diff --git a/examples/beamforming/mask_prediction/local/Build_MaskBFnet_CE.m b/examples/beamforming/mask_prediction/local/Build_MaskBFnet_CE.m index d1b63d3..0b17862 100644 --- a/examples/beamforming/mask_prediction/local/Build_MaskBFnet_CE.m +++ b/examples/beamforming/mask_prediction/local/Build_MaskBFnet_CE.m @@ -11,7 +11,7 @@ layer = genNetworkMaskBF_CE(para.topology); % generate the network graph para.preprocessing{1} = {}; % optional preprocessing for each data stream para.preprocessing{2} = {}; -if para.topology.MTL +if isfield(para.topology, 'MTL') && para.topology.MTL para.cost_func.layer_idx = [ReturnLayerIdxByName(layer, 'cross_entropy') length(layer)]; % specify which layers are cost function layers para.cost_func.layer_weight = [1 para.topology.MTL]; % set the weights of each cost function layer para.preprocessing{3} = {}; diff --git a/utils/Reader_waveform.m b/utils/Reader_waveform.m index 06c87dd..a73ed4f 100644 --- a/utils/Reader_waveform.m +++ b/utils/Reader_waveform.m @@ -22,14 +22,14 @@ % read in multichannel waveforms if isfield(reader, 'multiArrayFiles') && reader.multiArrayFiles % when the different channels are stored in different files for j=1:length(files{i}) - [tmp_wav, fs] = Reader_waveform_core(files{i}{j}, reader.fs); + [tmp_wav, fs] = Reader_waveform_core(files{i}{j}, reader); if j==1 wav = zeros(length(files{i}), length(tmp_wav)); end wav(j,:) = tmp_wav; end else % when the different channels are stored in the same file - [wav, fs] = Reader_waveform_core(files{i}, reader.fs); + [wav, fs] = Reader_waveform_core(files{i}, reader); end % optional selection of channels if isfield(reader, 'useChannel')