-
Notifications
You must be signed in to change notification settings - Fork 73
Description
Describe the bug
ValueError: Unrecognized configuration class <class 'transformers.models.qwen2_5_vl.configuration_qwen2_5_vl.Qwen2_5_VLConfig'> for this kind of AutoModel: AutoModelForCausalLM.
Model type should be one of ApertusConfig, ArceeConfig, AriaTextConfig, BambaConfig, BartConfig, BertConfig, BertGenerationConfig, BigBirdConfig, BigBirdPegasusConfig, BioGptConfig, BitNetConfig, BlenderbotConfig, BlenderbotSmallConfig, BloomConfig, BltConfig, CamembertConfig, LlamaConfig, CodeGenConfig, CohereConfig, Cohere2Config, CpmAntConfig, CTRLConfig, Data2VecTextConfig, DbrxConfig, DeepseekV2Config, DeepseekV3Config, DiffLlamaConfig, DogeConfig, Dots1Config, ElectraConfig, Emu3Config, ErnieConfig, Ernie4_5Config, Ernie4_5_MoeConfig, Exaone4Config, FalconConfig, FalconH1Config, FalconMambaConfig, FlexOlmoConfig, FuyuConfig, GemmaConfig, Gemma2Config, Gemma3Config, Gemma3TextConfig, Gemma3nConfig, Gemma3nTextConfig, GitConfig, GlmConfig, Glm4Config, Glm4MoeConfig, GotOcr2Config, GPT2Config, GPT2Config, GPTBigCodeConfig, GPTNeoConfig, GPTNeoXConfig, GPTNeoXJapaneseConfig, GptOssConfig, GPTJConfig, GraniteConfig, GraniteMoeConfig, GraniteMoeHybridConfig, GraniteMoeSharedConfig, HeliumConfig, HunYuanDenseV1Config, HunYuanMoEV1Config, JambaConfig, JetMoeConfig, Lfm2Config, LlamaConfig, Llama4Config, Llama4TextConfig, LongcatFlashConfig, MambaConfig, Mamba2Config, MarianConfig, MBartConfig, MegaConfig, MegatronBertConfig, MiniMaxConfig, MinistralConfig, MistralConfig, MixtralConfig, MllamaConfig, ModernBertDecoderConfig, MoshiConfig, MptConfig, MusicgenConfig, MusicgenMelodyConfig, MvpConfig, NemotronConfig, OlmoConfig, Olmo2Config, Olmo3Config, OlmoeConfig, OpenLlamaConfig, OpenAIGPTConfig, OPTConfig, PegasusConfig, PersimmonConfig, PhiConfig, Phi3Config, Phi4MultimodalConfig, PhimoeConfig, PLBartConfig, ProphetNetConfig, QDQBertConfig, Qwen2Config, Qwen2MoeConfig, Qwen3Config, Qwen3MoeConfig, Qwen3NextConfig, RecurrentGemmaConfig, ReformerConfig, RemBertConfig, RobertaConfig, RobertaPreLayerNormConfig, RoCBertConfig, RoFormerConfig, RwkvConfig, SeedOssConfig, SmolLM3Config, Speech2Text2Config, StableLmConfig, Starcoder2Config, TransfoXLConfig, TrOCRConfig, VaultGemmaConfig, WhisperConfig, XGLMConfig, XLMConfig, XLMProphetNetConfig, XLMRobertaConfig, XLMRobertaXLConfig, XLNetConfig, xLSTMConfig, XmodConfig, ZambaConfig, Zamba2Config.
Steps to reproduce
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from minference import MInference
model_name = "/path/to/model/Qwen2.5-VL-7B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=False,
attn_implementation="flash_attention_2",
)
minference_patch = MInference(
attn_type="tri_mix",
model_name=model_name,
attn_kwargs={"last_n": 128, "starting_layer": 16, "n_local": 512, "n_init": 8},
)
model = minference_patch(model)
prompt = "your prompt here"
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device)
output = model.generate(**inputs, do_sample=False, max_new_tokens=50)
Expected Behavior
No response
Logs
No response
Additional Information
MInference==0.1.6.0
python==3.12.7
torch==2.8.0
vllm==0.10.2