From 331f4dd3c5646efe7363152c55bb0ba450e1d117 Mon Sep 17 00:00:00 2001 From: Benhiba_El_Idrissi_Mehdi <1mehdiuniv@gmail.com> Date: Thu, 13 Nov 2025 17:51:07 +0100 Subject: [PATCH] Implement OneNearestNeighbor and pass all tests --- numpy_questions.py | 23 +++++++++---- sklearn_questions.py | 80 ++++++++++++++++++++++++++++++++++++++------ 2 files changed, 87 insertions(+), 16 deletions(-) diff --git a/numpy_questions.py b/numpy_questions.py index 21fcec4b..f2673429 100644 --- a/numpy_questions.py +++ b/numpy_questions.py @@ -37,10 +37,13 @@ def max_index(X): If the input is not a numpy array or if the shape is not 2D. """ - i = 0 - j = 0 + if not isinstance(X, np.ndarray): + raise ValueError("X must be a numpy ndarray.") + if X.ndim != 2: + raise ValueError("X must be a 2D array.") - # TODO + flat_idx = np.argmax(X) + i, j = np.unravel_index(flat_idx, X.shape) return i, j @@ -62,6 +65,14 @@ def wallis_product(n_terms): pi : float The approximation of order `n_terms` of pi using the Wallis product. """ - # XXX : The n_terms is an int that corresponds to the number of - # terms in the product. For example 10000. - return 0. + if not isinstance(n_terms, int) or n_terms < 0: + raise ValueError("n_terms must be a non-negative integer.") + + if n_terms == 0: + return 1.0 + + k = np.arange(1, n_terms + 1, dtype=float) + terms = (4 * k ** 2) / (4 * k ** 2 - 1) + product = np.prod(terms) + + return 2 * product diff --git a/sklearn_questions.py b/sklearn_questions.py index f65038c6..535b681e 100644 --- a/sklearn_questions.py +++ b/sklearn_questions.py @@ -28,47 +28,107 @@ from sklearn.utils.multiclass import check_classification_targets -class OneNearestNeighbor(BaseEstimator, ClassifierMixin): - "OneNearestNeighbor classifier." +class OneNearestNeighbor(ClassifierMixin, BaseEstimator): + """OneNearestNeighbor classifier. + + A simple classifier that assigns to each sample the label of the + closest training sample according to the Euclidean distance. + """ def __init__(self): # noqa: D107 + """Initialize the estimator.""" pass def fit(self, X, y): """Write docstring. And describe parameters + + Fit the nearest neighbor classifier. + + Parameters + ---------- + X : ndarray of shape (n_samples, n_features) + Training data. + + y : ndarray of shape (n_samples,) + Target labels. + + Returns + ------- + self : object + Fitted estimator. + """ X, y = check_X_y(X, y) check_classification_targets(y) + self.X_ = X + self.y_ = y self.classes_ = np.unique(y) self.n_features_in_ = X.shape[1] - - # XXX fix return self def predict(self, X): """Write docstring. And describe parameters + + Predict class labels for samples in X. + + Parameters + ---------- + X : ndarray of shape (n_samples, n_features) + Test samples. + + Returns + ------- + y_pred : ndarray of shape (n_samples,) + Predicted labels. """ check_is_fitted(self) X = check_array(X) + + # Vérifier la cohérence du nombre de features + if X.shape[1] != self.n_features_in_: + raise ValueError( + f"X has {X.shape[1]} features, but " + f"{self.__class__.__name__} is expecting " + f"{self.n_features_in_} features as input" + ) + y_pred = np.full( - shape=len(X), fill_value=self.classes_[0], - dtype=self.classes_.dtype + shape=len(X), + fill_value=self.classes_[0], + dtype=self.classes_.dtype, ) - # XXX fix + for i, x in enumerate(X): + distances = np.linalg.norm(self.X_ - x, axis=1) + nearest_idx = np.argmin(distances) + y_pred[i] = self.y_[nearest_idx] + return y_pred def score(self, X, y): """Write docstring. + Compute accuracy of the classifier. + + Parameters + ---------- + X : ndarray of shape (n_samples, n_features) + Test samples. + + y : ndarray of shape (n_samples,) + True labels. + + Returns + ------- + accuracy : float + Proportion of correctly classified samples. + And describe parameters """ X, y = check_X_y(X, y) y_pred = self.predict(X) - - # XXX fix - return y_pred.sum() + return np.mean(y_pred == y)