diff --git a/results/grn_inference/data/dataset_info.json b/results/grn_inference/data/dataset_info.json new file mode 100644 index 00000000..6c1ba4a1 --- /dev/null +++ b/results/grn_inference/data/dataset_info.json @@ -0,0 +1,52 @@ +[ + { + "dataset_id": "op", + "dataset_name": "OPSCA", + "dataset_summary": "scRNA-seq data with 146 (originally) perturbations with chemical compounds on PBMCs. Multiome data available for the control compound.", + "dataset_description": "Novel single-cell perturbational dataset in human peripheral blood mononuclear cells (PBMCs). 144 compounds were selected from the Library of Integrated Network-Based Cellular Signatures (LINCS) Connectivity Map dataset (PMID: 29195078) and measured single-cell gene expression profiles after 24 hours of treatment. The experiment was repeated in three healthy human donors, and the compounds were selected based on diverse transcriptional signatures observed in CD34+ hematopoietic stem cells (data not released). This experiment was performed in human PBMCs because the cells are commercially available with pre-obtained consent for public release and PBMCs are a primary, disease-relevant tissue that contains multiple mature cell types (including T-cells, B-cells, myeloid cells, and NK cells) with established markers for annotation of cell types. To supplement this dataset, joint scRNA and single-cell chromatin accessibility measurements were measured from the baseline compound using the 10x Multiome assay.", + "data_reference": null, + "data_url": null, + "date_created": "19-02-2025", + "file_size": 10781372 + }, + { + "dataset_id": "norman", + "dataset_name": "Norman", + "dataset_summary": "Single cell RNA-seq data with 231 perturbations (activation) on K562 cells.", + "dataset_description": "How cellular and organismal complexity emerges from combinatorial expression of genes is a central question in biology. High-content phenotyping approaches such as Perturb-seq (single-cell RNA-seq pooled CRISPR screens) present an opportunity for exploring such genetic interactions (GIs) at scale. Here, we present an analytical framework for interpreting high-dimensional landscapes of cell states (manifolds) constructed from transcriptional phenotypes. We applied this approach to Perturb-seq profiling of strong GIs mined from a growth-based, gain-of-function GI map. Exploration of this manifold enabled ordering of regulatory pathways, principled classification of GIs (e.g. identifying suppressors), and mechanistic elucidation of synergistic interactions, including an unexpected synergy between CBL and CNN1 driving erythroid differentiation. Finally, we apply recommender system machine learning to predict interactions, facilitating exploration of vastly larger GI manifolds.", + "data_reference": null, + "data_url": null, + "date_created": "19-02-2025", + "file_size": 10781372 + }, + { + "dataset_id": "adamson", + "dataset_name": "Adamson", + "dataset_summary": "Single cell RNA-seq data with 82 perturbations (KD) on K562 cells.", + "dataset_description": "Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis. Subjecting ∼100 hits to Perturb-seq enabled high-precision functional clustering of genes. Single-cell analyses decoupled the three UPR branches, revealed bifurcated UPR branch activation among cells subject to the same perturbation, and uncovered differential activation of the branches across hits, including an isolated feedback loop between the translocon and IRE1α. These studies provide insight into how the three sensors of ER homeostasis monitor distinct types of stress and highlight the ability of Perturb-seq to dissect complex cellular responses.", + "data_reference": null, + "data_url": null, + "date_created": "19-02-2025", + "file_size": 10781372 + }, + { + "dataset_id": "replogle", + "dataset_name": "Reologle", + "dataset_summary": "Single cell RNA-seq data with 9722 perturbations (KO) on K562 cells.", + "dataset_description": "A central goal of genetics is to define the relationships between genotypes and phenotypes. High-content phenotypic screens such as Perturb-seq (CRISPR-based screens with single-cell RNA-sequencing readouts) enable massively parallel functional genomic mapping but, to date, have been used at limited scales. Here, we perform genome-scale Perturb-seq targeting all expressed genes with CRISPR interference (CRISPRi) across >2.5 million human cells. We use transcriptional phenotypes to predict the function of poorly characterized genes, uncovering new regulators of ribosome biogenesis (including CCDC86, ZNF236, and SPATA5L1), transcription (C7orf26), and mitochondrial respiration (TMEM242). In addition to assigning gene function, single-cell transcriptional phenotypes allow for in-depth dissection of complex cellular phenomena-from RNA processing to differentiation. We leverage this ability to systematically identify genetic drivers and consequences of aneuploidy and to discover an unanticipated layer of stress-specific regulation of the mitochondrial genome. Our information-rich genotype-phenotype map reveals a multidimensional portrait of gene and cellular function.", + "data_reference": null, + "data_url": null, + "date_created": "19-02-2025", + "file_size": 10781372 + }, + { + "dataset_id": "nakatake", + "dataset_name": "Nakatake", + "dataset_summary": "RNA-seq data with 463 perturbations (overexpression) on SEES3 cells", + "dataset_description": "Transcription factors (TFs) play a pivotal role in determining cell states, yet our understanding of the causative relationship between TFs and cell states is limited. Here, we systematically examine the state changes of human pluripotent embryonic stem cells (hESCs) by the large-scale manipulation of single TFs. We establish 2,135 hESC lines, representing three clones each of 714 doxycycline (Dox)-inducible genes including 481 TFs, and obtain 26,998 microscopic cell images and 2,174 transcriptome datasets-RNA sequencing (RNA-seq) or microarrays-48 h after the presence or absence of Dox. Interestingly, the expression of essentially all the genes, including genes located in heterochromatin regions, are perturbed by these TFs. TFs are also characterized by their ability to induce differentiation of hESCs into specific cell lineages. These analyses help to provide a way of classifying TFs and identifying specific sets of TFs for directing hESC differentiation into desired cell types.", + "data_reference": null, + "data_url": null, + "date_created": "19-02-2025", + "file_size": 10781372 + } +] diff --git a/results/grn_inference/data/method_info.json b/results/grn_inference/data/method_info.json new file mode 100644 index 00000000..e8d2a4bf --- /dev/null +++ b/results/grn_inference/data/method_info.json @@ -0,0 +1,210 @@ +[ + { + "task_id": "control_methods", + "method_id": "pearson_corr", + "method_name": "pearson_corr", + "method_summary": "Baseline based on correlation", + "method_description": "Baseline GRN inference method using Pearson correlation.\n", + "is_baseline": true, + "references_doi": null, + "references_bibtex": null, + "code_url": "https://github.com/openproblems-bio/task_grn_inference", + "documentation_url": null, + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/control_methods/pearson_corr:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/control_methods/pearson_corr", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" + }, + { + "task_id": "control_methods", + "method_id": "negative_control", + "method_name": "Negative control", + "method_summary": "Source-target links based on random assignment", + "method_description": "Randomly assigns regulatory links to tf-target links with a given tf and target list. This is to perform near random.\n", + "is_baseline": true, + "references_doi": null, + "references_bibtex": null, + "code_url": "https://github.com/openproblems-bio/task_grn_inference", + "documentation_url": null, + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/control_methods/negative_control:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/control_methods/negative_control", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" + }, + { + "task_id": "control_methods", + "method_id": "positive_control", + "method_name": "positive_control", + "method_summary": "Baseline based on correlation", + "method_description": "Baseline model based on Pearson correlation that uses both inference and evaluation dataset to infer the GRN.\n", + "is_baseline": true, + "references_doi": null, + "references_bibtex": null, + "code_url": "https://github.com/openproblems-bio/task_grn_inference", + "documentation_url": null, + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/control_methods/positive_control:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/control_methods/positive_control", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" + }, + { + "task_id": "grn_methods", + "method_id": "portia", + "method_name": "portia", + "method_summary": "GRN inference using PORTIA", + "method_description": "GRN inference using PORTIA.\n", + "is_baseline": false, + "references_doi": null, + "references_bibtex": null, + "code_url": "https://github.com/openproblems-bio/task_grn_inference", + "documentation_url": null, + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/single_omics/portia:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/single_omics/portia", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" + }, + { + "task_id": "grn_methods", + "method_id": "ppcor", + "method_name": "ppcor", + "method_summary": "GRN inference using PPCOR", + "method_description": "GRN inference using PPCOR.\n", + "is_baseline": false, + "references_doi": null, + "references_bibtex": null, + "code_url": "https://github.com/openproblems-bio/task_grn_inference", + "documentation_url": null, + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/single_omics/ppcor:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/single_omics/ppcor", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" + }, + { + "task_id": "grn_methods", + "method_id": "scenic", + "method_name": "scenic", + "method_summary": "GRN inference using scenic", + "method_description": "GRN inference using Scenic pipeline.\n", + "is_baseline": false, + "references_doi": null, + "references_bibtex": null, + "code_url": "https://github.com/openproblems-bio/task_grn_inference", + "documentation_url": null, + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/single_omics/scenic:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/single_omics/scenic", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" + }, + { + "task_id": "grn_methods", + "method_id": "scenicplus", + "method_name": "scenicplus", + "method_summary": "GRN inference using scenicplus", + "method_description": "GRN inference using scenicplus.\n", + "is_baseline": false, + "references_doi": null, + "references_bibtex": null, + "code_url": "https://github.com/openproblems-bio/task_grn_inference", + "documentation_url": null, + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/multi_omics/scenicplus:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/multi_omics/scenicplus", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" + }, + { + "task_id": "grn_methods", + "method_id": "scprint", + "method_name": "scprint", + "method_summary": "GRN inference using scPRINT", + "method_description": "GRN inference using scPRINT.\n", + "is_baseline": false, + "references_doi": null, + "references_bibtex": null, + "code_url": "https://github.com/openproblems-bio/task_grn_inference", + "documentation_url": null, + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/single_omics/scprint:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/single_omics/scprint", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" + }, + { + "task_id": "grn_methods", + "method_id": "grnboost2", + "method_name": "grnboost2", + "method_summary": "GRN inference using GRNBoost2", + "method_description": "GRN inference using GRNBoost2.\n", + "is_baseline": false, + "references_doi": null, + "references_bibtex": null, + "code_url": "https://github.com/openproblems-bio/task_grn_inference", + "documentation_url": null, + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/single_omics/grnboost2:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/single_omics/grnboost2", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" + }, + { + "task_id": "grn_methods", + "method_id": "scglue", + "method_name": "scglue", + "method_summary": "GRN inference using scglue", + "method_description": "GRN inference using scglue. \n", + "is_baseline": false, + "references_doi": null, + "references_bibtex": null, + "code_url": "https://github.com/openproblems-bio/task_grn_inference", + "documentation_url": null, + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/multi_omics/scglue:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/multi_omics/scglue", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" + }, + { + "task_id": "grn_methods", + "method_id": "granie", + "method_name": "granie", + "method_summary": "GRN inference using GRaNIE", + "method_description": "GRN inference using GRaNIE\n", + "is_baseline": false, + "references_doi": null, + "references_bibtex": null, + "code_url": "https://github.com/openproblems-bio/task_grn_inference", + "documentation_url": null, + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/multi_omics/granie:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/multi_omics/granie", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" + }, + { + "task_id": "grn_methods", + "method_id": "figr", + "method_name": "figr", + "method_summary": "GRN inference using figr", + "method_description": "GRN inference using figr.\n", + "is_baseline": false, + "references_doi": null, + "references_bibtex": null, + "code_url": "https://github.com/openproblems-bio/task_grn_inference", + "documentation_url": null, + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/multi_omics/figr:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/multi_omics/figr", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" + }, + { + "task_id": "grn_methods", + "method_id": "celloracle", + "method_name": "celloracle", + "method_summary": "GRN inference using celloracle", + "method_description": "GRN inference using celloracle.\n", + "is_baseline": false, + "references_doi": null, + "references_bibtex": null, + "code_url": "https://github.com/openproblems-bio/task_grn_inference", + "documentation_url": "https://morris-lab.github.io/CellOracle.documentation/", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/methods/multi_omics/celloracle:dev", + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/methods/multi_omics/celloracle", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592" + } +] diff --git a/results/grn_inference/data/metric_execution_info.json b/results/grn_inference/data/metric_execution_info.json new file mode 100644 index 00000000..0b9076ad --- /dev/null +++ b/results/grn_inference/data/metric_execution_info.json @@ -0,0 +1,1682 @@ +[ + { + "dataset_id": "adamson", + "method_id": "grnboost2", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "grnboost2", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "grnboost2", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "negative_control", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "negative_control", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "negative_control", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "pearson_corr", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "pearson_corr", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "pearson_corr", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "portia", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "portia", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "portia", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "positive_control", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "positive_control", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "positive_control", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "ppcor", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "ppcor", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "ppcor", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "scenic", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "scenic", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "scenic", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "grnboost2", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "grnboost2", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "grnboost2", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "negative_control", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "negative_control", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "negative_control", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "pearson_corr", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "pearson_corr", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "pearson_corr", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "portia", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "portia", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "portia", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "positive_control", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "positive_control", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "positive_control", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "ppcor", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "ppcor", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "ppcor", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "scenic", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "scenic", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "scenic", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "grnboost2", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "grnboost2", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "grnboost2", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "negative_control", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "negative_control", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "negative_control", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "pearson_corr", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "pearson_corr", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "pearson_corr", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "portia", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "portia", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "portia", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "positive_control", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "positive_control", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "positive_control", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "ppcor", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "ppcor", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "ppcor", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "scenic", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "scenic", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "scenic", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "celloracle", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "celloracle", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "celloracle", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "figr", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "figr", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "figr", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "granie", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "granie", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "granie", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "grnboost2", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "grnboost2", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "grnboost2", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "negative_control", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "negative_control", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "negative_control", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "pearson_corr", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "pearson_corr", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "pearson_corr", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "portia", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "portia", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "portia", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "positive_control", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "positive_control", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "positive_control", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "ppcor", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "ppcor", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "ppcor", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scenic", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scenic", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scenic", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scenicplus", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scenicplus", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scenicplus", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scglue", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scglue", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scglue", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "grnboost2", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "grnboost2", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "grnboost2", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "negative_control", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "negative_control", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "negative_control", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "pearson_corr", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "pearson_corr", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "pearson_corr", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "portia", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "portia", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "portia", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "positive_control", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "positive_control", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "positive_control", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "ppcor", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "ppcor", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "ppcor", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "scenic", + "metric_component_name": "regression_1", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "scenic", + "metric_component_name": "regression_2", + "resources": { + "submit": "2025-02-26 19:54:14", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "scenic", + "metric_component_name": "ws_distance", + "resources": { + "submit": "2025-02-26 19:54:12", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + } +] diff --git a/results/grn_inference/data/metric_info.json b/results/grn_inference/data/metric_info.json new file mode 100644 index 00000000..8c0af030 --- /dev/null +++ b/results/grn_inference/data/metric_info.json @@ -0,0 +1,122 @@ +[ + { + "task_id": "metrics", + "component_name": "regression_1", + "metric_id": "r1_all", + "metric_name": "R1 (all)", + "metric_summary": "Regression 1 score for all genes with mean gene expression set for missing genes", + "metric_description": "Regression 1 score for all genes with mean gene expression set for missing genes\n", + "references_doi": null, + "references_bibtex": null, + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/regression_1", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/regression_1:dev", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592", + "maximize": true + }, + { + "task_id": "metrics", + "component_name": "regression_1", + "metric_id": "r1_grn", + "metric_name": "R1 (grn)", + "metric_summary": "Regression 1 score for only genes in the network", + "metric_description": "Regression 1 score for only genes in the network\n", + "references_doi": null, + "references_bibtex": null, + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/regression_1", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/regression_1:dev", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592", + "maximize": true + }, + { + "task_id": "metrics", + "component_name": "regression_2", + "metric_id": "r2-theta-0.0", + "metric_name": "R2 (precision)", + "metric_summary": "Captures the perfomance for the top regulatory links", + "metric_description": "Captures the perfomance for the top regulatory links\n", + "references_doi": null, + "references_bibtex": null, + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/regression_2", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/regression_2:dev", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592", + "maximize": true + }, + { + "task_id": "metrics", + "component_name": "regression_2", + "metric_id": "r2-theta-0.5", + "metric_name": "R2 (balanced)", + "metric_summary": "Balanced performance scores considering both prevision and recall", + "metric_description": "Balanced performance scores considering both prevision and recall\n", + "references_doi": null, + "references_bibtex": null, + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/regression_2", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/regression_2:dev", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592", + "maximize": true + }, + { + "task_id": "metrics", + "component_name": "regression_2", + "metric_id": "r2-theta-1.0", + "metric_name": "R2 (recall)", + "metric_summary": "Captures the perfomance for the more broad regulatory links (recall)", + "metric_description": "Captures the perfomance for the more broad regulatory links (recall)\n", + "references_doi": null, + "references_bibtex": null, + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/regression_2", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/regression_2:dev", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592", + "maximize": true + }, + { + "task_id": "metrics", + "component_name": "ws_distance", + "metric_id": "ws-theta-0.0", + "metric_name": "WS (precision)", + "metric_summary": "Captures the perfomance for the top regulatory links", + "metric_description": "Captures the perfomance for the top regulatory links\n", + "references_doi": null, + "references_bibtex": null, + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/wasserstein", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/wasserstein:dev", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592", + "maximize": true + }, + { + "task_id": "metrics", + "component_name": "ws_distance", + "metric_id": "ws-theta-0.5", + "metric_name": "WS (balanced)", + "metric_summary": "Balanced performance scores considering both prevision and recall", + "metric_description": "Balanced performance scores considering both prevision and recall\n", + "references_doi": null, + "references_bibtex": null, + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/wasserstein", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/wasserstein:dev", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592", + "maximize": true + }, + { + "task_id": "metrics", + "component_name": "ws_distance", + "metric_id": "ws-theta-1.0", + "metric_name": "WS (recall)", + "metric_summary": "Captures the perfomance for the more broad regulatory links (recall)", + "metric_description": "Captures the perfomance for the more broad regulatory links (recall)\n", + "references_doi": null, + "references_bibtex": null, + "implementation_url": "git@github.com:openproblems-bio/task_grn_inference.git/blob/40e4051728e992753049c0e15af22a99b8e9c592/src/metrics/wasserstein", + "image": "https://ghcr.io/openproblems-bio/task_grn_inference/metrics/wasserstein:dev", + "code_version": "dev", + "commit_sha": "40e4051728e992753049c0e15af22a99b8e9c592", + "maximize": true + } +] diff --git a/results/grn_inference/data/quality_control.json b/results/grn_inference/data/quality_control.json new file mode 100644 index 00000000..5cc25962 --- /dev/null +++ b/results/grn_inference/data/quality_control.json @@ -0,0 +1,2592 @@ +[ + { + "task_id": "task_grn_inference", + "category": "Task info", + "name": "Pct 'task_id' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing([task_info], field)", + "message": "Task metadata field 'task_id' should be defined\n Task id: task_grn_inference\n Field: task_id\n" + }, + { + "task_id": "task_grn_inference", + "category": "Task info", + "name": "Pct 'task_name' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing([task_info], field)", + "message": "Task metadata field 'task_name' should be defined\n Task id: task_grn_inference\n Field: task_name\n" + }, + { + "task_id": "task_grn_inference", + "category": "Task info", + "name": "Pct 'task_summary' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing([task_info], field)", + "message": "Task metadata field 'task_summary' should be defined\n Task id: task_grn_inference\n Field: task_summary\n" + }, + { + "task_id": "task_grn_inference", + "category": "Task info", + "name": "Pct 'task_description' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing([task_info], field)", + "message": "Task metadata field 'task_description' should be defined\n Task id: task_grn_inference\n Field: task_description\n" + }, + { + "task_id": "task_grn_inference", + "category": "Method info", + "name": "Pct 'task_id' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(method_info, field)", + "message": "Method metadata field 'task_id' should be defined\n Task id: task_grn_inference\n Field: task_id\n" + }, + { + "task_id": "task_grn_inference", + "category": "Method info", + "name": "Pct 'commit_sha' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(method_info, field)", + "message": "Method metadata field 'commit_sha' should be defined\n Task id: task_grn_inference\n Field: commit_sha\n" + }, + { + "task_id": "task_grn_inference", + "category": "Method info", + "name": "Pct 'method_id' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(method_info, field)", + "message": "Method metadata field 'method_id' should be defined\n Task id: task_grn_inference\n Field: method_id\n" + }, + { + "task_id": "task_grn_inference", + "category": "Method info", + "name": "Pct 'method_name' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(method_info, field)", + "message": "Method metadata field 'method_name' should be defined\n Task id: task_grn_inference\n Field: method_name\n" + }, + { + "task_id": "task_grn_inference", + "category": "Method info", + "name": "Pct 'method_summary' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(method_info, field)", + "message": "Method metadata field 'method_summary' should be defined\n Task id: task_grn_inference\n Field: method_summary\n" + }, + { + "task_id": "task_grn_inference", + "category": "Method info", + "name": "Pct 'paper_reference' missing", + "value": 0.7692307692307693, + "severity": 2, + "severity_value": 3.0, + "code": "percent_missing(method_info, field)", + "message": "Method metadata field 'paper_reference' should be defined\n Task id: task_grn_inference\n Field: paper_reference\n" + }, + { + "task_id": "task_grn_inference", + "category": "Method info", + "name": "Pct 'is_baseline' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(method_info, field)", + "message": "Method metadata field 'is_baseline' should be defined\n Task id: task_grn_inference\n Field: is_baseline\n" + }, + { + "task_id": "task_grn_inference", + "category": "Metric info", + "name": "Pct 'task_id' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(metric_info, field)", + "message": "Metric metadata field 'task_id' should be defined\n Task id: task_grn_inference\n Field: task_id\n" + }, + { + "task_id": "task_grn_inference", + "category": "Metric info", + "name": "Pct 'commit_sha' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(metric_info, field)", + "message": "Metric metadata field 'commit_sha' should be defined\n Task id: task_grn_inference\n Field: commit_sha\n" + }, + { + "task_id": "task_grn_inference", + "category": "Metric info", + "name": "Pct 'metric_id' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(metric_info, field)", + "message": "Metric metadata field 'metric_id' should be defined\n Task id: task_grn_inference\n Field: metric_id\n" + }, + { + "task_id": "task_grn_inference", + "category": "Metric info", + "name": "Pct 'metric_name' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(metric_info, field)", + "message": "Metric metadata field 'metric_name' should be defined\n Task id: task_grn_inference\n Field: metric_name\n" + }, + { + "task_id": "task_grn_inference", + "category": "Metric info", + "name": "Pct 'metric_summary' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(metric_info, field)", + "message": "Metric metadata field 'metric_summary' should be defined\n Task id: task_grn_inference\n Field: metric_summary\n" + }, + { + "task_id": "task_grn_inference", + "category": "Metric info", + "name": "Pct 'paper_reference' missing", + "value": 1.0, + "severity": 2, + "severity_value": 3.0, + "code": "percent_missing(metric_info, field)", + "message": "Metric metadata field 'paper_reference' should be defined\n Task id: task_grn_inference\n Field: paper_reference\n" + }, + { + "task_id": "task_grn_inference", + "category": "Metric info", + "name": "Pct 'maximize' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(metric_info, field)", + "message": "Metric metadata field 'maximize' should be defined\n Task id: task_grn_inference\n Field: maximize\n" + }, + { + "task_id": "task_grn_inference", + "category": "Dataset info", + "name": "Pct 'task_id' missing", + "value": 1.0, + "severity": 2, + "severity_value": 3.0, + "code": "percent_missing(dataset_info, field)", + "message": "Dataset metadata field 'task_id' should be defined\n Task id: task_grn_inference\n Field: task_id\n" + }, + { + "task_id": "task_grn_inference", + "category": "Dataset info", + "name": "Pct 'dataset_id' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(dataset_info, field)", + "message": "Dataset metadata field 'dataset_id' should be defined\n Task id: task_grn_inference\n Field: dataset_id\n" + }, + { + "task_id": "task_grn_inference", + "category": "Dataset info", + "name": "Pct 'dataset_name' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(dataset_info, field)", + "message": "Dataset metadata field 'dataset_name' should be defined\n Task id: task_grn_inference\n Field: dataset_name\n" + }, + { + "task_id": "task_grn_inference", + "category": "Dataset info", + "name": "Pct 'dataset_summary' missing", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "percent_missing(dataset_info, field)", + "message": "Dataset metadata field 'dataset_summary' should be defined\n Task id: task_grn_inference\n Field: dataset_summary\n" + }, + { + "task_id": "task_grn_inference", + "category": "Dataset info", + "name": "Pct 'data_reference' missing", + "value": 1.0, + "severity": 2, + "severity_value": 3.0, + "code": "percent_missing(dataset_info, field)", + "message": "Dataset metadata field 'data_reference' should be defined\n Task id: task_grn_inference\n Field: data_reference\n" + }, + { + "task_id": "task_grn_inference", + "category": "Dataset info", + "name": "Pct 'data_url' missing", + "value": 1.0, + "severity": 2, + "severity_value": 3.0, + "code": "percent_missing(dataset_info, field)", + "message": "Dataset metadata field 'data_url' should be defined\n Task id: task_grn_inference\n Field: data_url\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw data", + "name": "Number of results", + "value": 65, + "severity": 0, + "severity_value": 0.0, + "code": "len(results) == len(method_info) * len(metric_info) * len(dataset_info)", + "message": "Number of results should be equal to #methods × #metrics × #datasets.\n Task id: task_grn_inference\n Number of results: 65\n Number of methods: 13\n Number of metrics: 8\n Number of datasets: 5\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Metric 'r1_all' %missing", + "value": 0.3384615384615385, + "severity": 3, + "severity_value": 3.3846153846153846, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: r1_all\n Percentage missing: 34%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Metric 'r1_grn' %missing", + "value": 0.3384615384615385, + "severity": 3, + "severity_value": 3.3846153846153846, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: r1_grn\n Percentage missing: 34%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Metric 'r2-theta-0.0' %missing", + "value": 0.3384615384615385, + "severity": 3, + "severity_value": 3.3846153846153846, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: r2-theta-0.0\n Percentage missing: 34%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Metric 'r2-theta-0.5' %missing", + "value": 0.3384615384615385, + "severity": 3, + "severity_value": 3.3846153846153846, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: r2-theta-0.5\n Percentage missing: 34%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Metric 'r2-theta-1.0' %missing", + "value": 0.3384615384615385, + "severity": 3, + "severity_value": 3.3846153846153846, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: r2-theta-1.0\n Percentage missing: 34%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Metric 'ws-theta-0.0' %missing", + "value": 0.6461538461538462, + "severity": 3, + "severity_value": 6.461538461538462, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: ws-theta-0.0\n Percentage missing: 65%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Metric 'ws-theta-0.5' %missing", + "value": 0.6461538461538462, + "severity": 3, + "severity_value": 6.461538461538462, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: ws-theta-0.5\n Percentage missing: 65%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Metric 'ws-theta-1.0' %missing", + "value": 0.6461538461538462, + "severity": 3, + "severity_value": 6.461538461538462, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n Metric id: ws-theta-1.0\n Percentage missing: 65%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Method 'pearson_corr' %missing", + "value": 0.15000000000000002, + "severity": 1, + "severity_value": 1.5000000000000002, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: pearson_corr\n Percentage missing: 15%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Method 'negative_control' %missing", + "value": 0.15000000000000002, + "severity": 1, + "severity_value": 1.5000000000000002, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: negative_control\n Percentage missing: 15%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Method 'positive_control' %missing", + "value": 0.15000000000000002, + "severity": 1, + "severity_value": 1.5000000000000002, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: positive_control\n Percentage missing: 15%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Method 'portia' %missing", + "value": 0.15000000000000002, + "severity": 1, + "severity_value": 1.5000000000000002, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: portia\n Percentage missing: 15%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Method 'ppcor' %missing", + "value": 0.15000000000000002, + "severity": 1, + "severity_value": 1.5000000000000002, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: ppcor\n Percentage missing: 15%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Method 'scenic' %missing", + "value": 0.15000000000000002, + "severity": 1, + "severity_value": 1.5000000000000002, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: scenic\n Percentage missing: 15%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Method 'scenicplus' %missing", + "value": 0.875, + "severity": 3, + "severity_value": 8.75, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: scenicplus\n Percentage missing: 88%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Method 'scprint' %missing", + "value": 0.475, + "severity": 3, + "severity_value": 4.749999999999999, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: scprint\n Percentage missing: 48%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Method 'grnboost2' %missing", + "value": 0.15000000000000002, + "severity": 1, + "severity_value": 1.5000000000000002, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: grnboost2\n Percentage missing: 15%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Method 'scglue' %missing", + "value": 0.875, + "severity": 3, + "severity_value": 8.75, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: scglue\n Percentage missing: 88%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Method 'granie' %missing", + "value": 0.875, + "severity": 3, + "severity_value": 8.75, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: granie\n Percentage missing: 88%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Method 'figr' %missing", + "value": 0.875, + "severity": 3, + "severity_value": 8.75, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: figr\n Percentage missing: 88%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Method 'celloracle' %missing", + "value": 0.875, + "severity": 3, + "severity_value": 8.75, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n method id: celloracle\n Percentage missing: 88%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Dataset 'op' %missing", + "value": 0.375, + "severity": 3, + "severity_value": 3.75, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n dataset id: op\n Percentage missing: 38%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Dataset 'norman' %missing", + "value": 0.3846153846153846, + "severity": 3, + "severity_value": 3.846153846153846, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n dataset id: norman\n Percentage missing: 38%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Dataset 'adamson' %missing", + "value": 0.46153846153846156, + "severity": 3, + "severity_value": 4.615384615384615, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n dataset id: adamson\n Percentage missing: 46%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Dataset 'replogle' %missing", + "value": 0.3846153846153846, + "severity": 3, + "severity_value": 3.846153846153846, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n dataset id: replogle\n Percentage missing: 38%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Raw results", + "name": "Dataset 'nakatake' %missing", + "value": 0.6634615384615384, + "severity": 3, + "severity_value": 6.634615384615384, + "code": "pct_missing <= .1", + "message": "Percentage of missing results should be less than 10%.\n Task id: task_grn_inference\n dataset id: nakatake\n Percentage missing: 66%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score pearson_corr r1_all", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method pearson_corr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r1_all\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score pearson_corr r1_all", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method pearson_corr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r1_all\n Best score: 1.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score negative_control r1_all", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r1_all\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score negative_control r1_all", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method negative_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r1_all\n Best score: 1.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score positive_control r1_all", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method positive_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r1_all\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score positive_control r1_all", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r1_all\n Best score: 1.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score portia r1_all", + "value": -0.4275, + "severity": 0, + "severity_value": 0.4275, + "code": "worst_score >= -1", + "message": "Method portia performs much worse than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r1_all\n Worst score: -0.4275%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score portia r1_all", + "value": 3.319, + "severity": 1, + "severity_value": 1.6595, + "code": "best_score <= 2", + "message": "Method portia performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r1_all\n Best score: 3.319%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score ppcor r1_all", + "value": -2.3365, + "severity": 2, + "severity_value": 2.3365, + "code": "worst_score >= -1", + "message": "Method ppcor performs much worse than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r1_all\n Worst score: -2.3365%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score ppcor r1_all", + "value": 2.8383, + "severity": 1, + "severity_value": 1.41915, + "code": "best_score <= 2", + "message": "Method ppcor performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r1_all\n Best score: 2.8383%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenic r1_all", + "value": 0.2798, + "severity": 0, + "severity_value": -0.2798, + "code": "worst_score >= -1", + "message": "Method scenic performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: r1_all\n Worst score: 0.2798%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenic r1_all", + "value": 0.7374, + "severity": 0, + "severity_value": 0.3687, + "code": "best_score <= 2", + "message": "Method scenic performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: r1_all\n Best score: 0.7374%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenicplus r1_all", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scenicplus performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: r1_all\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenicplus r1_all", + "value": 0.9188, + "severity": 0, + "severity_value": 0.4594, + "code": "best_score <= 2", + "message": "Method scenicplus performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: r1_all\n Best score: 0.9188%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scprint r1_all", + "value": -0.1274, + "severity": 0, + "severity_value": 0.1274, + "code": "worst_score >= -1", + "message": "Method scprint performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: r1_all\n Worst score: -0.1274%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scprint r1_all", + "value": 0.5375, + "severity": 0, + "severity_value": 0.26875, + "code": "best_score <= 2", + "message": "Method scprint performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: r1_all\n Best score: 0.5375%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score grnboost2 r1_all", + "value": 0.4227, + "severity": 0, + "severity_value": -0.4227, + "code": "worst_score >= -1", + "message": "Method grnboost2 performs much worse than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: r1_all\n Worst score: 0.4227%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score grnboost2 r1_all", + "value": 4.199, + "severity": 2, + "severity_value": 2.0995, + "code": "best_score <= 2", + "message": "Method grnboost2 performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: r1_all\n Best score: 4.199%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scglue r1_all", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scglue performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: r1_all\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scglue r1_all", + "value": 0.244, + "severity": 0, + "severity_value": 0.122, + "code": "best_score <= 2", + "message": "Method scglue performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: r1_all\n Best score: 0.244%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score granie r1_all", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method granie performs much worse than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: r1_all\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score granie r1_all", + "value": 0.2311, + "severity": 0, + "severity_value": 0.11555, + "code": "best_score <= 2", + "message": "Method granie performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: r1_all\n Best score: 0.2311%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score figr r1_all", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method figr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: r1_all\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score figr r1_all", + "value": 0.3408, + "severity": 0, + "severity_value": 0.1704, + "code": "best_score <= 2", + "message": "Method figr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: r1_all\n Best score: 0.3408%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score celloracle r1_all", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method celloracle performs much worse than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: r1_all\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score celloracle r1_all", + "value": 0.7279, + "severity": 0, + "severity_value": 0.36395, + "code": "best_score <= 2", + "message": "Method celloracle performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: r1_all\n Best score: 0.7279%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score pearson_corr r1_grn", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method pearson_corr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r1_grn\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score pearson_corr r1_grn", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method pearson_corr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r1_grn\n Best score: 1.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score negative_control r1_grn", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r1_grn\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score negative_control r1_grn", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method negative_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r1_grn\n Best score: 1.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score positive_control r1_grn", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method positive_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r1_grn\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score positive_control r1_grn", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r1_grn\n Best score: 1.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score portia r1_grn", + "value": -0.33, + "severity": 0, + "severity_value": 0.33, + "code": "worst_score >= -1", + "message": "Method portia performs much worse than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r1_grn\n Worst score: -0.33%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score portia r1_grn", + "value": 1.6879, + "severity": 0, + "severity_value": 0.84395, + "code": "best_score <= 2", + "message": "Method portia performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r1_grn\n Best score: 1.6879%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score ppcor r1_grn", + "value": -0.4573, + "severity": 0, + "severity_value": 0.4573, + "code": "worst_score >= -1", + "message": "Method ppcor performs much worse than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r1_grn\n Worst score: -0.4573%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score ppcor r1_grn", + "value": 1.4042, + "severity": 0, + "severity_value": 0.7021, + "code": "best_score <= 2", + "message": "Method ppcor performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r1_grn\n Best score: 1.4042%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenic r1_grn", + "value": 0.1562, + "severity": 0, + "severity_value": -0.1562, + "code": "worst_score >= -1", + "message": "Method scenic performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: r1_grn\n Worst score: 0.1562%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenic r1_grn", + "value": 0.6209, + "severity": 0, + "severity_value": 0.31045, + "code": "best_score <= 2", + "message": "Method scenic performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: r1_grn\n Best score: 0.6209%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenicplus r1_grn", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scenicplus performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: r1_grn\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenicplus r1_grn", + "value": 0.605, + "severity": 0, + "severity_value": 0.3025, + "code": "best_score <= 2", + "message": "Method scenicplus performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: r1_grn\n Best score: 0.605%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scprint r1_grn", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scprint performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: r1_grn\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scprint r1_grn", + "value": 0.6185, + "severity": 0, + "severity_value": 0.30925, + "code": "best_score <= 2", + "message": "Method scprint performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: r1_grn\n Best score: 0.6185%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score grnboost2 r1_grn", + "value": 0.468, + "severity": 0, + "severity_value": -0.468, + "code": "worst_score >= -1", + "message": "Method grnboost2 performs much worse than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: r1_grn\n Worst score: 0.468%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score grnboost2 r1_grn", + "value": 3.311, + "severity": 1, + "severity_value": 1.6555, + "code": "best_score <= 2", + "message": "Method grnboost2 performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: r1_grn\n Best score: 3.311%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scglue r1_grn", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scglue performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: r1_grn\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scglue r1_grn", + "value": 0.5451, + "severity": 0, + "severity_value": 0.27255, + "code": "best_score <= 2", + "message": "Method scglue performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: r1_grn\n Best score: 0.5451%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score granie r1_grn", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method granie performs much worse than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: r1_grn\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score granie r1_grn", + "value": 0.1561, + "severity": 0, + "severity_value": 0.07805, + "code": "best_score <= 2", + "message": "Method granie performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: r1_grn\n Best score: 0.1561%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score figr r1_grn", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method figr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: r1_grn\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score figr r1_grn", + "value": 0.4362, + "severity": 0, + "severity_value": 0.2181, + "code": "best_score <= 2", + "message": "Method figr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: r1_grn\n Best score: 0.4362%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score celloracle r1_grn", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method celloracle performs much worse than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: r1_grn\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score celloracle r1_grn", + "value": 0.6121, + "severity": 0, + "severity_value": 0.30605, + "code": "best_score <= 2", + "message": "Method celloracle performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: r1_grn\n Best score: 0.6121%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score pearson_corr r2-theta-0.0", + "value": 0.5328, + "severity": 0, + "severity_value": -0.5328, + "code": "worst_score >= -1", + "message": "Method pearson_corr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r2-theta-0.0\n Worst score: 0.5328%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score pearson_corr r2-theta-0.0", + "value": 0.9505, + "severity": 0, + "severity_value": 0.47525, + "code": "best_score <= 2", + "message": "Method pearson_corr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r2-theta-0.0\n Best score: 0.9505%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score negative_control r2-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r2-theta-0.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score negative_control r2-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method negative_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r2-theta-0.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score positive_control r2-theta-0.0", + "value": 1, + "severity": 0, + "severity_value": -1.0, + "code": "worst_score >= -1", + "message": "Method positive_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r2-theta-0.0\n Worst score: 1%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score positive_control r2-theta-0.0", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r2-theta-0.0\n Best score: 1%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score portia r2-theta-0.0", + "value": -0.3567, + "severity": 0, + "severity_value": 0.3567, + "code": "worst_score >= -1", + "message": "Method portia performs much worse than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r2-theta-0.0\n Worst score: -0.3567%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score portia r2-theta-0.0", + "value": 1.0081, + "severity": 0, + "severity_value": 0.50405, + "code": "best_score <= 2", + "message": "Method portia performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r2-theta-0.0\n Best score: 1.0081%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score ppcor r2-theta-0.0", + "value": 0.0368, + "severity": 0, + "severity_value": -0.0368, + "code": "worst_score >= -1", + "message": "Method ppcor performs much worse than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r2-theta-0.0\n Worst score: 0.0368%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score ppcor r2-theta-0.0", + "value": 0.4332, + "severity": 0, + "severity_value": 0.2166, + "code": "best_score <= 2", + "message": "Method ppcor performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r2-theta-0.0\n Best score: 0.4332%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenic r2-theta-0.0", + "value": 0.0744, + "severity": 0, + "severity_value": -0.0744, + "code": "worst_score >= -1", + "message": "Method scenic performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: r2-theta-0.0\n Worst score: 0.0744%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenic r2-theta-0.0", + "value": 0.7324, + "severity": 0, + "severity_value": 0.3662, + "code": "best_score <= 2", + "message": "Method scenic performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: r2-theta-0.0\n Best score: 0.7324%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenicplus r2-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scenicplus performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: r2-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenicplus r2-theta-0.0", + "value": 0.9021, + "severity": 0, + "severity_value": 0.45105, + "code": "best_score <= 2", + "message": "Method scenicplus performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: r2-theta-0.0\n Best score: 0.9021%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scprint r2-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scprint performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: r2-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scprint r2-theta-0.0", + "value": 0.7685, + "severity": 0, + "severity_value": 0.38425, + "code": "best_score <= 2", + "message": "Method scprint performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: r2-theta-0.0\n Best score: 0.7685%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score grnboost2 r2-theta-0.0", + "value": 0.2191, + "severity": 0, + "severity_value": -0.2191, + "code": "worst_score >= -1", + "message": "Method grnboost2 performs much worse than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: r2-theta-0.0\n Worst score: 0.2191%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score grnboost2 r2-theta-0.0", + "value": 1.5287, + "severity": 0, + "severity_value": 0.76435, + "code": "best_score <= 2", + "message": "Method grnboost2 performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: r2-theta-0.0\n Best score: 1.5287%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scglue r2-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scglue performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: r2-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scglue r2-theta-0.0", + "value": 0.6898, + "severity": 0, + "severity_value": 0.3449, + "code": "best_score <= 2", + "message": "Method scglue performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: r2-theta-0.0\n Best score: 0.6898%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score granie r2-theta-0.0", + "value": -0.0909, + "severity": 0, + "severity_value": 0.0909, + "code": "worst_score >= -1", + "message": "Method granie performs much worse than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: r2-theta-0.0\n Worst score: -0.0909%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score granie r2-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method granie performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: r2-theta-0.0\n Best score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score figr r2-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method figr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: r2-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score figr r2-theta-0.0", + "value": 0.2415, + "severity": 0, + "severity_value": 0.12075, + "code": "best_score <= 2", + "message": "Method figr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: r2-theta-0.0\n Best score: 0.2415%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score celloracle r2-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method celloracle performs much worse than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: r2-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score celloracle r2-theta-0.0", + "value": 0.8446, + "severity": 0, + "severity_value": 0.4223, + "code": "best_score <= 2", + "message": "Method celloracle performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: r2-theta-0.0\n Best score: 0.8446%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score pearson_corr r2-theta-0.5", + "value": 0.7228, + "severity": 0, + "severity_value": -0.7228, + "code": "worst_score >= -1", + "message": "Method pearson_corr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r2-theta-0.5\n Worst score: 0.7228%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score pearson_corr r2-theta-0.5", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method pearson_corr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r2-theta-0.5\n Best score: 1.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score negative_control r2-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r2-theta-0.5\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score negative_control r2-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method negative_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r2-theta-0.5\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score positive_control r2-theta-0.5", + "value": 0.9139, + "severity": 0, + "severity_value": -0.9139, + "code": "worst_score >= -1", + "message": "Method positive_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r2-theta-0.5\n Worst score: 0.9139%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score positive_control r2-theta-0.5", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r2-theta-0.5\n Best score: 1.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score portia r2-theta-0.5", + "value": -1.0274, + "severity": 1, + "severity_value": 1.0274, + "code": "worst_score >= -1", + "message": "Method portia performs much worse than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r2-theta-0.5\n Worst score: -1.0274%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score portia r2-theta-0.5", + "value": 0.9024, + "severity": 0, + "severity_value": 0.4512, + "code": "best_score <= 2", + "message": "Method portia performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r2-theta-0.5\n Best score: 0.9024%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score ppcor r2-theta-0.5", + "value": 0.0114, + "severity": 0, + "severity_value": -0.0114, + "code": "worst_score >= -1", + "message": "Method ppcor performs much worse than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r2-theta-0.5\n Worst score: 0.0114%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score ppcor r2-theta-0.5", + "value": 0.3672, + "severity": 0, + "severity_value": 0.1836, + "code": "best_score <= 2", + "message": "Method ppcor performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r2-theta-0.5\n Best score: 0.3672%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenic r2-theta-0.5", + "value": 0.2372, + "severity": 0, + "severity_value": -0.2372, + "code": "worst_score >= -1", + "message": "Method scenic performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: r2-theta-0.5\n Worst score: 0.2372%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenic r2-theta-0.5", + "value": 0.877, + "severity": 0, + "severity_value": 0.4385, + "code": "best_score <= 2", + "message": "Method scenic performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: r2-theta-0.5\n Best score: 0.877%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenicplus r2-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scenicplus performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: r2-theta-0.5\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenicplus r2-theta-0.5", + "value": 1.2579, + "severity": 0, + "severity_value": 0.62895, + "code": "best_score <= 2", + "message": "Method scenicplus performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: r2-theta-0.5\n Best score: 1.2579%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scprint r2-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scprint performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: r2-theta-0.5\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scprint r2-theta-0.5", + "value": 0.7205, + "severity": 0, + "severity_value": 0.36025, + "code": "best_score <= 2", + "message": "Method scprint performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: r2-theta-0.5\n Best score: 0.7205%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score grnboost2 r2-theta-0.5", + "value": 0.802, + "severity": 0, + "severity_value": -0.802, + "code": "worst_score >= -1", + "message": "Method grnboost2 performs much worse than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: r2-theta-0.5\n Worst score: 0.802%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score grnboost2 r2-theta-0.5", + "value": 1.5697, + "severity": 0, + "severity_value": 0.78485, + "code": "best_score <= 2", + "message": "Method grnboost2 performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: r2-theta-0.5\n Best score: 1.5697%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scglue r2-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scglue performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: r2-theta-0.5\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scglue r2-theta-0.5", + "value": 0.2032, + "severity": 0, + "severity_value": 0.1016, + "code": "best_score <= 2", + "message": "Method scglue performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: r2-theta-0.5\n Best score: 0.2032%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score granie r2-theta-0.5", + "value": -0.2822, + "severity": 0, + "severity_value": 0.2822, + "code": "worst_score >= -1", + "message": "Method granie performs much worse than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: r2-theta-0.5\n Worst score: -0.2822%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score granie r2-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method granie performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: r2-theta-0.5\n Best score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score figr r2-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method figr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: r2-theta-0.5\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score figr r2-theta-0.5", + "value": 0.2316, + "severity": 0, + "severity_value": 0.1158, + "code": "best_score <= 2", + "message": "Method figr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: r2-theta-0.5\n Best score: 0.2316%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score celloracle r2-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method celloracle performs much worse than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: r2-theta-0.5\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score celloracle r2-theta-0.5", + "value": 0.9269, + "severity": 0, + "severity_value": 0.46345, + "code": "best_score <= 2", + "message": "Method celloracle performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: r2-theta-0.5\n Best score: 0.9269%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score pearson_corr r2-theta-1.0", + "value": 0.5875, + "severity": 0, + "severity_value": -0.5875, + "code": "worst_score >= -1", + "message": "Method pearson_corr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r2-theta-1.0\n Worst score: 0.5875%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score pearson_corr r2-theta-1.0", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method pearson_corr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: r2-theta-1.0\n Best score: 1.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score negative_control r2-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r2-theta-1.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score negative_control r2-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method negative_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: r2-theta-1.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score positive_control r2-theta-1.0", + "value": 0.7778, + "severity": 0, + "severity_value": -0.7778, + "code": "worst_score >= -1", + "message": "Method positive_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r2-theta-1.0\n Worst score: 0.7778%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score positive_control r2-theta-1.0", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: r2-theta-1.0\n Best score: 1.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score portia r2-theta-1.0", + "value": -0.1835, + "severity": 0, + "severity_value": 0.1835, + "code": "worst_score >= -1", + "message": "Method portia performs much worse than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r2-theta-1.0\n Worst score: -0.1835%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score portia r2-theta-1.0", + "value": 0.8709, + "severity": 0, + "severity_value": 0.43545, + "code": "best_score <= 2", + "message": "Method portia performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: r2-theta-1.0\n Best score: 0.8709%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score ppcor r2-theta-1.0", + "value": 0.0394, + "severity": 0, + "severity_value": -0.0394, + "code": "worst_score >= -1", + "message": "Method ppcor performs much worse than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r2-theta-1.0\n Worst score: 0.0394%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score ppcor r2-theta-1.0", + "value": 0.4841, + "severity": 0, + "severity_value": 0.24205, + "code": "best_score <= 2", + "message": "Method ppcor performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: r2-theta-1.0\n Best score: 0.4841%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenic r2-theta-1.0", + "value": 0.1097, + "severity": 0, + "severity_value": -0.1097, + "code": "worst_score >= -1", + "message": "Method scenic performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: r2-theta-1.0\n Worst score: 0.1097%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenic r2-theta-1.0", + "value": 1.2296, + "severity": 0, + "severity_value": 0.6148, + "code": "best_score <= 2", + "message": "Method scenic performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: r2-theta-1.0\n Best score: 1.2296%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenicplus r2-theta-1.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scenicplus performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: r2-theta-1.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenicplus r2-theta-1.0", + "value": 1.5351, + "severity": 0, + "severity_value": 0.76755, + "code": "best_score <= 2", + "message": "Method scenicplus performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: r2-theta-1.0\n Best score: 1.5351%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scprint r2-theta-1.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scprint performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: r2-theta-1.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scprint r2-theta-1.0", + "value": 0.614, + "severity": 0, + "severity_value": 0.307, + "code": "best_score <= 2", + "message": "Method scprint performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: r2-theta-1.0\n Best score: 0.614%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score grnboost2 r2-theta-1.0", + "value": 0.9909, + "severity": 0, + "severity_value": -0.9909, + "code": "worst_score >= -1", + "message": "Method grnboost2 performs much worse than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: r2-theta-1.0\n Worst score: 0.9909%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score grnboost2 r2-theta-1.0", + "value": 1.7265, + "severity": 0, + "severity_value": 0.86325, + "code": "best_score <= 2", + "message": "Method grnboost2 performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: r2-theta-1.0\n Best score: 1.7265%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scglue r2-theta-1.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scglue performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: r2-theta-1.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scglue r2-theta-1.0", + "value": 0.0918, + "severity": 0, + "severity_value": 0.0459, + "code": "best_score <= 2", + "message": "Method scglue performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: r2-theta-1.0\n Best score: 0.0918%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score granie r2-theta-1.0", + "value": -0.2627, + "severity": 0, + "severity_value": 0.2627, + "code": "worst_score >= -1", + "message": "Method granie performs much worse than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: r2-theta-1.0\n Worst score: -0.2627%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score granie r2-theta-1.0", + "value": 0.0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method granie performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: r2-theta-1.0\n Best score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score figr r2-theta-1.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method figr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: r2-theta-1.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score figr r2-theta-1.0", + "value": 0.2721, + "severity": 0, + "severity_value": 0.13605, + "code": "best_score <= 2", + "message": "Method figr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: r2-theta-1.0\n Best score: 0.2721%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score celloracle r2-theta-1.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method celloracle performs much worse than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: r2-theta-1.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score celloracle r2-theta-1.0", + "value": 0.7878, + "severity": 0, + "severity_value": 0.3939, + "code": "best_score <= 2", + "message": "Method celloracle performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: r2-theta-1.0\n Best score: 0.7878%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score pearson_corr ws-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method pearson_corr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: ws-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score pearson_corr ws-theta-0.0", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method pearson_corr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: ws-theta-0.0\n Best score: 1.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score negative_control ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: ws-theta-0.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score negative_control ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method negative_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: ws-theta-0.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score positive_control ws-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method positive_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: ws-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score positive_control ws-theta-0.0", + "value": 1.0, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method positive_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: ws-theta-0.0\n Best score: 1.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score portia ws-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method portia performs much worse than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: ws-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score portia ws-theta-0.0", + "value": 0.8839, + "severity": 0, + "severity_value": 0.44195, + "code": "best_score <= 2", + "message": "Method portia performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: ws-theta-0.0\n Best score: 0.8839%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score ppcor ws-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method ppcor performs much worse than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: ws-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score ppcor ws-theta-0.0", + "value": 0.515, + "severity": 0, + "severity_value": 0.2575, + "code": "best_score <= 2", + "message": "Method ppcor performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: ws-theta-0.0\n Best score: 0.515%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenic ws-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scenic performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: ws-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenic ws-theta-0.0", + "value": 1.021, + "severity": 0, + "severity_value": 0.5105, + "code": "best_score <= 2", + "message": "Method scenic performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: ws-theta-0.0\n Best score: 1.021%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenicplus ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scenicplus performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: ws-theta-0.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenicplus ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method scenicplus performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: ws-theta-0.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scprint ws-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scprint performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: ws-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scprint ws-theta-0.0", + "value": 0.3412, + "severity": 0, + "severity_value": 0.1706, + "code": "best_score <= 2", + "message": "Method scprint performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: ws-theta-0.0\n Best score: 0.3412%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score grnboost2 ws-theta-0.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method grnboost2 performs much worse than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: ws-theta-0.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score grnboost2 ws-theta-0.0", + "value": 1.1164, + "severity": 0, + "severity_value": 0.5582, + "code": "best_score <= 2", + "message": "Method grnboost2 performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: ws-theta-0.0\n Best score: 1.1164%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scglue ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scglue performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: ws-theta-0.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scglue ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method scglue performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: ws-theta-0.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score granie ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method granie performs much worse than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: ws-theta-0.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score granie ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method granie performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: ws-theta-0.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score figr ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method figr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: ws-theta-0.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score figr ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method figr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: ws-theta-0.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score celloracle ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method celloracle performs much worse than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: ws-theta-0.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score celloracle ws-theta-0.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method celloracle performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: ws-theta-0.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score pearson_corr ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method pearson_corr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: ws-theta-0.5\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score pearson_corr ws-theta-0.5", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method pearson_corr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: ws-theta-0.5\n Best score: 1%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score negative_control ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: ws-theta-0.5\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score negative_control ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method negative_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: ws-theta-0.5\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score positive_control ws-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method positive_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: ws-theta-0.5\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score positive_control ws-theta-0.5", + "value": 0.9933, + "severity": 0, + "severity_value": 0.49665, + "code": "best_score <= 2", + "message": "Method positive_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: ws-theta-0.5\n Best score: 0.9933%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score portia ws-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method portia performs much worse than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: ws-theta-0.5\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score portia ws-theta-0.5", + "value": 0.5613, + "severity": 0, + "severity_value": 0.28065, + "code": "best_score <= 2", + "message": "Method portia performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: ws-theta-0.5\n Best score: 0.5613%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score ppcor ws-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method ppcor performs much worse than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: ws-theta-0.5\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score ppcor ws-theta-0.5", + "value": 0.4571, + "severity": 0, + "severity_value": 0.22855, + "code": "best_score <= 2", + "message": "Method ppcor performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: ws-theta-0.5\n Best score: 0.4571%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenic ws-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scenic performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: ws-theta-0.5\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenic ws-theta-0.5", + "value": 1.1311, + "severity": 0, + "severity_value": 0.56555, + "code": "best_score <= 2", + "message": "Method scenic performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: ws-theta-0.5\n Best score: 1.1311%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenicplus ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scenicplus performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: ws-theta-0.5\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenicplus ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method scenicplus performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: ws-theta-0.5\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scprint ws-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scprint performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: ws-theta-0.5\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scprint ws-theta-0.5", + "value": 0.3735, + "severity": 0, + "severity_value": 0.18675, + "code": "best_score <= 2", + "message": "Method scprint performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: ws-theta-0.5\n Best score: 0.3735%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score grnboost2 ws-theta-0.5", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method grnboost2 performs much worse than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: ws-theta-0.5\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score grnboost2 ws-theta-0.5", + "value": 1.2599, + "severity": 0, + "severity_value": 0.62995, + "code": "best_score <= 2", + "message": "Method grnboost2 performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: ws-theta-0.5\n Best score: 1.2599%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scglue ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scglue performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: ws-theta-0.5\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scglue ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method scglue performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: ws-theta-0.5\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score granie ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method granie performs much worse than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: ws-theta-0.5\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score granie ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method granie performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: ws-theta-0.5\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score figr ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method figr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: ws-theta-0.5\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score figr ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method figr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: ws-theta-0.5\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score celloracle ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method celloracle performs much worse than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: ws-theta-0.5\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score celloracle ws-theta-0.5", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method celloracle performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: ws-theta-0.5\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score pearson_corr ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method pearson_corr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: ws-theta-1.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score pearson_corr ws-theta-1.0", + "value": 1, + "severity": 0, + "severity_value": 0.5, + "code": "best_score <= 2", + "message": "Method pearson_corr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: pearson_corr\n Metric id: ws-theta-1.0\n Best score: 1%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score negative_control ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method negative_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: ws-theta-1.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score negative_control ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method negative_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: negative_control\n Metric id: ws-theta-1.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score positive_control ws-theta-1.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method positive_control performs much worse than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: ws-theta-1.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score positive_control ws-theta-1.0", + "value": 0.9594, + "severity": 0, + "severity_value": 0.4797, + "code": "best_score <= 2", + "message": "Method positive_control performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: positive_control\n Metric id: ws-theta-1.0\n Best score: 0.9594%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score portia ws-theta-1.0", + "value": -0.0285, + "severity": 0, + "severity_value": 0.0285, + "code": "worst_score >= -1", + "message": "Method portia performs much worse than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: ws-theta-1.0\n Worst score: -0.0285%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score portia ws-theta-1.0", + "value": 0.6635, + "severity": 0, + "severity_value": 0.33175, + "code": "best_score <= 2", + "message": "Method portia performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: portia\n Metric id: ws-theta-1.0\n Best score: 0.6635%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score ppcor ws-theta-1.0", + "value": -0.0874, + "severity": 0, + "severity_value": 0.0874, + "code": "worst_score >= -1", + "message": "Method ppcor performs much worse than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: ws-theta-1.0\n Worst score: -0.0874%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score ppcor ws-theta-1.0", + "value": 0.3827, + "severity": 0, + "severity_value": 0.19135, + "code": "best_score <= 2", + "message": "Method ppcor performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: ppcor\n Metric id: ws-theta-1.0\n Best score: 0.3827%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenic ws-theta-1.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scenic performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: ws-theta-1.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenic ws-theta-1.0", + "value": 0.973, + "severity": 0, + "severity_value": 0.4865, + "code": "best_score <= 2", + "message": "Method scenic performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenic\n Metric id: ws-theta-1.0\n Best score: 0.973%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scenicplus ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scenicplus performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: ws-theta-1.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scenicplus ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method scenicplus performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scenicplus\n Metric id: ws-theta-1.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scprint ws-theta-1.0", + "value": -0.4668, + "severity": 0, + "severity_value": 0.4668, + "code": "worst_score >= -1", + "message": "Method scprint performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: ws-theta-1.0\n Worst score: -0.4668%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scprint ws-theta-1.0", + "value": 0.6604, + "severity": 0, + "severity_value": 0.3302, + "code": "best_score <= 2", + "message": "Method scprint performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scprint\n Metric id: ws-theta-1.0\n Best score: 0.6604%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score grnboost2 ws-theta-1.0", + "value": 0.0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method grnboost2 performs much worse than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: ws-theta-1.0\n Worst score: 0.0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score grnboost2 ws-theta-1.0", + "value": 1.4751, + "severity": 0, + "severity_value": 0.73755, + "code": "best_score <= 2", + "message": "Method grnboost2 performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: grnboost2\n Metric id: ws-theta-1.0\n Best score: 1.4751%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score scglue ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method scglue performs much worse than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: ws-theta-1.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score scglue ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method scglue performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: scglue\n Metric id: ws-theta-1.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score granie ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method granie performs much worse than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: ws-theta-1.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score granie ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method granie performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: granie\n Metric id: ws-theta-1.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score figr ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method figr performs much worse than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: ws-theta-1.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score figr ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method figr performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: figr\n Metric id: ws-theta-1.0\n Best score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Worst score celloracle ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": -0.0, + "code": "worst_score >= -1", + "message": "Method celloracle performs much worse than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: ws-theta-1.0\n Worst score: 0%\n" + }, + { + "task_id": "task_grn_inference", + "category": "Scaling", + "name": "Best score celloracle ws-theta-1.0", + "value": 0, + "severity": 0, + "severity_value": 0.0, + "code": "best_score <= 2", + "message": "Method celloracle performs a lot better than baselines.\n Task id: task_grn_inference\n Method id: celloracle\n Metric id: ws-theta-1.0\n Best score: 0%\n" + } +] \ No newline at end of file diff --git a/results/grn_inference/data/results.json b/results/grn_inference/data/results.json new file mode 100644 index 00000000..1430a548 --- /dev/null +++ b/results/grn_inference/data/results.json @@ -0,0 +1,2012 @@ +[ + { + "dataset_id": "adamson", + "method_id": "celloracle", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "adamson", + "method_id": "figr", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "adamson", + "method_id": "granie", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "adamson", + "method_id": "grnboost2", + "metric_values": { + "r1_all": 0.0262, + "r1_grn": 0.0431, + "r2-theta-0.0": 0.7498, + "r2-theta-0.5": 0.6801, + "r2-theta-1.0": 0.4896, + "ws-theta-0.0": 0.8936, + "ws-theta-0.5": 0.8395, + "ws-theta-1.0": 0.7318 + }, + "scaled_scores": { + "r1_all": 4.199, + "r1_grn": 3.311, + "r2-theta-0.0": 1.0876, + "r2-theta-0.5": 1.5697, + "r2-theta-1.0": 1.7265, + "ws-theta-0.0": 1.1034, + "ws-theta-0.5": 1.1452, + "ws-theta-1.0": 1.4751 + }, + "mean_score": 1, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "negative_control", + "metric_values": { + "r1_all": -0.0019, + "r1_grn": -0.0019, + "r2-theta-0.0": 0.5794, + "r2-theta-0.5": 0.5968, + "r2-theta-1.0": 0.4486, + "ws-theta-0.0": 0.5043, + "ws-theta-0.5": 0.5114, + "ws-theta-1.0": 0.5163 + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "pearson_corr", + "metric_values": { + "r1_all": 0.0028, + "r1_grn": 0.0047, + "r2-theta-0.0": 0.7283, + "r2-theta-0.5": 0.6478, + "r2-theta-1.0": 0.4724, + "ws-theta-0.0": 0.8571, + "ws-theta-0.5": 0.7979, + "ws-theta-1.0": 0.6624 + }, + "scaled_scores": { + "r1_all": 0.7039, + "r1_grn": 0.4846, + "r2-theta-0.0": 0.9505, + "r2-theta-0.5": 0.9619, + "r2-theta-1.0": 1, + "ws-theta-0.0": 1, + "ws-theta-0.5": 1, + "ws-theta-1.0": 1 + }, + "mean_score": 0.8876, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "portia", + "metric_values": { + "r1_all": 0.0203, + "r1_grn": 0.021, + "r2-theta-0.0": 0.5625, + "r2-theta-0.5": 0.5593, + "r2-theta-1.0": 0.448, + "ws-theta-0.0": 0.8162, + "ws-theta-0.5": 0.6722, + "ws-theta-1.0": 0.583 + }, + "scaled_scores": { + "r1_all": 3.319, + "r1_grn": 1.6879, + "r2-theta-0.0": -0.108, + "r2-theta-0.5": -0.7047, + "r2-theta-1.0": -0.0269, + "ws-theta-0.0": 0.8839, + "ws-theta-0.5": 0.5613, + "ws-theta-1.0": 0.4567 + }, + "mean_score": 0.4877, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "positive_control", + "metric_values": { + "r1_all": 0.0048, + "r1_grn": 0.0117, + "r2-theta-0.0": 0.736, + "r2-theta-0.5": 0.6499, + "r2-theta-1.0": 0.4671, + "ws-theta-0.0": 0.6338, + "ws-theta-0.5": 0.634, + "ws-theta-1.0": 0.6109 + }, + "scaled_scores": { + "r1_all": 1, + "r1_grn": 1, + "r2-theta-0.0": 1, + "r2-theta-0.5": 1, + "r2-theta-1.0": 0.7778, + "ws-theta-0.0": 0.3671, + "ws-theta-0.5": 0.4278, + "ws-theta-1.0": 0.6474 + }, + "mean_score": 0.7775, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "ppcor", + "metric_values": { + "r1_all": 0.0171, + "r1_grn": 0.0172, + "r2-theta-0.0": 0.6473, + "r2-theta-0.5": 0.6163, + "r2-theta-1.0": 0.4601, + "ws-theta-0.0": 0.6554, + "ws-theta-0.5": 0.5548, + "ws-theta-1.0": 0.5278 + }, + "scaled_scores": { + "r1_all": 2.8383, + "r1_grn": 1.4042, + "r2-theta-0.0": 0.4332, + "r2-theta-0.5": 0.3672, + "r2-theta-1.0": 0.4841, + "ws-theta-0.0": 0.4283, + "ws-theta-0.5": 0.1514, + "ws-theta-1.0": 0.0792 + }, + "mean_score": 0.4929, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "scenic", + "metric_values": { + "r1_all": 0.003, + "r1_grn": 0.0065, + "r2-theta-0.0": 0.6611, + "r2-theta-0.5": 0.6226, + "r2-theta-1.0": 0.4593, + "ws-theta-0.0": 0.8646, + "ws-theta-0.5": 0.8354, + "ws-theta-1.0": 0.6584 + }, + "scaled_scores": { + "r1_all": 0.7374, + "r1_grn": 0.6209, + "r2-theta-0.0": 0.5212, + "r2-theta-0.5": 0.4874, + "r2-theta-1.0": 0.4487, + "ws-theta-0.0": 1.021, + "ws-theta-0.5": 1.1311, + "ws-theta-1.0": 0.973 + }, + "mean_score": 0.7236, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "adamson", + "method_id": "scenicplus", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "adamson", + "method_id": "scglue", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "adamson", + "method_id": "scprint", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "nakatake", + "method_id": "celloracle", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "nakatake", + "method_id": "figr", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "nakatake", + "method_id": "granie", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "nakatake", + "method_id": "grnboost2", + "metric_values": { + "r1_all": 0.0032, + "r1_grn": 0.0055, + "r2-theta-0.0": 0.0113, + "r2-theta-0.5": 0.1669, + "r2-theta-1.0": 0.1157, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.7824, + "r1_grn": 0.4876, + "r2-theta-0.0": 0.2191, + "r2-theta-0.5": 0.802, + "r2-theta-1.0": 1.3011, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.4114, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "negative_control", + "metric_values": { + "r1_all": -0.0011, + "r1_grn": -0.0013, + "r2-theta-0.0": 0.0009, + "r2-theta-0.5": 0.0319, + "r2-theta-1.0": 0.0429, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.0819, + "r1_grn": 0.1691, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.0314, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "pearson_corr", + "metric_values": { + "r1_all": -0.0017, + "r1_grn": -0.005, + "r2-theta-0.0": 0.0262, + "r2-theta-0.5": 0.1588, + "r2-theta-1.0": 0.0837, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0.5328, + "r2-theta-0.5": 0.7538, + "r2-theta-1.0": 0.7288, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.2519, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "portia", + "metric_values": { + "r1_all": -0.0035, + "r1_grn": -0.0121, + "r2-theta-0.0": 0.0156, + "r2-theta-0.5": 0.0476, + "r2-theta-1.0": 0.0457, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": -0.2998, + "r1_grn": -0.33, + "r2-theta-0.0": 0.3093, + "r2-theta-0.5": 0.0931, + "r2-theta-1.0": 0.0511, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.0567, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "positive_control", + "metric_values": { + "r1_all": 0.0046, + "r1_grn": 0.0165, + "r2-theta-0.0": 0.0483, + "r2-theta-0.5": 0.2002, + "r2-theta-1.0": 0.0988, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 1, + "r1_grn": 1, + "r2-theta-0.0": 1, + "r2-theta-0.5": 1, + "r2-theta-1.0": 1, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.625, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "ppcor", + "metric_values": { + "r1_all": 0.003, + "r1_grn": 0.0102, + "r2-theta-0.0": 0.0026, + "r2-theta-0.5": 0.0338, + "r2-theta-1.0": 0.0451, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.7421, + "r1_grn": 0.7038, + "r2-theta-0.0": 0.0368, + "r2-theta-0.5": 0.0114, + "r2-theta-1.0": 0.0394, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.1917, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "scenic", + "metric_values": { + "r1_all": 0.0027, + "r1_grn": 0.0047, + "r2-theta-0.0": 0.0044, + "r2-theta-0.5": 0.0928, + "r2-theta-1.0": 0.0908, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.6988, + "r1_grn": 0.4503, + "r2-theta-0.0": 0.0744, + "r2-theta-0.5": 0.3616, + "r2-theta-1.0": 0.8568, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.3052, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "nakatake", + "method_id": "scenicplus", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "nakatake", + "method_id": "scglue", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "nakatake", + "method_id": "scprint", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "norman", + "method_id": "celloracle", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "norman", + "method_id": "figr", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "norman", + "method_id": "granie", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "norman", + "method_id": "grnboost2", + "metric_values": { + "r1_all": 0.003, + "r1_grn": 0.0034, + "r2-theta-0.0": 0.4836, + "r2-theta-0.5": 0.3509, + "r2-theta-1.0": 0.2941, + "ws-theta-0.0": 0.8602, + "ws-theta-0.5": 0.8281, + "ws-theta-1.0": 0.6772 + }, + "scaled_scores": { + "r1_all": 0.4227, + "r1_grn": 0.468, + "r2-theta-0.0": 0.7093, + "r2-theta-0.5": 1.0381, + "r2-theta-1.0": 0.9909, + "ws-theta-0.0": 1.1164, + "ws-theta-0.5": 1.2599, + "ws-theta-1.0": 1.4222 + }, + "mean_score": 0.8239, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "negative_control", + "metric_values": { + "r1_all": 0.0251, + "r1_grn": 0.0251, + "r2-theta-0.0": 0.269, + "r2-theta-0.5": 0.2806, + "r2-theta-1.0": 0.2478, + "ws-theta-0.0": 0.5269, + "ws-theta-0.5": 0.5018, + "ws-theta-1.0": 0.4793 + }, + "scaled_scores": { + "r1_all": 1, + "r1_grn": 1, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.25, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "pearson_corr", + "metric_values": { + "r1_all": -0.0131, + "r1_grn": -0.0157, + "r2-theta-0.0": 0.5133, + "r2-theta-0.5": 0.3484, + "r2-theta-1.0": 0.2888, + "ws-theta-0.0": 0.8255, + "ws-theta-0.5": 0.7608, + "ws-theta-1.0": 0.6185 + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0.8075, + "r2-theta-0.5": 1, + "r2-theta-1.0": 0.8768, + "ws-theta-0.0": 1, + "ws-theta-0.5": 1, + "ws-theta-1.0": 1 + }, + "mean_score": 0.7105, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "portia", + "metric_values": { + "r1_all": -0.0106, + "r1_grn": -0.0107, + "r2-theta-0.0": 0.1611, + "r2-theta-0.5": 0.211, + "r2-theta-1.0": 0.2393, + "ws-theta-0.0": 0.6197, + "ws-theta-0.5": 0.6084, + "ws-theta-1.0": 0.5716 + }, + "scaled_scores": { + "r1_all": 0.0654, + "r1_grn": 0.1213, + "r2-theta-0.0": -0.3567, + "r2-theta-0.5": -1.0274, + "r2-theta-1.0": -0.1835, + "ws-theta-0.0": 0.311, + "ws-theta-0.5": 0.4117, + "ws-theta-1.0": 0.6635 + }, + "mean_score": 0.1966, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "positive_control", + "metric_values": { + "r1_all": 0.0016, + "r1_grn": 0.0047, + "r2-theta-0.0": 0.5715, + "r2-theta-0.5": 0.3425, + "r2-theta-1.0": 0.2945, + "ws-theta-0.0": 0.8173, + "ws-theta-0.5": 0.7392, + "ws-theta-1.0": 0.6082 + }, + "scaled_scores": { + "r1_all": 0.3849, + "r1_grn": 0.4988, + "r2-theta-0.0": 1, + "r2-theta-0.5": 0.9139, + "r2-theta-1.0": 1, + "ws-theta-0.0": 0.9726, + "ws-theta-0.5": 0.9166, + "ws-theta-1.0": 0.9259 + }, + "mean_score": 0.8266, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "ppcor", + "metric_values": { + "r1_all": 0.0019, + "r1_grn": 0.0019, + "r2-theta-0.0": 0.3827, + "r2-theta-0.5": 0.2902, + "r2-theta-1.0": 0.2576, + "ws-theta-0.0": 0.6807, + "ws-theta-0.5": 0.6202, + "ws-theta-1.0": 0.5325 + }, + "scaled_scores": { + "r1_all": 0.3941, + "r1_grn": 0.4321, + "r2-theta-0.0": 0.3758, + "r2-theta-0.5": 0.1417, + "r2-theta-1.0": 0.2086, + "ws-theta-0.0": 0.515, + "ws-theta-0.5": 0.4571, + "ws-theta-1.0": 0.3827 + }, + "mean_score": 0.3634, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "scenic", + "metric_values": { + "r1_all": -0.0024, + "r1_grn": -0.0093, + "r2-theta-0.0": 0.4235, + "r2-theta-0.5": 0.2967, + "r2-theta-1.0": 0.253, + "ws-theta-0.0": 0.8207, + "ws-theta-0.5": 0.5644, + "ws-theta-1.0": 0.5001 + }, + "scaled_scores": { + "r1_all": 0.2798, + "r1_grn": 0.1562, + "r2-theta-0.0": 0.5106, + "r2-theta-0.5": 0.2372, + "r2-theta-1.0": 0.1097, + "ws-theta-0.0": 0.984, + "ws-theta-0.5": 0.2415, + "ws-theta-1.0": 0.1494 + }, + "mean_score": 0.3336, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "norman", + "method_id": "scenicplus", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "norman", + "method_id": "scglue", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "norman", + "method_id": "scprint", + "metric_values": { + "r1_all": 0.0074, + "r1_grn": 0.0096, + "r2-theta-0.0": 0.5015, + "r2-theta-0.5": 0.3294, + "r2-theta-1.0": 0.2765, + "ws-theta-0.0": 0.6288, + "ws-theta-0.5": 0.5985, + "ws-theta-1.0": 0.5712 + }, + "scaled_scores": { + "r1_all": 0.5375, + "r1_grn": 0.6185, + "r2-theta-0.0": 0.7685, + "r2-theta-0.5": 0.7205, + "r2-theta-1.0": 0.614, + "ws-theta-0.0": 0.3412, + "ws-theta-0.5": 0.3735, + "ws-theta-1.0": 0.6604 + }, + "mean_score": 0.5793, + "resources": {} + }, + { + "dataset_id": "op", + "method_id": "celloracle", + "metric_values": { + "r1_all": 0.4662, + "r1_grn": 0.7625, + "r2-theta-0.0": 0.574, + "r2-theta-0.5": 0.3981, + "r2-theta-1.0": 0.3322, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.7279, + "r1_grn": 0.6121, + "r2-theta-0.0": 0.8446, + "r2-theta-0.5": 0.9269, + "r2-theta-1.0": 0.7878, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.4874, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 42599, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "figr", + "metric_values": { + "r1_all": 0.2178, + "r1_grn": 0.5431, + "r2-theta-0.0": 0.3014, + "r2-theta-0.5": 0.2894, + "r2-theta-1.0": 0.319, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.3408, + "r1_grn": 0.4362, + "r2-theta-0.0": 0.2415, + "r2-theta-0.5": 0.2316, + "r2-theta-1.0": 0.2721, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.1903, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 230616, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "granie", + "metric_values": { + "r1_all": 0.1474, + "r1_grn": 0.1937, + "r2-theta-0.0": 0.1511, + "r2-theta-0.5": 0.209, + "r2-theta-1.0": 0.3054, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.2311, + "r1_grn": 0.1561, + "r2-theta-0.0": -0.0909, + "r2-theta-0.5": -0.2822, + "r2-theta-1.0": -0.2627, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.0484, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 41984, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "grnboost2", + "metric_values": { + "r1_all": 0.6493, + "r1_grn": 0.8683, + "r2-theta-0.0": 0.6118, + "r2-theta-0.5": 0.4451, + "r2-theta-1.0": 0.3519, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 1.0132, + "r1_grn": 0.697, + "r2-theta-0.0": 0.9284, + "r2-theta-0.5": 1.2278, + "r2-theta-1.0": 1.5604, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.5782, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 7558, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "negative_control", + "metric_values": { + "r1_all": -0.0009, + "r1_grn": -0.001, + "r2-theta-0.0": 0.1922, + "r2-theta-0.5": 0.2532, + "r2-theta-1.0": 0.3121, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 2274, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "pearson_corr", + "metric_values": { + "r1_all": 0.5703, + "r1_grn": 1.0482, + "r2-theta-0.0": 0.5806, + "r2-theta-0.5": 0.3661, + "r2-theta-1.0": 0.3271, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.89, + "r1_grn": 0.8412, + "r2-theta-0.0": 0.8592, + "r2-theta-0.5": 0.7228, + "r2-theta-1.0": 0.5875, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.4876, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 24372, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "portia", + "metric_values": { + "r1_all": 0.4657, + "r1_grn": 0.6743, + "r2-theta-0.0": 0.5108, + "r2-theta-0.5": 0.3111, + "r2-theta-1.0": 0.3215, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.7271, + "r1_grn": 0.5414, + "r2-theta-0.0": 0.7049, + "r2-theta-0.5": 0.3706, + "r2-theta-1.0": 0.3676, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.3389, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 57027, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "positive_control", + "metric_values": { + "r1_all": 0.6408, + "r1_grn": 1.2462, + "r2-theta-0.0": 0.6442, + "r2-theta-0.5": 0.4095, + "r2-theta-1.0": 0.3376, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 1, + "r1_grn": 1, + "r2-theta-0.0": 1, + "r2-theta-0.5": 1, + "r2-theta-1.0": 1, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.625, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 11879, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "ppcor", + "metric_values": { + "r1_all": 0.1967, + "r1_grn": 0.2385, + "r2-theta-0.0": 0.3787, + "r2-theta-0.5": 0.2839, + "r2-theta-1.0": 0.3142, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.3079, + "r1_grn": 0.192, + "r2-theta-0.0": 0.4126, + "r2-theta-0.5": 0.1966, + "r2-theta-1.0": 0.0814, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.1488, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 65680, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scenic", + "metric_values": { + "r1_all": 0.2918, + "r1_grn": 0.4272, + "r2-theta-0.0": 0.5233, + "r2-theta-0.5": 0.3903, + "r2-theta-1.0": 0.3434, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.4561, + "r1_grn": 0.3433, + "r2-theta-0.0": 0.7324, + "r2-theta-0.5": 0.877, + "r2-theta-1.0": 1.2296, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.4261, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 36813, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scenicplus", + "metric_values": { + "r1_all": 0.5887, + "r1_grn": 0.7536, + "r2-theta-0.0": 0.6, + "r2-theta-0.5": 0.4498, + "r2-theta-1.0": 0.3512, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.9188, + "r1_grn": 0.605, + "r2-theta-0.0": 0.9021, + "r2-theta-0.5": 1.2579, + "r2-theta-1.0": 1.5351, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.5532, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 134493, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scglue", + "metric_values": { + "r1_all": 0.1557, + "r1_grn": 0.6789, + "r2-theta-0.0": 0.504, + "r2-theta-0.5": 0.2849, + "r2-theta-1.0": 0.3144, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.244, + "r1_grn": 0.5451, + "r2-theta-0.0": 0.6898, + "r2-theta-0.5": 0.2032, + "r2-theta-1.0": 0.0918, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.2217, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 63161, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "op", + "method_id": "scprint", + "metric_values": { + "r1_all": 0.1096, + "r1_grn": 0.189, + "r2-theta-0.0": 0.2798, + "r2-theta-0.5": 0.299, + "r2-theta-1.0": 0.3201, + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0.1722, + "r1_grn": 0.1524, + "r2-theta-0.0": 0.1938, + "r2-theta-0.5": 0.2936, + "r2-theta-1.0": 0.3145, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.1408, + "resources": {} + }, + { + "dataset_id": "replogle", + "method_id": "celloracle", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "replogle", + "method_id": "figr", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "replogle", + "method_id": "granie", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "replogle", + "method_id": "grnboost2", + "metric_values": { + "r1_all": -0.0006, + "r1_grn": -0.0009, + "r2-theta-0.0": 0.0902, + "r2-theta-0.5": 0.0583, + "r2-theta-1.0": 0.0596, + "ws-theta-0.0": 0.5714, + "ws-theta-0.5": 0.5634, + "ws-theta-1.0": 0.5271 + }, + "scaled_scores": { + "r1_all": 0.8729, + "r1_grn": 0.9042, + "r2-theta-0.0": 1.5287, + "r2-theta-0.5": 1.5267, + "r2-theta-1.0": 1.598, + "ws-theta-0.0": 0.602, + "ws-theta-0.5": 0.8032, + "ws-theta-1.0": 0.8133 + }, + "mean_score": 0.8744, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "negative_control", + "metric_values": { + "r1_all": -0.0048, + "r1_grn": -0.0048, + "r2-theta-0.0": 0.0082, + "r2-theta-0.5": 0.008, + "r2-theta-1.0": 0.0158, + "ws-theta-0.0": 0.4852, + "ws-theta-0.5": 0.4923, + "ws-theta-1.0": 0.5026 + }, + "scaled_scores": { + "r1_all": 0.3272, + "r1_grn": 0.6865, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0.1267, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "pearson_corr", + "metric_values": { + "r1_all": 0.0004, + "r1_grn": 0.0009, + "r2-theta-0.0": 0.0591, + "r2-theta-0.5": 0.039, + "r2-theta-1.0": 0.0417, + "ws-theta-0.0": 0.6207, + "ws-theta-0.5": 0.5808, + "ws-theta-1.0": 0.5328 + }, + "scaled_scores": { + "r1_all": 1, + "r1_grn": 1, + "r2-theta-0.0": 0.9475, + "r2-theta-0.5": 0.9409, + "r2-theta-1.0": 0.9426, + "ws-theta-0.0": 0.9457, + "ws-theta-0.5": 1, + "ws-theta-1.0": 1 + }, + "mean_score": 0.9721, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "portia", + "metric_values": { + "r1_all": -0.0105, + "r1_grn": -0.0106, + "r2-theta-0.0": 0.0623, + "r2-theta-0.5": 0.0377, + "r2-theta-1.0": 0.0397, + "ws-theta-0.0": 0.5032, + "ws-theta-0.5": 0.5057, + "ws-theta-1.0": 0.5018 + }, + "scaled_scores": { + "r1_all": -0.4275, + "r1_grn": 0.3641, + "r2-theta-0.0": 1.0081, + "r2-theta-0.5": 0.9024, + "r2-theta-1.0": 0.8709, + "ws-theta-0.0": 0.1262, + "ws-theta-0.5": 0.1511, + "ws-theta-1.0": -0.0285 + }, + "mean_score": 0.4268, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "positive_control", + "metric_values": { + "r1_all": -0.0073, + "r1_grn": -0.0171, + "r2-theta-0.0": 0.0619, + "r2-theta-0.5": 0.041, + "r2-theta-1.0": 0.0433, + "ws-theta-0.0": 0.6285, + "ws-theta-0.5": 0.5803, + "ws-theta-1.0": 0.5315 + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 1, + "r2-theta-0.5": 1, + "r2-theta-1.0": 1, + "ws-theta-0.0": 1, + "ws-theta-0.5": 0.9933, + "ws-theta-1.0": 0.9594 + }, + "mean_score": 0.7441, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "ppcor", + "metric_values": { + "r1_all": -0.0251, + "r1_grn": -0.0253, + "r2-theta-0.0": 0.0135, + "r2-theta-0.5": 0.0108, + "r2-theta-1.0": 0.0175, + "ws-theta-0.0": 0.5045, + "ws-theta-0.5": 0.5021, + "ws-theta-1.0": 0.5 + }, + "scaled_scores": { + "r1_all": -2.3365, + "r1_grn": -0.4573, + "r2-theta-0.0": 0.0976, + "r2-theta-0.5": 0.0835, + "r2-theta-1.0": 0.062, + "ws-theta-0.0": 0.1348, + "ws-theta-0.5": 0.1108, + "ws-theta-1.0": -0.0874 + }, + "mean_score": 0.0611, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "scenic", + "metric_values": { + "r1_all": -0.0043, + "r1_grn": -0.0063, + "r2-theta-0.0": 0.0346, + "r2-theta-0.5": 0.0207, + "r2-theta-1.0": 0.025, + "ws-theta-0.0": 0.5754, + "ws-theta-0.5": 0.5496, + "ws-theta-1.0": 0.5124 + }, + "scaled_scores": { + "r1_all": 0.392, + "r1_grn": 0.5996, + "r2-theta-0.0": 0.4921, + "r2-theta-0.5": 0.3861, + "r2-theta-1.0": 0.336, + "ws-theta-0.0": 0.6297, + "ws-theta-0.5": 0.6476, + "ws-theta-1.0": 0.3255 + }, + "mean_score": 0.4761, + "resources": { + "submit": "2025-02-26 19:49:51", + "exit_code": 0, + "duration_sec": "NA", + "cpu_pct": "NA", + "peak_memory_mb": 0, + "disk_read_mb": "NA", + "disk_write_mb": "NA" + } + }, + { + "dataset_id": "replogle", + "method_id": "scenicplus", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "replogle", + "method_id": "scglue", + "metric_values": { + "r1_all": "NA", + "r1_grn": "NA", + "r2-theta-0.0": "NA", + "r2-theta-0.5": "NA", + "r2-theta-1.0": "NA", + "ws-theta-0.0": "NA", + "ws-theta-0.5": "NA", + "ws-theta-1.0": "NA" + }, + "scaled_scores": { + "r1_all": 0, + "r1_grn": 0, + "r2-theta-0.0": 0, + "r2-theta-0.5": 0, + "r2-theta-1.0": 0, + "ws-theta-0.0": 0, + "ws-theta-0.5": 0, + "ws-theta-1.0": 0 + }, + "mean_score": 0, + "resources": {} + }, + { + "dataset_id": "replogle", + "method_id": "scprint", + "metric_values": { + "r1_all": -0.0082, + "r1_grn": -0.0133, + "r2-theta-0.0": 0.027, + "r2-theta-0.5": 0.0178, + "r2-theta-1.0": 0.0238, + "ws-theta-0.0": 0.517, + "ws-theta-0.5": 0.5012, + "ws-theta-1.0": 0.4886 + }, + "scaled_scores": { + "r1_all": -0.1274, + "r1_grn": 0.2094, + "r2-theta-0.0": 0.3506, + "r2-theta-0.5": 0.2974, + "r2-theta-1.0": 0.292, + "ws-theta-0.0": 0.2219, + "ws-theta-0.5": 0.0998, + "ws-theta-1.0": -0.4668 + }, + "mean_score": 0.1839, + "resources": {} + } +] diff --git a/results/grn_inference/data/state.yaml b/results/grn_inference/data/state.yaml new file mode 100644 index 00000000..abbb0fc1 --- /dev/null +++ b/results/grn_inference/data/state.yaml @@ -0,0 +1,9 @@ +id: process +output_scores: !file results.json +output_method_info: !file method_info.json +output_metric_info: !file metric_info.json +output_dataset_info: !file dataset_info.json +output_task_info: !file task_info.json +output_qc: !file quality_control.json +output_metric_execution_info: !file metric_execution_info.json + diff --git a/results/grn_inference/data/task_info.json b/results/grn_inference/data/task_info.json new file mode 100644 index 00000000..8fce7c8e --- /dev/null +++ b/results/grn_inference/data/task_info.json @@ -0,0 +1,50 @@ +{ + "task_id": "task_grn_inference", + "commit_sha": null, + "task_name": "GRN Inference", + "task_summary": "Benchmarking GRN inference methods\n", + "task_description": "\ngeneRNIB is a living benchmark platform for GRN inference. This platform provides curated datasets for GRN inference and evaluation, standardized evaluation protocols and metrics, computational infrastructure, and a dynamically updated leaderboard to track state-of-the-art methods. It runs novel GRNs in the cloud, offers competition scores, and stores them for future comparisons, reflecting new developments over time.\n\nThe platform supports the integration of new inference methods, datasets and protocols. When a new feature is added, previously evaluated GRNs are re-assessed, and the leaderboard is updated accordingly. The aim is to evaluate both the accuracy and completeness of inferred GRNs. It is designed for both single-modality and multi-omics GRN inference. \n\nIn the current version, geneRNIB contains 11 inference methods including both single and multi-omics, 8 evalation metrics, and five datasets (OPSCA, Nakatake, Norman, Adamson, and Replogle). \n\nSee our publication for the details of methods. \n", + "repo": "https://github.com/openproblems-bio/task_grn_inference", + "issue_tracker": "https://github.com/openproblems-bio/task_grn_inference/issues", + "authors": [ + { + "name": "Jalil Nourisa", + "roles": "author", + "info": { + "github": "janursa", + "orcid": "0000-0002-7539-4396" + } + }, + { + "name": "Robrecht Cannoodt", + "roles": "author", + "info": { + "github": "rcannood", + "orcid": "0000-0003-3641-729X" + } + }, + { + "name": "Antoine Passimier", + "roles": "contributor", + "info": { + "github": "AntoinePassemiers" + } + }, + { + "name": "Marco Stock", + "roles": "contributor", + "info": { + "github": "stkmrc" + } + }, + { + "name": "Christian Arnold", + "roles": "contributor", + "info": { + "github": "chrarnold" + } + } + ], + "version": "dev", + "license": "MIT" +} diff --git a/results/grn_inference/index.qmd b/results/grn_inference/index.qmd new file mode 100644 index 00000000..878bebf4 --- /dev/null +++ b/results/grn_inference/index.qmd @@ -0,0 +1,391 @@ +--- +title: "GRN Inference" +subtitle: "Benchmarking GRN inference methods +" +image: thumbnail.svg +page-layout: full +css: ../_include/task_template.css +engine: knitr +fig-cap-location: bottom +citation-location: document +bibliography: + - library.bib + - ../../library.bib +toc: false +--- +```{r} +#| include: false +params <- list(data_dir = "results/grn_inference/data") +params <- list(data_dir = "./data") +``` + + +{{< include ../_include/_load_data.qmd >}} + +{{< include ../_include/_task_description.qmd >}} + +## Summary + +```{ojs} +//| echo: false +function aggregate_scores(obj) { + return d3.mean(obj.map(val => { + if (val.score === undefined || isNaN(val.score)) return 0; + return Math.min(1, Math.max(0, val.score)) + })); +} + +function transpose_list_of_objects(list) { + return Object.fromEntries(Object.keys(list[0]).map(key => [key, list.map(d => d[key])])) +} + +function label_time(time) { + if (time < 1e-5) return "0s"; + if (time < 1) return "<1s"; + if (time < 60) return `${Math.floor(time)}s`; + if (time < 3600) return `${Math.floor(time / 60)}m`; + if (time < 3600 * 24) return `${Math.floor(time / 3600)}h`; + if (time < 3600 * 24 * 7) return `${Math.floor(time / 3600 / 24)}d`; + return ">7d"; // Assuming missing values are encoded as NaN +} + +function label_memory(x_mb, include_mb = true) { + if (!include_mb && x_mb < 1e3) return "<1G"; + if (x_mb < 1) return "<1M"; + if (x_mb < 1e3) return `${Math.round(x_mb)}M`; + if (x_mb < 1e6) return `${Math.round(x_mb / 1e3)}G`; + if (x_mb < 1e9) return `${Math.round(x_mb / 1e6)}T`; + return ">1P"; +} + +function mean_na_rm(x) { + return d3.mean(x.filter(d => !isNaN(d))); +} +``` + +```{ojs} +//| echo: false +poss_dataset_ids = dataset_info + .map(d => d.dataset_id) + .filter(d => results.map(r => r.dataset_id).includes(d)) +poss_method_ids = method_info + .map(d => d.method_id) + .filter(d => results.map(r => r.method_id).includes(d)) +poss_metric_ids = metric_info + .map(d => d.metric_id) + .filter(d => results.map(r => Object.keys(r.scaled_scores)).flat().includes(d)) +``` + +```{ojs} +//| echo: false +//| message: false +//| warning: false + +results_long = results.flatMap(d => { + return Object.entries(d.scaled_scores).map(([metric_id, value]) => + ({ + method_id: d.method_id, + dataset_id: d.dataset_id, + metric_id: metric_id, + score: value + }) + ) +}).filter(d => method_ids.includes(d.method_id) && metric_ids.includes(d.metric_id) && dataset_ids.includes(d.dataset_id)) + +overall = d3.groups(results_long, d => d.method_id) + .map(([method_id, values]) => ({method_id, mean_score: aggregate_scores(values)})) + +per_dataset = d3.groups(results_long, d => d.method_id) + .map(([method_id, values]) => { + const datasets = d3.groups(values, d => d.dataset_id) + .map(([dataset_id, values]) => ({["dataset_" + dataset_id]: aggregate_scores(values)})) + .reduce((a, b) => ({...a, ...b}), {}) + return {method_id, ...datasets} + }) + +per_metric = d3.groups(results_long, d => d.method_id) + .map(([method_id, values]) => { + const metrics = d3.groups(values, d => d.metric_id) + .map(([metric_id, values]) => ({["metric_" + metric_id]: aggregate_scores(values)})) + .reduce((a, b) => ({...a, ...b}), {}) + return {method_id, ...metrics} + }) + + + +summary_all = method_info + .filter(d => show_con || !d.is_baseline) + .filter(d => method_ids.includes(d.method_id)) + .map(method => { + const method_id = method.method_id + const method_name = method.method_name + const mean_score = overall.find(d => d.method_id === method_id).mean_score + const datasets = per_dataset.find(d => d.method_id === method_id) + const metrics = per_metric.find(d => d.method_id === method_id) + + let summary = { + method_id, + method_name, + mean_score, + ...datasets, + ...metrics, + } + + return summary + }) + .sort((a, b) => b.mean_score - a.mean_score) + +// make sure the first entry contains all columns +column_info = { + let column_info = [ + { + id: "method_name", + name: "Name", + label: null, + group: "method", + geom: "text", + palette: null + }, + { + id: "mean_score", + name: "Score", + group: "overall", + geom: "bar", + palette: "overall" + }, + ...dataset_info + .filter(d => dataset_ids.includes(d.dataset_id)) + .map( + d => ({ + id: "dataset_" + d.dataset_id, + name: d.dataset_name, + group: "dataset", + geom: "funkyrect", + palette: "dataset" + }) + ) + .sort((a, b) => a.name.localeCompare(b.name)), + ...metric_info + .filter(d => metric_ids.includes(d.metric_id)) + .map( + d => ({ + id: "metric_" + d.metric_id, + name: d.metric_name, + group: "metric", + geom: "funkyrect", + palette: "metric" + }) + ) + .sort((a, b) => a.name.localeCompare(b.name)), + ] + + column_info = column_info.map(d => { + if (d.id === "method_name") { + return {...d, options: {width: 15, hjust: 0}} + } else if (d.id === "is_baseline") { + return {...d, options: {width: 1}} + } else if (d.geom === "bar") { + return {...d, options: {width: 4}} + } else { + return d + } + }) + + return column_info +} + +column_groups = { + let column_groups = [ + { + group: "method", + palette: null, + level1: "" + }, + { + group: "overall", + palette: "overall", + level1: "Overall" + }, + { + group: "dataset", + palette: "dataset", + level1: dataset_info.length >= 3 ? "Datasets" : "" + }, + { + group: "metric", + palette: "metric", + level1: metric_info.length >= 3 ? "Metrics" : "" + } + ] + + return column_groups +} + +palettes = [ + { + overall: "Greys", + dataset: "Blues", + metric: "Reds" + } +][0] +``` + +```{ojs} +//| echo: false +//| fig-cap: "Overview of the results per method. This figures shows the mean of the scaled scores (group Overall), the mean scores per dataset (group Dataset) and the mean scores per metric (group Metric)." +//| column: page +funkyheatmap( + transpose_list_of_objects(summary_all), + transpose_list_of_objects(column_info), + [], + transpose_list_of_objects(column_groups), + [], + palettes, + { + fontSize: 14, + rowHeight: 26, + rootStyle: 'max-width: none', + colorByRank: color_by_rank, + theme: { + oddRowBackground: 'var(--bs-body-bg)', + evenRowBackground: 'var(--bs-button-hover)', + textColor: 'var(--bs-body-color)', + strokeColor: 'var(--bs-body-color)', + headerColor: 'var(--bs-body-color)', + hoverColor: 'var(--bs-body-color)' + } + }, + scale_column +); +``` + +
+
Display settings + +```{ojs} +//| echo: false +viewof color_by_rank = Inputs.toggle({label: "Color by rank:", value: true}) +viewof scale_column = Inputs.toggle({label: "Minmax column:", value: false}) +viewof show_con = Inputs.toggle({label: "Show control methods:", value: true}) +``` + +
+ +
Filter datasets + +```{ojs} +//| echo: false +viewof dataset_ids = Inputs.checkbox( + dataset_info.filter(d => poss_dataset_ids.includes(d.dataset_id)), + { + keyof: d => d.dataset_name, + valueof: d => d.dataset_id, + value: dataset_info.map(d => d.dataset_id), + label: "Datasets:" + } +) +``` + +
+ +
Filter methods + +```{ojs} +//| echo: false +viewof method_ids = Inputs.checkbox( + method_info.filter(d => poss_method_ids.includes(d.method_id)), + { + keyof: d => d.method_name, + valueof: d => d.method_id, + value: method_info.map(d => d.method_id), + label: "Methods:" + } +) +``` + +
+ +
Filter metrics + +```{ojs} +//| echo: false +viewof metric_ids = Inputs.checkbox( + metric_info.filter(d => poss_metric_ids.includes(d.metric_id)), + { + keyof: d => d.metric_name, + valueof: d => d.metric_id, + value: metric_info.map(d => d.metric_id), + label: "Metrics:" + } +) +``` + +
+
+ +```{ojs} +//| echo: false +funkyheatmap = (await require('d3@7').then(d3 => { + window.d3 = d3; + window._ = _; + return import('https://unpkg.com/funkyheatmapjs@0.2.5'); +})).default; +``` + + +## Results + +{{< include ../_include/_results_table.qmd >}} + +## Dataset info + +
Show + +{{< include ../_include/_dataset_descriptions.qmd >}} + +
+ +## Method info + +
Show + +{{< include ../_include/_method_descriptions.qmd >}} + +
+ +## Control method info + +
Show + +{{< include ../_include/_baseline_descriptions.qmd >}} + +
+ +## Metric info + +
Show + +{{< include ../_include/_metric_descriptions.qmd >}} + +
+ +## Quality control results + +
Show + +{{< include ../_include/_qc_table.qmd >}} + +
+ +## Normalisation visualisation + +
Show + +{{< include ../_include/_scaling_figure.qmd >}} + +
+ +## Authors + +{{< include ../_include/_authors.qmd >}} + diff --git a/results/grn_inference/thumbnail.svg b/results/grn_inference/thumbnail.svg new file mode 100644 index 00000000..61d0fb24 --- /dev/null +++ b/results/grn_inference/thumbnail.svg @@ -0,0 +1,9476 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + KLUv/QBYRIgDKuBHxiiQRESaDwCAjVnbLxr9pFqsNY4gAAyu/CQ5TaZSd63xzIhEAAQCAACADgx1 +DHoMLTxvtzzg17VoEylqJ263ut0+/Lq2uN1e8Rugrbf4wwLY6m37MHv7dLv9+sNCb6Zb/qvtZOjW +jVsb5G0aTfskgP+OWJ9k1y0lpKKonbJb0P5RUdRO7xZ0O33xm3HjdrPj/7otzXYFqLNuHd1eO0Y3 +C7op+mcT8OH5hdO3luN32+R4a4B6iDPZRpOzWdDNdwv6XfTvwF/A2+H+rQQgw2IQ+j88acnqr+8u +suQCHhsga4k+oVA0uiJdLduE/dQfzJZFWevb8SvKWrLOZwH0d1tYLdaz3LrdepbFWcALt8RZQLd/ +/e0XFsB81+Is4LXjVpwFtLNMbnU4lu24FmcBix/gw2I9k3X96Vkmt8R65rDLumvRjl3t68diTbfx +yxJrWpwFkLKLnmFXtGMXLbvi97/aOY7bH7+w67tiTPby4odZH267yyXTrQF2bb82Sy4Y0IJnmNXG +n36Js4C41apFl27Bry26tEjP84fbVk23LDEme812/F9aFl3aL140DAC0DJtf2CW6dKzVwiyRhlss +V5aJNNx60fJc03Arfr31dwOIcwvTP4AsunRrFl2aJRe8LrkV3y6xpl26ldkvqzZL0vVhuiXS80z/ +AC+tbgNYm/vj1/XVz6Z/gFhuibOAWbbF/2plr0jPM/xdWebOMwzLLfrDdu3OM2zXAYj0PNPz7Iqw +XcswkZ7nlkjP84Js8O4VCobIG6a3W6+6ya7YwpIv23+18ytu6S9uYdb8xmoYllsw3Mq/pn+AT4ss +uWAcec26QXYsU9gR6MvaDTsCoXbdZmx5M27ud2m59T+jqSRAngTw39H2wS1rC5CgeZff16c3AR+e +ZXJrm1+4VdvxS8/0DyDPs9zZ/qu9X3Gb2WzKpqZk9+t+zemz79m+ORus/pqtYUF73+rNfenXNqAV +f7qd67il7a1hQT0N37K33ug/t/PWeL02+5ZjLTmOsTa/0TIst9qtwfClNz/M2r7dwnL9bpz+dt1+ +Ntm+0c2CftsjVrcybstzDcst8Z3dxQu3bjsrSP+RBMiTWaZTFTsCccXX2gJ+aPsB6F9/urP1bkEt +KG2DYPimWNDYZ5KmqXjF6G+1FNv1M60N+rXLVYllALy0XPEAeEEw/FOyFbd2/aqv+A3gvyNGabt+ +htF4Y9HEdv1M9wrft75QLDxpu36GM8xbTmH4p91+W+3M4ean2XLBMMuP7foZ0jQVoZhM2zWv2xdu +t9eOW4WAb28/fmH7ljf6uzbeLWjJWPTFoqZfCmPBO1kyYrn1QQK+G1s6YzPN7rnoFwrGtwWsMPxT +188oOsnYSN9gNMRuNhaTkjHLobKx2HyjM+zWBg2wX/hlvfU7smGv9xW/sPqN2xEtyzDlB3jtFv4f +lfvSrJn4mNr+dY1+mNXatDwLWEe79apo+2l0lunU/Xbrwx9UWz5oxytUi0jE4L5FKlpluyjLRMNt +28RX+DLRlqRPuBSMXy5Yi0VvcMbmG4xFjG41A1p4rl+Vb74rt95YNG6Hvrl0K7NsGv16LL/2W8ud +b1N12kcOwf9jx6/cCcBVmwrf4CQpNhYmzHbfAAQIGDCg/Z9x676Xi5LRaDQapkia3oa93g/zsCxP +xq3brp+RybYts36LvmXQb71wD8BV95e1sT+Ibn8sx+6PtWQ4gKOm2wABHP4hk+36bqnq2PtiWCag +tVv1w7OsrR0BHvW3b9ZL23Ybf9qFX1jrUdsf9GFW+9JtgN7ardvaX9bSNDrOA2w7toxb44bbAKpO +C7fDl7Xxd+U48V05hmUCvu0Vv7QNGreDS/i+K28ymtIAun0d26jqtNZu1YYbr6rSl96u30xj0tFa +HU0DQInV2fjGtW/bH247brx29NNTNny3rq+eGGwB6xLwURmfAPhmBGNoV2lWxywAqLjdg1Ze4BnF +lpT1tQv6GphH43549GUkEfxyOqURSfvH5vrquGmPUXNLn9LGNXfjqdOm2XjfAtj6VrDx7bJxbUBp +4xvX2tLGTc/onZt+YZadN0S+ld2Xje75QtEoOcP3hqJ3kiwbvbFQiHxrcEWjwRfe7H7RKBci1zgb +//Ase0GjFm5f1m7G7QB5kZYMowMjmUbGFssx+mmOLQ5AjjGjVn94gA2yabTB/cY3znnfSr/xrX/a +4dPceBW3wwhr3XJoGw/0d2nORv9XG7eaLZEwQdvhzy0MtLnxLc8yOf32e4M2+rvx64LZbadk/7iF +O3b8thm6jVv4B3gztRt/eLLBatabgbXsNgAQLduvu24BXrv155r+rfeF4Ta1adSmUZjddmJO3IFl +OQTLcmiD1Tc92ehv223r2/UA0Idbr023HVn9zjL8A8SrjJZdX/22w/bpFqYc5rcVv+3wit9WS4e2 +bzvYrV/A4mzuB8BLy3brjz5NdsWW+ZZpNn5fN9zR5o32il87fulOLG9U5qiCZZZsAEg1ah+e53bk +pd/+K/4AkOGx7H5rbfirI6PRNwEyPc/tuGj0DW5br9vSo9no2ta+vowzNhh9g1v69e34Hd95tFu3 +K9NzK5Pd9ehyvS7cvjbdzuMtGzuja/S320+/xrr+8AD7jV9X/I6KRd/g9p59W45HctG3rugn7c8D +Qv+mQ5sbrwOhjY/jSbU5XvHryq14Jb/srkOqi7mGtFim29YY+7H8kkf7bmHZTbev+IaNWqu1ZXf8 +AT7NGmOZbrWycXzr+sO27IpEIg6HY7GMmsWyruiKjpobt/Utw2z6z79uWfFvufJL/3mEWS7sGl/X +qMn0vba0yzTgu2+A14VZruyPsLp14z9qXx5XDoqOv9XO9Vi/9fzC8LddH7Zl2Yfh936NWvzSMuyy +5RhuW+9LhmUt3BLwxzgA2Y3l167/PZPH3/74he9W3cpcWh5//Mav7LtcWr5lY/wH3PErq2941mB1 +C9eccUVH13dtORbHGN3KvtvS9mjDXi89YJZbo/vpT49aDbPcuJXR/zXC5pZ+tXQ7j/aH4Zs1xvJr +t349vuIXpr9dj3b8W+P/9Ou7I/1fr9a9R+2+71GWZVketfh93/f/P2q/1bajgA+7ZHeLflvt2Laj +aNQ443fh196M375b7Tq2MPy6v5WOr/il0bF+60//10VHhu/bD9DSr1HR2D78it/62/I9GxukdtLm +2/6glwzLdKfrtNqOv0wmp268dp0G0oica1KVj79ttzDFl51hdsWi0fAN7hu9c87Y/MJ9aZYszU4y +GgyGyD2Z2Lwjfl8vzfmvttMtAvjvyHS/yo3XAL7dxvS3YVS16Auyb9xU+K1RNjYGb/SNYXbf6GbD +NEVPdsZGckXJO1d0hSmSvDM2vi065ySDl+VC0Vg0GiLfGl3kDXNrLMzE5vjvSA7Ff+aoeLegnVZu +pXfYL1UAletV2fG3YzlVxe/rT1SLXtN/QJuR3RuGfcNy/T/2f9FtqLcwxaZRlQl/V9Y0LGin9c3x +4bYF+i+6zahKb0E7zW+O2n5jEf3h+8N5WYJsGv2xvNkcAfw3wCc795u5YChKk3eSLEWz0XtiY5Al +ufCmqegLceHLnoDfkMloNBRmyVB03hVio7GZYqPhv93Cs+yHVCT3G+eKOka3slmmD6lYft/X/5w+ +vjkm7KfrNL456lf82vYH/Vcrs6gWFrTTNsd/tbVIRVrQTmsoFJuD/izZvXHh956ofLegfbNbGS1T +PvxSVKYF7bRXPIspg2IqKArFIi09g+Ino+zDLJmeVfGf5fEVvzG6lcFa8Z+o2BForO3WL5DpzhjL +di1PVC1ZtWu5MwqQWbNMq+N/tbRsg9xbhtNxAN3SrDczvjAAxpr+tWh01B9+Ke53/9+0rdf+AeBf +2Ry1HcuUWKuFJ1sAMgx/09ba8X+1mi1uB6Sbo6ZlWE7r+rdkumPHX3a3ZLXrtJKTItnom7lg9EXv +om+YW0PhF93kJPdboyQXvNE555wzxPp/3krXaWWjb2TD3LjffN8cAuTJK37d+JYnXaeRDFLRN8cH +wFvXbYC4TbtOK0uH99vCj4yx9Nxvjm+3aiy/h1eAWhwwy63NB1C9AtQq+G1jluyG2d/m+LD9hrpO +O3zb4c1scfsWvLCBb3PQMkVc+M0Ry29N/5GKYUG7TuNi6bfD56Nlu6Xt+oZhy7Y5aNluP512nbZx +kUx8luyiCVCH6wKd5inEHjWZGdGHKsps6rSaZRqYJl4hpi5uiqnLJKauhJi6uPg5xM9Bq0qlkor9 +HK5SAuzSuzRoO+3Quaii1t5pqcHFZxM7CmcGF2JmcIGxehQTYRqrSXnEyiNWVELE6s8Psfpz77k8 +tVPP5WmnfaHncsNB1X7yoGo/eVC1n8s67AkqgUqgkriq8BTTPbdDEfIiu5SzRoHstItMu3yYHrl4 +oqNAFjA9crnIRA048tJSALMUHCyWAgvBtqys2uHr065POwaxJ1ipvCqvQ2VF4Fe+E/iVJ8RKEw8r +TXwlYSpNPCNGM2I0g2ZredKI3YyYZ93vw2FpEcTgZ0Zs5lln1wzaAcmitDPPOsFOm/uqjSpq7SsB +2zhXQsJ0gp6VG6HW0MQmTCe4kivBQRtNg+56oIiO+FiQB4Ji6JygKmtC9fTRN+UEvxXM5JRWghlB +0Wmx7CaQuQPpofEZmjGUSEk47hTVtCEjcgKwxfcNo1XIljVlUKdMBF72KRAUG96gcMjqpk2Hk6ww +I0GTDaPuNLelunQPtHFReC+gDOoBU3mCZxGBoPC8vADYaQlxddPeQKDh8IOywui0yaeteKSPGnLp +Rw05SuwEObEAFpoal0SnrY1LgiMg0YTKEye4V6jkY9xwqqakcOk8WilIXPhsWjajx0xhPXYiMBzN +ELA6uOFiFCxgIKBi5RnF1KUqTXw6imnNYs8MpkdAU+lgKplKYM1ixdRVs2qWRvwcLl6IQQweBjF4 +jgUx+LRCsk6wVKJVpUSnSUgz1Aw1Q81QLIk1aHun3aVB29NBd/EZaoYCQW9UQqHWnhpcfmZw8ZnB +Rc4mdlQCD6sKn0UltnGCHo48Yk95JI9EXAdF9DSDInqaiNXySB6BMehE/ILP+S/4/Bd8/v2Cz2Ud +FlSyIasKT2vHqsLTclXhKahqP5d1PqBy5LIOe4IYRaeRnMeBmTEdZnaIIgZDx+BxRDTMTABFERIz +j512X3pEG/gcrgs5axTI+9IjF9lXOgokeZF13qXwOQokeZEhtHtuFMj60mtWCatT3la/SFqaGVzc +UnDoNEstT2B1yneaJjSKkJaCg/fZqS9iKRjM6pSlwH7VKT/5tLT6eUBQOXKtZrEnWFGVJr5XXqqP +SNV+7kXsTuvs0qQQsSsvEgvCRexOu93SxPu1Nbi80yovtnGGpO98NBo1YifoYd0Ph5UMPsTgEexN +ADH4yae1GbFO85SCCaKzruFWsRBQho1eM4rszyWUbqAatKGD8I6ddnsWBWQHbb80Bg== + + + Jr7TZo5RA/kmoWnQXXwl+KgfNnqziT0TKmrtk0/rKZAehp1Dk3dYaTyOSMJEYiZ3yq8EX6gx3CpL +I3aCqyd2Ptfo0LQiTtTaY+pJTF20SnywdWrtMilWf47QRr/gc1mHPUksyDsODJ0T9HTrmcE8CuSh +1HYaZv0ioMo5dVHYwy4KO6GmyJqwW09fMRTarp7YxhlTPQT1w8ZO/bBx4mcSFNEnnzbkfvPZmRfe +aZNPW+ES0Ox1TtCDuFUV3nmrCu+I2MbJsSfYaWotTza1PAEPJoro4RqeJKgcuYVHDD4tsY2z0wyl +CTLy1ZYdoO80npKFEYK46QJJOMGwAzH4Tit4imhd+QizYdQfU9lprebldBXGAMHDKgqsytRpK3VT +dgSF2FIGqUMJnyLfAWaStLcwEDzP9Wan0wqg8sAJwOxLZFkMogECy8mZMqhRptThsygQFBoEp3TH +6qZLh5Km7xJk5IaYoRlNp9RxGkjC2TGNCHWiAzH4Af2JbBj1OkAR/cCCvCNBYyCsKlwdnAbvUlAl +SmqwR0mHBSNqp90el2CEQGBEBV0+QSVdxknaY2oIUjHPhFjpIEfAI0+83KDni8DFZ3P1eQGHrBk5 +7kmDCsyRgzdQUNGT8XX5QSTSWeAwn7xzYpn1iSCAgpSbSKdVGPUodtNpqC+n1HEaIB5G/fkwQp3i +BGJo1yhVC9VNq2Q3weFB4DC85/LUKfIdOq0PbBiFzlzTIydA067BydVVGA0ZVdMwxQfSaZpbMSMg +1g2j/uiu1/THCciwApruOIFMRhQhYfYTuoQGlQPJIiQ2NKkwxIoWhQSOBDSrfnQa4cE3isymQDC+ +XJGpcrCMDwRTpWgCmWmqChGYaiDlSWQZdadxOo8UPQAbRzQpUPMULZcG2+xI0oBlfBgGjKJH9eMc +8CyjPLUoWiXPnuPhmHFk8tz0smxMRC4R0iZGZT9PFNFr9EQfJJwQdSBWPIN6fZEvE5yUmExVIiAo +lR9BuOkcsVe0AVdVXQD7bMBVm+IKFGKglOImapIJDQoGnaBbEYTCARVWIaU0Q0IC10zCey6fvHSB +hJhMIgkS7zTNqWTtQdvRRoHEM7PqfyPHoLti0IUlIihqCMFohpotRKMHQuWGCIlMpzUI+Iirq5BC +A6qwWgOO5bWEJisMxEUolAwBiblNEMykOKbT7lkGxMGTHUtBHHEK55mIaUOeRzut8mGOWCg1jJYp +w7gHlkHdaaD3XL4YODvDtisLjyzDJysLRfRPgXEzHB2gxFBrh9kBUTQXjFj9eWkAixVfwpTaWEbs +eapIMrzT5oXncj4jZqZMVRkgeFj+NWXmYui0zR2yAhw7qEMhmcJVJhQFdTqCoh7FTqOkUp0HGRcY +BZRB3RHAUPjJ1HA9GAWDoXOea4PSPZdn4FlEKAkogxoBKkd+kb0rF5lKmu60w6lFcQRFuH4RsWCN +QaErsPJOk3XYk/Y6p6zDnrAMOW+K5/ICL7NIdNGqRZAkiE47QFYrTqBDfI7VvRHBD9B0KFWT53KY +NU9wNRnaD2bWo6ipfV0mMD0C3owMKSoGlQcIU3wgNMRzeUh16d6sQHWrhhRXf4+D91zeaRdURmQy +MCaj91xuAXWHaYahvGWnnovttLOqcFbs8JzM9jTdaS2sew62Ld00OSUVkRuofKeh02mWbpr4D1SO +XG0RPA6tPU3XmUIjQ4o2I0OKCNsbSQ4cCyQ5yKjphM6tQdkBV0dyj1IdBTkjaOSEvIPPtFIdSaeN +Bm9CFhQqjRNFoYg+OaSc+QnLuvQ49pTFVXoyuDxFJFLGzJXgxEXccYkU9LhOG9tSGHoumgCtGrLK +STko3B4loBFlQJVobJNFvLHn4LQUFVRza1aTm4vQdPpVFX6uOJEypsogt0c7GBSH3zBGq8fz3ZGD +TqLyrGzWjDNWyJRQBCwH73GBDh6lqVO+LlcBiihEwEE5FOtKaRPvnFE4cM85pJwp4MqQYqchFnHH +8UXccZif4CYlDHIDBbCQYz9qyK0Eo5BbOEQUjwsHWqqQ41B8yHUayjAmOH/gCA6m+EBAkLCqcNnF +PMFEC4yoYUSCWYD8ZjU5wcCI2jnMCloxKQPqbGXBJqFTt/00cyikZkNCScvrpRkHIYuSnSZTNUwJ +Z7TGaB0jaNBx5X5QzKkjby4HA9dFFI9rtCWPG9tSp00oPuRci7jjPCSa4DBiC+TS2AlyNncYOFJW +4HEIS+lxrBOU2JBogttIDiG3SEGPCzkQj4vE3gNH4g4D51PQ48BF3HGdVi/UAhcqgIUcKMFIcBux +BXKcHS9QRG/B1WlVYUsqBXmyw0Rk9MgDFlEH1Iamk3IIvOpR8vkT0gphQ6tGpxHAk8qHDOCL0n6x +GemYqyNRG5+DT+dConvkE4Z+St/iK15YIOvSc0g5kyKbHtdpLEvpcasU9LguK/A4T+1pmhArjVx2 +oIjeERAoJSlJs5p0XIoKahpdUmmB5BKMilmPYkw1TzByWVW4F5MJPDcw6UhmTr+6fBc2o52igCQ9 +MLj4Tmt01uf1IAJDM/yj+pOG2AlF/XF+mrhLbSEfQiXGNlzqxA5FyIeHdHgESq8BR07asAg4asCR +j6xRBFyszBPstHD7rtz6qsmwWFIQOm6OTbMF/FDvFvQBw2hLzsT0x8j2jbIj0Nv6dMeOZYoaUgX8 +EDsCuZ8lW9kRiB2BXK8OOwKxI1CJHYE+PL82fGt+gBaU2hS1820P/85tuvbX9drxdy32K37j/tr1 +V7nFblky3UIHkHrotduPHcuUF65vuBVbOj5GywHYNCqTaYrCjeV0QEuz7e0Z0NJs975/+A0NaGlW +YXqZhf5XK7PEAchqGaNbDf1fTCy/XybTsJYcy5oy9GuRD327pX/82Ted55YO+df/1DG61cheOjS/ +dKv+qhgHIMex+N7q1yVvv743uI3V2LLV7QZr3fXWeuF5bjf7lge08Na+22+18LzJ9ub+H2+3PICW +t/Dd4rd9veLXft2/xfIWBw5PoB3VxECFIoqQLHPAPEGGxq+U8hURDUw8y7exkUPSQts/FLX2BANF +9M4O2i6K4G5V4QnzxbII3ClfIQcmCBDE4EPCqsITo0HbQxW19vDDGrlM9FzeZlgj77QVGTLPt9Q6 +ECBOE9/I+LokxWgInTELWLp6eCI0dUBECi4aP6aRpycDg8CAJxyKApa6DgRf5JgePUV00GIa+UEs +HMQ4FCFLnZHXbmfVKc8/nZHXJYjBi5nOyO+EpTPy0EQRHUw7DbutcARhVeFexI7cljUKJGiiiM45 +7Dhm2JETJCgsAShhDw6WZ86Ri5QzEzH4UCLgIFg7wuH4PpenvvIc+WQeRUgUiYRBK6XRCo6iKKZh +xTzBcNBdHFExTxARq/9nqJgjYVXhNSpBWFV4qCpNvGmCGDzmdFBRULJC2y0EJBJDYn/eyJBiQ2yB +HMoTJ7gTfg9cpxF4Y4LrkGiCe8TOQZv4uBJJE5YKYCF3U1IIbuMirfwGwhC9RkCm+smEXH2M43Bx +Sj3QkRhYAjR6PjLGP2Mq+olC1X4uehwRG7LSdBqiEesrDdx12kU958qh02pCp3k95LKEn6A6VNlz +lNDSICWtCnAlQzaxM0RBJFRvp3EnBOwrF0DJzIrTuwzEaEZER9WRvIfPhcf1qPf4gqr8KfGx5GRB +kBPkrB15p33CstNInSY7UESnQS4OD0vZeFqK0DqgKmRmBb2s4MNE5HTaQyYKO/gaJyRdWGV6QcD9 +oDQI1ZEzPWtGhADMITGUa+9jp5EUrwDYaXWiBXKX2AlyKc5LcOI3AGYoPuS4r9NCqR7UYrQ6wbMJ +e6edXAAlC+bjRSVtQfWsgAcaCykqes7F/aA3qbRBWKdlQBPS2mmEV7pRhDSfoN4FOXVIPHdw8YUU +qvqCkRyTzOBZM45Uq0NSEXWwxEZIWr3TSmDEFiilLn7gShEu86j+YfEQr0SLK0V4p7UEYf9ODgzv +tK/TPkOnhY8T5IVOpAnJ1XGdtiDRRKlxSXCc5BByGEOnJdoVSnYkkouT1tKLzl/Eo5lM+T2lY7Gb +kaRaY3TWithOiFlS5eq0OdVpnTb6EXkAwtXhg5+oleIoaZpTUQgKRCEUhfhEFHFoOkFHxtelY1XV +BTJz9lMLWGp/Q7/d0sSR0ocETPGBHE7cm36GThtn7cgXmdVNF7QwSkHAMRUF7TQO45JKxcSBVGwI +m9VkIqCooBKFooIuXqI3fqGJuu398CWwZE1dmtGQIT2yIhI9avHQHjl7Exd+cxLVowQRO9FpfdZe +Oq371gcSIeguThNmiA/r84vHEem0s9MYnCKKLZDDxE6QyxjGBAdaUQnOTxAHrtMGZt+LEkqL6hFj +Apasoo/tnMKyGbtSbPWZJ3b9/E+PHjKo6BMDs5F5gnOneZKAqzj4Q6dVzE7rtDQld52W6rRO6zSD +AErCLCdThSWo0xCd5nnZEzbXo4SfzAqKKo1g9owzAw8CBwG9hi3G2iBXRETttPV2CSpj1CMPEqy9 +VS6SLQZgSVzw6F2VdQzHlBfRe+4Ths4osmbstJLmsUHTxungO60XJUXQ7LSMrDA7O4sITXvvufyb +YQIEB6nvjvw6reOI0HSn/VHNO81g+xmphtAYhGVVlFrAPLSueucj8oldHpKeslUUkoAoqp6kOMFO +mysH32ngKaF6RKd9LCJi8CO6FCfh+bofFcIllbqfQoNymoQGpWDTo4TTaW+1QMCCTQ4rRa+POeSS +bFaKCpqyKQOqwSGH6MWkbDwtVMLnEN2YJqTVc3GSrpxRR3IYFIgkhAEX45FW5OKd1CQmYYiyZlS5 +kYtP5NQhSWAq33sm95vPTjv1sFNI44T8PhOkML8QXKe9neamLt5pMI5itXIhW0WxQDAjyR/VvNNI +nXbwzkcEZiTihMH2nu+LTd6/OiSfjIOg6BcZWilFg60WRqKzYvoYRpJOW42zWBJbV+3qHSIFhUof +VZSRpym56zSaNAqhsIEXXGtCpxViJ8hx5lnIFUSzgeMkGAnuMfCApHkWcvwbALmLqwo5SgmDnOQb +ALnNRw0JeuiDijqnBfp5jwYtCD8X3mmEEfYopETweQKK3YyjFskjKxuDKakJShNf4FWUka8Ilegc +O+1gybB6wnt9bN9UQnCn/MS7T7DTBo0MKXockbNE4CUMWmdkGUqbzBNMO10NG7gDq2ho2zXzqcwW +MO4GoTG68R+1YSGqqNgQm6TpTFB0GoNkTMiDijLyhKzVkYYRRXAPq3I0SrJiiCulVx9RVcFQDwlC +1fK80xqolWmqlJSkw5nEas1jTad1JsjIDYsY2EVQOXKayzwkrUFs5CDU2um4g42VmUiJCEgG3w1C +L4qTRf0KHiFU1Vq1a6ex1JR0EGbPpXruWITTUj1hAELTaty5vNM+tcelFko1hGYEXhyUUAlVFBNd +kSWzkmEkoT3Km0pkCWrtBfXDxoQA4QQ/wqrCRdl0liyVj3J3oQo+Mr4uuxlyglwjQw== + + + ipva07T9KUf+quWkwyqlfmUWFR3RmaS/ncqKIkhDqEpNSQdqtjokhYLiBBmrTjsQVhX+KEOa8XRF +Lj6KlUZuWHEhF9L0gauUNCHnkmiCO0k0wYEoPuS8gQfkPoYxwVkIRiHn2AgcNhOxBXISsQVyjYHN +gVPYowCNkiYW1qCFdIT1WVtQfZp4P+MBYmn122Fa+UsoWaCJ0qjpIljGVpmnQQPKHfME3V/gXShE +QbnVppzDm1vd9DpwORcm3C/HR8nliQC7DxbLydUp2I8scAWSpj17oZrBSAoN6DPjaLzKg2F2ktU9 +I5Bui+IuGQmK6LSur246/apu9rTQhioz8JCUB1OSaCS+5xjJAuX4wwbNYNpScqeyZow99/M3dD// +PA4blKSpU/6RGbT9o3k53Zh6aS5hoQxqCoha+4r6FQPMVHwBz2noUEJgonUJDRgO0MqwUZXeo4x0 +XDhDAyNC5xvar9MWvpuINJxBcXbkl2syE+qT7bhpiyfXtCKF1rQhsaHpA4HAincfxIrHCYuKl0Q7 +xTExToqrrAiJFy7ziM96ZsRhsWHEXVaBiHfaJKICcdPwAHGxRmh4a+CU4afJIsM/d8jySipF4ZK1 +QeHkvFm5AYYRgRIacoITB/wANSCH5zwgGcFRuMPAlYu44z5TSnROPIQjTUjrqyIw3ONbGnTmEWG3 +Bb7Fc6qU1VmJrBk/78SUcEjIBv0QRKZkZHyrT1iqKCM3aLzMiGVm/ExiqRRDDD4lmZ/D9Tk+h4uL +n+NzuHjXDNouagZtT81Bd/EZip2h2BmKVBp0FwcH3cVnk2dgQq09FWcGl0jrRIjDJwTGoBjExiAW +xIK3ZFXhadt+nlC1n8s67PmtKjzFlJj5ABFFSMzcaZguipCYGcF5HJFborjILv6+9AimR8iL7LsM +MD0i4pgkrE4dYHXKd5ohXb9IGtcpbxFZdeq0fQVxq+pTVeq0Hgorr8qrPm16UZK+85XstJVAlNjf +y15H9jqyJpS9jtfx6okzdE7faepJRcy8zunVk+x1YhC+KYrOIYMqHw5OIHQQPKaywmBPm7Xk2TC+ +C/sZLxSSZZRBbSo/socA2Fc33Wnf4JGBlcoKg6xBR003EuxqEqLwThvdkswJdAiYqeG0HmDH4WGc +OIFOqzA2cDeDzBMEMeMkTVviJL2EFBVUQq8DashEGVBNi0io6wO2ROmdhqmsKLkB19450LkZa1jI +lFBSkN7h9ubwWcfQkRQWi1aPRUw51pgnKKpKEzElaxZbs8Q07TRalYIph1T4g7an5aC7eB90F5+h +2NTgZwZXODO4wpnB1WmziR2VRqWRBbX21MTKI0+CsfrLI5GoJCp1mgcqHRadKEJyHkcEM3sYzuOI +YD6PI4KZQwPG44jYHUfkYs4ahfvSL7JLo3CRGbqjgOkX2WDgKFzGWKNAwuqUR5UZF6+8ysrL16ft +ReweViqVF+n7B5FINYO2d7PMoJU9q9NWgpVgnUPTuRKsBCsHta4EoekEZRFVZvgDRXT11Gni44Ei ++sBwqyevI/M6sot5djHVTXMQzuATOO6dSHRR2D0LJeQERAoCiiMoCJdXTTs427JGY6zrtE8lReH8 +ZTLB7IwgSRAfiYeRQt2KGaHCIE00y5ocOyAwqR5kXCAoOIoJhScIKAPUoYx9CqwPZs5ywcDHDqP+ +YjLkXMRKIzdVmATXaR1XFXIKNITgQq4q5EAEo5AjfdSQ6w8MglMlGAkuEztBDlQAC7lF4fNxAwvX +B+0kCI+cfBxhh2NyRzLgnw86Uz62Y1x2MwbirO20BsyendZpjE6TSA4hByppQo5OZOZZyAkQDAgO +tUK+R3WGmWQzEOi9cGiVkk4zrJbNKPpcYJ2R6WG3pCVIenTKlHTzZQR9odBp3ovETpDjBAlGggsn +iAOXUnx46DTNxj14kzmbEg1Iv3rdTR6puolWtzWTmIQWzZ9xIYFs0PTVMXx9Q4/jr9aTaIFcSGyB +NncYwDEFPY7QgqAQCh9A0WunjcoBmXLWDYzksplDlAWJ/9jqoM9F9InfKSSP14DKX2asUnJKZM34 +OQggdIZahT0jHkxJqdMWHIjHLera48ZxNbMglylpQm5FdgR9clUhZxl4ZO4wIGTT5sBBXq3HJSyl +VgvYo6RURkKUNKKooJgBtDKCFDlEUY9mNWEVjGA2bk9OnMwkGszqkXcNczj8yYT9klhZ/VzImtFA +SB386aZh77QB25tJSAQUB7GIO45jpLOxE4A1mIGHiUFEVJCsqKAMGkWXo9f98KwkjgTD3c8jberi +NIfgMxJO1ZQcMmeMdt4BSkq4j+pfLCf/T1NkNxY9tHDz2hmATuu0xKjTOq3TZJeKaYjV3/T5XG6G +Su/KIyUW+8LPhABKdhqmhDBRRO+02WnTC5HQaa8U9Lj54whOFOAOHIfzElynqW6uFkk6zWu/6Ds0 +5pFogaLVJzGrlEgWsmZEsWQflBYTHokHxpgSA03pE/JzzhZvqksgGbOYjgTjQXXk7M00o8dVIkla +GIV94CU8ElG1UZ0GdiAG32mMiiWVdtp4MCcOWzw0ICLWMekz5PZ6AS1DBAkl71lHg5pGoxe9hFId +nQlen7HLjLBuoJwxmpEJCskAyEcSAwLzqmXM5FFWsah0ezCbErZi6EgoGoLPyCHRrA7Hpwa9N6Aa +80gTTG14MeUQubiC9VxueXUM19DjhKRYwnfsvJ+PgAu7NPGQWuWRnb9PkGtQRI9wpJXvNIGXX/3Z +HQWScXp45G3HzpBFEZ3TWFR6+fCRs2IoWHwY82xHh8jFO032rE7DZEyuxdc4uRadJoI8PCwLQfAq +RgNj5NEKKW5y7d2egR55/1RHbf5+xrsxwrr8G6bEg7y9n2CnQ+RyhJux8bEkyTQAkrQjpRlHqY1H +agzli0pekYO3rJOYxFNKL9ppcyZkJEIlTYhSfOiA30On3ZwoQioeduzCKRsSSnbagPhxnsE80oRF +9Q5OpdUnkvAdPyTSyjMaH9Wvks7nZgLMhJ0hG3nk3R0ioO+giF72OUN+Dl7izmzvNFNp4i8qWeox +GEcWxOBBhzlyrzJGHnMGxaFpNXVkceB0UFEGTimiy551qtrP+eeBkoVOFCE7zfOwJ8hJ5kgyT3BM +PapPtBYRtey0D0tj4ELJIeQKWPJw4Aiu01KGJ5oNnCyGvBkMV9+dLY9+KJqOxI6FHskFcerIR5c1 +Y5euHtkpoB4JQoTCOkJTp3wtIWD7TGMaAMnvVQLJDXlS/cUCAcmZgGD77JA148ATmZJHhvX55nSC +oZ4foOmA44gtkLuILZB7IRbmiPoq6ok1EMLPqWgwJI+UwKSVr7ivzy8ehwjoIdEoKdA7F1SnmSB7 +4amZbZwrkafVTUpL5R8Jc/Ixddpnooi+slDESGJPcJEyT1BRsj7nJdbIRxErwWG1ZWta9ZB5grzj +Dqxv4QahLwYk4zn4SRdmYKWytlmSgEgSqDBGMpNrMaNP9CqemYGHpzYbYMhEGVA9lwWbhRF/SGLQ ++0RUv2kXHjV0YI/KDvbzzcSyGcMx1eqff2BJWeY7XIxPGnRkMkW+rvzMdWB4T8R6n4hSVoelBJ+x +0zKdfnWZzWpQGYvVoDXmW/zY8qibslsFJAeYIeyK8FD5OsXQAZUG8eOc5gzaHhHwSA1Mo6QHO4aj +lPAdI5bYhXfOwSMrpc47ZtZTqzP4jO2dtlpiYFdT1uebgortmYnAalkllf7ZkCsvSk5ufETAThvF +SpvKuvLg6bn80dkLT1xQRJ+UBBKfrmhnUAw2TG7h9UiVoPOOiD6zukAP37ETYHBVCDFH3utEq3fa +AR20Pb1NlYZm9Jk8WHkVOX0YXknRKNlpDfc+eMqJfceVgHXhKSTSbhZn4XsUHJH7wSaIQTRHgo83 +ELRHhpqTiQMNHD43tUA3pehU0A8RKNBpNWHsPGSe6hc7TCocR4XRGcG3Hwv6OjFo1BCEDMVu32kD +7hdRWZCTpisQiMGDOAtGPaUedPJRawcHogg5a0fuCxwYvljEwP7NRmCsRJKpeh+4wBpUPdmfe/cJ +Q1n19RlDrbHVLX4kknT8YYMiCiwKOQ5kIKBiZdKn8EStXWEvMr4uNStOpDw4WBtEWThHchG9H3A/ +qMohbEZLKtWRYNBuJpGZQo8WSKjK34jPwdtgSfZcfoKDOx5rFMhLZV35RAe1dlWUsp2cgTTjoZSl +n6r9vJuhS8Gi8pbIqdXTBofwkoUoQm4GBFYvUBBJEYlUJci4OMOEWrtaFyqdEnpRsmEpJHqnXQjY +d6RUTJ898tkyaHtD5D2y4A8R8GGXJp6RgVW+YPoISLKey8uOgNVZRMSgchbVdxqlwSE8ZdaGlbKg +u3jl9fp8Qax0hmheeEdjEq7K91bsnJRYF94oWZ8fBt3FUQzCdxorrzxp1o6cMUrESp5ojjz0YKw0 +ctOg40N20PZOi6nm7Dkt1VsGVC+SzBMUIRXVW0JSzL0P3od6yTRy16KGvkFCYRkND+NyaHjUkHOQ +BiJH+AZAbuRAPM6FIx/nwjxCbqClCtu6gDWQYn+hY5udNnlIIgcPesasHfnsAzH4lCB1cc1N8Ejo +tgAaLREBlJS49oUzPvbCUYKC6kMn8OI7zfV1bMcHKtOOPVqFnXtBjwxRVr3XnemRsixR6Zf3hKGx +/NKMogJXgxY8WfUz+EVUjrdZTTottSCgV9Xp4WFdlpOm0y+mJi2mLh4eOCFXEVsgN5BgJLiBxiXB +wcZf8BEIRKchEAS196BUA3dAHVCHQwmVOhw0oOkQm1ggtcK/7+sQccwRAb/v+zSoz2BAnKi10wwG +k4bT6ren6RhnQSZEUcFATFUwhwlnfziR9vs8EjIscU43qFYFwLFccQIdKek0QsM71SV3s+Wg7aiT +aUKvo8yVOm3wOYOG3EmIMdll1SkPDmKIWTvyQ6w0cv4iYPv3OSPvtMVEdvAGFcUEnSwkxzGVNF1n +RLXMBOEufsDjZh3W3a1KVij1nVYhYQRa7gqCgN7MeBWBBiUprukd1dKlGR8exOorBknlA09MiaVC +rvwDTGnGEurAkqxFY0rWxKnVU1lB9YZSCZKyWEBOfHrYNQ0ESoITwgl6BmiP7LRU/bDR68qzrqg+ +oX7YCHJtVn7yae84ZUo+/rGk5StAIzdgMCUFMbRALwMfjgSGTk6OsMcOk53w3Czs6ifD6pM2dXHP +dZVumROqP1QIZAykGVWXT7wJeXAhIAmSeLB+azzVD2DsZqwvL6vXi4hHcoqdC/ekqOhPHAMpEbC6 +yk+tzuNQhBTIfGFP60zYPbHzVXeC6BUMySMjjEPkE81sP9ygVs+IHqx/YIIG9TQkm3Gzrlh9Xtwa +VJPhUEiYsbLduxAW1T8+IrYrVM/lFdnM9k4TKDnC/nkjQcfwxMFzeWrpvGNIaal8GApPEGSCKBg+ +Ak4iK5RsC9i71Pv5KrT64PscPEUhsPKdpilIVF4mz5rRjtCvHv9Y5UGjyOK/x0nEdg== + + + EOwYrrqs14QxNCN60x75VUI3cfAmjqT2qD5ScFUPEUURUoMhV5+SkkoHUeBxQn6ZjUee2AGPbm6W +Bo0X4YXPFrJm3EQ4j3xlhxjvtBlmerSkGSB5JAWhYvhFQKZ6AdHn4gNadjHPVYVfXLRHWmp5EjKU +L2oPFB7NKLpKz8CvR3IW0spvVgQNamlFmlHjSnUk34pmOwtxFEiExzxB8hOpbMwT7JREpVPiATwp +MJUm/mBhR95pA9Wg7YeUPSA25glyXh6BUjGbsB1jnmAEwzI5z5wuGlulldHiBEdMF4UdA0LO1GFx +itxvPjGbUYS8rKAjfEfPLr1jKKYunuIkBm8AZwbXoWKeIPgLPp+d9gkaKrZK/OyRf2Xn88SsnUGI +zyuEIoeQ67SK4wa5i2FMcN/A5mDodB71SuX38yd4tEP5DWrpDFiXH20psc3FZjywHliyiZzUTiPV +DxtJd4QuCDQoOa4WtT3yxizWWr3u9cjPw56gmTLPshQRkITqzqXCFdmAYgVNE0++bPAioiiii4RV +hY8nWyDjPU+JbZwFhvgVmUqoFNT1qVRUggwphMzMDMDMVgCzEgAgIBwYj0km0/G2uAcUAANIRiZK +SEwqLB6SSoOBQCwMh8SRHMdRJAZBFAlCJZUzEwuTfD/+oxjFCqvO+qDHDn5zksKzZjBq0mx8+YFZ +YzCFVB+jJmODL1izQI2crKDENSlM8QyGzUtHSv/3rw+seyHoVEU4iwbIt17r6hJVfZNF4mtyXusd +lZE7P8Q6pPBxv4WDKfS0KzuXG3U4SxTFwSjHzyoHiAIXNS6SwT5MmN+3JXrELHNhf7ZAZmb0wvZa +l1l4qStA0nvSpxoXkMMZYTrZkXy0xLVVgIYSPQXr40AAMpqsCLXjI729pCAiSsG8DEAu1uRr6Viu +wgQ6TDo6g1LgahN2fzymaX/IfWUspLMYlILn1xWYLZwhGyuZwFbpmvyCjU+RBydt3+C6T/WiaE5e +MrdEtypXvmAiU83Ew9z1YRBuCf7BTwo/yamR3EvQwF/kBT/wS3WdueGvAMV0QtgxBz+AHVb+6QTB +igkdxUWjfIlvCzNN2PYfPmJbrDHG7KUgZXxOA/cps7lZ43dVYBDAfsqUP1TMn2nNjLkdvp2dp/7i +/fd/mIguzFwepBdI4OSasnbVB4toM7YpOv3YSX6/rn3CFgf9ecCAwGnYyfpnXrCN5dgRubRMG8VS +S4HGrggaOzJlRF23DLFW9ECgeA3z9MX0TdUIcFeGhfuxUnp4ZDmGFXvXn+SyA/a8IVexSgrYHYzD +dYAjHq6oeMl9L15xdaZ4Gd3i9X2J1x9U8S7ap0Lyb/BxmAlgcdtL7GChObGDDBY7XXXYWfnyYu+G +XcAQFDrpBPvox2flu13snr4uduXK24IBPR7wNX9+hi06zSw4P1/rnm8Q/PkUh+cqQdT1fMvCz6d8 +NvDpnh/Of74lP/e3t9PW4UD+70P93yb+LzQr8hguNa7+93v+3y/zP+r/y4b/99mfOOwFwBH5/yxr +wdCaGVfu5wRU75LT2ukn/+dB/R8T/m+XVMFVFFP9H9z4v8UUwLuQPfn/Heh/8vAf2/zfXNRibvV/ +3vF/j18jP4yk/zFWm13FtlmYFXGqAMZZezfwzFPI+muUJPa2vlxm2ihS9wWOGF2EVtfnGlXg1hcQ +glKHu1xkByimkpIMA9gpqXX9NuMCkaAutfZVh5NGSV5gOqVT8u4hRkGo1bPWrgwXyENQK7vW+piO +4E5aZai8IN3/kr21mebU1tALOqx3QoQFYPXmBeGBZYUpkS/qNQi3Ei8ohwYCQ2U7DtRADbClmOIF +QQNcDQLWz4oLGvDUgJfSF+lIaNBEDVatxEcEX11dF4IGzLC60ibNajTwR+ROcXV3zL/Tw8ebATQQ +Vldz3AKHLVgyTPmFPclwl40OoFZ7MQoNFHrfamApeHLuJ3QowBaSlTkaGiBKEA2GNPjOQQMcbz/b +SmwmW9W6BTFvq001+SADtNfRzV5y3nQXGoiPCcLSuIJAPCztOoyDhLzqGNoD+a1pFVVSLfwWMvF2 +auE0xi8WLN7YrlMJ2Zx88Wjs/WJjeBOUjVHHecyvbZf9thKNjKyVrYfah+S28mOCace320LfZatl +WxzSmZ1YvaArFVe5F0Ts/RW57qYiQhVImjRidz1/bwqQ5dpBKFIoF8MOYgpA6OE7gLwX7JcgA8zO +53K/H+QflYRnf8EP2nxAuwUxHRE9+Tc9jYXRQlOqOvHXVyMWIKILoJLBrcWFTLpgyGPXnMPVL0ym +6iK39k7GIDgkAPkyylcSrqSBDU4VEw0jW6Q323i/YZYDIPi+IagugIP+qMBmxWDDk78QiVZTXirb +IiTW7gGFLuwMBOOJ24ZUEMHfW8D8VLXzIDyihL/amW17+I7EYNdTnVqcjISKTIwm6tb2LHzWsxCk +60ga655cu1YoFFhLqaKTUtLN5MU89IcvW+qbBe/BrB91qV490Lvdgotk1hPVCOZudMxs5MKHEL8D +pGtdTJcr+RT7J8PgyQJY3q/ndRoHkrfVD3o+ElX2MDNjOhzLTsqnquUr54mQcEUriwGQHQAMr6oe +/9ev+ehhALUbEdd/j32t4kuPSRG8CvjvFNL+YTl1BbGLZZDYQ8Cls9WFMZ6mTeWWBvHcFqeztZi3 +XtPFVFHEhyACSyN7MQHywF4ZWzX02oFRL+YV3bi2GmVQO870T81yrRQ0CIm2WKP9X5lfEY2iXTEO +o20CGOkNfJhE42W0Fdd07/1nGJvoYI5LgAKy5swpWtVWwpgBhIsxZvvuEn6olP7m7fvz/g7IzbQw +Rfs3WsZw2f0TH0jn6uXpBiAGsdiz3Oaa+Yb9+96CD4ydsY9Mhs2YiIV4qR5Z1JM6jy0mQEp96+pr +aWVyZl+kMJDceRZsgJMnsNDClk0BiEyCCvvl5KJg9oXsyaFMxBhEUSROjsAsteHW2DdjtG4k6Us7 +Z871psJYipVWWKlgXoav1HUPrKl/Go3lh1moNfUaPzYDgfTKuZWyjkyJnDWZOC8rfFwSJceL4C7f +b4zmzFmzOTKl0Q06b1NguJvPSjiK1MJvLCztHyK8y7ceDFFRxhpvdURVq8uNBiSyYWQLiAajP3+y +fxKp3w/kFX6FugRQDEGHJHSn3m5KURX/Ok39p2NQg8HG+mdnOqW70GKy4Bgubl+l+p66lTBO0Gqq +m0dtPosr46pE1nvFIE/lbnYSlrdZZEVI0myTtHGDTVFz+siXwsXMcYTs2qFxF4nGhrrsYE0b5Cgx +x8n8F6LJl6EPcSvKPrNwPrGLVrztRHtXqgpO5JIv8bLScMsOi2LI3Imsaqz87HQj7RPJFXKQp/UT +qO3PVGFSiRkZFaw/vaJWYLrttGfKcHuhYa2amxpsDeChvuVT0oltDpCGcNiQh2BdUHu5+Tyr5vBR +Gm0E9qTmnhzjqeKOIt+R7E9X31CyolcX+Ew3lrsJcZ5GLeL3XRzLtbXeiS7aLPyHg7IZwzbNM48J +jrvkc6No/LuvV3/3FIWwYQsoON/NpUl4d53p1E6nkqHIQvALoQA045JzNMzgxnhrH4FPQzk5qK/1 +FZsI2mBbzHdezYvwvagg6orUSKL2zAfIBeeCeN3C5vXyeo0Bgu7uphgBGOFuo5u4cNasB3V4vZRP +M4YHL18ou/1Qbjxck2zHIMugPTR1VtqxH5v5UsDJMAil9cRToTohcyL112nkSzS7N4vpO9GPP7tO +IbP0/afGSxuTT+2FaW3Kyku0yhddEquUTT+kqGB3YU9mBPLVz8Z/HHIJPB1UUz3GGmJ35doPsdg7 +ZJMIA6XkvkqYSnX5ziQffYTL4+l/+c/JZySoHJUJmT1MyJrAHABXAhLNjEckBvTDDhvOGW7w+L7d +GZgqtsb9SX1cAnSPar7eHeybpME39J8jC7IInqkOuEm8WAhelE0kpubcYNoe8JozdUh33LBUOoEK +m7DbHvYq5JmSntxQHyo33aTDZWTUMvWGKLGhL5sm7U/m943C3BE+TJmM5yal54OOMj0OWLZuShcv +XM3sI/H9xXPBclNWzaySLl9RJWUNf2OpCFbx/4Z7kLkyU+GryJBOv4ESWX95xee6MmJJcHvUUKqT +Dtk+JxxsRCbWRe/VDmiwYgSGviZ4bAtB/nkTAVgMQtKeE1T/k4/eRNewyBYI/C3bZHO4yG7nEdMr +r9I0g4lW6LcbhG+raKAkBsZg6eOjUWulqNcNEGk3VIR4kBprEPKz0POZtz9M8Lu+SK6/PXPE9UFM +aY6XHLxQrrWHVjKEZ1G4PggBHdXQoIPJTJ0Vn6fcQwne6UThEmb7rFUD97w5puLGNObDpErpmfH1 +0SU68/IkjY8OT9CFii8PYTvGKeZekmKvjKiTDkT7mqjmz0BJNUIptXwYka3EAsMA6FEidebVDAjU +ZjhLQPunIhZ+nwIC76EcLGP2LpQeiBLgKfz1RIoAVM61xu9I9hgHWftS5c4Kb8Zq9LI2P++kYKOm +Snbrxn00Ob8HOwe4v7LYHzU0VNH6oF03iBZQEOT/Ohl3C/nPGYOAQNVtCz8PkwpcwV1JSRKNoj2s +6Z1vyL0aLCDc8cPlCoZ5gOONdXQk5qn+Zkj//N/DsR1JmVJP8rJyvZhYvqs+8QgYWa6jclf8geZu +5X8S+8JkrJUM7slZm0ILrH8KVbO44FUwh3QzaCsenDwodc/Ms1CFmaB9szlC9/ApItP9F7xTow/9 +vx70fuJ3WnIZj05bx/0DXbETF2ripwU3BH0aVPtGfW4WSpn/DOGVGFBM8sgwHSi14uChZ+cEApTG +31EGiz5T5maoiigh/r8S7WbiAVxWZS4sfgwUJ/GSsENznZljORGXReYM2aEN6YizCxvKqXryQy6I +wFLjDDPd/z9b/5BYxRA92aAbrMxAUcllZUBK6FH5XQoQwxGOLl9QfIR3nnUGmWX7xh3AH0lbyNfo +hvN6Aw3h/5zetaLf+0TMzmmz5644X54IZpr4G1bA7ImN71vb1B/L3bRSR91CIl/qzADZJppjWRjS ++SH1VAwglYFidxgLSal+3AayPzmxrOSCpTS27ZdMQJeCA9+bzsXO1aitjb/C81yFcP9UTAfTOODO +Ne6gSULcNh4LJ5jLmq9dbkYupxuc+JItYYUS4vXvlgVyhfDeU4UWfkdCF0tlgSURxrSTZcPkeGuy +NrC8FJGDhTU46JtBWetuKd+MZcTvpVcrjaf73FBXTeGCAYoq13MFmLh2T/SJSVVM/Y827Ruz8pTM +9JjMh/NmPNrPmkcnoEdsXxClAY7RxzUdRjPwUBNk99N7kcLKkT1XVPZ+ZHf+hD8a98z3ktiB3Bol +0R+M+zBQghRuU2qLvpcYKZZ3Atf3q6OWauiNiVaodH/BAjXX66QQYA0Z0TcEMg85ERUGjcq970kj +7ohre0/c2riEaBCOngLwYO5uLNHuF8OP9LC4zL8l17yAWl3vinunaosxUaKm7u5kgQ== + + + Xnl+xkZ+0imlSXv8dchDsxDHKVdMq6mn/h+t9A8JQKZmqt7/cEIR38kdtwzDDjJBGkl+H3VS4emI +9MR991dPv6lIYbrtc7fuZRMPrDApBu/rJTheOBzURHMvZAqz7EDFoSIe0p9L7YKfonweotrZpYnO +TJtWQgKDJS0RjMjarsgEXZwcOoK6xqBAWgBsgS+ndonxlxwQ5/ynaO1l15+BiJ0im+93j982dyHW +9WMEfUGjcvv0E7dXJHg3xOduzurLxlR4z/6vPPByN0jMf2zjZgDR3bPSH7zmiKf22MS7IZweMjrS +t0lz+v3D3VIu0ZJHyIVm/4slPK/7/YU3xW8kUneDb6thxWrSj5m5O/JagSygI4F+uhuWa8Kr2XKd +jCgQ7PIZ647WPpIHR2Kt7qaDLrydigvsLdm1dHcPvNfduo2R8X12M+PuReAtSkeC4u7SjV23k2jC +kwa8MGY9QsNf9PhVd1cy0B5i+zy3Pa7tPaCAfFBuK2qrByQg2rzajI5H26V9S+riyB48H+rREPZh +OSmmQa+ceG2PiBchbg7OVk013EbVVl0rXmNt88bbVfPtQ27iB21n76ojVQGW7JRAUNsQy+1DREEg +QXe9HnTDKkncRmFtH87gm7mtLAlGUNu3uV18xyG6FJCdoyDochUe7ajtQ7hdlbQJvDsT/xxbx9N/ +KnRxa0pC0eN07FfPH7QllbfAnWe6Yv+enj100ezijn27P/hDlPwe030AVA2RwR809OPg+KMzD3nj +4ClztEbk7moRHJ274p+NEDqynSyAdaYRI3PDpFqVhEPjUYehk9i0yBJbD0MvB6ibZ1ugXY6IYcoa +lkNFWC5b/Azbz1qq9X7xa8exsX/b2q7I2OaY2ZlNVjEHrpkFUywsiuf4+K7mSSbuGnE0/Gho2POE +Cqkekz1+y04ChT/qrZm1pb98/9FmI9lcPSbfknPbI4H6MNgoEuhDPihXLhoBih21LRhB+r2P1HUy +W7LtnMf0zAtZ0nMN7gj/Ofax48p1WFeDvxGHTIddE5wsVJqAwSOcEEVvi/XS2vginv1MNtZcjLpL +OF73kJGsiFY2m9Y1+ZwFXpPfXCNn73XHxG8x/RiiiJ0kNkILmwbiML2YNzNUsaUj87vs1v2fiIwr +rBKqbTBaN4oF/TFvfIdnuRmjTdCEtNOhr6IV1Oe4YHNxWXBhAWwzJmM3cwpSkhzDgasV8grpNss3 +1sBrkvz+g/3fQNsLq/g3C6KWEzoDNN9gBqwBSHMI7Sa75A6jkt/eEOtU5t/TZNLMRXnvMALtSUU3 +w3v8v72SkNrN+XY93MQguzmmX6ZjQwezk972jYTNNWnYL+u65a9lNj4SbxSK5a0ZINE4WdKMIUKP +AfD1XWfaIiPPKPUZIW/UPMvmMBIeotQkIX2nBe2JxVKk7V1pV/UwN9/RsSmWhte+HmXCpaPJVnvV +tX9SapBqM9xVGj+YijCGuElUyaoKYPsuRARvSYaKqVxLF+wxfIKGPZIrEv6Jx8yIDUeM1W0G3a2k +/SkD7TnBuQ2Ii+hMFdquUA4ETD+x6VWxBg6ZCYqdsUtpPeC5LHAEwIiedJ9LLqJfxfw51FvoV8w0 +edMKs7iNUErzRElrxNqjtp2oBpRhMyaGfLxJc5PavtJrnU8Ui6EuRGJHVFAyVEL+l0yaxXQbD1iG +ikXfmGMzJFzRYusHZPX62RVrdHEEsZ6zpEFLzc+KMlQ34UbbLYNtxtyQ+zIxNVyjJb8exhAfVhiu +OeF19iwgjsVvUMmzHmeD9kC4evZF8n2VRd/yd+t+q1EbVZ4lB8Oa8rRZAz+uj47aOJkgmRU4HBZa +JbU6BEsgiqSkj3qIIfv+M8E4SxEPWjGagO4YrOZBH/LkpDrDE1M+YR65cQkl1puajcQrTlUqeYAD +PUXw4L+fVOBZE9MrB9swsVLqTMUyfez7XGjYWI3N2ImPR+6EAuPXYLEFffaYDI84tMOHdNS/fIc0 +wIl1qDh3mD9qVKG2YHntJb6/EMeAfUgAugxfJN9qS5wYQRgyVS33S9y0opp2it1hV8lS/bzDVpZK +SHtJBDmR2mENO76NmAwftfkTJ4Nqnx+GiL/OaSBdmRm4PelN0geQ4zNDsu6VIpS5ai88BAxWZKY0 +kLsEHwOLKakvFjN5DewnGOmAeXyEbmpOPfE2ir2fRGhPcXerqBbhqToM1VV1j63nm2GYROFJ3jEs +4SJOk+ppzikuXKqibjgw0va5jA9rHS9Z7essrdE0W2MyfZR8LO3DeVFDfSd9iV6NwZHw2OoqzbYv +nz4j7Ynr0vswbIkrA185mq+6ewy8ovSJ3FJ3pRt7nyiFZPypMpLWW9kQVy/bGKmfA8fkV34Vp8To +ngBqHwGHnA6hDsOldTXop5soWKsqxgUuE61uF7JmfBcERjepUlDsD3N3Arq5Vnzpqlz0zMkinv4j +WrH1oAazFRxmFMLb59ukLK6LLVTATXdv1Q1GIfZntVraCIbDZ9qVIrd+Rcq2k/25mOKkvycqLj2K +HdC9I728JpWMVP4NhFY8/7sa2W13jyUY1P4oUM2KOmLIXo9010anY2Eu7UTr+Eniex6FReyV5Y8D +KgAYA3Mgtqc+xBQN0G1bQXxQxJH0GX5/u6ggYmEQhua5dL+IJ3aEgm2ueOI+ERKbXTdWLkrpQ4wv +UAk1lhvxhCCILNcaGCCe1m5E+dZ4iidbS7ruhC8EcDjwHOITUjwNo3IagniajEOIr8qhb812RbdN +EsXyAhwywUOjZQEfA7OJ0bb8ylaBN23Pgxh9ZMrRBXccxkepWy7YFwSzOmyCHX/tEESLsoK7LYZy +M6R7VWE6iDdnfawPExgoEuNOBmnTRJBDbevNaUPEy3qWkUE8zP3aa7NQHJRX3vjHFM17NYw6sicZ +qgQcHbmlGjLE1RmDZNF4bDQn1EtZpDyRuXjU7O9hCRyaWXYXgiimB2DtIKhYf59wWWfN1iVn64K8 +As7R6mhAUa+DvSDU8bzS+qmJ3aoGJZpaZQiM6ksih/qOjkUPIrCeU9iHFu6w17Dy+ilqOxZrU8df +VQPjFLG3yz7SO53sxNPHJF6u4milRg0MTQC9iP2geHpAd/Fz3S/E9d7UMqaDH8S07P2bLJyg4diE +t9UsrJah9I9IPFaMizyrmPhHA+TpBMIwg2BKwOyPp+mfh7RJtc3jTNeAuApPKZYo8KCqbm7ZeBpX +LJmtxcTjKXiWARfp26aoBYiUCSA7xb4lUokzIRc+sCnIT1KNp8kAb1jEe5mPp178Zy1i+ht2WzRp +rJqbYtLfVlGIaDzNdQKRDrJFTIa67ADUb2kSER9PjAWJRy5GgTCpDd0HEp7NVrYnAKXJOV29jlY7 +UXrqlmz3UxfQQNnC5aGYZQYjDdXBbq7TvYDvUpQODrlWY4OBFIeEqJhGQI3vFNlbOHR5TAJZ2EPf +Lh6XRAR3Fn5bsVzIX9UCcukoEZ2yLzCmxedsDCF6ppAeCo7R/hOTqs71s+I4rPdpq7cWdHaABTW8 +zzBtyGsB3rt0Mq7NPAVld+KrKswDg6MbSSHG7GVzdkYmyhBnNmFGzCEiJr46ixs96Dt0pkt8Q5gG +rRfqWqlVCaMVC5ExiDfLeNOWzNPdN/h6tvFsdc8ZNgwSHtXF+PhqvB8JWSddXkBd1IeHC/IDV0Xf +vNkd4EVWKgQClokW7ZzuTysjO3Oq3CiyF6iHkCneGYDqudzIQ16J+0sfZubkfLSjkzV/qSK8L8SQ +g5BlpnJYBJtRA3N8lpkVB9h5OZHeV7SZAOqi4DQVYY9hzZNWBLvWxwAkedPiwujLAuwBUHreUFIV +9TmVep/GazzyKn0GyieX55OKkDGBuDrzAoGBybEqPpnyNH6/DTvuvIBuDmmwFE9fkfx10hTVhzav +/CZjJdmQHPGS/hGAbDEtvIex1UlmCyUOrw53RSYyetpo950Ant5OOfpMtqJslw6pNpx92tZpuouw +//dgWIAY+z5RX1KqRWAyzSLme2b7cC5FI8ldYvO9uhWUJ1I1uqD2WUgo8ZM3iK0tHgATVWb5OAkH +cdxO3r44BiQxxnMAcAovEyD+IJFPBG0FKcmQyLP4fYdJ+egfeZpIslLxqFDeTocqcLI2FBPj3Ee9 +z6JTwT/Gx5EGLOVk2fhQ174rP+WUDDjDwIsO8gCPtj4x7/9i6M48m/79jNmw01q90hEJThJlc4lx +iDoSiVxv3XZj2uiI0JLvfaXIzVyf0Ju+UmNg5yXnCB1oQF3IsCFDFzbRv6v3a7iHlZubRJCeDIcp +w9xUiLWY4PnoM/+M+PeW/m2/E2qLXP8sg+nf8z8CpoR/iycwJiXjsCu7SvzrR4jQpESU078WybAl +11RJ/JtD/Wt8JAAD+8cIXFusk9wz5vuAIJJguZNIO5I94vexSXrdEZEkWGdDnI2/UUFEsMwkJSqH +lOeLTG2IlTGo+Bet9h++7yXBv+GMsShP//q/LF8ngHuJoRHl6w7/Mpmw6susf3egtCMJ/5pswQZw +7inI1zJtwaYpfaN/fbVTKjL+DUGLWke1npKQAf9mpOTJwcuSrn8twHkJfvfJjVVnhzevcdWGB/N6 +gQd9ZD8TIVHNzgN+NdWyrle7KnhHQFDl9U13j81bRuL88cR8M9bg4ik9wIDc48mE5YgY/f2C0AH1 +YKZdqIR0ncy+mvb7vjQ7F65IG7AI5Y/eLvr4moXIm8WTFnBnMb0ByypPexbEoC5rUpLwUNptxBSZ +7KW4pRPnyuGYo+HzPFGsqK50E0raXrHkDsV+i3lhUDVmrm2ONeXqLN83FvbKdtmrMnNSfFlwk5Xk +/Mlr1mU0nuZQB+z+wdbpTrgk7NmX75FRuVGhWxZoSJPvirk2uhGfReXde6ZE8HxrfS1Au7FFB+pq +Gc1DjhIKj5NvwyJOWkkUohu9+hG0ub4+Zy0QD0Ux1QWToXepcf4NhJ6IbKZpHddQ2Aphcg5qQCik +Ftu38UhN8fCAC2MDFdqJwfOmgN0ltALB7RWDL7JhI44G2TtdIQXzbQ4cDcQZlBREiJJajtFZ6QVT +8EYiMh7eLNYI/TpugwUoHEJ0xwr0+7cGbmt77Hf+eOOAviv3VIFCdGDjVmMvyb750vZQvtKWjAyi +AvXSHy1NPLTKgpVAvZca7dPgBVSg/2hbh3p3WvyKe7WEM3lbzslQ7xerYk8lZMjMbqgXIN3bv2+0 +hCH1sq35u+6tpvChTy1F3dk+yTVmqBevyltHFAPIl3E/on3wRWBb+iAsGNFGNkzONb+9ovUauSsm +/rrJCZHxBhsK2B62sZ8TjaCaSEFCGCJq9LFX41ouW6S2JxuV9/jquJazTC5fVU7sSNBruV5xvZhG +bc5NmH4ZDuY+ooHvVNCNurNfHRzWB9HXYxCXZxXqyCoFkVCnOSWRyZgt6NeCRDvMdbBgpU72563c +EVBPZWBYBkjYQuHwBRMYOSRrhc2yRAEr3lnGy/u7PjZWxaiL/GAu8e5U2KoPV4zMZA== + + + FMUSIQzvDIDf88A+YpE936niikQ9I7km5ZWKM0YxHI/BhBRedcQZqtgymcDFVlkO5R0DNTFE8Xvf +lEFw39HHK6A3YgUTR8lCk0OS/RlQf/CSXK+ooeTneoEaucSXQmq8Mkpy1my0eRBbcAHn+/z/x0l6 +QsH5hkkunBvJrl9QxXaaQt7IB4DEcAnQI3YF51GGhTwUYolVbzKPcq5eWi81VhCCAFUv+J10/bpL +L28wyV/1mlABEnqCe+LVe8dI0qKdTLh6k2DjuqkVjnZQXQoug1cv0SJw9C5b0oX4oAqXSzR2WbLA +9UqcwRk8MmlXr/aW0R5d2iwPwj7Fu4Wnr5pZMEZVrxWBdvUq70z9fRLrz+jVq0N2tUwz30bVe92E +DJJkyHTumKbqrXcz2ParN7wby6k4w5T1eop+YEwEOpqNYk1qVQ0BGF6IhjDaccaVdDBE0Pg1Wn68 +6dnHvf3d+/NjheLXXdbA05/4xp+oLqEeFiIJRQ4ucH+m506dpclgUZPDD83YbZF/t8tDe31MBG/I +Uue5IXpXBM7Rbvd0yRte+GNovLUJdQgh0GRXshtU7fqFR1mE2xCO54WTDNESrFA4qmGcInz61UUR +2kdXINBv6A6mx4S7U0RfxudpcDdYPNHP5I7i2Cb99IxKbmjg7maKaO4a8eULn8D5HtUEY6rulXdY +sEGecOLhHYxcfwT8SAzikXH6UAqsxDjuxXhiGGnENwEEZElIOXePlJi3okHO4Bw1HiSJlX4o0eg9 +YQWZelIT1YqKgxfpnAUWZ58bMnUjZzKo4/ODsutLybvRERm8gbacV34WAfpIGYhvuHL7I4G5iuEF +hqTzMchVc/c7rMfmNMpvyX26B76jTpBT+iM0jsAOaNlDhVZ/rEjw8k1WjGpasOrodA3jXRC/5DJe +MmVGje+u6UAIC7tdR4b37ibSQMW7AJxhGujHQ3x3JYWd3HPTunDJG+sAyu8uqT/oMMy4h453Ey7v +6vMSfPzdTf9x8x72KYn1Q+rC5MBwurRxKlDxrt7DfHOvCh/rtCwGxbsUN9fMHCAWQXy9JM+C6v3u +4ltjAzZM+pB5j0LGuky832jovhvxrpqXJ28zlyZsz3upXYjXCj6qglBE9XWwL/NjZLw3NR5syqNq +fwQak/Bq7OcbioNGx09nXPtSclvGDk1eZk1hMgLkuDEYOThJL2qgTYI2svriiwISQ3Y/lZTy1XQl +wXhyQ7pYRW8ZcBr+29RPkJb1GbCjlG81ZnyZ9X+V1fBr4yJOP4HYGieQexhTHWW2GnMP9C1I5XLr +ENA8ZDROv4gYB+PK+I/skr3w4Fz5HW0wilhjTQsgEmOzAcwOClpwi7Gx5hdT/NJqTouKe4z9gv/u +B/F4SNljGb0yZLrXTQ4aDYgbTtm+mve6Cpb2s30cZTEiC77UDd3ozmKsV/9nZIZoKQU7C/K+L4RL +H3MZce2wfqv9ZT0AgVdaym/O4NEFb/pLuHqOjXLkMZfRaMAkZ9VJKyyeAI/b0wlJq/0rAz+lJRTI +PLDAzXURTBND9+GsKfsS3PkPS5cnQB4dFg5HsDjS/O6GuThoLXJg4FOF64IwSjs178AL8HbxKhIL +r8PTIPPxLfivdrviXDKORJu5KgLzpTrh3rDXAcuMIq1PvC6693EVPZPcIWJQ1ifgWjj2lj7TXcjl +DbTLL0gbiEsreBDGaTg0930lps84TTZmslRpgpJZ9KSs4BgS3qbhutBgZMGvQVxtYsM1SjptM8ku +RqbHlInoSYJ7DrR857zrL3ASeOatOASB+tNULRXSEwlHy44OUgngkmRhmR0u7uKBduMKGZ1S3NTQ ++ZI93uZrY/XQowDawXhfyH4ZviLmgTYzWHFlTd+15L4eXfQM5g5LKyujT7T+UDANmXA5Oh7LwfaB +vRdHV7I5ipan/9/iLLreJ1CKjy5uSVQXJHLCNr6jmy3SUHaUEmcsL/Oia7EM6mUNdunL5OroFnnS +jOxHD6memtC+pXpUbNNiYULIYnR7++u1Xx07YZBSaU10MiluKS9GcaOJvl8ZynHANVlFTuLCtnBU +sP1Cwrb84m53dS7UGS93xsAWub2HFSfYOFCENbzMScRC7oqMRzGRW8wH8UNzhOJYEkCRj4GA2VBx +hg0uZDg5F9ZaRKTG6MxzKsYjfpXzMoL+DVJaqAlqLlQmTVxYjGP8IZ685mSLIwQIQp1MboG6HFj9 +ZpKAKqUIP+wIZ+3/bJrAMzi2JcPxpfhe/u3NCu295iMVJNXD/mhw3w0RsI81t/4fEKM34B5hDRIe +lXmXsfnmlOLy7n49P6AJJTqXx/pMc7P5xbyMTT4a5A9aOwqR0p0Z5bNyJ70g9Mzz7WZB5RNURDI3 +vQWJnBbTJEKGve5CyBdhc459OGwT3zrC3AX5IjMmL4J9De1NgZZ6AJzh7UauwAWRCAAuyhZ1Q4CB +PWO2xctSPNHntJkV/tcPWzwVcXc6Cz/SDW50My/5d9rf7LxtW/oKTuVZEF/pRsB0Xa8b1QsY2c24 +NqjwE+MA0wVOzkvWEBvTVXSIecMwY4/wTBcxT9wyXQ1JOdjO2FvGgnlWkphuVNeJ0fkW9PeldJfu +T7B00ZjuLo55eQNyG4MN082I4jjlA5cOUroPeYAeGaURqeo7FFY69PzfLpi5W4ztIuz7DuSfrhlx +hbNPae5XGayFLVcBdlb9UkkacOf4p+65yshpK8sj4gGzspOZGOS9dCXV8AupFC+WgpUBBbfZK+PF +GYeQsW5lvA5YUeSW0BIJ5dIpl7daHSJrtFACRmoDAvNKdMn0nAP9xl5WBny+mfMWK8CwJO11InKV +WgPV9Wac6l3VL70Hf86I7GgoaajF49uSs0y/fqxHk5kroNYJxEP3nQhVjH0WtKIS9dZlplMKhvdS +Eu/tMHEUXvOW5GPUCz/eY1IjpBfw+um3pwVLJMR1IV0hFlYf4saEh8SB4X+xL6lUc+ejRYKOMJHZ +PhxWtdKpT7GiBJhlu/dl915euV5jYVFICN1EI8ricPPV9LsVSDBeinWagsLX/m44WXg1FTsBVVFZ +EXRxz9jRMRuJOwr8rOeLo9rNKxYkj9qJzG9COSNZwnjuwCXFhISsppyAA6MvQiTKB7HmBVrvroi4 +QPVQ9aseUP8Ou+Mz8qAPecchZKNG0sqVhoVYTKumpGGP27nLGAcUB0bnk3s3gkgIm7dXr4WPP/06 +n88vehshfThRbSeyJz8BlGdmhFlYeAHelgzUq80qZ8xKIXibZwlHrjGSt+pu2q+KPVsLT9DtW5xe +2mQp7E7i0NlTgDsssqtQCE+QTT9O50ngx4PBGeUcQwyp0WXDDB6XK04DVuFGL+jG9FSlED66KV4E +ayGIDwn2b4QY7ilqgeTExbJZ9pWBTeopd+V95TNrJAahpXEvxrCMnRW3pFmGENHrIQ249tYR+uxX +stllaa3gGY6b12Yva1IBe/jXn4uv2x+xDh2X9RW4ActM5mvJ7LOX9xysqQCjcaAKP17xcYqNP1h4 +o8wVll0JoBYGEoCADorj7fqXWRiOIctn7iONXawdfh1/GBew3I5O7fEwJTzXcNNd5ww4KcBO4T2h +qaE10iSHk8JpK601kztgj91Drm9aw/Qpyizv2o7ERt0WMLHYAWfdtDhAvUxb0Vl6/sytMONjtjxJ +tGDM7YssPLDANdgF8z23ZBO+j7/+Rchdk/rQDcoudHEwSFOw57N7/W6nHxFGkpc0b5nqBIp7+WJW +XKcoTHTP0bIcuAr+ly9IfApJx1XXLXjRO8XtLULVYhJenLdT34ZehvQ/QfDp4HFjk3lSgC7rsopk +qu+5dGpF0JwonV1yzr84Ppmlj/Y3wIpkYOZMZ0Ge4SWM8U36eWMhfk+OqETHqXf9WboF76V7CFms +87p1m+fZzaWz/fPhR/mDIZ+VkeisKAL3uh3+vQm3KCerMb8sANjL1ctuORiTBdIQLIORmFPBRy/s +3SVgLDUr1Fzbl5E507h4yw3gAs78gZdmWNqmjJQOFNOzJ9Cf+0457hjoaFxoO7EtgpMQ4lbVgUVQ +csGKPKnmOJSrkPple+WiZ7PX6BQdqTESfePPUFMBORzZPfxw+un77GCkVJAHtacw8YiPxOEKYZqv +wWxndkPOd34U1KcZLL3LmYoSabbbfGFrWmkK+9+zt8vwqcQUROtXZEA5MeHdmSeXCxi1cKxf0AF5 +YwUn7ZULIAw1D1juU4p77COuWFgq7+FnPlEb8W2ItaXYLkfczWSkefrwpDfimLfWWHaVyUaWsffh +hEh6GUaMc/OThRWS8Q2JTebDAn+FPo4vEpapQN5yVbIMjS/0Osf1FQ1V3pYnyJuqLfFWYpLah71b +ZolhET9hm0NmFPGxUx7rLC0V9/D3fMN7+xC3kviLEaHVE9vEKz6OJ7gbhOlrycQW3QCSSEDW4U0K +WZuACwbsfiFRrE+qcQdQt42LFHYmrGxMrCHs8PgXiNaW3lFQofEbZ4fI0VwJWoamJzN69XflL3zc +VqG6yFRw+HBDDCXKhVf0t22UfgkmizXXhqdquC2aGx+SsBqawOK8sTRXM/wR/0fU5FE9poTKZzUw +8X+y+z/LkBxzuWqykaAUrfCEQsAKx7Ft82lVhKpmqBR1idWAAKwC/Kw5qJibMhqhC3yp7u85wwMA +RojQzNIZ+BV0iFU2SDDSl4uJ/UQFy7jFCoXFVj6tcUhAIA2D9REWdQJ/X4boN21pUN5XS2BkCaPs +cNHMSRbZR1kQI8mMp2QXne1zPJMlA2Rcz5Dv6gtfIRDDH1ScDPNllHHFO4G5SpNBR+hr+MwVtgur +m3hFr+B7M1rH/8jb+c4CzRdV6D55L/STMwD+wi5OKWbAA/LQRou5v9XPsmNMNSkOqJaK4Bot5n+z +4n0rp9y+j1T2KoF1rFS/u7PZCsDEdYAM0qqz25mg1K1y8VZZ8HXQLndmWNfDT+tIB+drDGI4NVVv +lu9ysLZc5Ee1nOXOhJ2JqNPk1syhBrkNFNlJ35wNMtR+qy/kLISqsdKT4Fg43ltItrIdIf/puBYf +G8+byzq02a7Q0Mqq7weF7Gc7UsuwXs2VE4fiKc+RXjf3h8ArrY4/PB5D7fhD7tOScOvPrA2v/1jk +MtkiIXaajBukzCfgcKBXE8eYJ25W9q22cSLVudVnXvQQDl4udiHgQ9JsvzArmD0JWhTEprAy/Dbc +bKcXlNVzeKDGXu/XW+B6GvCwquJ51zw3/47dg9pAFLUfhxl6K87fhTX1mJbI6kG/NiUREErpIizJ +XhQkuwkxPsaO5vWpsYFqpACuJYGlpMVeZ1pFrkjdcq4yGNBINSTkYEZ+Mwx4rbswxMjmHq9+iR7G +0o7kVqxEFPChltHFMm9t/vOTEV51ei1XV59mSnD1Ze7Y48GPb5aQFF0Yvg/FarWVssphouyX6fsB +wd4neH3XM89rQYu+e3Y4oiHxeT6V14pBeAPfz8F+1E4viEaA125ev8DpYhRZHbidcg== + + + k47eGq3mxNBm1LZvBVv5fo5GQM1jD8v1HXTRmhDcp1u9YKQoJuNCfktKU4cDYzp4wvAEsU5+v7fw +cSsE+C3rWGCPYhvFN5NJHRseqTmFs6wfryaYN2ydZxjFlnjJalkHZYWccqm0zZ5ShVc0aQy6cEg1 +Dhupz40E0Qa2SgtxWWP7AfDoqCUA7e+OGDLQLpWKt3GPPjHCVoPFyAPo2P30gxNuWoRCJSGG5u79 +u5q/Oj5K2xdv7c+VBOlYp6HwSN6wSWUe4Zr7Pss7ToABVqPDvD3hzHvnERLzYw9JtTsdFcpPgzj4 +2KsAL47bmHg1LsMwv681ZiwFav+h4llecUkqg4O1U11W4pxoAOunOA5p/svyF2G/Y/+jm9203iT8 +pMmbsimN5M2d2dI0PB9y/Kj34D3ubkyFkZFNMjN00We+RC40JY3NG1caWnuqyg+GECDByrb7wSaM +5v91+hyy4M49P8eDPoXJztC9r7/oApc38mkKPAgCyP2KFabt8i/ARGZYoMW0wtQmoyPDxRor+n8T ++dIpLsGjFjwLDwcFVMgF9TGJLJ2s0d3p+7TZZfGij5eADF+vwrhkxhWQYfEABRY4hid6zKYoPzHf +vjN8iBKbNamrYlqjEl2OIjJOFsbheIkzYmb0QCYKjDLIIUFDXBDcxIKBkTw+kPhHLi+LCw1qTKeb +UZ4Mc8Erbsx+5PKeIluihRzLKHxYoIrObNJ8KYiUoCtaMT7DFKAwy0SSGEMuPCQEMrzOiQVtVaAD +RsHZ7JMeurWgCyi8nq59Zn7jPHp5GZkseU9ckEXvSOMGkhzx8Out3n+L9ccenk9IwCn/KOSW3N8X +uFdJ2iJ02xbkkpYE3/iMedA0jFEwFu0CjZqxDwMJwVtuKFeU2ocqhZaeHy1WicraxuR1bB2P6vaM +sgcGgz4IObNLS1D23ifOI6WoZjwFrcj/2qP3MnddV7eBSCI7LodHrjbvIGDBz7lKD0uXNA8W3Y2z +Z6q+5w+deIun1Ms6SXzf5QXxODhUy7z4nxjca7/AcJjb52fZVXjGAxljbzJAvlZLY4SGGuFdq52C +Vpz/DXV8Liie/3xSewAR8ZlxJyRgftqKLFaDMtaWxjEfSMftkQO0yeF6Ey4CjxeR305sO1yvy34c +60VynKB7SJmXXfm2ykGCp9LlqviypZsvJcfrGNZoT8VmD0PquYjNpCxhPoDLgNJP0TcmVxqraP0H +qJwkqWA8D74BiFga+N3SiBTR8zME4WHJNzTSI5QI5DtemuoMoTdyBjRpFIVnmNUIo4awahIEaFQz +HzPBQ37EvWamDiJbluYgj64+bB7I6K3o5i1upW20Hgejk5jDr82lUcCf0psOvwHqkhDBhxmMvzso +Mf9B7fohnF9izOXUMIE0yqH5NSE1kkb2yAVsA9JksFgsFiwDQ/zPmVlir2JVgkXbDyuFDloin6ao +Fh4rAuOPwh9iCxukDyHRkPW0x2iDHqHGbcz0Luo+AVNaCC43qjoYaXQfMIkIYijS5NerZO51aUas +TQllVeSxK/VwpRkugrDqn1pvIIlDblcFrs53zdtTL7j3RPmq15pik7AFZNbrK9ww0VZApq3up5BP +g9+RQWA8TrkPwWiBqj16creCsdYDtn49FVQXGXfmjBBRgFx3ipqjPHK8Ax6IR6c8xaaHJYPY2qgO +iBUX6MfZDM2K+xV4RNIxfdp6wVqlMD5JcSQNro8CbojkhVYNcBu0sIW1U6L3Qe2WLNxNpsfxQPj9 +DQGtNUe6er1HxTnBspjOXc96rVGJL4vLx0x9XNqDyC5Uch8jg2hDqdH2KPLtL/TfFjp3R4LZ530l +ens0T6pK8ZdpGSRmMP/Yz5tHTWmxKgd/87a0dICBqgq/mDmzJktWvnecQ5CuYjMY3HBEbt0vGEyc +J5uGqebGK5hhUL5nUnMcmNBn5AIYfh8VKE2+aeEtK+hmW8KQGjUtIoUBCR7rUyFDuKyregU8J5RY +3tfYyMf9PHG8ApCc+A4+t4qSQxKjjBEdA9w0BHaPRudTH4NLSESABkkpyejdhJ4QPduGGaROXwZT +vUltpukauRZjFunNNv6Fo4dqQ94qI4Whr8lilFk+xWdaBgdEPJ2S+qvmR04DUsBpAhVWBKb673to +XXx/eCpeg+GnIIG/FuB50ZaEn0c2Mxzp+ntVF50iES55LCbqYWqER/FVQqn7zjAnQLqZFyp8T6LR +jwgZZmOcCTyrlg6ypA7HEdEi/+0TZp1Pgegws+SVkrEblG58NjQAYL8EivsAiwb1sxIFdQFffIUy +eQJy4bIHD/pr7HnhKGMjkPhU/fgZYhsrEnHVMN8eHFinm+r0zqWWWsqmXEZD62gzRdM0ZRJv8Fa/ +KnRnYzWlFTAQQNKNTKGMHIIxWrVuYPRI9lDfgCNqQXcK4VhTU4FnVOXHHj93ngYvHlTW2MY6y1Sk ++/gbYvMWJeimaSpcBnIbJR5b7nOgwF80MVgeFbAqAmsZRv2IvrtsLZlRcpYce9fGgGXRGk1BOacO +KCL4tPzAzrMqkSgNLqlyVOOhGusbpn2NZCkp+KdKFuMaamlpoQAIjaNbJDDsWNOixN5Itd4z+KsB +5swEJ9ooSGZTvnAyuc7RaLJqCv7rwSaIvgumHyxh57cKROYXTmA4d1qdVCD7CgCbwzj4lhyqtsom +zlXTPsHjSlGWSwJFT6UkC6CvStrh3IiE8sqr27rWgh6nmbpYpZ1wXGajCLy5nvrPRmp5ka03U2ni +lKuzat5b7a9SLgsygxdk6BK4fp8pfo/virtuJ7YGop/YQzK3k2keAwo/RDo2xNSBsZ0NitnvNILA +INcCJHkBoZqqjEwVhXxDyoPhBjI61466IDe3zTdtbQqWxmpO+lq2S6hdJhxARLHz0tR8VG3MvRAE +KVvmbi1IJKK+oiDDQjBaOFVQRqPUUHO7yneU441l12DMgamwNAFjs23FVgM0m6bzMDo7qi7zEJr9 +/DttfI5iBVf2kvso6660XlHCotAbNg4ufMVDZymN7gK+IoOy/Tjy8o6KcpBGxeDgM4lbUwTSjgNc +xqZCvfj400EjlP6suruwG2A+JG8w53nGGSBUz1wFQ8Yp1nbBWp0TJMBuTUUtvpVRmhP1dUrIzFm9 +Mxn99QCe9/ZsL7ae+WPVAjjh6xbfvoXw3NBm05UZCnjQiZPb1cj6nz5ntEmQpqI+yHKfdzRt8Wzo +H1if5S1mdSs64/0gezVjJXmRVyPEEeeme09Z6dJXMB/UivXn2zWFg7YASnZbd+6RzopNR6DoWlXm +fXdYOA7tWzpsQSFU8kkqSAGWO5vUXAU9ZGLS7rl9I5r4SIISCYrRIhLoIxkz41yzIbrjpvSh89em +o60UYRRhW2KkKVMlJRpabC3Qic3dawuyRRe/W54PerlbH7z2e6WMqcNvhmOsqMkYFsUph9spYn4W +i9cl7FEL4E9IH4kDbD8heYss2O2xf0ioGKd04322LAuwZw8bglIeQqONgaoG2fAUFxEmx1Oaj8xe +TARZNq19q+Zirw42g3YCdN/0m53Dm43SlkkgBBFUUH0qYE8evTu9FzUkIuCM1zcPCgfqRkhJ0acR +kBSjCey/okSWOCkczEQCAxgel478XigWmVYX1RA8UnePEGYmHRjOWhWMnoqpaToA4nCNH0Kh0Z1U +hc0TrdGL21/Z18u3vg8Lszg1Rr/oy2lSVuf4I6IffATzFv7KDkkjuTu/tFROvSavkVjQ1P3UqTYK +6yvV/CZfal6TMIzjTQpCNp1lp2JSC2NLxvMNWXgLvbNmoc++E5rwBtcG48w1thG5crzMvNUYzZTD +xGuEUvXxhSe0+7NqfgwfxNIBWYiu/TrY9GZOO4p728uUFwRnmFJ8Hyy6s/3+VuVfK80SohShghep +wjTpENsLEY+n7ft6pqPBEuyFoOPy5Zp7G6IBW+a7qrMkMDcO538qxm4FjSlAvSUky4KoWrk9YuhM +MGM0D7SuDazcT9I9E+1/HZxRAAn6eITSp78Ur7LRjUqU4k5XLn0bGkm7PI/sxLv7SpKD3yNp5v8D +79QJfRRjDAxKbo3ZxTZav6MneMWJNmvFoWI6kDGhDXtnPw+FaIqWrp5cRfWyzipN74N4UtyZzCZ3 +9CDDGKAPWHTHtdikkA4wtlMLROpju8g7j8fB/rRvW+nQxoYIgrACofNo7JuI8y58ZNVOAst0gYNt +AjgdjteN4IqoW9n3PDbZonwDSE0bHRQH354Th5sWSlS900E/Q6mLj7RzNtf7IaRUq/2TU3NAGvhl +FwolNrMrr5B/Whj5ig5FA10araHJLn2PCmwy3AAZpvNz0eRBpSZZlxfcW6zNB/UQcmQmBGBUgrjf +XcsKVRC9BBl8TN+kBjq47DeElw6FneH7PwU3c2gjQpkrarBbyS4xXQnIOeclBejJ6srJ0JSihqrP +Pjn9qPCqPZAbw4kIrDfNmvwjHWMwHFUqPFHHmN1AMy6kp6Sjiwdmn2HRTgi5kLz2OPafLI8hD+3p +/V4xUohfRB+AGP9LFgU60Lvg4EAt7ZMYxrQVHsl1cqPLdczfa5MTg3KEbCUS/QTiJsSY/UL5OId+ +MzpN5M782FxICCh3yMCsPg+QVQLDSLsipoGOnvSn8bj+blgkFXx+GzrXwihRfrIm6MjwgP6D1Htl +DwiA3hLMMtFq4XZ3ekFXwKli7GjsabXBwOJjluS3KXKTtRW3ui/aMpgYECS4r5ia1NbAW7ZawLjz +34ZLFNjhRRUsR9f62uUMmT0liP/8wf6jAYT6XR3PCViMBb9mfRS4Nck3s4wGS3Sj5hBOzKtZYU6C +sMlk4qSLUk3HD8iFrtR5dkte1hov08EuWVIgwHsokOj77jEq+hBTF/YaRsK57+wRiEc9w+Vr6ZaD +cU1Xn8MUPvka6NyeSNaSzgKRRMmpLs9emRC942C970H21oP1yoKyH0s9wB80fpiZO28fmU6AovQV +zM2uXTdAmqlVHXAuviz/3+HpnA0U+/yytdDpWH+kHX8SCqz6wsEOMUDj8IcV4AaGtjcMroBAOwSG +UWsn6w3J1eWmyktp2RNIaT1VtI/9EGf6exSGqdB1iSe6UGheTX8d4oh/hnDfFy9JHec/P1FknFyp +LdBZ0hqV6j1+eJ0tGYqrk5QjaH/Dyf8R01qvg0fyhfTyz7T+uPA9T6A5oqHFmPMcnLpoOyr1yot7 +6EStWKuRftRJe+iboNqkebXBaNIm+Z/A70GknI8khPyrZ0cqTDhRHZfK/qfmYcIo68foct8j3poH +dFYxpdoQNyEw+kFYJM1SJRv4YdzSKTSLBuNfb2QljVMiqX9DD7L19hNgi3JrL9XxrRv8UJQzo5aA +uaD66X3Lg7J4z4a4UOfdKAOuvbE0e+RDkMsdoALe1TdmSIjlJFlr9QnvqgkRFPVBtTO17IpW+lTz +LdfBd4Mco9x4sks4QrwKCcGPNczAfgBauSiMhKMFng2N7sZJOe2LBA3l9o23fx54aQ== + + + B6oE5vM+I1nD9PxN0QxRLFy54LuD/yD0BtJ1kKO/YjvRi/cYAlns7cjE5Gniudgm4duSD9ADIUFC +wz+SM9PorzMzD+zvAkbN3GHoPiTPzqIJ1n/mL57hoULNvwhm/hJ5kVyExeDWBWdoHNrBsTetK9KK +ecUuRleKEfrsRSgeEIhwZErkXokyZOsuahoHrvEuUQshKdBPwOLK+Lf+j7b971LCsZO/17g5DUhj +5aN2pWEjETdw7k3gIf6hWfwu6iAGoMvVWhTH2FjoX9t3PRxS0t8AnDZ2wVXLVBNpQNt3L9p4Eg76 +/qI35h94+Ep/2K0rBJLgONmJstlvlG3+SCRYiUp2fwZSu4HJ+zOIP062BB8CpKgBCoLxPSqgJKBG +xQFg3pmVgZDR0aWMjEoaqNS/vaEvkuwmu1Nq8DuKwng5zmC8HKtmBbUDGAMypQ8BtLjiTEPDHGQa +NCoT0qUYWCRrqVbug6HUiVhAiTEGDAQikxbrTCgPDweZwFJTggmiTXDYhAAJLgwrFSfY8AISw7Jh +oUDSUPEKDi02E7KRmSktmIkYcLBgE1OqeaFx6UwzLCUTmVLJw8VAAoekBgMEEAl9TAxuaG5iXkJq +XEJoWEICgMyUQkBkTkJCFpCEqIRkVNgVYkATwlnAuXlx4QjNRAwIcLDAIkJT4jA54TAh4Qh9TEJE +TGIMcHBgXEghEBIbFlJJqcQACYTkRkTScVBSqPxgRlLjIUXEwzmhMPHMKIrJikiEp5Q0IwsuCxmd +iYMQKAo2IJvxYAh9DBQimbhPBUPo0xAimTjUYAh9PAkVCBU3BDYeJgLU4AcDiYV5DHiggQCtAYsp +AEE0dExKhxZXnMZMh5VqSrCBgvQRkSoDi3QeDReLgwaYlz9IW/BwIQGCQMBwnQljZMVk4hQcQgge +s1gQxWKQQDZIH6oiFmQNFQwQC2J4qWFROElhsZSJAwOyM9mOFq7BpaYEF1g2YjIUQAgrnWlDZoZh +wANIQ8wKcjysXNgGAK4La8EUFZEuTDpAJLZQOZJ3j0IMA+LTmRBlQ58FlZfQ51A2pMIlG+qaE4QE +QCcDhSLDoMFACwh5FigM2KwqsFFZ6UyXYgMyBdGRzkxsVEBsOhNfL52ZDBQ8SY5JrryUTF5GXkBe +QDbj0NDxoiuZUgLZArT4EJqURkoBTmAiYgxS7lGskAAPAUKfT4HNEQ7Qwn1wgOxgBgQACNrgALmF +NeoliASgF4kFCg6QnYg4roMEshsFNSXo+ZCAAAAXGBBWrLIgmTBEkEwgSCAzuY0RAgEHCbIIlTRE +hEogQiUHDmCMOpOFjcNHi1ot1qDg4GFRcGBzHRi8hBAgYDgZjwUcJycUA1ziQMOAAMglDjgSL6EP +x0ACqIGjGg8eDsLIg8EFHgiwQAI9ecCCN7hAupsPkgaIk2CkcgsIGFygDYWBBCMLJpQx6kwIHAwP +CkaEw0HS9CfjowlCMhAT6YAhGomhEJGw4XSmCgOcmFEChIXKiUZsLqziPCzQgiM6wRiEmQxQwkcC +hFTgsbgwLLGYEZEwdCaNGuxMloDPAInMsEQEdKYbNWAxDxCPCmEQOi4sQQIEGSAETwOBGA+STsKA +OC1GEQqxKXk6k0rJM+GgnSnjLxo4AmASeDgihJoKDwEYHKKPyEPMyECAl7vORMIouVHFCkkDtDFh +oXLcpAtb4MKRMerQibsCMhfLUHOwFSOKh48WUWfqAGmgACDxA4Y0YpNyI+GxjnWnVCACYxxIF5Zx +Q8oYbQDAQgMkYoPiIKIpJWA4BSFbkQLPAuloLiZarDM5xxWDIhwPo1JiBEgZNdiZSBY6BsRkcFQq +H84GSAYDpxo5UOB0NHgDZ6aFFTpTgKp0YR4HBglGBxELCMkpkMAhmsgEHaAFmQSXq3EQwZHLCr4Y +55Mc9rGAsZ3pKgBawAHpTDQjDBOdyV8WQPSNwVPQyMR0VFxGB1xWeqQgUULIC4QF0nlABwREEAoQ +kK6B9IKQnQmhM3WmXDnxFhRPiQIXBk5nSiggwMVBZGEPo/y4GMCCEtapOE6PXE7GJeQyGhDBoAGS +ea/wQMZNxojjAtKZrIUjJYLhOhOnM3UmialaENKZFk5U0HilM1UfFinlRuLBpuHh4aKBg4KelFnB +TgSCB4gDgQKKdIoXFutMGAoeDhHHgpIV3VwEbECdCcEGp84Ews7UmTpTZ4IhgYgqcAIAHhIXJRE0 +nK0YYQywAYk87mZJeOMTL+IFjOsaHVDAUuHBJegAJQQgjfLi4iQYJfCEFWUUSOAQHZw8OIggODgb +AZ+5ub7K2c78rb+mmbbf/XyXi33uqpeab7q/fp57YeJll55/u07XsX+iJTKyJWb3trEmJjJ6aiK6 +sTK7fuLaOmfiUaaO/v2WaZ6bfPvHe+aoyId3mm7tnsxqan5tbsyXtar9mMv5r8t7bm2qv6q7bcq5 +nJ52ne/8i4eMzGst91e9/XhUO7LrdP0ym9/6/WcrO7+Zs6v1tia/3Wtl1Of7uTkusykelZmG/eyP ++/3Nb2br+qqeeH/Y+27ut3h3+ojWey23VY/cbubst4t+qYacrozf2WmW/4eK2dvJbKaZqIfr75ha +7YX2qpVR/nZ5yaus7+iL3aq5m8+qfMj+7p2smPuKza6YuJr7Wa1upa7TdVme/ueb6Zsirl32sWNb +VkalcuNfq+tmq3OnmT+berK5+uKeYRv/3X1bM57msTEjsvureWNlFGazpd8y7+LaIRofq+13la6N +R6krv+fFx3/2uth5qb572cidinuKiuv5x6aOlVGJb7363eZ8u3muet2OrZpHXb7cd1oZhf3+2me3 +2uy9a7rqaY6H1s/7+t+pu/+HdnebKsEW1ZjHlSlW6DpZFD9+t/8/Vuc6XdRVlt/6af62lVG32sjO +e/iplVH6uInua63cVxl1z27KtviLbJVRzvfWb/j4aVm9H5q++rlmWuKuM5p6JUHd2yO32e5Rl9aG +eGbW1fU9v1bqVLLpqaKZaeW8qB6TReUduj7//3N1SfXtdLGhTgGg+I1Trf9f/bYySgF11AWF2IEH +QCiPAvUTgSlmOjC5sMikuHickAx4tFiW56/v9vdOF8W3acdmZle1KW5QNtWMKJ1mbiaWEWVTAEAo +m0aUTSedScCHDc3oxCjPnVAOlITFh83EiLIpxqI8RylMJYsyypYyahcpx6O+j4ZFACnWSszEyd0U +GsACJWAbJNFBxWls6LOKgHSu8EG6AwnDYGkThpeIUMkHY0Ofj80znAdjQx+QSwLDRSCQiExaRhw+ +WuyhaQwwqNVinhJEAlCDaEbBocXUwyDlZCBGC3cLMhIFDFLoUzEgrNiMgf1cGKSc54TiukCgYLbQ +gUABb0XBjGUeRA2liQSSAh0jFQMYCYqSAhEbo8sAQmZJigRCjghA0A9EKGGxuOkkAoLVosIxWkBQ +wQCgI4JzAAVLKqJgRQCKCIgHBTtuTtCCOcFKZEOfSiRysgc29FkEeJLimTAZuZHADxgJPOgAmXie +YaLjAYMO7MEPxY2IqGxUqByNhGEEq1QENvSpUAgl4EEDgQ19Gi7b6XyJncaHjeu8l+bf+qrXslH5 +aLbfzm5pacmaifaZrobMfdt+ZXre52GeWuem9aZnMzqubm5zMiqzs20nHuOFytuuuXfqa26Heu7J +x2ndx57KnX58yKhrjVZaZ2aiPf77b9viLlufOe91sqOz96mtP+Kv+X0fHuV8zLh9v5PV+L7Txbi+ +zs/UVqjqyqg6XdRz82krah83mqaZs/q3Kpt7N+P7u6/Z651lXX2X6et0Idt7Ylt+Kpu14/nesvna +cavfu2XeKWJa3/d787LxryWaHht+b2+esaad9d8qbrvbHTema+p0MeblvtnMx9dni2lq1qrJmv6m +aLy3WBnFe8zfyfr/xqpHbVon/qu+ThdvXlrjrdm27e1ju74rrzlzHx7ybR7ioSN7X5zofr93/Ozs +aKbdeGrmrY7b+vrenOiGebq/eqd6nOnuncjW//hmd5fX+dxsqcuq6YeJeZ5rrdOVbFl2HrVX5223 +vmnb+SdjovZt36MbLjryGr8l7nuzMirfXdflUVgZdZ1pj4j9t2bHqPyv+bl5/HnW7MrWhmld63Sx +K16Zn0dtha/TtffNlnluaH+e5/6dqZ/uz4Zn2px99fm7v6m9rVX6mZiu/It6mfzbbMh6l9uNtpbn +fM+G6NmYzbqevm9shox8u7kWXoqt02VtqZW/zHva799+rpbrh22PjWqGubmt3Z3edzljo7rqMqcj +m6Uv75uhZ1ZGcd77M+dvH36momabpuX5eJ5n+3i+zrm9n6+J/pjrbcu2yXec9zpZaa/Tldvu6vzM +2ItqrWaZ+32H2u+2jevfdn+J2oh96m71du+hvl3aKisf22vjmqe7Ozbmo5saI3dj8jFr3539at8j +IyKbYZ/ZtTNq3rNetvaerjLyfWMqG+JRm65nvNiG+2lsvez2j3a2+djImJr7j17hZVcnGmbaY36n +VUYh+iXiZ2ev5Zqv8n8yJ7o6t/s+dyJ/ftryYm9eqsnvn6qmvVYZteadb+9v7N7fqJj5irydynbN +7rp5qWVppl+Ki9d6ucjG6ZaXbrxtmemLeHjZqe/rmB+WdazTdeuanM/2bmqJ5pVRzn2ZrIb42ra8 +l1fGp/jPqPeXv4y3/tao7Gpd7sj+x/6sv735a8eOyZvK2v+Z+Nmufn+Yz25Zdn1nHxsvpyGzoply +th4nvqHZ+TP2sfXqnZ5vZZzPrYf+5/22/Yp8Ybsq+uKq2v+hrzUq9mnms/qtr9nm62v2uWprLzev +33daH/f7Hy+yWbdto52bIp9dcn7zsnX3qpmm8u7xr//aM16uduadNXurW5e1l6ZaOt+++2viIaty +Kq82Vnu2ls6rfF0Zhax85nnZanuXpbmOu7q2e/9mi92K38nqaMd5+ZzP64p6j57s/Z9mx8n4y516 +/Ne9zIuOamuPmsl6fPGf5hlat22qO9/xoXomrqGd9fp5O6uVrNPld7pHme0e9a/T5Ylmn+ps+3fu +tq2/r0ftNfYrXzpaZnbVeuvOpmaHfZcZHucp470mpt1n4v6idR7v71vy6evbsW6uo/p3W3rUNur2 +KSO+qeF2ZeuqrLjWbs29zfnMZ4fpp7fNiP17t2h6x/5tebL19l3n2q0tIrNlejp6W+fl6SZir985 +Ly5eqqzTdWi5XpVRq2tm6HjGXRmFh3adbPtsl2kzM7Mr66Wlctri6+ZzKurp728jsr4b6jp2sjHi +q/LZ8emurdnu++Ipr9s/Pzfe9veFeN3uMmp7stqja6qrYp66ZiYyp97lM6atJvr5rb5Ol7Wz56KZ +Z3dllH9zHm9yM7Lzthuv2xo2aqpytqVeo3fyM2+evTq3tazTdda9V7+f6yF/41qf9z5bc/sxnmv2 +dXd/G6J1bdpeqq0j7nIyt1suc/JZcrL55RpbP6ZeyJWdbare3Spjuv+r6ev2W/sp9w== + + + ZTHrdCm6Yut7Xr/uJTIj56EpIraaOiOjfjL2/t1fKvKt4aXlKaqeq/Pp3/Jpv3cy3/u35W1dqJXd +qrE2biOvPRobo3tmpzdn/79ZM+cenp0z2qW6jfxuzL6sum/N3m5s72qtfM1m3LnsvZ2LfM2X2Zrr +qcm7epycq47NlmV4VLNO1+Vleao3f547vl/ftV52828ybo3VqLQVeHESpJAhxkkKBQAQAPMRAAAY +DA4KQwbDMW3etgMUAAlNRhokGh4cJBYYLiIqJAtGwlAgGAgDwIBgWDAe0oMQhVA4RIjsAwBSmP0R +yp7IiH5Zuju4eeHy6ALh6KoEd3Dvowhm5YHvgzZSIfp3afvnU+3UTM8B7mJwhJg11aiBZ1p/jbda +tE4GXVFoqsxmPm6Wxn+CquCj4bM7BJnV+uJWU/4L1jrya9QDh3f6mdcB74Qwtq6e6FvISaoaatD7 +4ehHCim+FYrZQryNyCnbE9QZGK41B89B79/XriFKsxdLxY1uIPPNrjPA6IGM4HccPSb/uzjW8Xyy +f9xfjbkSwb5PAE2fLUpGAHi0BXgUF9JdHukpl0hcVk45NIp3BDNYxi8l/RuoTZusSkTKZFWGBWwL +53S1S0gJaZJy3W0TwdqaOJguDfPgkR9r7lAJxeHClJUDrHDLe2oBViA6l2ykZWdfeRGqX+Se0Vur +ESUJZyGVSoRRYFUgl44xOOJzgkAIJdx6mKMvbT6Qink2qRgAjKsY3SwRHkzBGuPTaTom7qm/nqn/ +D7rGpOhXihFGX4mwKEIvwNiWwSe/RcDixuJAUynBZqm/oit1ZLQmeEJkkbgu9mxFY8eKb78hCZcb +kfRIgbgPcDUkLxwFqom3z+heJ+EjjhgQAmyPHOTFpYxpbMWvQt1+IjJ7SOJGVPBYAvTyIbQtyxGQ +lK68j6iMqu4sCGLeGOEBZHTDO5D2d82TpGhbpj5o3pKRtDZELZ7Kh5ign+AX7+hOgKIekca+n919 +zbYkJ8T5ka5eG53oE1rejEGv/dD3zWzg7LVV/eX4bBK486rHmq3Soi3bhiCI94n8BBJLnXWjGC9Z +DwDu7DrjagGxXsRdb0kZi87G1bKtkjfn4QIJNjf6MU1FJFkYwwVtJse2Y+RI3V1Maadu70he3SsD +lMclTQQwvbcd7gUHUK+w6MMi5dglspJIKcu9sRL2iySQLG7GWg6RMJJLn0CAnjQ/p8hc9mQziHDx +9rUZXsUsvSCMRfV7PEJ2/JJqJ9QwsrDPZmjAKetegfJHl/ItBYKP1C02bwwatBSw+u3/xl1FCiHh +RQBYtBUdcKt1kvLy98ad5MbaEhvdCpmWMdyzM2bLJKcglpK74iC7QcPY8vy5B8xgTBa2WcqogDXi +Q2QZwLw9Oo1h5u+emKIofVI1iMJwS/43Y6nYF+P7JXUI/ppFhWsESIYtjEiDxTJOqkiwu6Z9lut+ +6DLkm3JikrBCgK1iPB9p5JZQ6g4G7SSfZyDTowwqutk21cPqJ+B5JGIceN8ydCYh+yNvtWTV3+3R +kPNVHRutJ/IUuh/wF0YSWsab1RTn/QXvjGguk/zD2TC/l8uCsnpILDi5w5SSsOJtjonHS1t2rRJc +IqjnzL8OMC470yMQUS+aEGoikcppA3yMr1hySLhoDhSdKo8rImEL5hXJsbGYT3UFyZSx2o8l8oMI +fkiI6qAA2oUZzIZ46QXM150JblNOx5TeteILIenQl4hZXTYG8zJHk+RczIz4kGg2Z/MwUjr81n2Q +t0d6yKXJeXdq3MqvLSqRdJaRMngGEpFerNuKMdbNGhAMxj5khyyMA2H02ppBsdDmAC7aexlXjLLI +rM76YEZUrprHKd0n6Lbky0XGlWXy1jwZ9fPAE1tXf6htWww2og8jlT0hY2AQIs7fGRWoF8liGdtk +K38tDeLem7wXbhRlBsZIS7gY9jacCkuv3Oo6FiZMxYWnmX65qkU1UjaV74Oc/BHVOA/TL3uQf7B5 +94hMqeW4WqE+q9fE+8EVzSPZngPIEaTr7q9Fk+AEwNDlFnifq+LKf8T9MaxMHzcoiBYGFWvXYEre +QfZAfZ3zfiFbhQpci4MmI1oo7xZgftqeJrEZF4OV+4AaRDo2qK9mF/dk2rmiNQIGB5TbiO+HRtoL +y9jJXrbTw6RABKCgsvUHYiy+GRWeCDzVC0618UUW1I524RWZI3NrqgzvfKVoDlE5aHoALn6GKYeE +t8cE3LlEReJrplRmzk+Xm9s+5kM9leHQi6+nnzr0l7i+JxWTYBIA2zcyGppExiEAJkl79BbaIAjk +t0QdjCrGhTAxfaNgbDquXhGAPGMYdGUT684QsUmgHWD65Tw2wRlEOVOpqGkyLfPBDVVVPEU/lYnj +S2QfXU5TMminAGxjK2yPmR/cPRIZg9wS7oyJmYmADNNy7kkuuZyAL7XwAKFigi5QDTPcLuiuS7F7 +TOmS0Cye+3WA7tRSOo9rIYGVErgJ3Q8hGtBAIgEpyLcvCDLEJQ9SQgMRWELE7A4/3ydkAow2Cxdl +NmVekQw8KfA/kReIFjuCaJnoOmdOvC8wAv44Qd/GRCUSsB04E5uCiPxHcCuiNveeMltBoaS28D/n +Ds4xrM2lcD6qcNkfUggTi+cu2js61kvPcQOjd10sMSfe7RGdb4UIXpiQhzydJTxvA+nsEz6li+14 +sMLioGJEA1H/FDjmcmYCFQtg9ukN2l3YQ1A2hGyRFBNW96RUfBXWGak5SqZlbXZrOSYWBHeMtSL2 +R2YwI7weGdnSUAafpKQl3iZDRtxP8vU84Yo73zsGfMNFkCk5O3zkSrf5ohjmaHA86aw0A96WBlMW +dMdAUQnNqYiOcEL/In8se9nkpYANcRvG6Q2Nd8ICBp3qKYpC3YGoR5iaTbhZ5mOVqxganPmJllX9 +LDtOOYEQHEU+vCB6CYjer+jnmS8NvWBlYPJhd+aAdwp9iMH/BPm/czJyvntzjGZDNLQmYzSTcU72 +xFKxeLf+I8ROLk9uGvLQIol2lR4cQBbRd+efGXrvabvVHggMVNSaUIuRwpijJARpgO+Dk92iBphU +i60S18qFb9Vvqy5QYLzsFhyZtw/9a0uYGxWKQO6c6WzUc5Fq5ncHwOu/dVG62GnCCreIuUUXO04s +r+WB1IZoXY+LildcLLUyMXl+vi5RHWC8WtFo80eXKbUI3WSNrRlhCKGubSVgNx4HBzFwJSwG9DvH +kVhBCDHHvdNK0B6+wY86nrxfcMdBeISIAGduQF4EffS0po+AtiPgwOFGHQgiQc8G6VCu7Lu/jvct +bY80f4tWk1HBddyeCSyoapRxDowEQXuki+zc4ktM0WPFDeO0ZhGD2deQNzRXJMnfStTv47WDGbEE ++uHbq0C3gYPH5FKHmHFCt8TBr0XxKvjZ7TvyzZaJsyRWeMdRYJs+t3Z7RSXDcdYxqRTb0HxMcgZK +hrYk+DiouxU6EPUdpkPYadj7l+IR3gnJwmUwwDwt+UyWFvCJSVFseqt6TRgb0WB5zydtONdfbU4E +NmhkA5s4r8q51jYzAwt6FOio7U/1I1mMofsz+GDyDji+ZvRsoizTcZWabJBLA2plqwRXlggbpI+5 +y7pLqKfcRd8tv5MCoQOF4IC4csupfno1ZDziobhzrjNGmGdLTj94wnmPF/2A46vYF2gNzIFCIa6o +AsPp4lvGp01eWxddx1oHV7WPZSpxfK3IPrwMq4j88ETUHGRJzDeSE0iVBhDJkmIOMKh7gps7FYee +hm4mdXRzRBNoVuIPBLAlaHJApoUmwJVhjOg77DUKX5eHNrrSFEjvu9aEBw8hEupbAVxQzFTIMiiP +4uF/9RzySB96jX3fj6jZChK982g8Dit+AlkD38y8AaO/q+jjM+3dviDLZ1VWOGFKcOnvGF7pDXcq +Z+3xYu6sCVORX1+MS4Eg4HQPtOlJtlIxXS2g+Au7s+7rJ8YFF+DbQJSlRAD8cpMi31lAzAvFP1fr +MpJGgSJgcKynbljsSE6SOaK3CzzYMrRJwKfp3kZpghWC9wcwK5y3Y275iSCBTzjCfCMcavyftCF7 +4ElDLwscvAiPNyCjA8po0KSQFoc3xiSBqEqY73RK0Op25kQ7t77dV8lRgB9RMIf2jDwNGu3d/r8h +zKSU80pjhBEriRCdY2iQVCxpAxpxAF+Wt7YMahfDK6kHmNUj2R4WwFoR2BMjh3dJjSRgxi6/b6Cs +xRJxokK7TI+A6t4S3ZUlYYV9p8OjCa5cUljDzxv+RxBJNwh0VBLurwjujqHAJyeAESgfc8kpe6Il +ips6J0ooYGbfFKL60bfNowQd7lE4qPTuBeRg1t0i6n1CUjxmSDQFS+E9fg/YFPCtm1clcyEjDj5d +lq9jIywxmHCOCTEspSxudHGWB7bhAVocFz7LvYTFtAnSYOwW7oC8XJTzEyMT5Ew8kjkQGTPFJS25 +bW8VVkHOXISh1eoqFwIZU85Vr6rLS4mSOWf1g/wMBQHOAm9tZ+/Q0dIdnZKAgFTgFF1BApb2eUu4 +7jdMG6Bfn3pptqSQwjtlkT/0C++Gx/g0nh9Fzs/95FHCcMGY61WFoyvFcPPL0jRzREgmPs9KmqgU +rr+6k7Na1kbsEQMo2ECQQUCnQCavl5S2tQQZyeqBQqOzQc0YjVu67IGBnKEZ1CQU7IFash+U7Es8 +R440T1zyA82bu2pwUJ23skCFci3D2aM8MeZ6JVWXSCEuDpEyF6YUJVMulXLHeH3yERbbhwoCRhhs +TwBNuuQ6E/F5HOBBaYlMm7BhX0NsUcPR0IfZdzBJXj+uiI+QUSWJ/sDJOiF1sG5cK9vZ2OTn+TOI +DLaV6l+mupbAkkCBCOpPt6iSpKDyjJODUIM16NbqVNLyL9v8lMztS+zFLgMEOW03eXe2z95kFENk +tkeU29lp7bFyeNEKLhFcUwAEdKYuAYbO4BF3RNbXdFr4EPcuEeQhEGDJHDFtFaS3AD5srX+b5lvT +TdehbG6wzm11kiSde/JkDqAAZgM7z+OL1oso8Eq4OEHiCp/nzuwJxiJkiLjsySA6ADGPKosAtKS7 +6jwr0cyfCoyuBI3k20nLKukMjb6rEq7CdW7fYeR/h+8F7c2SpGYD1UHhbpQ2vzY5dAC2ZFYs5MJo +8jhvNd+TBL4IRojq896W44kv+O36yP9cLQJkjP4aoaWDRm60mtgCGIJmkPu23iVzJxJv3E0uY0g7 +IgY004QPeXWqcChG49YiB3vyVke66o+tFxQiuCEWJahGvskdnOm7/NKGzD0WbL6Jq9ypQNebnPz+ +AOLR/ZfOiGUoNcFSEaOQphssdhR99K6HjnPj3wQTevHbWCGKvmLNLCT5AlttzW2MGxvznna3hUZv +HPcni03w1n20W5LRGBDeup0cmcO18och2fyZKqAVKbhUAYmq9F/14Hc9Y7P5tTsOuX+/HKFVNXZ+ +Zy2Xrz+cb+bF8fdp/4cTkGYCFMZAYkr545cAXmCI86LprOkAMIScDLCDgGgo6thR/Q== + + + V2HhtpuabwAhD7QxdlsKGCLbJnJ3IW31vSZc05w4zkUAEufEJUiCuiFVGnV80TWEivsAcBc6S//t +uqCQKY7a5GyDUhaEaG6wmoRslWUn7MWep1ZyJ+Ec5RKzcN30LviPhxGS1GQtf+PtqVJioRISwDjc +fe9Wsd+ZEItDofPYED6L5Gz7nkkimB3+yxQypn1jZTPplEkzEH4TDeNR0jWIUOvs2FbDhW8e6AMs +nwsODaBd7T1h3QpjWN61TFQlYW3mzcXcnSkCfroKRApxWKl1uZVDtGPhFq1OtMczeJKfLYXpBQzo +gSnU1lT93pScgaVfSVfTqXk5p/kDcd/0QX5oIDxYKINJy1nxxoe7KY9rvoN1S1YouR1vKxYZ/Efc +riSmXGdyJmGIsW/i8gxCT6mrzWwboAOpH5AT3OxUwByoDyZF6z/HCcNwpUzXkpRdIegJCCfFXjn5 +IKJpN0vtyqCIc4E/1Ri9HSDAgzmjGRjKaoMjkmUIcIXSWVBIwcYpSUba1aC7fw3O0TL0tIRAablV +jAewbgNExqIEFb1MpHG+dkWS7tzyJKZ6lq4HO2YPnKlNaFbjy4lvxBgkKu7C+JKyCDIz943LaHcD +pudiusWpty8Sq59ntE/j30+cmCLsvgiHGRbhNe4BCJwdofveWw37X7RzUzmRMQ5Sb5vsvT93eBqw +UbxkY+XYHn0FaHZxa9SkrmigIzKXdzklIzckgYoM4jPgtOBDnq5MDSX31ba4sEgwXoU9hhRKVyAU +uwabH0FgR13GA8TqNGWji3YmlwEP1AKixzF1HNQR9/7oBuDpOfhMkNP93bCkq2XVw3ms4MAXYeUq +ATdjLLJQfr3RYTXVRP37PhzstF8KCvi79OBDd/4WCRpPUA+pSnP2DsGIu3M4ciVeXq1PQhc8r/Ek +DdBN8M+vs9IWmjucpF4W5FeXlbIJJOZ4Xhc5ly4VaBZvDe0y8zKNU+FpTnmD6IKe/owN294a/wMT +VgXHLroxvOgikR5aGAqEMab7OnfwhT1XJUKoerWOMFpD7LK+W4Nc0YGFxDIy4o42TUu7p0RcSriK +HNtLgFdmLWlRPmIY/p8pdGQzFHCKqpGOLD3nee4qMRNhVLxPuSI6GgJr9ve6qbi4B94L92LV3UI9 +CLp/40pbaIfXrCXd8F6ikgjP9LtcwgIGbWSQDS19P1jLGPqEHYX2/dlDJ76QrxuHe92NQtZrRUlF +H5auKvI3h5dE5QCkYkmiBR2EiwDnXc+rOy3+NP5Dd6O2ISsDhj9kFmc1qiobgV4MOeigxpl78ow1 +Y+fE6rDLCspmMM6tjZSgZXCDIrbkaHIHRpgbk8Dy9UCidAB5OVChw7YGBW1PjCWmzLk8pLFErEdw +fAR8tz0qAy0+UNpZhPQtWenMPA+RP+Xaco8EhnMLxGXWX0tcgDhafZoE6BM6FlnSlvEiSVmZeZRo +6rrc6MKxBSFAcamNyXnUQWHEznZ7fJaHENNhT5VMrob6omD4c+xggKFcQphnv4jjfxdXB4QCtvjb +bdPXZxuU7f60RheIK6X4vG1YS2BszM7ejPHIZmaRLhSLPYnffZxz0tQk9EQfipyEMLJK3g/7lk/E +livYRX3uUK1V4f4hFMaXWJmNrN7DmAvMBBFEgOX999lBnYBi9VGd+AQKRH7FfckkNUGDLJohpr3I +2aXKbHRMzgICTydNyq2QZOZkJ8CRiNnOxpyNrzBLs2GcDCgCD/ZR+HxGxk8TFjpj1jELm2y7Hcr/ +s9U0PJCYsY6dflfxy1hpsF+ULpVSCIeDHXlKqdiCogue4ldAb/mn+ss6x5HGv6RLiLYbo7FyBmEy +yrWb36CiYsonaZ6QfLos6zDnSjm4K27dYBJKNQhOYGROQudzO1FjvROHwCeFkZVZEJi/wq57ImJO +oh9wJ0TcGgUJXfE2EzTkMYnedQby8ag9p+mbrph110/Q6NVEByhmhrEeCQtRgxgUAMY9icCiWVwe +VBj26ChYybRU/28Kis4VmaAFWCVpwp31he4AFaBHaZ6zsIruY8mqgWgMdE6mjBuefTYbFXM14/5t +1hLAiWAjlyuDRRXpbAoBvdR6vSXw6IxfwcmWcguunBr1EKrNOKFvkvhbxoblU6GX6krU2C1nCKsY +Ppl2IwR7C0IRqCnlg3jDEJBHOpQ07UzSgsyyUHN0h4sRS5ZLBhk5cXJYkd/0EjXgVOdidQFB2NGQ +S569eG7NZPr7YT133TeIo5ED8U2W5rjHb9mlOTGC3fWcnxn51WvvF/RhlOrAfSthTqSL14kX/SGU +l27RB5cvEB7tViOitbaRAn+aostbyoy9c65Kpus3IAJFLynnNGtsHoqTy3zw/VlcHgTtPk47JZWy +o5N3CAw9GSLFuSpoXmfH8OGuLStLgiUAdndIQIxzkkbfEuG9rT5oVXkzqWUCmcWuiHXpj7oKKCxG +nSdd6hqcW7+W+BNyl55IhFJmbZy2LJKCSfoZ/ZYRKFaAZ8XCoEmx257MJrKSi3ICBVjz8KUtsxPv ++q/yaq91X89Fa5wkcR1CAksBv5nuWL/Hw5Ik+xL6cUhU4Erg0s2BkxT9yEMBDCKFRaHYKLr961kY +mWoX+s5an+APxFaoRI90i7wnwYmrH28+mN3wo3FbpbDZsNGTgULIk8MGNymHOKv2KIc5SXNL4jzM +6eKYZ6BiZ7WoI0fhlAPSnQShB05Qiohs51Ani2hikPOE++wkCXTC+bVdvGZVrl18fapvR0hnJV52 +LOlCOqMhqUKQoyV9UCx2W7KYemy6UjIHVyLUs1xS89itKfmZTClufDgDiNAAiRqYljLfI7CAON5Z +NYueLIocSENyIC+5H54woXxEdhPNDDg54+hIPwRb9vMM0NjekPE2PiIO3gh4chqBGoOXiT4wcEaj +gYZatZekodbwebuyfwhJAneNZw71n57fvU3wWmaQMb5PYRTo3uUrh/SGT7r0x6FxgPbWc+XEn/94 +Dp53eGPdDtypOHm6Ey3uCs0k2BUiKRr+WXOV/TqQ0i7Ag0OtC/k+2ug0fL3JiZogTGDO7rdY7NkD +XvCPrNN88mFqiOkglTsKEPNwmiv6G9HSg6kpcZImOAnEGj3zZoBcKWsWS+Tyrpn2GhmC+0MUGQZ2 +lg6J4SWgY1Zf6WRIj/MXUBriK8aWQ/oSv3qF6I3fAqkJBduxrAhR6ifKynJj01xbOxJI09SFivpP +jQZCxyZMg0c/tCMcPmDK34ansvywIESuYCp+bqz23hfXJUJ3kQT0+0uQcdpSFK5ttJKNXAEIc4mU +Ui/73+Ezvwb/eTk82L5v0GvCMK3yJrpDJyMaq3PeL4zi/Nla7x5WJUEej1yv866RiuoUIc9zrN4H +DhpWK0TiATAvbGIKPpMo0UvMvCer2gjnX8RVfzo/Llqv+4z+95EzdvlIhoSdgZT5Gp3ycdJF8Kd8 +IckVJUM6fDbFIAvpihrJv/pYIK74eT108UEHvHCMzhSxQCcPBYyL33vDY74snYI9IbqzEeTKmBAd +qbSiWOJzyxaz9HfXmEnhLIGFDrTQJGPmyEaGQa5CoPFbreUM/q8pnCYTVWTfkhoXfZ9g/QOpYHUt +ts6Oael9dR9MluaHdPqGMElZhNltzlEmyvibm2VorHUB+SVb+z13RR09MWoBQXkV7dKlhVd180fz +S4k+JUHKnH+vpqc28o2L8Kv/pn6lWO6GYDQzJ7Y026JL8nNT0p0ZwTLwR5BO+Rnaf7UJDQ5lFWE6 +w9WfOPKoq5iXwGBlNCO4a0Q/jfw9Npc+8Z0j81KmJRZ8iaAEvuWS8+rSqP++120vgkZ1xCqUIFZK +CNmIZviK7PIVu95iB1+RISZefoB4iICoEpofyHoTXac1uHEyjSpRW/fvQ6EiyuhkFSqSnFOoYuL4 +YqBK2zO9xCFdTKCZtFDdJY+HHE4a7LSobek1IP74mjsuN6+DIPxKfOCurWHZNHQwvOUgIO1UW6jj +4nSAoJqTJwiKY0Ng4ZF69bOeWK3AQhYQ0E5/rFPSiTVsPPPQqkkcf9vpK/dvJLjhm+ITCjaOeOgA +0mW89bNoEEocmihI1PHdXvW71L528AZoa83k3d0rC/8JYPyN7Mml9WspaUkagLEwSCvfWxqciS9b +gvoorZm16KxxWJOpNktcHtz6ALrViVRUDt3LuxVs4VenF+3heyYCnfZoPtALlSOcCpEEbkneSoDO +PLpJVEt24Jow+87wcl26OMayybK7Hju2GlP203+8scz/9YXPRI/GGlNZhkFXOY4q55mwnP6n98gv +cPIgw+imFxUdWRhE1GEqUSxkcg++bYzo/0h9nDzSyLCw7H1FPEC9bZ3h3vfkKsDu/Y6lAWXs5v5F +VYyFwUbnNR9LLVwM/R4H2urDt8yQh66Qw0mGryGZLMlk9mJNsbT1N1tySyjBNGgUOO7serFUUcGz ++mddWkOYGmrI/PpzH0uChOuVIeVVdbnivmxSevGBUIMglhdlIWOri5yJS353sFQirJCSae2k1GPR +KIlXwlAoxQoZ1oxHy5BNWHapWOnfDaLV+uLbfpiYA+H3DawMIejkeZ5Nl4VhrBjrhoQgNmThDQiz +Ums7snN9nbrWsFSGRniBf3Rd/62/Ufyhw96Ek1Yjnc5Q6vgKTowM5KcQJHM5csEKKVEh1/dOSXlR +IFosO7qBJ+5p3EUCktR3llG0IyX6PZvs4lOOsUaByhuPT5hmk1JJdhNJoQXW8eospVRcrs0GNH6N +Ipcn0xl3zzPjjpDI+20Cf9hp0BpuOFCV5AuwcZJtiwR13nSITm9gcc+yE2h+DdlExGcaoLbPa6n3 +fUT9Xig4L9j6uA5IPxlnMRbUpx5tdCV6DTP/28iP8xt2v8e/AVoUKJybGp/ylYzLyJAElZ9WYmBL +SwJU9hqHJWiwHQt75+zo/nmfMV+5FHiAs0/gWfRS82c6H7diYmSZYJ2zgIuLdxCc0OuSMzIBzM4O +3Rio8zgTZD07NrSViPsw5az17+RUYi81exXMqO3H95GzL3SJ752orTyVIoAM7pgHNBq6W2TOvvJL +souU4lMzQv5N/Ftt0C1XHmjzvi9yMVP8OfjZhLAyP6VtkfXPm9bnVCm8oCNZ6AaAhR0nXupaze++ +VVW5tU3mzD3HgZbldh3gmIbgpOBBe43f1UbNiNhUsS4ssx12SQKarBQnKo4XztGlHGYrkW62FGzv +1IBBLF6MFMyWTGVzHNZ+MUQGgAEk8oiIBui0sdTWGDR/iHNzmrMeGrw3kMv8GOzTd2KzM4rUVOpz +PG+VrWefI2k6so3I32Qy2U7F5jbjwnKBeukyd4qwIZQjzzlrO7OMkOW6H4JEyBLcVFvRdqKYUuTT +GaJCPS3ukaLcrWNscL9vn0DSy+pIJnD3s9oxj5kNwy9if39gc4KFnoe77nVlol11mFhUteIwEaV9 +vQ9B11/QgSKRz1iH9rUq8en8AjOyaMSGG2FbL6W2kXlhDV64oZ1OiUbNn6pXly6cew== + + + dnpUMuOl93fTNcxDjsrqRTKhT0iP9noPBiOJyZK7VhJ4WUDm3gUksu+NlwjrpEikfe8HeuqgN857 +K81mPJHHK1+bW9bAKM99e5eKQQxAv8UnbyzQfgfBtnxh8dFB6VocwlL7x4tYqsG4pcXuJzRmnleZ +USJGcpVATZvPdWy4qyHNYReQniwYKc8Yby2TSY0BC4iNFReQGlNmugGg7r66f7ib/0Mir1/zpvEw +Xeza6R1f4YUizE8/PEVGbZ8Xh5M4zg8VmGRiGyvmz+hwh+2u99PgQ6r1Jmtulj9V3B+JQ8o0Ulv4 +KUK9GCQyptxDY8R2CWZEJl0oMuiW3AaRkanIkCtOninztiuKtUQLrg+c+KhLnAjSEvnbv7TXanAS +p5vjiuZm4vL5LYfDSbU0Smf3GLrwRvUXBNu8u9+g3I9z0NminFBtJgeORIp13+nSYe/qIVbyEaOO +G0rLGYfE5/Nz8YpQRNwMeF9wI7PL3fg5dSxM4cIyLGPxfmhkcT0SSWMTRpaBWkYQu5L4gbg70vDO +3ax3JU4r6G4z8K5mrx30fdQPF9gij9U7ejcFMtl1Yrioi+s0veM6TNvurmLvGWBzSg2gX086ig/Y +ROgRuFsERzerB7Qvp3It4TZD2o7BHwpwbxlrj+tLDfXbjLJK2+XbNKl6p+IDVmuYI8tKzF6u2GTg +Xik6wn0CmaTh2z9qWGyRlkBwOyG2mIEn2QEylkokZ5ZEUZpfc4oNKvzrdU/b5lS+1Vml4zNxkfG0 +fcZlUCuJ+4wFGOe20I6r21I2OteDoBsKT8DHjYf/XcHtR/2DEVzq2NHpR+txq0CiBwFLdpF+2aPX +m/nR/zWCf2SH6+4tfWpFh/GLOP0cdyOyI01ycvTB+1QkIy1PGlXTRQIq9j1FJNe8wVUmqDGRb2dE +tvrFx8MiCQfyoe89yyEySYwKwHLKezM9ShWaOaCaeXLcxKUEW/HoGayxwkFMRRjJs1ohzjcWYqsh +wl6sSycEQub+eoFc26rUCRzs4ffYltcW2plhzmx5DtJJfvc8MQsG8aQi13a25TwBmLgHme1dxOhH +B25G+h65CmDc9n6MgUckrx7EYugCHXF/EoIdV+bgQri5Vssi96v2WJvcUi8nwcmPEYxORJvsuPyL +lqiFnLxS7CMrZ671IeJujj47LljQcWBxENCRIAUY8cl9u/jRcBggm4utEw+gJ0KN6WX3C4ri9SFy +bRvFHu5TR09kwvPW+pJyp1+w379AbvUIe0f+r19AmbbGRABgevZO2bhr1vEx3iDDvxYoA+L080yP +VX7PG+tTVFGYeDHJbqf3SiZQtNmusTc4AtO7tknDOzIqsogeB6rE3l9Y6ZRHDkFp4Er6TxDvf/9X +Y0NQLCnE7gdONNw1egyQNylNOtrdRTB1q5eDMtqGZkvz241JShjW5W9qN6NP/hTlfsLNqSuf9Gjh +g8lIWuDg2xVSEj/fdv5kgPij7sapS3PM1tZn0crNkViBuc6lrrFkNW7g2H6q1ztP24dAy61iFcjo +LRXEnmRN97oswZvMvC+i2aaDUxIi6Jl0JdKm4SlhkWfO+wzvJaawy14cXhSL0S4ktBXU4Jo9+3Dy +sVVhjq/a7PSqa6eic5UN9F+7WNXu5iop/TB3N2b0BF5lfqYBudheQIW0XAtrxFf0iIT8gWMCMTfz +7mjmzpwJ7UPBua0xCAicsrlr0C6fi+dQr+vWGLSlAe7HorCjYT+lByBSFcUaAM+Se4FgIJZSpfXc +JW8wP9U7ES6jtOCyeFnQAjitpgROBsRwpvEOQnHfWdtRly8sQO2lRkmvDX+KWottQwKRrYjonbgs +Rniu1mJXgWTTEjNJJZw0juwpSIOdS+wHw7genZFhB61JudCIYh2+i6KugKIkO5rRfCl+RZ9IN/Qz +2mw/KzoWMcEcCFDpRqQsbA3uEV1q6eHxqtJ08gvqaoFlQQFY7Muz5WaUYWWnzVSedSa/b2Ulv/wU +3c++avvTswiqm8If/J56t1ebuk4L0JC8FDOrxKCNdZozI16SYgLn69muJJehsC5a504aHaIjl2XQ +nQbQTTuLJ3xsg7cdk7j3pnWxH7LS7/z0K1vf3MbVCZBvY77qBQwhAcquHBQTkCUpNg++IMaFiCgz +M+nLHHxaAj0BNwE7ASP0AwgWAccp+DmNiKLKPywC9f9RhEWI5XlGQ5JLgyeO4v404lUXnY3jyQ4g ++A4giJzKEtstVAELlFF8eUgafcT5vogTNCQXUOGlyIyy7dZEXop5TGFsOvFXhKCmc/jVKlS/CBH3 +oppVjddHiJcq0P8HEEYSRJs4IaE3k7zldTN4U/1zIuSK7nCIUPNb5E/Zj+8k0tsmkSFdUVnBiikR +qX8ReMB+AIEeiqC4HK14a3L0YDE+kZnSxZwKckMU9A/kqLg2cU0UlNmDOcznqF76Y3I+GitumoWI +GzMkCpnyK4SEbJWGZSqSUHhINt+oatV2U7qIrCbeYfibP3UQzfwFEVPVVloMJUReEhRTIUkVQgzC +ib8IkA8g2PgAwu637Epj9ppYcUU6iWT6iPYV0pzhFNLtMu+0v6LPY1NrzQMEAWzHp1xWW8kZZQiC +iP4L1PcmGe9zR69ptnT5lCT0QYhbzIigy2gacQIWMHEmij5HHoGT0DtpVAE0FJygWp0O0VeQHhlK +latZ5gYJLYI5R80frmmMLJoH0SvykDLdTrAtMoX8+wEEjqq2XrqqnbjWyavRXjcpoZ8Dh5kgyBdK +wjqNVJGxTIztjxesTMzSoliGRuGHvM5vDJEfJJshVYc75X1qZ9w1dzVddGKlVNgvyz82jYf3PaR4 +8B1AIHdlddWSuh1TCjX+ajlMvE+1z6TX1KO7Q+SgzmimF0dJNISIAPXRLwL01HymrY4sE6OI2LvK ++o/beek1Q1Kfl6BIt8389RH3ErCa/qP28o0jMoEWIqLRGqpWZfhK1S7JLKQu1TolYS5K9KGF7/Bm +/PnVp1lSKyI8P+2OTxHzYGFdx94OUbymztMfRiqRotC057y+Dceb6ylXi6a1++BdHbOqTqTpZ5Mi +2oyBDw+87LIACkdnopIXryhLOFgfOAJE9se0kGdw2N9VoqehkWS/lEv7jIhWoca8RDMPmjZISNqz +yAaccNnXfmOiVFDcHD3M2qZeJ2lRROOBfOBF4NOHqQiGsD4I0fcUsCr1JXuWZ8qjTZTl3hEgEop5 +ETWrx+8uQWg+NTmGnVSVSGvVH0D4xvPLwzEuHq5RZVNCnCG2XzfBfhF4Z4pW8oo3FHzXLjjyoYnJ +WnxJb5EwQeiD6IOF9EQxIb/7tK1o+OodtITpIRSjzciZbSYImqCDMZJwzGX1ozpb4p3gQfhbhI95 +BSwgNNHN/iIlI56a/VOUIrnO+K7HhNBlEQaNSLlJ3yAxBiMQ3EsEvssOIEwlk5AdQCiq+mLm5Koa +Xa1wcQtXy+5UR1YmoXzjFQIh1chU3CQeVZAufVB96ygjEf1DQOYp0JdH4PkF8tOhePs4y8tOreIU +6x5tk6s+LnwWGExjIb5fiIulF5PFahP1ofGkyRMlRG7Dkmgzox5ihfTtLZ3Mbpn03ngCz6GqmBqF +twm7NeGiScACUSEymSFJzLyXmdHIOjEyy/xTJ9JGianX52IZVGQHECJgZVY7VUWcmt8TC0exzvlp +wYUPePdVfkZh+V2EZMQbCdjGdepelpVYgrpx2G64hnM8fBNVkcRD01MBCzgEGQIfgu8SMCp2l7fq +GE8ipiIIXr76AYSICETgyc/DgAVm42aEQsaXF+urIpKWY6GKvovyguaqIElop/2zkTmk6Flg4iNo +BD7TB10u8xKpXrzNxKoiSmaMPAGK76hEWOggQ8gYMJRaASMREAAoMAAaRyTTKnWbAxQABjpEEhIG +DBASEiw0VCYiGhgLxGFQGAwAAAHBAcFYJgYQBEQBQKF+Wk707tp4TPMJ89OCLr5WqGZypj5E7hfq +EB6Jtyq51pvr/5/lSD72E+0W9J3FddIfCR1I8Iz8aYwujwqK17SSSnNsGqwU72fTnV+TUIZDHfe9 +xpd8+pLtvV3ZtEx8xF6eW/pwI07Yb7ekJYJ+Ka8VfUBdFuT1Zxs+jIxwhe+PakoUwzlq8A6hhhO5 +ABE1fBG+wagO7XrFUGql3bcIiUIEQ0d+m+H20qZmAk+039b1wjTqlWTJ/nviPGUvvW9ouVjyI4of +8V4tqRDE82tP1bhSl1GnoeKDpEyhdWl3IpCWS8YdyULF4X8h+FcAzxfE7zg4CKllspcGKZKeMpaK +hLP4JQGLRXwGkWmslg/CtsxymtwAxvPfUYewW/+0voO0a1gw6eGYYgbuiQXFl3FLHzlMZXBIdGI8 +MtvCP1jcRgRNLjPKD3wLgtn/cAbKnvj1Ozp4BgYGb2YsmYFDVowNAMPGEeMLngLxlXhzGaZcHbKc +ZGgoMeFS23CBu6AB3sbbUZzH2cAJSZfusueUfvOKIbbD8UiUoIQrJxGzttVpeMYSxayITy3Wk5ya +MpFCc39DmXhpEfEZn01p0wcNezxu91hMdbmn4cpFQZw7O2wSBLS7nYgCAR1SblZBP88bfmSOBuQB +3so0m/I4QNPtc80VOGP1cI/F8UZKe3u+yLx6KzE3clOYSNCUkt+mMl91f4VDThUfFh2OwerYchEn +dCcnPzYgHDHCXFRZOk0LK9lomdtrym3mUF1P4Qr0ml+is0RIlHx+6hW7bc/jo5VWeBSAqpg7yo5E +OgxkjUqcEZpmsZwBdsb0EcQbp/9A1jW5jON7S4YeyDw6z0uYHGkqmPzCMOydXwmpHUTJvUuB4Ii+ +3BInCJSJDIjzrB10q8GjzyyLuk3Gco+BKRKtK8z4bVcX5uxMDDnUNwsa4f8Hn2i8KxIJD5/Rk7FI +0xw3pUlriAvcXjFmjsTXH74zKH4QeGXva5QQqecWfikRCWwH8njnOCMoorhPDqLh81HlhW9bc39r +4Ih4h1Q2QYOmSXnDrLd2I0g25rg/m+oRq6EidfpEC/ooZFPGkfyABIaFsOXYIWYYu3knjkHUiRNQ +zA35FiLQVYK4aRfu64zG8R/vER4K4PneA7qDc+9GAAeKzpHs11qdJiBVP7BhkmgqstpYMOWX24Ip +oTAzFrpyuJC93wm8+l7Puhsl6OaYYhstkzwhO3Dp2DpLf0GqiwUsXsmGICaOX/f5w/TPiaML+Abt +Z+VtUVJNASi3VvetSdZFGwPtyDHkemKmWFIUWCPwSusprOWU9GiCsvDnU/WKFut+sSpcS5IgJV/x +LIq8BB1lJQ+RnGiTCX6vEPq6scEtgdSREX1y1B/B38f8QlHM51BqQLmT4AcWCAEJ01AYzYVYwxci +jwDcOhHJ7qvQGd/UDXdGjfTbZpivMnuk0TtUvITQUosvuVQ3cXsENgO0IUZG5b4HzRvKLbAGx5kJ +Ij3PFcrfChH11HiTjpbqh9N6NaJiNXsxAXGKN/f6w2gCseJpFhyUY/O7rCrZmiSlpw== + + + C37MwKu3gRgXpolY2Q6ZOFEYt86Z8L5OMOE1la/GxnbYzRitAE5wmSSZICnqSZDyEr5LeTiJ9x+E +2Hsstq0CWpRHqij8/ofNAS+EuCNcTbNG7bIxQXKmV3fB2OELRUOstgw2Txg2XWIDE86I0y0xacN9 +lm7CFTOuI+dveLEh5y3KhCXXxg+UEwZFzJFSgiW3VK31Mp2H1SUlvWcZtf5hvG68L6ELjiiJXXUT +2AjQY7OQMrwfgeys7pfAgrz5Qo9zsAujI2KqZQFEMMBb90A21iDSdQUTbNIZRHTuaSi4W3yfqXm7 +EOt+964vRSaRMcHcawUH2JrTogIjvjsaj/5qgWu5TI4YjqSzyYKzEplrI6pqNNAtkhWbt09J7PdB +50nxRtleQA6IJOrqZG99+rInqHHSr5c0SJL0yjH00IAuQxS40EqWBxuMvw85aVKHEpw/RdLE2OTq +isuhbk/oPR7zRzcszJUk2EwSntwQ8UTDEixw5v42uvDl0uyYTQYsnRweb3tGePnMpAvshVApDwdr +CVAxzvwi2VFN2QLah080DL80cbisKTEZgiu58aOyUjRKnYh/FF5RakLb0dHkxuYDPn2lHFl8YqZM +bl4UOQVK85IpWk9KDJGezg1t0j5VMUULDMPaPFONYsHJVsBCgIRiA6ZrHuINXvBp0etuQfbJTF2f +DZPF+6F8SgAjPZecWWpBT8Kc6s7Uh5wmnenZ80ai3Ocwzi1SuMFZQ3i1m0Majc2GdwszfXCbTQud +Hvf59+7jyHjcOBpvsqVd4a0vYvgqaTywEiT556ahG/G3Q7RqVCdc8CwoM0t1wiV2EvOPS6fk/hkQ +j5gAW98Flm016ze9LTOWJceKF4hT5IRfVhsUA1xiSxUUF1F5bu/awvixZXxyAI1DlEtFhxZU4c4A +k5tFSHeewcLujSox/BC7qADfrZaPAQSFkYo1BAOIyLNu6cC0xsFDiYEU76467Z0gFyPHooxMPpZm +vPz5C1GSSBZzx/oEj3EGu18ik+VRwOXfRAL44Y7cLkTbK7GyqokiTk4gD/fGZci/TdJsn1g1Ff9T +ZcQweTtk6zfNuCNBPlCM5Mea2Ct6w1ASxzxBtEPqS45oMyX2HE9BWpuVggZwElHQbI6eajuSgzi1 +gCgWS5NI6GBNzLQQOXrq1ZB7saZyjwnUOfyPZcxoAiLi12M++fIvolZvWcMw4PNixxQvRm67XmBu +Sxk1scypwgQN+iS59wXCDSM4DCV45lFvJbgbwfTbhMaEMvmCeYTqG0aTMfk6kHXchpgnl3/vyyft +OHwVkcwhEyNVhaD1shFtHnQA2lesXm/RCTsJbtDrhCjczfrk3MNjxjt8BQmHNBUa8X+XGSOBEAAz +gHHrFdYxeJP085vIeGjwWkHPYkvbWXoRuIdNAyHF3kVSM7wmJksR6M3sVDAuf3x8KtnmAUyYAV+I +8azU5dpwONFggfK0xISF0/WT6lnchGvHGMdg6J+44vB14gQsuGffIFyT3LhelJ7+RBUoL0qAk6Hw +9UFxwmKFJXXj/OSoGT/apcbwW4Q7aNkEjbiJtC5ywVeeCAn9kBqC9QlNB7DXgDl0ObUGC4IrNTmL +VDaNTlK8Ap322vSqROcv343x+Gz/CO3J0z+vnn19Thig0xsSNzhOgWzuPfJDS0m+XGvG+STuwMFO +YCiJihbtyTRiokXGGxsnEjy8vtHOsOuWt2V5DBC8vm+UOc7MF7lNDdEYkm5GQjoiK512K+DQJt4J +cg8dEzWoaRJb4XrzwK0RBH9LI2OV3ErtJMprw/VPRA5CJmdQEEkkg+BBhEJSODme5krbtSzAHqBr +zMIAaZWZZ10XStbdxSH28GXaETMJRWID3KXNKmWc5ZtS1uUYXZKt+PrZL20qQOQwRCUFR0AsmWPx +NQY20roBswU/JZGDBudPMyAU3h9yS9mHBJ7Ndb7CupGQNRXZVfE/IO/JCFsWlqmElJGbN+p4kT4j +qyx6yfxggARjUMbmMPGUPCfejbvEoWHUEupSBzZV9pbKX6TlxyV5AWv/tQhxhFqdLqiXtmKU2akP +oAs3UfavTcK14erqt2KZd4lYsedp/pr13t5M7VTJ+ByJAhfg0hLG6SUWeeLq1TjgX1gKQTG1vk+G +FFlKW9f47h+4ui4KfQA8CDOAP2L+veEktFtW6D2uJgeROdgz94LWwha1tx6EksTZ0uRBCFxGZJTy +zdYCtJEpHAeN28Nc/yM4Up0xQjfdDOKn1tNpngS0DaUA/BXBODDNaPuLQym0sKjTZq09zLg7DJgR +KMWfou+Q0CyifS+nG/JTWf1OzQz4r05GIQL6diydxlxKr0B2xRwcdmAC+gIkM8A3NonfRi5Mcggn +zj3q03C4C7E5uBx6CKETNWRzST7wJ14tpEK6BjA3CSdo2ks2NMca3NEiF+P7ExoKfnB9O5NKBJsl +j0kU1HnmDyvgsjBU2xIhB7V8okMWPYjnhTbZQR/hdp6B6g0v7tC+PO3w4nzys3oPnzD/U7iDxDTw +pRhP1sFoKSThmDuXJDf6F0220KHwXTKDbHFIjRQrNPiyzpDH3VylYYlfImSSHxXvC33+EhSj6Shk +WsfW6ngosoQiFNbkTO03Qcem9+u20FrZ3jIFQIuVpbDhkIVE0gKBRI0wm1faPQe0S5PPgguo0E5r +tvHKy8NagFp+1Qn0ec/b+PvhOi9ydIkeX77QMOmC1CHwT6o9TKFgMqZ0F8dMoDyqSA5m7XlL1LTn +dREy063eFCc3UxVg6lWom8UxFOCSTUm6wENCdhSX2wSZt3QHePTs2uusobAXgCtgEySoRdr0qzIY +Bm5KSZi/kQp+7TG+FeiOmqhBcRInuNFcudzRVOHtekAxQKZA0kyhJgsm/pfdEpSZlm5S6sVgsGXB +dl3iB1I4iScd4WdpHN70Qrh2XEhCt8VADvf3DefHKW3p+Uk2mlFQOQQmKd1xDe0VCjnstBFflMgR +Lfh6pS0RaLpkyCOgiXMhXDP5z0Rk4xrLztxIvAg2XlcrAfz2gwySBNZE0R1RL7n3ztSK5xhi42Dk +k4ayIaHd1dlMlMhx1AMQA3eA2HG+vZokNIMfkNWspJqxt2Iu1mvND3heQrdqK6bQZddRk3Q/DYQn +NVBTMT4xAcmefPdeTzlfDi/ZP6glzmol3qqQ0gDJyjefQrlWGq17tCX88vJ6FD24oXQUS1AM6tSk +N1PRQsOGt7dcF3q7BmGSrMaTtI5JVoE5jdgG0nYN504f0b4aRPVWuhBwSvEmAFTJ5vC8wWo2Hrjr +CezAuskCfD12okQ1cB5bknhUOC5ffCot06BbnESgaWzT2ao6PFeUXLrycZKblWAtIk57x0EdSgab +UNoYTvSnl8a3XDjNRa6jJMbKuzbJRINl9f3A+Ur4r9G8YwLYRvBtbcebf2gYQCKep6xxRs+r2FxP +Uf5PZgdG3+b8e3aD0CM8qYROzlSPgFtPjmcUU1XVViuUn5FN5FFn2M0ylCMivds94NbubnzdSB/P +1aaNcIJLPKHSfMTxtSQmHfXr2JXQoxwzXOI1G68byUsI6im2J2gwFYmJCb7QfI5shDokNKcfcUFZ +v7UjDElZkjMIFdHBZIfr0APTDHliC7mxz8YTSJWEMjMkkx38FXxn14z31Tau3LCk4gZPqAc/43s4 +tmA58ZXx/KP7RA30RHhMbLExIeLvOovV0Bgis/RjQpTuO0d/6rgAsT6g3cQFSnFGhMPLcmjXYPvD +aI1wONE2HXLeYMfYCv/OJdxUbmP+GX67BwdpT1fGgiIkctbcQCiVSEYSQwp/K8aL+HBH5apYIVpB +h/SNgrFHKaclRld4uTrqzkFA5d5fR+sW4Zc4kYUBMSq8T7pHAfze43zmUASSet4+9RoPQ6Ptgpb/ +gdzkeuvoc7a8UZombsK0HmgtFgHIBXhlmZjLeaNPgAWBqYK+Ktaoou7wvF0IMxd9IJ0v0cypW/xw +tm4hHnE7Yo31M71QJyKaYYUUkz8jnwZF+OeV6gXN8WWhIxyFjp2kusAi4nWZrdkB4qa8fbUbE7JU +SzOyMNstJBCfVRCCAQoiBN1yMjYHiVchvPzC3ymKgWXWBtkCvb4TgIfGvS2gz2jX8WzvRHTVIQbe +2Hml4EOPufAhxWVG9STOjAhbZlsv0Kf9ob1CsMJR5tMhhYh0ObE8jPlQ3AD25/NEHkiTONl6ziJz +ZASqGRHpbNAP1A4gMn6ZmMkZQBFRBKY0WhdweGxU9xk6BdmwwAkiXo7JyRT0AUS9jJXUwdCEMPso +Jl/LhZtbPpwJ/mQ9pDs/n6jZzMTnmKc5UeB30e71iWk5IzXsmdBUhyjPgU68NHkjUYN1fzQfOKhW +PPfHRnx9L50SUCGBAOgkVSnkvceyk1S9t2XfVUne0siqWIyTrFm5qjuFYEQeWETMMxSl1yfhwaMN +LZHxC3MNDuX4838AoAI32V06jR1yzZeg+OZ/0pY2QcFxFcSw1TosEGYMWCOP9MHSeZ72LifXwOL7 +4+tZeHGcEWNUU8WmrJq+cDTh6J1wlME8lCW5xdkfNRQiBWD/7Sws3LIVBIQJExng77Z4L1QlTAy7 +kY2ILX8xkFaayV+iCLRpk3gc/jzTRr98g5N1BTOEE5czaTasnT2uJlsyKUhklCqPRUgBJuRqQWUz +SxsDFrxRqOQre2OfkHP/e1t8C8RaGx+1ijjm/SIYvEyijcBkObwSRiaq8CMe5p0CoQKOMFNabtpQ +7D17zP8x6xn49tf+IHc8bC3iDzm6cG3IBHgBOeEQOLCTokOzsOLgIVEH/kYDOVSBFACpRMVRePgh +53yzsbfJpngvASQg0S9dZ3VgNA8T/TUGzJpMLWGhKLE41IiaCKzHAOuQnGax3qOggo56Jt8BqmoU +0b6RkzTsEuezBC0A2AvcE0wYtpNaogCbLCdJTlRPBU3OMoB/hfQCKn7MmBTvDnFuAhQ0c5K2UZyc +ycFb4EI0ACJDifqXfxB2vAtFCDflUSkuwLCZaonL3v8Y0zsHZUzz+XBS18YQwu2EyeGojYI1QnAc +jXCyD/9+FcDxA07Pr0LIi/MIYaraYO+0qoexROjwl/2m2gH30+4EY0oQB2XfgKiNYE34ZBd8w5yL +OgPwAgCqiRPtwAyv72gKxeL72YFj8gFZCAmX1reinmEfpV0l7g/OldiGo4uGMhBeIM1YYDLN6QCE +8i+PgsV7cLuF5dsViLEWvZMuyDGETAcd6xjmDAXLgIJWkFmgiNaVTMPAQlhO4AdgDSDp0T+Z3rT+ +rhNbGl5RcOCKUh/dViOd7evQMRlJNPxu4QPWTqZY5+MHCCd88GiZuXenMbrYAyFgjV7HRJdU5N6I +yXez66DrDh5gNGIJZ14yeUnk/zj9rtVEfoJmE9DjcMDjwgE1ZGs8OKbMJBWtgeRkjedoY+5UDWWn +hj83xdZQv3a6jS5VujdIoaY/gGRYyGtq6vEIQdFTApNuysT22xw8mfAA1CBD7jznng== + + + Jv0Wx+stBUcoJ+HrJHt12XkNc6T4gtMQQMXCiWrOUjLpQt3wmbMXTRkqOFQhtVpzhZ03QCSUmp4p +JuiSfBpEi2ZYce8BegSYoLRKqIklSYJNAFp3gtRL/4iaJsGw18qNfw0vA4tvGEUNXCqow7lYtkxd +mclFTB5ctkSZQw8jbEbXFf1RB9sxzo74sPgZMPdzqHluorE7QZbMsoOpkBj3A7AocWmLK4KnkHCK +gAnwDODSFjEqydbgBVV51uwCbaXmiZ2MC/1Zez7QaRcIRpgxScklBJuGSIYP1gD1p8HLgyh4AcRK +fRY2qgWmd6FLI9Ap8OhMsQFLrrCKpR3k+pgRPYyBWLF/+v35mEPYvF1njtdLwlLlM2OFBzp5hspT +qXSANCoHc8TolL83g0c4JL+1p91n6QzqPWdSeTCHGrxMFLpRT/mb7hGFDqVboZVNBnZpMkSDqrbk +jAJZ6F6UgZ2ZI/S9+i6j51mjqEy7lqO4TExUMR8nWt4l6DQeyp7vqI9WdTjmKiMVNCsjd4LMw55l +p06vEInhbr8xciHZkGUWaYyGF7lgzeqrAAmGGxdzDLr4GmRz90zJ25HIXt8merQIpc+8sTBuUHg/ +L2PO59kqQKRB2FXrMAd6jeD5nTCP5FzsLGf9UM3Nwi4ahxpBE0Uv/1vqa4Q1OxyLUn27yfK4R45S +RElLLiqlggpJbEY2YvTCMRaMN6f0NMRyTqa0bvph5c6Cx5H7MN2ZTwipas4RqhkcJ2laT743AoXV +QBBW+GjlNSAMFuobsQCLFtAJyWPTwGmunXUXE8ZuaBWEmKSVWwiPFsnd3nIunDEaiNA/061MwLYS +hc33RgEz/6KQ91h9pO4QhiJeV2lQjOXmmeSLcoY/KWO+wVWSl+7VsIGZZUXZEbKzS2G5rzeP3kn0 +kiTcrI1pkWkkfyvA3An0Umcj4OSWrTagOgJFcBniPq6iaV4HWRkQ0sbUJgu9AtfrQSCdCBGMHt5G +cjJFe3AB1Ryf3JPwyhIn+bZ/myTyNGAL2YUjb6sqn68rEUtsTR6n4MPH9vGtqxCic1jK2cL58TcI +Vv0Zla0QIKOeEIbcXqscz0pu+viVYRQyzwyBb68s3GULzthppE4ZIjutg7thjie7NriSau9SEtFA +MIQWrs1BrktbNUi5FruvmZwJCRnTswXT+d/fb7vVgPVGinYQBInnES1+w6AiZKHVCCP5GUYvcEdP +qrwk5QAmm+Set2TRcKggLmfgy08CKwIftvfCn160NA1GF6/ulF7YsMUQmJg4E1EPkKNq6JQbfmSh +eDBBpe9qD5u0F4VQxgEpfVo06P6Ppw2gpzgteRa0jK6xBceOCLkUvjYDz1yL09QM8ZOfpousvPRG +VYEW33pxZ1KrIyIhBZ+wTWxT3ooleQPZ0pLTuqMtJU6YIBQnyyzQBETY3DI/itQcXgB5EDXbLZEu +C+b3VBwoBHxbooZDlwrmK4T2ByA/xMwv3QQZzVrSrJ4U8GaijDeLXQyQyslpnhA6VBQ5GS5ImOvA +/ZgguHAnAJpRks+ScOgU1R/EAJ4AIMPXky9YpgXPgeiUN+oWYRwJLdwFauIemUQHFEe+HqaxAm6p +V+DTOV6SdJSMyUoSySoUrZoTkSgC+P2HUvwf5VM097QjgI6RnGtMI8lXsOrsAkjRAWFU3ytpBmxc +w1zuAy9AchuYvOGBnjyMljwZFOA9RC9ZsJpMh20i60UgcnmF0SCbuqfGDNOeEwSbLTO74RVAreOi +WDR4j6uJd1bZuSy+eDjAg5nsmOdMuD8fe3lhlK5AZrBfbS/Gj9Aidn7ilLEoCl9b0w34wp7LSd19 +Wkmseluwl96AE/KnqBRHL7r/mimxNLHyZaODWGYkrwNlbTCYR81ClvBoYo+cQHL6fp+h7hIrDKpa +NiGsB01oZ90d9C3ry2S6VpalmYmrTGOneSj6sUeLaRheDBGJBq+mCAwWknxgKbXybkrQ6s4gSKDz +VE58YZvuNDSo6ofJR4nKjcIBxthvsUgr9JknOncpTNcCkycynZt5u8tfRfDZihhgEzWTa0JyrpAU +1xSJfvApnUaPEx3WBk6EdkGlS24Bxugxi2cp5upTfSkWgZeItn81on4+zEei7UVFYhm5ukC4dY8z +t4BeV3mRHSky8DmSGqhhg0KCcSXFscDvk83ddz8gTJUG6TL2M1teTvQsZDvNjUAY5BR7ih124KmW +MXmS1qW9C1TQ2kdPINlQi+CBg4KLrigO1/mKuI6ENQqmmMGZL49n8Eud2OzRvm4XEDthKJPfvTSM +L4ZEIsqt7o+LVq6lroO8b7JWXUSAWE/wHKHepO11iLUgQCIpJFf+eNfk1JMDuC4ekfjRDkaHRj8I +kjLyecKDUjfXjXkJyNyrYTOJo9atW7Ii3LptddgtSpz1HXiJSTZWfBviIdpBCF+5GbhmDcNHfuxW +/uL26mAeXhDyBqUIKNRC0C3r2TE1IqChG6N7qyn8hRTswdX8oxoN6QFEeiUNXbbOEk4rzsNzTv5L +6vf+oIgG7dihayq165EDtLlhNBMnDhlWiDuoI6a2SaXkw1iKhC3+Y10B2SVb0KPgFhbWVZQPFMLL +7ooUqxtDISmzU+yLWc3kTIiEiTc0kc5ZXKrVV3Kfu3JhFigIHPlvAcYR/ZCORgpVhpY6wGptArEN +aig3tDwDplN5XlixVXG3LZmpIhMbKBcm30qqfvppwwsacgoh+UAiqU/5K0xFTKxWY1kijSzYOL8q +DtGEbKGbzgwKRegXuyRqySzBxBsNa/L/8EANxqymxtBOcKbNeuWIIPokSXBaBAHaNXIOImu+R14l +iRiVGp3fsku1or4oQnN4qSgK+JB2EVqjPJB5QPSws44Z/pcoaonefMhSGhMGpzgHHASh/ooDg+BC +AmMg2AckrFJ3mVfPEKI5xIfqt+o4jon+qa+yaW2VMSjmCIlqsTsHkCCP79M37l67qZzr/pZhrZIL +oS0wlK3RrAfuc73GhRFMG/B2M+x1emzKEpwlESDwXpwPmybhxbjhOyJ7ZiuXcJlCdNiD5fe8xboa +u8cuXNs4ZNouNKhd2RYaB7xJbXQNoOtj4zKesGnYZ1zwOHqAD+RiaHtztK/C4rI5kkGBaoRt71Ie +6KDD/BsLWNUGcV81Ef3vKi5fksEiAW1PQYzF5Uiv8HrBNzI7wSblE8frJSBSm8u2MQao6/bABIxX +AAq/IUY8/dUjTfhSAPPgJ2afuNrFQCTBTyj0432PpbKKuC+34PQjw+Zq99gOmnDemoP9CX4DR6NU +/w1izlg8KB2sEbUZGctxzpIdkkNEh80IPAnwn+9MVf2Iu36GRE0tx5C5lAeJzJZTEGOR8577lXfj +he6nR01hA9pEo1zgcGu4I9u8J+E0LM/4oKWO6BuSlvTbvzpcnB2bU5C4vaG0TzhFfbALst1/c4vN +t9znPhnuajusEK9EmR0jjOUnqOrBeA+ZeDQUx8V4f4iGTpF+Pf2uzWKExnzpccinqOHkUpQESMDn +h+WqD+pn+7939rK6/gHMDAGLclwN0wDZANIADIqI+RnnIFGJNG5FYiYPknZz2FZmFoJKcDz0EXhR +nSMLDaN9QL5buPOIkoqpkZiHgwhhOuQvEdJLxbIcEoIQkNhUSlF1VJ/KV3ISlziAUJdSLWhqLk64 +5T2uphR2QRDK3wx+LOD3ieGUqfYIlmUCaEKmVLGR7ADCzYihBT1CSDQyEWJwD7iVRE1m0hRjNfFi +TA0RSIIRISm+SQg1Ghy5RETgyifIxskzZEA+iCl5icBfl3CViUqyPzGB+Sh/6ZS/5R6Xpg1CyYeg +hqWPxi8hEumcAfIImcuERwiCUeB4EB6hOhUaoQmxc6pRbqopcWoWdQMIXClgKWANtp1RJR4hCBHB +LuKuVWxaRLB+iBDE45baH5Ga2UTjeJAQDSTBZU9WFZupy8S7emuU8KDSeAe0hF1kg8ozISs+M0MR +AsUDCQ8iqWjVWFPiAAKJAwhFJnnMRq/p0HhiiKSZU3IZfo8HcwSCiuKly6SXcUQgHCpOAZMZjiha +R7eakfuhEUJGap5HCUmkfNtfKEvjcQChEZxkrYXpQ1ZtJqhkGBjEo/zgB0J+EI3Z8vf4tEpmiAId +VYMf8e+SjENBi6KGCdSStRFgKkbpfzhIaq1UKUgeV5qIoASnwnpcZAfeAMKLqBQnWpjUaMkdASXR +ushV4iiwpBGMWv0SARXkCaKxiAKmCbREsanUhkLoUzECLNc4iiT+odDYK4JG5yr2CaoaUUomUwkr +2jLgFK3VKM9k8oV9aohHqIfwEWg8fj+ENRxC6FRNgj3N/biE9kNbfu1h1JjKVDJA3opsooI1mGb2 +CLZKiB48eBKrbRE5OaJapw39RjhUQyVX0DRcARvCbz2neva1Shs0b3joj3jIpiY9qEBZ5UI00yZE +GjPUWimgxZFeDi3MlAqOQFWBBzTIhu08YGrKIg7NueCMpypCCqu4obFLrkvtU1XP0PYICC5kQl5V +06IieRMz9nyk3CAepxBaky1m5Bx/npHnRcIo4VkLByH8BEgzQVKsyoRbFFP2KVis4ita/uU9Ix4B +MvJWN0tqLGtRnIYvb0Tie0k1jpIigC1WiElVRFUTeut4cUP+0D+stoJKYoxEocF8vGiCfmchpymu +/Axj4uIgOqMlQlNFQTweKvAKRR0uinGoZJmaDCE1AkTEARMRABAAMDA0BJhEoxJaaRg/FAAFKTAU +FggMCAwULDhuLDIoKgzDgTAADAAAAMHRoGCiAwgClACA+X4+LOQk8P+DM7SPnH9AFCv7AkGftAiP +X6yMcxkuJIKONB13CRDk1AFskmRaHMAoDzWLtO8RuCGiT9DomMRQpbjWwUFe2QJcrLfoqHPj5gTJ +xQCJfCMYdlUNWcUHcXQTSife18t99QrnEzsm9DM+hwexupIzJHGQ3Na92MwQynAIAyDZCIF6CDiQ +HmAmOXJfFbrhB0RdktWOCMd8H0/26/Q+gsfgTLLFk0VyprCIRfory5MY4xNhHclsTEqSU+kZxKPa +oKTZbmKAutGWWdJGKehwJ7osTKYyhkOJGmX3GWDAtYhr9U/hL+4jqmxaPe9n4yhkGT20F7AjI9Lk +TozRReUzcz74YMotM5jb7liF+Ff8MKzuvHdErJgqpodbI83+kPHGdvX7L5+pFPluSUwv2B2Zx/3i +CpdEjYi5rJqTNNsnBuBf8b2m0NdEh5FiICPqOgBkCwHHcoCJqcS5wQAnWidAp8BUCUyS3k6DZCv4 +YKygUPGZPjvlpyrDfndBaQW5WjD9eh+CCIBE38jQl9ekZiiw0H4eEFMn/6wnQR7tORVZlzDi6ilo +ahIQ3QNGWKBUxseZfchMUd1GOIWo1PPf2WFDgeVPhpvGkESA/9VSkqav6eNx7j4tHDbZ9sfIejet +rpU8MYMI8UNO1CyfGGNvrDSux4Ya4R+6xkq7bq9H3UJILu0KhbCMC1GSMAK+cU+Whg== + + + D4QqSLV6uy6G+su3d102dNeER4kFAJmyPxnoUCLpjWTuwwaDHq/OmdtcvbnNm6RuKjRtCXXwKH5d +16dPQ/aaiZKdMDHVm1ZM1hFcYGXBhM6o/SQ3DJEqGnyU6Wn6JPYzQbJ6ktvqoCUMzChQOgMnde7N +VrXG0S3whhICFF16MNFCagK7OGmE76PKSbRwLEYr5ihZOxuU+dp397ABARMuqwq27CRbPZj82RIR +lknVI9E8uXMbqxIb4uFUeSLk3PE0vWnbaxNN+ayw/+fOD4lf0pIE7zaasauPtuAnN6Esx4hB+fWf +ogFvJ/C2SU4Z68gX5APT8sF8uIOQjTmOKZymVccN7tkK1jmoQUuN2FDCGEO4rWZQM9HJdWOzLDmI +gw7UypY8PBQ3nSDbY5LgfXLjO5ZJCqB+Gzz14eotMRmYNS5mu8LVRJtDz4mW7IVt2ls2uNtYJlm3 +CmWyHekdBsNmodIONJ7lBIi/88h0HNg/wNzOyam2JPEktxGHJdfl6DkrNN25uLydT/oMIQakIuzw +zDoi//NKLgYAjlGBzE3ZTNScPhHkbWMtpWgP4kaQ0IfEnAZI4+5sBw2Bq9ZiATSGj9lQ1GsZ/SaG +Zq4jvkLJxeuIS6BqenCHMgl3KFZw7VpZxSNqhCXym9BNhsAACKhKMsBo4DTN6YO0PnlRnUIHvBoL +mih3UawksrXMDEmJsxFCzwUHFnFeYQmUqAIgYzUJAwnFH5IkqeDo0boAt5q+MBKINiJ9I+1Mmda1 +0L3M3CLaBVspPkJNGUxqPVgfLSyVCzdFR7ToP7oKM5EdIuYvRSJyoxZG0hryXrR+QlRNfdzBMElg +uVu3OsSwdUI+AkVjDm3aTkyRfT+aX9+u/PQGcdRHeiZBJJ0nNJ0S+xcWtTOSyCXYgu6RCZjuZ2cC +JXXD4oKjodv0ibSFRL5Q4hMqscDDcZAE/ncy4UFFAcvGPSeehKuc0Bi307QN+DVv49J46SR88dYk +uROwUjrQIcd98dfQG7wzRIGtuQ23jgYAGdWdAZ8rRPiUY2Akcif1mfitHLHOQOvE5Yrkjpg1B86E +c5O5H8EsxdyU9EmxWTLTiUif7eM3Jsi2l4SkHPFL5C+ZPRS5BFuS1v7dM5Z4y/Y9LDZejca4eF/F +5siPEKRKNZJYjSzzbAq7IH1m4oud2XtFbbZomQ6xge5YNIvgnANvAoJHtyMCHPxtoC4E/fdZmfRm +uUaX4rtXzqwj8LoFP8RC7H3LVb8NSnlLTtMw5ceHU9faqCKbhXSaY13TTSOyLvgHHO7eAEJdlAk+ +G2yKXIQyP83abqW6jUE7zUxSFA8JJ4eF/EjidJ+DWKG3WDdwjM8ebhLOXHsq8wBuSDIRSe4eHEA4 +x11vTZLxAUVw1y1RIspFCUSSvXrS1WFu19uJjG24tRPTg41DSLcn23GAnPylAamC4s0eELCgpFgg +HlzpKF7KZU5ZCYWyjCWY0Z+UiC+12XGkOQVHuMZ7Wf6dQHl4HhFXVuBqSJleLg+JzwaQoswk0A3e +yRUEJgv1e5EmwjtBMFzuFv6wnLR5HUyGUnRJAgYuHSCUZpLjMB4xluxO/J0Vy0p38cMX1J2Phpxf +nnO6PCY6XAnIzcLfHQV4Y/0RFw3PSYBvkg//b86l0nyDkiT5C1ydg0hIAG0B3XEbluUYEzi9420k +x9uwORqRdJi5l4clw5nkGD6RKwKtriLC7EBcSou1mnU6YrdTj1hyyasV/w2y/j0AA6FqnOQma9Iu +FjVJLBHZKHwLuJnhwBLHjPP5KHEN7pRthqUhpFo/IQNdKN3VuhfcBA2DyYsT6fsm3+N25UYRhhOa +/INZAXv8h3kXXSZqPplo7Q+k6hq50Y8GNSPI6dQSg38ibQR7TSa9ZI6VLDA5HBTC8TGPXlwdaVet +szRipIevLwqicChiqUxCOMKiODRB20uXyZbMf0hWtjDtY/4U1WYXvCNtjQ9aBXVuEFx/pkEde5U6 +AOyzioqjFIRpayuF6kLKKOOHnWz0KOkAGLKTH2TC7bkj0axnXkLet1Sp+1wVKRtaVeWNwEoI/oHz +pEXUHUVafwBI4oAZEHX/mlYvrcum7IMLYt7kiC9FFP7JIo6czg4rO7Qsw7sybh1PjpMmQookyZET +mY4jP7DS5cazC/G1ou9RkBtyUrJPmnuu0DjfuXFMvnC0yPYbTT7PFLr10CPVvpXB4++fqUoyZDdS +AabWjlFuO97W0CbEY/y4iFQBPy1NWrj7/fVKKHgqP8ARNw8vKo12QsoVYC1XqLDojtCnqNtPbHWP +aWQWmckZgreNNkHCY+SnOqCItNDgdgOoLT1KkW2NvHheC7xy0SELc5Z3+WqLj5PBeg9aVq5Ro/uA +XDQ5cuoSzZ+798Mq3duxEgaxAX61EpLSKiE5MyYN4CG5BREQfpFItJDQdOjotP2Xw4gMGkqaej+B +7T8eZ+YNrLqSvfr83vC/jUpixwQzybLPxMSkYm4rcRR6byA+i7CuhIR+Y7wv7M6QvhN1aJJEFkmJ +TQ5mjRyhvDpGW5kBS+wtGS1KmjzJGe7i1slQ7RzUMewvjK5ZyTft3GzZc/fBo4sMJQ17J0gftFUf +SAaBKU0cU/uTuOP9VnsS9QNBZ1KPqgZl2PqgliVtsNQWnBZA3yaa92CWWNaj+kQZXmhM7dWyP4+h +z9eoC2PgtRqqEkK/IckaOYKIAq69kLF56dFonopHfGgoLx97aJ34DqqYazU5FMKwDaejLyRFdEtm +sIIOnk+LHeZXZl2qjNUcsbwxz8xm0Y3tnxX+H0UGyQcgF0CfdVutFCexOR5kavFua3kcLZAgaBXo +GTsxaY3KhTZ9fJlxz6y9WhPx0uZWU7VlVE0c1D6X098+ablzKxNt8yO9cv8qlLp2wmhP7DCOViWT +ClV9bcnupLRPjMATK2u7gvmPlgvigUYoxpAcQsKGi1TGsZO6xIERGOowGMThRDJwrEkSQuyN9aCp +49NZtki8Qtlq+KXnDq8pOP5Nm4CQ081yD3hCEUiZsevCjDCtuiil1OQXYMLlKwfR9QPP+RbwxdEq +K/4LMmQp+7NYJ2ECByJisoPxAopZorm8uuAqmmCQB5GCMxxMjiCNrBYGUEIsBUFh2Q8rLZj3G0+9 +XpCiMcMkiVKJz6nG0djETrV/ep7YGTzdiCS04jE5sg3kKE6yctowrKzzViZSRexgsklSXc32tDPg +pgO7WZBEaqjVvJ7mbeatGSmRd0gGnpH8lk/Cox1lgh5ViHb3gyCkwBXGgT5kDB2u5b90/aMPS63H +IgZ7dHSL39oMNb3HL/HGwDBUMP15Zh7XooxKbBhCzreSpntMyqAW0OI/tSXyTvSqS7WY/SPYisis +THaa4UBMKr3q4x+YFPgYBXSdF2ggtCP0CoOM5EujyTjH8gfT2qdcQ9TVP7HTq12qrzAB3kEkgZJB +wr3Wm8CNrZmAbXoxKZhJtutChnTIDuMVVgQSM4XM0hqrhPsyiMAEx9EbZro2kMQfLPuPLB8V1nDt +lFubGjiZkiw955zhCBCzYCw1FEUJbFlpTVU8Iqeq5U2HdScl3C1psnflM+AwpZ4KOPUpRlpkmaMH +V4bnegTTepLzw1hgmHioAUn8n6BOrGchrQmL4wm6L3zEhjRljCBAK9mvyXxatukGtLri/6ZBaDTH +CO4b7O5E6AFQV48kDUuZG8OlbiMv7sqKoEcSo/ogagUJHQlm8iM8gpbEAJrWBBSAq36nVyPc2AHz +H7aeUOtSUhMhZ4+H10rbAQlR+kaKoiuiJ8XBV9M+yXxFt9CQJkeYRy6ZUQMnGwvMwQ5dNeAsYL2d +20ouLhnHnCN8ViI8kwvXDeCHc4yAWGCZ3eMCSW35PpMCLOIeQbVkwpKEdjMt4Wu/rfaLLaZphBTH +g7RKIJLFdKh0nyOHlxMUIXLIk88Gj5gAZT9To2epMMH3BMu4iRQ/lAiECytpbHeb5wtjWtI626KY +VIBSH9ppod5/HO/bg5pNIr1KRRx7TZzkHldRyE3tJdLmWaq6nvXU1G88FvN2S3RFexKEiRdaCNwi +FxPlvGgHTeEQX8+eXISmnSbrqACA5Jq+TRVQZTKQ+XiFYMWL78RY7jxIpBMlOdlWHwYrrYVnEyNp +IvPtSFBMOv0oOstcQ6UNZT+ZRMrEy6IRvxpeee4jjZhFmpV+xyoJHLEtcockSYGcAHsM8HpeVvWr +RxclrlfMR1gbQIVJGssmwUtisdwl2/9njjTS6tIaTxBlR0KTD2e4m3oS1ITJRr8XYFCznFx3RM3V +qOZKSOJE6+LisAURzz84Qc4yPkVu7t9GLFb7+ykKhjBXkxZz9uarHbLYSMcCfeXQ2J3Nw0o7rxo2 +XKQGyDEpoq0PB/1ECgLhaBMq9P6hIJZtcGdwAl1qlJROkuw1ec2E3n/l0zs0UwvtnC9FvUo+aCrm +e7o6JLAQnueRQD3opikyF8+X0tg/ZwMOY3ng0kYqKaw1o8dZuIlEka5iVKMThwnNoPcQk9MgW+Kj +W6FcA2bPpQU/s8n24BMNHGFyD9l7JRzFCEeaqgkQNICBt/S9p9eWSrhR6ylO6mMJVMC+LuLmFmay +JathfEkhtQsIMIWWTXN533pPXE++MNGxnHAJSQIAQemCTSIjV0qBwS0FPpzR1t5nxt4defy2wMdk +lFKKRY85VwgknS1v5ZSLPESfiRDJcvI0SrQ1mXA/kal06EVlkcR5wJRMEyfaVP4ylddllEef+Bgw +PNMkhK2TC70pXtI68SVgaKJjdQn392y+Jyt2S5L+VF0+PEp0FRxY7h3ek6M8WU9YVwrmsDcooqaI +w210IDkpnv5Ci0Tp10QJgpP95rcDvfxh1v/vra4zlKVE4hDhJ/NyJCP+zI5csWRyq/UnwknUiPBJ +rW4xj6yA2W2FujvQz+HVvJeNoJGSjEnMEifTxCrqusmRNJJ5hCygU2ZbmwMrSKL2x2Ms5HewmuMh +NcGyXcTARHIrtLxrEqLw2E4agZQeyWxt0AQtCZp7U4k13p95AHCP4CVpaufnF9LhBWhkbCVzJjoS +oLCSlFKpQr7VQKA31kYJbjzOExgRkvovn8LbTNYPDjCA/LsBEWrO9sOhtPg2c61JEoYmEFyNJ/SG +tMNmC2ACx1zQvFOYJz+RIqCIlo1MwipLHzeLNTqFQ6ixDw+ucSZLBHqh/aEb3sNKGXGRUWAKlLQB +G6tR+H42RE22VD/AUlbBvyUTmK+SP1+9tKoHwiHvh8dXKBIlHDvASGAnHbk746yaAKwg/xSBVeJk +cKjCRQ9IJoFCKSq7u36DTmMDs6fWRoFQvfhqZdOZOxhQv05w653QvW8v/XPaF7RU7wsnB/oEWhqO +dwhn/7UvCbdYiz1tnNopJ8tB8k6ggENdmXiZfqh1w5EsUKrzLhBraUlA5Zeqf/RQ6U2q6LczTaSZ +sTIbZQurQY4nj09QC6bb0q3gbksTMv7YLXYxh3mUIZNcu2uI48Ni7mevyEEgBMwpmg== + + + ZsU/aPggtuwqbE03/RGSM5iKlCAOLfOFlqGE8Kl3PaJ9ZIslZR3qzFvoAmIQIhoq4CQN0xP8Yjlr +7DupFlFXka/aSA4xYX/+1xEwI9RokYe77aimaJOAJ7FfYu0XlgdigWUnuPf2pzCLccfiWCtjhEHG +xBIlB4T++Ka0KTJYyVVwvD6dLPgAKe5R007CMmJ1V6TxRLPRpE9eNht+LID6U2DNXrELWoTreqmx +JkcOh3iX9OUBQAThn05m6s4254CdSqTMHXzS/jIqSQm4yXDusQjNAf9i+yWOg0/LoGMiO5X0JLFh +OCabubYcZDV2CqG3TFgSrjXI90HF4S+y61+YFW8WvyAq2Dxny4tQBxLNM4QT6zXVVAvnHG6WF4io +SNIukKDiwBjssyVIIBZZjMOHew4gmLb02G9CB7Z+fgNgVy8oL1CPz18dIu9fnEX3dp+Hc3FNmyRB +I76D7NW3ZWmCA7e84kZJ1O6EeCm1wosD8JVbtzxxEcy7IbwhTLHvpionQUNwOP2P7RgJfXjN2E2G +FvFfImOQmzeEmiBzNCMAiHRl+dEINFH2EJVG/GBUYffw7AYkzP2BXlXi4eO791Y6+HtAov2Sh/n0 +W1Z8WMElj2qJgyBDKEvDl8Zi/l+gFG1x9Q8LkXVtIRraEw4pS3mRECfWsOlhtn1L1NXiYLa7bVt4 +blR8JLowUkegpB8Ji0Jut+BKC9KzxWjsNUjYn1XQc0itrZ8BFEmUaGs1SR9qVHOuqENZbc6OAPL6 +T2owaYJ/XCcDIJGi1T3WcttMvOP6Pz90SQcKmtorEj6KzA5pgVGRK3aX3OF9AWjGFQQ5NktJs7jJ +f+eNBhO3d9GBN+iZiEg4aaB3MPkBPhFCPcGBxFoak0u0CDA1XN6/fkhE2SwUPzRo8sIHC6IKufFr +tXNnICROaoogvb6bfE+aGNiC7oVJ+JT7/XPHNqDElle9AHqCyRH5CCkxMleVUILIslXSRnU+4SXf +JFMTI3ORrunikctuNCK/iyJiW2qViRr7aEisbGNyRJNARiagObmlbROzb8z4N9MA9k15fU2zJN3+ +c/uTmb9tf4Ije0JN9VoguAIZBatp0uTYgiDAjTCsWdEgFQlWiaHtbUVtYzbJoTXi/I/QGBNBnvh+ +ysj4qDULayK8JpayTRFlpQkmiZA84PxPPrmUlxHc/ejBytD4uLKW7I8NYksc5X+9lo9J1HT1JXs7 +xeJ54mFBGMxhdCHyCV9SUxIjmrYAU1h5zDQby/M58Ck+6Sa2sV/ClzTaY6C9BoMgJIztKQHrjXwD +QPMf/YbNBE3BCdgPWFKG4kugvSe3S/LkkqjZFBI/Nv4QwypaJ01OgUF8zc2PvvVWPzKZ3R9ZQzTl +2zQ8zX/2uUHeQCYaIUIzCfO/p/LhAx1oyiaxWfg80o1mxZgGSpfgNGxEF96FGbJ5wHsuICMSjj6o +cHYR7rE55KPIBLiqgcO4Q3jm/xhcxoUD154JQlum3bKlHYG46InpWzu/bmQ+CbGeRanbL6eI8J3q +IjjhcwJ9wS2VxMsANGXX3ZJ3rpwAlV+YTwGpAs2vOEF1zBD/kYK4BEWVdh1st9lmdvk8qyNHPMoB +a29tPWox4aElkiSHSiaRyRjyNco+ffxSAbsz9aBx1SV5TU6gSBMche2duAXhGxM6ddND0HwEN0bJ +Z3DQQgARzgzERClrcsQ6kbAZgVtPlisikRtsRdqH+IuJ6sAxQbIb3okpJyPZ+Xv0ry4yZG5iUqVN +XiUAxYBJi1C/5dLlSN6s0CIdma842uS2PY9UXOXIN2LtVnAXAhSSdQtuQBrGN1IQMEBV5WTHkQuK +eRbZxxWKkma/CMxwkVU54EOFUQjdpK2Hgj9533lCEuqamlBu4ZN1btuMlZW/eS2WpuX1PE/2Apws +bPgEnlo8L2vtCGkRnL4vCwR2Qeuoshar3/eqZD+CcWc5jf5e/EzPNSoaZtqevhuuxHzY8bQAenJr +pAn9FX6eRp1RTxyiiSImJ887w6akRr9Q7IJQBJ+MJ2dsEAl6YDPzkK6VOewR6S/aQ9FWMqvIbmBz +vNnokPYlaKFuMAiF3f2K/De4USsnQcHsEjqtT6knex9EtdnKewtq0ImR/yVLAIUq7EVaSQADzKxI +yjYgYx8brW+8IRPfFn2Z/stn4wO598S7+/DBxOoQcStK+77wghH6/yY2k6zDathbwGhjkwTIkgk+ +IYc4p3ltEaW8oMs5gvOguwOYwnOT3hLgA3pjZEkycPBQLoNRLdhGKTKYAsiToom9eZbnnsR4X8w/ +l/2WpmDRbrAbES+kICancSzESPtUJPOazq1JFvmEMukJ4ab2AESjwVSzt6tGm+G6sfkH7ylCC48y +wXL+iA7FDHxy4vXgMskHcZYi4QJ6/ZIGTo7ClQmx4lqz74gSDEyBa6JgLBNPYfyZ/NgF7p7bIOab +0+sVJTS7QlGTwFDQhfxMnhhuLhFDZcRsMdOR00OBf0CcNFZI8jts4mMRhCvKVyK45ru6IkfVyMAO +IcyMUm9xt5Fc/mRkLinVGuRlyCRym8JypaQtbUm4SjluBbX0aIwUPiR+OcZqhiAmsAHgxM20Hi5c +ahnrT4QR7m9WFRukhEOQu17unVyxzxOXvi3wvwg8Zq2x6xoT3qRCZ9zw3hbTR8CEGFhitCpoTYqc +AqK73xbQ3Qd0RxkPvzkGBaxRpp+2Uc2/w0TN0pMnyoSZBkbVrQYA8BW1JYsEdv8/kQhdsylJozbs +MPTuevi7zxSAemdHbBM4QNpsicYXlyddhuvQcUwMrBbjfwwyHGOajSG649CnKzjyG3bDUDrRCi/Y +LP6/V+0iuwL33wdg1J4XmbUt9FAQE2hOZpCS4DjoK6E6FaB+AXBr/wkQqABnQ7jshFGuyY6jt6De +/gOndNCXtddohcfRZsLFnLqSOmIGp1izuPqaG9VgyJQyCU71dK8IiMkO1xYQhu0raW6/hYQP4I4g +ym2z6lEQjcx9YCsL2UEMpq1RDszOpQfIhGtOr4bFwtkMx9mIQYID7dyii/hHAYDHvmlKE9kQ+HFt +11As9A2wlrSL8QOAewlEjkLHYXFHbmR8EL1EDBtrySHlaX2RSWDFmphgZzCqvngDspQ7H81BP4NL +kuTwzUEM3BH0O+AgeX7URxy6AOLFqSOqwVhoHeKu9HcFtNyr2NZZu6ux6ds/aKIkbWwTLzIO1T4O +LyPldDXMOYPfyEUdXry7uPY17fCiZERAevbkyScGa9EiZhMeCs5Q2zlinJEz7GpYVNumm7MRB8E9 +9kgn3ChCXRJb6Z1I/+2VB6g+a9+QFV30Q9/CQyNr981cqKFH/ADlcmLmu0XHAyC+aVuP4lRjMbwU +hrRX3MMFlrmrxFUBgXBFwFr+bK28nIGeKntL4xYJRrQGHxbOavMGw5dtiWeYNVsFR/WkGD1qXgaV +OO/Q0JKKNc66MsG5LkdErhZLBT7oDVBVvoJzAUkziItr10DDsV8vC2OYjxboJmR0Da/qm3EDijmS +FaTxCSZodkkcTZp4k/Aome3sAmuwXYP9LPuWwgcyNVES44Q0yVQGeXEBGMIAcrv2SyKTkAoIG4yB +UcKBLzGRIRmeUCeztsvF7Pyi612VFBrzss/jiFaOQ2Mejc070JrHNe/vikhf2IojFRFHJElE90/D +aZIQK/nPX4QTDW0fRSX38dL23/0WZ3+YJPE0JJKswUxJwI+WoBQ6Ey4Gr3MClzJhYkZYRdp/P+G9 +mM/3W8jaZapimUjdWGPiGzSfSEE/YrlT4d0pRQf1fSIhydXFZzO3CQJBc3xSxBL6b6V7WHISctS4 +bHW5rnDakAjWcTFJMi8pVZN0ysqW7o0inWNeGdzvBlJcLuTzHp4P37CULUQ27ifQb85fUTJ8ZzAR +EnKLy9qcWPpuagRJg+VmX7ZQGLQrJybIBZMgrg4/nyiypkLxJ27e7snXKIfr56ykuOAJNjlClRLk +b8EpXKWoaQ6GAuZwgiqgpqHC1Dykq3l6CWY1MW6jwobYAU++Rd25wPx9N74BPFtNcG9MCtpEjJJA +qLTZmfaa72Mooy/KrHtt5I2Kfw4T/74oAD8ZLPoAC0qgCIYAigCHAEEIoWQaUUR3264ZxkOqJIKo +aG41OEg+c+k8VuXYsDSMqO70eDPiTMaJoNlf/ermgqwJzFaB6P7rRGFLRKGN1NbizD60GgrMsJrx +OOIVqaKu1+tSVqZipVOs/diUV2SG7OGLyGHCw4JhKDNFwpnYEJEkjMKCHlNGX+HrEPqUcAyJ04tc +QTC/QSLCam1KmvIZhNbJgcFIK/AAz2oh0ASCEBzBYR6/UKAmQBGCmLC5NYyZ1pHGL7xHaCJdGSOO +iCmqUztEbsh0sWKjQkYofwlpVkN+tJ6KuLyGwYio2HFaPFGMg41qkaVRokoFJ4rsDVV8+lGoDvvl +hujOcdZ9mZAXohqwKvo8z2ZIIRJBDq/mMGQCFSqEm8UI2kKb8jVVxhnrFE1nwVQhRtby5/HyuH/c +wQSPjD30+TRCn7Xk0qNTNVHrmfsjU+zd8rgBhOHL4DQIRMHUo8mKFFvR9Q6jm7HUJQji4EARumDw +oYrkVVRLi5FFpovHUxIwv5g29xTj2/zOuGiq1bZoag2BMdMJjlcjxIRNYDTdcGc8QYMnaCWzEISH +CqEJD3/UttHNl0iAzBXqR6/kpcyKaxcPUZ0JAhmwEqkiqZGJsYB4rKSK7CnR+BKOluaVY6guTyKA +RoTRipHqFF0JB/8rTEcskyVawwmajunpXTWUnSdGhaD8TUyd2iUOS62qIzRkcnykRY+w4BBBmHak +3ixORDVjhktVMxMYSmcRAYogqBS7hogGADQqUxEAEAAwMDgAGQRjoilxFeYBFIAFHywQFgoKBgge +KkJoMiwwOCCIgoAAEAAAggNDEZlECiAIWAIASPwB7qe7miAJIV6uOpjKG7HAPA48Ri847vNaFNzq +H4mCOcuuSRKJJWX43vvuqzorV6psjG14oAao7x0NA4oqKZC+JljCnnCUisK4a+ennOcmmTK78R9n +pAoLPoUII7tEdBMdPlDYs9wDikXSSNH3z5k9dlVeINWxxeiWa5hMa48y0SJ4oU0eL/TgecAj8cOo +DtlfPShH/Co9JVvuvOuaje7V4xBTj5Q/raH+5CuTPNUVcNp2GPe0gCxXBECG/uSMpiOEJEypgOy1 +Dgo3fisBWS8pGEoRbMNyaUEEV+lOqJTo62+uT12Lq3AnsKq4kuWOBgipteuf4myB2QkWAiW33veW +DafjlBhACZ3J7lEyx3nElHY3Vsc92WNruMQMbx/fiUBocaiZAV3SKFIc9SNOvqNRxt3wLF4kT16x +LtH/4HW+jBuHhff27jlpf+GRzLty4esqS8KZfYF7eDwtfL42W2M8ligwi5JTYMoJm/ho95DNPGnX +SsDtUcqobFpKCz6y5jPRZGHYG0CALjPmladW+XRIJlrEmPRyYz4y8hxpXG6ufLS0eQ== + + + ofkA4r/s6wNED4VokP7kkjQsWtot5sCdPd9BZBTfgaOKBm5kAUiLNX0UH4pHYIOTJET0BQ45wvdE +SFvGjmcXJ2/pOoNHUywDldk3s9TMVJOvBFUrStWV1PaChkm5kYofXxgkBAEsQnu3JspCTMDAWXYT +6Py8OBScrjBAAW2hqy9e9od4ZhLW6YhokmIJcnEhOnpqR0Sqp7nchZ5EqRYKWn6sAZFGmrCPwYp/ +xyPmHD0S1JZu9hunFEhnMjC+QCiuo/Zs4SlCd9STK5beiOzIGJWLGS3n93WZPrtpJw79CzN5k4tT +fkChZikgPklTR6IN0PXewbjaamkpkU/COY6sn1M57q2EzUlEkzQnJ8OIDDAxr8Tcgt0YcrYu1XYX +CXvTDSQQAxOdx8DOsHr7wGoGiAEl3szB80Wj/w0ReTEdl2qfwn6U0KuYWmQiIf83edIb3kPjgrhV +l1MEggC8jO8k0XmDqSBp4X3ipH+8qBB8V6XxmQBT6y/hsxT9I/TwjEyUnDpZczzD1tNblEfIsbYL +4MzjQPtHy++KJayYSKk+iDwDvS7Xm3T8NDs9E1Wa2QLhbP2tiaLmgMw1KdUqQAm/udQT3nGiDQUK +CX+x5NvJRnpKvqX76Pr2GVZsxHrFBgTZSBwNkHeQrRMEt3GATkEU4GaLsEFrDjX+Jzu6D4jYUx1p +qk3zJMRdFrVXB55A5B6eirqMkAkKauXnfSlGJRk10s3ao5rkPh6SAUB5yGW41hrrjyXkEnMgSOgg +PCDJDZir2UDmVOP1kwTEgrmTxa6CMIzQKEiPadOHAnKQLZ0nH6pFtnQuFwrS4RTpSsVeAqRXmv0h +7Zrux6JyxRB23Eb+llDbN8BGEMMhighxHc5bh1hCYimdGfoEb1WioUt+a6OYaVrZQuUcssTvJhjX +id9MB54fOIR6chiSrvj59+cmmQzR8Z6/+wcAy3DIgqhuWIi9KCAmMH3GylWgRQxAXmwgd7trOvyC +dTWANrlyQMkWABV6f6OvsSTWVcMaPc02uckPeXU2OrgmMkKLN4KAYMwFpu34QjCxp0oSxlLh1KfC +zCRBMz01M7J7XsNJx4bJCZUdS4t9jKhgM+7EIeGISQ8aGQ5yiiISDER3nFYWneW/oXCLK2NpdfEz +2dKykBI6EVkSaPkT01caFWgA3jYTtL+DlxuDd+AeL+KJld0hyZ1d7HJneBOQ7dSn4iJ4j5RdSiaH +WeBiSLHcXy+xSIfMrQG6XAbVsWnJXUFM3znRu70gbHKGHjlrBvAiZJcgy4eVCyCtz/dgQdED2WRY +f/uHR+fv6HiOEFzGvEp6RSM86h2fROaNl/tBr1OoJaFsXv3cnGIOxoVnjoSumLg01p4RvTqaH8QK +lUnFjExyngsypioaREAFFIkGAgeoSZtcDMkKIHeBCxxmooG0EIqd5aDY3NfizkbNxL1EniimrcGT +LCkmEHEUdUUligqLqndZmDh43cYTeKLoCRaiRDbMi+OD3I2O7zEa2hRCNLIkmkbS6DJvUC3z6Ubm +rd41ZnkQVMgMSFkvGYI/E0Qi90AhsWySJEDCoFoqep0vWy1B+SQ0EIRHh8qBG6Ukknd6lOTwV78C +E7BoaMKNlMDE/V11STNIaMKlm9EhXvBrmKBhT1Kv9fAyGJyRa2PjrOvCyAm2ReGjnoGhhFH2hMln +wrwuFfgpOUWwkaUZdpIvtsBbhyGci/PPuVVYh+zYi7IKrS/rZtZxM8b8uVRK0bksNV3FUIqvHX2D +Jc9SOE7Y+h3DuWbWipYcMxceVASXH7+wQ6jdhVQzmIXevG42oCPtpcSuVXtj9nTdpZVWzg1FX02j +G+foh8zErG10tX4W960hV24La0E4Yig+dtnBgBhhZ+nEqwqrIkOHPX8MlEnakCwJ33QtYnJhe6yc +VEeGSvd4GVl1tfYJs87Ankz5dQ/qtpZO23KzF2wBC7/O8ZpBVam2yYd8SNolU/SdP+Ipxi1rSlVY +8bpYtKw79tRos4lInBQYFWFmaZiJ3VwcljioGJarxpKNCur3b5dYGzqNAIxDInXvWFCxuNIapnyI +3GcfSAAcqCEC3nHbKuKYCNwb+BqRmjXEEUPB3a0n9YBWyoV9Qi7zkyO9c79WOY7aGsjyc1nmsn2I +F7PT4gEwdi00CD0TUE0s52/p7DbcCzoomJtlqxXkJ3uSOGRr13D+taiy+ItXZuCW2Mwzl3KR52JU +jWMdY3h4KfQs2222GlV+NyuTiJvUYJk/zKR83VCKAx6nI1pUz9EiRkPh0HXpvi5kr+A9a92mo2nQ +EE8yUsXsXfJFrUGsqtm39aqO+fAtnmb8DiomJAfRIGaw2Oil31B6BpyVM93j1/a5TgAfWAdcsQ0n +9trUqVmQlvsgZ6keNAKG6rBqy5GmnUmMOs/n9hv8uJihj2qvi1uCzVOIDV2mTbAQPTksGDWU+XIu +hTmhRbrZqkXSKwrM4OLGBMnle/frzlQVa7VKyw7+ULewXEzQQhRwipygoSqRJiOgRsukmpZjIfX8 +47JVp86gCLCIMJOGZLLlWIWNQA+AmyHnNyJ91cgdYWCANc2KzLmbjAABwB01KcLlI6Bx3CUhKwOc +9zWkKJMMd+OOOF17z5DIIN8BSNUBPbNSX3MOPHjxdzVJNwRr4uNbhfGJGu5T6ucYkTqX5KV1Hshu +6i7of50pAKLdyJC2t2KP1cyt2rkBTE+wLFArQ6M9EzTfJGNV0zwNiJUZhsZHRHK0iDni6UM/gAMb +RoKBdzZJElfCJWoW5zFCycVpFsC12OWwDDm1BFuhCVkTFNTit/pWemG7FPq3oBSeGOzolJ5sRp/d +yrMrLOw2o7KyntEPU0KY49UO46EoYJ0qKAZRDcNjolb14D0yIPOzxu0NAuPdhZ5VXHH+4b4Wmj/2 +/hNWS8kRCrrLXbTURAeSqlq8+XcWGqfmmSFa2IwhN8J/eJKRYwYkeZR04T4DYkILqhYI8o+psclQ +8uJhagKDu8Kr8p0poTOR+nraoPRCTrAtYnQjn6DUF4Ugc4JFHaFGB+DhiL4Qxao5GxXrDDVeE+Ty +i3MhlGMkX4t0RJYI5vkYYAlumdh7Nc7T+/is1tyY4WZiMbaEJj2OMbwsQhx6EO3XMPnLRMYjTvdZ +KizjJ6Bh2I0isjuPP0EELieXBgJWU2a5XXc0xh9x6IxIrsI575glJH9QRd5P7siuGDBgQt5amrQ0 +Fl8ryZC3QktmdH5pE4PKlofEk6raKy8x9dvRsqUKas7Md/CNk/iJLHUVnrCvkDULqg+zdsGo2JTO +0nR5S/nNrJpo116cM8L2xhoYLgckb5aQDx28ar+6dattA/lK0MfkSUuMW7slH8SBPAWPA8D2VcHD +8st3vM5IRkBAbyVVXrgP5ojsQXD0iIAOhxPXxR1/MMASrZkDNsZtk20OhDo/DRM0l6oqPBVdlUWg +M12SClhgvttQKdpyycuYoiVGSu4TGWHhOtvEge1+yZdXGxGn3bA5TX0cygCCP7wMCO6zLVZHcoUm +PIa7WOB1pZ/dqRnl7TxNUzd3goZYyQlcyk3PVHu+WfZtoWQA/aBEX6Kr0MgExrEMV8Ei5lQBbJGy +HCTQaTzQ1hI9RWopvEDjgmJsfSwhlwBe8MIFblIAyVa7qvIThQmRhv11TMxcy9gzEV9d3O420CCv +QHv/ysxFmacP2FyBA3bCjExc93aoGERArlkIa1BgiMynsRwz2EqbHodJPRuUYeJXJRCrjMXRRXtY +9vxYy+gO12dAlTt75YWjQ2W+O1tWXh6+2EBSqPaZJzR0qFXxLkLZc1ivWdjCLcEdvR6/MCOCfHDd +Tu8XxXQqTMw0B8nLhG12Yu1BuPl1ZxyRh+Y8C6TxpFdFGw/4pMu5hq10Jxp4whqrC66KW8XC2U5R +AMWkUtZIOXoVGCmwCocY/HPL7CyA2jO4+wF+iklfee5/8GKaRYevUC0ShIR5wU1OuRKKvggL6sFz +fEicRsVE41Hj1+cIQ5SCzlkMvtztlT2F5IpcQtJc3BvQK1WnQYTTZXc5HKIaI3MqMAxAR1WqU3Ic +VH7ZQ9fYwn9d8mk5pZmfpfgT8eX4tWLQ53yvYkiVB3lkzE7kpnvIGuqZbzPQC4T0QsOJe0eSS0+Q +tIH3SI8lMyRT7pR3YfC+AQVTDiacSJO2ASxxJYBvuSdBw9QPVA4XmIm1+c0CcFxwZO0cwjl80R85 +VmRs1pw0OWVhM2aEDuX4HwgQ3vMn/1CnrUPheH82MUMv0WGCgtY7B4DeRgxtF6Rx8CaAiio8QpZP +tFRL5MvifQWplymRwB9PzLaYFD/tl53w0lreNE3ONC/JmhW9MZ39cWEjU0TBgpl9CW18g/0x64mV +PpJsZ7ukuwxrn22FQ8y51ZLZYbjuRFk3JWkrrYC1Ts/z3ImTHSTDs9qdD7unKxuer8mwjlMliUhZ +r8ePt3q7KOdypUwkRgrFU6HKTMBcyG3KdK0FVyZaefDClFwAOgtLisrvTGZiQtd3sZdJ6K9a4UUC +PyMEYvJDui2CdLKkKa0woaJzL1j5kKo6alHwM2SQyEthq1J6pSe1ycgB4TNaiQDJgCZJVk5Sdsnq +PSNASWvLlRNwBSrgiHZKNSZc1BtoLXHgbKuOYlO0kQnYo16bMeJYovREC9MJyUbz4p+EMhO4U8q4 +6Xb7TkcQpKgVIppYYRkSz9d0uG+Whkt4DWE13BkvCRPlbmImTFMyuSImUgneX+DeGxw7zN2WilYR +Q8377lnqxOckSHG8ADmvcFepySmZJvsRl/xW/b94/hDCyYXmXCd5WCJLIqF4fM9qlBbD+31ccGqm +IElXX1IUpYH1TJwmcy9JQuThBLIczVx5FEiylKXoKDnBINsNmQ6nhLz+pDdHkw2GzJLbk2D3R7q6 +hwM2PUmk3baXzCxhS27nJkk6IIlpMtFUKjwJZOMEOI1LkKC8Q9baYaSYyFDa7rEoIw7GVLOSuoYI +ygaO+2xQk6iZBN+Gw+SLcgiC4DKpdhOBbSy46xDGjJOn3GrFTbKstyIFU4ah5EwSD2h9tUrw6EER +WK0kxo8bYE7/r4NzUz0xk4TQYLPsojlt79DffqJv9CgFFELGDgG25gUJpnnWC/wSbRExFVMx9H1N +a3UwfD7+HUoppSQwqOtm0GAJw6IImhtxlh99FKhpcGnLpXMiJT0D9dsNUidOAYMMk22J/R+oqmTH +cZsigSpHiFBKxuGJW1mgAPDwGKklhAhRgdnzZI5u3dR0S0WftwAwHOURdwf5YC5tHaNcXiAexxru +UIL7Nzqf+1e4NCJj+J6kiXrCgQdj70qBM1vnXJx9C0wMNkQadtgUkXAChCy8eh2IokzSpUpjpjk8 +/U0zYfHz+rQJNulikia8+R3djARVgsIwIV2iLLE1Op5j3C4B8+Yr+yZISCaRiBFvfhHuqNaVBSID +gk52LpasvuoD7DSZUnpfHKY+D5HlXpqJi5C4NIbot4C3e5EJoezkyRWeSK5B3ZZB9g== + + + sSC9EvwpApimhmF/LThdkyRrScLPlza9TBMSySHhFCa6o2ReAchaEncTLTZIkJHNKTg8JaEBdkJK +dlZkQxR3TAjeZXhNkvyB1+OkZ+2sGemMeluRc0TrYQjj5SAhXom0QevEjL+QZbEMDNUs9tZYGkM6 +6D6nf/KM/CE0YcdvylwiL4oDr9l6KRFsj32/eyPSMyD9rSESGyTiLZaRnPolcEjnW/VzbZcvJxJk +9B0/zTWjoj5lwE2Mq1cEyoEmrKRDVXL3afYxG+Mb/fvDLSKkhp0kI1/TkIAf5rBSTtBIJS2LtbY9 +GufD2/R/kT9G1//1Q/etIWpCuuR/8iNPuWjBDv1nu/GiYkh4UtipEce9IK9lyuuNQdKkhNi6eL+m +pGtASpyj1IGz5FgZV4KplVyjw5BMa6B6u9OJictEtwd+p0LBG+4Xjc4Aw+m906SGeKdM2sEmSWiS +C4FQBlE3K0lhn8pgyOwHxBYm18BDs/rCQzWwSW1Oic8tglhCbiIQRytw3JpHqJkkOt/60iV7WHv6 +Ot/yIM6Jk2JBqUDoQbF7P34VvTu6Dqe6f6KzmN2ZWNIHuVx4DiY6DHcLz3sT2E8j/HuAMlUjMSU0 +7XlumCTxlEwAhQ1I1xVkU/DFYvLfXdIbLvsZlbrOX4hCPHeThati+ZFRAFbMnmqy8h9uIwZjtmHo +mgMjRfPQ8BzuPdIcg8JwSSANLUJlcRVeQ4lkJ7yw/b+FtlS0nvfLu57zxCKJC9+2p8VeFkcNfCE7 +vC5IYPSpUbrFdV7PVuusk3pzPBzV2h7rN2qbxBHRW4Tj3z5niYRJoOGizPGNa+B3lIYPnRG0aSJl +Vg/2PUjqIIRE8ZOgCf1eMx2M64k3k0awT4SIlgsc3yUc7rAu8Aem4A9ZSO3pwLMBo5zRSxJaA9zD +aWI+k9gtEMt0OaC6mVDP3egMMVPG1GTHJwqDSTk0lhRNp67Il7MfReRh4YYmLi750j9JGiOEJlp4 +JslwPpcxHzotJy3d45/Is6ouxuJ4WzmYr6ZF8vhwNWWegAOW0ex8+9dWIOSTh4jAuSYWYi+ycAUl +czf7DxMZBfNdqLroOXfZwxXjscPVsk0VEeBLDovCG9ISTmV5BpOD4GnpKkvQeQSCTb6sRiThHG3K +7I54lhEEn+DNEFPkXa7dWuC9RhrD/BvUCK460CdQ6Jtv752C0sBc5JVMCyOs4ITDm5xgkyJBTDlN +soX/PzDhLP7Kd72c50Yl4eLZ/narel43jKGi/gN3yoM29gscEEJvnPL+7QsGFRMn/MdL527wEBLo +zRL88pGPMFf9iIC5Y3xyhm8kLbAlAmaKKa3c5CwhC1zuTe1lspsghKl8FGcTBLwDBUHqc1n5sGRI +lhxhM2+H9ItLkdSFIGkY7MS0aNm3R2apoE3UMHwv5ic98z5IYFESfjaoDSt/pg+DKzdnA6C3qU5i +KLnRJfBi4M0+qlfATVESQ884w05MKb3wqpdRyT0tDYsUSeND6ij+a32iiO/eDpD/V51QnbvZWxXK +JE2KnM1jg/Yqg868T6Fjfzh0OQuI3PLbOrEkSJts7JhgCQ8+uYFiAZGcxQCnk6faniq70hhIJ80o +g7HGBD8lXkNyYa8SQS8Cg0LvBLWb8Liyg9D+F2uXXEtfKmnmVHb3lbdauIsUQPBNnOhy3Gu7Hufg +hGZhr2PAeO4c0dbjnCApJV8D99PW/4IL/WL5sQdWHEZFm0KIjyJCnv+AlpHpDi2CGNmtFIgoYu9R +0RvGI9iKr1CyLFTr/lGodwKLw+C8ZZCdULeg4Kh6X6EUAhRaKxVO9RIQQch3k6PInnwtqIv1aFbG +bd0YdtWaVaFivkaE7sti3qEitNqBJBMMXJw0LncDBf1N1+fBMCFrpUqL6V6fdiTQtgGzEzNtHYk3 +zShGMvJPMbYt4rAq5U6RvXlNCIfAkL0wYUJC0OFskOJBOz3OUNU2nMbjxSKmP0hM0FCX3OToe6gV +bZ6CcQZMXFvUndR1FoeL1eqSNPwZGg8pOqOQuMU8cBozpPsGwcmoEM9JzLGH54fb8+eu18iSyaMC +gxsgRxgEQEE8mF6QXLHYcOqaZQ9DHBKPzRSJiY6yss7vSA+4FrYTx2w/Om0PxcVTaR03HErCTtg+ +fEbUAD1OIyD+cW3HdiqQ7p5MDXVbfYWKiIkW3xBG/zTsrMCelZqt73BqTIt53s4cxlPrnKA5YjL9 +5mCFbgBE+h21lpEOxmEvSER6oRps7NTCC4lXE+ciaHDsg9YYLY1sWMYeyOH5v9ocDiC+Et5khe5Z +BZCxFv2izLZ1XTOYEaDbeVNBt/PTPCfE/2+dkkdI4ZtXiLcpykSfLyktYV3ry4+wg+81eg50/IQA +kotVpAArFF9Bcn6VubEUiNoyuScUHwi/w0Vrxewgg4tTDKf3PZYgN9KW6MKSw0iUEBZYfc7fwv3A +Bni28ePvbXsW0fXCuwUmnTYKJmeIkrs4HxYOmZBk98o0QW3+3RAwG0ZTu8itQEQsoor1QcWdBvvA +wFzJwZNXgKW36X91IxYEYDutb+6/UJ/w+AMcxiJWQIxJFU4flu5XQICHydmk7usaLnEsU0KEPlIA +DPH3bRJAUdssbWDIk3QMQKYSQMzAy/YJF7YM4a1Ofy1pGNUtkDxC2fEJZ/EcViiTM0slceljXQyJ +ytReAZfrS+TpEcYdxCRX+fsPuFo+JmqqTJRMLWzg8cPXEnQCjDZJtopvGwl7WJHFlmhmfeoMMfS1 +WwbXahjj7OaE7ua4IR800g2WamxaBK2otBTJTZJ42SY7kgBKyF1cUltaSdNo+sfmmrGyizpmkoaO +RJSgtwCkFAt9KsZIUcRRERQIdpMY9IZjFyOM2bA9vkabdMqOWAfmwxDVlQvakEQHt8lanPHX5IS4 +6FqBtHUdsUsUplpvBoSrKo2EJkiuxfvYu5afdY6E4znc1nD8KpyW7lYN58JEa1EIku5vZ2qha6vk +m1BxTCjVyeGsFyHpTW/8vLouLR5YuXuzBRSwNbRnwy6DcYt5GoaA13Q9EOalX0lc8cCjh7cTXq7C +0zWr5UR78S/iVYGwWUIaqHmthbmJfk1SXFrg1GIH+OkBsa1DDSzvKilM/93ArPwZD2sxPydIqNzG +6MkBSiY0LVk1sR7LNVwLRZ/TglmgFQ0j4SuV5oVPXXEzkXfOkMkR7pGAsYLKAWBBtj2+7x9PkLvR +o1RIreHSlMgC1SZdvnuYX0GKczqI38MMhTC5qrKJsBhp2kyG+C+H0H8q5EBzG+i1PIQbpO1ko7gd +2yYhoofjILFt8zkw2AWp9tWKLSWojVZFs5xN1Nwz0TuSac+necquNzttbK64E1LcuKUnOHGiNJnB +O9+fEoHZP31PnTsRr3qt3Iv4e5nmop0LejLEj43LHfbrx+tQ09ctCgIYBzIyUfPx5PVjgD1l9nOZ +WMXsjg8hlSHX5ImCchX/EzSSkfQ34s4eJALtOjiOYCatn4xfxBghhHx6koYokY6gDkDsREBT9XgL +mFIKKvY4+89Lh5cYhefWSRFihw+9c4otfsLD2LVPQeWHYysCAu1FknZ1XbvcjZ+k+UHJbKbGe/R1 +UHBPlXKUSlxcp+2IDamTEjUassiUnQ/VkKUthuks6AmbUQQgYR2lSgRpjr8JG8thQTZjRcTVWgEQ +/2VriVj6ydX7MN5gCd8/W+m9tQSYGW4RsvHcUCllETVDB1nGl96BJZ6yNqCA0CYfUwIGGKK6uNTf +ExbCodikNOmUkYNrkDvHnGm9bdgXG+vTVkNUS8HSABmSUjG4HGjilDTdPPuNU1EXqLNcIKfuK9h9 +cLlrj/UB6BGqCkS7FgG07ACW8WARoCXFBvOqX4Epk4iSkvX+VyJcAFsAWQA0RdEbPCAldBg7Ye4g +eG1mZOuMaPeieUeVQQg9SnmnHrv/MFHEOITKFkFDBBVG/q0nzlidukXrVaYQzGexASc4RIX4yWFx +EYe8tRWgWtJORm42RlVSvhu0F1iBAcMJXuTw4HEvpe1b5R0Zbv0hlMaStgJE0lJWgRMFsNPphPn7 +lKU2hSkaEvZfI4ZEYMCAY9vuxLJe/t8cGs6YPkEYLgQttxTNx5xP6qCYpkYRlCqf+sDsf1UIjQQP +26afjNakmTklOPRoy1KcUuZvUY5UrFdGMaIX6azAMSIPrlAd6f9IUBZM+0Yyuaxo86BgmeSbQ24a +g9A9GkGdyXecaYZmPkOpYbCilCJhoDJIBRzjxBohMKMghlOOHWTKxZmpE62Eo1daxXU1EnbL/7yo +h8RjxpHsMy8Rk1tO6GyBQc5YVgoqQA4TBJq7HgRBYnFwiWCA1VFZFcsDVC3dlOghODB0I+dONZIh +89W/zK4oCOWJ3qj0OzaBgIChDXMRECAwOAAZhYNSQYET7QMUgAUXKAoYCAoIDBwgOk48LDg8HofD +QDAQAAQAAuMxmUAMIQiIBEmyD5MjrJaJnVQP46/t28CrMQ4pdBuONGU3EMsEpZLXHEPczv0cfJB8 +D2Jsul0bzfQf4TSYErftOSVFYJB7ibwawp+sr+6uWiVmYm7AdafThohsvIk2GrlNutA6JHCrmEbt +I7bhRdILliTHRUFu+eREObiNSYpy+2LDssvEO3lRTLhfUHiQPzACCGzI2Y0poQFFYfiESY6Y+zkv +jNX7KujLp0ezeVFMkpyTJFQnCbdZkbe4DjksyRiqrIBk8WZDNXEjj3jTYXNIgs6K4k9or/ZgSkfZ +bUepDrnV1hMtRPfHBHjfnpNNQ6D4eltoElkLhWTe6qV/3U+/VyHJVekxLumlbIIYRFQyvJeoEQE4 +Jg9O555wGqSCFRfVo0ZhgE5HUtCBZqN6aDzCehRY3RQe2zaZQXAtq/kRzFrOfgcvzfclVS+WuQYU +mEoc5xugwVM6xVmfThPDyJIB9dCOJ384knhRsj6rggyF6PYoJmovsDhkYS/qDL71U6l7aa8JEmgS +EjdTnKzihJUdrY9gU2VTifhBBSVNkmBvDEoZzwOdujpybZ8JaCnYe/DauiQqbJJIOXPjKMo6yD2G +8SW+3kiwLwHzJgOgpBtxuSStCRo6kowphX/xYi8BDi3sGEtTTKSzG+KpjNDx0jQJISI8SLAEVqc5 +sjtwMvJOWVflhqpRSgwYmHSRYChDXDAa9hXQgN9Q1lMJn5CZNBeceTsmO+QvdGAOrc2aBT1G7d+S +2aw1b72RE3QNcSrLde7B0rRKCUkkD42xBBnrfOxUYanJoCwINdr5P49BTDstoiiOhs4FY4pjC7pU +2ccIColfDjizc4lUMgy2pJoDZVhdKFrGo8kef1Mk7/Qx0vt/xoJTyWIbIKidQQW4MTEolnAY2Lcx +0DU/+eNPJMaPDOhwiwaoNTOjtyOQl6O4JF9KZsHJv9zwqeWiwEjDi4ItmgCGsVKYriRFInQA30Ic +XKQZCs5ijRS/CcYDuQQZ0zcT5J9BWhHoVsZERLl4sfcmwpizuQLCuYj9r8B2BjCmhg== + + + 4qf5KLZlkt1A57ffUMWoT7woovP4AO1XT1CBGwVwATabEoPlp2SWl7xCMYi6nE1E9qirAVcYix/2 +geJTJNn5SMqNw0jWQ0ibJvaccjOX5Tpzn8h0KBcwEhfJOOKuiRbCDVmrSp66V6n3HivBbFUraO7v +ndRbT4GMoeT8kbFapmZJ/iJUjP4F+p/MpvVE+GGfJhr6FyiIUmTAlFAxPQMC8Ude2iT1wEXVkS9U +r8UDUxXZozi0zQYJ8XKQeyWnHEKWD48W0x4NQB3FA0d9uB5QjaJ5lVES3TQXhcZJOBpZIX+LI85j +FxYtyYJD7eRKjxzfEKk1zwdXtEwgE37D5s929GQVOLaht1ZAWzjxARRSXG55s8QeqC/Uq6GWrM7B +f9RJSv1kTAd+T4aZ/H3doRxPyuNFOJZeEZXji3CVsnnMvCLYnLIJJ/gSEx1Rzq2kzYZEmFfxTkNy +6lbcUnTHj1y/xUm1NglP2ziZmCGXqFPesPbmWpUB+YuwNzVm2nzYFN1yjd9P2UkMbJ2Nax7u3LFx +viJXpWC9gB4FjsXIbQEdrFsnw+LiPL3mZYIev5RDy8vsVxOwrhZSdrtczz2sNGSsaUfAMGUK45+q +nozbvflyi5awqqSqWOabAc/LjeAlOVm8wz95sdPDCvJI1EDiJ+4GgJWDrneLGBcrnMk+JxPk70Sx +OkdGpWZC5f69YDRHqkgpr1pBb/fhnFfEzN3G7A1lf0sv9vLKAfdmZovKcaQ1It4ndBjCAoktOrUX +0EHIb5S6zRyVBmyanPl1ZAS1Xq6CJkxKTbLmjjBVGBGUdJwKxzghlnQvkXIrOoMKzFvZLAgsXpVB +F8KpMYM1Nzf4UN6OJ1csSLQxZ8/IUpp20aaO/sQsEwXjqTsTZnfDd9pbnZxRHvmsKLC7CoLwteTw +KqT58h1NBil2CsBX94X7SML22AXvSqGaxOQCIHL5bQsK4aJvI/DGG4mRDGhjVshbxafJPKUWDEmz +1rm2ADSooUhyPgSO+eWKs9ZfhEeV6kdftuADPk1ZXEeyrBYPDxOkfw4mwiLu1OJR+gKDp6+LKT5k +48OjrpQKH8ctXtIKltyaqsVeCJmWAA7+HDYAa4mKmr2KnAoumj0cQKWGixvz1kqWW3lvakpuCKyb +lSB9VC94oIjYoL4mSdPzk9AA7r1nd4c06PkG+N4ksCi9+lv7bGRO4rmP2MQHcAelLQaqq7gkEQbM +eZSFKruhqxxJpMkUiMLyHPngWIIHGDAL6SmnQjtcayQ6yJDNpAwIEXVuFnMZUDxcOGnpITULlEwi +aj1dNXQQQ0h/SWK0HwTM2bdw5xGYTTzbL/ibx/YGRAaUc2gAzOMOriITHmwLIKUCsXmFrEg9ukzj +DBo0gIwLqYAwWYLWwmYX/pGoulAxzmoBWYXLJ/wg7Ov6XR9VKZvFRtoxNkaEZDMhRCmdxxaBDXfI +QMWrqOpR0XT7t4DiOkyVY6qv0gLwQFw3nBLS5Q1qed3q11SpIxlTdIvo9buOJcjcZinqENYEsCdf +lF9u7iXYEUgelYiuXIgLLukPaXHM8GjElmSAJJCNPlZoiJU2kdctZBOjMqaE3E5tC3i7LPTSUie4 +q0eUIw1U409ecIqX+5IiTkuriyBYmy6u86NCU7PpoTDhSNyazZKqUuaTBD83xk/OWPl+gLhdVysz +4b+vkf6EzvskbJ+/BhUEz4FEYukvpptgKFagJDhrGvIRTpeL8TLhyNQ6YQBNJ/UAA0/p1B/2CSp9 +OhL797JbuLmDJoUrxpHm4MkWQnIdygJz17jGe5CEjR5TjvQkgeAfUMdAL36XSS5ItoOvoN/3HsTN +kXoMuCv/A5MUGk6gAC73BOSSPKgEF/vq+FfJzjKAjiPhKJhiwGaRzCqZAEkvGD0pHKr31f51a1jz +g2ZxHxPB7nZN6tgmOMyTARyTJP1OKRdJjaXtwyh6sX0AKk8CJyQEkNV81SwtHD0ggmP2GdkPL5ft +LgUY8GhvgtEf1mL13m/Uks+HJjpIrJB0ldDQTobZB3oCTPXD2vE0xDnKXpZMhpybo1E2sI04raRb +4EqUOoEWEk1B7l/rWAnYJoKTJwC++5TUjd6/EUWcscsec3h+SzKqJZZqPZMP5eElqApyeTKZ+vZs +QucRs+kXTfQiz0TJxYlGUdmXfFVz18hzDkST3Epx2qMxKthAQc2G/ZgGhC9tqsYNxQQNEQmeFb/y +sYD/Eyzmgk6DxFpQ+VBVAYK+6/qkC9QGJvZ1asy6qtg5zVFnREQvQbNDauvcVVWx36aKBy/eJlJa +lW5Uv152ZBA2C0crWWR/9KG/++1n5/RI3mW90adGEiEOL9MMkeQ1M8sE4yy41am67Z22LSdtzkag +FxJJRZYVIKaf4oIAXyG6Ive/48RqVAHGoLpyxCcT+7MaPZZZGCOBg3Q4IkUOFz658blOlSa1x4+U +Uzqped8Ezbq6b91ThJkMAfzc7FdXghZEARtocPXfhqMAsXs0w8u/W7yDWEcBq9q4Jj5hiLEp2rMg +p3AO1kDvMtmt6HooXNhWYe3GXidOe9BslT+Cugh6tiRrikjKHwaFn0DuvuTG0STxgZY94eg0eVHd +7TIbt7XmBBdJ0LC5Ygutji5gfm5dh/iNrIVwz6LX8JU37Cq8VxA+Rg6RuabcW4ZLRTHbpJolYwso +y2uM+dGqQyu+45xIXWN7UQeJG5RnBs/tf7hqSm53zHpIvcJSS9IrO1TXUs/xBxUQC9pIAaa/bl0b +lM1lz5uP6PDQDEs6h0+oBQ+DSBMkR1RYmIjakv4Xo0841bGvsh2XxKyU7inBnwbnyNcSwNGAEuFm +qz/tBsXpcG5WwolMaADnU5P4iY8pedIPDH3SEy6ik25DnJnzptEZHbxgWfn298JI4Bp5R1ri7mmF +PV2NcNpnAS/vXXOD/ojGOywn+CJyIBasdXwGx/WfxU1XIZvzLaBkMSXOuUzwCxwWNVzWJ8w0hdEB +ckyvxS7Za/ibCOTtempVf7hic0pJQjCQIm5D3Aa7Iiz5goZjy7EWpvcxn9V4zhhENfPXzQiSU4E4 +E8+qYxgVs4ShQ/kKMkQydXcSI8HPUpfw+uQ5Azl0yB2HWMC3fZKdA7fhz4xFaH4Os1G3vJZwHy34 +PsLEH3iUb5JqoFHLcRvhnTMfnOzFzcZf2hxGhQmnnxfnF9/qAx0AAZMt9G4ArZSGC17c3kYDzB7n +g99dBuVUlAQKtKhg+sCI8EMtRkgHCsXomyI8E3mFHwmV+ZeAOVZMjYC1McelEgCnxBAcw/0P3Bvb +K0k0fzHdgLvcDBK5qD0QQCfJBcrXM7N1xhD8ABQ4ZuSIn16BOE209MpoA0rvHEKAK5R59Z6c6T8A +FyAoLxFSJlfGgcZexHQHNJM2wA1UlaA5yFA3KVJ07AI9fHMCKfk1cbEf3n3EoeOZUm64TJLncfso +96aprbHKJIPURA3xBLtOaGK5VPvut8TF9kECs3dutwLFMJTvz5qFt8EKyQt5iNLZuEwjZffI+gns +vannOWLiM6ldF47ABIsGSk4Z2obsRCT6GISErUIAEPfg3K+hV9kQJkrAmqiHCXqhCjyJTe2mN+SB +WDarSb7iGlDu3lrcXCTVSt2EGB2Mr+owJ9AAzkM9k3vBgRFrTqCYl4WZsV0YNX76iiEYXQMGCwIG +d0XpMRlUgaKgPUwcS5NmieLAKpOoMWwo/JjhBBaAmOIXL9TH9fsJEfJ1m+JMEnTLOgTqBTa7NOtS +hm1RrZHIT/dyLKZCjyYIHw7Jc0mEboOUAvk2toGF/q4edjbMMqOqDlM9OPvfDPVbrQI1TngRMZIk +1UqUSdnAleW1IKhcJbjjLXFhrHn1qCX4sQCZ5D7lEMEb70EcmyWR5g5NVF297/4URtV1tf+QZHnt +HVle15J92NZsDApKSbj6rucleopsg0V+0R4OY9LiZzjwgcBilIFPxvzBMJoe8nM5LMmXhem85Wkv +jjDBQmuSXgpjFDx456ZsR99QnSCaRzjvu6dk0/ipVQptOj1mTyKOr0rub6NLglss0PaDNx/fS596 +vgLVmSABq0STFs/wJj19Qm3gRMhHLmoRrQj6klzcT8EDiwmnyerC0RTRjDHWo/6Kb4KdcFtll3tN +ep2/aXLLtC2BWSsqBTIZmmMQw8NAZYynjx18bSr29KL1M6GwHoekV+IWWlAr4VZsHFw8/Z2p4JEE +h/ADh+UqZ4rhQKJW8oihxp+qhLdqwPwcCnjtQi9nAKW1f24iBXp7/BUVYRcISY9Ce/3y1uGJ4v7X +b8mBKJ9+gkYt+YP+ggKmiXS3LLPpvlVNBWIDE2rhc2szcBLUCyWbHOESAV/Y7fDi/r2JUQO0PvJ5 +iaTXnWRiK/miADj5IxXAnwBTFNUPCXTDnpwLG4KntALfREvnCXCrGjLFs4bTHhXA0/WJLEEjNaav +2nJnzskTUvNyObl8BSNIxh4OIzDgbhF676iVjZhXCQwunETc6WWfjaKxVfYfATEIbkOjkCaqDkHe +oScJnRpwUfpjT9UIo7BDx8e9hZQqtQ9Cy1GUem8k3p4JMKuPRzupEgTY3F58CJUvNgSsDYvv3yl+ +comPXA3s9MIcHR1XBIUZBzVU8TBGA3GBIg4oRYY83syfRqS+sW9O2Disabhn+D2YCAQQOyel++eB +4/FCGrqjE95cZ/apK34EGm1flNxlSQSleFRd1qXqSRf6BzxUwxXZNiO9COHKA8fLUOJnGCYbiNj4 +05MZZPLC+nh3LQQIujjvQi+zPvGpPC/M/E3k0U3xMQdgiTw0JxF/0rPGYxRz2ub2G6PWC103fNHM +GSuAoaCZKUFaSKTxXgNvAGaRLowppEafflboPNGFh3tyqDEjGD23n3ly2RwJDHTDs4iOM/fGK72t +hDZJJFbRkVHLfiMkPsrgliknyazJqOoprjjv09g+DZY468GGPpWCbSNshq/xxMqRJvuEPkdLTIW4 ++W1N/lfHkpV8mahObJ5Svg+RqHsnPsSfR76bozE9ZEgteaHU6fsr7FqQvlzYvJCY3TmCn0rEXyQz +YgPA3fbVznpZwHL+1zUv6Kjf4w6Zgwd/beOxE7Va9CPIrUvoh8ZqsOSIykchxSTUQcEgVPJqmctw +qFGb0JFRLBH8tflK32KakmTstaIBAINoYglFO7+TSZLqkjyLy2oQfypGlRfSDC/sUNhTTcgCEK/s +hdyTI9WI5KbEWTLBIfyklQVRDJuR7BONlUR8T01uPsmPBrKSXaleZeWaYr8ZvLf/fQhAMgXVJmjs +TSI9oPjKb2vqXya0peppOKIIA4PRiRZqLOR9OMhPyqb/hH/Xp2C4CnrInDBTCsgRmiA8JWqa1FdH +3YZeBT6XCQ/1bXy7ahy0iw3kIijSzVmSNILkzW0o5697xQ3KFb8jkDMFEsDsv39Uiyy8k1hU8C6p +ZRUX8Mcw4cyhIGw3AqDjwiAZHoM2ATgQulsxCpxAJwypxW6Qyya3PxV7LQFvxBdHqQ== + + + /ZsyKv9fQGQCOSJ544tJRIXlsDUwNJT1XIeDiJKin9mH/wkQ8j3rkiaqLT9NYhzXHT2gXUwJppdL +GcQU+fuuBg4u9YfZRV/FBaKMeuGmneOfU9nLr2oh4VKqBdBtRc+r3r2hnWa3FZl3CWuYVhxcm55A +c0IKUZ9FEjqZBmHGXvJfuHSZlO9T0Bl2XDWcWSUPuurmEclaVSMjimkw1iTI4JCBGg5o9s6+KGO3 +W7vCIU2qcEEhB6zcpbHyKZooATFhmrrefF9i+rpKvH5vD090XiReokBqoUgx2QJEgZ88UmKYFgH5 +ymuEFIy5StLEJ1E92vwn7DuoyFzVcIMrSWwW+EOXkI2AWbxg4eJKclo0RHw4he0Q8iW0sroYzeC8 +AIgPnusYt4iI7nvhKeXDYvmm7ZRfbsXhB5ElqFTpGlrw4SFSuuTRAtR/Ee4LFU7AUaG0q5lhoNce +CUaxExKtEa/Mn0Bw4XznlsKmULyA2NzLAjod/N135C845qKONWc4BZMw3oVFsXhtWAtvDNXsn32c +hvqqNY3AWOXQMvk6iStvyjWz4ATvYdE0X1lASBCEi7EFvLlWEjpUSmNw/2wW4gPOOXQeQojArVk5 +7+nJpzqFY7ymxqDdB5oELeIWNXLE5io/HbzjWzMIMoomfoNFwA4h/aEQpTjmqmQald1an38uHGHH +eTw0YdU3f1QBextnVgzB+DB52eImbkmqbpkfgY7yH1LA/TpnObM3aFXAiHX14p8Hf4/TKhHKcUT/ +qD7RIm90biuwQBlzNOp+e5pNlctVDBuBsS7JE7jdfLV992hgB5zbVXGzb78G3SDu/4niHPw5YSVo +ED1Mzx+BYNL/MuMyqzaEFtF+YaDypEfS4YJwdcwzJ6SiZTFmAM8QLymPYFRx2pXgwlB1toliiv54 +JKeulV4UQKd+P67tvhETuf1EOm6YtpUHvirZ5H5x/PDRDfv0TV5fJAykzqu2ixmop8/MZU6w9aJj +goS4SD6ZR5P+hqNf1qy0RWeW2MhSJ1oC0HgmT0IcT/U8/hYjydVXkycpkhxaQZbqfyHIVS6azXGa +IIEY4fWaP6vPkv9Dbv4mA8+x06FET7l9E+QH8uV8k2OiROqk8GrasvDb+TrwgSQm9vVeIOGOf+/M +komNbjXaIy6NogGmm/sAGMabTFn5gLdo4/LUSBRdSndmSDjk34/gDyokO5vlQDeBcrjAvm6itBjk +5hXSEagQvDqsWDEQTtQj4rSabpJfTKiEpO9hmA3iWowrFcfPhW7mBEKsiiSIxUNmwoOIB9xxzzVK +EmVPCA2Ksc4W3hHuBt1nIfNJOdeItRN1TQzeIwqTpeKdspJDtKqCOgAzVb4YJLEtxh2zjuRzVJsX +uQF1wMRBxb7UX154MnkNPix5Z5QGx5HJF45NTk0I5akxhpNSvuV4aE/HKYk7ON6wGD+xHMA0SYiG +RvI1nKQFuAimck/hGa5RUySj5I1nIPjs7N4q4aocVFCDmJyqU80Bkl5JOXrlEwMlGEXcuF1O1Fx9 +IpjprcQchV8MgeMF8ALi1JvQTzoTf9OsnKihmmBVfsKKsJNuKi/ZESQAg/aFnFefVK4pLvIBjFA7 +r0U5w/QI7q9MEM/SaOSWZtGA5Ge4Q3GPUNXE+gQNqIQ18h6Qu5oMtJA4u9oedp48/hj0O9bflstb +2UUiFx9ifjfvERnVu8RwxMnci7yMDlUOIjLgnvs64t553aKOuEuwE6Nr0ysrCJeaMGR4hbe9IieO +IscJjIcF6CFidbVeVxaHlvJJUiuNuUFy5ZQ4WLaSU5YCxA+HL7V2P5LFn/T99jzUhBqdELRzYGUR +sE6Lf7mghvmSZYf3uDvmrilpj514VWCKQblV7+H9NqOXvWm3KAqGBkWBp/AYG47NtLiQHQVObL6V ++GAFKeLQzWDdBRDQG30A3kzYujU4ynhiZPedA+SZH/OTCpZoekTlmIH3WZ8rRbbhbMMqLJkTGcDh +jkPnzrks3OHbQ+QRWaL3wIcYrLtEE0x2oFVYX1wBAopKfxC71G+bY7sQ7CM6VhCe6cxFqakZr8mQ +N21Zfh3eAkd8eGPYrp98TrR+IqYncTyUtyZZIZyT9Trc1vsBnO0Asej0coZrHSQqVI4ibj4kmOQ5 +iWWDe0OwlnUIuoVqUIK+ZgJYmmihnSC3Ek06+6lo5DaS2iL1slnUyD1tjjoNPEsP0p5pxM1OmXJk +qqq3pHPh46Q3EHus3F7TgZegEx4k/lCCY58c3JW4SZuhIDDZ6NxqeHVqTfAwuYSNR2TFpaqUD4eU +xfJpbOKHon1x8CJI7kjptFyRMZ/DskYElNmfKEHQC6MLNocBA1h3GxYBGOmuZWun9bmwa92cbMpH +Zbmg6Ynb0hq51l7IbFiKmk9tucONnCuhppO8NbYXLWY14R2jmeRTqWRTn3GUhA8gn8hhtJBE4bh5 +zlHz4nDiezjspYClxV2ZDnnOShmbPBWEBJ2bpOmawAFTt1kQPMvmTtsH+JCMQPs80uH0oGwc0bQc +JzNcMXcTz07khXI4AHikeAIJ0wvN/afGS8Ycmjw6VxJaxYCw1fdWmH3mXvYe1NxASC6gIFFWfVjt +AsbDBuxjaWKaSiHtCjrhK8W17dogbLe+mqTok74G6DktMIXxK/kRFuVKzGu18tQaUGPyg3NelfdU +6DpVqTm0PQ6JAjqTyoYoS5y5mySptyRMP5iF5jph5Y9WREUhO4cb4Z4f4wYQJghMa6LktJNhxbk0 +14EE+KaGdKcd1h6V1ITJJpu5JWhv/Ejh+1P1mzuQBs8meBkB/b/DFFvs6YsFXE8XpilWrSJNyy94 +cONeZTTYyI44FFk0NhhBQEX5v62g3MCcBpKLGdVQ8714N6UW/j16f/KuEZNaUCTSqLL7JfHEViQ3 +6kyQyFtSZs6upC35+l0zV6o5UJtcCKr9t03G8hSUmTRxAmzcCuHr0cnSI2+Y83xE4/i58BjEsJHI +pIe0Q0kBdHAf1I2kfaV+x/ExQH5LkbB91Qn03wAG2jUQsCVtDG5Vyk07U+SWYzk5FzAAMAAwAFRB +rOwTzBwtyfK7le+3OP4dlTRc6PyD1ayC5SIHWe7UQmyixnEkpuXInUByu4EULVW9MCIx26Rtlzms +Ig1OjNzESeUqzqL8cD8LEnDyvmgIlQi3PaL+hN2uwxrqJh4uZUTAb+VLG1uR5dxI4JRxUgUxt8qk +RFSkWgmiYmN0ymjK8nMorREvLqGhFo6jKkzKEsfpTK9KSihq81gxcoU0UTIp1uaDjv6T+e+c/iYi +7v79wYh2kwMNbl76lAZDdhMBIYmPqIRcLgwEFACDERgAoQHILB6UTAp8Zj4UAAYPIAoYDAwKCB4k +NEo0MDA8Ig6HgQEgAAAEg0aDYnEgBiCIAgRMuA9uIHTipAVfPTF2r6Pt5pAEvOq+EpY44dP2sFze +r0ao1hzcgweJC/lnwyCUH17rsu1NLjJ1yOnkiQNNuceTeiiEaFIw7hC42gQOtn1XDAKxNkngPPDN +UxzBBQPyJR7zrhgeHxZsEKcnvaXo+cNBDORhQ1LU0cujD+4cXHwZ/Inw5yfWGJfZmO8K5AWE+BDD +jaHmSQEO85ecuRtPchCNEmtWrg9H3UzOYlMEo8r6Ya2LyFrQuAuz14qfCSLgimYoFeEjpr0MBhNC +DygeWw1TUoGJ49pOgEENCzC+FiRtMBpQynnhaV6l+8esVeaq7nkmhiOHzmeWBrM6Y8NgY12p7Zb4 +EbMRrSH9GC2jI33vxVIW8fzvFhF2pLIY4b7uYlZQaqMENmIN9ADJOD8umXya0RigZkwE66zFfeJg +49nlaJnR5F9Ev+EFdDNJFCJBrJyMqLm7msnZh2fZhFaqcDxxFxwojTc+cTU8eGSAPJbdzqIPRQeB +L5UpSVLT6hU0UjvVNt1IMzYKHQH+FbSF3NtlXgQ+EzQOR5IepgCFUmOSeWTjLXflDFbgFBejAtOc +W2juKfNqsS2iigvWVEauhyN3Dm/x6dY8i3uVR1xWssSxCB4Uj/uEpRG/EWm3l8ED6rkz5Y7wJ3WT +KiQSKAZlw8jY5NwJ3GX8uzSRMJdTx4PLc9U+0RDZwdPs0jUmgLCKitWw2I8JWJVnS4wdSXnBwu9S +E4x+mg4MZQYnEwx0OHBNt1UX7jA8IMoOSbo9Y6pA4ePDpc0cUeXVFG33jLA5ZleJJYRYMNvt3IKb +TGR+x425xEMuhNYgl/arcqTxVaLUBS1FdmBcKosWCCZ/27tv1nhSHCSSzqhP0lCZHE29mFdTzXTE +R/FHlbIqApCLUcc0aSCKWYFfgmZeaPtB5AhGW1Tt+sNtUe3L1Al6EnU2lIUrs8jFgmIfq4pPg5GE +eGXQ5BT7I7HDXAFq/6D0dJm4yFG0RkI9xpfzEolgYXyW7WNfKXCgu3up803cC4CSOd0Eg/2AqLnQ +diTYUVTnQyCJybdQ2awL2TnAwtfOHvnd2OLIUm6CrOPicKBHH9DWwMsrvz6H0VqABhjYvCW0JmZO +lwjwRICv0pfnuvmR9PeM+uAadW1pt0LsQ1xKPZmS+MDWS4ZlQouY7mwBGPXmtVGaXM7lwGkWDkqU +xt1DCo+aF67cmCQtNfpxZHL7YOh98EG6jM+JEVnJFxv8lfb/z9hwM4Ea0fxIP5lkDUUiiC5iRBCa +U8SiWnwg5ER79Mj83VwOnVTy/44XeIyctPKv3jHB8gWKaSS0VkIRiOn+gqIJmqtQyxHnl5ke/dHD +QTh2r1YcPLIWiPMufS7z9yNx9Guz8XvXcXCOVVLCiZ1JFMaGo9dgnVBgH1xDWM5wirXX2sfUli+B +AtSD+LedhHAXDtYvSXxWUqLKmz1qGHTJIAiPeNk6rr3IjhKUmDEI46rXNX+Ys7n1e1yUy3DyEEPY +SXScxJrwqK4QtHj2TzIBYPqCHu3J2cXZfU23vCNi3Em8zHqJD7zz/khP8Hbuwg/Ha68lOB6K/j+7 +i+B2EkNrFY8MEW81birvLUOt5AXrkpkZQve2u1tnAntciKWG5Vk0l0Ak1tHGi3D0iFdxEATXuqjg +jWlPICNyJYOPtWui2fip3ayE+9cvO4INeLi9EXCoEkUQhuqcC0nc/qO/wZq3C73fbBrLe/QWmdv6 +sn3QUi7k0K/fSFKweOHilTFfifYizRkTEY4iROGrVHgVpFqVxD48cCsEASj3GYZbAuXIL7Mj9TGw +fVc0SFicg6hakqOINtRMpMWDdM+CflzkGBoKa29nExolEQCH9w/PO7vQcDg1js/IWKv4nZUy21+6 +cbrDRAhxeQ3/FQ9dKEjYoU0tmuQekdCmqB8CbkUmd0dBBFCDR96i4WgPMHKhlJDCxpFKRFwX8DLg +xGDiJ8L8Xf/ickSp3CRQTTjgurzEbkT6dw6MhH2UpGnHPJLxGVPWpdIqx2dslMqDLBYcoowwURcQ +lpRV04XHox8NA1pm4aiQMAvy+feumFtv8ROhZOK1uQ4f7sEgikVE4bpJIXSG3R7c+g== + + + SXtLEVoVLZtp54J7ChweKx7YyppM9T9OXOt2r04YmFL0eM/at+O2rLwZhX+W/wfEJg402yOGtLz4 +wZuHijp+AnPoiqJ8CLocgt+LfGWLnlBkZgnBqLgPKWDKOBnO7qBfsNBrxLOJamY4aHFW5Ywv1vDX +TrAM8FgtMR9ikgIOscN+EY0L6IQs9yG3dcfj3xHx8UpsObLsnRz/1h+4pfbSro+swIFYarjHEGVf +j4z+hMurTbAnLq49B/qpUswBsrChi2/BqoKV0GWWsTTeh4SLuInT0bTovARdZ4Aqe5+alM6tpJMi +A5eP4IDEdhZ2GF0qUwSmAnXDtDw9AVC40jpOUGQKd4mNwS6RdVOFRxUYH8aJh72xRX5zOJO0Bpmj +lcbUL9eIdaI8PaKInoSTEmXZ0c4w4DNix5ApO8aM+t8pO9RNqBlAvQewm4jtSuQSeQPu9h94lddR +Vilnp4595qEjp72beFQTFhOXDFflyHqkCAEvSrdOp5Ufs124by8yvE251aLDIdEty7hjV8vsNjH9 +xsD38tR7OAJtQQtrmr4XoAZVCpubXhMcWaoGgMAy2qFOMzljhhtE6IDCkQHy8Tc8h0IiEw44Ri5C +sv97wn7Jlixf4d0VhsiwUP6R4MRuH1GNMNgeLMVU6IxFQF55yD+vrQ1SJqSVHvrCY/Hu4bzv90Zn +3gF0kRng8BKrA7kItN7P+TZTDZwvmhkdACNvkUInH5ymSSmt3dPxD0/nZXK/QniqH0bmcMrnJI+B +opDIbaNJw6hRutQ6xC47BHh9Kqj5WXw4M+7od1JbdjxLFSDfSGyEznq2BA2FJgKoDTQPlZxhniiC +NLkMJPB8GRwpoj+hNxlBWF6+StCuZspw/DgP5/whbRNAVQGIryRLcL9g1lDinGU9NZIND8U/4Byw +IPQxr588R6zWLG4ishxRY7/UlGmoJDTRe2rLVjacKKTKuOMU9nS5W2XU5HtYuITugo3EwPm/N2g7 +U2ew8M2INInTsPTGuVoGGIZwpOEzeVawFA0rJBKaQEP97p/CoAfH5uXMuJ4rY+86Ja5qf4HlAxQZ +66YM4V4oapDVIq58cVeTmFkAiQWQ7aM32ZgUREg3zxI1hLlGlS/RHccE1xycDyhIKVGllM9CPkTl +ef5tgqEx34jMKLNHDQP6mKlIM7tprOKvVKoNygaW3YlpsXh5FPt0H9Zfrj4ZDeonoukONRIH33Nn +jNJAuHOX1zUdR5IqJiHnyWGrYaOnYhwxs1GOON9h/Rl16RxzLTHpk4X7FaZQLXeYVSFQHBarnOcD +ka+vzPNjGUNe6ArzQ5yZZjBWJX1K1pI9YKaw+u4n6G8oSyqmq+hz1o2MqYCR4Cmmxdyq/HcMooQ7 +IKjTo3U1tq1tVQYTWLg7wD0fKI7Nxn/CJ0qTqYqtwtgyLicJkZ45GeV1rfHFN+xlcnjf0rdJojP0 +GeQwn/HXAw0aLrY+Tz0OLjrt+L/R47oruUxZ4CwzqS0JTdDALBnfQycM32uvaD076BIGmSMjItYX +s1kKjYyP6piEzhwa+pghmaTzRe7gpW5+o3LWicamUPFShorEASEz4lDl7MQSc2TgOvJWFoBrQuYG +Fd9dYYMfh5YUT7iMdgV+mL62WWPBpxTTATm57p4NPUlDFpJPXDHkZw717IbfEEaqmmFLDMVcgplL +cxGR1iRl6wL6vfArwNM+VL3HFALzTec8LDlIGzNSdUKS53EVXRahmLb2sfTqa0T38dLslM+ScVHi +D4vA7xI1WhWuUizaBMWB3EFWIXXraVOaocv4wZKiuA/1t5l3MPTMylOMxAXN6awl0ejQ9N809Kcf +zBVn4AbUlYccLyTHYxnNinnMYpZVcOA0ym0u9lhTlKFtU0kyCxCKKvNndMKcTNv387gCgyQzd65t +RWdcbSptbnhSD+OZRRzlVoocx5krkcz4Ny9LBvOYM7vCDEXRiA5xLfxLjVT0ShKTJCqTmFe6ETWU +PP9/6SMiOg4II1lw265Ba2sSM8oxR+xcMwtPjNquUYwiO4ZogLs7nMvzreb75vxfBOAPaoIMlCQT +43WViwF2KZZ1GGygPOhai3WBmrwIncdTu+NvWIvmDBgmRxaxk9ddxTpm5dY+a9JUpopYjJnoqB3A +52as2FqV+Hf34UM8QGE835vNuT3fg6b9yo7P1HskcRbYWNvZmwXbAwnvszZjTB0vHq18+RLm180g +NvD6kvlJqYaSVNpjskECMyNWvKxNfh/JwbTfrC41ATAmaX5NJFnFyWuH3UAC0yFeipSy8d7MQlQz +Vgqv4Me9pWNMbKk15lSqHxnbbkHNXKTfvqBJ0ivmk4lk8XOW2G28PVxTAjlVIgNDSp0CClYaFFCW +gHaE3sAVzQfl1817TsFLUyXMvXgUe+7V6Mp0n8d4ghuYLJLD87sd6ePOSYXFgRQpsPqeQwlpk+83 ++dkuRWonxD4OOktSQjVE0ZwjUDnAaX8he5MuAg303h71oFgQjlDQDITacSt4YmB8Phj5Ch7ktOVJ +FK2P7Zm0IC+8NKfs8QpuvDBMEhD8WBLeuBQRR15NaER4j+dxaU8Jg8DNmYngI9WGAuJw4Be2uiS7 +YZLzBgMSNQ0TscKPrYf8+jgfEwwG45lIyWCPRHeo+N6IhUQNSNejnNBO1VLFu/KMJklKdn3kiAuS +qnjqBB/AmDskTMuonbi1h1D8At44Ly8Zx+j5ZiPFSyOyk6VsDYlaSElHxngUHLNha7PvuN2TryxM +4QuvYxmgGBT8GGxHO3pjFeEBUrEWT20DiLqjOQEdTiNdiCmSWQIeI5GFQ4Ry+IrDVCWsJV1soEu1 +WHqptRu49shf4RyOJmpGTP48jO4s99bETIhViVA1Xu30YBMYWM4719bkFyvql7EJip9MeuD4rLtG +gt4wOHcgkwAGaJCFd1PZZfmll1RXkyMF8/UBYIRS4PlKRrzGcDUMsDr4SEJxOVeSJDLT/AKFWxcX +dxgqcTUnAMWbwbCY7NZFarMhs9RVVUztCJAg4dtsompUw8RBKzxnsgKhbggdNIISnJ1r5gEzFmFs +gxA6V6HxOy+Jo9PQ7B5kp0Y2sYeABwoLFQgUSDyY1Vg+GWU8ux77WlVAnDrQJhql0LBAh8DL5MH+ +CXSpHCES9d+vlhvm80elWHZkwOsiLRKi7LqPXcv6rnC0gJQbqeKZby4G/GWIXrB6wZB3W7znV5Mz +68gdYbtOOhnhctUr/7hdekQz2oQFAjVpb8nKxDLWPZMm0BmWMZhUzLGqtGS7ALfzRbZZofhsg5pt +m0wRu1+AJSf0RJb1zVbd6FR5BC/M07PjNdBAc46SRprk8QMED48BIfi8xDEDIyongQ/zxI8kHJI0 +zBzDA5Yag+szKUo+9VIL3qTfX865fJMw4pgb9Nw4o+pAeGDUKgrgcTrZhgFh3iebQ3hD4vUKS4QY +dfxWxdBXIailvpRHmQSE0iot/6ibVQ5XIyES7uXa5GOriIKqeRpKvjgaDk4FXsITnE0iZcK9igeR +mYQYBU3McJD8qc+4mdriUzkaR2ukxgPgGBxdik75MH5aJhHkW8kBCG7fqj0lgydJqbgwre/dLDvN +mTxxN64p0q1SswRsePmrqG+mXEYJEsu4IUZPsMg+uCQIv96+BiKeiatUcLuEkFHmqUVAqEFcrxaB +c2WgfV8gj1v45DvTZGMeMwLcH/LupU0VFvlcELrwcg+xZnNguyxSfg/mCZT4QUwxfBatlyW6iCaV +Wkp3hNciXN0YFDvJLtXYVHEojpoYlIYOWAbBWyNaJ7NwiiZ+JZEQMd1YjEbMBbQLgjCSwDok8yoZ +MDwEpe080QLgrUtZOvFQwKYPyDr4OWQHC23mK3dJEige0kvmgK/rozJvzEf3ofBeFJQhoDTL6ma0 +cb2zgu9qxChB9OAVV62fmse0uMJJyxflcI1HWLaWFEOK9waJQAX03Y2nMKG2CX6goEBEbSr0wMCl +8lpb1SeoDkx6XW/VU8cghWEsXK5wpd3u4mYHP2lo5yAaVF8jWDvpxotB2JEPUPCd1K5LR/lLW/RL +j0FDxYoPQ0rMJuNcNwnzPJWqfIEIcn1GyrqC1tvU0b8+Ge+JCxUWVfXPQN9FUw3sJ6wdQQggK5QH +UsByoNEbic1eYGzoDMpABcnSdlLRdWU5V/J5s6/wumNzGoAXS6wCraPAS3RQxQthJrn+4SVrJDw2 +gO54bjGIhVoIu2PgiHwOcfR2v1bym6AXBpGLi/CbQnzdOeyWjsYLYkMG0SwSD487ndAnDywdZGYr +Qx5foreY5FQwHHngliouPE1DTS+8FGHOCx6+VL0EEVEm+78120KSkl1JhfjQjpYEH8pHZp8jACiF +FLREfV1xPzdGJxkTdgf38eawlwfjhN+2hUihghd9EoaH8bFJIrcqmxy9tPEIYqDiSNOImwQyoUNR +QZL9QSakT79ZXAG42xzLiGPMTMc/gBsJ5C6RIV4IrNR6KJsqsiRzSciR7WDAlqLq5o1Z+bkkCDWz +xRdjQBspGHpUzII2AeN/hOlQ5NIwOfdBSNTMiRMdZiX+SHqq4Pz7RyZQd7YYh6Cc0OT6ixnEysrE +UQsD8rkLIZK3hmkOwPfNyG50XI8YydV1DgI1rChAkw8rHEimlDzNI+gdq2ejQ8nePgQ2aT6GeY9q +jHNBLRaTNLOT7wjkl5/wxCbI1kCV54q7cYTQrARDyfjohBZX0YjwL1xMTogxfo2qagBvuz0IIe9B +q7rZmHGAdnXCZbnBfOGlaky7kMUY9eoHhA9QNVg9ihQZPDcmRn6WBz8DGGQmlQtJVi74jyT9kzgD +WExgXNlCehy5KpdsHzDQqcbSoq4hURLZpDBpUkVDlJu8BJjTuRI9zqoNIh4M41hoz5MWKAssX4vy +IFuhP12Af/ZxRkVHG8BOIP7sJ1noTiDSTK5Twqjyyb65U8cwpMS0LnDiV4ePMwJ2THhoUTAIWhJ5 +EQOMB0YOAMjV7uDE0reUcIyWTKYcPNdjcZP8vp3iZjU4+QbnLrvKIoZu6LASzlgKcfsfXUnesdS+ +0OTB3ayipuFErn5BpChNygvjA5MUYuj3Xw5qKw8CSR/FAeBgavSYUsqnCkiWOtZ0ZohhdIwoyTMQ +hoKhc47W6/tdZ5KXq+DeXFIDPExOhhiqS2QX7kwcE4lfsuWxwcFaPbdwxmkQBP5NgTE00GyTrz3H +fu3O42BT+EXBKXJ3uvRC3K/esmCLTcDxxp4hFugYhyQBAuI6QCE0RygpnWmsONwdeLJW3O2rVaHe +zCdZeL3OcinyxWfqP7+FbHxfjzYtk2UOL4cf9Of4d1CgdArQdyQX6Jm27/R48Inle7ekweJOknsw +pk1TLZ6JeiUG5RXeGYd8BlnUXJZsS86Z1hrXEnZe6ZopcgJuH86/VbnTDQdPpaVUPoj1Vb/2myDF +dZi8DvcosTpE1sjrXMJpZATZ5RZNgzbzFVGmPAgQJDnMf1ABQjomlnEkVwSsFen3Ew== + + + ugYiR/NSDGHwpLsX/1PnW0SPEruxdKs4IYZAJnJaYySmVu31svMWgC4hOC9LJVEGFocVJOE50Fxd +kk3da5+dJMVJJYw2rLiZV7oT2XGnzKwFUDLqRfwql/a9+NrZkdoqV58qU1cUcwUEi8Pvqg4sBkZ/ +cmqItTnn65dB4XR6GwmxgPG0JSF9jovhePKLQWy4+xHct/alRTRkSrBmh0T0NDghsAdrgqTqeszg +a4/3U03uJ4skMo4EK7oqkjpcEhRCd4tLfOQWRrOhuScWrn43IqddehCfDshzIvnxxwSJnOQqQZGc +qVDQHe7gt1tJm0zhHwMy53P6MS+T7Rjf75B9F7uRh5nyQBNmRVbM2vHcD2r7SSdFxr2tr2oCLtoL +5dhmkB22aZD0acOAKG8p6ICYVvY2Pm3sGhE1eWgQpv3BHODAbSLyQIzPlibdr6d/TiNN1+Vl/Zbc +xZsTICr+LJMKEK784VLm2M2zl7NCfIfjtcVDqMo67NTBEBxDcpi0i4Nrg4lazBQeTWScjofqwK0K +5fZI1yQw9bzOVoNu3K5sPLUmPGBv2M9dHwIY7SA2cu6xx+Ct8vbuQepHpllTepeTng0n9lph2T26 +Jg35wjjm3UeRgjNG8G1RAramZiEYxxIyuCwrbYf5gQh3mlOCG0MeVgq2yJD5RIQcuB4/eI38/ajb +9qHrVECOkcQBPN79trGbPqfw1r/C3aDPFCC2xGh7ZZzDjYI4kyk+ZuCIWRMFr+jN/HHhz6zVmumJ +o4k3gxjKTeN3XVDYBvda6ZE49OmmTmwmIwSTPxAsT7awbPiTqlQdTtRJCaBJrNyl53mHiLokvCQN +71Dw2yrPGfPorwxbt3THYhZohuhhgXKSpkpJdDhvvcAXBiWqPUgHTY7Eirn2+gAAyheoSLjXtKJn +KFxUJG5M00qZ/gVtJtXs7fBJ3/5v4exBjMZJrQF6uBt/ZATbbWORYC4wO3ZujMKjQeiVjN61qeKA +lGZ9uA1xur1Vgp/ja8FbtUsygpwI8maiyX0oIcedx9SkcFKPr3vHxIgSl1AcyIaI/izId1NX3yO0 +neV2UYIC1h1y7t0BDp+ErQXIqGh9akh1DPAWhq9mHyZ1q8oW664QdPBO/ztexjCokrezFVMvazQ0 +iZIJ3Icd0Ru3vw0385czQaIehAm0ncAVnMfIJGXYklMj4h2qhHzycZAnyqjKDbKODPBjvQSIuwLx +2GwGJCSM0Ue9IGHU00pi6T9UekW5E4G28ZBF/T5fhLty3ErhrceBxIuIREw6lioJqOIsAX2/y9BT +1KuMbQXAMJMnxxk0XS50VMJac/IlHlOgcYjIRGiztimZQsWfOJDduBlWR6T4IM4Wuk0arq/mIezh +dua2Ra2IW2spCimmpFCqonkx7X9bLKDmqCfBjj7Fq0mMXOy4uVZxXiFuCGAQ7xQ1xXxNO1EHQ1Tj +V+2XE0qyuOm5zxxM1haspXCoGRPa/h19a7LzKiaw2zRl4m2GT4ZQPvyf56CJHmfeuCEh/SLy9kJ/ +QMBqg7DZNZDr/QkUggY4dcJAeVPl3gwVhcdEuQO+nyNeYs4BCQC0OUiKqJlaEyyEw6gUc2OJteP9 +zYlPcEM1xaLGv3y/GfT3w8/Q1AV3ihGnmXi8UQOU3ACGFjAToKUgx/MpOOimlMbIEjKHatGNAS0A +KQAmAFOHkwoXRxHBrMIRionVRF3J/RnA1IYVLO6sBlHiogiKsKoSiqgwNjhfK3xtBJcXoveWZ4TN +uas3I4mLpE5rSC2uhLSgdBJWtBLZy37oiE3CWtS9GosXudE3XPRWlpKmrmGIdOpm3X6GaLPkFsfq +durFciMn3SO8/cfWNRUBAgPBgCAJv5/ZOxLw7GciZhuV38lO9vMCEb1gw2rZpHsxZI+PsIiGvQGJ +a6hkPD4AGQBTERAgKDQAmsVDolF90XwPFAAEECAGGgoOBgYiGDxMSiQ8OCAMBsIAMAAAAIQGxFGp +HIDACQA8ug+TuX1umNwECylMTYk3ViWPgZtWcXE4CNqIkJjxUpfrE/ZqoKhRh4zJbupc3HNYsiam +Yyg1iPhwMVFCfmJtW11iZEeIk0dyRsSqU0Z8+d16w5BZUD+5deaYnIk6WV5cBBGO5fiBlnWjvhmb +iwF0aN2kSWiHQ3E2+tU48YSXe84YcLf5OwQiFqspmaRJK2GdnREJBGRjyBtBC0M7MFwVVNCpmJ6P +WpI0840kikn5YizyG3aOZxEQaYihLt7o9yEUcfkSNYGm7KcPwV5CamDENpnwmGGZl9MZ2i5SQg2m +oQgl3mzFfUfMMcG4Mop9+5CLKeh+Se2nSml69Vq9Jhov/X9C/y+eOCaUw/HUrpVpfAXKf/fcpEWo +FRo3XRFeyOiHo96w8R7HlGv5apYfuDTHXvJ+x3lvzjiDcoUQ5NDDSI5U1LiDiZIf2sQOUGR4//DA +HTvkt0OvqUbckqsqZLYViC2zAZMG8lVJDrgAjHPDeb/onpbHYZBCCRJCikwxP2lf1/JrJMO7NH+T +rUNdh80t8zNHLRrasQC8yzPC90OARe3o4cnggJHFwDkxgo9QFGXzEB0azEENCzeqmlsF4H8iWYb+ +TdBgJmHueyWj1VYcpKXD3W79foBOI/NmRHg1EFaCphWnAkYrvoqn1TFjqQNpI8BWNxGzASFR+ccR +di2YUHyE3UYPfdz6W+iaW+FaICEpXU3SFE9Ab9tEdAlVgQIpBJu0oxIQsYuT9hlx9C1/IkxBBqPN +P/791J9FngmUSCHBqAz1ntLg7UbvQ1aJRuyA5jS9zpwbr4fDMhkHVoavJOS4Sa4DDxmLkAzOn0VC +2yJX9zWbh9zbHSeioULifqYlEnA4AWyalOATCgPMeBBf7NLcJfL4yTgnMGIrDwTiWzG9/D8gZll3 +EMGl4pbG0UBya/kzUd19OrAfLadGu/HQaSC+aqIlecKOLuduW3J9dnqVgprttvl4q664lEETnGmR +y9ucZ+W9LWu2bUdVHGGweMwSLcWNimbkBzDADtfm6KapbrNgObXYsvPwLWIcOXd+Ya363WNf9Zp8 +lPz5cTiloeCAFfF6V5sRqav2EhNeQbAwp63YtbLztnlQn4nujaH7aXTRGj3ioeFOI13pzTaTFK8r +DV/tUxQKLsTtTZSEnUwnCXPmzZZJPyO3qdKBIsoTe1IdSRoP0utxeYvHqZLNHZFFjJgVgToeLBUY +fUIzZ+Q0MpqN8WVI255CCpzPMn1Rxjg0dYkEOPg79S0sBVFe+0qr0aKGboq7J32sg8n0HHbuCvFp +bWy/Osc1ghJbz5DAgvpiNxahB4g1vqcI/V4Z8EsXfy21pqXgD4LmqoY0CCDnkMLiiA93l6PWcAtM +MhvjeKEQcSrntKALlw6GdjgzftDg4HUrUiRS5hxZPFK0KjtCKylwKzEsDdPyDIguXa7vs7LHxtlv +tbvMgftnebKp8mGL2ZJfedEsEwyWlee9i0glx9GuYWRnVWn/H1Q3iwraRPdZ3lgXS8uiTNJpyq0u +a1F4TwcCmhlgoRxVOMC7CdGpJm3lPkBfyXyPRHc1IK+9a8Zj6y97ThGDMOIICCDAFpLiCDA3IVdM +g4QoInW+VY2iKooKywYSoFom+LjUtIAzdOn1oFyYfg4onOz6wZtOL0WwXVgDOtB9Qdg6LfCdjwsr +DGZCJkMiOuXfbGr1qn5YJFMi8LSHNPePFC6N6Ukl3BvuRAnbybV32GiVmzVmTO83YZhtMQoHJXon +R1I1ZGI3cRKnMA7ppGE79nMJlXYa7ufQ6EcTGzhobYF9AmXYYDcOW6KflOT+5M26uth1oKRxM25N +CWrNs/N6B2rmnpO44TmvJ4H94czXjIIeUsoqDVS89dqrUvhWN+Lh2reI/Mnep3zAlCzU413DV4Vn +O8U93DNyFN5wj/EWc6g5ZSIeF/hQmQnu4XwmdlxPOjLfaSCCRDtOZnArvVYMMZ5vXiueZYoA8IrQ +hhdAb97akiZp+k9GVsQCVbSWIPwd5atPhQV1EjEcXT/Q3q9djEmZ8UE89G91Urm1FzCh3iRFsyvI +Vvn4H92ERh6ss7688/F/F0LrFmCABsTAQOIc8AvRtxAOEtAjWLAThH0RwljhBC1TVgITZJPsPAh7 +OADDQ6whECBQ8Uw/WVBs1YV3hFCxZrHBnaMLFA2XNQqaX9ltN/USAHN7wpKI0kgPJLsiXqu5KRd1 +InHYgF4Enmb6lT/8Ogttueco7Z2yCiEjnD6Me7KF1Zz6mimfAOPJ4JWH2elms6C2HAzx7KnC4Ty9 +oiHQO80xhOO515MFCHmNNtQARfEUnNIeYAMxU2SNHYrkS3wXysd3UxW6dlF4WXyWuUTnICvs7GwA +Nm/TktJZH9fmFbN5UCjFBL8UnZ1a4xl4PRX9eNtC7BvbDpgSZQFmDRvbkGhnjnnfqvQBD349ZYpR +eCK8bl9akVyQhI0kikT1v5iSqo4lRCsqQuubtwaoIwr+IM4LdkkL+4k0P2JSw2RawOZ5EOyoeTJd +FAUHErz0mL+e73QMzOk9iqkglMjc41V/kgntQLEmWeyZdLQD52cm+khcJdrHXydL/fHhQGzMPvHG +CK/oZCZoqp9ku5NLEBw5v1iOUNSRzNQ/cEtFJ1+oI7yi8TJl4niLwScD3q07XwQuT0JlzJi1CO9z +mJzhHDnwTti+KSgaECJDh4ydRv+JDQihGb8/l8gT+i9ub2qaKoFY2OmCDQW4J/dUwompdxjOjgGm +sgg4ySWySA3mm+xz96O1c8WBooFC8DjEK8ki1k6wOub+HzVCjA02Q91fwSOsmFu7UhcKQq+NkPvA +pBWU8b45uDzch+GH73GhUuLhPlHrdX+70w+y+NqcJWBzMCY+rJJD2LDQOEue4RKoBF+4wJMkPhwa +EaepqS6riZf4DjsxshEgCfbNBrN3yxOkC9GItRli5EPqJ1z2Nfx5E+hI7mZchO+daliNYqlKeP0x +LUEzFTIZ+KP54laWUUcvCE9Q9dtgMCQwpHFArcSoLdgEhFXwZghWgMW2Vm4R8AP4vwDA33EIbRiY ++b9PNCy9SaQECJ9qEDo9Du+B8HSxmJJxrD4ZpBT9oeUkJkbKdo1c4STTbF/Y5zw75xPSthHY8xTY +5EUhH3WwAukEhiPN4qQ1x6/jbcYSNFSplqbcDa9WpmeqwUIXcaAZyMRH9QOWoOW3GPODeSwx8wK1 +ViO00mVGZo9rJSO8ZP1uNLSXF5UCSeK/tH4LWG+PRWiRHGMrTWy2AgkTc7FFmS+W6w5B8znWCciW +qfDJhGx6yx2tpDJcowigTsZD6YAC7IdvLTXQkBVoCVRrbBGQzvK8wFnS86bsRGxVMAgaJEHzQJRa +lqSFk7GAsy5OMIZWAZ3w1FmF2fBkM0t0rOJHqoAwavA2/B5ZJqoe3OvfmPjtImiUUw/JGJD11q7a +isFCazEYCgtjSYysn0CrL2IW6Z0bs7QucWiJaBp5IQM6jOZmoNyfHE7mi0tcBHCASA== + + + jsfRWKT1EOp5jCmGSXBx4yMtcDWhKJYDDSJgGPFwmm3qPl5FfyatT004YwsnNmWgRf4xkYBis3zg +M6U9lXjESbeB/N+jQMOQsmVnyjVIPiUjXuK85tJ731V6vUOhuFFbGvL1X0FIET5Ip2J4xCkMPojD +hjnIEg5PuFk4sB6CyHBWD73ZkiA3HDw0FArYXqVImbsVGIlg6ssam6Jf4mVS0uTHTCQXm5bYElqs +iyBSRRVbO6ASDJbgc71gzgmdVCerU/rouz3yU/WctKhpAX+NL6jLa+d0kSRSHccfC9wyIiIE2Hnr +ngsyR13qdy3ugPiRe1jo6Rq+q+JIY/8kzlqqcJpUuS09mJyDGtdMkTFa5UzC11buZeDCVROEbsGM +YFZLEeWXTK3yoD4+u5SPK53UuAqEoji2bunGXKCkGnCFE1ocqteX8AR6NiQvyEacgqO/AaVjJLgZ +jSNEHnA4KzrV5+5lccIptoMICet6BzEm0JpwmRYFC3BgmlJvsSdq7PSgjJXIiYzg1CdRkh9YFI9w +QmeHnqoPjNGS2wfnLBjcH2ZM0jyB4s689iW2d5FWqEVFyiENyTVrJGk+2+DVHFySuJ7xpQs0OoNx +6jpJBT1jiKh5wBTzSMJiy9EfRxAKXADQJYiKO42xX4S95rlExjUmGPRIS44WagxwVXLaHqLcCOCw +ViI7ucMfM/LikPjVHH0TLpH8NpCJLrdE7ik/CzES0T36ANmDkAMfPrw3w1BQLA+b7UsoAjuO9JQh +Ft4vvTJtJbZCBvSSjjbY3cSP0ByQux1S4LInOAvG1eToca8hI9L5WX5DtdhmLyNUbuixU5ngD/Pm +jitGbmSRNvCgPC6SNUFYeRSSgoaZEUbD3Ps0JuY6BQonGqyRCjNF8hwmE9P5rVbjebNGXl7nM3C3 +C4LQLcFqcT3Yp6w1eeRCQTXV26WKsmyR9yDXTuZHBNX0a5AUX2oywqCfjyvLNJgQsMVgP41M5lVh +SyWKfrvAYvBy+FGgoD//whpyGOQVzJQgu1awbBF+YAXoC0L9pnAzYWiWkw/iJ1wUo7tzf2TDKjyN +1uKeLMVrMxD9B4nrvOjxKOINOamhM7XTUN4dzvLfwOLetbjVsmC/uoCzgrV+DHgblxRx4rINppdr +BX475n4k4LnB7/BTSOqQFhblQjGzIJpONmQDqZxAJMm6WFCasLbUqpJPCKnu8KMR+pJT1EuGl7i2 +rzomTayYIBlA0t1nMKV2jwdPzcmRI80hIlGobbzPO8IvqKkVUtlqMweE/0VGSuWbIIHZkzNojUgG +QCw8JIiGXEn2FQ1YpLp9BGvkwCdT5MJrIRQQ+gVQVNKjkYBb2V5U6k7PfanrCrLA1kkachPIkjs3 +Rqz7JOA6lk60IhlF4967fg4TsqAoSHp4cpqRh98qewcIYpw45IeBXsKiVjVpEaywuXoFl5npydOK +yUVvL6fAAdm4njTIJiZGBb7utYBMtN7TqB8B5QYAuTFXH/JEBba1FoUY1iCx5gaNcYNehG2jl1JE +Vm0M428NV+VOJPTTRigT38JVJins286OhxY3A5NbOD8BGyjc2loJHwithGe98ATkEpiDC5YysK+J +orvMm4UgN9u0KdvvjQ2qbaLVFhyRxiRLYyVJ/rMacdCUeITtt7ASTKFW2fg4sP1Qx6HGLPJfJdnC +vwg6KuzmMecwAIAJFMquHgHEd2DzENWRrDpN8txAPvbF3MGMtkoJ9sHV7igN7oPjNoGGXIFd2/Vs +N2XL9MYT22LSKqomFVJ9vdusA4E8quiAovrc/FhXwnhj/aK9VmEumeNL3H6j8uKRDl/Vw01dOLs4 +lGiGxDJeJP2U9Kcz6NqUEc4AOPoFzr/YUI2meIA1N5B2vYr8vWAgD6h5A3BxS1oiv8D/BYR4Cbh2 +xzD1Ney9Euwn4sf2x06Yx8QFc414xZVjTN2CLjk2QpedV61HTDJhNoWV3AYolHnXz4pyCBBMOBpp +9rERHaXzogwNSnB7IHQ+R7/Lt12gGoJBDsElytvF5MXvBn/+6FsJb3dI5Oslr4T1K074lJml9tfd +hTMYU7+FpuRG62LmgpHTzHm6cGMkTLBoWkdLma2xI54maVCVaAbZFAH6ojzOk1+wNrL7t3q/Ws/E +dphwM7s2AyOuyW3+EPJ54KDLFHZpDoIHFDhqIn5W4M1NaSxv48o8PiM0lgCpqAdPkyyaQtEspDcW +EvagtR9v3hFZWN98i8fRQl7d4qaP4WGs1+GCqAaCw8fkh/7XzbCWvTpNXHIyPyxbM5cnwXUOw97y +wY33UEZNgGVouGmeM2plQTVgACCDMnhh2dI37lfWJJc3hGNbAcwHH8kOEEkSDCVJyHkgbjwfgHsA +5zCTL4RRuxF9Y6mTBETaSVEz27XIHa6VQqlkRb8CZfytLRcR6VIhXgKsODsDLr+JGrvY2VJ4N6DU +Wd3kIXLOM1akWm88GKgMSzA08epbcGZBEhFnOymRKV4Raea/HLdYrRQuV06zovn8aZZQa/cUn/xJ +q1wOYkl9QLN6KF80OXNzTynXFChsej3mRGT4Nt8RA2QRbFDSZL6uTTFotD2nydQ6NEhOio6bY8t9 +IbTVj0SGd84VRW4LMSYEru45g9Q+ZAiPd6snZjJEGIBwbsszpItVITgXdQGvl4P1NT9vXb1Hbg2y +NKAaOatB8TcOBygpgL6hQUCdBtMUTzGg3JbEkGtsAMH1Av5z0bEHyebXa1ZgGyjPOdMbrntIiUPJ +TmYiZGq9WOEw/WlhSst1kOfowpRYoae0oHqv4stSICy3hI3MNnqnxeWZXgd57mRBEb2p8VdUilbn +/XCCqA1iZ81xBuKRcY1hU/k7H2tROySA5RQooXY4vZquxEDyLZicYVzJbfjl6KTyzgJmZQyznNjJ +JVZUTJSkU7wPseXh4FIiwQ/SjypPiW6i+KMGbOWehxJ/VUgllIZbcueBkJc7EHA85190HQZYKD5u +TgeNUFLPOBERLhz/yJM4NZh9Cl1HvVfnl86gCNp2MYHloCRnwqbZBXQg7QqC5OiijYTfW8YZOBx5 +OM/G0l4yd0XitPetKD9SxKMgSR2iYUxQqBKGBNd6QfMKHUt0jXflp2u1K1VYQy5kDcngwRipJpiW +QN/xyI1w4u+1HfGhzcvoMZSqkQYr9xulvadiCTLjCVPIQ1cxT3Iz4j5eSwlnwvOzj4ka/pMvz5KD +O/s7R46BmVmCpAVkV5Nz6hI9AKmkCdTDZxtgOwsQtztppC3jVi3l518Pii4i6fmpHMhNYDRxkbDA ++0TNUm/qmzcvANp3RSZOy1RhvVMTFDQkjgoQxplfhWXmdTOeb8iovQLv/cC66m6VTES/6cKJmsAn +exFVNKzK1rS7f0LXEvZJSck5YgJGO+8WwrSAaqmAqnY0UmYBFcMMHQukCmuptBf/BmVknfZWW6gl +LDa47LVRDB5L6zFTQ+4RuAzFhkWtj5RxWYV4hEsRo35I8WwiMliQw6LTJS3PpP5gOk9Y25Hr1I2I +25e0PJppF7jYP+/pBJ3IF/6xAULxWqlBpPdKGhHWp312zIMDB17SowMkQOcoEUTSPWaJydeYWLFe +iqAzG6BvgoYyCfC8WxK12jCIg2dJc3lpFBKXjmLm4Opuk0LsUh4HtY54xgLIOHWISt6ViJ+nZpEV +6BlZRKK+7mxTdXH4iPrNmgCxtYrD/bJ3x4e/3ZHrEZ6jmpZ6GFl2+OLXtUnPYdXeURNKDQU1OtLh +G2+3In9sTUIvCSGYi36hSrEPB0l1BFTX4PYSkq0vE7/bSXVBOM7sIdIT8SCRpJIxCB0SZaQppYpJ +VsRtRTzuT5MnpCBQ4ZgPh7auuNIruG64AJPb3M49AJbbfZDcDF2HO0j6+QvmjbqJOPno+XdQqQ3O +keM//6QTGXI29oggroU6L4Shhcukv2RdSf7pKeC4Et51twsoRSWBnZxai4X54s7U2Tw7VBEu4aTj +zTbCbhXNlnEQzlIfzpoDsGDhAZvus28CqglwOOGcqJQL3y4J4YCmbWR9XaJSxMIESYoTRhIgEEwg +/AusLfth7vTHTzTpEkXDQEn/br617jssXHdycUoJrwigL5IUExCccCy4ILmnLNTIT5go+0mRIvK6 +wxW8I5GknWdCpTOkxW9Z8ht2zc1pMa4AcSbEI/OTvaUXfMufcB9Cu/dRI1fX/ii8WiE++nOgeBWx +GgCXuKfFIaKwumI16ffVvkJnx70GVOaPqf8cypUhE5fFeWCfAGFUll+AfmMUA1Dt/JI3/lksrieR +gf49fshp1TmSzJn4nkp0QwE+Nr+fZ4TChXYkyS0nyq4pIStMkyTW7gvDntExB1xBzDwAKwByvirZ +1fCztKgnbod8T7TQCgGsLPM13y7AI+AR+uM8vsPv61gmNuNqOtmS+iTskz+BVo+Zzu3Oq11dpIS2 +NYZN3tgjEwJPE8WNuKNlnpAs1YtdP6tGTzr5YgEmKh4uU7XJRfHze1vFOlKsCdjcuHAYYVhILpx4 +CQb4DVm3KDmVWoqGRZ50wrTgu4VaF+AgPFp4cLFgLwpdJRvTIeog90p5+XNRcBBZ+b0Rh2GQ6DSO +V1wjioEoNyH/vSGnsLdoA2w8cYCPqH7HJ2LMv7yScYsh5EVbesYmceS0VHQY8MNI6Qtr+86T4kbY +6dyISYDZ5lCFXddkraiaVLgwCtjsPHNkwkitOP101MVz4QUn4ybPF6SFotFxCMkFj1AC0PV3+UTA +uNFsAna6OURsze3OerTTzXgxNcsrDv8zO1Jvb4usGBEOfkyKYJmINmEaMXd35ixk7OsGFQt5A/ZA +s+Mc7krnBV6+j9mJBUNeZ76u84c5OmXTfXOc0X/S63kN1J8ypb4KvcoL3HB7koOwYg3oXL9O0tCS +gPS+GUUk0WiyVidUNdFTVz8HE2XlgnO6IKhI6L/lb0vdLQa9GZDFSkaWJAKf7/FCudS+8mcz70Oo +Ms/AZ4qOneGav709tOkXpMoR/D6Il7pgXFgsIakTkToo9uGTmv8qdNGpeKEeDK8raUSdBWUkBtbw +8tQoLEMcXQ8sVH8V+0b4/0PXxfyIY0WohoB9ABrzGnGjQc2N12SYvkblfk/uN368P88SWY4prMbi +g7VZNt4iZ/7K9xDn706lnQNNiRIoePfhONAm0N2eDnXqn/cu5thExm7nCRoeyYnc6E9E1GNh4CIw +RdsWpirjBcI4HankTJqlrrL7+opuWVIalO55sFReY8DUc7wcvoRLXjATFEXttQjw0VmiJmU9Yx6R +e7HC8Beun4psQa1gaPZLTPdzT87tyiLn8acp2sTuBTLiFckZvtCzRl13H/DqHcY3okGTbwwfJCpG +Fewmatgm52XtUHhAysuE6eYmSYEk1ColilDxygeZpNk2edTz0r4yajQHF5ERxNlcBVR9NFzvyhHH +gUYnQLZ++4jyo9dqiE+aY6jTfIyVfYBieTAkacgEBPjDUEMUCPy+LTKXQnr3+/9JOg== + + + EekPVCZpvJsor2HJDxP6QHUUCSc3KxRW4nQOx+06iEiwsnySJbrCvSoWBiRbowjFMG0U2x+fGlFH +PZ79y1EyN0qKIN8zKRDawTx7zyoJLgvBDk04BCrQU+aOIsa7LQIs0wBCChUO0LUBACDKyu5Nm+wW +fgIzPL8IrMtAGtkWU8b8j1MNuWE1zyqwSUsR4RdG/9llrUwD1PZSPCoNgkqsMnvWfbUxJbmts777 +zXlMbOx7Tdc8JywfOxiJV6gE3h+DERAgGDAAmwakggJh0WMOFIAFERgKFAYODAgcHiJIQB5ENCYM +hsEAMAAAAAWHhLKRGAABLwFA5PuJs52GhXYKJq8iYY520RM9tcTigveQzVAVVBdZ/tEc4regknyx +CsS4dDj4JpBgShvW/BKq8AcVvIjQtKaGrFrQhbWbgTzQ2fRDDoEXn2FbcKLgazgN6RzTIlc0JweM +A4AiS5fnSfXAa9a5Zs1Bs9qh53V6HDpwKCzflo4ND36gOakVapHqF8gqPEnhQ0W6GbvIuZYSsSyS +UHMeoXgNJj5Q6Ic4MVS1VR4urhWbZXhsB2mC1hNzVMZZVPk2+vvGEHT3krI+vVpfTIJX8LXMhaxE +2ExOIGG0UjLtohoOFTjZY9I71WB0/1Pah6Zmii2OwMPHoiG8NKHAC75EJwFyiVQQc0mJYIIDzKmO +hYdZ7nfNcE4gIhKU3LB/AlO+dsxEmzRMHEKeu5WDP6B4ognWkcFrZpOKp3xQa2E1otqYg+EQozqi +AjaD+kqBack/j+sMSACbwgTNTYpc9l53358WMw+v6puxRuKStBNMPOqR/zZnMTU3vYq5sybGdlMz +tZ0k1VMovF2/e7MQpoVabcLouSmkyBScU1WCQaP1BYCl+JEu2fGU/Y3Qo2TiXWo6GSTxWvtTIjJP +SvspxTMHoN1f51YRId5yFcPQOI0WkgLo4nMhF8emBstLcvSlV/TSfzqDffQfWOfZX+JC6IoVRTu9 +eEBl4WUBhjVavrwWxIbW6zT89Iee4j3bgRQlbsLXlkkdkrTBsjK6KrjwCQpFDkDdXhXNUeTR26dV +5fxs5JbMTZcPqfBZCITcS+VpSQ50cyLAreisHqfDUoN0LfpbXnMaHEG8aeRjbDVDftJHmFrp4xAp +t1Lp130S81tiD+9CbQKgqpQcF+OukYmMBDMk0MWOuIak/vuEJCgsvZl6RTLq0oiL+K4YGWDLigkS ++YbRoql0MMoW9EIpAfq9pKHqjHSRywQNLOJOBW4xClKlZF5/kRmf7EwAE3jNf5rmhJCIWdlcy4Sk +cIDd15gLcMtl2zfgBzhvLgB6ZDsvavsIfcixZFtRHSSHY3fT49QAhs79EQV2rkj7zw+fvn0aSn7z +GzUOIEI5oA4jRD2HqQZH1Xiktf0/rwKAl2hc3KTIlszalJgPudEMiJTKAUrQuboFsM0VS0LXiCzG +QELCcDx2n6sVNBtb2qftvojlVsL6ixYOkOQBRBAlo1QdH26fnzvuROMewVNjDkfppH+71yCNNQPD +RP9wWLE6jlTuXGzyU3KVoMRBeP/5QuawiwliVxYZDHueqfi+xakAY5SgS4L7BiXEAPIhoU96brYj +J0CMGEJcmPbTcUxesEoceasNqLpbJbsulaEDC5bBwWRKm5coYqLSNUlHWxtI4yl1VWKixc3mRpI/ +Ypdmq1wO1hh3yYQmWdu47bE71vHlS9r/stFaKXMQWNkENO9SrMmmZSqRZDe5nLtfb0Vg92HjDUn8 +XA6yI8rF0ZIBLqPQPODsy41D4WYCwcs8lFAGyJamt7EEcg/maxaIDaq3JHC1s2YqQ42N+Cf484aI +0JHGmoItnxObW9klQQyTt44rzR0fuEpLNlfgJg7/4fzD0CGh00ijEPMoiCZIugk+pm/g1VOoRGfX +z8KWgETbbmrk8cBdw6s4SCp0qMpQhbUjw0VVib3hseSi/5ucFADzUreUzBxZYeWxrY1mK0A3hPqB +LTfbNFdkE1p1gLLR1grM0dR8VUeXazYF3UIB8ccI2G8ENG7XjHtQAhlZ2/cu3bqUKNIACBmbA0NG +noatGwG+eBts35xuBHBeBC10PKTROXDcb5jUm+IKhqggZE2ZdWqyLS7tLCgcAFPyQHxpWnmtBLlk +hEg+PtnLK+mJpZq1u5a0XLuHcGZWJWyJCWsXIolb4vxmmaBywJOpXpSF5Ca0P2PPFgPKujZneOZf +4g5LrS58esND3iHY8eqZcA0HiAP7Cny+I5bpHGYSsBCjMEWnIQ7jSWF5Cd1rQkCLs1B6Buwj5G2E +3HiovKLScoJGrfpjyukVohFOReAiENgAhAxpnM00S4g20VSkyHmCw40GrgsWpnA0ThTpqE6jdAgL +YE7IDW8lwkOsqMwt5zKWsyZCPfyn/ehM2YsL7RtObTP9u/sBBKOS0SHvBg6QZIcZlT6qEUlCHsDF +KOUnRF1q96SvsdorEUuXnplB2DV/5DPX0+lLyllDVLAB0RvrkdVoUVAjBljDzdJbI0mtdUIxgURi +kF6mhIY+QYWCCnBfHqVkINayqwneg0SNVB6muCtQl1PhpxNg5HQSyroYxPCSHxodd5fkkeElHuug +G/iWv+QAOj3fL330zarQSU5BuVvQi4WlEtpqWTs4oWo3BLO7RYIL3/Zgrx7zQJfYonzxXIsNhUdI +XlwicDUj4GQjkNaT6bxe36eTKKGgONn929xxqYKFjVoetW0FAwz3JqaSN3c4f+1+B+epE1c8VZMr +YxEJfvvHo4Z4w+470FBNgkmtH0LWoXVniFFNx/SgYwMyEtFupSRTjzBLJe7Ilp11kcrZKYINbIlT +UnybxQg+toihFojLKEeKUnSpktyBm07GHN4WZf7THc1rN4kzxKklb+aGkFM4sCB1k6fgqfv/H/oy +h6vIO+JxRQdBNbwXNmBYwvlVJme5HEbNub4fIZqgw6+zOsLk/65yPawiWbqCXuHkMiFK/5UopvuT +u4L74oRsLeDfwAeVlE7AbitxMaOKqbxBwv91aHIQBgLM/w8qNSeN1XwgGIe/qfSMBM+SdGNe0s0M +wS36F7rBs9YEdsLyi20WFfiQEkgAolHg3ivcE3AtC36pnL5HG/wszgmARWNlRkW3r6DRD4EApITm +GliTjLEs66dbbnvHqE4J33hAV9Tv6Ddkma1RGeOLgLh6yu4oxxTROMzrWq23TXvJlsFwAiVfy/BN +0ZrP7oWD7s8kifdN6oukhPKRDw7SK4waL99PpSpTaF39GebHUWZESqJE9DNR2wJkRCyeANDzC8a0 +Wpd2RIO9/RDYJMQ5ThMvIx665i4dwujkFe8ynDnMQOlNBj/RAuFDGbLxOehpBENPB4KApc5/YflC +aogKDqURXvzczoqulpWD8TRKyLBUfxphImyOiB0JNptprimctm2pTY6xgv2D/xiIyDyIRRiGojB6 +Qu8gBMhHDNbN5MS8+ZAjTPGve2z9YTqApLXxSH5sEFcyiVCcAGpIPSiOrZC/ez1sWOUhmqDkz3uC +ENtJkllXbElGUmjqaJMpB5JTGB9terMgXYsXEgqTsmTjCGsvKGYMoTHMrjdMZI1dZaFIUMl7PS+J +oNo8C9ihmwleY7tjeAiYEmZ8rhSJfeB6b1yPp2am+jKNO3/mXiBYwEb+LcDE55xihYyrwcfGdcFQ +7F8TlQzjiB++hJzQVty5RGjVWh2sI4uIHC0BDS2yZgMnLVpyp/sNdKGAjvyi4kxb5hCI4xjCSgo7 +G/+pTUgEov5WkvFp3yb+fMgYFMxKA1O/bX37B+P13cKnvM0RQY1+S0DmWyV1hwuLhwTvPzHFckds +c7KaUsQ1QK4rWdGOMAszJL9aK1kDUlJDIoAfMhgvOHFpJcEC82KkuOFdHBzlVLIPIQjkpZPaWfoJ +4kzeKwiPjFilkIAJJiZhcApNqeXUVLNvE/pdUFKHY+WjWrVLDR7KMkuDLJ0UedwjGfVcLSpoBxDp +33x0UAoadiRo9v4FrTL1GoLdhpgUBicjDwiankEU8uMuTng+/vTyuklWcGnjoL8S1j2M/KRtKDUS +3LgXxzdploWY636dsHqeufNkgwqHfDHdcFldn9fyz5YQwdwKCBiUk5hgtT13QpmkmypuG2NF8Eqm +CwnDrxWCQL2UdIRpDss8DEAKS5D+0XPSt4YudOYmXcQZcSTXZkA02EWAamPPBdOK2eKglY94C5Vr +JN2nTKkjuZc+bmTZsGDu3/uS0+sgGVDCS7JLiIhicLL01jdSEQxhsmp33EhTcQRhmAwHbm427IhY +Zbdx6Et5DSjNoGUzQSaka1hS0NM2//mDIKb9wmddbcIY/ziTZeOIVlHzgCbxG0B9seXgW4Bql3gH +IQpJe2ggipK51PA09oVjlAswwYYgRLqAZ8wkCCMaEqXuwjAOutNWwttttaIhMsTKJV84VnEpqoXF +wfIkh7HCY+0rvEk0B/Qj857/6iMMito2UIQjjfqEYJHE3Ci3QQrO5zd55ukMESKmxTVmylmWR06G ++Ryt2nQGD0mVC2HiHm0bLXEGfBUrBo48wTG1nRnqj5DHWIiE45jzPZk1E0gp1PFl+lBLOFNeo8wP +idJNc4FDdK+Sh9Dr3P6K190y2Ut2XJncxHk4tp/M5405JaY7aHBENCyKdaQNHGiYR+zhLR2cq1lE +lBAJ0AkjvXUqziZVUDFxzwajUKYhGoeupQ4srn4ZDoptnS/LNsaKWdc0PJG9lfRt7hZf8gaWMuCo +PEpSKHq8ebbV/TxpqZJV4sSGUhEeNwgjbt/LUjQzg3AH7Yu93ImaFn3tpVlrHh1ekf318IFqfmtZ +gudVOgI9zoarXuz1EVQTg0iEiKohRjLt3ZV3T4AcDMXC5J0D55WdyG2zDo91D7R3UyPKCC2eTy4W +fbFwnvgvLlYAC7RHflnZcnjd6rBqoR+03Eu+bOxTCw2y4vfLhZFFerUSGeC44Mk0t+7Fn+VdlUwJ +VAHBfcC+0lmWzFt1upCsl5x2g6gZyePBvv9UD5JCq4kQeKLsfO65Xs0SpOHRiNJg4163Rg6D0Xpn +TegA/m7CFIlTI0vY384XR0MF4EpVSXRn1XfvOZnEMhWAMe7FxTC4fRxc0AFD+jouDJo8R5FqZzuy +5hCoN7idepZxEneqgNAywUUbU2F5XIIICyWEmxy/yyOTu84Jxa6dIzJlKJyzY8qXoNeu3eYEAnlT +h6WclKtxtSpXqO3MDrnAsBH6YVBPKwcqmrAAJA4A2iWhshtEVQUNQlyam5gaP6ormXJEmSieO00n +HAHHZYU7cQNivWZSQDtSIW7tm9SQ4SoQxCjGNuI8HcyznP0CtEstR2KOGHqD1z5OLxy21HsEs8Dc +oyDViooJ9Ti1Hz/9XIs9q3HcvrPoNDxqIm9GMQ9IaNc+4NxJCLu43N2gWTCdjtZ7aQ4px68dwbO9 +89vQTmLJX6hCNKwCrBxbtHWybrA/eGi4HjnjQwzZyacjnmIEA8TtgzcmaGqXhHMu8g== + + + 7lL5xteEBoDyQsqpF+keS/ifqJiPd10lQQgLWryySm7oXj7NHyJBD2SqXz3vxeIBkBR8ObWYQlZC +KiXQq0NDe2q5xlcdF5UKe58rb09PfNYrYMvSWRmcB8B8dEBgXgCsylEKI/ovjcz3ERgDEEygW+NM +TDAXdUl8fX453iH8Pa1cnZmBBPzHiXumSImaJ/q64GMvtp2YBUVH4QEoj7ahavYUjpcrHvpcLF4M +h7JPKtg/xfY1Fo13g/bgQ6MzUjySxmKqYMzjGvVYrlV0BETg15ZuArSWxJjBm93xNXwVuwmDO9Em +EXKTS159WwLm9aaBaYk3VZ7TgvISx5lvYukNMlGn4GvFuJEJYvi03i9RMrBeVTSLtEbyzmO1e6Tq +qziJcogRGZMPyM9HnbRPdcxn2XQWe1s9Yy18LqH7I9ER5jhIEFjSiiZmjX9a/bk85aTVp0AClbMu +uiPk/fgv5JpqBOVJXmc/v8xFJy/H8kQGqpSQkLAKZwhzW9dNGwca+pIbcd0n3thNQnO9I+rEKK5D +5BzAGWzNvYJSIfIOhBbNcDyFMVvgFwYBIH0zfYo44jrMcLqzgIKDefAf69JlYVDStMuruCS/cMLx +TLZp+zqYOY5+HPlpfDqfdW69oJOKsrZ3n0f+Bg0JZ4hLflhup12BppDlw8vmDHF8zM6ukGHQpoQA +dOVI1CbXCiPlmMLfwZ8LJ0SBVN8B10YvFi+rLifE4iyOCsQ54sw9p5HJPGZyikm62C5GtmAYmDXU +XVVzRgu5Vew2uu13bOKmgTOx9y7NQttD31Gg5QsWmgSR4/KRRN2Sw6EOLOauX/jLvgqXFO5egtgc +adZKSL4HCsB5ClDzcdvxXdpfnhzprjDGQkuSZdUTchU41nkOGfYJQGrq4LSI6XBxgIrR0OFuBrbU +kqTBBs7jXU5W5QQbCgGI5ah/BZajkqcim7SViMM23wHIcB0hzQx4MwdIJGE3yQ2LfMGbzIRndPQX +ibpafnxGXVeEYQ4wQDUZyQGsZVAOLWynUzQnX+Mas4HcHxyW4zWTBKHCpimH/jg4vEYyFAZMOZ5E +WxiNI/CyI7QEAG5wYuTb5zdSBGx0+1gdp2JfMwFNhod7J0Fwal3UEhs6V4gXgRs6tDEqlWsky8l0 +hO2WuVqZ8qAEgoU6MVapJ6qqHS7rPX6cTSNrHX9c1rm1TEaTwWeZV1E1HuLgcesLfkq6xoZcq3Th +O0EvD02jzLHfXd0yJJPjQZq5THViHjJwHqaMM1heRpT+3JQOqsNUV8adS44iMvqOPAMRKkHOfdd7 +IImOjW+yhRgEH52g2SZhKUsEbCY0okmPZEXRGX/e9AXgEO6zZpgEKRB1PF+7z1BLtnM22UZsVtnF +qPwcGhVE0eWLa22nWUIzjHRc9WGd2/0o9QhPAXIxcEyYZKsJcOExhGw2cfZYGmB03gJRT6NmSVwd +I31ZVoRiQ6lZkEC2d6Ef8Vn1jC9Utm0eOp3Mf+CgVpssPxgheCMXY9mYLPpGYR7vxa946mJiF/5/ +rRIRdSactyAqG5HFGAPWKFgto5JQP9NOKpyzmyprityTGnwXFMKeku9ShITW/bn57RoZlEoOvk1t +Aw7YZ+iUx55tU8sdU8l4yIjN5i2UoKR4PBMHRhE4CrJjqmxhdl8PmnVxNjVTnZpClKGMPYJgLhlW +53qKa1HVG1aqNuK/OAlwcWUpvx48zAY7lffKhIe2g7y9JRS4ivRcAF2f5RsLd8FXjBMljECvPGw7 +iK26UIyLTyONw41aAP6z20AQ6Nb67U8BhgvCP2OXUNjEdQJlWXI0qRJ2Y1m0pRKQAGS7nqKO0HO2 +1qM+aOrgODaAwv+soYbFIvaE2cToFs0vJcWwKE9c7GhN6tgzkFjsUAB0CWvCXo04489S+TG0Q/6s +zUHaFoimzowjihv9vv5Rcga+Rm6XLxMEPfoGr46LG8qRJAWLBSYo6oRrBVJbcHjz4I97xz26fJiV +6SkcddQWoSQ9ADLEdGzKoo4hS1WNZ9WxK/04lui/Xb4oTFobak+qJEU6cl/NtyXE7vTpkHCln7xa +M/6oQunaGYTknrNM1o/dx3VdhAWPhgHDvJwRZQGbV0FRD9PvmzG+RO6WCRHbCl0zKEsRHDxGFZqd +yy6JzAqn2p0766yp6lUCFmDMBva0TJ4nQ3TgttufjrH8w0RaUhsFTir2+kk3VBKR7ncHGDVaMMAU +sQFp7hRI3adSNsrlSS+Tt5Pt3vAazkzm7bfA+qr5QAGJfJXmC+o5mV23cUVzThGcciOxSlNDTd3P ++KFRLfenNcmdCcDlM7mwh3iW4PIFJF34Q5/1TG6b9aC+bShxMShxViXZMYgIFcbSxMnEZcuwCEB5 +ewS0lE9doCyqrI8DXCT6eb8v9RF+HE+zmJUQac9CqAEFTy4P5XUSSKl17oJSjBtFEIcnyg1nvAKB +EkDk0X1bVaTJ1HK2WlxnpzQdFLsElnqYjtFZQgQnQQf7TpX/dLb84spWJtAIn7oHBkS6e6ynjeML +PeJegQBs+n3fGD6JbpNpYnhYUnErHJBKNMsUTtLsSeiLOdukqqOWFykvYDOYUJiPJWY54slI1kTN +11CfKkzQjhd8yMB4tLNkCWF/zAZswhlvd86KZUuyDWPUNHbJWnQS/OtoOyrKItIieBEqxHNpahmU +k9QU7619LDLDJKx3Pda7THi+QuQYByFy+S0pZQAcSLAimXoVNHGLF1ds0XIf6LC/yADCNVHj2gS1 +tvXIfsLsAmjM3xXEET1Hbaw5BLgSc0eI89rltIwGCU3xWpv/ApPDsKwhf+8rVbDEbCqCeO0mtsQm +9BgaTHFUI4CUqqQPzTBJW2DUndSY519U8tEwxaFk28QnYmEqniy9D3CfzTldVUcZzImZ14tIx0AX +H2Y3mAHhTfSxHXAfwwkWRRKqQM2m6v65gFOiWfEAO7hT4UvgsVNK2TUpxwSN70mCamAjuiqz4yX/ +ByQKKV5cMJcnwRPj6ETNehPfRQLpMZj9KwkuAnXN1X6GFU1JoJmkITf5v6coN0oSnjg0ADL0OxMl +lKVEjQroGqH41AwKn+VLmxLS8R8LCgkjIF6TJ/iKY4Y44/HeVTa0AxuNiyCgcPScPLUtQy85QnU4 +1iInSzZpPJF99YajIHQH044KGF+KkwdbHzPGMWjU2UHEFWIvjVjBHMD1tH9u+yCMj3L6G4caRSdE +OLg3IDfQf2RCZ0ZocrZlrUWQmd2SLx6REZ2ilI79bz3nQ+fcXBjV9Z+C3XCUUbVPjDIAeUka7H03 +KwTWmgE4CxVR2g2ECL5LOpMo4ZaJ4cREMa79P1X8kQBqh9ih1YKWWbARg95WMYkSd4dgEJvb0C+u +IrBYagJnyjB3YItFiJSNN8cIJ81SurQGmm8jZS5p/cClgRThnE+0oDA8t4k3dAODtkGkpJxiuzWD +RAmCksptGaEC5KYDpHRMIEBDRU7OEiUSy52QpIjSFsIstsqdjl/loCiLqRaTLDslXjwZ7eAng5DI +cT1XTI8cd5QxAfLo9zQi/luKcIighVYfVgkT1ro2yQugm+hBjUyS6IkJn1uJnqhPSoWrPzAcCMCy +T15pnmCgXUnUjEY2WM+Uj73KjCYf4/xlHF7SMnM5+aBiYPNCwoxynYsp8FFm4T2Jk0Re2+Rbg1t7 +5BnGbmZuosrtoMz2w6GJpoa/iRbFxbX03QADDBcyokY1gqCHfUE6ZM+Flu7liCiO2/gxZluEUKAI +Mptj3KMvviF8VzYEx6CZ/yTowHA0CVM0GmLGExMxmisR4jhoquw4I89H+obo/BhF0RFEcYz7mUM8 +QuSGcUYYAYniqOSdt6UAsxGYAYEByDwkFFfnLEt6FIAGCxgKFA4YDAocIC5CQi48Ni4KhcEAAAAA +BIRHpLFZEABAEAYQrtwHKIjnL0h9+JTaSFiAG90Zz+JyjSXgPjI+FufsWLxUIT+CWXAaJ4YCcWM/ +uNjLm3/MuNjXiE+5ofRohWFdUVN4gTTu0wxYBUiaC8kWcZcayYLsZR75MUsGU7NXfMpEGyY4umxY +oIfII4eWiTX0Jo3XsL9qqy8MiiD7og03QbIRjWGnSTrZMtvI9svITM0XmiOQfWdcGM3TIx/MJrBT +jZhKrZMk4vfMx0T1uQMSr3GTt3DrBQIXfN4K3MDmvChJfaGHnuii0hh9+P49KEVldl44uawOKKwR +xYVFGNdRCn7MUpEeFshGQ2SHOgOPO1GGohXrex34AMoUAoZKJQgrLgvVnSARkavoApoONnyQZ4t9 +4JvPNwTF0phmQ2Obi9QxOkheBmayySy/wuLw/PecO8jzSz8ZqXkXFFJRTTGEHFs2LtTafa+j/Qd1 +GHvcf0Ue3LZYX3odIhV/T4ZYK/c6LgJRMIgj42sYi6EEh6DFJNqaIBGZZHvJrm9mQ24xDAxHCS1F +cGpnEirTleTMghd6QcoDj/t01EtC1gHfbJzcZv9GcubzEqzYD2ZX/46FMGzUknBi1sGC5JM2Nv+M +AImuQriKDN0sNYMdyEix1GxAB1Qz+kEnHh0iAgR3uKiUxU7KQBQqPRmXHDBOgXlVaAMAAZIrkrDX +O7xugYo7Wf68WRbFHeHG8BrJxw5HD5CGIQKvIwIpcdbrDoCy4jLnGE3+QWlHtWCE4TK5GCALMozE +i6HNNul6ZFVOwneEQOwFO6nYkijy/PGwcoa0FOLeS8WUCAgRCoNKMCQg4jkmjIXTa+XqKe7HSuDr +1xPakRl+vqcF4she0cwQt5TaxPgb7qeZ7QbegrF1xkfWItVRX01/R6ymmzD+WNhgwULDNSNpb0nN +B5p7vglPEjsEL10X8j/RZh5W9RRrKPXnjvapKXJ5OJVfg2hFK46KPzFSNn1aBAgd14vNSA4wUlif +Vyak+2lTrlbkLLnyp0zWO+0aY9odm0qsqt4PwBHk7r0BM4ty1jsGvEEEHBb+ForRjF6RUsG9MFiw +AE3MKtb0AuWycK8wO22nCbn4QqK9j0IpmznUwD9ZQe2N711CuYk0+9DFH0waK0M5K9r4RCVTkIfJ +gf1K0aF7GeZCOP7xNHpt48x8BuCY6OmtZmjJU+KNEloRdYOnd8KegzeI+1ujNvAm9H92G6mg7pS4 +V79qyRmxpUDzYb6F7TPRkzZO5gCa+E8BiLoOpGj7NGSwl5/K/mQCvnzKxJ6LFDMS/qU/l6IoUHhI +LT8gTkUgrJm1DfcOlN6g2VCnKYFSV5d8OyZXf+L8kQ81kiqF5CV+pKpD4iJZ+ayfaHyTIFdgKQ+o +YVJugFiY3mcIHsm+QLEoS33i4sD57TZP3xK7BhcqeuqgOV4XvZSREgVWByiuhForlifEqF7sJOHI +lqYaudRorNZiInQNZQUoExVaUj9czZ0qJFbJ5OrnA8pmbSzOfbYwP8a/JnvreGPrmqvgWPwGmJWl +TGrfK8rgSJ2hMWQzWeXaPpXMBkoseHrcVr+3Gmdir3JtXoND1/4mHSsd1l6zB5BxGQ== + + + MZqILckPRStXF9PAuL03ZpbE3IVtEmLNJu+6rdhMPxI06nEk60AGRjRgd5yJx9LqDg1fpO2O0vmO +dZjnId5/4B0NhFtvqJKZFWlJoUQ4etufA1H4SCBSkwO+E64DoRZwylp0/4LxI6+dzvOoqGK7879P +7aFKWSxONQd2GQoTVRS1XidhG1kPi3OlEQA5gw3H+3k6SP7OnxqVbDrj2EFWcWUsoLjmACqO9Yca +17feHbqVQOd9kZNRK4ZDgCOi+B0X0wO+ZASUnK/QWTm6tefky75NJCXKOI3QpSMkKFrVkKEJWaQB +x3HqsGW/Qy99kHiwXrrvwXYWY2esgyTS14MdkhDQ6H9l5YNhdN+DLaz8MxeYNAUcb72/pN0IYsyz +LtaIWyYoK7ZYlVLqfFY8nhiXXfQjKVUV1QpsoMmGA6sNkI3YvDCxIEWDQpAfwIhCiUwO2JQSkMaS +CBeUNYyOiLxzQMlmGNm8FtZ4fT9HkyUoXBiKKRNrSUZcYksrYlajEMxYSrvXqmiZJ9v/Z9JOEkWC +h1jSL7VmYqzgoP5cgzKRA3oadNNR5m7wvHR9K18G2oolGF5yL9uMqyViEEO6y5hFBLNyEfFpHQ80 +WSUuOpnwsTOKtPnpcyngsTb85gYkpCwj5cAkdmZhyS+tIoSiHQ8xmJRCe7A5kG9BRb/lqrMJ9gmj +9bvfW5ozV5iIxO0ltdnNKpKpJo4atfLbradUidZ+Uq+AMiOVbqTztoWYY9FTGXdWji8/qJIIxpv8 +B3OcUzrmK61ToLJVLFl9UbjGaSgiTzmvDB6sVnZ6hfmFtz1E6r5Ncdu+4rRxhZH0q/QHvZn4ISDl +SHOnJDEo0I5s+7x/7DHKioLlTpRn+IqdQJEg2aA7RXBCWUissWk+6L6AExIHsEnHANgEtka53dSq +OWC2V9G2kA18qs2ysG95XYfOycR2x39BZmBXZVhwnxA1babJDjuU8oiYxTmQ7j5+1CiWRCanSRia +asCvrxQ/QqWpDUWZRhfq8S6W7HOsjUaOmmbRrNfI5B07bgeINkPuTO4EhLJfzRRz03VPTD5YuwmL +TvfIdlX3UGdrJ6ZJK0z0p9i0MwqIlQqHNMuOkcRau5KK+6mOmr24k/NZw1siSYpV7f3m5SJijWWu +Co5F5i33Y4mokNRYIkAZBzIkwI2QC4wsVMZ01bp9BIRWe2qPGxNKM5IEXD96PovYZi/4YpWETqAK +XklQs1ap1FsvFmFC22NNozarbr8+DohyP6D5oqG9g/XkkJkSMmYXfeyxtCqx31CW/vViq3MCst6g +DgZxa3a8uOoHayQxKIAFZ1PNxidzHJLZKLDsknH2427GYpbCn6QAMZPZWqrq8AuhYjYWfY4YbmlQ +v8AMWAWVQ+YKSvqj4oOfGFzTtMRCboM6mN+kxV6h2ExJCjr2e5ZmYsdCqNXNgYRvks8k5x3uZx/B +YCgdv6SzBGp3DbROh3FJIQHjPmIekbD6KMXqX7VrNaONVjueqGuY2y18feoKSwLJHou0/jqxQkMs +s20RbcAbG5QxT6QWfI3kDHtvyheqODTzKm5YB7ZIBQmoSP4baKewWx2KDNWW2O7ZkJeghGeseZ4m +m/eNhbH4sn3g0xaO0FCSg/UnUYBtrYKOBSKOnKo/cKDULYYx9GWAV6rRwp4mePfcgb9AKNz6JMuh +gtHrFRzvoCxvRC6r38bmAnfo+iu7EQVF7lXeBUtsqyV8tl54BsRRiCjt3vGH07sPBEzTn40/eRDV ++UipylGkuSMwiQ4dk4aZ4pFIDJwwQRAtuRQYNBwAqJBPFMvrHpDIPeWpYIIksoHmb1w5We6Fgy83 +vuyfgsgHGaLXaEa8SHtK8oenk1lxZ/eBwJFAF+RMClFwo5yEe0UTuJkDOSIjQ5uhnpLeQR4GZILY +3tkjyK9JMxSn2xvXZSD5oFKAchO3DlQiIuO5Vkl/OglUm590PvzFBCsfIYKVNPZ6oIQjCfUJxIU0 +kEbSfpZhchEaeQM9FE/CXOMlS3pgNVGjZFJaIAMfjFOHeBpXWnMEUvHv/cW8hudnqwwur+Q6UdN/ +8r6PMN1JEIY0FLKbHMf2qcuvQZZF15iAwP3g8uCO8mhY1Iy9v0EDSgqRTKYBXKqpBknoK2PULSbU +ceQGCRu7LkGdWDx084Q2VeM5ZZ3s8hT3pyf0vyekgrEgFfNaaZE4S+bZfzPOA9weynyTqTO0WEd/ +6ceCdUauJkvbzc5heHFOhDWGLV3FeQLXI5WwRclX6ELFej7UuVx5+fHcD7nqcmKIFqDJ8unFf/Xv +uN3sMzqROjVKHOFtjJHXrKRTG8NOhTM0GroMwuMiY+7QxZhMXGFgFBmk3RtFtZ8Uo4sjITD7aWYP +TVgw6r6LfzS0G9YRETY1I8cM7NZ3ZVls61Zf11J8jBr0Fzf09uVa+es0kOjcOGIJwbIdRAUb8u4X +B5Qr24f/cQaUaPqZ2Ip8Ft5f7kv+xiT5k7wSSStTz8muzi1/+KS4oPgXy/8+LXkZsO0wvfH2CoiA +aAaBJIGO7g5sUXwD4FoGwa3/L8Q1h5LoZ3Kn7ci75+ZJRl1BeMreTFMM1gomgEx88egJEhiczN4G +1xnrM+BjRloekFyhGTNBBxw8rrnaGhRHwAsTSGm/TsYWy8gOLKPnfSJkZftuapsAA/j3H+vv6T8H +NsaCBfbGY2JaENzYyPtd3xaXlJwq47qMktQEw0RZSPjt3rZizgFx8JbAhr8YL8LbBodVPNYvsTlk +uHCibKwKgwvj+JbUe2qgyKmmlyhj8TVdK/UnANKFLN30WKFx5GLFxh1h7nmuRDPSGqseWyKasWQK +Cx+7b0y6/LL+dI5eTIq2RS/r1bYcvkyJsWCkcJfddqjBkljTU+MsfIM2D6G6MdDVqkc5Qnwiqeu4 +BKNAa4f2gnx89mnbI3NVAtIeFOon2jxAALl5yUGVS3SlY4MWMQBS6YVQYxWMfxEr1V4VeO2JT6+z +TZ/PhKFzyjjxpt/LL4EbEsQUg72Y0yG8XEUkDzNs00icVmylIflkv2ku+dkk1BYiDcQ/lpC3WnCQ +ZGIgdLhTagp7ZVelBpkJW3EXW1J4ZRpFsH0Q8iL/tRFEYZzppGTz1PLqmge48WsQUTPQIjswdoIn +EzNXRMROoBAMx8DLemjaHI3ATwSyHpoaC8+4SmTubtm1cGlSbhDbEE27uEXMLqKkL570BhKo08VZ +KROdw+Tdb8OX12HxJdEOPSzz4bzvhXMjTcT5gzCGJMtaWGedncIR7B/UlOGtPxMOFlpuw3gWMdHT +ETwniSsEwL9yvC3dCpE9aaf/ditACV3YEXXPweNeQ7oxOhz2smAdqxac1/w5zzxv2aibTns05V5S +ao7oDce9Pm5vkcOlBKYWcYcoNQKOkb9ZsVIZEjQP5nhJBju4UdskrFJLL1LfsbWCJa85CvIhBrB0 +LRiWMnnSQSf2UYEluT1k2sAwhl9RGyT+6cw6TJ1qd19QOgTruu+W22OQi4rLk5Zisa3QvWPd9B7G +lJ02CD162LTXjnktaENLR6LAMLJVKAlmi38dStdbdZiGA0HtBok8pbfGNTWCom2dHVP81gf5Xpg7 +Cw7eCaRx7GHvmQXSf0QA2+Axsa+1taMS1GkpJz38NQiMXdTHvJMtyQ4F4cEKupGPU06EGxlaVnPY +M8SqY9tNBt46imWy6CS2ZnjCIj/bYJ8B/FwbZ1TNKTWP16BFZvEENkVraGuPe0x1snqJ9rSsNjFg +nXbAbzz1wz4TvtxiObCSDdXJsEOvzN2AQRcZ8X4UBqEXZmc0ysi8WzCVJFVQrBMSk8vTHLFArIWD +wVkowG34RQdYHPmVGabKQEp8KLhcKhgaaM3fKCDJcSsK3UtBXLAQRGRo7G/R6+amOzJoUB/lGCCQ +ox+PGs/rhfQzemXnCgEJ3kuofXc2znJ4ULk4SRwNejxnjLbQ8IsSGWquGTVCJj+Rl4/h9LyCpB1A +2VHtV4wzau9/uAgLOv7HUEJYCT4/Ftj9nrKT5ZGGFySqdTNXO1wBMAfWjF/Ge4gEqMvjZEwDQoCX +BhqQDx291kfPsktec9x/Cxb50Yveju0NI3b470WKYxpZUbAwMU+Q8smMx5fSCApOTgxUsjsDFOMy +F/lirEVMfM9/WsCdnIBFzIlB/SGG7ARsJWtGeDKNDEArOEiuhLHxFGj2Ca9kj2sm4skVWRLjTBDw +tvkOIwhbuM7ggY9U1b2ByYECxXktZcoW41ssLttTXz2ybqDQTJOP/42tdCgPyTH5ohtiaxP/SDqk +84ef8hqeHoIshFy6vospEuwuptyH2FeFh4KasxhPh5hlfzHJ4ZrqUf6NfiFiZAOsZoXQFy0t5VOA +pK/kk6Mb2H/Du27qITQWK7zRgg0RI7xmnk1yt6nOOcpJbp1Hw37GIXqrdOPU4wsfyZ+2tUKu+sJo +uQS4ek3o2E+SQ4hCJKu85taXTPQko8KOau48Zw77qadtqsxpLVXQhYbEsjKoCquFjLpbq4SgXrFR +ZBOhN9wblmWPpojTOnaJWnjxid7yRa16ul2KbRRIQh54RPrQ4O5gaHMhQlGxfWGidTB4fgWQdons +xoa6rZQoXehUGxkU/plhpDhqcnSmeCnnksk2IrdBeVd3RKs/4HB8O6T5vfaTTe8VR/GVgQEJHAYV +4YV1lHVuNN0DR104iaJNCortZdgEuH1/RLEnqROLLovtGVIGqTtYj8zLKxv7Xje5GF6jcjBPDrYk +GL2Xut0C3NJXoATRVblSoA5qjbsCby7k1HRu+yc2Ry0D1p1rKxLbVfQV8NyeyBzhJjbUni2vWBuQ +2ebFCEOXpH2XRBqhY5PolnJTSvmJcEslJSCcPxAImM4kbwfMwgPZHGlmRW50lF2szF4DVhQST6v9 +AA5lD+92aWTIIMpCQAJRZ5hzZeUc99MsjxWR1ZYI1EnIC9abQSC4GziOGSjCK/oAXurfGWZ12i1Y +DZqFT61Khkcyg9zebggDEBEn/0TTmr8I7ZSv8hrYEGL6UK3n0E12gG5IZNxqqgFn3Kw5GugS2awV +T9IcSERqorlysyu+ZAZK+l/IUCxicKxNFmtmY7/cBcep95D8fdAkWoA2s+vGohfaXr4f6n8z+ZER +W6NSKnngWdVH2V0yr7LBOq479G5WcLmcNo5s7FzAjB0DAORIsRtfC8v0RHPDhDXguUBUAskqJg4W +rHzJrGk3or2rWpNEaBdzESkLJNIoQAk5HmBai2DV4Qz1EQFcgcrtRw/lCDyzXTeOW66/CqD88nJk +XnFULmCd3BJU/EKC6iGZyiQFr70OreGYawyR28jkZdRNU4lyXRLU33iTjnjXpkhZD5sU6qiIGhEY +KJY4JwufFHplGtQ7ShutRCb8OEqhSuJSdpSCuRJ4hJkrKZ+2wBv3BKeyEI0XqTHFz/bVan0IKy3y +333YyiK+YWV++QuzcSY5QOut5YK/yupSRenjR1wRp6KIksJmTJBc0Ch8gwnDJcIwEw== + + + KxoiUSMJBBNCrLxgYk2SWnwhSjgyb0wNDTUMJjZJxlkUOltkOCetifVgGD2ioCuRHdPMQ91oTtLQ +Fl7g9FpAZ5m+87aXIa8ayWeyrOf5I2hS4En41ZC6gaLLCrxCnIrFLIEvEgGrsEK03OGbJU45jk/9 +h327LyOgZ7IxG20lCER6MaS4OwH3iS1s+UhnNxIkqQgn/7dvQa2kWMakIVL1qOEgBFx3kxnUgsYI +fUwSH+l8xMbFZr+v9bCPJNcMk5NbXnmZT0XH6qLyiDpDP/hd6qwsQnvRkP+4KYsAh7FKmL5FFyA6 +XR7qa0vM2+9qkJXMubZGS9rYaYlrxeJJ64G3yAdOc1IUZL8Bl3O7L646W7dNFjdthzCCvObiHSMW +nLDN50QpnkBHmV6GLarGCAGdG6Hd7UV20FyuiwVc793I0z0F4LBUo7wEUEHLY1IM4vsCAB33iI5T +eINFBWllqC90xUL/L0+gEdg7WL0qxCzjzkZO4k3zP0ZFbEb6g3mfsvcxLCusLRPEKsyoNbTCLGHM +37O0QLXXdUfLATuxU8tkKZlCHR6GsxkBk13BRhUdcJ9oR3MYAKYQRSBQjOHSt1IcMgi8zGxlgzNO +z5aVJs5ioJjl3knl7STc5jEkw+OFsIWY/nL+2y5Y220qBm2/cr+bnp5LFRF8CnoZ5D0c8kzTOR15 +POeNgCQMd6gRmAcNLhR88Vbe4ugfzOS+XgNWLTQ/3k1VdRG6IAbXBQvGE1QhmW2z7q0gW772pyJE +0xanpF0tzpUDAgjMcg4A+HyCTlCGPu+0NVjvFG+CE4iIYtQY8dA/AfJbEu0NkEizFriSfOPx/FR4 +rLgH1Tx+QB6ZLlh42Lp97V5KVavb0lSYFl6QxKQ+GfL+a1UyYUmmAMwfQglTVkkBC4DZzkbEz6T8 +iqJOCL1s7lJILkgVBe7Lk0SglDOG2sBK8C1BraoAKJjySLiBAcbHEU1dmlq+B1qA0dAgjOt+RPwM +Mzn5e1NLVW0piqhM+18YIDcr+8AZObh9gLuhzysk2GxMD8FkpfBSWGhouZNwdBndsGxwc8R9QeVO +OhpB0zxucwqXxJNkwb2tpYmSjN9+doE0MVIQJZ9FScwexxieropsYfv2DqO6ZAfAwuFusvwcI6OF +0Hdg3Bav9w+1gnJx4qhxWxNIy1I7fFonfCMuHZwbdeyu9sY/EXealaMKNIGfS3Y+R16I7o1W3V94 +bkhfGm4moirPPcB83pUph0Aiye5JlnLdt2MJMW4ZirU8bW/aw9YuasppLCCSeqMCA2jNywTmHZD8 +biJxh/jcsCMtny0mRXyZFDxApKXsl5Gm1KlTXtMrB9yKteQu/ig1ebFpA7st47DbXNN3jqddNQ8T +LbUjx/FABIcshrGUipgkFEftUyG5MOQWCWzFtWvzEN57cfoFADK+OPGUtUotbT6GkPom+EWXHQGj +XOFrEvXMtoVN4vGv9tIdSpSqYBbhEWHA4GupkbnHPYVxK1rUbFUTJdUuP+b8SDsmRgZoDiEoPT5Z +ccOAXzeDuOMGb2+O4U54FL8jtcRXbFK8lVSGvM9SdYhfEYsEhHXYwJp4HFJZ79IWBjyBoMKVl3Kn +08XlFpVHTML4DIdIEvS5Kg36ARtf/zVSsSUPdu5YOgO3WlhJX+JD5DF50JZwZM22jn9ddLyv7FQV +KkjYHK/Dt80S0jAeH8PLO/aS27n0MWBazJFpfUymBCyLwTjj52rRQ9QO3SLszcs2ksgTJD7TpLnk +v34LAfM7JPicwBNU4PtlESaoN4ATc8tMuP9tODlqYMrmM5sy492dALDHElsDrCZ8I2NR7Cjz23NY +5Q4i4bd/KWpvL1jqz94H6O2r2CP24wuut6TlsLrw6mtY6Y57DCp0Jhe2wAm21s9wUlN2Tc3CAkLK +g7UIqI7ZFanST4CJCnfHq7p2AxwbYomFDDULrY2bCVLEciAZJhkiIOc8g5Ppu8dKPcbBYw2aNRpm +E1oDYEnNcO14hMIl1qpD8opM0TRabCPhOEmCUbuYLE2Hu8mVBtgLWitGjCwiuxfoPAlxydGe4bpZ +wqEcrb/8KsG1NAMwX3Aba8WviSXJh0P6Ufu+TncKq8JhcrmZs/l1YnjJfeLJQdWzjABDtlVyjyKm +EXppoTsgnML2fLNiBOEu+Y65+/al8JQcskMwuyhfZEhfoQjJ8hr4WM3sv0kpLIUH3cs1eoJ9pKbt +K+RNVkZ+bdcjFY/HaU4hn59UbJzUAJJJFQ+wJQ/Mwc8tm5UblmoJcAFx5o0cfi9HgdMiYrieBQpC +KWvEE5WC7VwYcC8HPUhU+3+qwrlsTdSrZmJC7KeQ1zagvhqkKFaaIj9lHXviCjyMlXC2FQSJT6hE +Xo+GAnMRECAgMASchiRT+kAMe/wUAAcOHAgSCAoIDhocMj5EJEA+LBAJAkFACAAQGCCOh6ZBAIIA +CQBcsB+FFZSBpXX3NolxPRy6KAmrsJgL4+JXrImA7eLP7BD7TjOPQNcIzpOhmiWGlLxTwEG/ea8P +/A8JgxWOkW2pEjA1smSLOQmpychWMAMxDAmSlpXpO6mN5v2Ci4hKCwAqI5UUamzZnVBUpUBCiwEs +HcMWI1mIfQD6HeJN1YMOgQHzl6QBvCjhIUkKpBxGMpmib0XTPHQRABgmxmNQnKiJZ6L3AvVNnOIH +zod3k4o7lIxPCMbAAoyLmL0zaTE4Eyo2gARCekUls1Jc6TpSAklUG+htpFF5AjXJsm4I/Ad/cFFa +wceJPOshQS7F1gwLfPIwZD9cEx0UCAcMmCNS20BlVPueRz4bMuoqW9AnMSFjNgOzphK6A9rimBRg +FYFQJXPE+qvEAVBwkQqQ5WbOpa8OOUIk/gn/E1X4nLXyDHSg7/InG26ZSuZn+4QaapHE3FTcItZL +gs1jBHnsd9rrIzjARXg3F3EuRuu3BcWNSjKF1og2ZTnSDDTpYFwfdbRS8z63Kjrw6KLbgxftIDE9 +B5+cySYZ1QAJhSRmoISq9cHnWE2PwtfH4ZV4/jYMSY+RLEmHbGK7J8HqpnN/gKgQ6K1BG5ChrpqC +90zQtEjcNBolD4qmiTCc5vVzds9m4gh9RA1oOiFiH1ibIIlOoopmdMINChb/UAulq2uJHGnL6j1R +AnySmBibrLwREj/3CNvpFFXpBwnkrL3WgzuaHP15lZixJkIIh9cjDsx/vCnOZ46G1pJ4rXoNjEIy +4Go1sFzOS9SMyxPQSWgzfhYCIEvAECh31njdxz1SBQDBF64RLL6EN8QdiWBy7vsZq6UcG3qPqR5A +FErMRufEi5PGCEkpWwD3sAR5IgAadfdKRpoR41Ewima2ESRcxkfJnHLMqUDQFRGxMg8+2ttlCCH5 +NkZwFdZjhWrBp9EpydFKCQEm2eCAF1iVN92ipWtpGTLcpavhmyfN3iIDjBtbVVZsbuOfzU2A+2RE +67I+3hUf3fGqWEBijEixoaLDLBdrSIFZw9SZXDJcFVP4qJbBJg1MJ0J3J4QCyxaE7tdT1ysX3P9Q +KjolLUz0w9w/ctkPk507v1tN+DsM6Tedq78egaZjp1BvrRYnErgr8DlfOPvY1yD4VMEdqHuCTRm0 +RBcgBtByqIF+InNVurH1xzajAzP6ObwmgdeGiEpxknMnTSAWJEWSDqtLCk9hKNT6iaBgDs04ZFwI +ShAQfJk5uAecJZQg+Q1Gs7gl/oPAI8YtXZQ0xUi+QMnodruONYO6k4/yNWwxuUKtIrBvoyxuBEbS +AyLe+mhQJ0YQUtHxSuhTk5E2WBnZXRpqiY74g5oaMmpApHkf8pJA4PtGKwKlKWEYFbEeAvllTLmY +JEFNEtZ948BAnYTbfu1+kqOhf9BatPSUuJqeGXDgJpnnuwDZmUpqO7KH6mxR/eT+tAyOBG/894q8 +Cjux3oCWYk8okHq7BPtNd6gWM1KqNPLrh+tNM7GCEM4hsC2noSRLX5hCNeU76gSP2p71qKPnAt/H +QvBR6sAsTM5kHllIXkAWZznXQwbGyx/63yM6opUKK+h8kmaslLQFOhk/COwBsICSxZaanzymCwPA +b36Bsw159UD65kabrwHwsOZEIpKYuQCcVPwTklgf4D8BObZM4HcILBKB+ZtiC1hj9Zk4GlszQ9uO +9hSd3B490uDAYg0hdphiyrKKMdN1fZM+XQcLiXl0Z0X3HzwpXCF4J8tM0BAq+R9AmuyCnIDiIay+ +COP4ks/X/5gYpzM7SRNQyZ5OADFaIw9i1H92DAJKJT3fho6J4yNxI0CrCZKmEpeoWEIiNVsUwrJ6 +E84LbM6VMWUKY8MJmm1AooQ0LqUCHwQKOIJVrn6AKSGJhqPRnmcNrtaW6MyY1rIdrn0in/sjoCU4 +68chuuP1XfwwYKWTizxy/wcp3S6CtnbECKL7ZMw9AFXZj8pc84dfJF2Lu881FLREa9y2YSG/Weu2 +BRUu1qYtDlzFFhMM/l2yRIumbgcjBCgdOZ7oLuy1HVBfDahnRJR9gIe3nRbcPyiTH5kgNkgdCF/p +4vheKSiaVuCUbW9oRz+uIsRxJLdQzCjDXcRXUoKQSXBGHDwIaSWCRrag3CcERjk0hWD5lh97i3yj +dPgvjTwNVxwKjEGDOUCtSPKIdrHOlzVRkvlk803DuVJLEXDdnCw8pcJIHiOBv67SsW6TLSguhH/a +a/H78rGlcQ5R7ChWfONrmriM9yB5cWl8B3Apjfx0hzt55DWggOYnuNUxpdOT2Ix/i2YR2TCawxl7 +5RbskGoa5dWbyQ78sWEUlPtKNZG3+AFZeSWsSfXVP6GVuOj1Qk3V5RvxO1ow+cJ494QrdrbcW+Fg +Bk+nFxbrCsBZYQ2RTsJ7xVHhxoEEtSxrNGk+NbvHnYOSSAVvvH1Wq2ASDLFQ+FC0bFAgJLb91I2I +FjWGNqOmj83BJnx7yxTav99+gnvrmPQAzhBadcNtMtVBh6PQtHaBVMqn/Bp3JOF1WvWYrE3QALQk +IqjiBcjvWwMPCKC1NyOl1fUrnnd3foI/hXJy9sjhYG/NvSa6ERnHVzLPXRsFLVKTuAggNgQvLcFy +/7YUunqm0y0YG13G0LZR7xTAWgNNUGGIThLInA0uRRKJ3VQmzC2bCKeMJ142HwhcUwYf3WZFd9tH +KL30koKEoBShGFmYX4d3ajLJJadHxjBMSSKgMfvkIXllpyZRA/hr8zflMLoiKGl6SLyCG8mQLUxJ +Qeji8UY33EhZkd2tJ1ncSgL+xXKT7Vzk3b2SeQ8fhl2gsKFQJqmR8gvz73d2d6dGTnsSXMGiRUq4 +nJ7+IFEIUY+ZfK+u9SCCj8Nlr5GjJrE8Wf0nNwr0vyHGeMdz12OqQirOECNnpotKtxbXFQear5SE +L+kcxapxUTdAAItDQ7HGsPxjQZ9DmhAqCg4iITh3Crbm0MswrjsWMDVMr9sWeVY1DHrBsfP1V2QG +LeMpirSD6PgasIa/FhOG7+v8nDZhOW15PNxEUdkcCw1e3F8kDfarTrnCwOeQTYZsMA== + + + UKUuGTGIl+W3EsuKcovMl3TRa4UUb5B441CV0UTDu35kB+AtEo6O1aF4ckgc9idDzu7csEaEYzzc +2s2MZ77ytL0CHKYmhalht8qYAmKXdslJGh4TXxZJibWOeYXQQ3C0FU5SNXfjS+jDA3AvJ2dqkhzL +1gMQrqtzHIMJu2BoUDqFwiSElAmphXKCBQ6CegdQqfiVDbujfk0a6mj1m2b2ge+w/79DcqJL8Psx +YgQi9Bz/pDD3jkIWvuLQz0+bE5eXRLhYm8kZoJEE62JFR6MtUnNqUrIBBZxMfQRk9SJSMduH/Xri +M8JZE+Owz6g3VAv7/tYf8cTfjZEhiJY8g9Avgn35QXG1IRviQs7SBVpeH4MiG7qqQ71V6euPDXAZ +Q4lZFylHJW2kZujUcKShd3IgZf2pup8Uo1V6E+xNxGc8qZoTZIM4zpxN74uN4+sG3AGaC8FYY3rJ +aCxW58YjkWmUTWc+li36VEzNJj3y70OivyLvizchfcsIUTo8KFPY2lDBfWuo0aqZjgQyf+k3vXHs +8JzrDayQjhtyxQCgSidJIGyPsSJnRCWKCwZVlWCHgRUquQ2qBE6XhSKl7HAw2WvUJFTd7l6IEOf+ +VmmzcrGPSHT0HCZNkHwIgWmfxnvhkUGQDk9JZpQvxuqsIN3osSdihraCFbHGwat0ZBsX3uqzQ0dv +CK8UtFfezl8v11QPicWteDnuJKDSkT1sVyKTaQ4nPNYq9xuzWZUd36u4qiQo1mvG4W4QGqzMtpXx +GQZjRONjYi7mw0d6MtJYcr904NdTllpu1sNwqGfjQTmwxhUtOs4ImHYfmMwFmKUo+XIrvDnhV204 +9jt1FjsihlwdIpp6ZjIuMT5JCczUIWwdfW0HwBiUeX0nQ3VDggf6IXICKCZKQpuMD0mbgNys2R1R +JVO/I4R8+QJGEkc22lbMXeSapIleoqb9O32NZKW3LgpzWtIrsJGcfUOggMeyEyNWiweLHsMwguSw +dhWW9imCCtthcDIsowQpDF6Jb8NUjxfcvHFXhUrzpUkp0rrn/DriZoKqVxaZgm1hhPvh8VyGAM0i +iTVEqAq8NsVnRKyIuweJJKt/9PwOP/S8XuGnkZK7OBmHkV06e6dDuHTkuBJH7tA5CtFNMIKNR6o+ +i5jZpQTPQyvf7SO4UQkbalJdMahQ1h/Fp6H3uanAJub0MTstLUs8wExQ4jBDP/LPtKgnl8HvLEZU +0MkMRhpbBhGwxHQTeWaXpAfyDHsouk5i2iL1RLtqz9ViCsqeLR+SgGQKV/gbkiSjHmnIi0bx4oKt +zLqeBHJcaSAgLEyQUJIU1bOUQPE4JiVsRU3f8qmsV87BUK1yWCeTLu4b8PvQ7TYk4yNq3DGwRqm4 +bVjF7uKAVBwJpRInUH0WpefTwMhWKwFV0CCyJSvK7Pi8iEBs7MmUEPtFyIRhQFKiBHEaR310hSo5 +h+M8oeI2ufIxP7ApIEjKc35Q7UPN2c7c9SERSvgIwalECRbgjTnPaDY3rxq+hQ1MCi+59Ska+Zyt +2yKw3aeHrQ/xY30RlVcHz2unZSCA1F5yw6iTcUq7A3OgHs86bF+OcXdc5T8ESgX1H8zE7Qk61vsH +W6GWuEsZ24CaDMDY/+uMxStvnS9Glwha2X5FlkRNA8bpkYb+NbUGSTGjFF+zpPMGIIkI+Imx1Sih +cSzA2RH/EeBd7siQSV2XxMAh5bV8Hrm9LSllkqTJPc3WWpapd51BehT+jY/B90fr961hInKohZWg +6dgPjs4j3MA+yR8i3eiTjGLl/cg5KGCEmBh/koXSEm6BOJllpB7UftbYblvwwJiyOXiw86t27u1f +b4jz0Bzxkial5AT1aaiL3LSXUtqhQ9tLxsslGAk3hBOp+BCW5kYhpcS7mki+FVaPZlj0OD7WguxJ +GkSYWeWuYUmaLjVhSvOaAZsOdwcNqYT5JM2aCV1lW4d1Q/EXGKut9WF/vsQkz+3JFnAoJKseIKrK +Q55meGxutux/wEIKKnAExEka2jdpC2BK1U7y4Nz09yO0rqRYPHojsueXZ2WDrkhXGtjFEJhvOFKP +7T1/+uK1W+V1yo5RFdviFFdLtBFy4oIiaFE9uhbtAEqM1bk/vZ22froGbtj3+jnQaJdQPm0pGssz +TVpksJ0d1DL4kRwPRmkirtDxnFy2QvmtHn9thx3aRsZrYCugjRBA1IorZDYgCFqQ9vJooODYgGO/ +F7bkxbAdUXKEUJeYdAmzSt4w65pcSkWwP0uixnEG6EhGu7U/4LfWagPem7U/EDAWfE2GFJzXi/8N +t0g57hR6kvZ9cUxonzYDrAMnSZIf5GNln3NdCItjhHzpg1lrbMudXDlQ8mxdDhJPzI2mZf1oeoBX +hgS5yFUDgqRLwUMwb2bYrFVpXkDu/SgKTP8u1XjTmHP46p6l+c5qcXQCiku6nhQitBJST4vDgA80 +foja74IgVlQ2JckZKOit5MYKTbwS7mrpfbsnpPxiHLvzsjV3puWkXE6JDVVYaSbEBRZVxSwS4kXM +1k8NXVqfqM66oiN17SsErW3AmpYFCBzIfwqAKKCPKheIOFUtyfsMKThqLIG0sZywGJFDkGO01/TU +0S3riEi5GcRSRYm3HPVK0MbMcIUr8rYUPhzs9PAYIzwdEJgBU+phrWMyvPsV715XIZKlWLLLu2H4 +KIVdl7k+ijtbXHTUKEHr4bOoCVqM9mizwxENvTyy2K5GF8F/9L5nVMGQhwS4lIGg/RmueXvtRHOh +SBMfbdIBaevCb7bwhZZpT7MwtLXs74DCaqTjMukCIEPe196pxHefvau8i4bpugb7KSoUx2A3JkeC +O/LHHh3wxssnwtraoK7rijgpnf2q8HHPfLTlrbAzMTUvDR4uRE8INibRADmEQIygECSUkgmyGG4r +CuOXe9Bqbm5XyVK5ryctwtMwiPbkixB0UWjH6yjcPscO2w25Hkw2oIKyqOGxB46BhpjtsVMCIohj +TcwEH5mxXTmb5AkctgYoypGIlPz2RN9sHRScjRAy+gwJkvAvbtuRKFIIdW1h/9Oi+vxCgkH7nVLJ +a+Lj5DeexChWx4sNAux84e8NrAbN8Jy1OIFC77xLRLrZFXhVrPmqZ4cCe3+NEwu5CAAREynAwWM5 +2tEkXOxE5KFjx2pcq31BJGUKa9JlEiE13qDHtmlZnBPF6+2F9oooJ753/htWXIbCTtQEM9nFIvsn +raITMpzkhAotc9yjCOeiJjjI5EitkaRB14wVQVjltcZtLMRC0BNrXdYXJhYCM4kSfhgwmpzNkcus +N2iqu/JeFS+6XNy/lq0jG/HC4QBSCPpzuJYUl4rwFOacbgfBM5w0QsODQqGxiT6D72BqwPEpAyty +D5JH2s1woDdltjxsuMv/2Ge7LP8ZfeHHnvyPevKZuolw4QFyZTrg0cpIpgBZ1c8Z08EeIhH5tGpD +i8DXd47fQbESP39bOfbZr3sbErOAyat8URaWWY7AIJ8LBxLQJOnqCNenTs8g1Apfd/dNdz2QrRYA +I+WxdU9O4H7fU6xEu0eB0iHUMN3a285wKyWoo6q9aAIy50m8ZDAvGaoSV6dsk7dQlr5bARycIU+B +RAHoPfzKicOPcvIEjsUlagVSrL6/SKwl8hHdlhoIpHhDEy/c255cA087+Dm4dNpgTjkI4erJCrxt +kNMtYyVA4luW4wbaQmNga9KDmKE88BMx159em2ZkfvbToP/ZsrJJJErwRC7sFEUu1zQIjJYNPrP1 +ZniEo8FeD2WJmlBfXBmMsiHs45bxHm8IFJ8kGDA/DV0IWvtKlC15DJOgtBlC0nykLN9TUjKNglY5 +MrjXpdoAJU0TIR9/CZFY7QTaAIKGiJ7tQLjOA3NoROjQEVBeMl9IQsbWFtXV9EAIiYkxgEo+ij0R +CVV0sQIUkg0LId8TkTWgED/beqG/uDZWOZkpsgiI+D/1aB7HTEO7sbRtqRCtRG7M7U5uosxG3ZMx +bEBqHhwNN7NUgJ4ikXBcBhDNDCJs3RxQxJUvZiUR5+PQXJIWC9YiKJKTQd7NQkvyJkgmLWmuDWnM +BuIvNhmGK2QV1CUomSGvcBJO8p0cuatJEooSPhOiNsn1Mw9V7quJGLwP22g46WvCBfhDmtSKGwA+ +yawi/9B8C6SK80J8qz24WvKMt6gZ6SwHvhXNGABihuljtHhgAZKLX0Cl9o0QX+6lPkTC77aT06Ej +t+j+Wt7iZarVwfeaVDy7XPeYXNKngD4y0NABAzrGBVBnk8/vg8J8lzsUfoT2a+aVVYAmaWYlTeGV +H6VZ+yB1+oKzCco3hhqCSY2PYHfUs7YprtDjSZfNGEgE3g7ePkP8kZsxH9gBimOAOrvWwZWEQMuc +Jkk8QvYyzzewlo0sr/15gEuKo1U4UbuJP3Ec7IWha7+lwF0EUQ12Pw1yMfIbi40xMbFSzG3dFJHA +2sWmrpfIVyWR/6pMDjRzN4ZG/VeIC4QyPme800trL1ey/Yjtjw0xvxbhKBiAoiGIh7RPkwXmCUxq +MKT9WEHsycrPj7hXzC+CV5TGEywfQztyB8uRO6nx8aDqkc1jeb+xv2oQiD7u3xHuLVkWx4GGWPe5 +1bS2cW+BVW9cX/+3a0KdsMZJIVb+WRO3UtWMHCvIMe0PRiHCBI9kQHyZCGaIo22u7ihDU6MHarIC +ByVpaECZ6di0NzbHc7rrkxC83FE3oZVFMcTVnlCgnDLEphStg8dKfwcsyCkAqnVQbzsqHt6mqBI0 +sQD91hGRrsmNCgNQkoOR6F38B7rb513wJHznmZv4iP+g76nUas0FL8DGVB90h30OhJUPlGU8Xc/k +DBRH5A1J0UvBH95NAol7aP0QhRUG+SVGMJmSLikZt+veFkjrCcyY1gCp0XdaWpLopOgSJeOIkyN0 +832vtYU1cVZnuv1Fg4fwswoHP1JkxVEbP6MVuy4mNJQvPWkK7eOkUD/yJmD9iwGrY6segkQQPJW4 +s71tcbI84AtLmLJTtmMCog85DTvbsEcMqnyPOzbKAQX4OUI5iwjc8MxavMPOlSmQtT+dKaO/oqaC +ujgTLRNMipuDvkIMgCQqQyOcQEaV7i8E9cLNEozyxQIaJCLCsZLJ/UqFFy6lLsrmAuKyNiTI87Lb +EpR0TKC4MyAm/zOxyOOSvHng/KzEx20E54hdNkaa/JoefsDrQ2hiFEhoRZ6PdJORkML4Qnnn4SQG +a7kUn2sxLLq1lvIBakQ61WOz+7SClq/3kr/T0yE6JjliWhEHF5cLADiiAcNaw6p3rOrhFLpWw8Wf +57QeULl6WDWHoEMf2ImVl9EVok5vtFJ2IOoMxwrL9GK0PA9x7ETYRuRLGxpf33G3LczjLE7y+Fek ++9hnwwp2qosqtSYS0+N5OORL5fMLefIwgDUigP3uOfzshZTOgIpHqvxBKMfFIojuxEIrEfHCgBRd +zwIUX3UMKmcUm9ArGaSp6vElVGQWQ87xSKpZtZXAYL8pDx1Kw55iFAUZoyuqnRQxiw== + + + wvE0CLtEV0uIsF/VpYiGNejHftbG6P0hBZDqG8TkcNlW2RQHFmI9iiB3m77/Aq60/PCi5ILAWezv +nm1f2M9+VouoQ5uFChypA+wqEY3aVH5tHXF/TYW2U9oaGOCHjIxA8RwdQwQ4dkBW0HXZy67IAaiH +fSzG7IrzigBXzxZ1U9UsJGe0v2cYi/uJ/z8FyiRvMjUNVMVL88FIAqDJlHbiEQ1C2IDKbxHZE6Z8 +oqXE7gKFxNiGx8K+spqFAdkUMwxvWSTWCxq+CBzNgNyzmhdirHYEN/fxwrCh+oH3oaeffW2xz6VW +99I8zDFVpVJrzwmA5GCRfV4iLCRu1DiiDkVMA2GP/Eqyl6UTpjsgPmGnBbdY856CjyE6WZ2nj9f4 +IaTaAIZeTx5gTdIBtdnIJSyx5PP6wl1H270ku8kuRa8s1xRDDAI/AFYARAB6/P1N6/T87z3+vuN9 +m9qu/R72v8bPhmjm6GpYds7/v/fvu2L1Z+s1qj1++abzd2/qeut6XXfXciHvOb/H/QGpEkMaiEEE +ktCQSAtHHkIB4zBvgZUI0zRyxFh2mrOETcpq1GsAhaAEHAUNibQgcNwExENDQSItHBDSIwHHw8KB +ISWIA4GjysCxZdHAYFb2eVZ3yqrIFniwfLZdndN65df0rri60+vaV6uU+cqsUS0VmeaZ3Y0cJcTS +kZ5Bmtx4XprEkxvGHeLFJrvAStYG2SQxCG0aZqRkGJ1np7D88Wp1ZZ21KZ/jamotn2tv9u2yu01G +dOPVK3+KQs7y7cK7ytzmxcuu3S1rPs7suvJ4ulqO2mq7daXIjawIiUeoVN0bAYIAAIoGoxEQMDA0 +ACNH5aKhHKaJ9wEUAAYPFgoWCAYGChoYOjxCMlRGLA4FAkEgCAQwUBiTC2MAggQDCOhcP8eRNl9B +Fy8aJzgg+fjBwAUaLdvFEsw74p1g1OmKOldB+UI8waqaqs+lZF/8uZ+Xkc526NGYLaAacDlRBJOg +RO5RhhD33TzOTTE87x8o/1biF4MjeLta5VzXx9Gxx3H+4olvr5WFr/4tHEF1KEaVLSU/C8+1tJk0 +7jOSg7GerMW78Oi8zHS3CzQ79fdG5TLlt9wJFIKSnBMSxgVWfDCwtkkO3bk+cn765PBB3O35s3J7 +1cAE4zhPp/3vldHO6wZUxGekIKAPnoavK05vXn3R+/Y7GujDfAZpLP6mmFEqzNIV/OPMG8hQTLvT +sZzlRACOdwJY99OVPiAC/UH8bqskJYxeZ8TUn9W8vVmTGiRLJ9NsQG9xE5l6u8YdOvVASKisxvBF +UEiLA8HB8sPD0meRUZy0wha3hZYyck+hiIXJ+VCbf4wEUUxbHqoqx1qoOtDXUqX1sH3+I4xsz5tV +wJrEDqwu81gcoHhkUVLs/ShGqCzablCz+Ojfy9ecf68o76D6hjh5//WoV9G/tPE//05/8cHJIA/d +6E83qeBQYnU2h1jdppBQsvr7cJRVQqCop56OPu2pQazqoCQZXQWBlspw55EkCQovzGSQLZG/BZOM +ep16wiyeTlGFEx6UC9DcXTFe/+qePtPy/FBoMKnUJ605/io+zt2bLb6GmmOu5HcH5QnlKei01OhX +btLjMgIGFAtspqUqtr0yACzhYUNOpRATJCwj1gsxX5kyM6X80CdEAm02Ko5OOZlBGgEkNayzrVEB +d9y1i7oGshmAg1RBrfJsR5LEUN7WT0NySF2yfieOe74LzZ2mpesKDCSatBjzVqcofAbB1hqp+xdv +B6+2GhZYexQo4SRFfGFyxOkloUKTsQG3+homezzESjg/VVlBeBURe5rFAzY0BRKhTX7UIz4JkxbF +xgtejJsM6m5ZoYH4gVe1ACkSH2CGjjbDlHGk2wvxXABjsBgpSZDKw8oAd1UcqUeiZDZsl4YtImO7 +4nKjRf/UKzxtc6+8qUgQMTkCZBHR3Ebhaj4xYmm5HcpI8UWutypD25wkx12SjdOCWU13exU9vA2z +6nlY2nBUOYlBiZsgQW/J1n10GqjheMBy/TrA5n2QhQxkZdzmkyCJXB/4ikPq/AnLlrG1DhFrCM1G +H5LGgzZJ8t9k+2/cERcO4zXbbBqhWIs9npQ9U6KEO1QiFgX1BhtUYnCg7thBViMEGDFxGjBS5Ghg +mCQ5LQHyQUCOEm0W+rOlCAfpRpA6x/8AFaWyZNLiFkHqBt9x5txWCD+boidUO6jduK2v+kXSW280 +aRFlPJjA21qmVjGiDciQIAdH4cwtei/K3Wnpl3VMlJhmArRMu3ypE3yB+seTJUUnEouOXjPxpHgo +sUmS+ySSiDbikVWPitoiGHT9y8P6s8A5NnnRzxAZGrAY0brsNLZfqTWvQMKKrf6CmCY9tA18160r +ll0LaAzHyQxo3uLSkwmS7iNhAAIuYZBTMUvhTTSKKbmg82WrVUo0oiSDmFu/lhoCcu6pfcMrQiaH +YBh2ij2lW/k8u2dArMCSnyyNVuYO9av+0zXjgEkmL5IdonLITytA2GMigipOcAhih+C8VXZdwLJn +InWBWXmQiqyoTGbEflhZanUsif+YsDKBYo6NTbIwuwY7WEwib5ENr9AtpAoXfUYhIEB0tUYw7J0B +mleVUlImSY5P4NuIHjvCIAFOX00lSL+UaCNzosTkCXoHi8nktQljp6QYEyNXt5aM/UxcQJwn2PnW +PmgmWlxkfoJBjPGrAYp9engwEDBOYssesZpl0gN2xHYHCUadmHfkQ12DuIB6/ruJggOtl4CNZcLj +9UKM561zJccFSaYXZ7SNpqwsQ8xRkljdJEriL9q4uqW2LcET0qyFekKKBYoXWsuCkudXJzxgKcz4 ++lRIrBuYz7S5blA53BuVH61MstgyEZsMuYa+CJq712f7ArUKhPdar4B8oqVq8qBn2T/Wwz4jsn0K +SgmViq0qzQoA+51RdWiYV7PQiQ/kEAOOfmpN607WllGTMUj4qE+BEZhsNHNMZgCbn5j+mUNWJAgI +xOIVfB6sV0oDRj2TNLQlf/p2yzMjcWir5WpFg5pgDC12h+iZH4aKWtk8JDsQXArngvFLGBhi0e9i +pOhvpkmCIeizxyTJyom1sgCi4CRjbCGwJtNAXARppD1Kr4uo5IICNHnhc969TUnrM2LVvE/l/TTG +S8ghJshM8L/SJkn8J5H5rk0tUTXRewRfAb5vqw+sHnZHbZ1kYbBMfiCOmNOA/VlyGuNSE8Bd1bad +v12S0kGafyJu6jcHxqQHkd1NsmbqSzFh+511IP47bYxfFpQ6yqqn0sdkx+ELQ0vxRbKDz6rJFXEL +xTkSJ0UXGGeShKHERjw14VSGfCVbJhYkuLMYRJSiL3eOwITLaQOQ1UWscPpGVI5DsyRS9S8wwsoR +KnHiybBYVWL2Epk4o0l7HtmLxWviJVI+mkkSsCbyfeLPqWzyd/veLdbvqAaaKklM8yXSBIbeuXJc +O5sOVQRhdU99i43NTz/xIqiWIFeuQDLF2sZ1pgkVasT/7cgc9A8jAIYIRs9fRpNCO1FWfjBRQmgC +W433Z6XGCIopK8ZbBf2RKBYkJXThapRMzES/ZHEZV5D7/URr1UgKKECkfU+9klkh4wM0EGbJGWSc +meJ8jvZZWNsqWLTUXh6VWLkpnHZTwsZskXyhYZqhO8JO8JcpdhQHItehKKYbxscWSHTdCSRKGJe4 +brtbGmNp/kCW59TV/g7ijcVWG1CGOm6ihGIC4bOWiDOGMCrIYgNtHQ+2YM7GdzVOCbLeVzeITY8E +FiSuqRgZ9CN6Cl8kIInkBPAFV7iF1E7wEXsqPhM0c5JSCmN3V6tGDC85URkkYuDbgbzE4ZmYwZ8m +XZoZcu8lpEOKUnVmxr/OJ9xuQa/l/90oSGSjHyYtNgr2GqsWtEseY+ZcorikHCi3N/KINShR82VC +Ok6fwcJP3yoOnuUNKJ28DD1CLmQh2B/kkkyDiQefCabVUiCbbLFrAdZdwORH/0fBUcg8Ie6hXbSi +iM+BpKEQdKEw1k7ugwnB7oHSrZ+Irv+L9F8hSbaoH6NOx5H8ViaVJVJbLvClBNVdIA7DwC2G0sWV +IazWzA50Va4bWTZ68eWtvIQ6kJPTVavHaKAgseYOw+QMRRFYllqsCopji4wlaXh+7sQpUw8/qadE +qaekSRJiE7BQ9nAsXXcEXuOc2oSRABiGrmVDDYEKT3+FYIIF5cgaWA72gRCL2JLKon8FwJxqob07 +ytLdVdvVu4kazSbMqksiKjEBmopy8Mdlkh3RqyZkCQmeWhMl8SYDkqOoK6AMAo7Fne+n3QO8ce+y +nG+mPB3SqSOgWMNbw0pxVPVXFs/DqVxsTP6XnpHCRFQvA3Plwpr4r1z1xJUs7ZYyiclirbP6EmWg +KJqk50kEQXrAPDCdJJqEpiAgwcaykUpyIz5RZsdDOTa2KEbjW6MwGUIk7zf3hVBydAmu42tY9qJ7 +mFXFRG5J0eTJkQGGVLEyneNKTWQK9q6LyoykjlYCnzzkORVNfJyKtw341C2XsbN28v8kOUEpYaVd +4xQ7QQO931xFZeKE0pz6TDBGoDQMf4cktsXDa6B3Xc1sw2hweHLmWARMvSBKvNyHgF4XWmXJdeLJ +e8TrOTg5Q5AE6ndJVmJjtV7VSt5K7V8hedVyImiwFklGeKbqikKt2IuROwnqOMzvxRMup6W1wpgo +QXoyP+V3j96/Jc03wALrqSc2HEacF32r4yAikfJmeK9aY/crRnFUhFD0VqZ0mvsfodFwjhWsEpkg +aUUSxudcSRMdTa3jvsSQxk6xGgTsbnFop9J0rEyE03xGD+Z8WdduT8yYdMCXyb2NT3155xN1uHJv +uydcFkT3iS1BEm6l2awVRwy6UrYA/DScJQieW4WW9cxy/oc/+FHSOJ9EbbS7xxnSWB8BN3ios9ki +bganz5qJGp2XuHas0CGzZn8+ULSZDW1UmSZnoTQifjueAEEpD7MjPBJkNAuAOeLivs+V2q65HIJ8 +22+Chm6Mqj8V9/ZiqJY5XvUXLmxvAGxIhh/YBATFycWCfjMm9GiofOo6vbobFxqnhChFiWQooPlR +1Cw6sZ2T8vbBYXYqKxMDk3LkrgBcETGH0omXKUQVUUhPHhoSJdjBk3GKw5/V0GMD2Gt7kNINoNgI +3QCc57jg/o7on9bRhyqhc/JkWbjeigTntKGTmrAFQX8aiCEfbE62sLpgXF3QMyIA4F7giqTG7+tW +s78q0MYwVcyC/JHAiPUbSMBlZZGXstHNGBKj4ZFGkW4xQKUA10ly5Lu2s/lm803ytjWP5OzgYb39 +VA6enmEposVDguRBhwwsUVLqYLA02wbct0Nb2GBkbMyMqZDdcPcPJySP5pXxhkriRVsvGYtn1oZv +WPmRgFnJgeTLZNsyU4avdbwQnaoySQKURGoV6KFsZLpa7+7qSwId+R/a8K5vqm2Chl5yiQgvkJQj +Tf4MFjxLVxtp6ULLE7V7cuIFRAfZyShFHsgIUd1ZC49mr6lzCB5OXSLFigX5THS4Qw== + + + SHy9Y3zbS5w+SijEXOcb23PXmdw3SUJw8uPExYPpuMoSCY/lBp4QZ1Q6IVP7XzU0TpWY9SZLCBa+ +11JSokrsnhx9sSyfEQxUrn53xB7vgzCZQvoDKKHFdyW97O1DcUOeZyCQdOegGTbOC/y+l/khN+jl +idg/ZHGbWaROPJZasqd/ULPU2kFF2TZ4/2QSpdKeDC/mykDO8nuOT62sHxHRuJv3gRiAwXAkPmCt +zc34rRgnMpfiSvQW/sREogxzAxx9dVQsGWXyZCntchVwEAIV/vKqUThbABVO4poNlPDtiQkQuwbF +kkpV0e6ybQsC1oGugPfc0duJnH4bCae5JMYEzWoSf5GlQNr3Zd7Bcne4w09idXOJ/26heLHzoErh +XfTkE1akWiJu7HIiQGtzbNgCuV2SFOcBeT/1HSABypxcLIiZg9fwUgWJlxLUV0hoDDeo+J+rzm77 +gn8Vl6DyPiCRnsxrXM4EjapeA8YmLsjChbx5vQ2bex5X6WBKtj+tNFtPBj+yBzE8jT4xs1+EI/DQ +x5XurQCs9W18eHJ7d+Coq1zPFa39kVlQSOYwZwGwHi1cxk34D3eTRrE4GzaLwkC0TLoMP9RzboOF +w/9IyvQBM8GOgAICcj9Mmljcb9pA1MAAo8DV+1n9DQuVR0EhY2OuFIeveHp3HZIkIKe8RevfUEp2 +Gx+XtgzkzCS4VwkK9CZpLPMJ/hIFDygzD3BNjqwFc0KZaKD4FC8TM7YiaCvKYfzEBCuSayDy0z8x +cXFKeOTL5MebiFSylVC0pAqkx4e22S7KXivh9X6Em6CpLDkjwu4iFdIGtmNCSopkMvw2kaCk4Sgx +9gdcLDpVjjdgke0kzphxA+oe32WnJQLmzEyy3BtB8SGJsRLMnUkjpgTS3RGapKBMkTKxUYudPCS8 +5gZFMjxfQ4kNqr489lWjV482HQLGhAdrg5WJQ1FZPnYJCfcXO7vT2H4l6qrxjjbMiwRD2U2SxCjZ +lptONnVaZjRHXCHK5df9SH1VTDwmSHYvMZdYeTUcBdRQhVPpkV1gH2CIbGW+HfoiXDoSLBurAvRQ +mc9pEif9eOwj9snknUnKbGHEui76dRM1dBPQvwWrX2WbrYzZXDfL8T+G0WyQBNkoZuKjVnR4QpNL +pCTCaPyo3LgHmdXoPuV10wmP4QzVO8wnB3eAsRTWRashAhUfEgj9FiLVscMkZljyUgFR6qODkTke +VZrJua1Iks7QFMOR+Pi65MoxQhuGPWqXyJs94jv8cR/0GEmi6p2C0kRN9cnHupbxdgs/MLLHEZJk +mpRG2iVj0qNw+0QnXWgawJftImGhYr9cWruEhdOc8/Twnr0KIkoBiiVOAuoCWq4kYgGIjIRSPAfk +ROdLaeVZcIb2N8GiLmGV8OKIggim56UxqWN6IMYoSTPfgSZDanOaBSfLPIxN2J6evd4FzhAmU7Nh +nVg+YEmSoDvcPz+LPKvSlwjfiIX82grulWfRRrqkzPWKhAZpwEURhHQsgcy84ptVot5rkLNhYkxi +AtNa8gP9SsLG8AEtQKsBUKsdMnBTpCnTqVm1sPYmM5bca94NgN8xBIbzr84KrWnvUBbn9ydM8hFz +qf3HwlruToxNebfvpnJl3I/llKdVJSfhXS5RQjdWzerXKZlgtLDHEFgHziMXyMQUCm61Yie4SZq9 +EtPrJc8bvloTV+bxms/Ki9mwYJrMSDKjdPoWyZfKea3pgXDB3Z6VhZz93SgMsE4SmiSNXvilb4n+ +aGnvSigGqnvKLwAA/1SQK86TFxIlgM73/nNr/HLZl4IFiyAVjPXPanmGp3Bna5Mf8RCDK0Cam9E3 +cgsXoUcFNA7bdOJHX4D/IUHzOzI2g6TaqXD0Ay88VopkVH1Elhnd4TTRonWBhU+clZcoj0ti6OuO +fyPzLRp7iA39JWrsicTMKxrYSRmQHbT+xq7V0IavRjWIFAhhOhKYHp/V/rX9FTYLSKcQiho8owLy +9WGcQ6toG88pSAE/gGCeojO55xBi8dCK15ZLfTtsiPGqC3P5X6EgwoQLU4Od9si95sQE3VnRHgeq +6Pf9cN4jPXlSXU4PRdaqDwmk4eNvXp6KwzfTQ68CEJl1E0xkcAxhBwZrAJnj2WvhX+2V0OJXfn4z +TpecmIoXEyXNJ+FnWTryd8h47WjKwBz+10BBKbBNkiTs7oZscGz6ls+ajZfqDI6SyaDXbGoRk8E0 +MklCRQLDimpvDRCdZDFhs0yhukg7ID2sCr+E0WknJtB5D7wCiBf0TyNIBVkpJD24FTzhbu1ogUsp +tJicQVJk3XZcjsjoHT9XPkq8QTLzPJ77Gt2nwDgSkMjwWGK/1wdsm79uEoCtOPcDKGVqjHKv7rSp +MUyMLMLrJu7aAlX/SDq3fIIZWdKSIGtGUVKoY0IDRX2MjrduRYuszOhTNw7G7xes1XB3cXgUvdGS +JJndYJwsripJ3wCh7rglvOurn6iCOCSbzmuSwvD7bgp1ZjUiAHojmnhkbA4Wq8+u2prC/TJ7ugRz +oLDaWev8iwQRDTAXGPHe5vDS4amVTGM4CbjRklyIfYVH4jc5YpzvSFrK2ivdkAtEWX3k+vPDxRAD +Mooj6/FMzKyLMO82j+2iQkvuyUaAvOArlQKblogjnq4kSeoXB+l0YWLpJFpUl4yJf5kGV/tn5aF5 +R+wIUaJk+d41fjQ4xcQWKSB8SwC+N7dup47hf0EdD3aowFUHIM7rOX0k6M89adJlO4ItkRJk7nSM +EcU1CRhCKbQddomBsIPJkRuTaDXYSOg0P682UbncDPKO0ATlmZAeOn8JLBDbNrmMqEMNfhPH8uUd +RagIjeYgFgS9jQi8KJsH98TaTzgfw67bky5JHXjobY2kbub20C5AfX8yUV0mabpPYs0PyYysExgg +PjvU4zz1Fw5227qu0nmPKCJVhUTSQuRL2NfcYpKElAT8+1Ee2o2QNeYK7MvHbQM4QcKiuugetiY2 +E5MogUpjDEdDAqJnvS1JcXYiogADFwWv7G29V1czzkRJpJN5NftsAHGScRGbwjFVpa6uw3gWXC8f +ZHkFsYNBWLiGELUh8kMBXA0wEymZTaP9A/uC6/pz7bVlnFSsVSmLHSExI/7FWkRT7d3XG/ZD6Csi +Hhvx6qX8CoUaeC/Q3D/r2iV/IiYF+huKjYPAVKYTYELRdRN8QrGjkbcYfBGz2bCFYX7fHVwjK7Q+ +3ph+ZJX+UP/VW7aRzdgaU/4jfMMzJ9JshNkA8QDr6R4cl4TRLTu8wtiPTHiALUhTEyUsWwaKkhBj +G6v3v/44Vs+XqgMDJfSpCV6IJInpa704Z7w9yDYDTZ/xYY0GDHz/RNdoiaQH8UTUM3rdelC0onEP +KTjONNP9DuH6VrlXoEh0eCPHS9EBaPy9iiRjOk5oQkdjoFmlhSt1YdCTNFHoJkdxdHyuPb9l88+c +aAy9b0RSI1Ymo1cOYWiQJMbROhXTXjzQ8Ur8hNquB5dbtjzjrofVCzv6CHJ9VC7LN5GyZF4jX4/K +2sdBbUsY9WrMGa4W7h+2U4fRH3FcJ9ecrAfDsRyYWKM0i53+HpMADJYj/CB4V7U+Q5KPNxGDa2xh +zEc8j9It5QAhjs025to3FVsxs2IzVE6yT61eW+MMBWEbAPb0elOpC5r5uELWKqkDpyKw5oaNE5MY +CG13Zhe6PrEyf7DpfyeP6yhFKZDHRC4LE/JQmHDFL4CsGw57ABW1CMyTwZYhQqSCK2d0IME/P9IU +1x8fk6WVo7HZEJibNLyMv8aYeXZ1oE+ZqkX4MNDGU7+LRBAhnpitvXE2E+Rw4RBYaFuGCTPO18Fg +8PdOSyOng+N1AvmA8iQKwNrPSZ5AEPah7fuEysevCHS2gVDZLrziRBdaIhEBE5K2PLC9yZq3aB9Z +0lAHmd7K7bC/6pfSqmaY/Dsz/N/G0yxc41OBrRp4Bl6EZ9s3byk6r6sNARtKxlbMA8eg0WGIj/m+ +PcYGzoAc2kXuv1r4GU8UUAKLrHjfD7JUpnzrcVGJcJYEAOqo2POYDqIpQDl2hIcXPAXMQnaOLRoX +2HxWYLTEeQgjWVZ3zOfvL9tqMZpTnXD4jSsqIwhxNltUVVN8JszUBL23XoX8r8bCdIIGADUU561n +pij6UN3CxmKIi5BdMIPewP9BMi2G/B1Igxsia9sjEkhXW4MJC7CimiO/gXveB1OzfnBNhb68OIIF +/oPkuxhh6ZMcIazeN3vWtPkyoF+1QRiDBkj2r6xgfJTJjssn0hfabCNm8/6rFBagLTSRfWgF/C4B +ytNoLUwwUFvpSQhPg6Pj03uxQX6DNFd/xcRUT/mhUJwh42UiPf74Z+9oSmliC1mWlr2uzUI6HC9n +XkoppUxJtchd4slb2kGwn93d3d3d3b0BBQJmAk8DfrEP23Z6Zb2yPVN8qb24fRbbrjlXK6uUtUrp +t0jamu10a7F0mlu2xO6y+sW1fZ1ztS3drcV14jorbkxtxY2pzHjitjZXSWdRrdWb1pzzxVZi92u7 +M54Y59nUi67fboqvy3bpuc7quHtiWXvae9vSKntK67h6u1+Km9qZq52ZYjlv7dzXSuy7uN6Z6e0p +Zfb5qrSNs1efN+3ptWuldU5rrfuVl8pqG987aaVOcXVsc77d16dtbL370pllldhOmq+V1FLPnuml +NV/vamfXW73lbDnrnS2lvTjPiiu281osu+aZ7cV+66V4eqXXi/CsXbMskuK0ttt2bVunvS4zbns7 +YzppU/e2tWfjzvZ6N661iLZnaeWVduKLae15q53S3U6JsxfZXN2rY8/euFKcc53ZVumrckra+baU +1mbaF8/O0zG20mV1nJverhP7fvJ6xdKtzNNmPCutVPrknTZTr12nu5VVUjll13tzxi6dXm9ZbVd8 +W9aWePoutlhib0nxlFJ2Y+xSYs9XUpu7ds4St7TuOUvsy7Z72kp9V9pMp0+f2Yfxnd0Yy0x91e2c +fmu201dpX9rS9u0ps6WW4knvtRTXeemdbXHLll6vvRL7fC708+k2S8d9r1ufnI5nC/3a1nmd4tq5 +usRuPVfsa6Efbjvbqc98qbQW0yovpVL29LXQr3bblj1nDlyMGFlbwsVLh5HXkWKIrUxMGCtavyUX +/0bMGTGnq9eK0fQziAywMRV4OG9srjCpeiWiACCQ4mv9cPowJk++rqzN7szt6cjUPLAJ1idhWnok +EhT4VvzdXNwLeVr4J1I8RlGJKIDfQUs8EBZFD+WC/hQMFl9kxosfEsPop2Cs+KcWKj5HD33S0CiG +j0Qi/CoXVPB7evLQIIMML9eG5s+8ZHkuJ1b/RIrHT/mMPkiSP48WDNBQgcBD0OLnqCQeiIv+ITfG +z6L68VtNqp5MmK6/m4t7QYIEvXin2C5KWkWfQlBRFQRhEmK7Rg2hUooSYjUEiogMIiIhCU6YEJIi +Fal4rcWitY3FH1bSzu72ThcztXjioiqlizLTWdt6kWzAh9AUVwyhUiIiEoqCmmCIDQ== + + + K6Eo9zWlU+hnZ23/zYnE3X14uisRac5Z9qVF8sWcGXu2dd6iro0vtdOt2ytv7tkUY7+2SHamt3a9 +2BZJoRvZ3bO7u7vP3bO73753ts0UZ5nllZ4lltlHKbW1TmqlxNjr9JzrzX2rL7vP3amsfSd23JJS +een0uQv9/Oa27tX74uxUYlzvtBdjnCmd9eJsrbS0K8a5VttS3tx+c6ZUzux00mv7yrZebb5yYnzn +zJnmdmyxba+VTilzbqfSVmnb8cRU1npptXX69WvrzfU6dttefda+uPv2ldlW6hhXmyuueDruWbOk +FLek11rbfal0nO+0Gbut2PrFfTOe0rO1dzquWPoollfa2lPOaifNTWm2eWKM3Wm+U1oqcU87KW1a +PcvGUhbNS2e1t6vXnlMW4StnO6U9reN2jKWVuG1CrPwXGhk8l9GvDBGupwtrMxLDP9IkA4McTFgw +1QN3YCn5YiMFeEKXtOcy+pVQpYyGPX3+/+e8qIFZ0qQFuTugjg3AJCH5sgmmPBsGXo9mideL8dB6 +LCsskNNS5rcw1afJ4OvtztzuqHlDde+PYoiXZg7tra4suGYNFZcXVU8HDAazwnwaki1w7MwQQwx8 +6uDJ01OCFbJRDP/o7elCMvJbl8rq7c7c8oJx/o/enh12eKwpHmVbqsB5lfWpo/d2Z251ZyTsMGgQ +3ppcWA8mN3zEjCMuB4Z8CVPMwtq+TIIOtmQp+T/SJAMsAyd0KphxEwjQDXX0WsjD+1EM8ZRAJwbH +k60r9f9XQiLQAtKjD16eNhyMfReSEeAOLBbi7LCcVVDDRRKmJTlgaH7rUgW1wuxEaFMGpWVkQw02 +wAlbKwvSgVcMJXFZ0LK83HDDDUckwhoxHniV9V5JLngkEnt1eXpucd7uzA2oAwvuytmYKCt/8vSs +gRIGxhCIH8UwD547f0RiDwp1zIJQYRMFeEJXmh0ZuDVOcYBrb3LIwG11JSH5N17Wzlzg9VuXastY +9XVlQT50K5R5myOmJkeKoUCBAvG5Y+GOzFucMGxPRsqD71KyulK/haceqCPr2UQJYc2bPD0ikBAl +RtOPYrg29vWjGN5pg1NHLa6OWpzblBCQNM3I+sHj7c7cWIizo6Mn93t09O6seVN3RoJMIM8Jd3ja +xEF7+zvBue9jp4W9ury0I1s9mhyRCO2cifuR5UPPTQp4anJvHpiFabIi0zIljw2cP3p7ng8d3tNB +GzMlBW/NhNd7o/s9OCo8H7oVfs8Oz/eZk/d7cOy8nhu7x0sz93TKvF3gAgYuQQbkiW8BA64wqQpi +eWl78vViTlcvRnjI8iNCBwy+mNPVkMxCg66yLVUsoGLEgRdNLU5sKVJFZgiVF3O6ekpqPHd3P4ph +XBY02kwyxOcgSNADKAxgMhFCh0GDkoY+jFD1wYs5XT1NFXju5vjps7eDlnCSDAgSJKhOHBPUbH0t +cbEUJMn18FQ9AAOsyeqZTIRgQYW7NFe8JvC5AAg7cub88Nnb05MHeJWFA8WIH8VQrg3NnJsaFyI8 +vBwxNjVXX1UsjJZODPA1AAJk1YNGUzRa+Bo4AAcVIaZpSRIjpCI3YCgRBbCBko4vHVVfOqr+SMQH +HQYN6rO3B2MIhFUP3x27OVO22jiRABybGQBoCPHC8ePBAgVeHV2OFENFWLT4UQyfktpWKEq74KiS +wIuyXCVBwc0QCCCzyMiOpSlIpH4Uwx0/imEQjexHMYxTc6YJko+GCgTAmqz24MmTc0x4s6KESAwi +AY6A8HTA4JgPrK0aUUqemLBg3Jgi40cSI6SxNjdYzpyMGvgkEqENgQI9+ToS8YHPC3rEsgjwoxg6 +iWp6FyI8mEVFwcIkBXfFTAQEiIYfxTCCFSdqmAgB5oyaFZY0sC49mJBNAGXFj2IIx2bmRzFE4Sut +DEorShg0ZGC/zELNCouYGjMxoxi++bJGBuTJKIZEZUG0RqDiIAaRAH9EIoTghOhWBbgF7c2goIz9 +wPo0Tbp8XVnw/z+oIWSMlJSkobqy4AgaINWgAwafsH7IBkT4/6MRH0wIsnHB8ZOy5GMOWbBNWtmP +Yog2JWWEI1s7UizwL0Z4eGABA5iEabJqu+oCiIYZgFtR2F6M8DDmA+tIxIc4LGdSlnqMIkYxTJNB +VxOoG38k4kOcMGtmXKz8/zM58v1ZVBQxPDCY81JTGgIhBg0OOAj6UQyXiAh4qhoOVLUYk4Y+SCFl +KkKgwppgpU3Bogb0CnKB1TAR4ql8DrhxCYHIChZjoFB54qOpSA4YXyNFiDJgXGLw0+dHMfxZQZuS +8mJOV1Y2ZIz5wIpTc6YM1ZS2LGCioPyevEYxdFMbU2WGBD+K4Z0ZODClEiCShsKXSsow4LlgRQkR +QDTM8KMYyvDHD90Ym588Omhfpjj5UQzlutKAPrDkiLFxkYEDBo0V39OPYqhUAgQPi4LsqYPfulJ1 +ZUEyUh5oMSpyZ82boxEfHkkEM6hYUf0ohl5qL6elzBiQDoBBurC2Pnh5AtWAgx0ZOLu5OK0wYA8o +WoyKdIlh1SaOmZMkGz+K4ZKJAX4UQxn++KFCZrZmDZQwM3C/540Kem5SQEMG9qMYzkBRgB26OAJE +kEU3FgxqheAnTw+XEysOjEC9kRgGmVQkwGX02+KiyNrPIQt+WRPTtORHMfwxqvinFiqiXlQuo59c +V5obFbJv0+DLnwWKcqiEthPhEVOgDFFNAEEA8xPAMCg8HgaLp1EsJqUhhPoUAAc5JhI2FAYIGhAI +EkpGPlA2CMKgQAAEIAgAAMJAMBkMCIaDcjxOlXkSw5GM+f4Wr2B28AL9PX5wlgeedVwNc8l5U9+A +XnrBKOv4w1I9xKjWv2KYTkLD4gHTm+RvElnvoCQzfn2/7XRynphuz+JAK+yQ/AU184MktrhQ8wTr +nM3U5pkdwyMUnTTaoxaOv0rctwSxNRpqcHX2Bi61TydUs8Qqzg375wfyXmM9RYsN42SXOIL9MqPu +hkrgD+vyXGAr6b+a4kSdb6cBZzzLMX2jjSGgmaqa95g3tv+K7vZ9ptI0QmUZFtcN9R7GjaVFWPES +2BmERvy2uC/denBvNAojnALNgZeezRbWnqQ9ITjjjPCCz9mGd/Vy2lFQJPbzYtxKK4NKswVoX64+ ++w9ZUmvMCyn2DJ5gmOiWVFFc5/jUyf7tEflmcMG9stB2WSIJXH7UdALgNnonSqUiFBC5QVujcfSI +9ur3GqVpyjgisBXVtmVv52YItcoM3w+a+/Au74sTmSwrGpFcp2mP8UOv5KTg8A+jCYENzBiBe3ZR +HXpYvHaxeWZBUp0vJn84wTJfcbrR4OBzJk4NWxRF//cQEn/lx8iXmYazPwRaPh45q6HEYypunAei +0wVFYQbCJLM8bxVLGx+my+n4p2mUXTfup6mPFn3tsqX9Zby12POsa08mg70v7UOKW9eZuvRMyUxZ +DdQBCz1MgmdOFm3QAFd2tWzPAyUve3lqcjXc1ULxgDAWcNjQmkTDxpkOUEtZlrCoGQGeOqe/buhi +HQYpy0NLzx7/QAzcQ/qjYZiNLkbEh9HmeMxu6j5p5t5p/4OO5hanGCohf+jv/sc0v4FT3ACOFtlj +QZJemMo9cOZmH+qiGIa84SRbGdJujo79w4PGUgH+hvvlBqY481Bb6KH5nhLgofhP1UJqTzdUfjDl +TsX3MKb01Aa8bdLcNygrKxXxB6xbfTawBSAb9nM+JK+7lD+Byv3r3ddKDxNq+7emS9F05aFnQ7sV +ci0jRcmsz0c4nCm0c9tInmfDNOhD4qabTcRZNpps0A06j55lUmX6IdyGUyCaF4eht1TFOsWT2vCT +0S6+D3/+gfVhCbieJLAlZWdkNGWJOVUBC6q4+l2MzprmhJY/dDqt6kTpUIHXoPSLK5hmau+XmmHq +Lzl9LskDU/xcDTEz+hyaNnhPbJkqm3eCyhC7H24DOo2m7PtwQM2k4ra6RSlBpp6/zEwjyz7/CVqR +Uoe7ZrPAWdexTpclTiUBtgdqmOmS++EkUAalgxOgRO73jideY5fr6tFpKOhcPYS++XlabXU/q8ch +KTwUdsA1KwPQAX2WYALMylEUScwomZOp08SHawlpgqMB5u/jMvCrnP5ef1rpY+PC1x8CwATEK2FQ +SIgXaVs3+iUJbix2kLBypWk56sDpIkjX0qgy+QF1WNozahT8YA2qPReG0IpmhQ8s5NDNAtY/vZVQ +L5LlD9eFiBqnLcupocJRSHMongqgl3Nrr8bYO8ACY3Uj3OKQxubP8rYFZqmuRc+ggeAJLSB9KK6m +DyFoWVZv9QT3MCUu6kt8YtdZgcfXU2JrtsTG3NwsxDmTXZeYWqBEGLAeVLyaky0jVQHpr8XLOAMQ +76Av8QcbTgPGfvOc8E12DlubKx39B27cFwUnFelBpW0Gah06ffyMTNI/wvrDikSAIHi3Ip/KdZ45 +sCLR/D5Eju4pPYr29uv/D9WA5nT8tcMT2T5zuG0YGONLSQLrh3adIJb3B7cO4o+GFQ4w9ozmNwjy +XNiJl74GvP4bGKcEwGI3UISZN4D4xkxquOgTmbQlXS3pPUNcQtGqnRMYxq83elLTH9EvXO6csoNa +FPyv1fT7Dc9zXVglv+D3nxCJN1B4wriz/zjnND97Z8qfsC+q8lIBvGf9iJHRxNBpbcoRDA278wUs +u6zNHnWyfH9i3kVph84bfX/qPk9daiYPPDnCgVWUB2ekdyF1g8oxx1iD0WLlHGgP/kr2LywN/gNZ +jBHZfX7LN+DSOmaqCA4fpv3g6ucwJ84aL/mhoKYWBxL8MOd4dOoFTIh24r7ist9BFo813mRD4nG5 +VX28640UHdtJo3w97/PF44LRPewOm3NrMcZAbr3bX/7hDt8vo9G2w18G8G9Sq/3Kd3pWkc0Pb2de +q11To3ZFTpw94Vzvt9J7TCH5INNx9A2GBPt9Bpmlro3wP328O5rIkQla1Y2wB+/UvPoWliZx6iPT +I/nA7GlwkEVajSyJIjkYdc0evolfH621deqJQwWHjn7gynivCDHK2dO6TfXGbzBNgOuSMwi+JGEP +7+zYqSvgy1s6jm9j73g8J6pvizbD3gNuLn98a6Ph3AZI6DWObAdw6vXFevKTjTz1/hniBnmNevFo +6Fwmj3Gyj0kHoFWU9sMngBYp65WIndDtlbSf+uvjBcrcNpSTG8V4+KGmOwfkscwN050M0KxD+hZ+ +Sv2MPsZkI8tBrQ9836av8oMgt5+OW0/BK2HVa+WocutyAMm/348eYTrlGJL0PPG8LskolM6h6B6D +YmqD4+UHIrk8ZPp1bK6SphM6RQmobbGjjcVkNzU3vGBX3XDvdRHKeA4WzfMvy2cgmSKvgnrUzCo6 +vli0Dkjkwn1P6STDqyEkPq72xsPQzyBsERgLfI943SI5+IwlM0BgZJbiwIz0uCP/pHUKYXXqR6oL +9vSkP5GrtZhIHfGD+ZCqjhW3ajMRPG2Q5dNEQtNdEAxRYT4cox7TT9rT5jgVziidgg== + + + Re/aYJEHjAECbkCm2GOF0HyGueQZyJRDed9mW2hXeHsA7eY9BXwA7wFO7lek2wz4y3ELEHYDprbB +xQ093ys+SXOlz+aDr9GcKbWTfZcvblzQZVN7EPDRS2bdolGqiSEnekebPWpt3icxs4/WIthAyrVj +E+BmeU9y01w5bWlR+CZDCheG1/m4c35wMfeFarqKQ7P9dhz1tkovxOCHJU1O9wf5d0jm0S4+QSDq +hzx+YfJ3+ggfmK1JpnKDpKXR7IHs7KM4SvYEx/dQPsy1vyXRzfbXF6hcEODon9IO2vva6emdJnVI ++FmiwEXGih8C1rJ3C/U1u25oWz+wcx/qbJCaIUr+YDO3+bGOJM2QphwSVaG9gqDVqNG4sBN47jtd +FauFajhJ0QtviQ/ovZ1ukF92ywuys/mE5AdZH7cs9KTEtUrlXqArJUDEh9Saf/nxXipj3bHFWWHP +MyK+0MPrA7WCJy8sljyA60zEnYKxUTNIyIXNXSF4tUV0x9o/iOj35ALidSLMfTImtKByahvkhG27 +kD2PLwFlCLqXrH0xSV0gxp9lwM02i1+RFw0zDTNd2k1O6BB2wTCppa39yn14N+/8YDrbziPXBb9Y +Dg84g4bjRz7+ExpsCUMGNb4f0OmFpcFqbz+1Ud3fEkpGLOhaNC0wYNy08DazzvS8byuGh69gYn+C +5cBWp1Zu09wYE6ruNBdWHxid1eDirxAnfQ9LIxo9qvOfXzn9bX+/LOAIcH+Bv386sbf5341H1X4B +bHX/n7o+ho5Y26MPwUsddco4veq13yqgI99Yrtc6OvnXanX03UQKdMQEDd1vuf88oclwb7Sne6eS +VLFblEArTCme0RaPoY7WwnI0SeiH8EuTdQ5KbiR2EAeMQz62/Q6GXsnemK8Ixiaz+IX41NcOvi8g +yEjrOz2ame4BwvrqOIdTLSh+A8C22vXGOfJDeuI4Nfj5NzDwG8EJjlX/99CwjOC7wk00dUc6guZ0 +seI8ftq/HiewS3tHSmPZI77jcYYNVVoovspxy/ubjQP0uxXZlBcllxZ55Qi+H0C78lqHftocrplB +3ddyjQ509MLglL0IGgdbpX0hhOP9Lb0wlJz/arj1Qs+9HDhAiayeYIKXBH/pH8nyBBN0JOxfFEc5 +AoeGwuXu7MoiFkLb5IQ00bakPC2Z76HBxa8I7FM0zMQUxtIwTC7uSmEIBY7EKUyPysjBaRdH9MFU +exT2wt5ZB/Ck1hw4WMQanyFCzmNeCNthFxgmuECFA1Y3V7DlXUccEiEw/oOKqf1nJ4WJw0YWkegR +WotOQV2duLOVWBbpb61SEaAIM+vFAwXX3cLUEPMACnMDdwkSplVAVz0sR6DEwj6Pvt+wsMtlc5OY +CTuRBAezev+GtfQ8juXnycATvx0iPMsmPBht1LLROFh4Wa4HP9bZnLXR8Wo9alX98WKkVY4UGKuB +Xi98P7Qrz3c2GGd35yANw8EHLbH/40PATLg7chKumA+zFBLWqDDJzQFPUPzxkyC/+HY+zz9K3OP0 +OBEGEecC48BRK7r9bPmOUOIN85PInrha7kl3f3Phyp7gW6I4vbCYKd3Y4/Aw9fJIjxEqV6NU3vAL +iMM9vTCKhobcrIbE1ChA4bahITMgWLB2lmniTuqiTNw3DP7Jm3dHBhTTY7B+h+ORiZhdFT18r6C1 +Vb5pgqeBI0kc/3NfAVA+ugSuWnQWGnmOQGFh0IwCHHGYEEb1J61SDgZNag4ZcoGjLQqwPqCuRnXP +bT8xSr9kFu0EdQ1tkd7aY12lc0lehEz2GHKx0DWtLxYUNsh1PYbkdI/xOZ8AXpitllkb4JxbXGPZ +AsxZbw1KGZNcyGDwVCWMXLUvLAv6CgSyz/xFEA9Wah1Zvl3ODJLccQQQZ/0l9sbMd+irNXPHeTgJ +1vQ+yHxZz8GXcWrgZXkUyPjJASbxS+nRyb1g9+k/VRwd9A22QT/NoVhReaxIX4AVzz93yCHhFwAf +bX9idWz54ZtmBq2XxJUqlaaxpTSXxMGApofpX6krCpk5Fsgimz0mhnNLTrVgvXFGLpFMsykXmBxC +tF+yjyvbA1di/bo5mbIEL+NRcQWQ44Q8sdOjww1oV1NHXWKR0DiiSBsIOEQ4vpA8ua4/F8/2uTY5 +kjT/4o0yBTrHF/m3z6OD7Uipz+NQHPSZtsc4MqFBXLlpj7k5DEaeaLsKupXBvOIsXRzHQGdjJswc +QlpfmJ9QWaxKC3dOTUOL+Zdm4VI5qjg659UZo5RlmaDOySZzjs8W2/yY7mamRifSKyzqWxQHCFQZ +QsL1CQl7Wpnya2yb6vCXteQ9KGQwi1GbpQ694XyLDBFBKDI8sLioqiOIxNvaI4IhLgtzogNoviyx +QClnTnCUqkcDLR9L0RNnfeXi6b9yDcjJGD4sPPSv8yEGQcvNzyK3Y1JjD2NLlCTPwUKO7PBo8AgS +qvGskywK7SGStPUeccQ4+GL2fLsNJqLiqtw4CB0ZTK5OA+3THpCcob5Yfq4pB0WZFA6pEzgQqEW6 +HtEVaiD3zHlvLmhORWBXgYonVVua8/K0wylcGWFjyhGk7nX43FMdztvVsIYnjj11NYDpFWfyJQXM +GcZ0bQnTWEEbB3y6jsBaMJzMhWQglckkyCFC5m3yMRj521SHFSW5I58+MwJxHFQ0vJQfcUIPNnWR +G8tiUlDc5+RbxoBuyCdzPHjj5QjgPAObXD+Zz0ZXLwsP9pAOYeNWVt6ZQ0juS+tjJI5AV513msAe +zO7Wr8ShmTwPXHoKc6JDat4ypoXPEzsC/H3sKHrlTkKTBogbCyjTmIohF0gPQ2dxcVRoIphL8jYG +yyWUfRIyFwNRKmUrY7m6EI7JEE/Y5il9NPbVsKdMopoUETBEHBwiSQ6eLg8+pOJuKHR2i8YvTUiK +MCwcUs5+cT3Hoos7Y14XclyFV0imo1xYQO3AgUrE8jyjFL601RbQESiM3u8IIlRj8luPh57OJgxF +w085VkrhuxpYo9l8u/013sc7OHOI6b8QPJm+j6Wsffg426RjRia6tAuvRKCYvx1CF7aXV8rvtBKz +9CiCO5cc5GLU+BI0YFinfa6JEctuEyGHiIiXtSdM7A9VOarAsSOpbnTOSe2755CR/xJuTbtvTj7Q +rLFUZlj0wBP1mrSOOQJUzZwCS0+OzIcd1tUk19k9jKPTxJUw3DJHiNrXl+dkBF9zH9u403o8jmPi +SZNh9NhxghxGZ0MeA2Tjszx3ImtCMsXllORYEIDk+OSfAc+thTFUj9YONpI+2DiZ5UsEhyFML7GP +kcAHLXueZen2ETsgQIycIbzRfkRvYx/j/V/1TmcLXhOKtusQ0y72UrCOLmY0g0hZYbeQh5XAy9sJ +PlFblUBERQFZiPg0xMZHzoTEYS0cVKDeWB8P+JDC8LraY/0eysTQFiZ2rI4wuc8n0IvSg+K01tMk +j/VoxWvWuD7sDli/PJwv4+WsjZf6a8mNXBXdDatCnt+oEgbjq6BN7mtRNIeIzy82z9nsl871xjl5 +J9IKJohT5PxB8L4Iwe0dvBt5IkHaqpIqHCp8YmA17rUcGXhuyxmly7FhqC/MaSwL65hqcDKDPYe7 +5Ms/BJdGR7fS3gcNW0zI8UG9hkY6VYbHDdB3qASNhRZkpsGcxDxmH1a6zQaMc1hOncc/g9D4FObx ++FEC1gY1ydLO1gGltFhRFFKEnn3N0OK45NaY2fO5Hl2YupXZzu1xKrowtjUGF1461c/A3osQEArK +H0nkgtKLli62ZhdtY6jtpHYJPjyRlj5hKml8k/GumTe7al/4lf3i+BgrPop/c6OVaLIf2ywB7/mf +DD+sIxI23lIplYOEupDkI3JCBED79Vk/OjKwKKS2EOOPv7+8Oeihyw4Dl8/DwE+MoyLHBf5llbJ0 ++Pjmov48hcNQg7VKjNFwyGFhzkhnl+OFTxfe06b1L1BIm4mmOM6hi5fO8t3jTyxoK1+t7N/gqJ6a +aP/pQ8UMcOHwUOl69WzC2kQES9rasWSC3ZONhW/EUm/fuPQ6uB4wEvthNn99RHT12u8cJ25b+pZx +W2BAU90eju12H/XNT5RF1ZVNOFJXVqo+OGlKKg8ZOSrYHjB6gJHlMX86LehjUzv5finCSREjy7yN +QsLLlyG5zHdKxKipfShqkTw2xJOzr0yaI4BbyV/+TbxSMkHGZyN1UKR8yGhUoC3dYLhNva3c0FGV +Ia4zDejvGsKvPVZY7zM9y4YDM3EzWxkNa4f1szFfBAxpbjGITSYjx9imlPp5++HFqKQpQ6djBvxh +8moo1quHGAeTzTzXuo+D1b6N5JhBWmYyLRQzAcjjgD6n9ZGkjB8KRt0QOb2IjP3MkHM9YPQQ4uJk +92ez97CkWfcjHsNkBWJNHwWfBD1CSDjB6aGk9x8stW+GJ8ZIsqtxEjp2wY8/2TjB/pAl+aDElQL/ +UMFFYifymfYN0iO8uf3nokSMH5JVqYGXW8LYFgg2GKvz91IFQjeXEJIey4V8pTzL4OuwN26VG8dF +3dgW8/STSxt/lHte6TaaT1iJSmMh5Yvjg4H08lyPmpO18/Jn8xyrXjiH43L8MLGFirfLq0oHYO2H +tjjqQsOLu9kcDbRUFLSCpg3IdHZfCFCGS5rRcRyfB+AcTKLImD3GBMUnz3ppHhDGpTWYpy3HP7CJ +Mco52LB4wk+BLmXpu7BX2J9PlDDLuSmz48u4BA+y25OuA0cYW96Ez3jp8U12SFLRi7/P6QHkHzp0 +5BNpPq5UC6x8+90RyoWYJHpcKVH9spXoylQd06yQB2rSCzE59sjOpPIYb/BxdXaOF0U3TxfKqlAI +1RxBKl+vnym2w7viQEOQxVgpg11fZOCyHEJ0vvQejZwHaNH5bmWbeTsBakpNt1dL5Ix51dL8hMnn +VdSkC7bvYtJuoWyWTjK49GOkyBGi5PqB9CabOqEBogUk0Hmti/DTc/yYAMDGW9amhxVbWsFuPiAX +nDlCCGU9QPbKnqCMWL6MIMRPScKOq2SBUmV11HB80ETUHJ15vFVPGn2fqNbDkNIcc8/jkiNM+evb +c7JgrHvrwcFQXNH3xANibcnWo4YGS9GCKAzdnzRYUlzeDEw0/0oFxjW9FVxeEh4zHvtEaf9nF5RN +DjvYK0qSgtKOyDq3X0QoZawHtpxHfjx/qmiB2Hsx7ETE95DM5Hy6EawaXIvFygAj6G7zHb5emNjs +8c5+Udy3KFn4erhvzckmVYz/C+NTtHysde3jgGfd0vFUE4oC6IPbdJOCl/wTvgCgcFcw+n9LIIm1 +AFR69FjEvFUOjhMCic2PzkppAKILqXWW3vTERkg4m3ihREDi43KRszlfs0xYv1kyJPxOqXNK+Ijh +xyGi3Ov7OXP9UzzbdgLHXEm9iulKC9bMIQT3Hdaz7XiYqKxbAseGshoV063yaJdHEMxBD5/mE2jo +uFZg9bPVgg8Xbx/OfZOSgevXzK19jpY40H30qiSFHU49cfmcRu+ZEg0ZDiAhWeyG3w== + + + RWbJIDmV6pR/Y3FjyY9ZhTGZuRrKi4yisi4JnZskQ0uvyOh050CliZKeiMXC+WuMz7QrKpWSBbyk +QumY0uQF8PR3jUIOixXOi2soDsO+NfExzg1q7qb+WCX0xBtOmo1D3dKiufcpiwlz73mtfe1fvR1G +WcWxL1U5UCql7uGy8RGnNpX60ZinUE6XZekfdhwcTiSRPud1Q43PqiVZDHQDEh0EkM+OOZybd0Tv ++OiEHhSLTaniOVo1wXFET4fn8mJ5QN3mWQCbEFmyr3GZ7K1bwHuTDBMY1MMgCpFy8pV6GV/zwRTh +eA9Orma0Ic39hAsCtDznFRC5xntLcbbUlODDMUuvBEiOdS1F1kCNhwjRjmf33ervAPVDyTeokoTt +4oSyfBUdHr6GKEJI/0RmhCFQ4BCT1/583i8fa+88C6sTKk2mOm7JNFTMfkuT9LMOqqgeSMeo5YKo +qiWJg++DmNYkrdgsOpHiCBH+RulxIA4thwSax9eJfThuQ77ajGOynIIQcnSwAUu6uK5i94EoTayV +Or50mSv1G/p4acKGyF8kui3hvgNa4I6aEPkTUdhZvVxZTHk5fFRxPT6b7ZZEumpuPKwplI/ZZldS +NUAJgupKQPQdkxqDwcmamYySDpndO4OqNIdCIVtpcqAIp+Ic0u8eapSZD953eyxKQbzvGVJgbn5o +gBRGElywDw+BhpDEYnL8rDKNYxUvMFNi0EtwciCIGjl4clxQcuvgYttgkAUNw9hyANnLF1vzVH/s +l+eQEQ3BgHhBn1t+PC9uU2SdlMmG44meizr46PB1FQAHlEdLAD0AQQBCSqyI+ER3X9Mp9LtTrNl1 +iEMmuBJCBEZUDigl/GNYOng8d3d7WMDzbNTOHgyVJ/8BBj8uG2TAViaGLs7tawBEAwZPOH4UQx0G +DfpCaPXNFvqJtGuQSr3KjCmgoBsIAtW5Aag5aQNQubuBKBvVURTUdp/YtLa70G/S7G59U8iHp9AP +16ZT6DcDucp8O8oKyXSCXHGGmuDSBoTcKNzArJc2YOWtDeQJMAUORUGuTm8OAtU9QcsgDVgbhRuo +GYo2MPEEuAEhNAhu2QFCSkwwiIiIiISipCaoUlJkCokYdaRIEiRRR6TEKKkJqqKSTCBGXTABEimh +I1FDqCY4kqOBBnwTCMEUQPmkNqriBrB3kAYyBU0bENITeAM3e6ghssIgKSpJnQPxhBmEjDJESIh0 +ih4SSGIQQsAwEAdxIIySDBIQARESIjACYpCIBGKqxhwDyPbLK2djQjNoUKT26jPcPg2Lcmp4XY0F +oZSMZWmj9gUrfGwbff/uDevSKxh/ANEcxkdOm1mqt9+bfuN3pSv816MUPrxFfa1BM7SPgUFJ7xjl +2V9N2FO7tZZw9XFShDbzXtqQPbFvyC7HZDC0LPGTH0JuEMJEKJoTIfbasNihK3Ha+PHHvpk16YKp +oF2UaC+iUEtZUo2d7GbCBl1DKycWmPFAOnhE+gBRKsMrC1FjckMydJM+/0i1yrJ5eKSxy/SeCADw +z39H173p5Q6Yc9m5R5H0WIVJyLoJBMUTt8LLftTyggxaxQj7cSqLfx/+zmtN4hZWT3nhQLXhgCrh +QEIcDi8xl0D9jdHJ4xY7dey0KR+jNDX4m6aQq0Z1jQ9WwBoMxKvng50BNO5+McwHY9x6WKOtHoTt +eKsF+WKBEOicVTQPJUI8DQbahyaZNNgxVsLwQ5YZh9prBw== + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + CellsGenesPeaks + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + RNAATACGene regulatorynetwork