/arikchen/TitleScoring_withData/zen_ngram/ZEN_ft_NLI_v0.1.0/vocab.txt
07/20/2020 22:14:06 - INFO - ZEN.ngram_utils - loading ngram frequency file /data/ceph/arikchen/TitleScoring_withData/zen_ngram/ZEN_ft_NLI_v0.1.0/ngram.txt
07/20/2020 22:14:08 - INFO - ZEN.modeling - loading weights file /data/ceph/arikchen/TitleScoring_withData/zen_ngram/ZEN_ft_NLI_v0.1.0/pytorch_model.bin
07/20/2020 22:14:08 - INFO - ZEN.modeling - loading configuration file /data/ceph/arikchen/TitleScoring_withData/zen_ngram/ZEN_ft_NLI_v0.1.0/config.json
07/20/2020 22:14:08 - INFO - ZEN.modeling - Model config {
"attention_probs_dropout_prob": 0.1,
"directionality": "bidi",
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"num_attention_heads": 12,
"num_hidden_layers": 12,
"num_hidden_word_layers": 6,
"pooler_fc_size": 768,
"pooler_num_attention_heads": 12,
"pooler_num_fc_layers": 3,
"pooler_size_per_head": 128,
"pooler_type": "first_token_transform",
"type_vocab_size": 2,
"vocab_size": 21128,
"word_size": 104089
}

Traceback (most recent call last):
File "examples/run_sequence_level_classification.py", line 396, in
main()
File "examples/run_sequence_level_classification.py", line 361, in main
if task_name not in processors:
File "/data/anaconda3/lib/python3.6/site-packages/ZEN-0.1.0-py3.6.egg/ZEN/modeling.py", line 839, in from_pretrained
RuntimeError: Error(s) in loading state_dict for ZenForSequenceClassification:
size mismatch for classifier.weight: copying a param with shape torch.Size([3, 768]) from checkpoint, the shape in current model is torch.Size([2, 768]).
size mismatch for classifier.bias: copying a param with shape torch.Size([3]) from checkpoint, the shape in current model is torch.Size([2]).
sh-4.2$

thanks a lot.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions