diff --git a/numpy_questions.py b/numpy_questions.py index 21fcec4b..eefb741c 100644 --- a/numpy_questions.py +++ b/numpy_questions.py @@ -37,10 +37,16 @@ def max_index(X): If the input is not a numpy array or if the shape is not 2D. """ - i = 0 - j = 0 + if not isinstance(X, np.ndarray) or X.ndim != 2: + raise ValueError("Input array should be a 2-dimensional numpy array") - # TODO + i, j = 0, 0 + max_val = X[0][0] + for row in range(X.shape[0]): + for col in range(X.shape[1]): + if X[row][col] > max_val: + i, j = row, col + max_val = X[row][col] return i, j @@ -62,6 +68,11 @@ def wallis_product(n_terms): pi : float The approximation of order `n_terms` of pi using the Wallis product. """ - # XXX : The n_terms is an int that corresponds to the number of - # terms in the product. For example 10000. - return 0. + res = 1 + if n_terms == 0: + return 1 + + for k in range(1, n_terms + 1): + res *= (4 * k**2) / (4 * k**2 - 1) + + return 2 * res diff --git a/sklearn_questions.py b/sklearn_questions.py index f65038c6..c638bda3 100644 --- a/sklearn_questions.py +++ b/sklearn_questions.py @@ -35,9 +35,20 @@ def __init__(self): # noqa: D107 pass def fit(self, X, y): - """Write docstring. - - And describe parameters + """ + Train the OneNearestNeighbor predictor. + + Parameters + ---------- + X : array-like of shape (n_samples, n_features) + Train set. + y : array-like of shape (n_samples,) + Target variable. + + Returns + ------- + self : object + """ X, y = check_X_y(X, y) check_classification_targets(y) @@ -45,12 +56,25 @@ def fit(self, X, y): self.n_features_in_ = X.shape[1] # XXX fix + + self.X_train_ = X + self.y_train_ = y + return self def predict(self, X): - """Write docstring. + """ + Predict the class of each sample of X. - And describe parameters + Parameters + ---------- + X : array-like of shape (n_samples, n_features) + test set. + + Returns + ------- + y_pred : ndarray of shape (n_samples,) + predictions """ check_is_fitted(self) X = check_array(X) @@ -60,15 +84,34 @@ def predict(self, X): ) # XXX fix + for i, x in enumerate(X): + + distances = np.sqrt(np.sum((self.X_train_ - x) ** 2, axis=1)) + + idx_min = np.argmin(distances) + + y_pred[i] = self.y_train_[idx_min] + return y_pred def score(self, X, y): - """Write docstring. - - And describe parameters + """ + Evaluate the performance of the model + + Parameters + ---------- + X : array-like of shape (n_samples, n_features) + test set. + y : array-like of shape (n_samples,) + Target variable. + + Returns + ------- + accuracy: percentage of good predictions """ X, y = check_X_y(X, y) y_pred = self.predict(X) # XXX fix + y_pred=(y_pred==y)/len(y) return y_pred.sum()