diff --git a/numpy_questions.py b/numpy_questions.py index 21fcec4b..c31f4b9e 100644 --- a/numpy_questions.py +++ b/numpy_questions.py @@ -37,11 +37,11 @@ def max_index(X): If the input is not a numpy array or if the shape is not 2D. """ - i = 0 - j = 0 - - # TODO + if not isinstance(X, np.ndarray) or X.ndim != 2: + raise ValueError("X must be a 2D numpy array") + flat_index = np.argmax(X) + i, j = np.unravel_index(flat_index, X.shape) return i, j @@ -62,6 +62,11 @@ def wallis_product(n_terms): pi : float The approximation of order `n_terms` of pi using the Wallis product. """ - # XXX : The n_terms is an int that corresponds to the number of - # terms in the product. For example 10000. - return 0. + if not isinstance(n_terms, int) or n_terms < 0: + raise ValueError("n_terms must be a non-negative integer") + if n_terms == 0: + return 1. + pi = 2. + for i in range(1, n_terms + 1): + pi *= (4 * i**2) / (4 * i**2 - 1) + return pi diff --git a/sklearn_questions.py b/sklearn_questions.py index f65038c6..8893cf1c 100644 --- a/sklearn_questions.py +++ b/sklearn_questions.py @@ -28,47 +28,81 @@ from sklearn.utils.multiclass import check_classification_targets -class OneNearestNeighbor(BaseEstimator, ClassifierMixin): - "OneNearestNeighbor classifier." +class OneNearestNeighbor(ClassifierMixin, BaseEstimator): + """OneNearestNeighbor classifier.""" def __init__(self): # noqa: D107 pass def fit(self, X, y): - """Write docstring. - - And describe parameters + """Fit the OneNearestNeighbor classifier. + + Parameters + ---------- + X : array-like of shape (n_samples, n_features) + Training data. + y : array-like of shape (n_samples,) + Target values. + + Returns + ------- + self : object + Returns the instance itself. """ X, y = check_X_y(X, y) check_classification_targets(y) self.classes_ = np.unique(y) self.n_features_in_ = X.shape[1] - - # XXX fix + self.X_train_ = X + self.y_train_ = y return self def predict(self, X): - """Write docstring. + """Predict the class labels for the provided data. + + Parameters + ---------- + X : array-like of shape (n_samples, n_features) + Test samples. - And describe parameters + Returns + ------- + y_pred : ndarray of shape (n_samples,) + Class labels for each data sample. """ check_is_fitted(self) - X = check_array(X) + X = check_array(X, ensure_2d=True) + if X.shape[1] != self.n_features_in_: + raise ValueError( + "X has {} features, but {} is expecting {} features as input" + .format( + X.shape[1], self.__class__.__name__, self.n_features_in_) + ) y_pred = np.full( shape=len(X), fill_value=self.classes_[0], dtype=self.classes_.dtype ) - - # XXX fix + for i, x in enumerate(X): + distances = np.sqrt(np.sum((self.X_train_ - x)**2, axis=1)) + nearest_idx = np.argmin(distances) + y_pred[i] = self.y_train_[nearest_idx] return y_pred def score(self, X, y): - """Write docstring. - - And describe parameters + """Return the mean accuracy on the given test data and labels. + + Parameters + ---------- + X : array-like of shape (n_samples, n_features) + Test samples. + y : array-like of shape (n_samples,) + True labels for X. + + Returns + ------- + score : float + Mean accuracy of self.predict(X) with respect to y. """ X, y = check_X_y(X, y) y_pred = self.predict(X) - - # XXX fix - return y_pred.sum() + return np.mean(y_pred == y)