From 5877f5ceb07a13fef620ff5b5b98a0c727ed530f Mon Sep 17 00:00:00 2001 From: Mascash1 Date: Fri, 14 Nov 2025 19:43:33 +0100 Subject: [PATCH] Completed assignment - Alexandre Massoud --- numpy_questions.py | 18 ++++++++++- sklearn_questions.py | 75 ++++++++++++++++++++++++++++++++++++-------- 2 files changed, 79 insertions(+), 14 deletions(-) diff --git a/numpy_questions.py b/numpy_questions.py index 21fcec4b..1bd1ee12 100644 --- a/numpy_questions.py +++ b/numpy_questions.py @@ -37,9 +37,17 @@ def max_index(X): If the input is not a numpy array or if the shape is not 2D. """ + if not isinstance(X, np.ndarray): + raise ValueError("Not an array") + if X.ndim != 2: + raise ValueError("Wrong dimension (should be 2)") + i = 0 j = 0 + max_index = np.argmax(X) + i, j = np.unravel_index(max_index, X.shape) + # TODO return i, j @@ -64,4 +72,12 @@ def wallis_product(n_terms): """ # XXX : The n_terms is an int that corresponds to the number of # terms in the product. For example 10000. - return 0. + + if n_terms == 0: + return 1 + + n = np.arange(1, n_terms+1) + wallis_terms = (4*n**2)/(4*n**2 - 1) + product = np.prod(wallis_terms) + + return 2*product diff --git a/sklearn_questions.py b/sklearn_questions.py index f65038c6..9a02f30c 100644 --- a/sklearn_questions.py +++ b/sklearn_questions.py @@ -28,47 +28,96 @@ from sklearn.utils.multiclass import check_classification_targets -class OneNearestNeighbor(BaseEstimator, ClassifierMixin): - "OneNearestNeighbor classifier." +class OneNearestNeighbor(ClassifierMixin, BaseEstimator): + """OneNearestNeighbor classifier.""" def __init__(self): # noqa: D107 pass def fit(self, X, y): - """Write docstring. - - And describe parameters + """Fit the OneNearestNeighbor classifier. + + This method stores the training data so that predictions can be + made by finding, for each test sample, the closest training sample + in Euclidean distance. + + Parameters + ---------- + X : ndarray of shape (n_samples, n_features) + Training data. Each row corresponds to one sample and each + column corresponds to one feature. + + y : ndarray of shape (n_samples,) + Target labels for the training samples. Must be a classification + target (e.g. integers or strings). + + Returns + ------- + self : OneNearestNeighbor + The fitted classifier. """ X, y = check_X_y(X, y) check_classification_targets(y) self.classes_ = np.unique(y) self.n_features_in_ = X.shape[1] - # XXX fix + self.X_ = X + self.y_ = y + return self def predict(self, X): - """Write docstring. + """Predict class labels for samples in X. - And describe parameters + Parameters + ---------- + X : ndarray of shape (n_test_samples, n_features) + Test data. + + Returns + ------- + y_pred : ndarray of shape (n_test_samples,) + Predicted labels. """ check_is_fitted(self) X = check_array(X) + + if X.shape[1] != self.n_features_in_: + raise ValueError( + f"X has {X.shape[1]} features, but " + f"{self.__class__.__name__} is expecting " + f"{self.n_features_in_} features as input" + ) + y_pred = np.full( shape=len(X), fill_value=self.classes_[0], dtype=self.classes_.dtype ) - # XXX fix + euc_dist = np.sqrt(((X[None, :, :] - self.X_[:, None, :])**2) + .sum(axis=2)) + nearest_point = np.argmin(euc_dist, axis=0) + y_pred = self.y_[nearest_point] + return y_pred def score(self, X, y): - """Write docstring. + """Return accuracy on test samples after running predict(). + + Parameters + ---------- + X : ndarray of shape (n_samples, n_features) + Test samples. + + y : ndarray of shape (n_samples,) + True labels. - And describe parameters + Returns + ------- + accuracy : float + Fraction of correctly classified samples. """ X, y = check_X_y(X, y) y_pred = self.predict(X) - # XXX fix - return y_pred.sum() + return np.mean(y_pred == y)