diff --git a/numpy_questions.py b/numpy_questions.py index 21fcec4b..361195e1 100644 --- a/numpy_questions.py +++ b/numpy_questions.py @@ -37,10 +37,13 @@ def max_index(X): If the input is not a numpy array or if the shape is not 2D. """ - i = 0 - j = 0 + if not isinstance(X, np.ndarray): + raise ValueError("Input is not a numpy array") + if X.ndim != 2: + raise ValueError("Input array is not 2D") - # TODO + flat_idx = np.argmax(X) + i, j = np.unravel_index(flat_idx, X.shape) return i, j @@ -62,6 +65,15 @@ def wallis_product(n_terms): pi : float The approximation of order `n_terms` of pi using the Wallis product. """ - # XXX : The n_terms is an int that corresponds to the number of + if n_terms == 0: + return 1.0 + + product = 1.0 + for n in range(1, n_terms + 1): + product *= (4 * n**2) / (4 * n**2 - 1) + + return 2 * product + + # The n_terms is an int that corresponds to the number of # terms in the product. For example 10000. - return 0. + # return 0. diff --git a/sklearn_questions.py b/sklearn_questions.py index f65038c6..d3e05ea0 100644 --- a/sklearn_questions.py +++ b/sklearn_questions.py @@ -28,16 +28,26 @@ from sklearn.utils.multiclass import check_classification_targets -class OneNearestNeighbor(BaseEstimator, ClassifierMixin): - "OneNearestNeighbor classifier." +class OneNearestNeighbor(ClassifierMixin, BaseEstimator): + """OneNearestNeighbor classifier.""" def __init__(self): # noqa: D107 pass def fit(self, X, y): - """Write docstring. - - And describe parameters + """Fit the OneNearestNeighbor classifier. + + Parameters + ---------- + X : ndarray of shape (n_samples, n_features) + Training input samples. + y : ndarray of shape (n_samples,) + Target labels associated with each training sample. + + Returns + ------- + self : object + Fitted estimator. """ X, y = check_X_y(X, y) check_classification_targets(y) @@ -45,12 +55,23 @@ def fit(self, X, y): self.n_features_in_ = X.shape[1] # XXX fix + self.X_ = X + self.y_ = y + return self def predict(self, X): - """Write docstring. + """Predict class labels for given samples. - And describe parameters + Parameters + ---------- + X : ndarray of shape (n_samples, n_features) + Samples for which to predict labels. + + Returns + ------- + y_pred : ndarray of shape (n_samples,) + Predicted class label for each sample. """ check_is_fitted(self) X = check_array(X) @@ -60,15 +81,37 @@ def predict(self, X): ) # XXX fix + if X.shape[1] != self.n_features_in_: + raise ValueError( + f"X has {X.shape[1]} features, but OneNearestNeighbor " + f"is expecting {self.n_features_in_} features as input" + ) + + diff = X[:, np.newaxis, :] - self.X_[np.newaxis, :, :] + distances = np.sum(diff ** 2, axis=2) + + nearest_idx = np.argmin(distances, axis=1) + y_pred[:] = self.y_[nearest_idx] + return y_pred def score(self, X, y): - """Write docstring. - - And describe parameters + """Compute accuracy of the classifier. + + Parameters + ---------- + X : ndarray of shape (n_samples, n_features) + Test samples. + y : ndarray of shape (n_samples,) + True target labels. + + Returns + ------- + score : float + Accuracy of predictions: fraction of correctly classified samples. """ X, y = check_X_y(X, y) y_pred = self.predict(X) # XXX fix - return y_pred.sum() + return np.mean(y_pred == y)