Skip to content

fixedLassoInf: working with lambda value from cv.glmnet #54

@markhwhiteii

Description

@markhwhiteii

I am working on a simulation study that looks at performance when lambda is not determined a priori, but is instead calculated by cross-validation. I am doing this as an independent verification of the results found in Taylor & Tibshirani (2018) that show using cross-validation yields valid inferential statistics. (I know that Loftus also proposed a way to deal with a lambda determined by cross-validation, but it doesn't appear to be in the package yet, and the simulations in the 2018 paper performed well enough for me.)

I see that in the documentation it says that {glmnet} uses the 1/n parameterization, whereas {selectiveInference} uses the common parameterization. The documentation shows how to go from common lambda and transform it to something that {glmnet} can use. I need to do the opposite: Go from something cv.glmnet() gives me, and turn it into the lambda on the common scale that fixedLassoInf() wants.

Specifically, the {glmnet} documentation reads:

Note also that for "gaussian", glmnet standardizes y to have unit variance (using 1/n rather than 1/(n-1) formula) before computing its lambda sequence (and then unstandardizes the resulting coefficients); if you wish to reproduce/compare results with other software, best to supply a standardized y

While {selectiveInference} says:

Estimated lasso coefficients (e.g., from glmnet). This is of length p (so the intercept is not included as the first component). Be careful! This function uses the "standard" lasso objective... In contrast, glmnet multiplies the first term by a factor of 1/n. So after running glmnet, to extract the beta corresponding to a value lambda, you need to use beta = coef(obj,s=lambda/n)[-1]...

For a reproducible example, see the code below. My question specifically concerns how to adjust this line: si_lambda <- glmnet_lambda. That is, what transformation do I do to go from a lambda cv.glmnet() gives me (I assign this to glmnet_lambda) into a lambda that {selectiveInference} will use (which I call si_lambda)?

My original thought was that, since the documentation says to divide by n, my thinking would be to multiply what cv.glmnet() gives me by my sample size. That runs without throwing a warning or an error, but it gives me a lambda of 188.5121, which feels wrong. Apologies if that is the answer and I'm just being dense—but I wanted to make sure I am going from one software to the other in an appropriate manner.

library(glmnet)
library(selectiveInference)
library(tidyverse)
set.seed(1839)

n <- 1000       # sample size
B <- c(0, 1, 0) # intercept 0, beta1 = 1, beta2 = 0
eps_sd <- 1     # sd of the error

# make data
X <- cbind(1, replicate(length(B) - 1, rnorm(n, 0, 1)))
y <- X %*% B + rnorm(n, 0, eps_sd)
dat <- as.data.frame(X[, -1])
dat <- as_tibble(cbind(dat, y))

# get lambda by way of cross-validation
glmnet_lambda <- cv.glmnet(
  x = as.matrix(select(dat, -y)),
  y = dat$y
) %>% 
  getElement("lambda.1se")

# run glmnet with that lambda
m1 <- glmnet(
  x = as.matrix(select(dat, -y)),
  y = dat$y,
  lambda = glmnet_lambda
)

# get coefs from that model, dropping intercept, per the docs
m1_coefs <- coef(m1)[-1]

# what reparameterization do I do here?
si_lambda <- glmnet_lambda

# do post-selection inference with m1
# runs with warning, so I assume parameterized incorrectly -- how to fix?
m2 <- fixedLassoInf(
  x = as.matrix(select(dat, -y)),
  y = dat$y,
  beta = m1_coefs,
  lambda = si_lambda
)

And session information:

> sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 11.4

Matrix products: default
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] forcats_0.5.1            stringr_1.4.0            dplyr_1.0.6             
 [4] purrr_0.3.4              readr_1.4.0              tidyr_1.1.3             
 [7] tibble_3.1.2             ggplot2_3.3.3            tidyverse_1.3.1         
[10] selectiveInference_1.2.5 MASS_7.3-54              adaptMCMC_1.4           
[13] coda_0.19-4              survival_3.2-11          intervals_0.15.2        
[16] glmnet_4.1-1             Matrix_1.3-3            

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions