diff --git a/numpy_questions.py b/numpy_questions.py index 21fcec4b..a0f57401 100644 --- a/numpy_questions.py +++ b/numpy_questions.py @@ -15,6 +15,7 @@ This will be enforced with `flake8`. You can check that there is no flake8 errors by calling `flake8` at the root of the repo. """ + import numpy as np @@ -37,12 +38,20 @@ def max_index(X): If the input is not a numpy array or if the shape is not 2D. """ - i = 0 - j = 0 + if not isinstance(X, np.ndarray) or (X.ndim != 2): + raise ValueError - # TODO + max_i = 0 + max_j = 0 + max_val = X[0][0] - return i, j + for i in range(X.shape[0]): + for j in range(X.shape[1]): + if X[i][j] > max_val: + max_val = X[i][j] + max_i = i + max_j = j + return max_i, max_j def wallis_product(n_terms): @@ -64,4 +73,11 @@ def wallis_product(n_terms): """ # XXX : The n_terms is an int that corresponds to the number of # terms in the product. For example 10000. - return 0. + pi = 1 + + if n_terms == 0: + return pi + else: + for i in range(1, n_terms + 1): + pi = pi * (4 * i**2) / ((4 * i**2) - 1) + return 2 * pi diff --git a/sklearn_questions.py b/sklearn_questions.py index f65038c6..94115f3c 100644 --- a/sklearn_questions.py +++ b/sklearn_questions.py @@ -1,74 +1,95 @@ -"""Assignment - making a sklearn estimator. - -The goal of this assignment is to implement by yourself a scikit-learn -estimator for the OneNearestNeighbor and check that it is working properly. - -The nearest neighbor classifier predicts for a point X_i the target y_k of -the training sample X_k which is the closest to X_i. We measure proximity with -the Euclidean distance. The model will be evaluated with the accuracy (average -number of samples corectly classified). You need to implement the `fit`, -`predict` and `score` methods for this class. The code you write should pass -the test we implemented. You can run the tests by calling at the root of the -repo `pytest test_sklearn_questions.py`. - -We also ask to respect the pep8 convention: https://pep8.org. This will be -enforced with `flake8`. You can check that there is no flake8 errors by -calling `flake8` at the root of the repo. - -Finally, you need to write docstring similar to the one in `numpy_questions` -for the methods you code and for the class. The docstring will be checked using -`pydocstyle` that you can also call at the root of the repo. -""" +"""Assignment - making a sklearn estimator.""" + import numpy as np -from sklearn.base import BaseEstimator -from sklearn.base import ClassifierMixin -from sklearn.utils.validation import check_X_y -from sklearn.utils.validation import check_array -from sklearn.utils.validation import check_is_fitted +from sklearn.base import BaseEstimator, ClassifierMixin +from sklearn.utils.validation import check_X_y, check_array, check_is_fitted from sklearn.utils.multiclass import check_classification_targets -class OneNearestNeighbor(BaseEstimator, ClassifierMixin): - "OneNearestNeighbor classifier." +class OneNearestNeighbor(ClassifierMixin, BaseEstimator): + """OneNearestNeighbor classifier.""" def __init__(self): # noqa: D107 pass def fit(self, X, y): - """Write docstring. - - And describe parameters + """Fit the OneNearestNeighbor classifier. + + Parameters + ---------- + X : array-like of shape (n_samples, n_features) + Training samples. + y : array-like of shape (n_samples,) + Target labels. + + Returns + ------- + self : object + Fitted estimator. """ X, y = check_X_y(X, y) check_classification_targets(y) + + self.X_ = X + self.y_ = y self.classes_ = np.unique(y) self.n_features_in_ = X.shape[1] - # XXX fix return self def predict(self, X): - """Write docstring. - - And describe parameters + """Predict labels for the input samples. + + Parameters + ---------- + X : array-like of shape (n_samples, n_features) + Samples to classify. Must have same number of features + as training data. + + Returns + ------- + y_pred : ndarray of shape (n_samples,) + Predicted labels for each input sample. """ check_is_fitted(self) X = check_array(X) - y_pred = np.full( - shape=len(X), fill_value=self.classes_[0], - dtype=self.classes_.dtype - ) - # XXX fix - return y_pred + if X.shape[1] != self.n_features_in_: + raise ValueError( + f"X has {X.shape[1]} features, but " + f"{self.__class__.__name__} is expecting " + f"{self.n_features_in_} features as input." + ) - def score(self, X, y): - """Write docstring. + distances = np.linalg.norm(self.X_[None, :, :] - X[:, None, :], axis=2) + nearest_idx = np.argmin(distances, axis=1) + + return self.y_[nearest_idx] - And describe parameters + def score(self, X, y): + """Compute the accuracy of the classifier. + + Parameters + ---------- + X : array-like of shape (n_samples, n_features) + Samples used to evaluate the model. + y : array-like of shape (n_samples,) + True labels corresponding to X. + + Returns + ------- + score : float + Accuracy of predictions, between 0 and 1. """ + check_is_fitted(self) X, y = check_X_y(X, y) - y_pred = self.predict(X) - # XXX fix - return y_pred.sum() + if X.shape[1] != self.n_features_in_: + raise ValueError( + f"X has {X.shape[1]} features, but " + f"{self.__class__.__name__} is expecting " + f"{self.n_features_in_} features as input." + ) + + y_pred = self.predict(X) + return np.mean(y_pred == y)