diff --git a/Part 3 - Classification/Section 15 - K-Nearest Neighbors (K-NN)/K_Nearest_Neighbors/classification_template.py b/Part 3 - Classification/Section 15 - K-Nearest Neighbors (K-NN)/K_Nearest_Neighbors/classification_template.py index 86bf97f..7ffd04a 100644 --- a/Part 3 - Classification/Section 15 - K-Nearest Neighbors (K-NN)/K_Nearest_Neighbors/classification_template.py +++ b/Part 3 - Classification/Section 15 - K-Nearest Neighbors (K-NN)/K_Nearest_Neighbors/classification_template.py @@ -1,16 +1,14 @@ -# Classification template -# Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd -# Importing the dataset + dataset = pd.read_csv('Social_Network_Ads.csv') X = dataset.iloc[:, [2, 3]].values y = dataset.iloc[:, 4].values -# Splitting the dataset into the Training set and Test set + from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) @@ -19,14 +17,8 @@ sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) - -# Fitting classifier to the Training set -# Create your classifier here - -# Predicting the Test set results y_pred = classifier.predict(X_test) -# Making the Confusion Matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred) @@ -64,4 +56,4 @@ plt.xlabel('Age') plt.ylabel('Estimated Salary') plt.legend() -plt.show() \ No newline at end of file +plt.show()