diff --git a/numpy_questions.py b/numpy_questions.py index 21fcec4b..025c7ed2 100644 --- a/numpy_questions.py +++ b/numpy_questions.py @@ -40,9 +40,15 @@ def max_index(X): i = 0 j = 0 - # TODO + if not isinstance(X, np.ndarray): + raise ValueError("Input must be a numpy array.") + if X.ndim != 2: + raise ValueError("Input array must be 2D.") - return i, j + flat_index = np.argmax(X) + i, j = np.unravel_index(flat_index, X.shape) + + return i.item(), j.item() def wallis_product(n_terms): @@ -64,4 +70,11 @@ def wallis_product(n_terms): """ # XXX : The n_terms is an int that corresponds to the number of # terms in the product. For example 10000. - return 0. + + if n_terms == 0: + return 1 + else: + product = 1 + for n in range(1, n_terms+1): + product *= (4*n**2) / (4*n**2 - 1) + return product*2 diff --git a/sklearn_questions.py b/sklearn_questions.py index f65038c6..961de8b5 100644 --- a/sklearn_questions.py +++ b/sklearn_questions.py @@ -29,46 +29,85 @@ class OneNearestNeighbor(BaseEstimator, ClassifierMixin): - "OneNearestNeighbor classifier." + """OneNearestNeighbor classifier.""" def __init__(self): # noqa: D107 pass def fit(self, X, y): - """Write docstring. + """Fit the OneNearestNeighbot classifier. + + Parameters + ---------- + X : ndarray of shape (n_samples, n_features) + The matrix containing training input samples. + y : ndarray of shape (n_samples) + The matrix of true labels for the input samples. + + Returns + ------- + self : object + The fitted estimator - And describe parameters """ X, y = check_X_y(X, y) check_classification_targets(y) self.classes_ = np.unique(y) self.n_features_in_ = X.shape[1] - # XXX fix + self.X_ = X + self.y_ = y return self def predict(self, X): - """Write docstring. + """Return the predicted target for an input. - And describe parameters + Parameters + ---------- + X : ndarray of shape (n_samples, n_features) + The input array whose target is being predicted + + Returns + ------- + y_pred : ndarray of shape (n_samples) + The predicted target for each sample in X. """ - check_is_fitted(self) + check_is_fitted(self), ["X_", "y_"] X = check_array(X) y_pred = np.full( shape=len(X), fill_value=self.classes_[0], dtype=self.classes_.dtype ) - # XXX fix + distances = np.sqrt( + ((X[:, np.newaxis, :] - self.X_[np.newaxis, :, :] + ) ** 2).sum(axis=2) + ) + + nearest_idx = np.argmin(distances, axis=1) + + y_pred = self.y_[nearest_idx] + return y_pred def score(self, X, y): - """Write docstring. + """Return the mean accuracy on the given test data and labels. + + Parameters + ---------- + X : ndarray of shape (n_samples, n_features) + Test samples. + + y : ndarray of shape (n_samples,) + True labels for X. - And describe parameters + Returns + ------- + score : float + Mean accuracy of self.predict(X) with respect to y. """ X, y = check_X_y(X, y) y_pred = self.predict(X) # XXX fix - return y_pred.sum() + return np.mean(y_pred == y)