From 87961a096afd120e1caa966f9c741f3aa852c37b Mon Sep 17 00:00:00 2001 From: Chloe Date: Sat, 15 Nov 2025 23:23:19 +0100 Subject: [PATCH] Complete Part B assignment --- numpy_questions.py | 17 ++++++++++---- sklearn_questions.py | 56 ++++++++++++++++++++++++++++++++++---------- 2 files changed, 57 insertions(+), 16 deletions(-) diff --git a/numpy_questions.py b/numpy_questions.py index 21fcec4b..c6be32c3 100644 --- a/numpy_questions.py +++ b/numpy_questions.py @@ -37,10 +37,14 @@ def max_index(X): If the input is not a numpy array or if the shape is not 2D. """ - i = 0 - j = 0 + if not isinstance(X, np.ndarray): + raise ValueError("Input is not a numpy array") - # TODO + if X.ndim != 2: + raise ValueError("Shape is not 2D") + + max_index = np.argmax(X) + i, j = np.unravel_index(max_index, X.shape) return i, j @@ -64,4 +68,9 @@ def wallis_product(n_terms): """ # XXX : The n_terms is an int that corresponds to the number of # terms in the product. For example 10000. - return 0. + if n_terms == 0: + return 1.0 + n = np.arange(1, n_terms + 1) + terms = (4 * n * n) / (4 * n * n - 1) + + return 2 * np.prod(terms) diff --git a/sklearn_questions.py b/sklearn_questions.py index f65038c6..0d729a5b 100644 --- a/sklearn_questions.py +++ b/sklearn_questions.py @@ -29,28 +29,47 @@ class OneNearestNeighbor(BaseEstimator, ClassifierMixin): - "OneNearestNeighbor classifier." + """OneNearestNeighbor classifier.""" def __init__(self): # noqa: D107 pass def fit(self, X, y): - """Write docstring. + """Fit the OneNearestNeighbor classifier. - And describe parameters + Parameters + ---------- + X : ndarray of shape (n_samples, n_features) + Training data. + + y : ndarray of shape (n_samples,) + Target labels. + + Returns + ------- + self : object + Fitted estimator. """ X, y = check_X_y(X, y) check_classification_targets(y) self.classes_ = np.unique(y) self.n_features_in_ = X.shape[1] - - # XXX fix + self.X_ = X + self.y_ = y return self def predict(self, X): - """Write docstring. + """Predict class labels for samples in X. - And describe parameters + Parameters + ---------- + X : ndarray of shape (n_samples, n_features) + Input data. + + Returns + ------- + y_pred : ndarray of shape (n_samples,) + Predicted labels. """ check_is_fitted(self) X = check_array(X) @@ -59,16 +78,29 @@ def predict(self, X): dtype=self.classes_.dtype ) - # XXX fix + for i, x in enumerate(X): + distances = np.linalg.norm(self.X_ - x, axis=1) + nearest_idx = np.argmin(distances) + y_pred[i] = self.y_[nearest_idx] return y_pred def score(self, X, y): - """Write docstring. + """Return the accuracy score on the given test data. + + Parameters + ---------- + X : ndarray of shape (n_samples, n_features) + Test samples. + + y : ndarray of shape (n_samples,) + True labels. - And describe parameters + Returns + ------- + accuracy : float + Mean accuracy of predictions. """ X, y = check_X_y(X, y) y_pred = self.predict(X) - # XXX fix - return y_pred.sum() + return np.mean(y_pred == y)