diff --git a/numpy_questions.py b/numpy_questions.py index 21fcec4b..49f25073 100644 --- a/numpy_questions.py +++ b/numpy_questions.py @@ -15,6 +15,7 @@ This will be enforced with `flake8`. You can check that there is no flake8 errors by calling `flake8` at the root of the repo. """ +# Modification import numpy as np @@ -37,11 +38,13 @@ def max_index(X): If the input is not a numpy array or if the shape is not 2D. """ - i = 0 - j = 0 - - # TODO + if not isinstance(X, np.ndarray): + raise ValueError("Input is not a numpy array.") + if X.ndim != 2: + raise ValueError("Shape is not 2D") + idx_flat = np.argmax(X) + i, j = np.unravel_index(idx_flat, X.shape) return i, j @@ -64,4 +67,9 @@ def wallis_product(n_terms): """ # XXX : The n_terms is an int that corresponds to the number of # terms in the product. For example 10000. - return 0. + res = 1 + if n_terms == 0: + return res + for i in range(1, n_terms+1): + res *= (4 * i**2) / (4 * i**2 - 1) + return 2*res diff --git a/sklearn_questions.py b/sklearn_questions.py index f65038c6..0320d7a3 100644 --- a/sklearn_questions.py +++ b/sklearn_questions.py @@ -28,29 +28,34 @@ from sklearn.utils.multiclass import check_classification_targets -class OneNearestNeighbor(BaseEstimator, ClassifierMixin): - "OneNearestNeighbor classifier." +class OneNearestNeighbor(ClassifierMixin, BaseEstimator): + """OneNearestNeighbor classifier.""" def __init__(self): # noqa: D107 pass def fit(self, X, y): - """Write docstring. + """ + Fits the model to data X and y. - And describe parameters + X : training features + y : training targets """ X, y = check_X_y(X, y) check_classification_targets(y) self.classes_ = np.unique(y) self.n_features_in_ = X.shape[1] - # XXX fix + self.X_train_ = X + self.y_train_ = y + return self def predict(self, X): - """Write docstring. + """ + Predicts data X according to fit. - And describe parameters + X : estimators """ check_is_fitted(self) X = check_array(X) @@ -59,16 +64,20 @@ def predict(self, X): dtype=self.classes_.dtype ) - # XXX fix + for i, x in enumerate(X): + distances = np.linalg.norm(self.X_train_ - x, axis=1) + min_dist = np.argmin(distances) + y_pred[i] = self.y_train_[min_dist] return y_pred def score(self, X, y): - """Write docstring. + """ + Compute the accuracy score for evaluation. - And describe parameters + X : estimators + y : target """ X, y = check_X_y(X, y) y_pred = self.predict(X) - # XXX fix - return y_pred.sum() + return np.mean(y_pred == y)