From ec90ac6734b9c0aeb464d9edcf3464b96a2e75ed Mon Sep 17 00:00:00 2001 From: silabou Date: Thu, 13 Nov 2025 14:43:20 +0100 Subject: [PATCH 1/3] PR Sila BOUKHOBZA --- numpy_questions.py | 1 + sklearn_questions.py | 1 + 2 files changed, 2 insertions(+) diff --git a/numpy_questions.py b/numpy_questions.py index 21fcec4b..371b8d58 100644 --- a/numpy_questions.py +++ b/numpy_questions.py @@ -15,6 +15,7 @@ This will be enforced with `flake8`. You can check that there is no flake8 errors by calling `flake8` at the root of the repo. """ +# Modification import numpy as np diff --git a/sklearn_questions.py b/sklearn_questions.py index f65038c6..d885e860 100644 --- a/sklearn_questions.py +++ b/sklearn_questions.py @@ -19,6 +19,7 @@ for the methods you code and for the class. The docstring will be checked using `pydocstyle` that you can also call at the root of the repo. """ +#Modification import numpy as np from sklearn.base import BaseEstimator from sklearn.base import ClassifierMixin From 1cebecefdb4530b78242e6ec3b0926304c2e5719 Mon Sep 17 00:00:00 2001 From: silabou Date: Thu, 13 Nov 2025 16:06:55 +0100 Subject: [PATCH 2/3] Sila BOUKHOBZA --- numpy_questions.py | 17 ++++++++++++----- sklearn_questions.py | 32 ++++++++++++++++++++------------ 2 files changed, 32 insertions(+), 17 deletions(-) diff --git a/numpy_questions.py b/numpy_questions.py index 371b8d58..49f25073 100644 --- a/numpy_questions.py +++ b/numpy_questions.py @@ -38,11 +38,13 @@ def max_index(X): If the input is not a numpy array or if the shape is not 2D. """ - i = 0 - j = 0 - - # TODO + if not isinstance(X, np.ndarray): + raise ValueError("Input is not a numpy array.") + if X.ndim != 2: + raise ValueError("Shape is not 2D") + idx_flat = np.argmax(X) + i, j = np.unravel_index(idx_flat, X.shape) return i, j @@ -65,4 +67,9 @@ def wallis_product(n_terms): """ # XXX : The n_terms is an int that corresponds to the number of # terms in the product. For example 10000. - return 0. + res = 1 + if n_terms == 0: + return res + for i in range(1, n_terms+1): + res *= (4 * i**2) / (4 * i**2 - 1) + return 2*res diff --git a/sklearn_questions.py b/sklearn_questions.py index d885e860..b299ffe4 100644 --- a/sklearn_questions.py +++ b/sklearn_questions.py @@ -19,7 +19,6 @@ for the methods you code and for the class. The docstring will be checked using `pydocstyle` that you can also call at the root of the repo. """ -#Modification import numpy as np from sklearn.base import BaseEstimator from sklearn.base import ClassifierMixin @@ -29,29 +28,34 @@ from sklearn.utils.multiclass import check_classification_targets -class OneNearestNeighbor(BaseEstimator, ClassifierMixin): +class OneNearestNeighbor(ClassifierMixin, BaseEstimator): "OneNearestNeighbor classifier." def __init__(self): # noqa: D107 pass def fit(self, X, y): - """Write docstring. + """ + Fits the model to data X and y - And describe parameters + X : training features + y : training targets """ X, y = check_X_y(X, y) check_classification_targets(y) self.classes_ = np.unique(y) self.n_features_in_ = X.shape[1] - # XXX fix + self.X_train_ = X + self.y_train_ = y + return self def predict(self, X): - """Write docstring. + """ + Predicts data X according to fit. - And describe parameters + X : estimators """ check_is_fitted(self) X = check_array(X) @@ -60,16 +64,20 @@ def predict(self, X): dtype=self.classes_.dtype ) - # XXX fix + for i, x in enumerate(X): + distances = np.linalg.norm(self.X_train_ - x, axis=1) + min_dist = np.argmin(distances) + y_pred[i] = self.y_train_[min_dist] return y_pred def score(self, X, y): - """Write docstring. + """ + Computes the accuracy score for evaluation - And describe parameters + X : estimators + y : target """ X, y = check_X_y(X, y) y_pred = self.predict(X) - # XXX fix - return y_pred.sum() + return np.mean(y_pred == y) From 8864c7ead70ff5971dc1f602d8d521677d3241d0 Mon Sep 17 00:00:00 2001 From: silabou Date: Thu, 13 Nov 2025 16:13:06 +0100 Subject: [PATCH 3/3] Sila BOUKHOBZA --- sklearn_questions.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/sklearn_questions.py b/sklearn_questions.py index b299ffe4..0320d7a3 100644 --- a/sklearn_questions.py +++ b/sklearn_questions.py @@ -29,14 +29,14 @@ class OneNearestNeighbor(ClassifierMixin, BaseEstimator): - "OneNearestNeighbor classifier." + """OneNearestNeighbor classifier.""" def __init__(self): # noqa: D107 pass def fit(self, X, y): """ - Fits the model to data X and y + Fits the model to data X and y. X : training features y : training targets @@ -72,7 +72,7 @@ def predict(self, X): def score(self, X, y): """ - Computes the accuracy score for evaluation + Compute the accuracy score for evaluation. X : estimators y : target