diff --git a/numpy_questions.py b/numpy_questions.py index 21fcec4b..4eb24614 100644 --- a/numpy_questions.py +++ b/numpy_questions.py @@ -37,12 +37,19 @@ def max_index(X): If the input is not a numpy array or if the shape is not 2D. """ - i = 0 - j = 0 + if not isinstance(X, np.ndarray): + raise ValueError('The input is not an array.') - # TODO + if X.ndim != 2: + raise ValueError('The input is not 2D array') + overall_max = np.max(X) - return i, j + for i in range(np.shape(X)[0]): + for j in range(np.shape(X)[1]): + if X[i][j] == overall_max: + return i, j + + return 0, 0 def wallis_product(n_terms): @@ -62,6 +69,11 @@ def wallis_product(n_terms): pi : float The approximation of order `n_terms` of pi using the Wallis product. """ - # XXX : The n_terms is an int that corresponds to the number of - # terms in the product. For example 10000. - return 0. + if n_terms == 0: + return 1 + else: + prod = 1 + for i in range(1, n_terms + 1): + prod *= (4 * i ** 2) / (4 * i**2 - 1) + + return prod * 2 diff --git a/sklearn_questions.py b/sklearn_questions.py index f65038c6..e3dbec9d 100644 --- a/sklearn_questions.py +++ b/sklearn_questions.py @@ -28,47 +28,96 @@ from sklearn.utils.multiclass import check_classification_targets -class OneNearestNeighbor(BaseEstimator, ClassifierMixin): - "OneNearestNeighbor classifier." +class OneNearestNeighbor(ClassifierMixin, BaseEstimator): + """OneNearestNeighbor classifier.""" def __init__(self): # noqa: D107 pass def fit(self, X, y): - """Write docstring. - - And describe parameters + """ + Fit the classifier with training data. + + Parameters: + ---------- + X : array-like of shape (n_samples, n_features) + Training data. + y : array-like of shape (n_samples,) + Target labels. + + Returns + ------- + self : object + Returns the instance itself. """ X, y = check_X_y(X, y) check_classification_targets(y) self.classes_ = np.unique(y) self.n_features_in_ = X.shape[1] - # XXX fix + self.X_train_ = X + self.y_train_ = y + return self def predict(self, X): - """Write docstring. + """ + Predict labels for new samples. + + For each input point, finds the closest training sample (using + Euclidean distance) and returns its label. + + Parameters + ---------- + X : array-like of shape (n_samples, n_features) + Test data. - And describe parameters + Returns + ------- + y_pred : ndarray of shape (n_samples,) + Predicted class labels for each input sample. """ check_is_fitted(self) X = check_array(X) + + if X.shape[1] != self.n_features_in_: + raise ValueError( + f"X has {X.shape[1]} features, but OneNearestNeighbor " + f"is expecting {self.n_features_in_} features as input." + ) + y_pred = np.full( shape=len(X), fill_value=self.classes_[0], dtype=self.classes_.dtype ) - # XXX fix + for i, x_test in enumerate(X): + distances = np.sqrt(np.sum((self.X_train_ - x_test) ** 2, axis=1)) + nearest_idx = np.argmin(distances) + y_pred[i] = self.y_train_[nearest_idx] + return y_pred def score(self, X, y): - """Write docstring. - - And describe parameters + """ + Compute the accuracy of the classifier. + + Accuracy is the fraction of correctly predicted samples + compared to the true labels. + + Parameters + ---------- + X : array-like of shape (n_samples, n_features) + Test data. + y : array-like of shape (n_samples,) + True labels for the test data. + + Returns + ------- + score : float + Mean accuracy of predictions. """ X, y = check_X_y(X, y) y_pred = self.predict(X) - # XXX fix - return y_pred.sum() + return np.mean(y_pred == y)