Skip to content

The performance of my pruned model has decreased after lora fine-tuning #77

@xiejingcheng

Description

@xiejingcheng

Hello, may I ask why the performance of my pruned model has decreased after lora fine-tuning with the following parameters

/h3cstore_ns/jcxie/condaenv/bin/python /h3cstore_ns/jcxie/LISA/wanda-main/lora_ft/finetune_lm.py
--model_name_or_path /h3cstore_ns/jcxie/LISA/wanda-main/ckpt/lm7b
--config_name "/h3cstore_ns/jcxie/hf_weights/llama-2-7b-hf"
--dataset_name c4
--num_train_epochs 2
--block_size 1024
--per_device_train_batch_size 8
--per_device_eval_batch_size 8
--do_train
--do_eval
--max_train_samples 30000
--max_eval_samples 128
--learning_rate 1e-4
--overwrite_output_dir
--output_dir /h3cstore_ns/jcxie/LISA/wanda-main/ckpt/lm7b_lora &&

wait

I used 8 * 3090 and DDP for fine-tuning

Performance after only pruning: perplexity on wikitext 6.94

Performance of fine-tuning after pruning: 10.3

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions