diff --git a/numpy_questions.py b/numpy_questions.py index 21fcec4b..5ab6d4cd 100644 --- a/numpy_questions.py +++ b/numpy_questions.py @@ -41,6 +41,17 @@ def max_index(X): j = 0 # TODO + if not isinstance(X, np.ndarray): + raise ValueError("Input is not a numpy array") + + if X.ndim != 2: + raise ValueError("Input array is not 2D") + + # np.argmax returns the index of the maximum value in the flattened array + # np.unravel_index converts it back to 2D indices + max_idx = np.unravel_index(np.argmax(X, axis=None), X.shape) + + i, j = max_idx return i, j @@ -64,4 +75,18 @@ def wallis_product(n_terms): """ # XXX : The n_terms is an int that corresponds to the number of # terms in the product. For example 10000. - return 0. + + if n_terms < 0 or not isinstance(n_terms, int): + raise ValueError("n_terms: non-negative integer") + + if n_terms == 0: + return 1 + + product = 1 + + for n in range(1, n_terms + 1): + numerator = 4 * n ** 2 + denominator = numerator - 1 + product *= numerator / denominator + + return 2 * product diff --git a/sklearn_questions.py b/sklearn_questions.py index f65038c6..443b1d41 100644 --- a/sklearn_questions.py +++ b/sklearn_questions.py @@ -29,15 +29,25 @@ class OneNearestNeighbor(BaseEstimator, ClassifierMixin): - "OneNearestNeighbor classifier." + """OneNearestNeighbor classifier.""" def __init__(self): # noqa: D107 pass def fit(self, X, y): - """Write docstring. - - And describe parameters + """Fit the OneNearestNeighbor model. + + Parameters + ---------- + X : ndarray of shape (n_samples, n_features) + The training input samples. + y : ndarray of shape (n_samples,) + The target values (class labels). + + Returns + ------- + self : object + Fitted estimator. """ X, y = check_X_y(X, y) check_classification_targets(y) @@ -45,12 +55,23 @@ def fit(self, X, y): self.n_features_in_ = X.shape[1] # XXX fix + self.X_ = X + self.y_ = y + return self def predict(self, X): - """Write docstring. + """Predict using the OneNearestNeighbor model. - And describe parameters + Parameters + ---------- + X : ndarray of shape (n_samples, n_features) + The input samples to predict. + + Returns + ------- + y_pred : ndarray of shape (n_samples,) + The predicted class labels. """ check_is_fitted(self) X = check_array(X) @@ -60,15 +81,34 @@ def predict(self, X): ) # XXX fix + for i in range(X.shape[0]): + # Compute distances from X[i] to all training samples + distances = np.linalg.norm(self.X_ - X[i, :], axis=1) + + nearest_index = np.argmin(distances) + y_pred[i] = self.y_[nearest_index] + return y_pred def score(self, X, y): - """Write docstring. - - And describe parameters + """Compute the accuracy of the OneNearestNeighbor model. + + Parameters + ---------- + X : ndarray of shape (n_samples, n_features) + The input samples to predict. + y : ndarray of shape (n_samples,) + The true class labels. + + Returns + ------- + score : float + The accuracy of the model. """ X, y = check_X_y(X, y) y_pred = self.predict(X) # XXX fix - return y_pred.sum() + accuracy = (y_pred == y).sum() / len(y) + + return accuracy