Skip to content

models: rc: transformer models: Unable to process long texts  #16

@programmer290399

Description

@programmer290399

Traceback:

RuntimeError                              Traceback (most recent call last)
<ipython-input-5-04fce7cff438> in <module>()
     19 
     20 # Run inference using the instantiated models
---> 21 answers = model.get_answer(context, questions)
     22 
     23 # Print the output

8 frames
/usr/local/lib/python3.7/dist-packages/pyqna/models/reading_comprehension/transformer_models.py in get_answer(self, context, question)
    133             return self._infer_from_model(context, question)
    134         elif isinstance(question, list):
--> 135             return [self._infer_from_model(context, q) for q in question]

/usr/local/lib/python3.7/dist-packages/pyqna/models/reading_comprehension/transformer_models.py in <listcomp>(.0)
    133             return self._infer_from_model(context, question)
    134         elif isinstance(question, list):
--> 135             return [self._infer_from_model(context, q) for q in question]

/usr/local/lib/python3.7/dist-packages/pyqna/models/reading_comprehension/transformer_models.py in _infer_from_model(self, context, question)
     66         ).to(self.device)
     67 
---> 68         outputs = self.model(**inputs)
     69 
     70         non_answer_tokens = [x if x in [0, 1] else 0 for x in inputs.sequence_ids()]

/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
   1100         if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
   1101                 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1102             return forward_call(*input, **kwargs)
   1103         # Do not call functions when jit is used
   1104         full_backward_hooks, non_full_backward_hooks = [], []

/usr/local/lib/python3.7/dist-packages/transformers/models/distilbert/modeling_distilbert.py in forward(self, input_ids, attention_mask, head_mask, inputs_embeds, start_positions, end_positions, output_attentions, output_hidden_states, return_dict)
    855             output_attentions=output_attentions,
    856             output_hidden_states=output_hidden_states,
--> 857             return_dict=return_dict,
    858         )
    859         hidden_states = distilbert_output[0]  # (bs, max_query_len, dim)

/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
   1100         if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
   1101                 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1102             return forward_call(*input, **kwargs)
   1103         # Do not call functions when jit is used
   1104         full_backward_hooks, non_full_backward_hooks = [], []

/usr/local/lib/python3.7/dist-packages/transformers/models/distilbert/modeling_distilbert.py in forward(self, input_ids, attention_mask, head_mask, inputs_embeds, output_attentions, output_hidden_states, return_dict)
    548 
    549         if inputs_embeds is None:
--> 550             inputs_embeds = self.embeddings(input_ids)  # (bs, seq_length, dim)
    551         return self.transformer(
    552             x=inputs_embeds,

/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
   1100         if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
   1101                 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1102             return forward_call(*input, **kwargs)
   1103         # Do not call functions when jit is used
   1104         full_backward_hooks, non_full_backward_hooks = [], []

/usr/local/lib/python3.7/dist-packages/transformers/models/distilbert/modeling_distilbert.py in forward(self, input_ids)
    131         position_embeddings = self.position_embeddings(position_ids)  # (bs, max_seq_length, dim)
    132 
--> 133         embeddings = word_embeddings + position_embeddings  # (bs, max_seq_length, dim)
    134         embeddings = self.LayerNorm(embeddings)  # (bs, max_seq_length, dim)
    135         embeddings = self.dropout(embeddings)  # (bs, max_seq_length, dim)

RuntimeError: The size of tensor a (692) must match the size of tensor b (512) at non-singleton dimension 1

Metadata

Metadata

Assignees

No one assigned

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions