diff --git a/numpy_questions.py b/numpy_questions.py index 21fcec4b..3797ceb5 100644 --- a/numpy_questions.py +++ b/numpy_questions.py @@ -37,12 +37,14 @@ def max_index(X): If the input is not a numpy array or if the shape is not 2D. """ - i = 0 - j = 0 + if not isinstance(X, np.ndarray): + raise ValueError("X must be a numpy array") - # TODO + if X.ndim != 2: + raise ValueError("X must be a 2D array") - return i, j + max_pos = np.unravel_index(np.argmax(X), X.shape) + return max_pos def wallis_product(n_terms): @@ -62,6 +64,12 @@ def wallis_product(n_terms): pi : float The approximation of order `n_terms` of pi using the Wallis product. """ - # XXX : The n_terms is an int that corresponds to the number of - # terms in the product. For example 10000. - return 0. + pi = 1.0 + + if n_terms == 0: + return 1.0 + + for n in range(1, n_terms + 1): + pi *= (2 * n / (2 * n - 1)) * (2 * n / (2 * n + 1)) + + return 2 * pi diff --git a/sklearn_questions.py b/sklearn_questions.py index f65038c6..b547a99f 100644 --- a/sklearn_questions.py +++ b/sklearn_questions.py @@ -26,49 +26,100 @@ from sklearn.utils.validation import check_array from sklearn.utils.validation import check_is_fitted from sklearn.utils.multiclass import check_classification_targets +try: + from sklearn.utils.validation import validate_data +except ImportError: + validate_data = None -class OneNearestNeighbor(BaseEstimator, ClassifierMixin): - "OneNearestNeighbor classifier." +class OneNearestNeighbor(ClassifierMixin, BaseEstimator): + """OneNearestNeighbor classifier.""" - def __init__(self): # noqa: D107 + def __init__(self): + """Initialize the OneNearestNeighbor classifier.""" pass def fit(self, X, y): - """Write docstring. + """Fit the 1-nearest-neighbor classifier. - And describe parameters + Parameters + ---------- + X : array-like of shape (n_samples, n_features) + Training data. + + y : array-like of shape (n_samples,) + Target labels. + + Returns + ------- + self : OneNearestNeighbor + Fitted estimator. """ - X, y = check_X_y(X, y) + if validate_data is not None: + X, y = validate_data(self, X, y=y) + else: + X, y = check_X_y(X, y) + self.n_features_in_ = X.shape[1] + check_classification_targets(y) + + self.X_ = X + self.y_ = y + self.classes_ = np.unique(y) - self.n_features_in_ = X.shape[1] - # XXX fix return self def predict(self, X): - """Write docstring. + """Predict class labels for the samples in X. - And describe parameters + Parameters + ---------- + X : array-like of shape (n_samples, n_features) + Test samples. + + Returns + ------- + y_pred : ndarray of shape (n_samples,) + Predicted class labels. """ - check_is_fitted(self) - X = check_array(X) - y_pred = np.full( - shape=len(X), fill_value=self.classes_[0], - dtype=self.classes_.dtype - ) - - # XXX fix + check_is_fitted(self, ["X_", "y_", "classes_"]) + + if validate_data is not None: + X = validate_data(self, X, reset=False) + else: + X = check_array(X) + if X.shape[1] != self.n_features_in_: + raise ValueError( + f"X has {X.shape[1]} features, " + f"but expected {self.n_features_in_}." + ) + + diff = X[:, np.newaxis, :] - self.X_[np.newaxis, :, :] + distances = np.linalg.norm(diff, axis=2) # (n_test, n_train) + + nn_index = np.argmin(distances, axis=1) + + y_pred = self.y_[nn_index] + return y_pred def score(self, X, y): - """Write docstring. + """Return the mean accuracy on the given test data and labels. - And describe parameters + Parameters + ---------- + X : array-like of shape (n_samples, n_features) + Test samples. + + y : array-like of shape (n_samples,) + True labels. + + Returns + ------- + score : float + Mean accuracy of predictions. """ X, y = check_X_y(X, y) y_pred = self.predict(X) - - # XXX fix - return y_pred.sum() + return np.mean(y_pred == y)