-
Notifications
You must be signed in to change notification settings - Fork 1
Open
Description
## 概述
扩展现有的监控系统,为Strategy-21创建专门的性能监控面板,提供实时策略表现追踪、VATSM指标可视化、风险监控告警等功能,确保策略运行状态的透明化和可控性。
## 目标
- 扩展现有监控系统,添加Strategy-21专用指标
- 创建实时性能监控面板
- 实现多维度风险监控和告警
- 提供策略优化决策支持数据
## 技术要求
### 核心功能
1. **VATSM指标监控**
- Volume、ATR、Trend、Strength、Momentum实时追踪
- 指标相关性分析
- 信号质量评估
- 指标异常检测
2. **交易性能监控**
- 实时P&L追踪
- 胜率和盈亏比分析
- 持仓分布监控
- 资金使用率追踪
3. **风险监控告警**
- 回撤监控和预警
- 仓位集中度检查
- 流动性风险评估
- 异常交易行为检测
4. **策略健康度评估**
- 策略运行状态监控
- 性能稳定性分析
- 参数漂移检测
- 市场适应性评估
### 实现细节
#### 监控数据模型 (monitoring/models.py)
```python
from dataclasses import dataclass
from datetime import datetime
from typing import Dict, List, Optional, Any
from enum import Enum
class AlertLevel(Enum):
INFO = "info"
WARNING = "warning"
CRITICAL = "critical"
EMERGENCY = "emergency"
@dataclass
class VATSMMetrics:
"""VATSM技术指标监控数据"""
timestamp: datetime
pair: str
# Volume指标
volume_ratio: float
volume_sma: float
volume_anomaly_score: float
# ATR指标
atr_value: float
atr_percentile: float
volatility_regime: str
# Trend指标
trend_strength: float
trend_direction: str
trend_consistency: float
# Strength指标
rsi_value: float
macd_signal: float
strength_score: float
# Momentum指标
momentum_value: float
momentum_acceleration: float
momentum_divergence: float
# 综合信号
vatsm_score: float
signal_quality: str
confidence_level: float
@dataclass
class TradingPerformance:
"""交易性能监控数据"""
timestamp: datetime
# P&L指标
unrealized_pnl: float
realized_pnl: float
total_pnl: float
pnl_percentage: float
# 交易统计
total_trades: int
winning_trades: int
losing_trades: int
win_rate: float
profit_factor: float
avg_win: float
avg_loss: float
# 持仓信息
active_positions: int
total_exposure: float
max_position_size: float
position_distribution: Dict[str, float]
# 资金使用
available_balance: float
used_margin: float
margin_utilization: float
daily_volume: float
@dataclass
class RiskMetrics:
"""风险监控数据"""
timestamp: datetime
# 回撤指标
current_drawdown: float
max_drawdown: float
drawdown_duration: int
peak_timestamp: datetime
# 风险度量
var_1day: float
var_1week: float
expected_shortfall: float
sharpe_ratio: float
# 集中度风险
position_concentration: Dict[str, float]
sector_concentration: Dict[str, float]
correlation_risk: float
# 流动性风险
liquidity_score: float
slippage_impact: float
market_depth_risk: float
@dataclass
class StrategyHealth:
"""策略健康度数据"""
timestamp: datetime
# 运行状态
strategy_status: str
uptime_hours: float
last_signal_time: datetime
signal_frequency: float
# 性能稳定性
performance_consistency: float
parameter_drift_score: float
market_adaptation_score: float
# 异常检测
anomaly_count_24h: int
error_rate: float
latency_p95: float
# 健康评级
overall_health_score: float
health_grade: str
recommended_actions: List[str]
@dataclass
class MonitoringAlert:
"""监控告警数据"""
timestamp: datetime
alert_id: str
level: AlertLevel
category: str
title: str
message: str
affected_pairs: List[str]
metrics: Dict[str, Any]
is_resolved: bool = False
resolved_at: Optional[datetime] = None
监控数据收集器 (monitoring/collectors.py)
import asyncio
from typing import Dict, List
from datetime import datetime, timedelta
from freqtrade.data.dataprovider import DataProvider
from freqtrade.persistence import Trade
class VATSMMetricsCollector:
"""VATSM指标数据收集器"""
def __init__(self, dataprovider: DataProvider):
self.dataprovider = dataprovider
async def collect_metrics(self, pairs: List[str]) -> Dict[str, VATSMMetrics]:
"""收集VATSM指标数据"""
metrics = {}
for pair in pairs:
try:
# 获取OHLCV数据
ohlcv = self.dataprovider.get_pair_dataframe(pair, '5m')
if ohlcv.empty:
continue
latest = ohlcv.iloc[-1]
# 计算VATSM指标
volume_ratio = self._calculate_volume_ratio(ohlcv)
atr_data = self._calculate_atr_metrics(ohlcv)
trend_data = self._calculate_trend_metrics(ohlcv)
strength_data = self._calculate_strength_metrics(ohlcv)
momentum_data = self._calculate_momentum_metrics(ohlcv)
# 计算综合评分
vatsm_score = self._calculate_vatsm_score(
volume_ratio, atr_data, trend_data,
strength_data, momentum_data
)
metrics[pair] = VATSMMetrics(
timestamp=datetime.now(),
pair=pair,
volume_ratio=volume_ratio['ratio'],
volume_sma=volume_ratio['sma'],
volume_anomaly_score=volume_ratio['anomaly'],
atr_value=atr_data['value'],
atr_percentile=atr_data['percentile'],
volatility_regime=atr_data['regime'],
trend_strength=trend_data['strength'],
trend_direction=trend_data['direction'],
trend_consistency=trend_data['consistency'],
rsi_value=strength_data['rsi'],
macd_signal=strength_data['macd'],
strength_score=strength_data['score'],
momentum_value=momentum_data['value'],
momentum_acceleration=momentum_data['acceleration'],
momentum_divergence=momentum_data['divergence'],
vatsm_score=vatsm_score['score'],
signal_quality=vatsm_score['quality'],
confidence_level=vatsm_score['confidence']
)
except Exception as e:
print(f"Error collecting metrics for {pair}: {e}")
continue
return metrics
def _calculate_volume_ratio(self, ohlcv) -> Dict[str, float]:
"""计算成交量指标"""
volume_sma = ohlcv['volume'].rolling(20).mean().iloc[-1]
current_volume = ohlcv['volume'].iloc[-1]
volume_ratio = current_volume / volume_sma if volume_sma > 0 else 1.0
# 异常检测(基于z-score)
volume_std = ohlcv['volume'].rolling(20).std().iloc[-1]
z_score = abs(current_volume - volume_sma) / volume_std if volume_std > 0 else 0
return {
'ratio': volume_ratio,
'sma': volume_sma,
'anomaly': min(z_score / 3.0, 1.0) # 标准化到0-1
}
def _calculate_atr_metrics(self, ohlcv) -> Dict[str, Any]:
"""计算ATR指标"""
# 计算ATR
high_low = ohlcv['high'] - ohlcv['low']
high_close = abs(ohlcv['high'] - ohlcv['close'].shift())
low_close = abs(ohlcv['low'] - ohlcv['close'].shift())
true_range = pd.concat([high_low, high_close, low_close], axis=1).max(axis=1)
atr = true_range.rolling(14).mean().iloc[-1]
# 计算ATR百分位数
atr_series = true_range.rolling(14).mean()
atr_percentile = (atr_series <= atr).sum() / len(atr_series) * 100
# 波动性制度分类
if atr_percentile < 30:
regime = "low_volatility"
elif atr_percentile > 70:
regime = "high_volatility"
else:
regime = "medium_volatility"
return {
'value': atr,
'percentile': atr_percentile,
'regime': regime
}
class PerformanceCollector:
"""交易性能数据收集器"""
def __init__(self, freqtrade_bot):
self.bot = freqtrade_bot
async def collect_performance(self) -> TradingPerformance:
"""收集交易性能数据"""
# 获取当前余额
balance = self.bot.wallets.get_total_stake_amount()
# 获取开仓交易
open_trades = Trade.get_open_trades()
# 计算未实现盈亏
unrealized_pnl = sum([trade.calc_profit_ratio() * trade.stake_amount
for trade in open_trades])
# 获取历史交易统计
all_trades = Trade.get_trades([]).order_by(Trade.close_date.desc()).limit(1000)
closed_trades = [t for t in all_trades if t.is_closed]
# 计算统计指标
winning_trades = len([t for t in closed_trades if t.profit_abs > 0])
total_closed = len(closed_trades)
win_rate = winning_trades / total_closed if total_closed > 0 else 0
profits = [t.profit_abs for t in closed_trades if t.profit_abs > 0]
losses = [abs(t.profit_abs) for t in closed_trades if t.profit_abs < 0]
avg_win = sum(profits) / len(profits) if profits else 0
avg_loss = sum(losses) / len(losses) if losses else 0
profit_factor = (avg_win * len(profits)) / (avg_loss * len(losses)) if losses else float('inf')
return TradingPerformance(
timestamp=datetime.now(),
unrealized_pnl=unrealized_pnl,
realized_pnl=sum([t.profit_abs for t in closed_trades]),
total_pnl=unrealized_pnl + sum([t.profit_abs for t in closed_trades]),
pnl_percentage=(unrealized_pnl + sum([t.profit_abs for t in closed_trades])) / balance * 100,
total_trades=len(open_trades) + total_closed,
winning_trades=winning_trades,
losing_trades=total_closed - winning_trades,
win_rate=win_rate,
profit_factor=profit_factor,
avg_win=avg_win,
avg_loss=avg_loss,
active_positions=len(open_trades),
total_exposure=sum([t.stake_amount for t in open_trades]),
max_position_size=max([t.stake_amount for t in open_trades], default=0),
position_distribution={t.pair: t.stake_amount for t in open_trades},
available_balance=balance - sum([t.stake_amount for t in open_trades]),
used_margin=sum([t.stake_amount for t in open_trades]),
margin_utilization=sum([t.stake_amount for t in open_trades]) / balance * 100,
daily_volume=self._calculate_daily_volume(closed_trades)
)
def _calculate_daily_volume(self, trades: List[Trade]) -> float:
"""计算日交易量"""
today = datetime.now().date()
today_trades = [t for t in trades
if t.close_date and t.close_date.date() == today]
return sum([t.amount * t.close_rate for t in today_trades])监控面板后端API (monitoring/api.py)
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
import json
import asyncio
from typing import List, Dict
from datetime import datetime, timedelta
app = FastAPI(title="Strategy21 Monitoring API")
class ConnectionManager:
def __init__(self):
self.active_connections: List[WebSocket] = []
async def connect(self, websocket: WebSocket):
await websocket.accept()
self.active_connections.append(websocket)
def disconnect(self, websocket: WebSocket):
self.active_connections.remove(websocket)
async def broadcast(self, message: str):
for connection in self.active_connections:
try:
await connection.send_text(message)
except:
self.active_connections.remove(connection)
manager = ConnectionManager()
@app.websocket("/ws/monitoring")
async def websocket_endpoint(websocket: WebSocket):
await manager.connect(websocket)
try:
while True:
# 发送实时监控数据
monitoring_data = await collect_all_monitoring_data()
await websocket.send_text(json.dumps(monitoring_data, default=str))
await asyncio.sleep(5) # 每5秒更新一次
except WebSocketDisconnect:
manager.disconnect(websocket)
@app.get("/api/metrics/vatsm")
async def get_vatsm_metrics():
"""获取VATSM指标数据"""
collector = VATSMMetricsCollector(dataprovider)
pairs = ["BTC/USDT", "ETH/USDT", "BNB/USDT"] # 配置化
metrics = await collector.collect_metrics(pairs)
return {
"timestamp": datetime.now().isoformat(),
"metrics": metrics
}
@app.get("/api/performance/summary")
async def get_performance_summary():
"""获取性能摘要"""
collector = PerformanceCollector(bot)
performance = await collector.collect_performance()
return performance
@app.get("/api/risk/assessment")
async def get_risk_assessment():
"""获取风险评估"""
collector = RiskMetricsCollector(bot)
risk_metrics = await collector.collect_risk_metrics()
return risk_metrics
@app.get("/api/alerts/active")
async def get_active_alerts():
"""获取活跃告警"""
alert_manager = AlertManager()
alerts = alert_manager.get_active_alerts()
return {
"timestamp": datetime.now().isoformat(),
"alerts": alerts,
"count": len(alerts)
}监控面板前端 (monitoring/dashboard.html)
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Strategy21 监控面板</title>
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<script src="https://cdn.tailwindcss.com"></script>
<style>
.alert-critical { @apply bg-red-100 border-red-400 text-red-700; }
.alert-warning { @apply bg-yellow-100 border-yellow-400 text-yellow-700; }
.alert-info { @apply bg-blue-100 border-blue-400 text-blue-700; }
.metric-card { @apply bg-white rounded-lg shadow-md p-6 mb-4; }
.status-healthy { @apply text-green-600; }
.status-warning { @apply text-yellow-600; }
.status-critical { @apply text-red-600; }
</style>
</head>
<body class="bg-gray-100">
<div class="container mx-auto px-4 py-8">
<!-- 页面标题 -->
<div class="mb-8">
<h1 class="text-3xl font-bold text-gray-800">Strategy21 监控面板</h1>
<p class="text-gray-600">实时策略性能与风险监控</p>
</div>
<!-- 告警区域 -->
<div id="alerts-section" class="mb-8">
<!-- 告警会动态加载 -->
</div>
<!-- 核心指标卡片 -->
<div class="grid grid-cols-1 md:grid-cols-2 lg:grid-cols-4 gap-6 mb-8">
<div class="metric-card">
<h3 class="text-lg font-semibold mb-2">总盈亏</h3>
<div class="text-2xl font-bold" id="total-pnl">--</div>
<div class="text-sm text-gray-600" id="pnl-percentage">--</div>
</div>
<div class="metric-card">
<h3 class="text-lg font-semibold mb-2">活跃仓位</h3>
<div class="text-2xl font-bold" id="active-positions">--</div>
<div class="text-sm text-gray-600" id="total-exposure">--</div>
</div>
<div class="metric-card">
<h3 class="text-lg font-semibold mb-2">胜率</h3>
<div class="text-2xl font-bold" id="win-rate">--</div>
<div class="text-sm text-gray-600" id="profit-factor">--</div>
</div>
<div class="metric-card">
<h3 class="text-lg font-semibold mb-2">当前回撤</h3>
<div class="text-2xl font-bold" id="current-drawdown">--</div>
<div class="text-sm text-gray-600" id="max-drawdown">--</div>
</div>
</div>
<!-- 图表区域 -->
<div class="grid grid-cols-1 lg:grid-cols-2 gap-6 mb-8">
<!-- VATSM指标图表 -->
<div class="metric-card">
<h3 class="text-lg font-semibold mb-4">VATSM指标趋势</h3>
<canvas id="vatsm-chart" width="400" height="200"></canvas>
</div>
<!-- 盈亏曲线图表 -->
<div class="metric-card">
<h3 class="text-lg font-semibold mb-4">盈亏曲线</h3>
<canvas id="pnl-chart" width="400" height="200"></canvas>
</div>
</div>
<!-- 详细数据表格 -->
<div class="grid grid-cols-1 lg:grid-cols-2 gap-6">
<!-- VATSM详细指标 -->
<div class="metric-card">
<h3 class="text-lg font-semibold mb-4">VATSM详细指标</h3>
<div id="vatsm-table" class="overflow-x-auto">
<!-- 表格内容动态加载 -->
</div>
</div>
<!-- 仓位分布 -->
<div class="metric-card">
<h3 class="text-lg font-semibold mb-4">仓位分布</h3>
<div id="positions-table" class="overflow-x-auto">
<!-- 表格内容动态加载 -->
</div>
</div>
</div>
</div>
<script>
// WebSocket连接
const ws = new WebSocket('ws://localhost:8000/ws/monitoring');
// 图表实例
let vatsmChart = null;
let pnlChart = null;
// 初始化图表
function initCharts() {
// VATSM指标图表
const vatsmCtx = document.getElementById('vatsm-chart').getContext('2d');
vatsmChart = new Chart(vatsmCtx, {
type: 'line',
data: {
labels: [],
datasets: [{
label: 'VATSM Score',
data: [],
borderColor: 'rgb(59, 130, 246)',
backgroundColor: 'rgba(59, 130, 246, 0.1)',
tension: 0.4
}]
},
options: {
responsive: true,
maintainAspectRatio: false,
scales: {
y: {
beginAtZero: true,
max: 1
}
}
}
});
// 盈亏曲线图表
const pnlCtx = document.getElementById('pnl-chart').getContext('2d');
pnlChart = new Chart(pnlCtx, {
type: 'line',
data: {
labels: [],
datasets: [{
label: '累计盈亏',
data: [],
borderColor: 'rgb(16, 185, 129)',
backgroundColor: 'rgba(16, 185, 129, 0.1)',
tension: 0.4
}]
},
options: {
responsive: true,
maintainAspectRatio: false
}
});
}
// 更新核心指标
function updateMetrics(data) {
if (data.performance) {
const perf = data.performance;
document.getElementById('total-pnl').textContent = `$${perf.total_pnl.toFixed(2)}`;
document.getElementById('pnl-percentage').textContent = `${perf.pnl_percentage.toFixed(2)}%`;
document.getElementById('active-positions').textContent = perf.active_positions;
document.getElementById('total-exposure').textContent = `$${perf.total_exposure.toFixed(2)}`;
document.getElementById('win-rate').textContent = `${(perf.win_rate * 100).toFixed(1)}%`;
document.getElementById('profit-factor').textContent = `${perf.profit_factor.toFixed(2)}`;
}
if (data.risk_metrics) {
const risk = data.risk_metrics;
document.getElementById('current-drawdown').textContent = `${(risk.current_drawdown * 100).toFixed(2)}%`;
document.getElementById('max-drawdown').textContent = `Max: ${(risk.max_drawdown * 100).toFixed(2)}%`;
}
}
// 更新告警
function updateAlerts(alerts) {
const alertsSection = document.getElementById('alerts-section');
alertsSection.innerHTML = '';
alerts.forEach(alert => {
const alertDiv = document.createElement('div');
alertDiv.className = `alert-${alert.level} border-l-4 p-4 mb-4`;
alertDiv.innerHTML = `
<div class="flex">
<div>
<p class="font-bold">${alert.title}</p>
<p>${alert.message}</p>
<p class="text-xs mt-1">${new Date(alert.timestamp).toLocaleString()}</p>
</div>
</div>
`;
alertsSection.appendChild(alertDiv);
});
}
// WebSocket消息处理
ws.onmessage = function(event) {
const data = JSON.parse(event.data);
updateMetrics(data);
if (data.alerts) {
updateAlerts(data.alerts);
}
// 更新图表数据
if (data.vatsm_metrics && vatsmChart) {
const now = new Date().toLocaleTimeString();
vatsmChart.data.labels.push(now);
// 计算平均VATSM得分
const avgScore = Object.values(data.vatsm_metrics)
.reduce((sum, metric) => sum + metric.vatsm_score, 0) / Object.keys(data.vatsm_metrics).length;
vatsmChart.data.datasets[0].data.push(avgScore);
// 保持最近30个数据点
if (vatsmChart.data.labels.length > 30) {
vatsmChart.data.labels.shift();
vatsmChart.data.datasets[0].data.shift();
}
vatsmChart.update();
}
if (data.performance && pnlChart) {
const now = new Date().toLocaleTimeString();
pnlChart.data.labels.push(now);
pnlChart.data.datasets[0].data.push(data.performance.total_pnl);
// 保持最近30个数据点
if (pnlChart.data.labels.length > 30) {
pnlChart.data.labels.shift();
pnlChart.data.datasets[0].data.shift();
}
pnlChart.update();
}
};
// 页面加载完成后初始化
document.addEventListener('DOMContentLoaded', function() {
initCharts();
});
// WebSocket错误处理
ws.onerror = function(error) {
console.error('WebSocket error:', error);
};
ws.onclose = function() {
console.log('WebSocket连接已关闭,尝试重连...');
setTimeout(() => {
location.reload();
}, 5000);
};
</script>
</body>
</html>告警系统 (monitoring/alerts.py)
class AlertManager:
"""告警管理器"""
def __init__(self):
self.active_alerts: Dict[str, MonitoringAlert] = {}
self.alert_rules = self._load_alert_rules()
def _load_alert_rules(self) -> Dict[str, Dict]:
"""加载告警规则"""
return {
"high_drawdown": {
"threshold": 0.10,
"level": AlertLevel.WARNING,
"message": "回撤超过10%警戒线"
},
"critical_drawdown": {
"threshold": 0.15,
"level": AlertLevel.CRITICAL,
"message": "回撤超过15%危险线"
},
"low_liquidity": {
"threshold": 0.3,
"level": AlertLevel.WARNING,
"message": "市场流动性不足"
},
"position_concentration": {
"threshold": 0.6,
"level": AlertLevel.WARNING,
"message": "仓位过度集中"
},
"signal_quality_degradation": {
"threshold": 0.3,
"level": AlertLevel.INFO,
"message": "信号质量下降"
}
}
async def check_alerts(self, monitoring_data: Dict[str, Any]):
"""检查告警条件"""
new_alerts = []
# 检查回撤告警
if 'risk_metrics' in monitoring_data:
risk = monitoring_data['risk_metrics']
new_alerts.extend(self._check_drawdown_alerts(risk))
new_alerts.extend(self._check_concentration_alerts(risk))
# 检查性能告警
if 'performance' in monitoring_data:
performance = monitoring_data['performance']
new_alerts.extend(self._check_performance_alerts(performance))
# 检查VATSM指标告警
if 'vatsm_metrics' in monitoring_data:
vatsm = monitoring_data['vatsm_metrics']
new_alerts.extend(self._check_vatsm_alerts(vatsm))
# 更新告警状态
for alert in new_alerts:
self.active_alerts[alert.alert_id] = alert
return new_alerts
def _check_drawdown_alerts(self, risk_metrics: RiskMetrics) -> List[MonitoringAlert]:
"""检查回撤告警"""
alerts = []
if risk_metrics.current_drawdown > self.alert_rules["critical_drawdown"]["threshold"]:
alerts.append(MonitoringAlert(
timestamp=datetime.now(),
alert_id=f"drawdown_critical_{datetime.now().timestamp()}",
level=AlertLevel.CRITICAL,
category="risk_management",
title="严重回撤告警",
message=f"当前回撤{risk_metrics.current_drawdown:.2%}超过危险阈值",
affected_pairs=[],
metrics={"current_drawdown": risk_metrics.current_drawdown}
))
elif risk_metrics.current_drawdown > self.alert_rules["high_drawdown"]["threshold"]:
alerts.append(MonitoringAlert(
timestamp=datetime.now(),
alert_id=f"drawdown_warning_{datetime.now().timestamp()}",
level=AlertLevel.WARNING,
category="risk_management",
title="回撤告警",
message=f"当前回撤{risk_metrics.current_drawdown:.2%}超过警戒阈值",
affected_pairs=[],
metrics={"current_drawdown": risk_metrics.current_drawdown}
))
return alerts验收标准
功能测试
-
监控数据收集
- VATSM指标数据准确收集和计算
- 交易性能数据实时更新
- 风险指标正确评估
- 策略健康度准确评估
-
监控面板
- 实时数据展示正常
- 图表更新及时准确
- 告警系统响应及时
- 界面友好易用
-
告警系统
- 告警规则触发准确
- 告警级别分类正确
- 告警通知及时送达
- 告警历史记录完整
性能测试
- 数据处理性能
- 监控数据收集延迟 < 1秒
- 面板数据更新频率稳定
- 大量历史数据查询响应及时
实现计划
阶段1:数据收集器 (1.5小时)
- 实现VATSM指标收集器
- 实现交易性能收集器
- 实现风险指标收集器
- 添加数据验证和异常处理
阶段2:监控面板后端 (1小时)
- 创建FastAPI监控接口
- 实现WebSocket实时数据推送
- 添加数据缓存和优化
阶段3:监控面板前端 (1小时)
- 创建响应式监控界面
- 实现实时图表展示
- 添加交互功能和数据导出
阶段4:告警系统 (0.5小时)
- 实现告警规则引擎
- 创建告警通知机制
- 添加告警历史管理
依赖关系
- 前置依赖: 006 (配置文件模板) - 需要监控参数配置
- 并行执行: 不可与其他任务并行执行
- 后续集成: 为任务009和010提供监控数据
风险与缓解
技术风险
-
监控性能影响
- 风险:监控系统影响策略执行性能
- 缓解:异步数据收集,控制监控频率
-
数据存储压力
- 风险:监控数据量过大影响系统性能
- 缓解:实现数据采样和定期清理机制
业务风险
- 告警疲劳
- 风险:过多告警导致关键告警被忽略
- 缓解:优化告警规则,实现智能告警聚合
成功指标
- 监控覆盖率 - 覆盖所有关键策略指标
- 数据准确性 - 监控数据与实际一致性 > 99%
- 响应及时性 - 关键告警响应时间 < 30秒
- 系统稳定性 - 监控系统可用性 > 99.5%
- 用户满意度 - 面板易用性和信息价值
交付物
-
监控数据收集器
- vatsm_metrics_collector.py
- performance_collector.py
- risk_metrics_collector.py
- strategy_health_collector.py
-
监控面板
- monitoring_api.py (后端API)
- dashboard.html (前端界面)
- monitoring_config.json (监控配置)
-
告警系统
- alert_manager.py (告警管理器)
- alert_rules.json (告警规则配置)
- notification_handlers.py (通知处理器)
-
文档
- 监控面板使用指南
- 告警规则配置说明
- 监控指标说明文档
Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
No labels