diff --git a/numpy_questions.py b/numpy_questions.py index 21fcec4b..d3d815ff 100644 --- a/numpy_questions.py +++ b/numpy_questions.py @@ -40,7 +40,13 @@ def max_index(X): i = 0 j = 0 - # TODO + if not isinstance(X, np.ndarray): + raise ValueError("Error: input not a numpy array") + if X.ndim != 2: + raise ValueError("Error: input array must be 2D") + + idx = np.argmax(X) + i, j = np.unravel_index(idx, X.shape) return i, j @@ -62,6 +68,16 @@ def wallis_product(n_terms): pi : float The approximation of order `n_terms` of pi using the Wallis product. """ - # XXX : The n_terms is an int that corresponds to the number of - # terms in the product. For example 10000. - return 0. + if not isinstance(n_terms, int) or n_terms < 0: + raise ValueError("Error: Input invalid") + + if n_terms == 0: + return 1.0 + + product = 1.0 + for k in range(1, n_terms + 1): + num = (2 * k) ** 2 + denom = num - 1 + product *= num / denom + + return 2.0 * product diff --git a/sklearn_questions.py b/sklearn_questions.py index f65038c6..faa20350 100644 --- a/sklearn_questions.py +++ b/sklearn_questions.py @@ -28,47 +28,104 @@ from sklearn.utils.multiclass import check_classification_targets -class OneNearestNeighbor(BaseEstimator, ClassifierMixin): - "OneNearestNeighbor classifier." +class OneNearestNeighbor(ClassifierMixin, BaseEstimator): + """ + OneNearestNeighbor Classifier. - def __init__(self): # noqa: D107 + This estimator implements the 1-Nearest Neighbor classification algorithm. + It predicts the label of a new sample based on the label of the single + closest training sample (nearest neighbor) using Euclidean distance. + + Parameters + ---------- + No parameters are needed for this simple implementation. + """ + + def __init__(self): + """ + Init function. + + Returns + ------- + None. + + """ pass def fit(self, X, y): - """Write docstring. - - And describe parameters + """ + Fit the OneNearestNeighbor classifier. + + Parameters + ---------- + X : array-like of shape (n_samples, n_features) + The training input samples. + y : array-like of shape (n_samples,) + The target values (class labels). + + Returns + ------- + self : object + Returns the instance itself. """ X, y = check_X_y(X, y) check_classification_targets(y) - self.classes_ = np.unique(y) + self.n_features_in_ = X.shape[1] + self.X_ = X + self.y_ = y + self.classes_ = np.unique(y) - # XXX fix return self def predict(self, X): - """Write docstring. + """ + Predict the class label for the provided data. - And describe parameters + Parameters + ---------- + X : array-like of shape (n_samples, n_features) + The input samples to predict. + + Returns + ------- + y_pred : ndarray of shape (n_samples,) + The predicted class labels for the input samples. """ check_is_fitted(self) X = check_array(X) - y_pred = np.full( - shape=len(X), fill_value=self.classes_[0], - dtype=self.classes_.dtype - ) - # XXX fix + if X.shape[1] != self.n_features_in_: + raise ValueError( + f"X has {X.shape[1]} features, but OneNearestNeighbor " + f"is expecting {self.n_features_in_} features as input." + ) + + diff = X[:, None, :] - self.X_[None, :, :] + distances = np.linalg.norm(diff, axis=2) + + nearest_idx = np.argmin(distances, axis=1) + y_pred = self.y_[nearest_idx] + return y_pred def score(self, X, y): - """Write docstring. - - And describe parameters + """ + Return the mean accuracy on the given test data and labels. + + Parameters + ---------- + X : array-like of shape (n_samples, n_features) + Test samples. + y : array-like of shape (n_samples,) + True labels for X. + + Returns + ------- + score : float + Mean accuracy of self.predict(X) vs. y. """ X, y = check_X_y(X, y) y_pred = self.predict(X) - # XXX fix - return y_pred.sum() + return np.mean(y_pred == y)