diff --git a/numpy_questions.py b/numpy_questions.py index 21fcec4b..853790ed 100644 --- a/numpy_questions.py +++ b/numpy_questions.py @@ -37,11 +37,13 @@ def max_index(X): If the input is not a numpy array or if the shape is not 2D. """ - i = 0 - j = 0 - - # TODO + if not isinstance(X, np.ndarray): + raise ValueError("Input must be a numpy array.") + if X.ndim != 2: + raise ValueError("Input must be a 2D numpy array.") + flat_index = np.argmax(X) + i, j = np.unravel_index(flat_index, X.shape) return i, j @@ -62,6 +64,12 @@ def wallis_product(n_terms): pi : float The approximation of order `n_terms` of pi using the Wallis product. """ - # XXX : The n_terms is an int that corresponds to the number of - # terms in the product. For example 10000. - return 0. + if n_terms < 0: + raise ValueError("n_terms must be non-negative.") + if n_terms == 0: + return 1.0 + + n = np.arange(1, n_terms + 1) + terms = (4 * n * n) / (4 * n * n - 1) + product = np.prod(terms) + return 2 * product diff --git a/sklearn_questions.py b/sklearn_questions.py index f65038c6..879a9f3f 100644 --- a/sklearn_questions.py +++ b/sklearn_questions.py @@ -2,73 +2,98 @@ The goal of this assignment is to implement by yourself a scikit-learn estimator for the OneNearestNeighbor and check that it is working properly. - -The nearest neighbor classifier predicts for a point X_i the target y_k of -the training sample X_k which is the closest to X_i. We measure proximity with -the Euclidean distance. The model will be evaluated with the accuracy (average -number of samples corectly classified). You need to implement the `fit`, -`predict` and `score` methods for this class. The code you write should pass -the test we implemented. You can run the tests by calling at the root of the -repo `pytest test_sklearn_questions.py`. - -We also ask to respect the pep8 convention: https://pep8.org. This will be -enforced with `flake8`. You can check that there is no flake8 errors by -calling `flake8` at the root of the repo. - -Finally, you need to write docstring similar to the one in `numpy_questions` -for the methods you code and for the class. The docstring will be checked using -`pydocstyle` that you can also call at the root of the repo. """ import numpy as np -from sklearn.base import BaseEstimator -from sklearn.base import ClassifierMixin -from sklearn.utils.validation import check_X_y -from sklearn.utils.validation import check_array -from sklearn.utils.validation import check_is_fitted +from sklearn.base import BaseEstimator, ClassifierMixin +from sklearn.utils.validation import check_X_y, check_array, check_is_fitted from sklearn.utils.multiclass import check_classification_targets -class OneNearestNeighbor(BaseEstimator, ClassifierMixin): - "OneNearestNeighbor classifier." +class OneNearestNeighbor(ClassifierMixin, BaseEstimator): + """One nearest neighbor classifier.""" def __init__(self): # noqa: D107 + # no hyperparameters pass def fit(self, X, y): - """Write docstring. + """Fit the OneNearestNeighbor classifier. + + Parameters + ---------- + X : array-like of shape (n_samples, n_features) + Training input samples. + + y : array-like of shape (n_samples,) + Training class labels. - And describe parameters + Returns + ------- + self : OneNearestNeighbor + The fitted classifier. """ X, y = check_X_y(X, y) check_classification_targets(y) + self.classes_ = np.unique(y) + self.X_ = X + self.y_ = y self.n_features_in_ = X.shape[1] - # XXX fix return self def predict(self, X): - """Write docstring. + """Predict class labels for the provided samples. + + Parameters + ---------- + X : array-like of shape (n_samples, n_features) + Test samples. - And describe parameters + Returns + ------- + y_pred : ndarray of shape (n_samples,) + Predicted class labels. """ - check_is_fitted(self) + check_is_fitted(self, attributes=["X_", "y_"]) X = check_array(X) - y_pred = np.full( - shape=len(X), fill_value=self.classes_[0], - dtype=self.classes_.dtype + + # Enforce consistency of number of features with training data + if X.shape[1] != self.n_features_in_: + raise ValueError( + f"X has {X.shape[1]} features, but " + f"{self.__class__.__name__} is expecting " + f"{self.n_features_in_} features as input" + ) + + # Compute Euclidean distances to all training points + # X shape: (n_test, n_features) + # self.X_ shape: (n_train, n_features) + distances = np.linalg.norm( + self.X_[np.newaxis, :, :] - X[:, np.newaxis, :], + axis=2, ) + nearest_idx = np.argmin(distances, axis=1) + y_pred = self.y_[nearest_idx] - # XXX fix return y_pred def score(self, X, y): - """Write docstring. + """Return the accuracy of the classifier on the given test data. + + Parameters + ---------- + X : array-like of shape (n_samples, n_features) + Test samples. - And describe parameters + y : array-like of shape (n_samples,) + True class labels. + + Returns + ------- + score : float + Classification accuracy. """ X, y = check_X_y(X, y) y_pred = self.predict(X) - - # XXX fix - return y_pred.sum() + return float(np.mean(y_pred == y))