From 8362b812ee6c5ae0ec90a3b869734b425084745b Mon Sep 17 00:00:00 2001 From: Alex Kontorovich <58564076+AlexKontorovich@users.noreply.github.com> Date: Mon, 11 Aug 2025 14:21:47 +0000 Subject: [PATCH] typos --- blueprint/src/rationals.tex | 36 ++++++++++++++++++------------------ 1 file changed, 18 insertions(+), 18 deletions(-) diff --git a/blueprint/src/rationals.tex b/blueprint/src/rationals.tex index 97796b0..dd7f2f0 100644 --- a/blueprint/src/rationals.tex +++ b/blueprint/src/rationals.tex @@ -36,7 +36,7 @@ \section{The \emph{prerationals}} \begin{proof} \leanok \uses{MyPrerat.R} - Exercice. + Exercise. \end{proof} \begin{lemma} @@ -48,7 +48,7 @@ \section{The \emph{prerationals}} \begin{proof} \leanok \uses{MyPrerat.R} - Exercice. + Exercise. \end{proof} \begin{lemma} @@ -60,7 +60,7 @@ \section{The \emph{prerationals}} \begin{proof} \leanok \uses{MyPrerat.R} - Exercice. + Exercise. \end{proof} \begin{lemma} @@ -98,7 +98,7 @@ \section{The \emph{prerationals}} \begin{proof} \uses{MyPrerat.neg} \leanok -Exercice. +Exercise. \end{proof} \begin{definition} @@ -107,7 +107,7 @@ \section{The \emph{prerationals}} \leanok \uses{MyPrerat.R} We define an operation, called \emph{addition} on $\MyPrerat$ as follows: the addition of $x = (a,b)$ -and $y = (b, c)$ is +and $y = (c, d)$ is \[ x + y = (a,b) + (c,d) = (a * d + b * c, b*d) \] @@ -123,7 +123,7 @@ \section{The \emph{prerationals}} \begin{proof} \uses{MyPrerat.add} \leanok -Exercice. +Exercise. \end{proof} \begin{definition} @@ -146,7 +146,7 @@ \section{The \emph{prerationals}} \begin{proof} \uses{MyPrerat.mul} \leanok -Exercice. +Exercise. \end{proof} \begin{definition} @@ -170,7 +170,7 @@ \section{The \emph{prerationals}} \begin{proof} \uses{MyPrerat.inv} \leanok -Exercice. +Exercise. \end{proof} \section{The rationals} @@ -449,7 +449,7 @@ \subsection{\texorpdfstring{The inclusion $j \colon \MyInt \to \MyRat$}{The incl \begin{proof} \uses{MyRat.add, MyRat.j} \leanok -Exercice. +Exercise. \end{proof} \begin{lemma} @@ -464,7 +464,7 @@ \subsection{\texorpdfstring{The inclusion $j \colon \MyInt \to \MyRat$}{The incl \begin{proof} \uses{MyRat.mul, MyRat.j} \leanok -Exercice. +Exercise. \end{proof} \begin{lemma} @@ -476,7 +476,7 @@ \subsection{\texorpdfstring{The inclusion $j \colon \MyInt \to \MyRat$}{The incl \begin{proof} \uses{MyRat.j} \leanok -Exercice. +Exercise. \end{proof} \begin{lemma} @@ -500,7 +500,7 @@ \subsection{\texorpdfstring{The inclusion $j \colon \MyInt \to \MyRat$}{The incl \begin{proof} \uses{MyRat.inv, MyRat.mul, MyRat.j} \leanok -Exercice. +Exercise. \end{proof} \subsection{Nonegativity} @@ -562,7 +562,7 @@ \subsection{Nonegativity} \end{lemma} \begin{proof} \leanok - Annoying but easy, left as an exercice. + Annoying but easy, left as an exercise. \end{proof} \begin{lemma} @@ -574,7 +574,7 @@ \subsection{Nonegativity} \end{lemma} \begin{proof} \leanok - Exercice. + Exercise. \end{proof} \begin{lemma} @@ -586,7 +586,7 @@ \subsection{Nonegativity} \end{lemma} \begin{proof} \leanok - Exercice. + Exercise. \end{proof} \begin{lemma} @@ -598,7 +598,7 @@ \subsection{Nonegativity} \end{lemma} \begin{proof} \leanok - Exercice. + Exercise. \end{proof} \subsection{The order} @@ -713,7 +713,7 @@ \subsection{Interaction between the order and the inclusions} \begin{proof} \uses{MyRat.IsNonneg, MyInt.le} \leanok - Exercice. + Exercise. \end{proof} \begin{lemma} @@ -763,7 +763,7 @@ \subsection{The linear order structure} \begin{proof} \leanok \uses{MyRat.zero_le_iff_IsNonneg, MyRat.isNonneg_mul_isNonneg} -Exercice. +Exercise. \end{proof} We now have that $\MyRat$ is a \emph{strict ordered ring}: a nontrivial ring with a partial order such that addition is strictly monotone and multiplication by a positive number is strictly monotone. \ No newline at end of file