diff --git a/numpy_questions.py b/numpy_questions.py index 21fcec4b..e4bc7fce 100644 --- a/numpy_questions.py +++ b/numpy_questions.py @@ -37,13 +37,18 @@ def max_index(X): If the input is not a numpy array or if the shape is not 2D. """ - i = 0 - j = 0 + if X.ndim() != 2: + raise ValueError("input is not of dimension 2") + if type(X) is not np.ndarray: + raise ValueError("input is not np array") + + max = np.argmax(X) + n_columns = X.shape[1] - # TODO - - return i, j + row = max // n_columns + column = max % n_columns + return (row, column) def wallis_product(n_terms): """Implement the Wallis product to compute an approximation of pi. @@ -62,6 +67,11 @@ def wallis_product(n_terms): pi : float The approximation of order `n_terms` of pi using the Wallis product. """ - # XXX : The n_terms is an int that corresponds to the number of - # terms in the product. For example 10000. - return 0. + if n_terms == 0: + return 1 + else: + n = 4 * np.arange(1, n_terms + 1) ** 2 + pi = 2 * np.prod(n / (n - 1)) + return pi + + diff --git a/sklearn_questions.py b/sklearn_questions.py index f65038c6..b86cfad4 100644 --- a/sklearn_questions.py +++ b/sklearn_questions.py @@ -35,40 +35,78 @@ def __init__(self): # noqa: D107 pass def fit(self, X, y): - """Write docstring. - And describe parameters + """ + Parameters + ----------- + self : instance of the class (OneNearestNeighbor) + + X : array of shape(n_samples, n_features) + matrix of the features; independent and explanatory variables + + y : array of shape(n_samples,) + matrix of the explained variable + + Returns + ------- + self : object + fitted estimator + """ X, y = check_X_y(X, y) check_classification_targets(y) + self.classes_ = np.unique(y) self.n_features_in_ = X.shape[1] - # XXX fix + self.X_train_ = X + self.y_train_ = y + return self def predict(self, X): - """Write docstring. + + """ + Parameters + ---------- - And describe parameters + X : array of shape(n_samples, n_features) + matrix of the features; independent and explanatory variables + + Returns + ------- + + y_pred : array of shape(n_samples,) + predictions for y """ check_is_fitted(self) X = check_array(X) - y_pred = np.full( - shape=len(X), fill_value=self.classes_[0], - dtype=self.classes_.dtype - ) + y_pred = [] + if X.shape[1] != self.n_features_in_: + raise ValueError(f"X has {X.shape[1]} features but expects {self.n_features_in_} features as input") - # XXX fix - return y_pred + for value in X: + distance = np.linalg.norm(self.X_train_ - value, axis=1) + index = np.argmin(distance) + y_pred.append(self.y_train_[index]) + + return np.array(y_pred) def score(self, X, y): - """Write docstring. + """Parameters + ---------- + + X : array of shape(n_samples, n_features) + matrix of the features; independent and explanatory variables + + y : array of shape(n_samples,) + explained variable + + Returns + ------- + accuracy score : type float - And describe parameters """ X, y = check_X_y(X, y) y_pred = self.predict(X) - - # XXX fix - return y_pred.sum() + return np.mean(y_pred == y)