diff --git a/numpy_questions.py b/numpy_questions.py index 21fcec4b..c23bd8d6 100644 --- a/numpy_questions.py +++ b/numpy_questions.py @@ -42,6 +42,15 @@ def max_index(X): # TODO + if not isinstance(X, np.ndarray): + raise ValueError("Input is not a numpy array") # Check for numpy array + + if X.ndim != 2: + raise ValueError("Input array is not 2D") # Check for 2D shape + + # Find indices of maximum value + i, j = np.unravel_index(np.argmax(X), X.shape) + return i, j @@ -64,4 +73,14 @@ def wallis_product(n_terms): """ # XXX : The n_terms is an int that corresponds to the number of # terms in the product. For example 10000. - return 0. + + if n_terms == 0: + # Wallis product with 0 terms is defined as 1 + return 1.0 + + n = np.arange(1, n_terms + 1) # Create an array from 1 to n_terms + terms = (2 * n / (2 * n - 1)) * (2 * n / (2 * n + 1)) + product = np.prod(terms) # Compute the product of all terms + + # Return the approximation of pi + return 2.0 * product diff --git a/sklearn_questions.py b/sklearn_questions.py index f65038c6..43373894 100644 --- a/sklearn_questions.py +++ b/sklearn_questions.py @@ -29,15 +29,25 @@ class OneNearestNeighbor(BaseEstimator, ClassifierMixin): - "OneNearestNeighbor classifier." + """OneNearestNeighbor classifier.""" def __init__(self): # noqa: D107 pass def fit(self, X, y): - """Write docstring. - - And describe parameters + """Fit the OneNearestNeighbor classifier. + + Parameters + ---------- + X : ndarray of shape (n_samples, n_features) + Training data. + y : ndarray of shape (n_samples,) + Target labels corresponding to X. + + Returns + ------- + self : object + Fitted estimator. """ X, y = check_X_y(X, y) check_classification_targets(y) @@ -45,12 +55,23 @@ def fit(self, X, y): self.n_features_in_ = X.shape[1] # XXX fix + self.X_ = X + self.y_ = y + return self def predict(self, X): - """Write docstring. + """Predict class labels for the given samples. + + Parameters + ---------- + X : ndarray of shape (n_samples, n_features) + Input data to predict. - And describe parameters + Returns + ------- + y_pred : ndarray of shape (n_samples,) + Predicted class labels for each sample in X. """ check_is_fitted(self) X = check_array(X) @@ -60,15 +81,32 @@ def predict(self, X): ) # XXX fix + # euclidean distances between each point in X and each point in self.X_ + distances = np.linalg.norm( + self.X_[np.newaxis, :, :] - X[:, np.newaxis, :], + axis=2, + ) + nearest_idx = np.argmin(distances, axis=1) + y_pred = self.y_[nearest_idx] return y_pred def score(self, X, y): - """Write docstring. - - And describe parameters + """Compute the accuracy of the classifier. + + Parameters + ---------- + X : ndarray of shape (n_samples, n_features) + Test samples. + y : ndarray of shape (n_samples,) + True labels for X. + + Returns + ------- + score : float + Mean accuracy of the classifier on the provided data. """ X, y = check_X_y(X, y) y_pred = self.predict(X) # XXX fix - return y_pred.sum() + return np.mean(y_pred == y)