diff --git a/book/_toc.yml b/book/_toc.yml index 0ae07d86..fe7dc6fe 100644 --- a/book/_toc.yml +++ b/book/_toc.yml @@ -1,12 +1,10 @@ -# Table of contents -# Learn more at https://jupyterbook.org/customize/toc.html - format: jb-book root: intro + parts: - caption: Getting started chapters: - - file: content/applications/task01 + - file: content/applications/general/simple - caption: Meshing chapters: @@ -16,7 +14,7 @@ parts: - file: content/meshes/mesh_salome - caption: Materials - chapters: + chapters: - file: content/material/material_basics - file: content/material/material_htm - file: content/material/material_advanced @@ -31,14 +29,24 @@ parts: chapters: - file: content/temperatures/temperatures_basic - file: content/temperatures/temperatures_advanced - + - caption: Applications chapters: - - file: content/applications/task02 - - file: content/applications/task03 - - file: content/applications/task04 - - file: content/applications/task07 - - file: content/applications/task08 - - file: content/applications/task06 - - file: content/applications/task10 - - file: content/applications/microstructure \ No newline at end of file + - file: content/applications/general/index + # General group + sections: + - file: content/applications/general/simple_permeation + - file: content/applications/general/permeation_barrier + - file: content/applications/general/heat_transfer + - file: content/applications/general/advection + - file: content/applications/general/monoblock + - file: content/applications/material_science/index + sections: + - file: content/applications/material_science/fittings_tds + - file: content/applications/material_science/microstructure + - file: content/applications/fusion/index + sections: + - file: content/applications/fusion/pfc + - file: content/applications/fusion/fuel_cycle/fuel_cycle_map + - file: content/applications/fusion/fuel_cycle/pav + - file: content/applications/fusion/fuel_cycle/heat_exchanger diff --git a/book/content/applications/fission/index.md b/book/content/applications/fission/index.md new file mode 100644 index 00000000..bd25c8b5 --- /dev/null +++ b/book/content/applications/fission/index.md @@ -0,0 +1,15 @@ +--- +jupytext: + formats: ipynb,md:myst + text_representation: + extension: .md + format_name: myst + format_version: 0.13 + jupytext_version: 1.18.1 +--- + +# Fission # + +Modeling fission components with FESTIM + ++++ diff --git a/book/content/applications/fusion/fuel_cycle/fuel_cycle_map.md b/book/content/applications/fusion/fuel_cycle/fuel_cycle_map.md new file mode 100644 index 00000000..78bbd84a --- /dev/null +++ b/book/content/applications/fusion/fuel_cycle/fuel_cycle_map.md @@ -0,0 +1,31 @@ +--- +jupytext: + formats: ipynb,md:myst + text_representation: + extension: .md + format_name: myst + format_version: 0.13 + jupytext_version: 1.18.1 +kernelspec: + display_name: festim-workshop + language: python + name: python3 +--- + +# Fusion fuel cycle modeling # + +FESTIM can be used to model fusion fuel cycle components. + +* Fuel cycle components +* System level modeling? + +```{code-cell} ipython3 +:tags: [hide-input] + +from IPython.display import HTML + +with open("test.svg") as f: + svg = f.read() + +HTML(svg) +``` diff --git a/book/content/applications/fusion/fuel_cycle/test.svg b/book/content/applications/fusion/fuel_cycle/test.svg new file mode 100644 index 00000000..44f32952 --- /dev/null +++ b/book/content/applications/fusion/fuel_cycle/test.svg @@ -0,0 +1,84 @@ + + + + + + + + + + + + Reactor + + + + + + + + + TES + + + + + + + + Blanket + + + + + + + + \ No newline at end of file diff --git a/book/content/applications/fusion/index.md b/book/content/applications/fusion/index.md new file mode 100644 index 00000000..5efbf5a4 --- /dev/null +++ b/book/content/applications/fusion/index.md @@ -0,0 +1,15 @@ +--- +jupytext: + formats: ipynb,md:myst + text_representation: + extension: .md + format_name: myst + format_version: 0.13 + jupytext_version: 1.18.1 +--- + +# Fusion # + +Modeling fusion components with FESTIM + ++++ diff --git a/book/content/applications/general/advection.md b/book/content/applications/general/advection.md new file mode 100644 index 00000000..0c49fa9e --- /dev/null +++ b/book/content/applications/general/advection.md @@ -0,0 +1,228 @@ +--- +jupytext: + formats: ipynb,md:myst + text_representation: + extension: .md + format_name: myst + format_version: 0.13 + jupytext_version: 1.18.1 +kernelspec: + display_name: festim-workshop + language: python + name: python3 +--- + +# Advection-diffusion problem + +In this task, we'll simulate advection-diffusion in a fluid domain. + +Natively, advection is not taken into account in FESTIM. The idea is therefore to modify the governing equations by adding an advection term. + +```{code-cell} ipython3 +import festim as F + +my_model = F.HydrogenTransportProblem() + +H = F.Species("H") +my_model.species = [H] +``` + +Create a mesh with FEniCS: + +```{code-cell} ipython3 +from dolfinx.mesh import create_unit_square +from mpi4py import MPI + +# creating a mesh with FEniCS +nx = ny = 20 +mesh_fenics = create_unit_square(MPI.COMM_WORLD, nx, ny) +``` + +```{code-cell} ipython3 +:tags: [hide-cell] + +import pyvista + +pyvista.start_xvfb() +pyvista.set_jupyter_backend('html') +``` + +```{code-cell} ipython3 +from dolfinx import plot + +pyvista.start_xvfb() + +tdim = mesh_fenics.topology.dim + +mesh_fenics.topology.create_connectivity(tdim, tdim) +topology, cell_types, geometry = plot.vtk_mesh(mesh_fenics, tdim) +grid = pyvista.UnstructuredGrid(topology, cell_types, geometry) + +plotter = pyvista.Plotter() +plotter.add_mesh(grid, show_edges=True) +plotter.view_xy() +if not pyvista.OFF_SCREEN: + plotter.show() +else: + figure = plotter.screenshot("mesh.png") +``` + +The mesh can now be passed to a `festim.Mesh` instance. + +```{code-cell} ipython3 +my_model.mesh = F.Mesh(mesh_fenics) +``` + +We create subdomains for volumes and boundaries + +```{code-cell} ipython3 +import numpy as np +import dolfinx + +topbot_boundary = F.SurfaceSubdomain(id=1, locator=lambda x: np.logical_or(np.isclose(x[1], 0.0), np.isclose(x[1], 1.0))) +left_boundary = F.SurfaceSubdomain(id=2, locator=lambda x: np.isclose(x[0], 0.0)) +right_boundary = F.SurfaceSubdomain(id=3, locator=lambda x: np.isclose(x[0], 1.0)) +volume_subdomain = F.VolumeSubdomain(id=1, material=F.Material(D_0=1, E_D=0)) + +my_model.subdomains = [ + topbot_boundary, + left_boundary, + volume_subdomain, +] +``` + +Let's add the rest of the parameters. +For this case, the concentration will be set to 1 on the left surface and to zero on the top and bottom surfaces. + +```{code-cell} ipython3 +my_model.temperature = 500 + +my_model.boundary_conditions = [ + F.FixedConcentrationBC(species=H, subdomain=topbot_boundary, value=0), + F.FixedConcentrationBC(species=H, subdomain=left_boundary, value=1), +] + +my_model.settings = F.Settings(atol=1e-10, rtol=1e-10, transient=False) +``` + +We can now run the pure diffusion simulation and visualise the hydrogen concentration field. + +```{code-cell} ipython3 +my_model.initialise() +my_model.run() +``` + +```{code-cell} ipython3 +hydrogen_concentration = H.solution + +topology, cell_types, geometry = plot.vtk_mesh(hydrogen_concentration.function_space) +u_grid = pyvista.UnstructuredGrid(topology, cell_types, geometry) +u_grid.point_data["c"] = hydrogen_concentration.x.array.real +u_grid.set_active_scalars("c") +u_plotter = pyvista.Plotter() +u_plotter.add_mesh(u_grid, show_edges=True) +u_plotter.view_xy() + +if not pyvista.OFF_SCREEN: + u_plotter.show() +else: + figure = u_plotter.screenshot("concentration_diff_only.png") +``` + +## Adding advection + +Let's now add an advection term. To do so, we first need to create a velocity field. +For simplicity sake, we will create an arbitrary field `velocity`. + +> +> Note: this velocity field can be obtained from solving the Navier-Stokes equations with FEniCS or with another code (OpenFOAM). +> + +```{code-cell} ipython3 +from basix.ufl import element + +el = element("Lagrange", mesh_fenics.topology.cell_name(), 2, shape=(mesh_fenics.geometry.dim, )) + + +V = dolfinx.fem.functionspace(my_model.mesh.mesh, el) + +velocity = dolfinx.fem.Function(V) + +velocity.interpolate(lambda x: (-100*x[1]*(x[1]-1), np.full_like(x[0], 0.0))) +``` + +Here's what `velocity` looks like: + +```{code-cell} ipython3 +topology, cell_types, geometry = plot.vtk_mesh(V) +values = np.zeros((geometry.shape[0], 3), dtype=np.float64) +values[:, :len(velocity)] = velocity.x.array.real.reshape((geometry.shape[0], len(velocity))) + +# Create a point cloud of glyphs +function_grid = pyvista.UnstructuredGrid(topology, cell_types, geometry) +function_grid["v"] = values +glyphs = function_grid.glyph(orient="v", factor=0.005) + +# Create a pyvista-grid for the mesh +mesh_fenics.topology.create_connectivity(mesh_fenics.topology.dim, mesh_fenics.topology.dim) +grid = pyvista.UnstructuredGrid(*plot.vtk_mesh(mesh_fenics, mesh_fenics.topology.dim)) + +# Create plotter +plotter = pyvista.Plotter() +plotter.add_mesh(grid, style="wireframe", color="k") +plotter.add_mesh(glyphs) +plotter.view_xy() +if not pyvista.OFF_SCREEN: + plotter.show() +else: + fig_as_array = plotter.screenshot("glyphs.png") +``` + +Now that we created a FEniCS function representing the velocity, let's add an advection term to the governing equation. + +The governing equation for steady state advection-diffusion is: + +$$\nabla \cdot (D \nabla c) - v \cdot \nabla c = 0$$ + +where $D$ is the diffusion coefficient, $c$ is the hydrogen concentration and $v$ is the velocity. + +```{code-cell} ipython3 +advection_term = F.AdvectionTerm( + velocity=velocity, + subdomain=volume_subdomain, + species=H, +) + +my_model.advection_terms = [advection_term] +``` + +```{code-cell} ipython3 +my_model.initialise() +my_model.run() +``` + +Now that the governing equation has been modified, let's run the simulation again and check the new concentration field. + +```{code-cell} ipython3 +hydrogen_concentration = H.solution + +topology, cell_types, geometry = plot.vtk_mesh(hydrogen_concentration.function_space) +u_grid = pyvista.UnstructuredGrid(topology, cell_types, geometry) +u_grid.point_data["c"] = hydrogen_concentration.x.array.real +u_grid.set_active_scalars("c") +u_plotter = pyvista.Plotter() +u_plotter.add_mesh(u_grid, show_edges=False) +u_plotter.add_mesh(glyphs, color="black", opacity=0.2) +u_plotter.view_xy() + +if not pyvista.OFF_SCREEN: + u_plotter.show() +else: + figure = u_plotter.screenshot("concentration_with_adv.png") +``` + +The concentration field is greatly affected as particles are now pushed towards the right hand side of the domain. + +# Task: + +Vary the velocity field to investigate its influence on the mobile concentration diff --git a/book/content/applications/general/heat_transfer.md b/book/content/applications/general/heat_transfer.md new file mode 100644 index 00000000..ba6b0dcb --- /dev/null +++ b/book/content/applications/general/heat_transfer.md @@ -0,0 +1,157 @@ +--- +jupytext: + formats: ipynb,md:myst + text_representation: + extension: .md + format_name: myst + format_version: 0.13 + jupytext_version: 1.18.1 +kernelspec: + display_name: festim-workshop + language: python + name: python3 +--- + +(heat_transfer_sims)= +# Heat transfer simulations + +In this task, we'll learn how to run a heat transfer simulation and couple it to H transport. + +The governing equation for transient heat transfer is: + +$$\rho \ C_p \frac{\partial T}{\partial t} = \nabla \cdot (\lambda \ \nabla T) + \dot{Q} $$ + +where $\rho$ is the density in kg/m3, $C_p$ is the heat capacity in J/kg/K, $\lambda$ is the thermal conductivity in W/m/K, and $\dot{Q}$ is the volumetric heat source in W/m3. + +In steady state, this becomes: + +$$\nabla \cdot (\lambda \ \nabla T) + \dot{Q} = 0$$ + ++++ + +To use the temperature from a Heat Transfer simulation instead of a prescribed temperature, we are using the `festim.HeatTransferProblem` class. + ++++ + +Since we want to run a heat transfer simulation, the thermal conductivity $\lambda$ in W/m/K has to be specified in the material. +It is possible to set a temperature-dependent thermal conductivity by creating a function and passing it to the `thermal_conductivity` argument. + +Here, $\lambda = 3 + 0.1\ T$ + +```{code-cell} ipython3 +import festim as F + +my_model = F.HeatTransferProblem() + + +def thermal_cond_function(T): + return 3 + 0.1 * T + + +mat = F.Material(D_0=4.1e-7, E_D=0.39, thermal_conductivity=thermal_cond_function) +``` + +We create a simple mesh with FEniCS and create subdomains (surfaces and volume). + +```{code-cell} ipython3 +import dolfinx +from mpi4py import MPI +import numpy as np + +# creating a mesh with FEniCS +nx = ny = 20 +mesh_fenics = dolfinx.mesh.create_unit_square(MPI.COMM_WORLD, nx, ny) + +# creating mesh with festim +my_model.mesh = F.Mesh(mesh=mesh_fenics) + +volume_subdomain = F.VolumeSubdomain(id=1, material=mat) + + +top_bot = F.SurfaceSubdomain(id=2, locator=lambda x: np.logical_or(np.isclose(x[1], 0.0), np.isclose(x[1], 1.0))) +left = F.SurfaceSubdomain(id=3, locator=lambda x: np.isclose(x[0], 0.0)) +right = F.SurfaceSubdomain(id=4, locator=lambda x: np.isclose(x[0], 1.0)) + +my_model.subdomains = [volume_subdomain, top_bot, left, right] +``` + +For the heat source and boundary conditions, we'll use spatially dependent values. + +```{code-cell} ipython3 +my_model.sources = [ + F.HeatSource(value=lambda x: 1 + 0.1 * x[0], volume=volume_subdomain) +] + +import ufl + +fixed_temperature_left = F.FixedTemperatureBC( + subdomain=left, value=lambda x: 350 + 20 * ufl.cos(x[0]) * ufl.sin(x[1]) +) + +def h_coeff(x): + return 100 * x[0] + +def T_ext(x): + return 300 + 3 * x[1] + +convective_heat_transfer = F.HeatFluxBC( + subdomain=top_bot, value=lambda x, T: h_coeff(x) * (T_ext(x) - T) +) + +heat_flux = F.HeatFluxBC( + subdomain=right, value=lambda x: 10 + 3 * ufl.cos(x[0]) + ufl.sin(x[1]) +) + + +my_model.boundary_conditions = [ + fixed_temperature_left, + convective_heat_transfer, + heat_flux, +] +``` + +Final settings, and we run the simulation: + +```{code-cell} ipython3 +my_model.settings = F.Settings( + transient=False, + atol=1e-09, + rtol=1e-09, +) + +my_model.initialise() +my_model.run() +``` + +```{code-cell} ipython3 +:tags: [hide-cell] + +import pyvista + +pyvista.start_xvfb() +pyvista.set_jupyter_backend("html") +``` + +```{code-cell} ipython3 +from dolfinx import plot + +T = my_model.u + +topology, cell_types, geometry = plot.vtk_mesh(T.function_space) +u_grid = pyvista.UnstructuredGrid(topology, cell_types, geometry) +u_grid.point_data["T"] = T.x.array.real +u_grid.set_active_scalars("T") +u_plotter = pyvista.Plotter() +u_plotter.add_mesh(u_grid, cmap="inferno", show_edges=False) +u_plotter.add_mesh(u_grid, style="wireframe", color="white", opacity=0.2) + +contours = u_grid.contour(9) +u_plotter.add_mesh(contours, color="white") + +u_plotter.view_xy() + +if not pyvista.OFF_SCREEN: + u_plotter.show() +else: + figure = u_plotter.screenshot("temperature.png") +``` diff --git a/book/content/applications/general/index.md b/book/content/applications/general/index.md new file mode 100644 index 00000000..a88e9567 --- /dev/null +++ b/book/content/applications/general/index.md @@ -0,0 +1,15 @@ +--- +jupytext: + formats: ipynb,md:myst + text_representation: + extension: .md + format_name: myst + format_version: 0.13 + jupytext_version: 1.18.1 +--- + +# General # + +Modeling fusion components with FESTIM + ++++ diff --git a/book/content/applications/general/monoblock.md b/book/content/applications/general/monoblock.md new file mode 100644 index 00000000..badf8b60 --- /dev/null +++ b/book/content/applications/general/monoblock.md @@ -0,0 +1,302 @@ +--- +jupytext: + formats: ipynb,md:myst + text_representation: + extension: .md + format_name: myst + format_version: 0.13 + jupytext_version: 1.18.1 +kernelspec: + display_name: festim-workshop + language: python + name: python3 +--- + +# Monoblock # + +In this task, we will learn how to run CAD-based simulations. + +Our example case will be a 3D ITER-like monoblock made of three different materials (tungsten, cucrzr, and copper). + +```{code-cell} ipython3 +import meshio + + +def convert_med_to_xdmf( + med_file, + cell_file="mesh_domains.xdmf", + facet_file="mesh_boundaries.xdmf", + cell_type="tetra", + facet_type="triangle", +): + """Converts a MED mesh to XDMF + Args: + med_file (str): the name of the MED file + cell_file (str, optional): the name of the file containing the + volume markers. Defaults to "mesh_domains.xdmf". + facet_file (str, optional): the name of the file containing the + surface markers.. Defaults to "mesh_boundaries.xdmf". + cell_type (str, optional): The topology of the cells. Defaults to "tetra". + facet_type (str, optional): The topology of the facets. Defaults to "triangle". + Returns: + dict, dict: the correspondance dict, the cell types + """ + msh = meshio.read(med_file) + + correspondance_dict = {-k: v for k, v in msh.cell_tags.items()} + + cell_data_types = msh.cell_data_dict["cell_tags"].keys() + + for mesh_block in msh.cells: + if mesh_block.type == cell_type: + meshio.write_points_cells( + cell_file, + msh.points, + [mesh_block], + cell_data={"f": [-1 * msh.cell_data_dict["cell_tags"][cell_type]]}, + ) + elif mesh_block.type == facet_type: + meshio.write_points_cells( + facet_file, + msh.points, + [mesh_block], + cell_data={"f": [-1 * msh.cell_data_dict["cell_tags"][facet_type]]}, + ) + + return correspondance_dict, cell_data_types +``` + +```{code-cell} ipython3 +correspondance_dict, cell_data_types = convert_med_to_xdmf( + "monoblock_mesh/mesh.med", + cell_file="monoblock_mesh/mesh_domains.xdmf", + facet_file="monoblock_mesh/mesh_boundaries.xdmf", +) + +print(correspondance_dict) +``` + +```{code-cell} ipython3 +import festim as F + +tungsten = F.Material( + D_0=4.1e-7, + E_D=0.39, + K_S_0=1.87e24, + E_K_S=1.04, + thermal_conductivity=100, +) + +copper = F.Material( + D_0=6.6e-7, + E_D=0.387, + K_S_0=3.14e24, + E_K_S=0.572, + thermal_conductivity=350, +) + +cucrzr = F.Material( + D_0=3.92e-7, E_D=0.418, K_S_0=4.28e23, E_K_S=0.387, thermal_conductivity=350 +) +``` + +The converted .xdmf files can then be imported in FESTIM using the `MeshFromXDMF` class: + +```{code-cell} ipython3 +mesh = F.MeshFromXDMF( + volume_file="monoblock_mesh/mesh_domains.xdmf", facet_file="monoblock_mesh/mesh_boundaries.xdmf" +) + +mesh.mesh.geometry.x[:] *= 1e-3 # mm to m +``` + +```{code-cell} ipython3 +tungsten_volume = F.VolumeSubdomain(id=6, material=tungsten) +copper_volume = F.VolumeSubdomain(id=7, material=copper) +cucrzr_volume = F.VolumeSubdomain(id=8, material=cucrzr) +top_surface = F.SurfaceSubdomain(id=9) +cooling_surface = F.SurfaceSubdomain(id=10) +poloidal_gap_w = F.SurfaceSubdomain(id=11) +poloidal_gap_cu = F.SurfaceSubdomain(id=12) +poloidal_gap_cucrzr = F.SurfaceSubdomain(id=13) +toroidal_gap = F.SurfaceSubdomain(id=14) +bottom = F.SurfaceSubdomain(id=15) + +all_subdomains = [ + tungsten_volume, + copper_volume, + cucrzr_volume, + top_surface, + cooling_surface, + poloidal_gap_cu, + poloidal_gap_w, + poloidal_gap_cucrzr, + toroidal_gap, + bottom, +] +``` + +```{code-cell} ipython3 +heat_transfer_problem = F.HeatTransferProblem() +heat_transfer_problem.subdomains = all_subdomains +heat_transfer_problem.mesh = mesh + +heat_flux_top = F.HeatFluxBC(subdomain=top_surface, value=10e6) +convective_flux_coolant = F.HeatFluxBC( + subdomain=cooling_surface, value=lambda T: 7e04 * (323 - T) +) + + +heat_transfer_problem.boundary_conditions = [heat_flux_top, convective_flux_coolant] + +heat_transfer_problem.exports = [F.VTXTemperatureExport("out.bp")] + +heat_transfer_problem.settings = F.Settings( + atol=1e-10, + rtol=1e-10, + transient=False, +) +heat_transfer_problem.initialise() +heat_transfer_problem.run() +``` + +```{code-cell} ipython3 +my_model = F.HydrogenTransportProblemDiscontinuous() +my_model.method_interface = "penalty" + +my_model.subdomains = all_subdomains + +H = F.Species("H", subdomains=my_model.volume_subdomains) +my_model.species = [H] + +my_model.mesh = mesh + +my_model.surface_to_volume = { + top_surface: tungsten_volume, + cooling_surface: cucrzr_volume, + poloidal_gap_w: tungsten_volume, + poloidal_gap_cu: copper_volume, + poloidal_gap_cucrzr: cucrzr_volume, + toroidal_gap: tungsten_volume, + bottom: tungsten_volume, +} + +penalty_term = 1e20 +my_model.interfaces = [ + F.Interface( + id=16, subdomains=(tungsten_volume, copper_volume), penalty_term=penalty_term + ), + F.Interface( + id=17, subdomains=(copper_volume, cucrzr_volume), penalty_term=penalty_term + ), +] +``` + +Using the tags provided by `correspondance_dict`, we can create materials and assign them to the simulation: + ++++ + +Similarily, the surface tags are used to create boundary conditions: + +```{code-cell} ipython3 +import ufl + +phi = 1.61e22 +R_p = 9.52e-10 +implantation_flux_top = F.FixedConcentrationBC( + subdomain=top_surface, + value=lambda T: phi * R_p / (tungsten.D_0 * ufl.exp(-tungsten.E_D / F.k_B / T)), + species=H, +) + +recombination_fluxes = [ + F.FixedConcentrationBC(subdomain=surf, value=0, species=H) + for surf in [ + toroidal_gap, + bottom, + poloidal_gap_w, + poloidal_gap_cu, + poloidal_gap_cucrzr, + cooling_surface, + ] +] + + +my_model.boundary_conditions = [implantation_flux_top] + recombination_fluxes + +my_model.temperature = 1200 # heat_transfer_problem.u # FIXME https://fenicsproject.discourse.group/t/interpolate-expression-on-submesh-with-parent-mesh-function/17467 + +my_model.settings = F.Settings( + atol=1e10, + rtol=1e-10, + transient=False, + max_iterations=10, +) + +my_model.initialise() +my_model.run() +``` + +```{code-cell} ipython3 +assert my_model.interfaces[0].id in tungsten_volume.ft.values +assert my_model.interfaces[0].id in copper_volume.ft.values +assert my_model.interfaces[1].id in copper_volume.ft.values +assert my_model.interfaces[1].id in cucrzr_volume.ft.values +``` + +## Post processing + +```{code-cell} ipython3 +:tags: [hide-cell] + +import pyvista + +pyvista.start_xvfb() +pyvista.set_jupyter_backend("html") +``` + +```{code-cell} ipython3 +from dolfinx import plot + +T = heat_transfer_problem.u + +topology, cell_types, geometry = plot.vtk_mesh(T.function_space) +u_grid = pyvista.UnstructuredGrid(topology, cell_types, geometry) +u_grid.point_data["T"] = T.x.array.real +u_grid.set_active_scalars("T") +u_plotter = pyvista.Plotter() +u_plotter.add_mesh(u_grid, cmap="inferno", show_edges=False) +u_plotter.add_mesh(u_grid, style="wireframe", color="white", opacity=0.2) + +contours = u_grid.contour(9) +u_plotter.add_mesh(contours, color="white") + +u_plotter.view_xy() + +if not pyvista.OFF_SCREEN: + u_plotter.show() +else: + figure = u_plotter.screenshot("temperature.png") +``` + +```{code-cell} ipython3 +u_plotter = pyvista.Plotter() + +for vol in my_model.volume_subdomains: + sol = H.subdomain_to_post_processing_solution[vol] + + topology, cell_types, geometry = plot.vtk_mesh(sol.function_space) + u_grid = pyvista.UnstructuredGrid(topology, cell_types, geometry) + u_grid.point_data["c"] = sol.x.array.real + u_grid.set_active_scalars("c") + u_plotter.add_mesh(u_grid, cmap="viridis", show_edges=False) + u_plotter.add_mesh(u_grid, style="wireframe", color="white", opacity=0.2) + +u_plotter.view_xy(negative=True) + + +if not pyvista.OFF_SCREEN: + u_plotter.show() +else: + figure = u_plotter.screenshot("concentration.png") +``` diff --git a/book/content/applications/task08/mesh.med b/book/content/applications/general/monoblock_mesh/mesh.med similarity index 100% rename from book/content/applications/task08/mesh.med rename to book/content/applications/general/monoblock_mesh/mesh.med diff --git a/book/content/applications/general/permeation_barrier.md b/book/content/applications/general/permeation_barrier.md new file mode 100644 index 00000000..3fa702f3 --- /dev/null +++ b/book/content/applications/general/permeation_barrier.md @@ -0,0 +1,304 @@ +--- +jupytext: + formats: ipynb,md:myst + text_representation: + extension: .md + format_name: myst + format_version: 0.13 + jupytext_version: 1.18.1 +kernelspec: + display_name: festim-workshop + language: python + name: python3 +--- + +# Permeation barrier modelling + +In this task, we will model permeation barriers on tungsten and compute the associated Permeation Reduction Factor (PRF). + +The PRF is the ratio of the steady state permeation flux without barriers by that of the case with barriers. + ++++ + +## 1) Model with barrier + +Let's first create a model where tungsten is coated with 1 micron of barrier material on both sides. + +```{code-cell} ipython3 +import festim as F + +model_barrier = F.HydrogenTransportProblemDiscontinuous() +``` + +Let's create three ``VolumeSubdomain1D`` instances for the three subdomains and assign them to ``model_barrier.subdomains``. + +```{admonition} Note +By default, the solubility law of the materials is `"sievert"`. +However, it can be changed by overriding the `solubility_law` argument to `"henry"` +``` + +```{code-cell} ipython3 +barrier_thick = 1e-6 +substrate_thick = 3e-3 + +barrier = F.Material( + D_0=1e-8, + E_D=0.39, + K_S_0=1e22, + E_K_S=1.04, +) + +tungsten = F.Material( + D_0=4.1e-7, + E_D=0.39, + K_S_0=1.87e24, + E_K_S=1.04, +) + +volume_barrier_left = F.VolumeSubdomain1D( + id=1, borders=[0, barrier_thick], material=barrier +) +volume_tungsten = F.VolumeSubdomain1D( + id=2, borders=[barrier_thick, substrate_thick + barrier_thick], material=tungsten +) +volume_barrier_right = F.VolumeSubdomain1D( + id=3, + borders=[substrate_thick + barrier_thick, substrate_thick + 2 * barrier_thick], + material=barrier, +) + +boundary_left = F.SurfaceSubdomain1D(id=1, x=0) +boundary_right = F.SurfaceSubdomain1D(id=2, x=substrate_thick + 2 * barrier_thick) + +model_barrier.subdomains = [ + volume_barrier_left, + volume_tungsten, + volume_barrier_right, + boundary_left, + boundary_right, +] +``` + +```{code-cell} ipython3 +model_barrier.surface_to_volume = { + boundary_left: volume_barrier_left, + boundary_right: volume_barrier_right, +} + +model_barrier.interfaces = [ + F.Interface(id=3, subdomains=[volume_barrier_left, volume_tungsten], penalty_term=1e10), + F.Interface(id=4, subdomains=[volume_tungsten, volume_barrier_right], penalty_term=1e10), +] +``` + +```{code-cell} ipython3 +H = F.Species("H", subdomains=model_barrier.volume_subdomains) +model_barrier.species = [H] +``` + +To avoid cells overlapping the domains boundaries, we create 3 lists of vertices. + +```{code-cell} ipython3 +import numpy as np + +vertices_left = np.linspace(0, barrier_thick, num=50) + +vertices_mid = np.linspace(barrier_thick, substrate_thick + barrier_thick, num=50) + +vertices_right = np.linspace( + substrate_thick + barrier_thick, substrate_thick + 2 * barrier_thick, num=50 +) + +vertices = np.concatenate([vertices_left, vertices_mid, vertices_right]) + +model_barrier.mesh = F.Mesh1D(vertices) +``` + +The temperature is homogeneous across the domain. + +```{code-cell} ipython3 +model_barrier.temperature = 600 +``` + +A Sievert's boundary condition is applied on the left surface and the concentration is assumed to be zero on the right surface. + +```{code-cell} ipython3 +left_bc = F.SievertsBC( + subdomain=boundary_left, S_0=barrier.K_S_0, E_S=barrier.E_K_S, pressure=100, species=H +) + +right_bc = F.FixedConcentrationBC(species=H, subdomain=boundary_right, value=0) + +model_barrier.boundary_conditions = [left_bc, right_bc] +``` + +For this task, we want to compute the permeation flux, that is the flux at the right surface. + +We will also export the concentration profiles at three different times + +```{code-cell} ipython3 +permeation_flux = F.SurfaceFlux(field=H, surface=boundary_right) + +vtx_exports = [ + F.VTXSpeciesExport(filename=f"h_{i}.bp", field=H, subdomain=vol) for i, vol in enumerate(model_barrier.volume_subdomains) +] + + +profile_exports = [ + F.Profile1DExport(field=spe, subdomain=vol, times=[100, 17000, 8e5]) + for spe in model_barrier.species + for vol in model_barrier.volume_subdomains +] +model_barrier.exports = [permeation_flux] + vtx_exports + profile_exports +``` + +```{code-cell} ipython3 +model_barrier.settings = F.Settings( + atol=1e0, + rtol=1e-09, + final_time=8e5, +) + + +model_barrier.settings.stepsize = F.Stepsize( + initial_value=5, growth_factor=1.1, cutback_factor=0.9, target_nb_iterations=4, milestones=[100, 17000, 8e5] +) +``` + +```{code-cell} ipython3 +model_barrier.initialise() +model_barrier.run() +``` + +We can plot the concentration profiles at different times and notice the jump of concentrations at interfaces: + +```{code-cell} ipython3 +:tags: [hide-input] + +import matplotlib.pyplot as plt + +xlim_left = (0, barrier_thick * 2) +xlim_mid = (None, None) +xlim_right = (substrate_thick, substrate_thick + 2 * barrier_thick) + +fig, axs = plt.subplots(nrows=1, ncols=3, sharey=True, figsize=(20, 4)) + +# three shades of blue for the three times +colours = ["#1f77b4", "#185580", "#0C273B"] + +for ax, xlim in zip(axs, [xlim_left, xlim_mid, xlim_right]): + plt.sca(ax) + for profile in profile_exports: + for i, time in enumerate(profile.times): + label = f"{time:.0f} s" if ax == axs[0] and profile == profile_exports[0] else None + c = profile.data[i] + ax.plot(profile.x, c, color=colours[i], label=label) + + ax.set_xlim(xlim) + ax.set_xlabel("Depth (m)") + +axs[0].legend(fontsize=12, reverse=True) +axs[0].set_yscale("log") +axs[0].set_ylim(bottom=1e12) +axs[0].set_ylabel("Mobile H concentration (H/m$^3$)") +axs[0].set_title("zoom left") +axs[2].set_title("zoom right") +plt.show() +``` + +## 2) Model without barrier + +We can also run the equivalent model without permeation barriers with bare tungsten. +Let's make a few modifications: + +```{code-cell} ipython3 +model_no_barrier = F.HydrogenTransportProblem() + +boundary_left = F.SurfaceSubdomain1D(id=1, x=barrier_thick) +boundary_right = F.SurfaceSubdomain1D(id=2, x=substrate_thick + 1 * barrier_thick) +model_no_barrier.subdomains = [volume_tungsten, boundary_left, boundary_right] + +# new mesh +model_no_barrier.mesh = F.Mesh1D(np.linspace(*volume_tungsten.borders, num=50)) + +# change the solubility of the Sievert's condition +left_bc.S_0 = tungsten.K_S_0 +left_bc.E_S = tungsten.E_K_S + +model_no_barrier.temperature = model_barrier.temperature +model_no_barrier.boundary_conditions = model_barrier.boundary_conditions +model_no_barrier.species = model_barrier.species + +model_no_barrier.settings = model_barrier.settings + + +permeation_flux_no_barrier = F.SurfaceFlux(field=H, surface=boundary_right) +model_no_barrier.exports = [permeation_flux_no_barrier] + +model_no_barrier.initialise() +model_no_barrier.run() +``` + +## 3) Calculate the PRF + ++++ + +We can plot the temporal evolution of permeation flux with or without permeation barriers: + +```{code-cell} ipython3 +import matplotlib.pyplot as plt +plt.figure() + +plt.plot(permeation_flux_no_barrier.t, permeation_flux_no_barrier.data, label="without barrier") +plt.plot(permeation_flux.t, permeation_flux.data, label="with barrier") + +plt.xscale("log") +plt.legend() +plt.xlabel("Time (s)") +plt.ylabel("Permeation flux (H/m2/s)") +plt.show() +``` + +Clearly, having the coating on both sides reduces the permeation flux! + +Moreover, it can be shown that the PRF of this configuration is: + +$$\mathrm{PRF} = 1 + 2 \alpha \beta \gamma$$ + +With + +$$\alpha = D_\mathrm{substrate} / D_\mathrm{barrier} $$ + +$$\beta = S_\mathrm{substrate} / S_\mathrm{barrier} $$ + +$$\gamma = e_\mathrm{barrier} / e_\mathrm{substrate} $$ + +We can compare the computed PRF to the theory. + +```{code-cell} ipython3 +computed_PRF = permeation_flux_no_barrier.data[-1] / permeation_flux.data[-1] + +diff_ratio = tungsten.D_0 / barrier.D_0 +sol_ratio = tungsten.K_S_0 / barrier.K_S_0 +length_ratio = barrier_thick / substrate_thick + +theoretical_PRF = 1 + 2 * diff_ratio * sol_ratio * length_ratio + +print(f"Theoretical PRF = {theoretical_PRF:.4f}") +print(f"Computed PRF = {computed_PRF:.4f}") +print(f"Error = {(computed_PRF - theoretical_PRF)/theoretical_PRF:.2%}") +``` + +# Question +Will adding traps to the simulation change the value of the PRF? + + +Show solution + +No. The PRF is a measure of the flux of mobile particles and is computed at steady state. + +At steady state, the McNabb & Foster model states that the concentration of mobile particle is independent of the trapped concentration. + +Therefore, the steady state PRF is independent of trapping. + + diff --git a/book/content/applications/general/simple.md b/book/content/applications/general/simple.md new file mode 100644 index 00000000..48b7d420 --- /dev/null +++ b/book/content/applications/general/simple.md @@ -0,0 +1,265 @@ +--- +jupytext: + formats: ipynb,md:myst + text_representation: + extension: .md + format_name: myst + format_version: 0.13 + jupytext_version: 1.18.1 +kernelspec: + display_name: festim-workshop + language: python + name: python3 +--- + +(simple-simulation)= +# Simple simulation + +In this task, we'll go through the basics of FESTIM and run a simple simulation on a 1D domain. + +The very first step is to import the `festim` package: + +```{code-cell} ipython3 +import festim as F + +print(F.__version__) +``` + +Every FESTIM model is represented by a `Simulation` object. Here, we give it the name `my_model` + +```{code-cell} ipython3 +my_model = F.HydrogenTransportProblem() +``` + +Several "ingredients" are now required to run a FESTIM simulation: +- a mesh +- a temperature +- a set of materials +- optionally: trapping properties +- boundary conditions +- optionally: sources of H +- simulation settings +- a stepsize for transient problems + ++++ + +## 1. Mesh + +FESTIM simulations need a mesh. FESTIM provides support for simple 1D meshes. More complicated meshes can be imported from external software (see [](heat_transfer_sims)). + +The most straightforward mesh is `MeshFromVertices`, which takes a `vertices` argument. + ++++ + +Numpy can be used to generate heavier meshes. Here we create a mesh containing 1000 cells over a [0, 7e-6] domain (7 microns). + +This mesh is assigned to the simulation by setting the `.mesh` attribute of `my_model`. + +```{code-cell} ipython3 +import numpy as np + +my_model.mesh = F.Mesh1D(vertices=np.linspace(0, 7e-6, num=1001)) +``` + +```{admonition} Tip +:class: tip +For more information on meshes in FESTIM. See the Meshing section of the tutorials. +``` + ++++ + +## 2. Materials + +`Material` objects hold the materials properties like diffusivity and solubility. + +Here we only need the diffusivity defined as an Arrhenius law: + +$$ + D = D_0 \exp{(-E_D/k_B T)} +$$ + +where $k_B$ is the Boltzmann constant in eV/K and $T$ is the temperature in K. From this, the pre-exponential coefficient, $D_0$ in m2/s, and the diffusion actiavtion energy, $E_D$ in eV are needed. + +```{note} Note +All units in FESTIM as SI (apart for activation energies that are in eV) +To check what unit is expected by FESTIM, check the documentation. [Here](https://festim.readthedocs.io/en/latest/api/festim.materials.html#festim.materials.material.Material) is the reference for the `Material` class +``` + +```{code-cell} ipython3 +mat = F.Material(D_0=1e-7, E_D=0.2) + +volume_subdomain = F.VolumeSubdomain1D(id=1, borders=[0, 7e-6], material=mat) +boundary_left = F.SurfaceSubdomain1D(id=1, x=0) +boundary_right = F.SurfaceSubdomain1D(id=2, x=7e-6) +my_model.subdomains = [volume_subdomain, boundary_left, boundary_right] +``` + +```{code-cell} ipython3 +H = F.Species("H") +my_model.species = [H] +``` + +## 3. Temperature + +Temperature is a very important parameter in hydrogen transport. +The value can be a simple float (like here `300`) or a `sympy` expression like `500 + 3*sympy.exp(-F.x)`. + +The temperature is in K. + +```{note} Note +For heat transfer simulations, the `HeatTransferProblem` can be used instead. See [Heat transfer simulations](heat_transfer_sims) +``` + +```{code-cell} ipython3 +my_model.temperature = 300 +``` + +## 4. Boundary conditions & source + +Our hydrogen transport problem now needs boundary conditions and a volumetric source term. + +FESTIM provides plenty of boundary conditions (see [Dirichlet BCs](https://festim.readthedocs.io/en/latest/api/festim.boundary_conditions.dirichlets.html#festim-boundary-conditions-dirichlets-package) and [Fluxes](https://festim.readthedocs.io/en/latest/api/festim.boundary_conditions.fluxes.html)). + +Here we'll simply set the mobile concentration at ``1e15`` on the left and right boundaries (resp. `1` and `2`). + +- ``field`` represents the variable on which the boundary condition is imposed. Here, `0` stands for the mobile hydrogen concentration. + +- ``value`` is the value of the mobile concentration. Again, it could be a function of time and space with ``1e15*F.x + F.t`` + +- ``surfaces`` is a list of surfaces ids (in 1D, `1` is left and `2` is right) + +A volumetric source of mobile H (`field=0`) is set in the whole volume (`volume=1`) and its value is `1e20` H/m3/s. +Additional sources can be applied. + +```{code-cell} ipython3 +my_model.boundary_conditions = [ + F.FixedConcentrationBC(subdomain=boundary_left, value=1e15, species=H), + F.FixedConcentrationBC(subdomain=boundary_right, value=1e15, species=H), +] + + +my_model.sources = [F.ParticleSource(value=1e20, volume=volume_subdomain, species=H)] +``` + +## 5. Settings + +With `Settings` we set the main solver parameters. +- `absolute_tolerance`: the absolute tolerance of the Newton solver. For concentrations in $\mathrm{m}^{-3}$, `1e10` is usually fine. +- `relative_tolerance`: the relative tolerance of the Newton solver. Values around `1e-10` are good practices. +- `final_time`: since we want to solve a transient problem, we need to set the final time. Here, 100 s. + + +```{admonition} Tip +:class: tip +Tuning absolute and relative tolerances can be a fine art. If tolerances the solver may not converge. +If they are too high, the solver may converge to quickly (in zero iterations), resulting in no evolution of the concentration fields. +To have more information on the solving steps, set the log level of the solver to 20 with ``my_model.log_level = 20`` (default is 40) +``` + +```{code-cell} ipython3 +my_model.settings = F.Settings(atol=1e10, rtol=1e-10, final_time=2) # s +``` + +## 7. Stepsize + +Since we are solving a transient problem, we need to set a ``Stepsize``. +Here, the value of the stepsize is fixed at 0.05. + +We also add ``milestones`` to ensure the simulation passes by specific times. + + +```{admonition} Note +:class: tip +Transient simulations can be accelerated with adaptive stepsize. See [TDS](../material_science/tds.md) +``` + +```{code-cell} ipython3 +my_model.settings.stepsize = F.Stepsize(0.05, milestones=[0.1, 0.2, 0.5, 1]) # s +``` + +## 6. Exports + +Finally, we want to be able to visualise the concentration field. +To do so, we add an `XDMFExport` object which will export the concentration field at each timestep to an XDMF file. +This XDMF file can then be read in [Paraview](https://www.paraview.org/). + +- `field`: the field we want to export. Here, `"solute"` stands for the mobile concentration of hydrogen. It could be ``"retention"``, ``"1"`` (trap 1), ``"T"`` (temperature) + +- `filename`: the path to the exported file + +```{code-cell} ipython3 +class ProfileExport(F.VolumeQuantity): + + def compute(self): + profile = self.field.solution.x.array[:].copy() + + self.data.append(profile) +``` + +```{code-cell} ipython3 +profile = ProfileExport(field=H, volume=volume_subdomain) + +my_model.exports = [ + F.XDMFExport( + field=H, + filename="task01/hydrogen_concentration.xdmf", + ), + profile, +] +``` + +## 8. Run + +Finally, we initialise the model and run it! + +```{code-cell} ipython3 +my_model.initialise() + +my_model.run() +``` + +Three files should have been created: hydrogen_concentration.xdmf, hydrogen_concentration.h5, and mobile_concentration.txt + +The .xdmf file is the one that can be opened in Paraview, and it points to the .h5 file. + +The profile exported as a text file can now be plotted with matplotlib: + +```{code-cell} ipython3 +import matplotlib.pyplot as plt +import numpy as np + +x = my_model.mesh.mesh.geometry.x[:, 0] + +for t in [0.1, 0.2, 0.5, 1]: + idx = np.where(np.isclose(profile.t, t))[0][0] + data = profile.data[idx] + plt.plot(x, data, label=f"{t} s") + +plt.xlabel("x (m)") +plt.ylabel("Mobile concentration (H/m3)") +plt.legend() +plt.show() +``` + +To solve the steady-state problem, simply set: + +```{code-cell} ipython3 +my_model.settings.transient = False +my_model.settings.stepsize = None + +my_model.exports = [profile] +``` + +```{code-cell} ipython3 +my_model.initialise() + +my_model.run() +``` + +```{code-cell} ipython3 +data = profile.data[0] +plt.plot(x, data, label=f"{t} s") +plt.xlabel("x (m)") +plt.ylabel("Mobile concentration (H/m3)") +plt.show() +``` diff --git a/book/content/applications/general/simple_permeation.md b/book/content/applications/general/simple_permeation.md new file mode 100644 index 00000000..e1666947 --- /dev/null +++ b/book/content/applications/general/simple_permeation.md @@ -0,0 +1,154 @@ +--- +jupytext: + formats: ipynb,md:myst + text_representation: + extension: .md + format_name: myst + format_version: 0.13 + jupytext_version: 1.18.1 +kernelspec: + display_name: festim-workshop + language: python + name: python3 +--- + +# Simple permeation simulation + +In this task, we'll go through the basics of FESTIM and run a simple permeation simulation on a 1D domain. + +```{code-cell} ipython3 +import festim as F +``` + +The first step is to create a model using a `Simulation` object. + +```{code-cell} ipython3 +my_model = F.HydrogenTransportProblem() + +H = F.Species("H") +my_model.species = [H] +``` + +We'll consider a 3 mm-thick material and a regular mesh (1000 cells) + +```{code-cell} ipython3 +import numpy as np + +my_model.mesh = F.Mesh1D(vertices=np.linspace(0, 3e-4, num=1001)) +``` + +`Material` objects hold the materials properties like diffusivity and solubility. + +Here we only need the diffusivity defined as an Arrhenius law: $D = D_0 \exp{(-E_D/k_B T)}$ where $k_B$ is the Boltzmann constant in eV/K and $T$ is the temperature in K. From this, the pre-exponential coefficient, $D_0$ in units m2/s, and the diffusion actiavtion energy, $E_D$ in units eV are needed.` + +```{code-cell} ipython3 +material = F.Material(D_0=1.9e-7, E_D=0.2) + +volume_subdomain = F.VolumeSubdomain1D(id=1, borders=(0, 3e-4), material=material) +left_boundary = F.SurfaceSubdomain1D(id=1, x=0) +right_boundary = F.SurfaceSubdomain1D(id=2, x=3e-4) + +my_model.subdomains = [volume_subdomain, left_boundary, right_boundary] +``` + +The temperature is set at 500 K + +```{code-cell} ipython3 +my_model.temperature = 500 +``` + +FESTIM has a `SievertsBC` class representing Sievert's law of solubility: $c = S \ \sqrt{P}$ at metal surfaces. + +> Note: +> +> A similar class exists for non-metallic materials behaving according to Henry's law: `HenrysBC` + +We'll use this boundary condition on the left surface (`id=1`) and will assume a zero concentration on the right side (`id=2`). + +```{code-cell} ipython3 +P_up = 100 # Pa + +my_model.boundary_conditions = [ + F.SievertsBC(subdomain=left_boundary, S_0=4.02e21, E_S=1.04, pressure=P_up, species=H), + F.FixedConcentrationBC(subdomain=right_boundary, value=0, species=H), +] +``` + +With `Settings` we set the main solver parameters. + +```{code-cell} ipython3 +my_model.settings = F.Settings(atol=1e-2, rtol=1e-10, final_time=100) # s +``` + +Let's choose a stepsize small enough to have good temporal resolution: + +```{code-cell} ipython3 +my_model.settings.stepsize = F.Stepsize(1 / 20) +``` + +For this permeation experiment, we are only interested in the hydrogen flux on the right side: + +```{code-cell} ipython3 +permeation_flux = F.SurfaceFlux(field=H, surface=right_boundary) + +my_model.exports = [permeation_flux] +``` + +```{code-cell} ipython3 +my_model.initialise() + +my_model.run() +``` + +This problem can be solved analytically. The solution for the downstream flux is: + +$$\mathrm{downstream \ flux} = \frac{P_\mathrm{up} \Phi}{L} \left(1 + 2 \sum_{n=1}^{\infty} \left(-1\right)^{n} \exp{(- \frac{\pi^{2} D n^{2} t}{L^{2}})}\right) $$ + +```{code-cell} ipython3 +def downstream_flux(t, P_up, permeability, L, D): + """calculates the downstream H flux at a given time t + + Args: + t (float, np.array): the time + P_up (float): upstream partial pressure of H + permeability (float): material permeability + L (float): material thickness + D (float): diffusivity of H in the material + + Returns: + float, np.array: the downstream flux of H + """ + n_array = np.arange(1, 10000)[:, np.newaxis] + summation = np.sum( + (-1) ** n_array * np.exp(-((np.pi * n_array) ** 2) * D / L**2 * t), axis=0 + ) + return P_up**0.5 * permeability / L * (2 * summation + 1) +``` + +We can compare the computed downstream flux to the analytical solution: + +```{code-cell} ipython3 +times = permeation_flux.t + +D = 1.9e-7 * np.exp(-0.2 / F.k_B / 500) +S = 4.02e21 * np.exp(-1.04 / F.k_B / 500) + +import matplotlib.pyplot as plt + +plt.scatter(times, np.abs(permeation_flux.data), alpha=0.2, label="computed") +plt.plot( + times, + downstream_flux(times, P_up, permeability=D * S, L=3e-4, D=D), + color="tab:orange", + label="analytical", +) +plt.ylim(bottom=0) +plt.xlabel("Time (s)") +plt.ylabel("Downstream flux (H/m2/s)") +plt.show() +``` + +Phew! We have a good agreement between our model and the analytical solution! + +To reproduce simple permeation experiments, the analytical solution is obviously enough. +However, for more complex scenarios (transients, trapping regimes,..) a numerical model provides more flexibility. diff --git a/book/content/applications/material_science/fitting_tds.md b/book/content/applications/material_science/fitting_tds.md new file mode 100644 index 00000000..5f8504dc --- /dev/null +++ b/book/content/applications/material_science/fitting_tds.md @@ -0,0 +1,416 @@ +--- +jupytext: + formats: ipynb,md:myst + text_representation: + extension: .md + format_name: myst + format_version: 0.13 + jupytext_version: 1.18.1 +kernelspec: + display_name: festim-workshop + language: python + name: python3 +--- + +# Fitting a TDS spectrum + +In this task, we'll perform an automated identification of trapping site properties using a parametric optimisation algorithm. +See [R. Delaporte-Mathurin et al. NME (2021)](https://doi.org/10.1016/j.nme.2021.100984) for more details. + ++++ + +## TDS model + ++++ + +We have to define our FESTIM model, which we'll use in both task steps. The simulation will be performed for the case of H desorption from a W domain. Using the HTM library, we can get parameters of the H diffusivity in W that are required to set up the model. + +```{code-cell} ipython3 +import h_transport_materials as htm + +D = ( + htm.diffusivities.filter(material="tungsten") + .filter(isotope="h") + .filter(author="fernandez")[0] +) +print(D) +``` + +For this task, we'll consider a simplified simulation scenario. Firstly, we'll set only one sort of trapping site characterised by a detrapping barrier `E_p` [eV] and uniformly distributed in the W domain with concentration `n` [at. fr.]. Secondly, we'll assume that this W sample was kept in a H environment infinetly long, so all the trap sites were filled with H atoms. Thirdly, we'll suppose that all mobile H atoms leave the sample before the TDS. Finally, we'll simulate simulate the TDS phase assuming a uniform heating ramp of 5 K/s. + +The initial conditions are: +$$ \left.c_{\mathrm{m}}\right\vert_{t=0}=0 $$ +$$ \left.c_{\mathrm{t}}\right\vert_{t=0}=n $$ +which we'll set using the `InitialCondition` class. + +For the boundary conditions, we'll use the assumption of an instantaneous recombination (using `FixedConcentrationBC`): +$$ \left.c_{\mathrm{m}}\right\vert_{x=0}=\left.c_{\mathrm{m}}\right\vert_{x=L}=0 $$ + +For the fitting stage, we have to treat the detrapping energy and the trap concentration as variable parameters. Therefore, we'll define a function that encapsulates our `Simulation` object and accepts two input parameters: the trap density and detrapping energy. + +```{code-cell} ipython3 +import festim as F +import numpy as np + + +def temperature(t): + ramp = 5 # K/s + return 300 + ramp * t + + +def TDS(n, E_p): + """Runs the simulation with parameters p that represent: + + Args: + n (float): concentration of trap 1, at. fr. + E_p (float): detrapping barrier from trap 1, eV + + Returns: + F.DerivedQuantities: the derived quantities of the simulation + """ + w_atom_density = 6.3e28 # atom/m3 + trap_conc = n * w_atom_density + + # Define Simulation object + synthetic_TDS = F.HydrogenTransportProblem() + + H = F.Species("H") + trapped_species = F.Species("H_trapped", mobile=False) + synthetic_TDS.species = [H, trapped_species] + + # Define a simple mesh + vertices = np.linspace(0, 20e-6, num=200) + synthetic_TDS.mesh = F.Mesh1D(vertices) + + # Define material properties + tungsten = F.Material( + D_0=D.pre_exp.magnitude, + E_D=D.act_energy.magnitude, + ) + + boundary_left = F.SurfaceSubdomain1D(id=1, x=0) + boundary_right = F.SurfaceSubdomain1D(id=2, x=20e-6) + volume_subdomain = F.VolumeSubdomain1D(id=3, borders=[0, 20e-6], material=tungsten) + synthetic_TDS.subdomains = [boundary_left, boundary_right, volume_subdomain] + + # Define traps + + empty_trap = F.ImplicitSpecies( + n=trap_conc, + others=[trapped_species], + ) + trap_1_reaction = F.Reaction( + reactant=[H, empty_trap], + product=[trapped_species], + k_0=D.pre_exp.magnitude / (1.1e-10**2 * 6 * w_atom_density), + E_k=D.act_energy.magnitude, + p_0=1e13, + E_p=E_p, + volume=volume_subdomain, + ) + + synthetic_TDS.reactions = [trap_1_reaction] + + # Set initial conditions + synthetic_TDS.initial_conditions = [ + F.InitialCondition(species=trapped_species, value=trap_conc), + ] + + # Set boundary conditions + synthetic_TDS.boundary_conditions = [ + F.FixedConcentrationBC(subdomain=surf, value=0, species=H) + for surf in [boundary_left, boundary_right] + ] + + # Define the material temperature evolution + synthetic_TDS.temperature = temperature + + # Define the simulation settings + synthetic_TDS.settings = F.Settings( + atol=1e10, + rtol=1e-10, + final_time=140, + max_iterations=50, + ) + + synthetic_TDS.settings.stepsize = F.Stepsize( + initial_value=0.01, + growth_factor=1.2, + cutback_factor=0.9, + target_nb_iterations=4, + max_stepsize=lambda t: None if t < 1 else 1, + ) + + fluxes = [ + F.SurfaceFlux(field=H, surface=boundary_left), + F.SurfaceFlux(field=H, surface=boundary_right), + ] + + synthetic_TDS.exports = fluxes + synthetic_TDS.initialise() + synthetic_TDS.run() + + return fluxes +``` + +## Generate dummy data + +Now we can generate a reference TDS spectrum. For the reference case, we'll consider the following parameters: $n=0.01~\text{at.fr}$ and $E_p=1~\text{eV}$. + +```{code-cell} ipython3 +reference_prms = [1e-2, 1.0] +data = TDS(*reference_prms) +``` + +Additionally, we can add some noise to the generated TDS spectra to mimic the experimental conditions. We'll also save the noisy flux dependence on temperature into a file to use it further as a reference data. + +```{code-cell} ipython3 +import matplotlib.pyplot as plt + + +# Calculate the total desorption flux +flux_left = data[0].data +flux_right = data[1].data +flux_total = np.array(flux_left) + np.array(flux_right) + +# Get temperature +T = temperature(np.array(data[0].t)) + +# Add random noise +noise = np.random.normal(0, 0.05 * max(flux_total), len(flux_total)) +noisy_flux = flux_total + noise + +# Save to file +np.savetxt("Noisy_TDS.csv", np.column_stack([T, noisy_flux]), delimiter=";", fmt="%f") + +# Visualise +plt.plot(T, noisy_flux, linewidth=2) + +plt.ylabel(r"Desorption flux (m$^{-2}$ s$^{-1}$)") +plt.xlabel(r"Temperature (K)") +plt.show() +``` + +## Automated TDS fit + ++++ + +Here we'll define the algorithm to fit the generated TDS spectra using the [`minimize`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html) method from the `scipy.optimize` python library. The initial implementation of the algorithm can be found in [this repository](https://github.com/RemDelaporteMathurin/tds_optimisation/tree/main). We'll try to find the values of the detrapping barrier and the trap concetration so the average absolute error between the reference and the fitted spectras satisfies the required tolerance. To start with, we'll read our reference data and define an auxiliary method to display information on the status of fitting. + +```{code-cell} ipython3 +ref = np.genfromtxt("Noisy_TDS.csv", delimiter=";") + + +def info(xk): + """ + Print information during the fitting procedure + """ + print("-" * 40) + print("New iteration.") + print(f"Point is: {xk}") +``` + +Then, we define an error function `error_function` that: +- runs the TDS model with a given set of parameters +- calculates the mean absolute error between the reference and the simulated TDS +- collects intermediate values of parameters and the calculated errors for visualisation purposes + +```{code-cell} ipython3 +from scipy.interpolate import interp1d + +prms = [] +errors = [] + +all_ts = [] +all_fluxes = [] + +i = 0 # initialise counter + + +def error_function(prm): + """ + Compute average absolute error between simulation and reference + """ + global i + global prms + global errors + global all_ts + global all_fluxes + + i += 1 + prms.append(prm) + + # Filter the results if a negative value is found + if any([e < 0 for e in prm]): + return 1e30 + + # Get the simulation result + n, Ep = prm + res = TDS(n, Ep) + + flux = np.array(res[0].data) + np.array(res[1].data) + all_fluxes.append(flux) + all_ts.append(np.array(res[0].t)) + + T = temperature(np.array(res[0].t)) + + interp_tds = interp1d(T, flux, fill_value="extrapolate") + + # Compute the mean absolute error between sim and ref + err = np.abs(interp_tds(ref[:, 0]) - ref[:, 1]).mean() + + print(f"Average absolute error is : {err:.2e}") + errors.append(err) + return err +``` + +Finally, we'll minimise `error_function` to find the set of trap properties reproducing the reference TDS (within some tolerance). + +We'll use the Nelder-Mead minimisation algorithm with the initial guess: $n=0.02~\text{at.fr.}$ and $E_p=1.1~\text{eV}$. + +```{code-cell} ipython3 +:tags: [hide-output] + +from scipy.optimize import minimize + + +# Set the tolerances +fatol = 3e18 +xatol = 1e-2 + +initial_guess = [2e-2, 1.1] + +# Minimise the error function +res = minimize( + error_function, + np.array(initial_guess), + method="Nelder-Mead", + options={"disp": True, "fatol": fatol, "xatol": xatol}, + callback=info, +) +``` + +## Visualise results + +```{code-cell} ipython3 +# Process the obtained results +predicted_data = TDS(*res.x) + +T = temperature(np.array(predicted_data[0].t)) + +flux_left = predicted_data[0].data +flux_right = predicted_data[1].data +flux_total = np.array(flux_left) + np.array(flux_right) + +for i, (t, flux) in enumerate(zip(all_ts, all_fluxes)): + T = temperature(t) + if i == 0: + plt.plot(T, flux, color="tab:red", lw=2, label="Initial guess") + else: + plt.plot(T, flux, color="tab:grey", lw=0.5) + +plt.plot(ref[:, 0], ref[:, 1], linewidth=2, label="Reference") +plt.plot(T, flux_total, linewidth=2, label="Optimised") + +plt.ylabel(r"Desorption flux (m$^{-2}$ s$^{-1}$)") +plt.xlabel(r"Temperature (K)") +plt.legend() +plt.show() +``` + +```{code-cell} ipython3 +:tags: [hide-input] + +import matplotlib.animation as animation +from IPython.display import HTML + +# Turn off interactive plotting to prevent static display +plt.ioff() + +# Create the figure and axis +fig, ax = plt.subplots(figsize=(10, 6)) + +# Set up the plot limits and labels +ax.set_ylabel(r"Desorption flux (m$^{-2}$ s$^{-1}$)") +ax.set_xlabel(r"Temperature (K)") + +# Plot experimental data in blue (always visible) +ax.plot(ref[:, 0], ref[:, 1], linewidth=2, label="Experimental data", color="blue") + +# Initialize empty line objects for the animation +line_current, = ax.plot([], [], color="red", linewidth=2, label="Current iteration", zorder=1000) +lines_previous = [] + +def animate(frame): + # Clear previous iteration lines + for line in lines_previous: + line.remove() + lines_previous.clear() + + # Plot all previous iterations in light grey + for i in range(frame): + T_iter = temperature(all_ts[i]) + line_prev, = ax.plot(T_iter, all_fluxes[i], color="lightgrey", linewidth=0.8, alpha=0.6) + lines_previous.append(line_prev) + + # Plot current iteration in red + if frame < len(all_ts): + T_current = temperature(all_ts[frame]) + line_current.set_data(T_current, all_fluxes[frame]) + + # Update legend and title + ax.set_title(f"TDS Fitting Animation - Iteration {frame + 1}/{len(all_ts)}") + ax.legend() + + # Set consistent axis limits + all_temps = [temperature(ts) for ts in all_ts] + all_temp_vals = np.concatenate(all_temps + [ref[:, 0]]) + all_flux_vals = np.concatenate(all_fluxes + [ref[:, 1]]) + + ax.set_xlim(all_temp_vals.min() * 0.95, all_temp_vals.max() * 1.05) + ax.set_ylim(0, all_flux_vals.max() * 1.1) + + return [line_current] + lines_previous + +# Create animation +anim = animation.FuncAnimation( + fig, animate, frames=len(all_ts), interval=100, blit=False, repeat=True +) + +# Close the figure to prevent static display +plt.close(fig) + +# Display only the animation +HTML(anim.to_jshtml()) + +# Uncomment to save as gif +# anim.save('tds_fitting_animation.gif', writer='pillow', fps=10) +``` + +Additionally, we can visualise how the parameters and the computed error varied during the optimisation process. + +```{code-cell} ipython3 +plt.ion() +plt.scatter( + np.array(prms)[:, 0], np.array(prms)[:, 1], c=np.array(errors), cmap="viridis" +) +plt.plot(np.array(prms)[:, 0], np.array(prms)[:, 1], color="tab:grey", lw=0.5) + +plt.scatter(*reference_prms, c="tab:red") +plt.annotate( + "Reference", + xy=reference_prms, + xytext=(reference_prms[0] - 0.003, reference_prms[1] + 0.1), + arrowprops=dict(facecolor="black", arrowstyle="-|>"), +) +plt.annotate( + "Initial guess", + xy=initial_guess, + xytext=(initial_guess[0] - 0.004, initial_guess[1] + 0.05), + arrowprops=dict(facecolor="black", arrowstyle="-|>"), +) + +plt.xlabel(r"Trap 1 concentration (at. fr.)") +plt.ylabel(r"Detrapping barrier (eV)") +plt.show() +``` diff --git a/book/content/applications/material_science/index.md b/book/content/applications/material_science/index.md new file mode 100644 index 00000000..ed725bfb --- /dev/null +++ b/book/content/applications/material_science/index.md @@ -0,0 +1,15 @@ +--- +jupytext: + formats: ipynb,md:myst + text_representation: + extension: .md + format_name: myst + format_version: 0.13 + jupytext_version: 1.18.1 +--- + +# Material Science # + +Modeling fusion components with FESTIM + ++++ diff --git a/book/content/applications/microstructure.md b/book/content/applications/material_science/microstructure.md similarity index 99% rename from book/content/applications/microstructure.md rename to book/content/applications/material_science/microstructure.md index 1de03704..9ddb2f68 100644 --- a/book/content/applications/microstructure.md +++ b/book/content/applications/material_science/microstructure.md @@ -5,7 +5,7 @@ jupytext: extension: .md format_name: myst format_version: 0.13 - jupytext_version: 1.17.3 + jupytext_version: 1.18.1 kernelspec: display_name: festim-workshop language: python @@ -51,7 +51,7 @@ plt.show() ``` Now that we have vertices for each Voronoi cell, we can use `shapely` to turn them into `shapely.Polygon` objects for easy manipulation. -We then shrink the Voronoi cells to make grain boundaries appear. Note that the grain boundary thickness is arbitrary here. +We then shrink the Voronoi cells to make grain boundaries appear. Note that the grain boundary thickness is arbitrary here. ```{code-cell} ipython3 from shapely.geometry import Polygon @@ -102,7 +102,7 @@ plt.show() ### Mesh with GMSH -We can now pass this geometry to GMSH for meshing. We tag the grains, grain boundaries, and the left and right surfaces as different subdomains. +We can now pass this geometry to GMSH for meshing. We tag the grains, grain boundaries, and the left and right surfaces as different subdomains. ```{code-cell} ipython3 :tags: [hide-output] diff --git a/book/content/applications/material_science/tds.md b/book/content/applications/material_science/tds.md new file mode 100644 index 00000000..ff11594a --- /dev/null +++ b/book/content/applications/material_science/tds.md @@ -0,0 +1,325 @@ +--- +jupytext: + formats: ipynb,md:myst + text_representation: + extension: .md + format_name: myst + format_version: 0.13 + jupytext_version: 1.18.1 +kernelspec: + display_name: festim-workshop + language: python + name: python3 +--- + +# TDS simulation + +Thermo-desorption spectra (TDS) are a valuble source of experimental data for understanding the mechanics of hydorgen transport. The nature of the spectra produced by thermo-desorption experiments can give insight to the trapping properties of a given material. There are three stages in a TDS experiment; The implantation stage, the resting stage and the desoption stage. Each stage can be modelled, and the desportion flux spectra reproduced. + +In this task, we'll simulate a thermo-desorption experiment for a sample of tungsten. + +```{code-cell} ipython3 +import festim as F + +my_model = F.HydrogenTransportProblem() +``` + +Let's create a mesh from a list of vertices with more refinement close to $x=0$. + +```{code-cell} ipython3 +import numpy as np + +vertices = np.concatenate( + [ + np.linspace(0, 30e-9, num=200), + np.linspace(30e-9, 3e-6, num=300), + np.linspace(3e-6, 20e-6, num=200), + ] +) + +my_model.mesh = F.Mesh1D(vertices) +``` + +The material we want to simulate is tungsten. The only property we need is the diffusion coefficient. + +```{code-cell} ipython3 +tungsten = F.Material( + D_0=4.1e-07, # m2/s + E_D=0.39, # eV +) + +volume_subdomain = F.VolumeSubdomain1D(id=1, borders=[0, 20e-6], material=tungsten) +left_boundary = F.SurfaceSubdomain1D(id=1, x=0) +right_boundary = F.SurfaceSubdomain1D(id=2, x=20e-6) + +my_model.subdomains = [ + volume_subdomain, + left_boundary, + right_boundary, +] +``` + +```{code-cell} ipython3 +w_atom_density = 6.3e28 # atom/m3 + +H = F.Species("H") +trapped_H1 = F.Species("trapped_H1", mobile=False) +trapped_H2 = F.Species("trapped_H2", mobile=False) +empty_trap1 = F.ImplicitSpecies(n=1.3e-3 * w_atom_density, others=[trapped_H1]) +empty_trap2 = F.ImplicitSpecies(n=4e-4 * w_atom_density, others=[trapped_H2]) +my_model.species = [H, trapped_H1, trapped_H2] + +trapping_reaction_1 = F.Reaction( + reactant=[H, empty_trap1], + product=[trapped_H1], + k_0=4.1e-7 / (1.1e-10**2 * 6 * w_atom_density), + E_k=0.39, + p_0=1e13, + E_p=0.87, + volume=volume_subdomain, +) +trapping_reaction_2 = F.Reaction( + reactant=[H, empty_trap2], + product=[trapped_H2], + k_0=4.1e-7 / (1.1e-10**2 * 6 * w_atom_density), + E_k=0.39, + p_0=1e13, + E_p=1.0, + volume=volume_subdomain, +) + +my_model.reactions = [ + trapping_reaction_1, + trapping_reaction_2, +] +``` + +The source term is defined as: +\begin{equation} + S_{ext} = \varphi \cdot f(x) \quad \forall \, t<400 \text{s} +\end{equation} + +where $\varphi =2.5 \times 10^{19} \text{m}^{-2}\text{s}^{-1}$ and $f(x)$ is a Gaussian spatial distribution with a mean value of $4.5 \: \text{nm}$ and a width of $2.5 \: \text{nm}$. + +FESTIM has a special class for this case: `ImplantationFlux`. + +The ion flux is temporally defined using a Sympy Piecewise expression, to be active for the `implantation_time`. + +Below, `t` is a built-in FESTIM variable that represent time in $\text{s}$. + +```{code-cell} ipython3 +import ufl + +implantation_time = 400 # s +incident_flux = 2.5e19 # H/m2/s + +def ion_flux(t): + return ufl.conditional(t <= implantation_time, incident_flux, 0) + + +def gaussian_distribution(x, center, width): + return ( + 1 + / (width * (2 * ufl.pi) ** 0.5) + * ufl.exp(-0.5 * ((x[0] - center) / width) ** 2) + ) + + +source_term = F.ParticleSource( + value=lambda x, t: ion_flux(t) * gaussian_distribution(x, 4.5e-9, 2.5e-9), + volume=volume_subdomain, + species=H, +) + +my_model.sources = [source_term] +``` + +Boundary conditions (BCs) can be of several types in FESTIM, the most simple of them being the `FixedConcentrationBC` where an analytical expression is given in the argument: `value`. The argument `subdomain` is the subdomain on which the BC is applied. If no BC is applied on a surface, it will be considered as a non flux surface (ie $\frac{\partial c}{\partial\textbf{n}} = 0$). + +In this case, the solute concentration is set to zero on the left and right surface. + +```{code-cell} ipython3 +my_model.boundary_conditions = [ + F.FixedConcentrationBC(subdomain=left_boundary, value=0, species=H), + F.FixedConcentrationBC(subdomain=right_boundary, value=0, species=H), +] +``` + +In this example, the temperature is constant from $t=0$ to $t=450 \text{s}$ (implantation + resting phase), then increases from $t=450 \text{s}$ to $t=500 \text{s}$ in order to perform the thermo-desorption (TDS phase). + +\begin{equation} + T(t) = + \begin{cases} + 300, & \text{if} \: t < 450 \\ + 300 + 8(t - 450), & \text{else} \\ + \end{cases} +\end{equation} + +$T$ is expressed in $\text{K}$. + +```{code-cell} ipython3 +implantation_temp = 300 # K +temperature_ramp = 8 # K/s + +start_tds = implantation_time + 50 # s + + +def temp_fun(t): + if t <= start_tds: + return implantation_temp + else: + return implantation_temp + temperature_ramp * (t - start_tds) + + +my_model.temperature = temp_fun +``` + +```{code-cell} ipython3 +my_model.settings = F.Settings(atol=1e10, rtol=1e-10, final_time=500) +``` + +```{code-cell} ipython3 +my_model.settings.stepsize = F.Stepsize( + initial_value=0.5, + growth_factor=1.1, + cutback_factor=0.9, + target_nb_iterations=4, + max_stepsize=lambda t: 0.5 if t > start_tds else None, + milestones=[implantation_time, start_tds, start_tds + 50], +) +``` + +The `Stepsize` object defines the simulation stepsize. + +The argument `initial_value` is the initial stepsize is expressed in $\text{s}$. + +An adaptive stepsize algorithm has been implemented in order to save computational cost. +`growth_factor` and `cutback_factor` define by how much the stepsize is increased or decreased after each iteration (depending on the number of Newton iterations required to converged). + +The optional argument `max_stepsize` sets the maximum stepsize. It takes a function of time. In this case, we cap the stepsize at 0.5 s after the start of the TDS. +We also set `milestones` in order to make sure the simulation doesn't over step the end of the implantation and the start of the TDS. + ++++ + +We want to plot the evolution of the surface fluxes as a function of time. + +To do so, we'll use 'derived quantities' objects. +There is a wide range of derived quantities available in FESTIM. + +Here, we'll use `TotalVolume` (volume integration) and `HydrogenFlux`. + +```{code-cell} ipython3 +left_flux = F.SurfaceFlux(surface=left_boundary, field=H) +right_flux = F.SurfaceFlux(surface=right_boundary, field=H) +total_mobile_H = F.TotalVolume(field=H, volume=volume_subdomain) +total_trapped_H1 = F.TotalVolume(field=trapped_H1, volume=volume_subdomain) +total_trapped_H2 = F.TotalVolume(field=trapped_H2, volume=volume_subdomain) + +profile_exports = [ + F.Profile1DExport( + field=spe, + times=[implantation_time, start_tds, start_tds + 50], + ) + for spe in [H, trapped_H1, trapped_H2] +] + +my_model.exports = [ + total_mobile_H, + total_trapped_H1, + total_trapped_H2, + left_flux, + right_flux, +] + profile_exports +``` + +```{code-cell} ipython3 +my_model.initialise() +my_model.run() +``` + +```{code-cell} ipython3 +:tags: [hide-input] + +import matplotlib.pyplot as plt + +time_labels = ["After implantation", "Start of TDS", "50 s after TDS start"] + +fig, axs = plt.subplots(3, 3, sharex=True, sharey="row", figsize=(12, 8)) +for i, profile in enumerate(profile_exports): + axs[i, 0].set_ylabel(profile.field.name) + for j, time in enumerate(profile.times): + axs[0, j].set_title(time_labels[j]) + plt.sca(axs[i, j]) + plt.plot(profile.x, profile.data[j]) + plt.fill_between( + profile.x, + profile.data[j], + alpha=0.2, + ) + +for ax in axs.flat: + ax.spines["top"].set_visible(False) + ax.spines["right"].set_visible(False) + ax.set_ylim(bottom=0) +plt.xlim(0, 3.5e-6) +axs[2, 0].set_xlabel("Position (m)") +plt.show() +``` + +```{code-cell} ipython3 +t = left_flux.t +flux_total = np.array(left_flux.data) + np.array(right_flux.data) + +plt.plot(t, flux_total, linewidth=3) + +plt.ylabel(r"Desorption flux (m$^{-2}$ s$^{-1}$)") +plt.xlabel(r"Time (s)") +plt.show() +``` + +Make use of numpy to compute the time derivative of the traps inventories! + +```{code-cell} ipython3 +contribution_trap_1 = -np.diff(total_trapped_H1.data) / np.diff(t) +contribution_trap_2 = -np.diff(total_trapped_H2.data) / np.diff(t) +``` + +We can now plot the TDS spectrum with the 3 traps contributions + +```{code-cell} ipython3 +plt.plot(t, flux_total, linewidth=3) +plt.plot(t[1:], contribution_trap_1, linestyle="--", color="grey") +plt.fill_between(t[1:], 0, contribution_trap_1, facecolor="grey", alpha=0.1) +plt.plot(t[1:], contribution_trap_2, linestyle="--", color="grey") +plt.fill_between(t[1:], 0, contribution_trap_2, facecolor="grey", alpha=0.1) + +plt.xlim(450, 500) +plt.ylim(bottom=-1.25e18, top=0.6e19) +plt.ylabel(r"Desorption flux (m$^{-2}$ s$^{-1}$)") +plt.xlabel(r"Time (s)") + +plt.ylabel(r"Desorption flux (m$^{-2}$ s$^{-1}$)") +plt.xlabel(r"Time (s)") +``` + +## Task +1) Increase the implantation temperature to 500 K and see how the TDS spectrum is affected +2) Vary the detrapping energy of the first trap +3) At the end of the implantation phase, what is the proportion of hydrogen trapped in trap 2? + +```{code-cell} ipython3 +:tags: [hide-cell] + +plt.stackplot( + t, + total_trapped_H1.data, + total_trapped_H2.data, + total_mobile_H.data, + labels=["trapped H1", "trapped H2", "mobile H"], + alpha=0.5, +) +plt.legend(reverse=True) +plt.ylabel(r"Inventory (m$^{-2}$)") +plt.xlabel(r"Time (s)") +plt.show() +``` diff --git a/book/content/applications/task01.ipynb b/book/content/applications/task01.ipynb deleted file mode 100644 index 4ab34e11..00000000 --- a/book/content/applications/task01.ipynb +++ /dev/null @@ -1,479 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "(simple-simulation)=\n", - "# Simple simulation\n", - "\n", - "In this task, we'll go through the basics of FESTIM and run a simple simulation on a 1D domain.\n", - "\n", - "The very first step is to import the `festim` package:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2.0a2\n" - ] - } - ], - "source": [ - "import festim as F\n", - "\n", - "print(F.__version__)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Every FESTIM model is represented by a `Simulation` object. Here, we give it the name `my_model`" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "my_model = F.HydrogenTransportProblem()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Several \"ingredients\" are now required to run a FESTIM simulation:\n", - "- a mesh\n", - "- a temperature\n", - "- a set of materials\n", - "- optionally: trapping properties\n", - "- boundary conditions\n", - "- optionally: sources of H\n", - "- simulation settings\n", - "- a stepsize for transient problems" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 1. Mesh\n", - "\n", - "FESTIM simulations need a mesh. FESTIM provides support for simple 1D meshes. More complicated meshes can be imported from external software (see [](heat_transfer_sims)).\n", - "\n", - "The most straightforward mesh is `MeshFromVertices`, which takes a `vertices` argument." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Numpy can be used to generate heavier meshes. Here we create a mesh containing 1000 cells over a [0, 7e-6] domain (7 microns).\n", - "\n", - "This mesh is assigned to the simulation by setting the `.mesh` attribute of `my_model`." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "my_model.mesh = F.Mesh1D(vertices=np.linspace(0, 7e-6, num=1001))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "```{admonition} Tip\n", - ":class: tip\n", - "For more information on meshes in FESTIM. See the Meshing section of the tutorials.\n", - "```" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. Materials\n", - "\n", - "`Material` objects hold the materials properties like diffusivity and solubility.\n", - "\n", - "Here we only need the diffusivity defined as an Arrhenius law:\n", - "\n", - "$$\n", - " D = D_0 \\exp{(-E_D/k_B T)}\n", - "$$\n", - "\n", - "where $k_B$ is the Boltzmann constant in eV/K and $T$ is the temperature in K. From this, the pre-exponential coefficient, $D_0$ in m2/s, and the diffusion actiavtion energy, $E_D$ in eV are needed.\n", - "\n", - "```{note} Note\n", - "All units in FESTIM as SI (apart for activation energies that are in eV)\n", - "To check what unit is expected by FESTIM, check the documentation. [Here](https://festim.readthedocs.io/en/latest/api/festim.materials.html#festim.materials.material.Material) is the reference for the `Material` class\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "mat = F.Material(D_0=1e-7, E_D=0.2)\n", - "\n", - "volume_subdomain = F.VolumeSubdomain1D(id=1, borders=[0, 7e-6], material=mat)\n", - "boundary_left = F.SurfaceSubdomain1D(id=1, x=0)\n", - "boundary_right = F.SurfaceSubdomain1D(id=2, x=7e-6)\n", - "my_model.subdomains = [volume_subdomain, boundary_left, boundary_right]" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "H = F.Species(\"H\")\n", - "my_model.species = [H]" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Temperature\n", - "\n", - "Temperature is a very important parameter in hydrogen transport.\n", - "The value can be a simple float (like here `300`) or a `sympy` expression like `500 + 3*sympy.exp(-F.x)`.\n", - "\n", - "The temperature is in K.\n", - "\n", - "```{note} Note\n", - "For heat transfer simulations, the `HeatTransferProblem` can be used instead. See [Heat transfer simulations](heat_transfer_sims)\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "my_model.temperature = 300" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4. Boundary conditions & source\n", - "\n", - "Our hydrogen transport problem now needs boundary conditions and a volumetric source term.\n", - "\n", - "FESTIM provides plenty of boundary conditions (see [Dirichlet BCs](https://festim.readthedocs.io/en/latest/api/festim.boundary_conditions.dirichlets.html#festim-boundary-conditions-dirichlets-package) and [Fluxes](https://festim.readthedocs.io/en/latest/api/festim.boundary_conditions.fluxes.html)).\n", - "\n", - "Here we'll simply set the mobile concentration at ``1e15`` on the left and right boundaries (resp. `1` and `2`).\n", - "\n", - "- ``field`` represents the variable on which the boundary condition is imposed. Here, `0` stands for the mobile hydrogen concentration.\n", - "\n", - "- ``value`` is the value of the mobile concentration. Again, it could be a function of time and space with ``1e15*F.x + F.t``\n", - "\n", - "- ``surfaces`` is a list of surfaces ids (in 1D, `1` is left and `2` is right)\n", - "\n", - "A volumetric source of mobile H (`field=0`) is set in the whole volume (`volume=1`) and its value is `1e20` H/m3/s.\n", - "Additional sources can be applied." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "my_model.boundary_conditions = [\n", - " F.FixedConcentrationBC(subdomain=boundary_left, value=1e15, species=H),\n", - " F.FixedConcentrationBC(subdomain=boundary_right, value=1e15, species=H),\n", - "]\n", - "\n", - "\n", - "my_model.sources = [F.ParticleSource(value=1e20, volume=volume_subdomain, species=H)]" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 5. Settings\n", - "\n", - "With `Settings` we set the main solver parameters.\n", - "- `absolute_tolerance`: the absolute tolerance of the Newton solver. For concentrations in $\\mathrm{m}^{-3}$, `1e10` is usually fine.\n", - "- `relative_tolerance`: the relative tolerance of the Newton solver. Values around `1e-10` are good practices.\n", - "- `final_time`: since we want to solve a transient problem, we need to set the final time. Here, 100 s.\n", - "\n", - "\n", - "```{admonition} Tip\n", - ":class: tip\n", - "Tuning absolute and relative tolerances can be a fine art. If tolerances the solver may not converge.\n", - "If they are too high, the solver may converge to quickly (in zero iterations), resulting in no evolution of the concentration fields.\n", - "To have more information on the solving steps, set the log level of the solver to 20 with ``my_model.log_level = 20`` (default is 40)\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "my_model.settings = F.Settings(atol=1e10, rtol=1e-10, final_time=2) # s" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 7. Stepsize\n", - "\n", - "Since we are solving a transient problem, we need to set a ``Stepsize``.\n", - "Here, the value of the stepsize is fixed at 0.05.\n", - "\n", - "We also add ``milestones`` to ensure the simulation passes by specific times.\n", - "\n", - "\n", - "```{admonition} Note\n", - ":class: tip\n", - "Transient simulations can be accelerated with adaptive stepsize. See [Task 2](task02.ipynb)\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "my_model.settings.stepsize = F.Stepsize(0.05, milestones=[0.1, 0.2, 0.5, 1]) # s" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 6. Exports\n", - "\n", - "Finally, we want to be able to visualise the concentration field.\n", - "To do so, we add an `XDMFExport` object which will export the concentration field at each timestep to an XDMF file.\n", - "This XDMF file can then be read in [Paraview](https://www.paraview.org/).\n", - "\n", - "- `field`: the field we want to export. Here, `\"solute\"` stands for the mobile concentration of hydrogen. It could be ``\"retention\"``, ``\"1\"`` (trap 1), ``\"T\"`` (temperature)\n", - "\n", - "- `filename`: the path to the exported file\n" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "class ProfileExport(F.VolumeQuantity):\n", - "\n", - " def compute(self):\n", - " profile = self.field.solution.x.array[:].copy()\n", - "\n", - " self.data.append(profile)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "profile = ProfileExport(field=H, volume=volume_subdomain)\n", - "\n", - "my_model.exports = [\n", - " F.XDMFExport(\n", - " field=H,\n", - " filename=\"task01/hydrogen_concentration.xdmf\",\n", - " ),\n", - " profile,\n", - "]" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 8. Run\n", - "\n", - "Finally, we initialise the model and run it!" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Solving HydrogenTransportProblem: 100%|██████████| 2.00/2.00 [00:00<00:00, 12.2it/s]\n" - ] - } - ], - "source": [ - "my_model.initialise()\n", - "\n", - "my_model.run()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Three files should have been created: hydrogen_concentration.xdmf, hydrogen_concentration.h5, and mobile_concentration.txt\n", - "\n", - "The .xdmf file is the one that can be opened in Paraview, and it points to the .h5 file.\n", - "\n", - "The profile exported as a text file can now be plotted with matplotlib:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHACAYAAABeV0mSAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAx2dJREFUeJzs3XV4U+cXwPFvkjZ195bSFi9eirsMGG4DBgwbsMFg6AZjAzYYgzFchg0f1uHDhru7O4VCaam7pJHfH5d144eskjaV9/M8eUhvcu89LW1y8t73PUem0+l0CIIgCIIgFBByQwcgCIIgCIKgTyK5EQRBEAShQBHJjSAIgiAIBYpIbgRBEARBKFBEciMIgiAIQoEikhtBEARBEAoUkdwIgiAIglCgiORGEARBEIQCRSQ3giAIgiAUKCK5EQRBEAShQCnUyc3x48dp06YN7u7uyGQytm/fnqn9U1JS6NOnDxUqVMDIyIj27du/9Xm//vorvr6+mJmZUbp0adasWZP94AVBEARBeKtCndwkJiZSqVIlFixYkKX9NRoNZmZmDB06lA8++OCtz1m0aBFjx47lhx9+4NatW0ycOJHBgwezc+fO7IQuCIIgCMI7yETjTIlMJmPbtm2vjb6oVCrGjRvHunXriImJoXz58kybNo2GDRu+sX+fPn2IiYl5Y/Sndu3a1KlTh+nTp6dvGz58OBcvXuTkyZM59N0IgiAIQuFlZOgA8rK+ffvy5MkTNm7ciLu7O9u2bePDDz/kxo0blCxZMkPHSE1NxdTU9LVtZmZmnD9/nrS0NIyNjXMidEEQBEEotAr1Zan3efToERs2bGDTpk3Uq1eP4sWL89VXX1G3bl1WrlyZ4eM0b96cZcuWcenSJXQ6HRcvXmTFihWkpaURERGRg9+BIAiCIBROYuTmHS5fvoxOp6NUqVKvbU9NTcXBwSHDxxk/fjyhoaHUrFkTnU6Hi4sLffr04ZdffkGhUOg7bEEQBEEo9ERy8w5arRaFQsGlS5feSEIsLS0zfBwzMzNWrFjBkiVLePnyJW5ubixduhQrKyscHR31HbYgCIIgFHoiuXkHPz8/NBoNYWFh1KtXL9vHMzY2pkiRIgBs3LiR1q1bI5eLq4KCIAiCoG+FOrlJSEjg4cOH6V8HBgZy9epV7O3tKVWqFD169KBXr17MnDkTPz8/IiIiOHz4MBUqVKBly5YA3L59G5VKRVRUFPHx8Vy9ehWAypUrA3D//n3Onz9PjRo1iI6OZtasWdy8eZPVq1fn9rcrCIIgCIVCoV4KfvToURo1avTG9t69e7Nq1SrS0tKYPHkya9asITg4GAcHB2rVqsXEiROpUKECAN7e3jx9+vSNY/z9Y71z5w7du3fn3r17GBsb06hRI6ZNm0bp0qVz9psTBEEQhEKqUCc3giAIgiAUPGLShyAIgiAIBYpIbgRBEARBKFAK3YRirVbLixcvsLKyQiaTGTocQRAEQRAyQKfTER8fj7u7+3+uNi50yc2LFy/w9PQ0dBiCIAiCIGTBs2fP0kurvEuhS26srKwA6YdjbW1t4GgEQRAEQciIuLg4PD0909/H36fQJTd/X4qytrYWyY0gCIIg5DMZmVIiJhQLgiAIglCgiORGEARBEIQCRSQ3giAIgiAUKIVuzo0gCIIg5BSNRkNaWpqhw8i3lEqlXppKi+RGEARBELJJp9MRGhpKTEyMoUPJ1+RyOT4+PiiVymwdRyQ3giAIgpBNfyc2zs7OmJubiyKxWfB3kd2QkBCKFi2arZ+hSG4EQRAEIRs0Gk16YuPg4GDocPI1JycnXrx4gVqtxtjYOMvHEROKBUEQBCEb/p5jY25ubuBI8r+/L0dpNJpsHUckN4IgCIKgB+JSVPbp62cokhtBEARBEAoUgyY3x48fp02bNri7uyOTydi+fXuG9z116hRGRkZUrlw5x+ITBEEQBCH/MWhyk5iYSKVKlViwYEGm9ouNjaVXr140adIkhyITBEEQhIJv4cKF+Pj4YGpqir+/PydOnHjv80NCQujevTulS5dGLpczfPjw3Ak0kwy6WqpFixa0aNEi0/t9/vnndO/eHYVCkanRHkEQCh6dWo0uNRWtSoVOlQYaNTJjY2RK5T83hcLQYQpCnhMQEMDw4cNZuHAhderUYcmSJbRo0YLbt29TtGjRt+6TmpqKk5MT3333HbNnz87liDMu3y0FX7lyJY8ePWLt2rVMnjz5P5+fmppKampq+tdxcXE5GZ4gCHqkTU5GFRiI6tlz0p4/Q/XsGWkhIWiiotFER6OJikKblPSfx5FbW2NkZ4fCzg6FgwPG7u4oPT0x9iyC0tMTpZcXsmwsOxWE/GjWrFn069eP/v37AzBnzhz27dvHokWLmDp16lv38fb2Zu7cuQCsWLEiQ+eJjo5myJAh7N+/n4SEBIoUKcK3335L37599fONvEW+Sm4ePHjAN998w4kTJzAyyljoU6dOZeLEiTkcmSAI2aVNSSH52nVSblwn5c5dUu7eRRUYCFptxg8ilyNTKND9X/l7bVwcqrg4ePr0rbvJjI0xKVkSE98ymJbxxaxyZUx9yyDL4OuMIPybTqcjOS17S5mzysxYkaEVRyqVikuXLvHNN9+8tr1Zs2acPn1arzGNHz+e27dvs3fvXhwdHXn48CHJycl6Pcf/yzd/uRqNhu7duzNx4kRKlSqV4f3Gjh3LyJEj07+Oi4vD09MzJ0IUBCETdCoVSRcvknj2HEkXL5J84wa8pSePwtYWY6+iKIt4YlzUE2N3d4wcHFDY2WFkZ4fcxga5qal0KepVMqLT6UCtRqdSoU1NlUZ5oqNRR0WhjoggLTiYtGfPUT1/RtqTp2iTkki5fZuU27eJfXVeubk5ZlWqYF61KhZ1amNarhwyPfS8EQq+5DQNZSfsM8i5b09qjrnyv9/aIyIi0Gg0uLi4vLbdxcWF0NBQvcYUFBSEn58fVatWBaTRn5yWb5Kb+Ph4Ll68yJUrVxgyZAgglWrW6XQYGRmxf/9+Gjdu/MZ+JiYmmJiY5Ha4giC8hToykoSjR0k4eozEU6feuKRk5OSEWZUqmJYti6lvGUzKlMHY2TnT55HJZGBsjMzYGLmFBUb29u98rk6rJS04mJQ7d0i9e5fkW7dIvnwFbXw8iSdPknjyJOFz5qBwdMSyfn0sGzTAsm4d5BYWmY5LEPKa/x/l0el0eq/XM2jQIDp16sTly5dp1qwZ7du3p3bt2no9x//LN8mNtbU1N27ceG3bwoULOXz4MJs3b8bHx8dAkQmC8D6a+HjiDxwkbtcuEs+efe0yk8LJEcs6dTGvVg3zalUx9vTM9UJoMrlcmnfj6QnNmgGg02hIffCApAsXSTp/nsTTp9FERBC7dSuxW7ciMzXFqnEjrFu3xqJuXeTZbPInFCxmxgpuT2pusHNnhKOjIwqF4o1RmrCwsDdGc7KrRYsWPH36lN27d3Pw4EGaNGnC4MGDmTFjhl7P828GTW4SEhJ4+PBh+teBgYFcvXoVe3t7ihYtytixYwkODmbNmjXI5XLKly//2v7Ozs6Ympq+sV0QBMPSabUknTtHdMAfJBw+jE6lSn/MtFw5LBs1wrJBA0zLlc2Tl3pkCgWmZcpgWqYM9j0/kS6hXbpEwtFjxB85QlpQEHF79hK3Zy9ya2usW7bArksXTMuWNXToQh4gk8kydGnIkJRKJf7+/hw4cIAOHTqkbz9w4ADt2rXT+/mcnJzo06cPffr0oV69enz99dcFN7m5ePEijRo1Sv/677kxvXv3ZtWqVYSEhBAUFGSo8ARByCR1dDSxW7cR/UcAaU//+dtVFi+OTetWWLdsidLLy4ARZo1MqcSiVi0satXC+ZsxpNy8Rdzu3cTt2YM6LIyYjQHEbAzAtEIF7Lp2wbplS+Siz5CQx40cOZKePXtStWpVatWqxdKlSwkKCmLgwIHpz/n3IMPfrl69CkgDFOHh4Vy9ehWlUknZdyT3EyZMwN/fn3LlypGamsquXbvw9fXN0e9NptPpdDl6hjwmLi4OGxsbYmNjsba2NnQ4glAgpD4OJHLFcuJ2/Jm+UkluYYFNu3bYdv4IkzJlCmTfHZ1GQ9KFC8T88QdxBw6mT4iW29hg170b9p98gpHoEl3gpaSkEBgYmF4MLz9ZuHAhv/zyCyEhIZQvX57Zs2dTv3799Mf79OnDkydPOHr0aPq2t/0te3l58eTJk7eeY/Lkyaxfv54nT55gZmZGvXr1mD179lunk7zvZ5mZ92+R3AiCkGXJ164RuWwZ8QcPwauXEtPy5bHt2gWbli1zbNKtTqcjSZ1EXGoccao4ktRJqLVqNDoNGq20BNdEYYKZkRkmChPMjc2xN7XH1Cjn3njUkZHEbttGdMAfpD17BkgjPjYdOuDQtw/KXFghIhhGfk5u8hp9JTd5+6KgIAh5UtLlK4TPnUvSuXPp2ywbN8ahf3/Mq/jp5RyJaYk8innEw5iHBMUF8SLxBaGJobxIeEFkciRqnTrTxzQ3MsfBzAEnMyeKWBXB08qTolZF8bL2orht8WwlP0YODjj07499377EHzpE5LLlpFy/TkxAADF//IF1m9Y4DRmC8h2VXwVB0B8xciMIQoal3L1L+Jy5JPw9RG1sjE2bNjj0+xST4sWzfNxkdTK3Im5xLfwa18KvcS/qHi8SX/znfsZyY6yV1lgYW6CQK1DIpBtAqiaVFE0KqepUEtISSNO+WUPn3+QyOcVsiuFr74uvgy+VnSrj6+CLkTxrnwF1Oh3JFy8SuWw5CceOSRuNjLDt2BHHLwZh7OqapeMKeY8YudEfcVkqi0RyIwiZp3r2jPDZc4jbs0faoFD88ybt5pbp46Vp07gefp3TL05z5sUZbkfeRqN7s6Krk5kTxW2L42Pjg7uFO26WbrhZuOFs7oyNiQ2mCtMMzeXR6XQkpCUQmRxJZEok4UnhPIt/RlB8EEFxQTyJe0JUStQb+5kbmePn7Ie/iz91POrga++bpblDyTdvET53LomvmhLKlErsunfH8YtBKMTrUL4nkhv9EclNFonkRhAyTpuURMTSpUStWJm+nNu6ZUscvxyCSSZrSyWoEjj2/BgHnh7gbMhZEtMSX3vc2cyZSs6VqORUiXIO5ShpVxIbExu9fS/vo9PpCEsK427UXW5H3eZWxC0uh10mXhX/Roz1itSjQZEG1HKvlenLWEmXLhE+ew5JFy8CoLCzw2n4cGw/6iSae+ZjIrnRH5HcZJFIbgThv+l0OuJ27yFs+nTUL18CYF6rJi6jR2OaiSWciWmJHAo6xIEnBzj14tRrl4bsTOyo6V6T2u61qeFaA1cL1zy1okqr0/Ig+gEXX17kfMh5zoScIVn9Tz8cC2MLmhRtQgufFtRwq4GxPGONN3U6HYknT/Ly52moHj0CwKRMGVy+HYtF9eo58r0IOUskN/ojkpssEsmNILxf6uPHhEyYQPLFSwAYe3jgMvYbLJs0yfAloKvhV9n6YCv7nux7LSHwtvammXczGns2xtfBF7ks7xXwexeVRsXF0Isce36MI8+OEJIYkv6YnYkdrYq1onOpzhSzLZah4+nS0ojesJHwBQvQxsUBYNOuLc7ffIORnV2OfA9CzhDJjf6I5CaLRHIjCG+nU6mIXL6ciIWL0KWlITMzw/GzAdj37Ys8Ay/Ycao4tj3Yxub7m3kS9yR9u7e1Ny19WtLUqynFbYvnqdGZrNLqtFwPv87ux7vZ/3T/a/N1/F386VyqM029mqJU/HdbBnV0NOFz5xIT8AfodCjs7HD5dizWrVsXiJ9VYSCSG/0RyU0WieRGEN6UfOMGId+NI/X+fQAs6tfD7fvvMfbw+M99n8U/Y92ddWx9sDV9lMbMyIzm3s3pWLIjlZ0qF+g3abVWzekXp9l8fzPHnh9Dq5N6Z9mb2vNxmY/pVrobtqa2/3mc5GvXCBk3ntQHDwCwqFsX1x9+QFnkv/8PBMMSyY3+iOQmi0RyIwj/0KlUhM9fQOTy5aDVorC1xeW7bzM0anAz4ibLbyznUNAhdEgvIyVsS9DdtzstvFtgqbTMjW8hTwlNDGXbg21sebCFl0nSXCUzIzM6lOhAr3K98LB8f6KiU6mIXLFCGj1TqZCbm+Py3bfYdOxYoBPE/E4kN/ojkpssEsmNIEhSHz0i+OuvSb19BwDr1q1x+XYsRvb2793vZsRNFl1bxPHnx9O31fGoQ6+yvajlVku8CSON5hx8epAVN1dwJ0r6+SpkCloVa8XASgPxtPJ87/6pgYGEjBtP8iVp3pPlB01wmzTpP/9vBMMQyY3+6Cu5yT+z+QRB0AudTkfUunUEduxE6u07KGxs8Jg3F48Z09/75nkr8hZDDg2h2+5uHH9+HLlMTtvibdnebjuLP1hMbffaIrF5xUhuxIc+HxLQOoDfmv1GbffaaHQa/nz0J223teXHMz/yMvHlO/c38fHBa81qnL8aBcbGJBw8xOO27f4pBigIerJw4cL0RMLf358Tr2oxvcvWrVtp2rQpTk5OWFtbU6tWLfbt25dL0WacGLkRhEJEHR3NizFjSDwuvYBZ1KmD25QpGLs4v3OfkIQQ5lyew55AqYCfXCandbHWfFbxM7ys81+Hb0O5GXGTBVcWcOrFKUDqfdW1dFc+q/jZe+v5pNy5w4vRo0l98BAAu149cfnqK2TK/56sLOSO/DpyExAQQM+ePVm4cCF16tRhyZIlLFu2jNu3b1P0HW1Chg8fjru7O40aNcLW1paVK1cyY8YMzp07h59f9luviMtSWSSSG6GwSrpyheARI1GHhiJTKnH+6ivsPumBTP72AdwEVQLLby5nza01qLQqZMjSL6uIpCbrLoZeZP6V+VwOuwyArYktQyoPoVOpTu9s9aBNTSV81iyiVq8BwLRiRYrMnpWhCd9CzsuvyU2NGjWoUqUKixYtSt/m6+tL+/btmTp1aoaPU65cObp27cqECRPe+nh0dDRDhgxh//79JCQkUKRIEb799lv69u37xnNF40xBEDJEp9MRvWYNL6fPALUapbc3HnPnYFq69Fufr9Vp2fFwB3Muz0lf4lzNtRpfVf2Ksg5lczP0Aqmqa1VWfbiKUy9OMfPiTB7GPGTyuckE3A9gTLUx1HCr8cY+chMTXMaOxbxGTV6MHUvK9es87tgJ95+nYtWokQG+C+G9dDpISzLMuY3NIQOXh1UqFZcuXeKbb755bXuzZs04ffp0hk+n1WqJj4/H/j2XtMePH8/t27fZu3cvjo6OPHz4kOTk5Hc+Xx9EciMIBZgmIYGQb78jfv9+AKxafIjbjz+isHz7SqaH0Q/58eyP6aMK3tbejPQfSUPPhmI+jR7JZDLqetSlpltN/rj3B79e/ZUH0Q/ov78/Tb2aMrb6WJzMnd7Yz6pxI3y2bCF4xAhSbtzg+aAvcBjQH6fhw0X7hrwkLQmmuBvm3N++AKXFfz4tIiICjUaDi4vLa9tdXFwIDQ3N8OlmzpxJYmIiXbp0eedzgoKC8PPzo2rVqgB4e3tn+PhZJSYUC0IBpXryhCddukqJjbExLuPG4TFr1lsTm6S0JGZfmk3nnZ25HHYZMyMzRvmPYmu7rTQq2kgkNjnESG5Ed9/u7O6wm25luqGQKTjw9ADttrdj0/1N6TVz/k1ZxAPvdWux69kTgMjflvFs0CA0r6ocC0Jm/P/ftk6ny/Df+4YNG/jhhx8ICAjA2fnd8/YGDRrExo0bqVy5MqNHj87UyFBWiZEbQSiAEk+f5vmIkWhjYzFycaHI/HmYVaz41ueeDznPhNMTCE4IBqCxZ2O+qf4NbpaZ7/YtZI2tqS3f1viWjiU78sPpH7gVeYtJZyax69Euvq/9PcVsXm/pIFMqcf3uW8wqVyLku3EkHj/Bky5dKbJwISbFMtfQVMgBxubSCIqhzp0Bjo6OKBSKN0ZpwsLC3hjNeZuAgAD69evHpk2b+OCDD9773BYtWvD06VN2797NwYMHadKkCYMHD2bGjBkZijUrxIRiQShAdDod0b+v5eW0aaDRYFapEkUWzMfI6c1LHElpScy5PIcNdzcA4GbhxtjqY2lUVMzhMCSNVsP6u+uZf2U+yepkjOXGDPUbSs+yPVHI37z0lHzrFs8HD0EdGorcygqPmTOwrF/fAJEXXvl5QrG/vz8LFy5M31a2bFnatWv33gnFGzZs4NNPP2XDhg20b98+0+ddsmQJX3/9NXFvGW0UdW4EQXiNLi2N0Anf83LKFNBosGnXjqJrVr81sbkSdoXOOzunJzadS3VmW7ttIrHJAxRyBT3L9mR7u+3U9ahLmjaNmZdm0m9/v/TRtX8zK1cOn82bMKtSBW18PM8+H0jUmt8NELmQ34wcOZJly5axYsUK7ty5w4gRIwgKCmLgwIHpzxk7diy9evVK/3rDhg306tWLmTNnUrNmTUJDQwkNDSU2Nvad55kwYQI7duzg4cOH3Lp1i127duHr65uj35tIbgShANAkJPJs0BfEbNoEcjnOo0fj9vNU5CYmrz0vTZvGnEtz6L23N0HxQbiYu7DkgyVMqDUBC+P/noQo5B53S3cWNlnID7V+wMzIjEsvL9Hpz05sf7id/x9wN3J0xGvVSmw7fwQ6HS+nTOHl1J/Rad+csyMIf+vatStz5sxh0qRJVK5cmePHj7Nnzx68vP4p9RASEkJQUFD610uWLEGtVjN48GDc3NzSb8OGDXvneZRKJWPHjqVixYrUr18fhULBxo0bc/R7E5elBCGfU4eH8+zzgaTcvo3MzAyPmTOxavzmCExwQjCjj4/mevh1ANoVb8fo6qOxVoq/g7zuWdwzvjv1HVfCrgDQ1KspP9T+4Y3/O51OR+SyZYTPnAWAVbNmuP8yLUNd3YWsy6+XpfIicVlKEARSHwfy5ONupNy+jcLeHq/Vq96a2Ox7so/Of3bmevh1rIytmNVwFpPrThaJTT7hae3JyuYrGVZlGEZyIw48PUCXnV24FXHrtefJZDIcBwzAfcYMZMbGxO/fT1DfT1FHRxsockEwDJHcCEI+lXT5Mk+7dSMtOBhjr6J4b1j/xoqoVE0qk85M4qtjXxGfFk8lp0psaruJpl5NDRS1kFUKuYL+Ffrze4vf8bD0IDghmJ57e7L+zvo3LlPZtG6F5/JlyK2tSb5yhafdupP2wkCrdwTBAERyIwj5UMLx4wT1/RRNbCymlSrivWEDSq/XWyKEJITQe29vNt3fhAwZ/Sv0Z+WHK/GwFCX787PyjuX5o80fNCnahDRtGlPPT2XUsVEkqBJee55F9ep4b1iPkbubVPOoxyekBgYaKGpByF0iuRGEfCZu336eDR6CLjUVywYN8Fq16o1u3udDztN1V1duRd7CxsSGxR8sZliVYRjLjQ0UtaBP1kprZjeczTfVv0m/TNVjTw+exj197XkmxYvjvW4dSh8f1CEhPP2kJyl37xooakHIPSK5EYR8JHbHDoJHjIC0NKxbtqDIgvnIzczSH9fpdKy+tZoBBwYQnRqNr70vAa0DqO1R24BRCzlBJpPRw7cHaz5cg7O5M49jH9NtVzdOBp987XnGbm54rf0dE19fNJGRPO3Vm6TLVwwUtSDkDpHcCEI+Eb1xIy/GfANaLTadOuI+fToy439GYlI1qYw9OZYZF2eg1WlpU6wNa1qsEZehCrgKThUIaB2An7Mf8WnxfHHwC5bfWP7aPBwjBwe8Vq+SauHExRHUrx8Jp04ZMGpByFkiuRGEfCByxUpCf5gIgF3Pnrj9+ONrjRKjUqIYsH8Aux/vxkhmxNjqY/mp7k+YGollqYWBo5kjy5st56NSH6FDx5zLc/jmxDeoNKr05yisrSm6fBkWdeuiS07m+aAvSDhx8j1HFYT8SyQ3gpDHRS5fTtgvvwDg8PnnuHw7Fpn8nz/dx7GP6bG7B1fCrmBlbMWipovo7ttdNLssZIwVxnxf63vG1xyPkcyIPYF7GLB/ALGp/1SOlZuZUWThr1h+0ASdSsXzwYNJOClGcISCRyQ3gpCHRa5aRdh0qbmc49AvcR4x/LWk5VzIOT7Z8wnPE57jYenB2pZrqelW01DhCnlAl9JdWNR0EZbGllwOu8wnez7hWfyz9MflSiVFZs3Cssm/EhxxiUooYERyIwh5VNTvawn7eRoAjoMH4/TFF689vuPhDgYeGEi8Kp7KTpVZ32o9xWyLve1QQiFT060ma1qswc3CjSdxT/hkzydcC7+W/rhMqaTI7FlYNm6MLjWV518MJvH0aQNGLAj6JZIbQciDotav5+VPPwHgMPBzHIcMfu3xlTdXMu7UONQ6NS18WrCs+TLsTe3fdiihkCppV5J1Ldfha+9LVEoU/fb149DTQ+mPy5RKisyZjWWjRuhSU3k26AuR4BRCCxcuTG914O/vz4kTJ977/KNHjyKTyd643c1jJQZEciMIeUz0H3/wctKPADgM6I/TsGHpl6J0Oh0zL85k1iWpd1Dfcn2ZVm8aJgqTdx5PKLyczJ1Y9eEq6nnUI1WTyshjI9n+cHv64zKlEo+5c7Bs2FBKcL4YTNLly4YLWMhVAQEBDB8+nO+++44rV65Qr149WrRo8VqjzHe5d+8eISEh6beSJUvmQsQZJ5IbQchDYnftJvT7HwCw79sXp5Ej0xMbtVbN+FPjWXVrFQAj/UcysupIMXFYeC9zY3PmNZ5HhxId0Oq0jD81nt9v/57+uFypxGPeXCzq1UOXkiI1Yb1zx4ARC7ll1qxZ9OvXj/79++Pr68ucOXPw9PRk0aJF/7mvs7Mzrq6u6TfFv1Zv/r/o6Gh69OiBk5MTZmZmlCxZkpUrV+rzW3mDUY4eXRCEDEs4cYIX33wDOh123bvhPPrr9MQlRZ3C18e+5ujzoyhkCn6o/QPtS7Q3bMBCvmEkN2Ji7YlYKa1Yc3sNv1z4hdjUWAZXHoxMJpMmGc+bS1D/ASRfukRQ/wFS4T8fH0OHni/pdDqS1ckGObeZkVmGPvCoVCouXbrEN99889r2Zs2acToDlyf9/PxISUmhbNmyjBs3jkaN3mzY+7fx48dz+/Zt9u7di6OjIw8fPiQ5OWd/PiK5EYQ8IOnyFZ5/ORTUaqxbtcJl3Lj0F6iktCS+PPwl50PPY6IwYXr96TQq+u4XEkF4G5lMxldVv8LGxIb5V+az5PoS4lXxjKk+BrlMjtzMDM/Fi3jauzept+8Q1K8f3uvWYezmZujQ851kdTI11tcwyLnPdT+HubH5fz4vIiICjUaDi4vLa9tdXFwIDQ19535ubm4sXboUf39/UlNT+f3332nSpAlHjx6lfv36b90nKCgIPz8/qlatCoC3t3fGv6EsMuhlqePHj9OmTRvc3d2RyWRs3779vc/funUrTZs2xcnJCWtra2rVqsW+fftyJ1hByCEp9+7zbOBAdCkpWNSvh/vUKel1bBLTEhl0cBDnQ89jYWzB4g8Wi8RGyDKZTMZnFT/j2xrfArD+7nomnJqARqsBQGFlRdHffkPp7Y36RQhBn/ZDHRlpyJCFHPb/ozw6ne69Iz+lS5dmwIABVKlShVq1arFw4UJatWrFjBkz3rnPoEGD2LhxI5UrV2b06NEZGhnKLoOO3CQmJlKpUiX69u1Lp06d/vP5x48fp2nTpkyZMgVbW1tWrlxJmzZtOHfuHH5+frkQsSDol+rZM4L690MbF4eZnx9F5s5FplQCEK+KZ9DBQVwLv5ZenK+SUyUDRywUBN3KdMNKacW4k+PY8WgHOnRMqj0JhVyBkYMDRVeu4EmPHqgCA3k24DO8fl+D3MLC0GHnG2ZGZpzrfs5g584IR0dHFArFG6M0YWFhb4zm/JeaNWuydu3adz7eokULnj59yu7duzl48CBNmjRh8ODB702Iskum+3cDEgOSyWRs27aN9u3bZ2q/cuXK0bVrVyZMmJCh58fFxWFjY0NsbCzW1tZZiFQQ9EMdFcWTj7uRFhSESalSeP2+BoWNDQCxqbEMOjiIGxE3sFZas7TpUso5ljNwxEJBs+/JPsYcH4NGp6FNsTb8WOdHFHJpYmhqYCBPe3yCJioKi/r18Fy4EJmRmMnwNikpKQQGBqYvqc4vatSogb+/PwsXLkzfVrZsWdq1a8fUqVMzfJyPPvqIqKgoDh8+nKHnL1myhK+//pq4uLg3HnvfzzIz79/5+jdVq9USHx+Pvf2763ukpqaSmpqa/vXbfpiCkNu0KSk8H/QFaUFBGHt44Lnst9cSmwH7B3An6g62JrYsbboUXwdfA0csFETNvZsjQ8bo46PZ+XgnQHqCY+LjI83B6dWbxOMnCJ04EddJk8TqvAJk5MiR9OzZk6pVq1KrVi2WLl1KUFAQAwcOTH/O2LFjCQ4OZs2aNQDMmTMHb29vypUrh0qlYu3atWzZsoUtW7a88zwTJkzA39+fcuXKkZqayq5du/D1zdnXtHyd3MycOZPExES6dOnyzudMnTqViRMn5mJUgvB+Oo2GF1+PJvnaNeQ2Nnj+9hvGzs6AdCnqswOfcSfqDvam9ixtupTS9qUNHLFQkDXzboZMJmP0MSnB0aFjcp3JKOQKzCpWxGPWTJ4P+ZKYTZsxdnfHcdAgQ4cs6EnXrl2JjIxk0qRJhISEUL58efbs2YOXl1f6c0JCQl6re6NSqfjqq68IDg7GzMyMcuXKsXv3blq2bPnO8yiVSsaOHcuTJ08wMzOjXr16bNy4MUe/t3x7WWrDhg3079+fHTt28MEHH7zzeW8bufH09BSXpQSDeTn1Z6JWr0ZmbEzRlSswf7WCICktic8PfM7V8KvYmdixovkKStiVMHC0QmFx8OlBvj72NWqdmjbF2jC57mTkMmlie/SGDYROnASA29Sp2HZob8BI8578elkqL9LXZal8WcQvICCAfv368ccff7w3sQEwMTHB2tr6tZsgGErUmt+JWr0aALefp6YnNinqFIYeHsrV8KtYKa1Y2mypSGyEXPWB1wfMaDADhUzBzsc7mXJuCn9/9rXr1g2HAf0BCBk/XjTaFPK8fJfcbNiwgT59+rB+/XpatWpl6HAEIcPiDx7k5atJek4jR2Lz6vdXpVEx4ugIzoWew9zInMUfLKaMfRlDhioUUk28mvBT3Z+QISPgXgDzrsxLf8xpxAisW7UCtZrgYcNJffTIgJEKwvsZNLlJSEjg6tWrXL16FYDAwECuXr2afn1v7Nix9OrVK/35GzZsoFevXsycOZOaNWsSGhpKaGgosbGxhghfEDIs5c4dgr8eDTodtl27pn8KVmvVjDk+hpPBJzFVmPJrk1+p6FTRwNEKhVmrYq0YX2s8AMtuLGPZjWUAyORy3KZOwayqP9qEBJ4N+gJ1dLQhQxWEdzJocnPx4kX8/PzSa9SMHDkSPz+/9GXd/z+RacmSJajVagYPHoybm1v6bdiwYQaJXxAyQh0RwbMvBqNLTsaiTh1cx0vVh3U6HT+c/oGDQQcxlhszt9FcqrpWNXS4gkDnUp0Z5T8KgLmX57Lh7gaAV20a5mHs4UFaUBDBw4ajS0szZKiC8FZ5ZkJxbhF1boTcpFWpCOrdh+QrV1B6e+P9RwCKV793cy7NYfnN5ShkCmY1nEXjoo0NHK0gvG7+lfksvb4UgCl1p9CmeBsAUu7f5+nH3dAmJWHbpQuuE38o1EvExYRi/SnUE4oFIT/Q6XSE/jCR5CtXkFtZUWThwvTEZu3ttSy/uRyACbUmiMRGyJOGVB5CD98eAEw4NYHTL6Sy+aalSuE+cwbIZMT88QfRv7+7Oq0gGIJIbgQhh0StXk3s1q0gl+MxezYmxaQOy3sD9zLtwjQAhvoNpWPJjoYMUxDeSSaTMbraaFr4tECtUzPiyAjuRN4BwKpRI5y/+gqAlz//TMKJk4YMVRBeI5IbQcgBCSdOEvbLdABcxozGsm4dAM68OMO3J6Wmhd3KdKN/hf4Gi1EQMkIukzO5zmSqu1YnSZ3EF4e+IDghGAD7T/ti07EjaLUEjxqF6l9zJAXBkERyIwh6pgoKInjUKNBqsenUEbtXK/7uRN5h+JHhqLVqmns3Z0y1MYV6noKQfygVSuY0mkNJu5JEJEcw8MBAYlJikMlkuP7wPWaVKqGNi+P5l0PRJicbOlxBEMmNIOiTNjmZ50OHSV2+K1XC9fvvkclkhCaGMuTQEJLUSVR3rc6UulPSGxQKQn5gpbRiUZNFuFq48iTuCUMODyFFnYJcqcRj3lwUDg6k3rtHyPgJFLJ1KkIeJJIbQdCTvycQp969i8LeHo+5c5ArlSSlJfHl4S8JSw6juE1x5jSag1KhNHS4gpBpLhYuLP5gMVZKK66FX+Pbk9+i1WkxdnGhyJzZoFAQt2sX0b//buhQhQw4fvw4bdq0wd3dHZlMxvbt2w0dkt6I5EYQ9CQmIIDYHTukCcSzZmHs6opGq2HM8THcjbqLvak9v37wK1ZKK0OHKghZVty2OPMbz8dYbsyBpwdYcGUBAObVquEyZjQAL6f9QuL584YMU8iAxMREKlWqxIIFCwwdit6J5EYQ9CD52jVCf5oCgPOokVjUrAHAzEszOfr8KEq5knmN5+Fh6WHIMAVBL/xd/Pmh9g8A/HbjN3Y+2gmAXc+eWLduDRoNwSNGkvbypQGjFP5LixYtmDx5Mh07ZnzF5rVr12jUqBFWVlZYW1vj7+/PxYsXczDKrDEydACCkN+pIyN5Pmw4pKVh1bQp9p9+CkDA3QB+vy0Nz/9U9ycqOVUyYJSCoF9ti7clMDaQZTeW8f3p7/Gw9KCKSxXcJk0k9cEDUu/dI3j4CLzWrEZmbGzocHOVTqdDZ6CJ1TIzsxxdqNCjRw/8/PxYtGgRCoWCq1evYpwH/39FciMI2aBTqwke9RXq0FCUPj64TZ2CTCbjVPAppp6XmmR+6fclH/p8aOBIBUH/vvT7kiexTzgYdJDhR4azrtU6PK08KTJ/HoEdO5F85Qrhc+em18MpLHTJydyr4m+Qc5e+fAmZuXmOHT8oKIivv/6aMmWk5r4lS5bMsXNlh7gsJQjZELFwIUlnzyIzN6fIvLkoLC15EvuEr499jUanoW3xtgyoMMDQYQpCjpDL5PxU9yd87X2JTo3my0NfEq+KR1m0KG4//QRA5LLlxB89athABb0ZOXIk/fv354MPPuDnn3/mUR7tDi96SwlCFiWePUtQ309Bp8N9+nRs2rQmQZVAjz09eBz7GD9nP5Y1WyZWRgkF3svEl3Tf3Z2w5DDqF6nP/MbzkcvkhE7+iei1a1HY2uKzbSvGbm6GDjVH/H8/pPx4WUomk7Ft2zbat2//n8+9f/8+u3fvZu/evRw7doyNGzfSoUOHLET7JtFbShAMSB0ZSfDXX4NOh81HnbBp0xqtTsu3J7/lcexjnM2dmdVwlkhshELBxcKFeU3mYaIw4fjz4yy6tggA59FfY1quHJqYGIJHjio0HcRlMhlyc3OD3HKjMGipUqUYMWIE+/fvp2PHjqxcuTLHz5lZIrkRhEzSabW8GPMNmvAIlCWK4/rddwAsubaEI8+OoJQrmdtoLo5mjgaOVBByTzmHcnxf63sAFl9bzOGgw1KBvzmzkVtaSvNv5s0zcJTCvyUkJHD16lWuXr0KQGBgIFevXiXoHW00kpOTGTJkCEePHuXp06ecOnWKCxcu4Ovrm4tRZ4xIbgQhk6JWrCDx5ElkJiZ4zJqF3MyMw0GHWXhtIQDja42nvGN5A0cpCLmvTfE26V3E/x7FVHp64jZ5MgCRvy0j4fhxQ4Yo/MvFixfx8/PDz88PkObT+Pn5MWHChLc+X6FQEBkZSa9evShVqhRdunShRYsWTJw4MTfDzpBMz7nR6XQcO3aMEydO8OTJE5KSknBycsLPz48PPvgAT0/PnIpVL8ScGyE7kq9e5cknPUGtxnXSROy6dOFRzCO67+5OkjqJHr49+Kb6N4YOUxAMJk2bxoD9A7j08hLe1t5saLUBS6UloT9OJnrdOmn+zY7tGLu4GDpUvXnfPBEhc3J9zk1ycjJTpkzB09OTFi1asHv3bmJiYlAoFDx8+JDvv/8eHx8fWrZsydmzZ7P2XQlCHqaJjSV45ChQq7Fu2RLbzp2JU8Ux7MgwktRJVHOtxqiqowwdpiAYlLHcmBkNZuBi7sKTuCfpLRqcx4zGtGxZNDExhIwdi06rNXSoQgGW4eSmVKlSXL58mcWLFxMXF8fZs2fZsmULa9euZc+ePQQFBfHo0SPq1atH165d+e2333IybkHIVTqdjpAJ35P24gXGRYviOkkahh1/cjxP457iZuHGjAYzMJbnvWJWgpDbHM0cpR5qciVHnh1hyfUlyJVK3GfMQGZqSuLpM0StXmPoMIUCLMPJzd69e9m8eTOtW7d+ZzVCLy8vxo4dy4MHD2jYsKG+YhQEg4vdvoP4ffvAyAiPmTNRWFqy5vYaDj87jLHcmNkNZ2Nvam/oMAUhzyjvWJ5xNccBsOjqIk4Hn8akmA8uY8cCED5rFil37hgyRKEAy3ByU758xidIKpXKPFu1UBAyS/X8OS9fTYh0+vJLzCqU52rYVeZcmgPA6GqjKedYzoARCkLe1KFkBz4q9RE6dIw9OZawpDBsu3TGskkTdGlpBH/1NVoD1YMRCrYsrZbSaDSvfX3u3DmOHz9OWiGpYSAUHjqNhhejx6BNTMTM3x+H/v2ISoli1LFRqHVqWni3oGvproYOUxDyrDHVxlDarjRRKVHplbvdJv+IwskR1aNHhE2fYegQ9aaQ1cTNEfr6GWYquQkJCaFu3bqYmJjQoEEDoqOjad26NbVq1aJhw4aUL1+ekJAQvQQmCHlB5G/LSL58GbmFBe7TpqGVwdgT0idQb2tvvq/9fa4UzRKE/MrUyJSZDWdiYWzB5bDLLLiyACM7O9yn/gxA9Pr1xB85YuAos+fvqRpJSUkGjiT/U6lUgLTsPDsy1ThzzJgx6HQ6tm3bxrp162jdujUKhYJnz56h1Wrp0aMHP/30EwsWLMhWUIKQFyTfuEn4q99ll/HjUBbxYNG1RZx+cRpThSmzGs7CwtjCwFEKQt7nZe3FxNoT+erYVyy/uZwqLlWoX7c+9r17E7V6NSHfjcNsx3aMnJwMHWqWKBQKbG1tCQsLA8A8lyoFFzRarZbw8HDMzc0xMspeX+9M1blxd3dn69at1KxZk6ioKBwdHTlw4ABNmjQB4MiRI/Tv3z/PNtICUedGyBhtcjKBHTuhCgzE6sMP8Zg9i3Oh5/hs/2fo0PFT3Z9oW7ytocMUhHzlp7M/sfHeRmxMbNjcZjPORnY86dKV1Hv3sGzYkCKLFubbpECn0xEaGkpMTIyhQ8nX5HI5Pj4+KJVvtq7JzPt3plKj6OhoPDw8ALC3t8fc3BwvL6/0x4sXLy4uSwkFQtj06agCAzFydsbth++JSonim+PfoENHp5KdRGKT21JiIf4lJEdDchQkRUn/qhJBnQoa1at/U6Xny41BbgSKV/8qLcDUFsxspX9NbcDSGazdwcjEgN9Y4fJ1ta+5HnGd25G3+erYV6z8cCXu03/hSaePSDh6lNht27HtqJ8GjLlNJpPh5uaGs7OzmH+aDUqlErk8+80TMpXcODs7ExISkl6FeMiQIdjb/7P8NTo6GgsLMUwv5G8JJ08RvX4DAG5TpyC3sWH8ocFEpkRSwraEqECcE3Q6iHsB4XelW9RjiH0OMc8g9hmkxuXcuS2cpCTHugjY+4BjSXAsBY6lwcIh585bCCkVSmY0mEHXnV25Fn6NBVcWMMJ/BI5DvyR85ixeTpmCRa2a+bp7uEKhyPZ8ESH7MpXcVK5cmTNnzlC9enUAfv7559ceP3nyJBUrVtRfdIKQyzTx8YSMHw+AXY8eWNapw9rbazkRfAKlXMm0+tMwNRLl1bNFq4WI+xB8EYIvQegNCL/33wmMiQ2Y24GZHZjZg7k9KC2lkReF8tW/JiADNGrQpoFWLd1XJUBKDCTHSKNAydGQ8BLUKZAYLt1Crr15TjN7cC0P7n7/3Gy9IJ9eOskLPK08mVhnIiOPjmTlzZXUca9DtU8/JeHgIZKvXSPku3F4Ll+Wby9PCXlDpntLvc+FCxcwMzPLVE2c3Cbm3AjvEzJ+PDGbNmNctCjFtm/jfkoQ3Xd3J02bxnc1vuPjMh8bOsT8Jy0Fnl+AwOMQdAZeXAVV/JvPkynAoTg4lQGHEmBbFGw8wdYTbIpIl5b0SaeTkpy4YIgNhrjnEPlISrzC70Ps2zsjY2YPnjXAu650c60AcvFJPbN+OP0DWx5swdncmS1ttmD2IprADh3Qpabi+sP32H0s/taE12Xm/VuvyU1+IJIb4V0STpzk2YABAHj9vgYql+Pj3R8TGBtII89GzG00V3yazAidDkKvw8ODrxKas9IIyb8Zm0ujIB5VwK0yOJeVEhqjNycRGowqSUp0Qq9D8GV4cQVe3pJGhP7NxAa8akPxxlCqOdh5vf14wmuS0pLouqsrT+Ke0KRoE2Y3nE30mjW8nPozMnNziu3YjjKPN2IWcleuJDfBwcGcOnWKsLAwtP/XAG3o0KFZOWSuEMmN8Daa+Hget2mLOjQUu549cf3u238+WZo5s7ntZuxM7QwdZt6lToUnJ+DeXukWF/z64xbO4FNfGukoUk0anVFkb6mnQahTIfQmPD0FT07C09NvjkI5l5WSnFIfSt+rGNV5p9uRt+mxpwdqrZrva31PpxIdCerVm6SLFzGvVo2iq1ch08PkUqFgyPHkZuXKlQwcOBClUomDg8Nrn2ZlMhmPHz/OfNS5RCQ3wtu8GDeO2M1b0i9HHQw7yahjo5AhY1mzZVR3q27oEPMeTRo8Ogw3NsG9v15/kzc2h2INpZtPA3AqXTDnqWjUEHpNGqF6cEC67Kb714c9S1co1wHKd4IiVQvmzyCbVt9azYyLMzBVmBLQJoAiccY8btceXVISLt+Oxb5XL0OHKOQROZ7ceHp6MnDgQMaOHauXJVu5SSQ3wv9LOHGCZwM+A5kMr9/XEOdbhI5/diReFU//Cv0ZVmWYoUPMO7RaeHZOSmhubZOWY//N0hVKfwilW0qjNMZmhovTUJKipITv/l/wYL80eflvtkWhXEeo1A2cyxguxjxGq9My8MBAzoScwdfel7Ut15K4aSuhP0xEZmpKsT93oCxa1NBhCnlAjic3Dg4OnD9/nuLFi2c5SEMRyY3wb/++HGXfuxdO34zh8wOfczbkLOUdyrOm5RqM5caGDtPwEsLg6jq4tBqiA//ZbuEsjUqU7wQe/pDPPuzkKLUKHh+Bm1vg7m5pxdbfilQH/95Qtj2YWBosxLwiPCmcTn92Ijo1mt5lezOq6iiC+n5K0tmzmNesSdGVK8R8NyHnk5vRo0djb2/PN9/kv3ofIrkR/i1k/ARiNm1C6eWFz/ZtBDzdzpRzUzBVmPJHmz/wsfExdIiGo9VC4DG4tFJ6c9aqpe1KKyjbFip0Bu96+XPuTG5LS5ZGcq7/Ic1J0r1qPqy0gvIdoVp/cCvcZTSOPjvKl4e/RIaM5c2XU0nlwuO27dClpOA2+UdsP/rI0CEKBpbjyY1Go6F169YkJydToUKF9KZhf5s1a1ZmD5lrRHIj/C3x/HmCevUGwGvt74SVdKTzzs6kaFIYW30s3X27GzhCA1ElwfWNcGYhRD74Z7tHVajaV5pDou9l2YVJ/Eu4th4ur5GKFf7Nux7UHCRNRC6kk5D/nsTvYenBlrZbSPn9D8J++QW5lRXFdu/C2NnZ0CEKBpRj7Rf+NmXKFPbt20fp0qUB3phQLAh5nTY1ldAJ3wNg27UryiqV+XZvL1I0KdR0q1k469kkhMH53+DCsn/m0iitoFJX8O8j1XMRss/KBeqOgDrDpVVXF5bD7R3SarMnJ8DOG2oMBL9PwMTK0NHmqq+rfc3ZkLMEJwQz/cJ0vu81jrg9e0i5eZOXP06myPx5hg5RyCeyNHJjZ2fH7Nmz6dOnTw6ElLPEyI0AEDZ3LpGLFmPk5ESxPbtZ9ng9C64uwMrYiq3ttuJq4WroEHNP9FM4OVuaU6NRSdtsi0KNQVClZ6F7gzWI2OdSYnlplVRJGaRKzDW/gOqfST2xCokLoRf4dN+nAPza5FeqJ7oQ2OkjUKvxmDcX62bNDByhYCiZef/O0uw/ExMT6tSpk6Xg/u348eO0adMGd3d3ZDIZ27dv/899jh07hr+/P6amphQrVozFixdnOw6hcEm5f5/I35YB4DJ+HPdUz1h8Tfo9+rbmt4UnsYkKhB1DYH4VaV6NRiVNdO28Gr68ArW+EIlNbrEpAk0nwsjb0GoW2BeXqicf+QnmVIBDP0JipKGjzBXVXKvxie8ngHSZKtXbFYf+/QAI/fFHNLGx79tdEIAsJjfDhg1j/vz52T55YmIilSpVYsGCBRl6fmBgIC1btqRevXpcuXKFb7/9lqFDh7Jly5ZsxyIUDjqNhtDxE0CtxvKDJpg0acC3J75FrVPT1KsprXxaGTrEnBcVCNu/gPn+cOV3aaJwsYbQdy/0PwDl2otJwoaitIBq/WDIBei0HJx8pZ5bJ2a8SnImSf2xCrhhVYbhY+NDeHI4P539CcdBg1D6+KAJj+DlL78YOjwhH8jSZakOHTpw+PBhHBwcKFeu3BsTirdu3Zr5QGQytm3bRvv27d/5nDFjxvDnn39y586d9G0DBw7k2rVrnDlzJkPnEZelCreotet4OXkycgsLiu3Zzfxn61h5ayUOpg5sa7etYFchToyA49OlOR5/txAo3gQajIGiNQwbm/B2Wi3c2y39v/3d2NPUFuqNlC5XFeBaQjfCb9Bzb080Og3TG0ynfpQzT3t8AjodRVetxKJmTUOHKOSyHL8sZWtrS8eOHWnQoAGOjo7Y2Ni8dsspZ86codn/XW9t3rw5Fy9eJC0t7a37pKamEhcX99pNKJzSQkIIf7WSz2nUSO4pwll9ezUAP9T+oeAmNqpE6c1xbmU4t1hKbIo1gv6HoOdWkdjkZXI5+LaBz47Bx+ulthUpMXBgAsyrItUd0qgNHWWOqOBUgX4VpMtRk89OJsm3KHbdpIn+oT9MRKtSGTI8IY/L1NhzQkIClpaWrFy5Mqfiea/Q0FBcXFxe2+bi4oJarSYiIgI3N7c39pk6dSoTJ07MrRCFPEqn0xE66Ue0SUmY+flh0bkj4/d0Q6vT0qpYKxp6NjR0iPqn1UpLjg/9CAmh0jbXitB0EhRvZNjYhMyRyaBMK2mZ+LWNcGSK1MV851A4twRaTAOfeoaOUu8GVhzI8efHuRt1lynnpjB9xETiDhxA9eQJkcuW4fTFF4YOUcijMjVy4+joSIsWLVi0aBEvXrzIqZje6/+Xmv99Ve1dS9DHjh1LbGxs+u3Zs2c5HqOQ98TvP0DCkSNgbIzbj5NYdms5D2MeYm9qzzfV8l8xyv8UfBmWN4Udg6XExtZLmsPx2TGR2ORncgX49YAvL0Gzn6RLVGG3YHVr+KOXtPKtADFWGPNjnR8xkhlx4OkBDkedxeVV8djIxUtQPS1Y36+gP5lKbu7du0fLli3ZsmULPj4+VKtWjR9//JHr16/nVHyvcXV1JTQ09LVtYWFhGBkZ4eDg8NZ9TExMsLa2fu0mFC7axEReTpkCgOOA/jyx17DsurRa6rsa32FramvA6PQsMRL+HAq/NYbgi6C0lEZqhlyACh+J9ggFhbEp1B4CQ69I1Y1lcqlWzq/V4fBPUiHGAqKMfRn6lu8LwE9nf0LXpA4WtWujU6kInfQjWZg2KhQCmXql8/Ly4ssvv+TgwYOEhYUxcuRIbt26Rf369fHx8WHYsGEcPnwYjUaTI8HWqlWLAwcOvLZt//79VK1a9Y1JzYLwt/CFC1G/fIlxkSJY9+/L+FPj01dHNfMuIDUztFqp+N78KnB5NaCDil1hyEWoMwyMTAwdoZATzO2h1Uz4/IRU4VidAsd/gUW14OEhQ0enNwMrDcTHxofIlEimX5yO64TxyJRKEk+dIn7vXkOHJ+RBWf4YZ2NjQ7du3di4cSMREREsWbIErVZL3759cXJyYt26df95jISEBK5evcrVq1cBaan31atXCQoKAqRLSr3+1e5+4MCBPH36lJEjR3Lnzh1WrFjB8uXL+eqrr7L6bQgFXOqDB0StXgOA6/hx/P4ogDtRd7AxseHbGt8aODo9Cb8HKz+E3aOkyaYuFaRl3R2XgvWb89CEAsi1PPTeCV3WgLUHRD+BtR1hS39ICDd0dNmmVCiZVHsSMmT8+ehPzhs/x+HzzwB4OfVnNPHxBo5QyGuytBT8v1y5cgW1Wk21atXe+7yjR4/SqNGb1/979+7NqlWr6NOnD0+ePOHo0aPpjx07dowRI0Zw69Yt3N3dGTNmDAMHDsxwbGIpeOGh0+kI6tmLpIsXsfygCWmTR/LRzo9I06Yxpe4U2hRvY+gQs0etglNzpJVQGpV0CarJBKjaT9SpKcxS46VLU+eXgE4rzctp9iP49ZQmJudj085PY+2dtbhZuLG1RQAvO3ZD9fQpdp98guu47wwdnpDDcqxxZkbm1shkMipUyLs9aERyU3jE7tjBizHfIDM1xXvnn/S/MZZr4deo51GPX5v8mr/7oD2/CH9+CWG3pa9LNpMq29p6GjYuIe8Iviytpgq9IX1drBG0WyBVQ86nktKS6PhnR4ITgulauisjtI0J+rQfyOV4BwRgVqG8oUMUclCOJTdyuRyZTPbGCqV/H0Imk+XYnBt9EMlN4aCJi+NRi5ZoIiNxGjGCffUt+Pn8z1gaW7Kt3bb822JBrYKjU+DUXOlTubkDtPgFynfK95/KhRygUcPZhVIbB3UKmNhIy8YrfZxvf1/OhpxlwP4BAKxsvhK3GQHE7dqFafnyeP8RgExMmi+wcqyIX2BgII8fP07/18zMjCNHjhAYGJh+e/z4cbaCFwR9CJ87D01kJMpixUjr2oJ5l6VuwiP8R+TfxCbsDixrLDW51GmlCcODX62CyqdvVEIOUxhBnaEw8CR4VIXUWNg+EDb2kLrA50M13WrSqWQnACadnYTdVyOQW1qScvMmMaIVj/BKtubcWFlZce3aNYoVK6bPmHKUGLkp+JJv3eJJ5y6g1VJ01Uq+S97IoaBDVHKqxJoWa5DL8tknO61Wqix88AfQpIKZPbSZC2XbGjoyIT/RqOH0PKkAoDYtX/8exaniaLutLZEpkQyuPJjOl00JmzYNhZ0dxf/aiyIHK+ULhpPj7RcEIa/SabWETpoEWi3WLVty3j2ZQ0GHMJIZMaHWhPyX2MQGw+/tYd9YKbEp0RS+OJsv35AEA1MYST2pPjsKrhUgOQr+6Ak7h0NasqGjyxRrpTWjq40G4LfrvxHfrh7K4sXRREcTPj9jjZiFgi2fvdILwvvFbttGyrXryC0ssBo1lCnnpeJ9vcv1ppRdKQNHl0n398HiOhB4DIzMpAnDPTaBlct/7ysI7+JaHvofhrojABlcWikVfQy785+75iUtfFpQ2702Kq2KyRen4vLtWACiN2wg5d59A0cnGFq2k5t8veJEKFA0CQmEzZoNgOPgwSx58QehiaF4WHrweaXPDRxdJmjSYP94WN8FkqPBrbI0Z6JaPzG3RtAPIyV88AP03AYWztKqu6WN4NIqyCcVf2UyGeNqjMNEYcK5kHMcdYvGqmlT0Gh4OXmyqFxcyGWqGIafn99ryUxycjJt2rRBqVS+9rzLly/rJzpByISIhYukScTe3oS19Gft/p4AjKs5DjMjMwNHl0Gxz2FTX3h+Xvq6+udSjRJRYVjICcUbwaBTsG0gPDoEO4fB46PQZh6Y5v05iZ7WnnxW8TPmX5nP9AvT2TpiMQnHj5N04QLxe/di3bKloUMUDCRTE4oz2l37+++/z3JAOU1MKC6YUgMDedy2HaSl4b5oIZ8nLuFW5C1aeLfglwa/GDq8jLm/D7Z9Lo3WmNhINUnE3BohN2i1cGY+HJoEWjU4lISP14FTaUNH9p/SNGl8tPMjHsc+plPJTgy+7ETEggUYubpSfM9u5Obmhg5R0JMcq3NTEIjkpmB6NnAQCUePYlG/HidGNODn8z9jZWzFnx3+xNHM0dDhvZ9WC8d+hmPTpK/dKkPnVWDvY8iohMLo2QWpu3j8C6nidbtfoVx7Q0f1ny69vESfv/oAsKbxMqz6fEdacDAOAz/Hefhwg8Ym6I9YLSUUKgknTpBw9CgYGWE0bADzr8wHYLj/8Lyf2KTEQUCPfxKbagOg336R2AiG4VkNPj8uNeFUJcCm3tL8L43a0JG9l7+LPx1KdABg0uWfcRgj9RuMWr4C1atehULhkuHk5sMPP+T06dP/+bz4+HimTZvGr7/+mq3ABCEjdGlpvJwyFQD7Tz5hTsQmEtMSqehUkY9KfWTg6P5DxENY1gTu7QGFCbRbCK1miPk1gmFZOkHP7VD7S+nr0/NgbQdIjDBoWP9lpP9I7EzseBjzkG1uwVjUri29PkzLJ5elBb3KcHLTuXNnunTpgq+vL2PGjGHTpk2cOnWKS5cucfDgQebNm0eXLl1wc3PjypUrtG0r5goIOS96/XpUgYEo7O0J6lSDvU/2IpfJGVdjXN6uaXN/H/zWCCLug5W71MXbr4ehoxIEicIImk2WLo8aW0Dgcen39eVtQ0f2TramtoyqOgqAxdeXYDTyc1AoSDh0iMSz5wwcnZDbMjXnRqVSsXnzZgICAjhx4gQxMTHSQWQyypYtS/PmzRkwYAClS+fdSWhizk3BoY6K4lHzD9HGx+M06XsGmATwMOYhXUt3ZVzNcYYO7+10OqmT98GJgA6K1oLOq0XtGiHvCrsLG7tB1GNQWkHnlVCyqaGjeiutTkvvvb25Gn6VFj4tGHnUiuj16zHx9cVn8yZkCoWhQxSyIdcmFMfGxpKcnIyDgwPGxsZZPUyuEslNwREy4Xti/vgDk7K+nJrYjl8uz8DWxJZdHXZhY5IHy69r0mDXCLjyu/R11U/hw2lSzRFByMuSoiCgJzw9CTI5NJ8CNQbmybpLdyLv0HVXV3ToWFFjLtY9v0EbH4/bTz9h26mjocMTsiHXJhTb2Njg6uqabxIboeBIuXePmE2bADAdNZiFNxYDMLzK8LyZ2CTHwNpOUmIjk0OL6dB6tkhshPzB3F4q+Of3idS09a9vYPdIKWHPY3wdfOlSugsAU+7Nx36gVMAzfM4ctImJhgxNyEV5eFKCILxb2C/TQafD6sMP+VV3mIS0BMo7lKdDyQ6GDu1N0U9hRXOpjYKxBXTbCDU+M3RUgpA5RkpouwCa/gjI4OIKWPcRpMQaOrI3fOn3JbYmtjyMeciBakYYe3qiDg8ncvlyQ4cm5BKR3Aj5TsKJkySeOgXGxkT0ac6fj/5Ehozvan6X9yYRP78orYgKvytNHP70LyjV3NBRCULWyGRQZyh8vF5K1B8fhZUtIS7E0JG9xsbEhqFVhgIw/+ZizIZKHyYiV6wkLSRvxSrkjDz2TiAI76fTaAj7RVraadu9G5ODlgHQsWRHyjuWN2Rob7q/D1a1hsRwqQvzgEPgVtHQUQlC9pVpCX33SH2pXt6E5c0gPG81q+xYoiNlHcqSkJbAItsrmFX1R5eSQvicOYYOTcgFIrkR8pXYbdtIffAAuY0NJz5w4V70PayV1gyrMszQob3u6gbY0A3UyVCyGfT9C6zdDR2VIOiPe+VXBSeLQ2wQrGgGz84bOqp0CrmCb2t8C8COx38S+5l0yTp2x58k37hhyNCEXJCt5EalUvH8+XOCgoJeuwlCTtAmJhI+dx4AFv17M+ehNGoz1G8odqZ2hgztdafnw/aBoNNApW7SEL6JpaGjEgT9s/eREhwPf6kn2uo2cHePoaNKV8mpEu1LtAfgp9gArNq2AeDlz9NE1/ACLkvJzYMHD6hXrx5mZmZ4eXnh4+ODj48P3t7e+PiIsvFCzohcuQp1eDjGnp6sKRNGvCqeMvZl8k4lYp1OKlW//1WNnVpDpKrDCrGaUCjALByh904o2RzUKVI7kcu/GzqqdMOrDMfK2Io7UXe40L4UMlNTki9dIn7/AUOHJuSgLCU3ffr0QS6Xs2vXLi5dusTly5e5fPkyV65c4fLly/qOURBICwtLX+mg+awbAYFbARhdbTQKeR4ozKVRw47BUql6gKaToPlPIBdXfoVCQGkhjVD69ZSWiv85BM4uNnRUADiYOfBF5S8AmPPsd6x6S5XAw2fNQpeW95ayC/phlJWdrl69yqVLlyhTpoy+4xGEt4qYPx9dcjKmFSsy1fo02iQtTb2aUs21mqFDA7UKtnwKd3ZKNWzazpfqgQhCYaIwkn73TW3gzAL4a4zUfLP+V4aOjK5luhJwL4AncU/YUk3Dh5vsUT19Sszmzdh162bo8IQckKWPlWXLliUiIm83URMKjpR794nZIo3UhHzanDOhZzGWGzPCf4SBIwPSUiDgEymxUSih61qR2AiFl0wm9aRqOFb6+vCPcPAH6ZKtARnLjfmqqpRkrQoMQNFPSmjCf10oCvsVUFlKbqZNm8bo0aM5evQokZGRxMXFvXYTBH0KmzEDtFosmn3A1ORtAPQs2xNPK0/DBqZKgg0fw4N9YGQqFecr08qwMQmCoclk0PAbKckBODkb9nwNWq1Bw6pfpD413WqSpk1jkddDjIsWRRMRQeTq1QaNS8gZWeotJX81j0D2f31FdDodMpkMjUajn+hygOgtlb8knj1HUJ8+YGTEzbkDmPT8N+xN7dndYTeWSgOuQEqNh/UfS712jC2gewD41DNcPIKQF11cKfVTQweVe0iXrQw4R+5+9H067+yMVqdljfHnmE76Fbm5OcUP7MfIwcFgcQkZk5n37yzNuTly5EiWAhOEzNDpdITNngWAead2zA7bCEhLvw2a2KTEwtqP4Pl5MLGGHpuhaA3DxSMIeVXVvtJk420D4eo6aZsBE5xSdqXoVLITm+5v4meLY0wtV47UW7eIWLQY13HfGSQmIWdkKblp0KCBvuMQhDckHDpEyrXryMzM2FxbRnxoPKXtSqfXrTCIlFhY0x5eXAZTW6mZoEcVw8UjCHldxS4gN4It/V8lOLJXCY5hVhIOrjyYvYF7uR1zl4fd++D53S2iAwKw79UTZdGiBolJ0L8s/3bFxMQwc+ZM+vfvz4ABA5g9ezaxsXmvgZqQP+nUasJmzwFA1rUtv7/cCRh46XdqvNTZ+8VlMLOHPrtEYiMIGVG+I3T6DWQKuLoWdn5psDk4DmYOfFZR6jX1s2Y3pnVqQVpaeoFQoWDIUnJz8eJFihcvzuzZs4mKiiIiIoJZs2ZRvHhxUedG0IvYHX+ievQIhY0Nv5Z7jkanoUnRJlR3q26YgFITYF1neH5BGrHp/afUL0oQhIwp3+lVgiOHK2th51CDJTg9fHtQxLII4cnhHG3jCTIZcbt3k3zzlkHiEfQvS8nNiBEjaNu2LU+ePGHr1q1s27aNwMBAWrduzfDhw/UcolDYaFNTCV+wAID4j5txJOocRnIjRvqPNExAf6+KCjoDJjbQa7tIbAQhK8p3go5/Jzi/w65hBklwlAolo6qOAuDXhN0Yf9gEgPBZM3M9FiFnZHnkZsyYMRgZ/TNlx8jIiNGjR3Px4kW9BScUTtEbNqAOCcHI1ZUZXtInqY9Lf0xRawNcD09LgY3d4MkJUFpBz63g7pf7cQhCQVHhI+iwVEpwLq+Bv74xSB2cJkWb4O/iT6omlT8aKJAZG5N4+gwJp07leiyC/mUpubG2tn5rg8xnz55hZWWV7aCEwkuTkEDk4iUABHepy834+1gZW/F5xc9zPxh1qlSg7/FRabn3J5uhSNXcj0MQCpqKnaH9YkAG55fAkZ9yPQSZTMYof2n0ZmPsYXQdPwQgfM5c0VSzAMhSctO1a1f69etHQEAAz5494/nz52zcuJH+/fvTTZSyFrIhasVKNDExGPt487PDWQD6VeiHralt7gai1cDWAfDwABiZQY8/oGjN3I1BEAqySl2h5XTp/vHpcGpurodQwakCzb2bo0PH0soRyMzNSblxg4TDh3M9FkG/spTczJgxg44dO9KrVy+8vb3x8vKiT58+fPTRR0ybNk3fMQqFhDoykshVqwC41akywSmhuJi70MO3R+4GotNJhcdu7wC5MXRbD951czcGQSgMqg+AJt9L9w9MgIsrcj2EYX7DMJIbcTDuAskdGgMQPnceOgNXVBayJ0vJjVKpZO7cuURHR3P16lWuXLlCVFQUs2fPxsTERN8xCoVExOIl6JKSMC7nyzTzowB86fclpkamuRvIoUlweTUgg07LoHjj3D2/IBQm9UZC3Vd94naNhBubc/X0ntaedCnVBYDZpR4jt7Ii9f594vbszdU4BP3KVhUlc3NzKlSoQMWKFTE3N9dXTEIhlPbiBTEbpQrEJ1p7EZ+WQCm7UrQu1jp3Azk9H05KVZFpMwfKtc/d8wtCYdTke6jWH9DB1s/gXu4mFp9X+hwLYwuupNwnon0dACLmz0enVudqHIL+ZDi56dixY3pTzI4dO773lhkLFy7Ex8cHU1NT/P39OXHixHufv27dOipVqoS5uTlubm707duXyMjITJ1TyHsilixFl5aGwr8S842OATDSf2TuFuy7shb2j5PuN/ke/Pvk3rkFoTCTyaDFdKj4Meg0sKkPBJ3LtdPbm9rzaflPAfjF5xZyOztUT58Su2NHrsUg6FeGkxsbG5v0RpnW1tbY2Ni885ZRAQEBDB8+nO+++44rV65Qr149WrRo8daVWAAnT56kV69e9OvXj1u3brFp0yYuXLhA//79M3xOIe9RPX9OzJYtAOxqbEWaNo0abjWo7V4794K4swv+/FK6X2vIP8PkgiDkDrkc2v0KJZuDOgU2dIXw+7l2+p5le+Js5szjtBCetJUqj4f/+italSrXYhD0J0tdwfWlRo0aVKlShUWLFqVv8/X1pX379kydOvWN58+YMYNFixbx6NGj9G3z58/nl19+4dmzZxk6p+gKnve8+O47YrdsRVetEl0/kOraBLQOoKxD2dwJ4OkZWNMONKlQ+RNot0D6JCkIQu5TJcLqNhB8CWw8od8BsHbLlVNvfbCV709/j6PcmsW/KdCGheMybhz2n+TyogbhrTLz/p2lOTeNGzcmJibmrSdu3Dhjky9VKhWXLl2iWbNmr21v1qwZp0+ffus+tWvX5vnz5+zZswedTsfLly/ZvHkzrVq1eud5UlNTiYuLe+0m5B2qp0+J3S4N/W6sK+XZrYq1yr3EJuKBVKRPkwqlW0KbuSKxEQRDUlpA903gUAJin8G6j6SGtbmgbfG2FLcpToQ2jhutSgMQsWQx2uTkXDm/oD9ZSm6OHj2K6i1DdSkpKf85Z+ZvERERaDQaXFxcXtvu4uJCaGjoW/epXbs269ato2vXriiVSlxdXbG1tWX+/PnvPM/UqVNfu2Tm6emZofiE3BGxcCFoNKTVqMg209sYyY340u/L3Dl5QpjUCDM5Gjz8odNyUBj9936CIOQsCwf4ZAtYusDLm7Cxh1RUM4cZyY0Y4S9dkp7uehm5uyua8Aii163L8XML+pWp5Ob69etcv34dgNu3b6d/ff36da5cucLy5cvx8PDIVACy//uUrNPp3tj2t9u3bzN06FAmTJjApUuX+OuvvwgMDGTgwIHvPP7YsWOJjY1Nv2X08pWQ81IfPyZ25y4AVteSkuUupbrgYZm536EsUSXC+q4Q8xTsvKFbACjFij9ByDPsvKHHJqntyZMTsG1grvShql+kPlWcq5CEirMtvACI/G0ZmoSEHD+3oD+Z+phauXJlZDIZMpnsrZefzMzM3juK8m+Ojo4oFIo3RmnCwsLeGM3529SpU6lTpw5ff/01ABUrVsTCwoJ69eoxefJk3NzevC5rYmIiau/kURELfgWtlpRaFdlvdhszIzMGVByQ8yfWamBLf3hxGczsoMcWsHTK+fMKgpA5bpWg6++wrjPc2gr2PtBkQo6eUiaTMbTKUPr81Yd5TldZ51UEzdPnRK9di+N7PkgLeUumRm4CAwN59OgROp2O8+fPExgYmH4LDg4mLi6OTz/9NEPHUiqV+Pv7c+DAgde2HzhwgNq1375KJikpCbn89ZAVCmmpsOgFkr+k3L9P3F6plsXSGtI8qB6+PXA0c8zZE+t0UqO+e3tAYQLdNoJjiZw9pyAIWVe8EbR99aH5xEy4kvOXiPxd/KnrUReVTMOxptKH7ciVq8ToTT6SqZEbLy9piE6rp6HBkSNH0rNnT6pWrUqtWrVYunQpQUFB6ZeZxo4dS3BwMGvWrAGgTZs2DBgwgEWLFtG8eXNCQkIYPnw41atXx93dXS8xCbkjYsGvoNORULciJ81uY6W0ok+5Pjl/4jO/wvml0v2OS0S/KEHIDyp3g6hHUg+qncPAzivHW6J86fclJ4NPstDhGvWLeqANCiZ67TocBxqgia+QadmaPXn79m2CgoLemFzctm3bDO3ftWtXIiMjmTRpEiEhIZQvX549e/akJ1EhISGv1bzp06cP8fHxLFiwgFGjRmFra0vjxo1FP6t8JuXOHeL37weZjF+rRADwaflPsTHJeI2kLLm7558ifc0mQ7kOOXs+QRD0p+G3EPkQbm2TJhj3P5Sjo65lHcrSzKsZ+5/u52BjOz5YFUzUypXYffIJCkuLHDuvoB9ZqnPz+PFjOnTowI0bN5DJZOmXhP6eCKzRaPQbpR6JOjeG92zQFyQcOUJM/Qp8VucO9qb27O24F3PjHJzQ+/IWLG8GqgSo+im0miWWfAtCfpOWDKtaQ/BFsC8O/Q+CuX2One5x7GM67OiATqNh43pnZM9CcBoxAsfPP8uxcwrvluN1boYNG4aPjw8vX77E3NycW7ducfz4capWrcrRo0ezckihkEi+eYuEI0dALmde5ZcAfFbxs5xNbBIjYMPHUmLjUx9a/CISG0HIj4zNoNsGsCkqXaYK6AnqnKsgXMymGG2KtUEnl7G3gSUAUStXoklIzLFzCvqRpeTmzJkzTJo0CScnJ+RyOXK5nLp16zJ16lSGDh2q7xiFAiTiVTXqiLq+3LSIws3Cjc6lOufcCdUqCPgEYoLAzgc6rwaFcc6dTxCEnGXpDN0DpCXiT0/CruHSQoEcMqjyIIzkRqzxeIymiAuamBii16/PsfMJ+pGl5Eaj0WBpKWWxjo6OvHjxApAmHN+7d09/0QkFSsq9eyQcOgQyGXMrBAMwqNIglAplzpxQp4PdIyDoDJhYSy+IOTiELQhCLnEpC51XgUwOV9fBucU5dioPSw86l+qMVi5jVz1TAKJWrECbKEZv8rIsJTfly5dPL+ZXo0YNfvnlF06dOsWkSZMoVqyYXgMUCo6IRdIL0MuaJbhnnYC3tTdtirfJuROeXSh1+pbJ4aOV4FQ6584lCELuKvkBNPtJur/vO3h8NMdO9VnFzzBVmLKh6HPU7k5oYmKIEqM3eVqWkptx48alLwefPHkyT58+pV69euzZs4d58+bpNUChYEh9+JD4ffsAmF9BGukb4jcEI3kOtTt4cOBfK6N+kl4IBUEoWGoOgoofg04Dm/pC9JMcOY2jmSM9fHuglcvYXld6zYpasVKM3uRhWUpumjdvTseOHQEoVqwYt2/fJiIigrCwsAw3zhQKl4jFS0Cn42VVb+47pFLGvgxNvZrmzMkiH8HmfqDTgl9P6QVQEISCRyaDNnPA3Q+So6Ql4qqcSTj6lu+LpbElm33CSHNzRBMdTfTGjTlyLiH7Mp3cqNVqjIyMuHnz5mvb7e3t39kTSijcVE+eELdnDwC/Vg4D4ItKXyCXZSm3fr/UBGkCcWoseNYQS74FoaAzNoOu68DCSWqyuWNwjkwwtjGx4ZOyn6CVy9jxavQmcvkKtElJej+XkH2ZfncxMjLCy8srT9eyEfKWiCVLQaslrLInd51U+Nr70tCzof5PpNPBn19C2G2pm3CXNWCUQ5OVBUHIO2w8oMvvIDeWivydnJ0jp/nE9xOsjK3YXCycNDcHNFFRRG8Qozd5UZbn3IwdO5aoqCh9xyMUMKrnz4n9808AFlWJBOCLyl/kzCjf2YVScz25kZTYWLnq/xyCIORNXrWg5S/S/UOT4P5+vZ/itdGb2lJJichVK9Gmpur9XEL2ZCm5mTdvHidOnMDd3Z3SpUtTpUqV126C8LfIpb+BRkN4BQ9uuago61CWBkUa6P9EgSdg/3jpfvOpomeUIBRGVT8F/z6ADrb2z5EJxp+UlUZvthQPR+1kiyY8gtitW/V+HiF7srRUpV27dmJ+jfCf0l68IGbbNgCWVJFG+b6olAOjNrHBsKmPtGKi4sdQfYB+jy8IQv7RYrrUbuX5BfijF3y6H4xN9XZ4a6U1Pcv2ZOG1heypqaTtTohcthzbjz5CZiwKhOYVWUpufvjhBz2HIRREkcuWQ1oakb5uXHcPp5xDOeoXqa/fk6hT4Y+ekBQBrhWg9WwxgVgQCjMjpVTgb3E9CLkGf30jrajSox5le/D7nd8JKB1JqxOWEBxM3J492LRrp9fzCFmXpctSxYoVIzIy8o3tMTExooifAEBaWBgxmzcDsLRKNJBDc23++gaCL4GpLXRdC8oc7FElCEL+YFMEOi0DZHBpJVzT76Tfv0dv0oxl7K9pAkDE0t/Qvar/JhhelpKbJ0+evHW1VGpqKs+fP892UEL+F7VyFTqViqiSzlzxTKOCYwXqedTT70lubIaLKwAZdFoOdt76Pb4gCPlXiSbQ8Bvp/s7h0qUqPfrE9xOslFZs9I1BY2GK6tEj4g8e1Os5hKzL1GWpP1+tegHYt28fNjY26V9rNBoOHTqEj4+P/qIT8iVNTAwxAQEArPCPA5mMQZUG6XfUJuIh7Bwm3a//lahAXEBptTqS0jQkpKhJSE0jPkVNQqqaJJWGNI321U1HmkaL+tW/cpkMhVyGXC5DIZOhkINcJsPUWIGFiQIzYyMsTBSYK40wVyqwMjXC0sRIzCMsiOp/Dc/OwaPD0vybAUfA1Fovh7ZSWtG7bG8WXF3A0RrmNDmcQuSSpVg1bSp+l/KATCU37du3B0Amk9G7d+/XHjM2Nsbb25uZM2fqLTghf4pavx5tUhJxnnac946jomMl6nrU1d8J0pKlCcSqBPCuBw3H6u/YQq5ISdPwPDqZ4JhkXsQkEx6fSkTC3zeV9G98KvGp6pxs+JzOWCHDzlyJvYV0s7NQ4mihxMXGFHcbM9xsTHG3NcPF2hSlUQ4UnxRyhlwBHZfBknoQ+VCqg9V5ld7m5fXw7cGa22tYXyGWRqeMSbl1i8RTp7GsW0cvxxeyLlPJzd/9pHx8fLhw4QKOjo45EpSQf2mTkohe8zsAa/2TpFGbynoetfnrG3h5Q6pI2mmZ9AIm5DkJqWoehSXwKFy6PYlI4nl0EsExyUQkqDJ1LCO5DMtXIyyWJtKIi7FCjtJIjrFCjpFchrGR9K9WJ434aLQ6NDodWq0OtVZHqlpDkkpDYqqaZJWGxFf31VodaRodYfGphMW/v16JTAaOliYUtTfHx9HitZu3gwVmSvG7mOdYOEDn1bCyBdzeDueWQM2Bejm0pdKS3uV6M//KfE5WNaf+qVgiFy8WyU0ekKXVUoGBgfqOQyggYrZsRRMTQ6KzFcdLJ1HRsRJ13PX4h359E1xaBcig41JRqC8PSNNoefAygVsvYrn1Io4HYfE8CkskNC7lvftZKBUUsTPHw84MZysTHC1NcLRU4mAp3XeyUmJjpsTK1AgTI3mODfUnqzREJamITlQRlagiOklF5KvRo9DYFF7EJhMSm0JIbAoqtZbw+FTC41O59DT6jWN52Jrh62aFr5s1ZVyt8XWzwsvBAoVcXKYwKM9q0Pwn2DtaaqhbtCa4V9bLobuX6c6a22tY5xdDvXMKki5eJOnSJcz9/fVyfCFrstyS+dChQxw6dIiwsLD0EZ2/rVixItuBCfmPLi2NyJXS//2mqiq0chmfV/pcf29KEQ9g13Dpfv2vobho0prb1Botd0PjuRIUzc3gOG6FxHI/NAGV5u2rRBwtTSjuZEEJZ0t8HC0oYmdOETszitiZYWNmnCfmJpgpFXgozfCwNXvv83Q6HZGJKl7EJPM0MonAiESeRCTyOCKRwIhEYpPTCI6RLrUdvBOWvp+psZzSrtZULmKDX1E7Knva4uVgnie+90Kl+mcQeBzu7oLNn8Lnx8DEKtuHtVRa0tO3JwuuLuBCFUuqn48hYulSii5ZooeghazKUnIzceJEJk2aRNWqVXFzcxN/pAIAsbt3o34RQqqNGQfKqfC1L6u/FVJvzLP5Rj/HFd4rJknFlaAYLj2N5tLTaK4+iyE57c2VklamRpRzt6acuw2lXa0o4WxJcUdLbMwLTlEzmUz2anTJhIpFbN94PCpRxYOX8dwNjedOSBx3QuO5FxpHSpqWa89iuPYshtVnngJgZ25MZU9b/IraUdXbjipF7TA1Fpe0cpRMBm3nw4urEPUI9nwNHRbr5dDdfLux6tYqfq8ST7WLMhKPHSfl9m1My5bVy/GFzMtScrN48WJWrVpFz5499R2PkE/ptFoily0DYKc/pBnJ+KziZ/pLfPd9K3X8FfNsclRCqprzgZGcehjJqYcR3A2Nf+M5VqZG+BW1o1IRm/SEpoidWaH/kGNvoaRGMQdqFHNI36bR6ngamcjNF3FcDYrhyrNobgXHEZ2UxpF74Ry5Fw6A0kiOn6cttYo7ULOYA35FbTExEr/jemduL71+rGoJ1zZAsYZQ6eNsH9ZaaU23Mt34Le03blSyoeKVGCKWLKXI3DnZPraQNTKdLvNrERwcHDh//jzFixfPiZhyVFxcHDY2NsTGxmJtrZ8lgQLEHz7M8y8GozZT0m+gBneXEmxttxW5TA8rS+7sgoAe0v2e28TlKD1Sa7RceRbDiQcRnHoYwbVnMai1r78kFHO0oIqXHf6vbiWcLJGLOSRZlqrWcCcknqtB0VwOiuHs48g3JjKbGMmp6m1Ho9LONCztTHEni0KfPOrVsV/gyE9gbAEDT4BD9t/LolKi+HDLhziGJDFzmQZkMor/tRell5ceAhYgc+/fWUpuxowZg6WlJePHj89ykIYikhv90+l0PP24G8nXrrG3rhkr66Uxtd5UWhdrnf2Dx4XAotqQHAW1h0KzH7N/zEIuNjmN4/fDOXw3jCP3wohJSnvt8aL25tQp4UDt4o7UKu6Ao6WJgSItHHQ6HYERiZx5HMnZx1GceRRJRMLryU4ROzMalXamURknahVzFKuyskurgTXt4MkJcKsE/Q6AUfZ/z3+58Au/3/6dKTssKHE7FttuH+P2/fd6CFiAXEhuhg0bxpo1a6hYsSIVK1bE+P+ahc2aNSuzh8w1IrnRv8Tz5wnq1RutsYLPB4KVqyc7O+zESJ7l+eoSrRZ+bw+Bx169AB2U+sYImRYck8zeGyEcuhPGhSdRr43O2JgZU6+kI3VLOFKnhCOe9qKFhSHpdDoehSdw/H4ER+6Fce5x1GsTtk2M5NQv5UTLCq408XXB2rTgzGvKVXEvYFEd6YNTzcHw4ZRsHzIsKYwPt3xIiScqJq7TIDMxocThQxg5OPz3zsJ/ysz7d5befa5fv07lypUBuHnz5muPiaHTwifyN2muzanKJsRaqhheoV/2ExuAM/OlxMbYXGqvIBKbTHkRk8yeGyHsvhHClaCY1x4r4WxJkzLONPF1oUpRW4wUojBdXiGTySjhbEUJZys+retDkkrN6YeRHL0fxpG74QTHJHPg9ksO3H6JsUJGnRKOtCjvStOyrthbiL+RDLN2h/aLYENXOPsrFGsApZpn65DO5s50KNGBPzQBhHhZ4fY0nuh163AaOlRPQQsZlaWRm/xMjNzoV8rt2wR27IROLuPLz+TIPFzZ03EPSkU2X2RfXIVlH4A2DdrMBf8++gi3wAuLS2HXdSmh+XcdFpkMqnvb07ycK018nfFysDBglEJW6XQ67oTE89fNEPbeDOVBWEL6Ywq5jLolHOng50Gzci6YK/XwAaMw2PsNnFskLVYYdAYsnbJ1uOCEYFptbUXVO2mM2qZFYWNDiSOHkZuLEdHsyvGRm789fPiQR48eUb9+fczMzNDpdGLkppD5e4XU5fJmhNmp+KZ83+wnNqpE2NJPSmx820CV3v+9TyGWkqbh4J2XbL70nOP3w/n7ipNMBtW87Wld0Y0Py7vibGVq2ECFbJPJZJR1t6asuzUjm5XmYVgCf90MYc+NUG6HxHHsfjjH7odjoVTQvLwrHfw8qF3cURQRfJ8PfpDq34Tdgp1D4eP12WrP4GHpQatirdip2UGMkxm24bHEbNmKfc9P9Bez8J+yNHITGRlJly5dOHLkCDKZjAcPHlCsWDH69euHra1tnu4vJUZu9Ef1PJhHzZqBVsvXnyqI93Lgr05/YWb0/mJo/+nPL+HyGrByh0GnpOWbwmt0Oh1XnsWw+dJzdl17QVyKOv2xKkVtaVvJnRYV3HCxFglNYREYkcj2K8FsvxrM08ik9O0u1ia09/OgW7WieDuKEbu3Cr0JvzUCjQrazAP/7H2gCowNpN32dnxwWcOAfVqMPTwovu8vZEZiNC07MvP+naUL7SNGjMDY2JigoCDM/zXU1rVrV/7666+sHFLIh6LWrAatlvslzHjqIqNX2V7ZT2zu7JQSG2TQcYlIbP5PXEoaq04F0nT2cTouPM36c0HEpahxtzFlSKMSHB7VgK1f1KFPHR+R2BQyPo4WjGhaiqNfNWTLoNp8UrMotubGvIxLZcmxxzSccZQey86y6/oLVOq3V5QutFzLQ+NXq3//GguRj7J1OB8bH5p5N+NoBRnJVkrSgoOJ27dPD4EKGZWlkRtXV1f27dtHpUqVsLKy4tq1axQrVozAwEAqVKhAQkLCfx/EQMTIjX5oYmN50KgxuqQkfuoqJ7CMLfs67cNSaZn1gyaEwcKakBQJdYZD04l6ize/uxkcy9qzT9lx9UV6hWBTYzkty7vRyb8ItYo5iNozwhtUai2H74YRcCGIo/fD0zusO1go+ahqETGa829aLaxpKy0PL1Id+u4FRdZHWu5F3eOjnR/R6aSWrie0mJT1xWfLFjF1IxtyfM5NYmLiayM2f4uIiMDERNTEKAyi//gDXVISL11NuOajZpBvj+wlNjod7BwuJTYu5aHRt3qLNb9KVWvYdS2E388+5eqzmPTtpVws+aSmF+39PMQyYOG9lEZyPizvyoflXXkencQfF54RcPFZ+mjOkmOPaVLGmU/r+lC7uEPhfuOVy6H9Qml5+PPzcHI2NPg6y4crbV+ahkUasq/KETqdU8DtOySdOYNF7dp6DFp4lyxdlqpfvz5r1qxJ/1omk6HVapk+fTqNGjXSW3BC3qRTqYj+fS0Am/3TMDM2p3uZ7tk76LUNcG83yI2hwxK9FNTKr2KSVPx65CH1ph1h1KZrXH0Wg7FCRttK7vzxeS32Da9Pr1reIrERMqWInTkjm5Xm1JjGLO3pT8PSTshkcOhuGD2WnaPF3BP8ceEZKW/pHVZo2BaFljOk+8d+huDL2Tpc/4r9STCXcbCS9HXkctFUOrdkaeRm+vTpNGzYkIsXL6JSqRg9ejS3bt0iKiqKU6dO6TtGIY+J3bMHdVgY8TZKTpbT0K1kJ2xNbbN+wJhnsHeMdL/RWOn6dyEUFJnEilOBBFx4ln7pydXalJ61vOhS1RMnq8Kb8An6Y6SQ06ycK83KuRIYkcjKU4Fsuvicu6HxjN5ynWl/3aVHTS961fIqnNWpK3aB+3vh1jbY+hl8fhyUWVvGXcmpEv4u/uysepFml2QknjpFyp07mPr66jlo4f9luc5NaGgoixYt4tKlS2i1WqpUqcLgwYNxc3PTd4x6JebcZI9OpyOwXXtS799nXUM5u2sr2dNxD26WWfx/12rh93bSUswi1aDvX9m6zp0f3Xgey6JjD/nrZmj6Mm5fN2s+q+9DqwruKI1EgT0hZ8UmpbHxQhCrTz/hRWwKIM3p+rhaUT5vUAw3m2wuFMhvkqKky1PxL6D659Dylywf6vjz4ww+NJiRO2XUvJmGdevWeMyYrsdgC48cb7+Qn4nkJnsSTp7iWf/+pJko+GwQNC7Xlin1slG2/NwS2DtaqkI88KReGtjlF5eDopl/6EF6Z2iAhqWdGFCvmJj/IBiEWqPlr1uhLD3+mOvPYwEwVsjoVKUIAxsUL1yTjx8egrUdpft9doN33SwdRqfT0fHPjqjvPuCXlRpQKCixfx/GHh56DLZwyPGl4CtXrmTTpk1vbN+0aROrV6/OyiGFfCJq5UoADlTQkWgmo2/5vlk/WMRDOPCqqVzTSYUmsbnwJIqey8/RceFpjtwLRyGX0dHPg/0j6rOqb3XqlHAUiY1gEEYKOa0rurNjcB1+71edGj72pGl0bLzwjMYzjzJs4xXuv4w3dJi5o0STfwqI7hgsFRfNAplMxqflP+WJq4y7xZSg0RC1dp0eAxXeJkvJzc8//4yjo+Mb252dnZkyJfvNx4S8KeXePRJPnUIrk7G7moz6RepT0q5k1g6mUcO2z0GdDMUaQtV+eo01Lzr3OJJuS8/SefEZTjyIwEguo2tVTw6PasCsrpUp5WJl6BAFAZDekOuVdCLg81psHliLRqWd0Opgx9UXNJ9znBEBV3kambU3+3yl2WSw8YToJ3Dwhywf5kOfD3G1cGWbv1RsM2bTJjQJheDnZ0BZSm6ePn2Kj4/PG9u9vLwICgrK1LEWLlyIj48Ppqam+Pv7c+LEifc+PzU1le+++w4vLy9MTEwoXrw4K1aIGei5IWqFNGpzzldOuK30aSTLzsyH4ItgYgPtfpWWYRZQt17E0mflebouPcuZx5EYK2R0r1GUI181ZNpHFUWfJyFPq+ptz8q+1dn1ZV0+LOeKTgfbrgTTZOYxvt12g5DYZEOHmHNMraHtPOn++aUQ+P73p3cxlhvTq2wvrhaXEeZojDYhgditW/UYqPD/svSO4uzszPXr19/Yfu3aNRwy0do9ICCA4cOH891333HlyhXq1atHixYt3psgdenShUOHDrF8+XLu3bvHhg0bKFOmTFa+DSET0l6+JHb3bgD+rCatAqjiXCVrB4t4AEemSvc/nAo2RfQUZd7yNDKRoRuu0GreSY7eC8dILuOTmkU59nUjpnSogKe9aKQn5B/lPWxY3NOfXV/WpWFpJ9RaHevPBdFg+lF+3HWbyIRUQ4eYM4o3/qdx747BkJq1IrWdSnbCysSGHf7SSsioNWvQaQrxsvsclqXk5uOPP2bo0KEcOXIEjUaDRqPh8OHDDBs2jI8//jjDx5k1axb9+vWjf//++Pr6MmfOHDw9PVm0aNFbn//XX39x7Ngx9uzZwwcffIC3tzfVq1entiiKlOOi164FtZp7RY145C6N2mRpXohWI71AaFKheBOonM36OHlQWHwK47ffpMnMY/x57QUAbSu5c2hUAya3r4C7bSFbeSIUKOU9bFjVtzqbBtaiurc9KrWW5ScDqf/LEX498rBg1slp+qN0eSrmaZYvT5kbm9OtTDeOVZCRZK4g7flz4g8f1m+cQrosJTeTJ0+mRo0aNGnSBDMzM8zMzGjWrBmNGzfO8JwblUrFpUuXaNas2WvbmzVrxunTp9+6z59//knVqlX55Zdf8PDwoFSpUnz11VckJ797WDQ1NZW4uLjXbkLmaBMTid4YAMD26lp8bHxo6Nkwawc7/xs8OwdKS2gzN1vdd/OalDQNCw4/oOH0o/x+9ilqrY4GpZzYPbQu87r5ictPQoFSzduegM9rsvrT6lTwsCFRpWH6vns0nnGUHVeD0WoL0EJcU2toO1+6f+E3qXRFFnT37Y7M1JS/Kku9vaLEApwck6WCIkqlkoCAAH788UeuXbuGmZkZFSpUwMvLK8PHiIiIQKPR4OLi8tp2FxcXQkND37rP48ePOXnyJKampmzbto2IiAi++OILoqKi3jnvZurUqUycKHoUZUfMtu1o4+N56aDgcgmYWK4vclkW8uLoJ3Do1f9F04lg66nXOA1Fp9Ox50YoU/bcIThGSrQre9oy5sMy1Cqe8cu0gpDfyGQyGpRyol4JR3Zef8G0vXd5EZvCsI1XWXHqCeNb+VLVu4A0vy3eCPz7wqWV0ujzoDNgkrmWM/am9rQv0Z59MRtpd05L8sVLJN+4iVmFwlm4NCdlaxZnqVKl6Ny5M61bt85UYvNv/39pQ6fTvfNyh1arRSaTsW7dOqpXr07Lli2ZNWsWq1ateufozdixY4mNjU2/PXv2LEtxFlY6rZbo338HYKe/DidzF1oVa5WFA+ngz6GQlgRedcE/G5OR85CbwbF0XXqWwesvExyTjJuNKXM/rsy2L2qLxEYoNORyGe0qe3D4q4Z83bw0FkoF157F8NHiMwxed5nn0UmGDlE/mv0INkUhJggOT87SIXqX602stYJTr6aKitGbnJGlkRuNRsOqVas4dOgQYWFhaLXa1x4/nIHriI6OjigUijdGacLCwt4Yzfmbm5sbHh4e2NjYpG/z9fVFp9Px/PlzSpZ8c1myiYmJaOaZDQnHj6N6+pRkUznHKsgYUrYnSoUy8we6vAYCj4GRmbT6IJ+vjopMSGX6vnsEXHyGTidVc/28fnEGNiiOmVJh6PAEwSBMjRUMblSCzlWLMPvAfQIuPGP3jRAO3X3Jl41L0r+eDyZG+fjvw8QK2syRivudWwwVPoIiVTN1CE8rT5p7NWd39T3Uv6Uh7q+/cP5qFMaurjkTcyGVpXeYYcOGMWzYMDQaDeXLl6dSpUqv3TJCqVTi7+/PgQMHXtt+4MCBd04QrlOnDi9evCAh4Z/Z6vfv30cul1OkSMFccWNo0WukUZsDlXQoLaz5qNRHmT9IbDDsHyfdbzwuXxfr02p1bDwfROOZx9h4QUps2lZy5/CohoxoWkokNoIAOFuZMrVjRXYPrUd1H3tS0rRM33ePFnNOcPJBhKHDy54STaDix8Cr0Wi1KtOH6Fu+L4GuMm4XlYFaTfQ6UdRP37LUfsHR0ZE1a9bQsmXLbJ08ICCAnj17snjxYmrVqsXSpUv57bffuHXrFl5eXowdO5bg4OD0DuQJCQn4+vpSs2ZNJk6cSEREBP3796dBgwb89ttvGTqnaL+QcakPHvC4TVu0MhgySEGb2p8ysurIzB1Ep4P1XeHBPvCoCv32gzx/JgD3QuP5btsNLj6NBqCsmzWT2pUrOHMKBCEH6HQ6tl8N5qfdd4l4tVy8VUU3xrcqi6uNqYGjy6LESPi1GiRFSh/Y6n+d6UP039cfzfEzjN6iRW5jQ8kjh5Gbi/IQ75Pj7ReUSiUlSpTIUnD/1rVrV+bMmcOkSZOoXLkyx48fZ8+ePenzd0JCQl6reWNpacmBAweIiYmhatWq9OjRgzZt2jBv3rxsxyK8KerVqM35UjJibI3p7puFZds3t0iJjUL5qlhf/ktsklUaft57l1bzTnDxaTTmSgXjWvny55A6IrERhP8gk8no4FeEQ6Ma0Ke2N3IZ7L4eQpOZR1l9+kn+XFVl4QAf/izdPzZdqt2VSb3K9eJSCRkv7eVoY2OJ2b5dvzEWclkauZk5cyaPHz9mwYIF+a4Hjhi5yRh1dDQPGzZCl5rKhE8UFKvfimn1p2XuIMnRsKA6JIZBw2+h4ZicCTYHHbkXxvjtN3keLU1Yb1bWhR/alhO1agQhi24GxzJ+x02uBMUA4O9lx7ROFSjhnM/aj+h0sO4jeHgQvOpA712Zmkuo1Wlpv6M9pQ49ot8BLUovL4rt3YMsn89HzEk5PnJz8uRJ1q1bR/HixWnTpg0dO3Z87SbkfzF/bEKXmkqgi4y7RaRPGZl28AcpsXEsBXWH6zvEHBWblMaoP67Rd+UFnkcn42Frxm+9qrK0V1WR2AhCNpT3sGHLwNr82K4cFkoFl55G03LuSeYfekCaRvvfB8grZDJoNQuMzeHpKbicuVVPcpmcnmV7crSijCRTGaqnT0k4eiyHgi18spTc2Nra0qFDBxo0aICjoyM2Njav3YT8TZeWRvT69QDsriajqms1yjmUy9xBgs7CpVXS/dZzwCj/rFg7dOclzeYcY8vl58hk0K+uD/tH1Kdp2bev4hMEIXPkchk9a3mzf2QDGpV2QqXRMvPAfdrMP8n15zGGDi/j7Lyg8Xjp/oHvIS4kU7u3KdYGcyt7DrxahxO99nc9B1h4ZWkp+MqVK/Udh5CHxO3fj/rlS2ItZJz2lTGrbCZHbdQq2DlMuu/XE7zr6D/IHBCTpGLSzttsvRIMQDFHC6Z3roi/l5hXIwg5wcPWjBV9qvHntRf88Oct7obG0/7XU3zRsARDm5REaZQPLtHU+BxubIIXl2Hv19B1bYZ3NTUypWuZrmwOW0Sb8xoST58h9eFDTPQwp7Wwy9ZvTnh4OCdPnuTUqVOEh4frKybBwKJerU7b5yfDw96bBp4NMneA0/Mg/C6YO0LTSTkQof4duvOSprOPs/VKMHIZfF6/GHuG1ROJjSDkMJlMKgB4cGQD2lZyR6uDBUce0nHRKe6/jDd0eP9NrpBaM8iN4M5OuLsnU7t3Ld2VODsTLpaU5q9GiWXhepGl5CYxMZFPP/0UNzc36tevT7169XB3d6dfv34kJRWQSpSFVPLVq6Rcu45aAQeqyOjp2zNzrRYiH8GxX6T7H04F87ydHCSrNHy37Qb9Vl8kPD6V4k4WbB5Um7EtfTE1zn8ruwQhv3KwNGFeNz9+7V4FW3NjbgbH0Xr+SZadeJz3V1S5lodaQ6T7e0eDKjHDuzqaOdK6eGv2VpWSm9gdf6KJzwdJXR6XpeRm5MiRHDt2jJ07dxITE0NMTAw7duzg2LFjjBo1St8xCrno7+XfJ8vKwN6WNsXbZHxnnQ52jZA6fhdrBBU651CU+nHjeSyt5p9g3Tmp3ED/uj7sHlqPKkXtDByZIBRerSq6sX94fRqWdkKl1jJ59x26/XY277dwaDBaas0Q++yfD3gZ1NO3J7eKyghyAl1SErFbt+ZQkIVHlpKbLVu2sHz5clq0aIG1tTXW1ta0bNmS3377jc2bN+s7RiGXpIWGErd/PwB7qsrpUqoL5saZKCp1/Y9XLRZMofWsPNvxW6PV8euRh3RYeIrH4Ym4WJuwtl8NxrUuK0ZrBCEPcLY2ZWWfavzUoTxmxgrOBUbRYs4Jdl57YejQ3k1pAS1elcs4swDC7mR41xJ2JahTpC5/+UtvyVHr1qPT5qOVY3lQlpKbpKSkt/Z/cnZ2Fpel8rHojRtBrea2Jzx3N6ZbmW4Z3zk5GvZ9K91vMBrsi+VMkNkUHJNMt9/OMn3fPdRaHS3Ku/LXsPrULelo6NAEQfgXmUxGjxpe7B1WjypFbYlPVfPlhit8s+U6ySqNocN7uzItoXRL0Kph9yhpNDuDepXtxYlyMhJNIS0oiITjx3Mw0IIvS8lNrVq1+P7770lJSUnflpyczMSJE6lVq5beghNyj1alImaTNOq2t6qclj4tcTJ3yvgBDk+GpAhwKgO1h+ZQlNlz6M5LWs49wfnAKCyUCn75qCILe1TBziILjUAFQcgV3o4W/PF5LYY0KoFMBhsvPKPNgpPcDY0zdGhv12LaP7Vvrm3I8G613GpR1KUUhytKI97Ra8XE4uzIUnIzd+5cTp8+TZEiRWjSpAkffPABnp6enD59mrlz5+o7RiEXxO/bhyYykihLuFhSRq/MLP9+cQUuLJfut5oJCuOcCTKL0jRapuy5Q7/VF4lNTqNiERv2DKtHl6qe+a7CtiAURkYKOV81L826fjVwsjLhYVgC7RacYt25p2ShyH7Osi0qjV6D1DA4KSpDu8lk0uvuvipytDJIPHmS1MeBORhowZal5KZ8+fI8ePCAqVOnUrlyZSpWrMjPP//MgwcPKFcuk8XehDwhep1UtO+An5yqRWpS2r50xnbUamH3V4BOmkDsXTfngsyCFzHJdF1yhqXHHwPQp7Y3mwbWwsvBwsCRCYKQWbVLOLJ3WD0alnYiVa3lu203Gbz+MvEpaYYO7XU1B0uj2EmRcGhihndr6dMSrbsTl4u/Gr15VUxVyLws9ZbKz0RvqTcl37rFk04foZbDoMEKfmr7a8Zr21xeA39+CUorGHIBrN1yNthMOHz3JSP/uEZMUhpWpkZM/6giH5bPO/EJgpA1Wq2OFacCmfbXXdI0Ooo5WbDkE39KuuSh/lRPTsGqltL9fgfBs1qGdlt0bREnti1g/EYtcnNzShw/hsLSMgcDzT9yvLfU1KlTWbFixRvbV6xYwbRpmWyuKBjc358OzpaRYe1WlHpF6mVsx6QoqeQ4QKOxeSax0Wh1zNh3j09XXSQmKY0KHjbs/rKeSGwEoYCQy2X0r1eMPz6vhZuNKY/DE2n36yl2Xc9Dq6m860Cl7tL9XSNAo87Qbp1LdeZuMSXPHUCblETstu05F2MBlqXkZsmSJZQpU+aN7eXKlWPx4sXZDkrIPeroaOJ27QZgn7+c7mW6Z7xo3+EfITkKnMtC9c9yMMqMi01Ko9/qCyw48hCA3rW82DyoFkUdMrGkXRCEfMGvqN3/2rvvuCrr94/jr3MOG2QKKAkoDmSJCA4c5UjKmZVb00wtfmquptm3neb3m2VLTUvb7l2aI2eaAwTFNPdABRGRLeuc8/vjEEaiss65Gdfz8TgP7865x/uQdS7u8/l8LjY835H2jV3IztMy4acY3tlwvOo04Ix4F6wc4VocRJeubVFd67r08OlZNC385o8/yrTwcihXcZOYmEj9+nf+Fuzq6kpCQtkahwllpa1eU9j9G+K9bXisyWOlO/DKYYgq/I+154dVYhDxycQM+n7xOztPXsfSTM3Hg4J5+7FALM1k7Rohaqq6dpZ890wb/q9zYwAW7T3P0IX7SUrPuc+RJmBbF7q+btje/h5k3SjVYUP9hrIrSEW2JeRduEDW3r1GDFkzlau48fT0ZG8JP+y9e/fi4eFR4VDCNPRaLTeXGKYqbm6l5rGm/ahjUYrvrHU62Pj3IOKBVaIx5i9HE3h87l4u3sjmAUdrVv1fex4PaaB0LCGECZhp1LzyaHO+fCqUOpZmHLpwkz6f/86R+FSlo0HoKHALgJxU2PFeqQ4JcAnAv0ErdgQV9pv6ofTNOIVBuYqbMWPGMHnyZBYvXszFixe5ePEiixYtYsqUKYwdO7ayMwojydyzh/zLl8m0gt8DVKVftC/me7gSbRhEHPGucUPeh1anZ9avfzH+p8Nk52np0MSFDc93JPABB0VzCSFM75GAeqyb0IGmbnZcS89l4Jd/sC72irKhNGbQs7AdQ9RiSDhSqsOG+g1lc+FXU1m795B3+bKxEtZI5SpuXn75ZUaPHs24cePw8fHBx8eH559/nokTJzJt2rTKziiM5O/p3ztaqGjdsCONHBrd/6DsFNj2lmG7y2tQp57xAt5HVm4Bz30fxbydZwF49kEfvh3VBmdZlE+IWsvH1Y7V49rTrbkbuQU6Ji2N5cPNJ5VtvtmwIwQ8Aehh48ulWrm4m1c3dA3cOdJQBXo9qcuWGT9nDVKu4kalUjFr1iyuX7/O/v37OXLkCCkpKbzxxhuVnU8YSd7Fi2Tt2QPAlhA1w/2Gl+7AHTOqxCDiq6m36D//D7adSMLCTM0ng1vyWk8/zDTl+isthKhB6liZs2BEGM89ZGgD8/mOM0T+EE1WbulmLBlFxLuGlYvj90Pcivvubq42Z7DvYLaEGr6aSl25Cl1enrFT1hgV+iSws7OjdevWBAYGYmlpWVmZhAnc/Mkw1uawjwrrho1o79H+/gddOw5RhSsR95hluN2qgNj4VB77Yi8nEtKpa2fB0mfb8VjLBxTJIoSomjRqFdN6+PHRwGAsNGq2HL/Gk/P2EZ+iUP9DhwbQaaphe8t/IDfjvof0b9afuGaWJNcB7c2bZGzeYuSQNYf8mlsL6bKzSV2zBoDNoYaxNved/q3Xw+ZpoNeBXx9o9KAJkt7p56NXGfTlH1zPyKV5vTqsHd+BVl5OimQRQlR9T7RqwNLn2lHXzpK/EjN4fO4+jl5OVSZM+PPg1BAyE2HP7Pvu7mTlRI8mvfmtZeG08CWl71VV20lxUwul/fwzuvR0Eh3htK9d6aZ/n9wE53aCxgK6m34QsV6v57PfTjPhpxhyC3R08XVlRWQ4DZxk/RohxL218nJi/YQO+NW3Jzkzl0Ff7ue3E9dMH8TcCh6Zadje9zncOHvfQ4b5DWN7sIoCNdw6fJickyeNHLJmkOKmltHr9UVfSW1tpaZfsyewNb9Pn6WCXNgy3bAdPh6cSzHwuBIVaHVMWx3H7K2nAHimQyO+GtmaOlbKr60jhKgePBytWf5cOzo1rcutfC1jv4vi+/0XTR/Etwc0eRh0+fDr/Sfg+Dr70rhJaw41K+w3JXdvSkWKm1rmVkwsuX/9RZ4Z7GihLt307wPzIeUc2LlDpxeMH/IfbuVpee77aJYeiketgncfC+CNPv5o1NLNWwhRNnWszFn0dGsGhjVAp4f/rD3GzE0nTDuTSqWCRz8AtTmc3gyn7j+OZpjfMLaEGP6fl7Z+A9rMLGOnrPbKXdx8//33dOjQAQ8PDy5eNFS/c+bMYd26dZUWTlS+1GVLAdjrpyK06UN42Xvd+4DMJNj1P8N2tzfB0nSN6VKy8hj61X5++ysJSzM184aH8lR4Q5NdXwhR85hr1Mx6sgVTuzcD4Mtd55i0LJacfK3pQtRtCu0iDdtbpoP23l3NO3t2JsXfgyvOoM/OJn3DehOErN7KVdzMmzePqVOn0rNnT1JTU9FqDX8pHB0dmTNnTmXmE5Wo4OZN0jb9CsDWEDVD/Ybe/6Dt70JeBniEQHApF/mrBPEp2fSft4+YS6k4WJvz45i2PBKg3Jo6QoiaQ6VSMbFbU2YPCMZMrWLDkauMWnyIjJx7FxmVqtOLYOMCyacg+pt77mqmNmOw3xC2tCocWPzTEvSlWCunNitXcfPZZ5+xcOFCpk+fjkZzu29PWFgYcXFxlRZOVK60desgL4/z7qD1a0R4/fB7H5BwBA5/b9h+dBaoTfMt5rEraTwxbx/nkrMKWymEE9bQ2STXFkLUHk+GNuDbZ9pgZ2nGH+duMHThAW5k5prm4taO0LlwzM3OmXAr9Z67P97kcf4ItiTXDHJPn+bW4cNGj1idlevT6vz584SEhNzxvKWlJVlZ8l1gVaTX60ldthyAbS3VDGo+GJXqHuNW9HrY9Cqgh8D+4NXWJDkPnLvB4AX7i6Z6rx7XniZupvsqTAhRu3RoUpclY9vhbGtB3JU0Bnz5B1dSb5nm4qGjoK4vZN+APR/ec1cnKyce9OvB7wF/DyxeaoqE1Va5iptGjRoRGxt7x/ObNm3C39+/opmEEWQfPETe+fPcsoCoYBv6Nu577wOOr4VL+8DMGrq/bZKMO04mMWLRQTJzC2jbyJnlkeG421uZ5NpCiNorqIEDKyLDecDRmnPXs+g/bx9nkjKNf2GNGUQUNtM88KVh4sY9DPIdxJYQw8d2+q+/UnCjdF3Ga6NyFTcvvfQS48ePZ9myZej1eg4ePMj777/Pa6+9xksvvVTZGUUl+Hsg8e8BKh7263Pv7t8FubD1TcN2h0mGlTWN7JejCTz7XRS5BTq6Nnfj22faYC9TvYUQJtLY1Y4VkeE0drUlIS2HAfNNtNhf0+7g0wW0ebf79t1FUN0grAMDOFMfKCggddVq4+erpspV3IwaNYo333yTl19+mezsbIYOHcr8+fP55JNPGDx4cGVnFBVUcOMG6Vu2ArC1pZpBvoPufcDBhZB6EezqQYeJRs+3PCqe55ccJl+rp1eL+swfHoqVueb+BwohRCXycLRmRWR7ghs4cDM7nyEL9rP/nJHvjqhU8Mj7oFLD8XVw8Y977KpisO9gNv89sHjpUvRaE87yqkbKPUJ07NixXLx4kaSkJBITE4mPj2f06NGVmU1UktTVq6GggNP1walFK3ydfe++862bsLtw6nfX6WBxnwX+Kmjx3vO8vPIoOj0Mbu3Jp4NDsDCT5ZeEEMpwtrXgx7Ht6NDEhaw8LU8vPsjvp5ONe1H3AGg1wrC9+TXQ6e6666ONHuVYsAOZVlBw9SqZhQ2QRXEV/hSpW7cubm5ulZFFGIFep+Pm8sKBxCGluGuz+0PISTV0/W45zKjZvthxhrc3HAdgdMdGzHwiSBbnE0Iozs7SjK9HtqaLrys5+Tqe+fYQO08mGfeiXaaDhR1cPXzPruHWZtb08nucnUGF3cILJ4qI4krd1jkkJOTes2v+4bBMUasysvb9QUH8ZbIs4USICx96d7/7zjcvwMEFhu3u74LaeF8Nzdl2ijnbTgMw+eGmTOrWtNR/v4QQwtiszDXMfyqUCT/FsPX4NZ79Lpq5w1rxsL+7cS5o52boGv7bO/Db24YGxRYl984b6DuQZ0O+pfchLZm7dpGfmIh5PVkH7J9KXdz069fPiDGEsfw9kHh3oIo+Af2x0Fjcfeff3jEMavPpDE26GS3Tx1tP8clvhsLmlUeb83+dGxvtWkIIUV6WZhrmDmvFpKUxbIxLJPKHaD4bEkKPoPrGuWC7cRC1GNLi4Y8v4KGSJ+h423vTKKgjxz134R+vI3XVKlzHjzdOpmpKpa9lyxymp6fj4OBAWloa9vb2SscxqvxrSZzp2gW0Ol4ca8bC5zbjYedR8s5XomFhV0AFz+2G+i2Mkumfhc2rPZoT+ZAUNkKIqq1Aq2Pq8iOsP3IVjVrFnEEt6RN8l/+XVlTcSlg1GizqwKRYsK1b4m47Lu1g+WcTmLhBh6Z+PZpu24ZKU7MnYpTl81tGbtZgqatWglbHiQbgE9L57oWNXg9b/mPYDh5sksJmmhQ2Qohqwkyj5uNBLXmi1QNodXomLY1h/ZGrxrlYwBNQv6Wh7c3fkztK8GCDB7nYyoNMK9AmJJK1d69x8lRTpS5unJ2dSU42jBh3cnLC2dn5ro+ymDt3Lo0aNcLKyorQ0FD2lHLk9969ezEzM6Nly5Zlul5toddqiwYSbw1RM9j3HlP0T26Ci3vBzAq6vl75WfR6PvpHYTO9px/PSWEjhKhGNGoVH/YPZlCYJzo9TFkWy6/HEir/Qmr17YVTD30NKefvkkfDE4GD2BVYuGLxchlY/E+lHnPz8ccfU6eOYeG3ymqOuWzZMiZPnszcuXPp0KEDX375JT169OD48eN4ed29W3VaWhojRoygW7duXLt2rVKy1DSZu3ejTbxGujVcDfMi3OMufaS0+bD1DcN2u/8zyoJ9c7ad5tPCwub1Xn6M6eRT6dcQQghjU6tVzHwiiHydjtWHr/D8khjmD1fTza+SBxn7dIbGXeHsdtj+HvT/usTdHm/yOE+3+pxeUblk7NhBflIS5jJ7GVB4zE3btm1p1aoV8+bNK3rOz8+Pfv36MXPmzLseN3jwYJo2bYpGo2Ht2rUltoK4m9oy5uZS5P+RtXMnG9qocH/lFUYGjCx5x0NfwS8vGLrTTowBK4dKzTF/11k+2PQXIIWNEKJm0Or0TF4Wy4YjV7HQqFk4MoyHmrlW7kUSjsCXDxq2n90FHi1L3O3VPa/S9q11NL8CrpMnUzfyucrNUYWYZMyNVqtl5cqVvPvuu7z33nusWrWKgoKCUh+fl5dHdHQ0ERERxZ6PiIhg3759dz1u8eLFnD17ljfffLNU18nNzSU9Pb3Yo6bLT0wkc/cuAHaHWtGvSb+Sd8zNhJ0fGLYfeqXSC5vv/7hQVNi8/KivFDZCiBpBo1bx0cBgHg2oR55Wx7PfRbHvbCUv9Fc/GIIGGrbv0ZZhsO9gfmtp+ChPWbEc/T0WAKxNylXcHDt2jGbNmjFy5EjWrFnD6tWrGTlyJE2bNiUuLq5U50hOTkar1eLuXvx2nru7O4mJiSUec/r0aV599VV+/PFHzMxK943azJkzcXBwKHp4enqW6rjqLG3NGlQ6PX96QUhYLxws71K07J8LWdfBqZGhO20lWhl9mf+s+xOACV2aMK5zk0o9vxBCKMlco+bTISE87OdGboGO0d9EcehCSuVepOt0UJvDuR2Gr6hKEOwazI1wX7IsQXvlKll/3L19Q21SruJmzJgxBAQEcPnyZQ4fPszhw4eJj4+nRYsWPPvss2U6178XbtPr9SUu5qbVahk6dChvv/02zZo1K/X5p02bRlpaWtEjPj6+TPmqG71OR8oKw+qW24PvsSJx1g3Y95lhu+vrYHaP9W/K6JejCby88ggAozo05IWI0v/7EkKI6sLCTM0Xw1rxYDNXbuVrGbX4UOU223RqCK3HGLa3vlliWwaVSsXjQYPZE1C4YrEMLAbKWdwcOXKEmTNn4uTkVPSck5MT77//fqnHv9StWxeNRnPHXZqkpKQ77uYAZGRkEBUVxYQJEzAzM8PMzIx33nmHI0eOYGZmxvbtJVe1lpaW2NvbF3vUZNn796O9mkCWJaS19yewbmDJO/7+EeSmg3uQYephJdn+1zUmLY0p6hX1Rm9/WXlYCFFjWZppWPBUKOE+LmTmFvD04kOcvZ5ZeRd48CXDmjeJR+HPkruA92zUk99DrQFI3/YbBclG7oVVDZSruPH19S1xllJSUhJNmpTu6wcLCwtCQ0PZunVrsee3bt1K+/bt79jf3t6euLg4YmNjix6RkZH4+voSGxtL27Zty/NWapybK1YCsCdARb+AgSXvlHbF0Pkb4OE3DVMPK8G+s8lE/nCYAp2evsEevP94kBQ2Qogaz8pcw8KRYbRo4EBKVh5PfXWAq6m3Kufkti7QcZJh+7d3oCDvjl3sLOwICu/DKQ9QabWkrV1bOdeuxkr9qfbPAbkzZsxg4sSJrFy5ksuXL3P58mVWrlzJ5MmTmTVrVqkvPnXqVL766isWLVrEiRMnmDJlCpcuXSIyMhIwfKU0YoShU6parSYwMLDYw83NDSsrKwIDA7G1NW736uqg4OZN0rcZisV9oTb0bNSz5B13fQDaXPBqD00erpRrH7uSxrPfRZNXoKO7vzuzBwZLE0whRK1hZ2nGN6Pa4ONqy9W0HJ76+gApWXcWIuXSbhzY1YPUixC1qMRdBjQbUDSw+MayZbV+YHGp17lxdHQs9lu4Xq9n4MCBRc/9PaO8T58+aLXaUp1z0KBB3Lhxg3feeYeEhAQCAwPZuHEj3t7eACQkJHDp0qVSv5naLn39elT5BZytB4Ht+2BrXkLBl3waYn40bD/8JlTCnZWLN7J4evEhMnMLaOfjzGdDQjDXyOLXQojaxdnWgh9Gt6X/vH2cvZ7FqMUH+XFsO+wsS/1RWzILW+j8Kvw8GXb/F0KGgWWdYrv4u/iT0r452duOYxN/meyDB7Ft165i163GSr3Oza5du0p90oceeqjcgYytpq5zo9frOdO7NwVnz7HwETWj31hOgEvAnTsuHwnH10KzR2Hosgpf93pGLv3n7+PijWz86tuz7Ll22FuZV/i8QghRXZ1JymTA/H3czM6nQxMXFj3dGkuzCvZ90hbAF20g5Sx0eb3EpprLTy4n4a23iIjRU6dnTxp8NLti16xiyvL5XepysioXLAJyjhyh4Ow5cs0guaNfyYXN1RhDYYMKuv6nwtfMzC1g1DcHuXgjG09na74d1VoKGyFErdfEzY5vn2nDkAX72XvmBpOXxvL50FYV+6peYwZdXjM01dz3GbQZA9ZOxXbp5dOLp0NnERGTTfrWLRSkpGBWxpZINUW5vztITU1l9uzZjBkzhrFjx/Lxxx+TlpZWmdlEGfw9kPgPPxV9gu8y/fu3dwx/Bg2AeneZRVVKuQVanvs+imNX0nGxteC7Z9riZm9VoXMKIURN0aKBIwtHhGGhUbPpWCLv/XK84icNeALcAiA3DfZ+esfLtua2BLTvw9l6oMovIG3d+opfs5oqV3ETFRVF48aN+fjjj0lJSSE5OZmPPvqIxo0bc/jw4crOKO5Dm5lF6i8/A7C3lXXJA4nP7zYsAqUurP4rQKfT88LyI+w9cwMbCw2LR7WmUV0Z0C2EEP/UvkldPhoUDMDivRf4+veSm2CWmlptWNgP4MB8yLx+xy4DfAewPbhwxeKVy1Gww5KiylXcTJkyhb59+3LhwgVWr17NmjVrOH/+PL1792by5MmVHFHcT/qmjahycrniDE0fKmEgsV4P2wq7zIaOAudGFbrezE0n+PloAuYaFV8+FUqLBo4VOp8QQtRUvVt48FrP5gC898txNsVVsJO4b094IBTysw3rlf1LgEsANzr6kWcGBWfPk3PsWMWuV02V+87NK6+8UqwFgpmZGS+//DJRUVGVFk6Uzo3lhoHB21uq6e874M4dTm6CK1FgbmNYEKoCvt9/kYV7DL99/K9/MJ2aVnKzOCGEqGHGdvJhZLg3ej1MWhZL9MUKtGlQqQyrygMc+tqwbtm/9A4exAHfwhWLV64q/7WqsXIVN/b29iVO0Y6Pj6dOnTolHCGMJefkKfLj/qRADQmdfO8cSKzTwY4Zhu22z0GdO1d/Lq0dJ5N4c53ht4AXujejX8gD5T6XEELUFiqVijf6BNDd3528Ah1jvo3iXEVWMfbpAt4dDOuV7f7vHS/3bNSTfSGGFYtv/rwe3a1KWlCwGilXcTNo0CBGjx7NsmXLiI+P5/LlyyxdupQxY8YwZMiQys4o7iF1pWEgcVRTFT1DS/jZ/7UBrsUZlu9uP7Hc1zl+NZ0JPx5Gp4f+oQ2Y0FUaYQohRGlp1Co+HRxCsKcjN7PzeXrxIZIzc8t3MtU/ZrzG/AAp54q9bGtui0+XviQ5gCrrFhnbtlUwffVTruLmww8/5IknnmDEiBE0bNgQb29vnn76afr371+mFYpFxehyc0lZZ+g1UuJAYp0Odsw0bLf7P7Ap35TAa+k5jP72EFl5WsJ9XJghbRWEEKLMrC00fD0yDC9nGy6lZDP62yhy8ku36O0dvMMNK8zrCmDnB3e83L/5AHa0MHzEJ6+o+Jpm1U25ihsLCws++eQTbt68SWxsLDExMaSkpPDxxx9jaWlZ2RnFXWRs24YqPYtke/B6uPedA4mPr4HrJ8DSAcLHlesaWbkFPPPNIRLScmjsasv84aFYmMnqw0IIUR517Sz5ZlRrHG3MORKfyssrj5Z/RtPfY2+OLoekv4q95O/iT0InX3RA3sFo8uLjKxa8mqnQp5SNjQ1BQUG0aNECGxubysokSil5+VIAdgSpeLL5v5pk6rS3q/nw8Xcs9lQaWp2eiUti+POqYS2bxU+3wcFGFukTQoiK8HG1Y96wUMzUKtYfucrn28+U70QeIeDXB9DDjvfveDmi3TDiGhYOLF69pgKJq58yNbx45plnSrXfokUlN/YSlSf/yhVyD0ahAi4/2OzOgcRxKyH5FFg5Gr6SKodZv/7Fb38lYWmmZuHIMLxcpIAVQojKEN7YhXf7BTJtdRyzt56iiZsdPYLql/1EXabDiZ/hxHq4GgseLYte6tGoB6+0ep/gC7e4vmoZrhPGo9JUsA1ENVGmOzfffPMNO3bsIDU1lZs3b971IYwvde06VHo45q3i4XZDi7+oLTB0/gboMBGsyt5Da1X0ZRbsNgxS+3BAMK28yn7nRwghxN0NaePFMx0M645NWR7LsSvlWOXfzc+w6jzAruIzp2zMbXB9pBeZVqBOSiHrj/0VjVxtlKm4iYyMJC0tjXPnztGlSxe+/vpr1qxZc8dDGJder+f6KsMAsb0tLe8cSHx0mWH0vI0LtHm2zOePuXSTaWviAJjQpQl9gj0qnFkIIcSdXuvZnM6+ruTkG6aIX0vPKftJHnwJVGo4+QskHCn20mP+/dkTYPhqKnll7RlYXKbiZu7cuSQkJPDKK6+wYcMGPD09GThwIJs3b661Szwr4VZUFKqrSWRbgH1EBHYWdrdf1ObDrsIZax0mgWXZ1h1KTMvhue+jySvQ0d3fnandm1ViciGEEP9kplHz6ZAQmrjZkZiew7PflWMGlWszCOxv2N5ZfMZyi7otONPBG4CsbdvRpqZWQuqqr8wDii0tLRkyZAhbt27l+PHjBAQEMG7cOLy9vcnMrMCiRKLUkleuAAxNMh8L/NdA4tgfIfUi2LpC6zFlOm9OvqEZZlJGLs3c7fh4UEvUFeliK4QQ4r7srcz5emQYTjbmHLmcVr4ZVA++BKjuuHujUqlo99AQzruDukBL2s+/VG74KqpCs6VUKhUqlQq9Xo9Op6usTOIedFlZZGzeDMBf7erTyq3V7RcLcmH3h4btjlPBovTNLPV6PdNWx3HkchqONuZ8NaI1dpZlGm8uhBCinLxdbJk3/PYMqjI32XRtBkGFd2/+NfamT+M+7Ao2/P/82vKfKiNulVfm4iY3N5clS5bQvXt3fH19iYuL4/PPP+fSpUvY2dnd/wSiQtI3b0Gdk0eCE7TsNrj4Ynox30NaPNjVg7BRZTrvgt3nWBNzBY1axdyhrWRmlBBCmFg7Hxf+09sfgBkbT7DvTHLZTvDgy4AK/voZEo4WPe1k5YQ64iHyNcCpc+QcP155oauoMhU348aNo379+syaNYvevXtz+fJlVqxYQc+ePVGrZWE3U0hcYai6d7fQ8FiTfrdfKMiDPR8btjtNBXPrUp9z96nrfPCrYQGoN/v4075J3cqKK4QQogxGhHvzRKsH0OlhwpIYrqSWoS+UazMIfNKwvav42JteIYM51Mzwy/CNwqENNZlKX4Yv9tRqNV5eXoSEhNxz+f3Vq1dXSjhjSE9Px8HBgbS0NOztyz5FWkl5ly5xNuIRdMAP73VkZv+Ft1+M/gY2TDLctZl0BMytSnXOyzez6f3Z76Rm5zMozJMPnpTWCkIIoaScfC395+/j2JV0gh5wYEVkOFbmpVyf5vpJ+KItoIfn9kD9FgBodVomz+rMuG+T0dpZ47/3D9TVrKNAWT6/y3S7ZcSIEXTp0gVHR0ccHBzu+hDGkbLGUDQebaSie5t/NMnU5sOejwzbHSaWurDJydcy7sfDpGbnE/SAA28/FiCFjRBCKMzKXMP84aE421oQdyWN6WuOlX6AsatviXdvNGoNvhEDSK4DmsxbZO7YYYTkVUeZRox+8803Rooh7kev03F91XLMgOjQOsxs0On2i3Erbs+QCi39WJu3N/zJ0cIBxPOGtyr9bwZCCCGMqoGTDZ8PCWH41wdYdfgywZ4OjAhvWLqDH3oZjq0yjL1JjIN6QQD0a/YE3wXO5/E/9FxbuRT7Rx813htQmAyUqSayDxzALOkmWZbQoNeTmKsLezzptLdnSIVPAIvSDQRefiieJQfjUang08EhNHCSAcRCCFGVtG9Sl1d7NAfgnQ3HOXQhpXQHuvpC4BOG7X/cvWlQpwE3u7YEIG/fQQqSyzhguRqR4qaaSFy+BIB9/ir6+ve//cKx1ZBy1tAYs/XoUp3r2JU0Xl93DICpDzfjwWaulZ5XCCFExY3t5EPvFvUp0OmZ8NNhkjNzS3fg3zOnTmww3L0p1KXDcE55gFqnJ3XDBuOErgKkuKkGtBkZ3PrN8P3o1Yea4+PgY3hBp4M9hXdt2o0v1WrEqdl5RP5gWIG4W3M3xndpYqzYQgghKkilUjHryRY0cbPjWnouk5fGotWVYvyNW/Pbd292/6/o6W7e3TjY0nCnPmHlEmNErhKkuKkG0jduQpNXwGUXaNt1+O0XTqyH63+BpQO0vX8PKZ1Oz+RlsVy+eQtvFxs+khWIhRCiyrO1NGPusFZYm2v4/Uwyn28/U7oDH3zJ8Ofx9YZZVIClxhLHXr3J14DZ2Xhy/vrLSKmVJcVNNXBl+feAoUnmI40KB4DpdLer8XaRYHX/WWrzd59l58nrWJmrmTcsFAdrc2NFFkIIUYmaudfh3X6BAMz57RR7S7PAn5sfNO8N6OH3j4ue7hMyhKimhl9sr61caoy4ipPiporLPXcezZ9n0KnAqtcj2JgXDvw9tQmuHQMLO2gbed/zRF1IYfaWUwC80zcQf4/qtcaPEELUdv1DGzAozBO9HiYtjSGpNB3EO001/Hl0Ody8AEBz5+acC/cCIG3DBvT5+UZKrBwpbqq466uWAxDro6JH66GGJ/X6271D2jwLNs73PMfNrDwmLolBq9PTr6UHA8IaGDOyEEIII3n7sQCa16tDcmYezy+JoUB7n76OD4SCTxfQa2HvJ0VPB/Z6ijQbME/LJnPP70ZObXpS3FRhep2OG+vXAHCibT1a1DWsNMmZbZAQC+Y2ED7+3ufQ63lp5RGupuXgU9eW9x6XFYiFEKK6sjLXMHdYK2wtNBw4n8LH207d/6AHXzT8GfMDpCcA0LNZH/YFGpa6i1/xvbHiKkaKmyos+1AUFtfTyLaEpr2GGIqSf961CXsGbO/dB+rr38+z7UQSFmZqPhsaIp2+hRCimvNxteODJw2/7H6x4yw7Tybd+wDvDuDZDrR58MfnANhb2JMbEQ6Abs8BtKmpxoxsclLcVGFXVvwAwP7manr69TM8eeF3uHwQzKyg/cR7Hh8bn8qswoaY/+ntT4CHtMYQQoiaoE+wB0+18wbgxRVHuJ5xj/VvVKrbd2+iFkHWDQA6dRnBBTfQFOhI+eVnY0c2KSluqijdrVvk/rYTgJtdgnG1KVxo7+8R7yHDoY77XY9Pu5XP80sOk6/V0zOoHsPbehk5sRBCCFOa3suvaPzNCyuOoLvX+jdNHob6wZCfDQfmARBeP5zoEMP6aFdX/GiKyCYjxU0VlfbbNsxu5ZPkAK0jnjI8eTUWzv4GKg20f/6ux+r1eqatPkp8yi08na354MkWMs5GCCFqGCtzDZ8NCcHSTM3uU9dZtPf83XdWqaDTC4btAwsgJw2NWoPjY33RqsDirwvknrvH8dWMFDdVVHzh2jYHW1jR2bur4cm/79oEPglODe967Iqoy2yMS8Rco+LzIa2wt5L1bIQQoiZq6l6H//T2B2DWr39x7Era3Xdu3gfqNoPcNDj0FQA9Wg0h1sfwy2/Cyp+MntdUpLipggqSk9FEGXo/mffsjqXGEm6chePrDDt0nHzXYy8kZ/HWhj8BeCHCl2BPRyOnFUIIoaRhbb2I8HcnX6tn4tIYsvMKSt5RrYaOheve/DEX8rJp7NiY8x0MY3fS1q1Dr7vP1PJqQoqbKuj6utWodXpO14euHQvbLeydA+ih2aPgHlDicflaHZOWxZKdp6WdjzNjO/mYLLMQQghl/N1/qp69FeeuZ/H2+uN33zmoPzh6QXYyHP4OAN/ew8i0AosbGWTt32+i1MYlxU0VlLB6GQB/tnYlqG4QpF+F2MIGZx2n3PW4z347zZH4VOytzPhoYEs00jdKCCFqBSdbCz4aFIxKBcui4vnlaELJO2rMocNkw/a+T6Egj0d8+7DfXwNA/PLvTBPYyBQvbubOnUujRo2wsrIiNDSUPXv23HXf1atX0717d1xdXbG3tyc8PJzNmzebMK3x5Z4+jfXZqxSoof5j/Q0Dgf/4AnT54NUevNqVeNyhCyl8vsPQTG3GE0F4OFqbMrYQQgiFtW9cl3GdGwMwbfVRrqTeKnnHlsPAzh3Sr8CxVThYOpD9cBsACrbvRZeVZarIRqNocbNs2TImT57M9OnTiYmJoVOnTvTo0YNLly6VuP/u3bvp3r07GzduJDo6mi5dutCnTx9iYmJMnNx44gun48U2VtGj5SDIToGoxYYX/+4R8i/pOflMWRaLTg9PtmpA7xYepoorhBCiCpn8cDNaejqSnlPAS3ebHm5udbsn4d5PQKcjvPtIEh3BLK+A1G1bTZrZGBQtbj766CNGjx7NmDFj8PPzY86cOXh6ejJv3rwS958zZw4vv/wyrVu3pmnTpsyYMYOmTZuyYcMGEyc3Dr1WS8bPvwCQ+GBz3G3dDSPa87PAPciwTkEJ3lz3J5dvGqZ9v9XX35SRhRBCVCHmGjUfD2qJtbmGfWdv8M2+CyXvGPYMWNSB6yfgzFbaP9CB6Ja2AFysAe0YFCtu8vLyiI6OJiIiotjzERER7Nu3r1Tn0Ol0ZGRk4Ox898aRubm5pKenF3tUVZkHDmCVkkmmFfj3HQl5WbC/sNDrONmwTsG/rD9ylTUxV9CoVcwZFEIdmfYthBC1WqO6trzWyw8wTA8/k5Rx507WjhD2tGF77yeYqc2w7d0TAIvDJyhITjZNWCNRrLhJTk5Gq9Xi7l58lV13d3cSExNLdY7Zs2eTlZXFwIED77rPzJkzcXBwKHp4enpWKLcxnV9m+Popyt+Cro0j4PD3cCvFsKaNf7879k9My+H1NXEATOjShFBvJxOmFUIIUVUNb+vFg81cyS3QMWXZEfJL6h7ebhyozeHiXog/xMMdnuJ0fVDr9CSuX2X60JVI8QHF/145V6/Xl2o13SVLlvDWW2+xbNky3Nzc7rrftGnTSEtLK3rEx8dXOLMx6LKzYadhCp72kY5Yo4F9nxle7DAJNMUbXur1el5dfZT0nAKCGzjwfNcmpo4shBCiilKpVPyvfwscrM2Ju5LG59vP3LmTvQe0GGTY3juHpk5NOdPWMGYzsXDWbnWlWHFTt25dNBrNHXdpkpKS7rib82/Lli1j9OjRLF++nIcfLnkcyt8sLS2xt7cv9qiKkjdvxDy3gERH6PDoaPhzNaRfBls3CB56x/7Lo+LZefI6FmZqZg8MxkyjeJ0qhBCiCnG3t+K9foEAfL7jDLHxqXfu1KGwAfNfv0DyaTz7DUGrAtszCeSer77tGBT7RLSwsCA0NJStW4uPyt66dSvt27e/63FLlizh6aef5qeffqJXr17GjmkylwoHcB1t5UhL15a379q0+z/DyPZ/uHwzm3d/PgHAixHNaOJWx5RRhRBCVBN9gj3oE+yBVqdn6vJYbuVpi+/g6gu+PQE97PuM7i37c9THUBqcW/Gt6QNXEkV/3Z86dSpfffUVixYt4sSJE0yZMoVLly4RGWmYojZt2jRGjBhRtP+SJUsYMWIEs2fPpl27diQmJpKYmEha2j16aVQD+UlJWMecAsDxsX6ozu2Aa8fA3BbCRhXbV6fT8/LKo2TmFhDm7cTojrIKsRBCiLt797EA3O0tOXc9i1m//nXnDh0mGf48sgTH/BxuPhQEQNbPG9Hr79FpvApTtLgZNGgQc+bM4Z133qFly5bs3r2bjRs34u1t6HORkJBQbM2bL7/8koKCAsaPH0/9+vWLHpMmTVLqLVSKy6uXoNbDyQege4enbt+1aTUCrIsPEv7hwEX2nb2BtbmGDwcEyyrEQggh7snRxoL/9g8G4Jt9F9h39l8zobzagWdb0ObBgfkE9BtFjjnYJmWQGROtQOKKU+mra1lWTunp6Tg4OJCWllZlxt8cfPRB6ly4zrYBPjw//gOY3xFUGpgYA07eRftdSM6ixyd7uJWv5e2+AYxs31C50EIIIaqV6Wvi+PHAJbycbfh1cidsLP4xUeWvjbB0CFg6kD8xhu9HdSP8aC45fbsQ8t+5yoX+h7J8fssoVIXlnDlDnQvXKVBDo8eHw77PDS8E9CtW2Gh1el5ccYRb+VrCfVx4qp13yScUQgghSjCtpx8POFpzKSWb/20+WfzFZo9CXV/ITcM89ke0ER0Mz2/fiz4/3/RhK0iKG4WdXfENAMcaa+jqHQbHVhpeCJ9QbL/Fe88TdfEmthYa/tu/BWr5OkoIIUQZ2FmaMeMJw3iab/ZdIOpCyu0X1erbM6f2z6XNoyNJtQWrzDxu7PpNgbQVI8WNgvR6PdmbtgCQ9lAwNtHfgq4AGnaCB1oV7XfxRhYfbjFU2a/39sfT2UaRvEIIIaq3h5q5MiC0AXo9vLzyKDn5/5g9FTQA6tSHjARaXD/D0ZYOAJxb/o0yYStAihsFZcYexi4pgxxzCOg1EKK+MbzQ/vmiffR6Pa+uiiMnX0f7xi4Mbl11V1gWQghR9b3e2x+3OpacS87i462nbr9gZgltnwNAtX8uNr16AGD9RxzazEwlopabFDcKOrV8EQBHm1sSnnIB8jIM33k26V60z7JD8fxx7gZW5mo+eKJFqVZvFkIIIe7GwdqcGY8bvp5auOdc8cX9Qp8Gcxu4FsdDzfy57AJm+Tqu/LJakazlJcWNQvQFBfDbXgB0D7fH7MCXhhfaP2/47hO4lp7D+xv/XqzPFy8X+TpKCCFExT3s706/lh7o9PDSiiPkFhR+PWXtBCHDAfA6soIzbQztGK6uWqJU1HKR4kYhN/buwiY9l3RraOPfGNKvGFottDA0AdXr9by+9hgZOQUEezoyqkMjhRMLIYSoSd7sE0BdOwtOJ2UW7z3VNhJQwenNuHfvAkCduAvkX0tSJmg5SHGjkDMrDB3Aj7Wwx/9Y4e2+ts8ZvvMENsYlsvX4NczUKmY9GSSL9QkhhKhUTrYWvPOYoffU3J1nOZGQbnjBpTE0N7Q36pp/lZMNVKj1cHblNwolLTspbhSgy8nBak8sADYdW6AqarXwDACp2Xm8uf4YAOO6NKF5vaqx2KAQQoiapWdQfR4JcEer0zNtdRxaXeG6vuHjAXCMW8W1Dk0ASFu/XqmYZSbFjQKubF6HZa6W6/bQ0bKwK3rIcLBxBuDdn0+QnJlHEzc7xndprGBSIYQQNd3bfQOxszQjNj6VHw9cNDzpFQ4eIVCQQ5PAehSowf7iDW6dPnXvk1URUtwo4NKqnwA408oVz3O7ARW0MzQL3X3qOqsOX0algllPtsDSTKNgUiGEEDVdPQcrXnrEF4D//nqSxLQcUKmKFpPteGE7xxqbA3By+deK5SwLKW5MTJuejn30aQBcAh0NT/r2BGcfcvK1vL7W8HXUyPCGhHo73eUsQgghROUZ3s6blp6OZOYW8Nb6Pw1P+j8G9g9gmXWdW60bAJC7+bdq0SlcihsTO73me8y0ei65quicHmV4st3/AfDFjjNcSsmmnr0VLxZW0UIIIYSxadQqZj5hmLzy65+GCS1ozIsW9Qt2vE6uGdgnZZF29LDCae9PihsTu77eMDMqoaUTDnlZ4B4EDTtyJimT+bvOAvBWX3/sLM3udRohhBCiUvnVt2dsJx8A3lh3jMzcAmg1EizsCEk5xXFfw2zev5Z9pWTMUpHixoTyriXifPwqAF71CxuWtfs/9MDra+PI1+rp2tyNRwLqKRdSCCFErTWpW1M8na1JSMth9paTYO0IIU+hBlTNDcWNevsf6HU6RXPejxQ3JvTnsgWo9XC6gZoO+VfB1hUCn2RNzBX2n0vBylzN230DpMWCEEIIRVhbaHi/n6E1w7f7LnD0cqrhqymVmjaWZ8i2hDqpuST+sVPRnPcjxY0JZW38FYB0P3Ms9UDYaFLz1bz/i6HFwqRuzaTjtxBCCEU92MyVxwpbM0xbHYfWsSE0701jXQEnfS0AOL1ikbIh70OKGxPJOHMSlws30aqguUsCaCwg7Blm/foXN7LyaOZux5hO0mJBCCGE8v7T2x97KzP+vJpuWPum3TgA7DwzALDZE4s+P1/JiPckxY2JHFsyD4CTPmpakQOB/YlOMWfJwXgA3usXhLlG/nUIIYRQXl07y6K1b/63+STJziFQrwXhdW6SZgO2WVrOb9+gcMq7k09TE9Dr9bB1DwDahjmogfzWzzF9jWFNm4FhDWjTyFnBhEIIIURxQ9t6E+BhT0ZOAR/8ehLaRuKKjgtNDeNCL67+QeGEdyfFjQkkHzmIY1I2eWbQyjUNvDvy7Xl7/krMwMnGnGk9/JSOKIQQQhSjUat4t5+hsebK6MtE1+kKNi44FX415bj/JNqcHCUj3pUUNyZwYrlhTYDTjaAJ+aS2GM2cbYZVil/t0RwnWwsl4wkhhBAlauXlxKAwTwBe/+UMulZPE26XQbI9WOXqOLVpqcIJSybFjZHp9XrMdx4CwKzhLXD04t0z3mTmFhDs6ciAUE+FEwohhBB39/KjvjhYm3MiIZ2VqgjsVWquNNECkLB2ucLpSibFjZFdPbATx5RccsyhtUs68c1GsComEZUK3ukbgFota9oIIYSoulz+Mbj43d1p5DTrQ70GWYbXos9TkJmhZLwSSXFjZKdWLgbgrI8ODwtrpp4yLI40MNSTYE9HBZMJIYQQpTOkjRdBDziQkVvAl7ndaWuTRYIzWBTAn2u/UTreHaS4MSK9TofNnlgArL1yOFW/D4cStdhbmfHyo9IYUwghRPXw9+BilQo+/ssRrUsQ1xsXAHBjw1plw5VAihsjurBnE/Zp+WRZQhvndF651BaAqd2b4WJnqXA6IYQQovRaejoyuLUnoGLerW54NcgEwC3uKjkp15UN9y9S3BjR2dXfA3DBR0eafSixt9xoXq8Ow9t5K5xMCCGEKLuXHmmOvZUZC1NaEljHiktuoNHB0RULlY5WjBQ3RqLLz8d+r2GRPgevW8xKeRCAt/oGYCYrEQshhKiGnG0tmNK9GXmYsyS/G+k+hhYMWRs3KZysOPmUNZJTO9ZQJ1NLhhX4OFvymzaEPsEetPNxUTqaEEIIUW7D23nTxM2Ohbc607hBNgBuJ5PJuHpJ4WS3SXFjJJfWLAHgcmMtK/K6YmVhzms9myucSgghhKgYc42a13v5cR0nLqmCOe9hKCaOLp+vdLQiUtwYgS4vD+f9JwFw8MxlmbYz4zo3pr6DtcLJhBBCiIrr7OtG1+ZufFPwKDmNcgHI2/ybwqluk+LGCI79+hO2t/Sk2cA12wBsHN0Z08lH6VhCCCFEpZney49jqiZYu9uhA+qdTyfl0mmlYwFS3BjF1bWGXhsJjbUs0fXg5Ud9sTLXKJxKCCGEqDyNXe0Y2b4R21WPcLGBHoCjS+cpnMpAiptKlncrC7foiwDoGlhj5tmKvsEeCqcSQgghKt/Ebk353fIhcrwNvaZ0W3YonMhAiptKdmT9Iqxz4aYd7LJ6hP/09kelkv5RQgghah4Ha3MmPBJEfF1/dCqofzmHxNNHlI6lfHEzd+5cGjVqhJWVFaGhoezZs+ee++/atYvQ0FCsrKzw8fFh/vyqMzobILnwK6nExjrMAp+klZeTwomEEEII4xnc2osYt2FcKvxqKu6HjxVOpHBxs2zZMiZPnsz06dOJiYmhU6dO9OjRg0uXSp4rf/78eXr27EmnTp2IiYnhtddeY+LEiaxatcrEyUt2KzOVesdSALjk4cMLvVoonEgIIYQwLo1axbP9unLdyzAjWL0rSuFEChc3H330EaNHj2bMmDH4+fkxZ84cPD09mTev5AFJ8+fPx8vLizlz5uDn58eYMWN45pln+PDDD02cvGSHfpiJVT7ccACrh17mAUeZ+i2EEKLma9+4Ltf9H0erAo9ELReP7lI0j2LFTV5eHtHR0URERBR7PiIign379pV4zB9//HHH/o888ghRUVHk5+cbLWtp3dy4GYBLPhY81aOTwmmEEEII03ls+GQuehq2oxfOUDSLYsVNcnIyWq0Wd3f3Ys+7u7uTmJhY4jGJiYkl7l9QUEBycnKJx+Tm5pKenl7sYQzx50/Q8JxhISPzBx/D1tLMKNcRQgghqqIm7vakNPcCwCH2EjqtTrEsig8o/vdMIr1ef8/ZRSXtX9Lzf5s5cyYODg5FD09PzwomLtnZQ1tIt4UkJ+g35g2jXEMIIYSoyjqNm0mBGnQquHz+uGI5FCtu6tati0ajueMuTVJS0h13Z/5Wr169Evc3MzPDxaXkhpTTpk0jLS2t6BEfH185b+BfOg+cROvdR3D55FPMzeWujRBCiNqnYfNW6L7+iId3HcerSaBiORQrbiwsLAgNDWXr1q3Fnt+6dSvt27cv8Zjw8PA79t+yZQthYWGYm5uXeIylpSX29vbFHsZiZWlBYJvuRju/EEIIUdUFh/dQfH03Rb+Wmjp1Kl999RWLFi3ixIkTTJkyhUuXLhEZGQkY7rqMGDGiaP/IyEguXrzI1KlTOXHiBIsWLeLrr7/mxRdfVOotCCGEEKKKUfT7k0GDBnHjxg3eeecdEhISCAwMZOPGjXh7ewOQkJBQbM2bRo0asXHjRqZMmcIXX3yBh4cHn376KU8++aRSb0EIIYQQVYxK//eI3FoiPT0dBwcH0tLSjPoVlRBCCCEqT1k+vxWfLSWEEEIIUZmkuBFCCCFEjSLFjRBCCCFqFCluhBBCCFGjSHEjhBBCiBpFihshhBBC1ChS3AghhBCiRpHiRgghhBA1ihQ3QgghhKhRpLgRQgghRI2iaG8pJfzdbSI9PV3hJEIIIYQorb8/t0vTNarWFTcZGRkAeHp6KpxECCGEEGWVkZGBg4PDPfepdY0zdTodV69epU6dOqhUqko9d3p6Op6ensTHx9fKppy1/f2D/Axq+/sH+RnI+6/d7x+M9zPQ6/VkZGTg4eGBWn3vUTW17s6NWq2mQYMGRr2Gvb19rf1LDfL+QX4Gtf39g/wM5P3X7vcPxvkZ3O+Ozd9kQLEQQgghahQpboQQQghRo0hxU4ksLS158803sbS0VDqKImr7+wf5GdT29w/yM5D3X7vfP1SNn0GtG1AshBBCiJpN7twIIYQQokaR4kYIIYQQNYoUN0IIIYSoUaS4qSRz586lUaNGWFlZERoayp49e5SOZDK7d++mT58+eHh4oFKpWLt2rdKRTGrmzJm0bt2aOnXq4ObmRr9+/Th58qTSsUxq3rx5tGjRomhdi/DwcDZt2qR0LMXMnDkTlUrF5MmTlY5iMm+99RYqlarYo169ekrHMqkrV64wfPhwXFxcsLGxoWXLlkRHRysdy2QaNmx4x98BlUrF+PHjTZ5FiptKsGzZMiZPnsz06dOJiYmhU6dO9OjRg0uXLikdzSSysrIIDg7m888/VzqKInbt2sX48ePZv38/W7dupaCggIiICLKyspSOZjINGjTggw8+ICoqiqioKLp27cpjjz3Gn3/+qXQ0kzt06BALFiygRYsWSkcxuYCAABISEooecXFxSkcymZs3b9KhQwfMzc3ZtGkTx48fZ/bs2Tg6OiodzWQOHTpU7N//1q1bARgwYIDpw+hFhbVp00YfGRlZ7LnmzZvrX331VYUSKQfQr1mzRukYikpKStID+l27dikdRVFOTk76r776SukYJpWRkaFv2rSpfuvWrfqHHnpIP2nSJKUjmcybb76pDw4OVjqGYl555RV9x44dlY5RpUyaNEnfuHFjvU6nM/m15c5NBeXl5REdHU1ERESx5yMiIti3b59CqYSS0tLSAHB2dlY4iTK0Wi1Lly4lKyuL8PBwpeOY1Pjx4+nVqxcPP/yw0lEUcfr0aTw8PGjUqBGDBw/m3LlzSkcymfXr1xMWFsaAAQNwc3MjJCSEhQsXKh1LMXl5efzwww8888wzld7HsTSkuKmg5ORktFot7u7uxZ53d3cnMTFRoVRCKXq9nqlTp9KxY0cCAwOVjmNScXFx2NnZYWlpSWRkJGvWrMHf31/pWCazdOlSDh8+zMyZM5WOooi2bdvy3XffsXnzZhYuXEhiYiLt27fnxo0bSkcziXPnzjFv3jyaNm3K5s2biYyMZOLEiXz33XdKR1PE2rVrSU1N5emnn1bk+rWucaax/Lsy1ev1ilSrQlkTJkzg6NGj/P7770pHMTlfX19iY2NJTU1l1apVjBw5kl27dtWKAic+Pp5JkyaxZcsWrKyslI6jiB49ehRtBwUFER4eTuPGjfn222+ZOnWqgslMQ6fTERYWxowZMwAICQnhzz//ZN68eYwYMULhdKb39ddf06NHDzw8PBS5vty5qaC6deui0WjuuEuTlJR0x90cUbM9//zzrF+/nh07dhi983xVZGFhQZMmTQgLC2PmzJkEBwfzySefKB3LJKKjo0lKSiI0NBQzMzPMzMzYtWsXn376KWZmZmi1WqUjmpytrS1BQUGcPn1a6SgmUb9+/TsKeT8/v1ozseSfLl68yLZt2xgzZoxiGaS4qSALCwtCQ0OLRoX/bevWrbRv316hVMKU9Ho9EyZMYPXq1Wzfvp1GjRopHalK0Ov15ObmKh3DJLp160ZcXByxsbFFj7CwMIYNG0ZsbCwajUbpiCaXm5vLiRMnqF+/vtJRTKJDhw53LAFx6tQpvL29FUqknMWLF+Pm5kavXr0UyyBfS1WCqVOn8tRTTxEWFkZ4eDgLFizg0qVLREZGKh3NJDIzMzlz5kzRP58/f57Y2FicnZ3x8vJSMJlpjB8/np9++ol169ZRp06dort4Dg4OWFtbK5zONF577TV69OiBp6cnGRkZLF26lJ07d/Lrr78qHc0k6tSpc8cYK1tbW1xcXGrN2KsXX3yRPn364OXlRVJSEu+99x7p6emMHDlS6WgmMWXKFNq3b8+MGTMYOHAgBw8eZMGCBSxYsEDpaCal0+lYvHgxI0eOxMxMwRLD5POzaqgvvvhC7+3trbewsNC3atWqVk0D3rFjhx644zFy5Eilo5lESe8d0C9evFjpaCbzzDPPFP39d3V11Xfr1k2/ZcsWpWMpqrZNBR80aJC+fv36enNzc72Hh4f+iSee0P/5559KxzKpDRs26AMDA/WWlpb65s2b6xcsWKB0JJPbvHmzHtCfPHlS0RzSFVwIIYQQNYqMuRFCCCFEjSLFjRBCCCFqFCluhBBCCFGjSHEjhBBCiBpFihshhBBC1ChS3AghhBCiRpHiRgghhBA1ihQ3QgghhKhRpLgRQgghRIl2795Nnz598PDwQKVSsXbtWqNf88qVKwwfPhwXFxdsbGxo2bIl0dHRZTqHFDdCiGrv66+/JiIiokLnSEpKwtXVlStXrlRSKiGqv6ysLIKDg/n8889Ncr2bN2/SoUMHzM3N2bRpE8ePH2f27Nk4OjqW6TzSfkEIUa3l5ubi4+PD0qVL6dSpU4XONXXqVNLT0/nqq68qKZ0QNYdKpWLNmjX069ev6Lm8vDxef/11fvzxR1JTUwkMDGTWrFl07ty5XNd49dVX2bt3L3v27KlQVrlzI4So1latWoWdnV2FCxuAUaNG8eOPP3Lz5s1KSCZEzTdq1Cj27t3L0qVLOXr0KAMGDODRRx/l9OnT5Trf+vXrCQsLY8CAAbi5uRESEsLChQvLfB4pboQQVcL169epV68eM2bMKHruwIEDWFhYsGXLlrset3TpUvr27Vvsuaeffpp+/foxY8YM3N3dcXR05O2336agoICXXnoJZ2dnGjRowKJFi4odFxQURL169VizZk3lvjkhaqCzZ8+yZMkSVqxYQadOnWjcuDEvvvgiHTt2ZPHixeU657lz55g3bx5NmzZl8+bNREZGMnHiRL777rsynUeKGyFEleDq6sqiRYt46623iIqKIjMzk+HDhzNu3Lh7jqfZs2cPYWFhdzy/fft2rl69yu7du/noo49466236N27N05OThw4cIDIyEgiIyOJj48vdlybNm0qfEtciNrg8OHD6PV6mjVrhp2dXdFj165dnD17FoALFy6gUqnu+ZgwYULROXU6Ha1atWLGjBmEhITw3HPPMXbsWObNm1embGaV+k6FEKICevbsydixYxk2bBitW7fGysqKDz744K77p6amkpqaioeHxx2vOTs78+mnn6JWq/H19eW///0v2dnZvPbaawBMmzaNDz74gL179zJ48OCi4x544AFiYmIq/80JUcPodDo0Gg3R0dFoNJpir9nZ2QGG/55OnDhxz/M4OTkVbdevXx9/f/9ir/v5+bFq1aoyZZPiRghRpXz44YcEBgayfPlyoqKisLKyuuu+t27dAihxn4CAANTq2zen3d3dCQwMLPpnjUaDi4sLSUlJxY6ztrYmOzu7om9DiBovJCQErVZLUlLSXce8mZub07x581Kfs0OHDpw8ebLYc6dOncLb27tM2aS4EUJUKefOnePq1avodDouXrxIixYt7rqvi4sLKpWqxAHA5ubmxf5ZpVKV+JxOpyv2XEpKCq6urhV4B0LUHJmZmZw5c6bon8+fP09sbCzOzs40a9aMYcOGMWLECGbPnk1ISAjJycls376doKAgevbsWebrTZkyhfbt2zNjxgwGDhzIwYMHWbBgAQsWLCjTeWTMjRCiysjLy2PYsGEMGjSI9957j9GjR3Pt2rW77m9hYYG/vz/Hjx+vtAzHjh0jJCSk0s4nRHUWFRVFSEhI0X8TU6dOJSQkhDfeeAOAxYsXM2LECF544QV8fX3p27cvBw4cwNPTs1zXa926NWvWrGHJkiUEBgby7rvvMmfOHIYNG1am88idGyFElTF9+nTS0tL49NNPsbOzY9OmTYwePZqff/75rsc88sgj/P7770yePLnC18/OziY6OrrYjC0harPOnTtzr+XwzM3Nefvtt3n77bcr7Zq9e/emd+/eFTqH3LkRQlQJO3fuZM6cOXz//ffY29ujVqv5/vvv+f333+85U2Ls2LFs3LiRtLS0CmdYt24dXl5elbJmjhBCObJCsRCi2hs4cCAhISFMmzatQudp06YNkydPZujQoZWUTAihBLlzI4So9v73v/8VTT0tr6SkJPr378+QIUMqKZUQQily50YIIYQQNYrcuRFCCCFEjSLFjRBCCCFqFCluhBBCCFGjSHEjhBBCiBpFihshhBBC1ChS3AghhBCiRpHiRgghhBA1ihQ3QgghhKhRpLgRQgghRI3y/5YlMPfSX7p0AAAAAElFTkSuQmCC", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "\n", - "x = my_model.mesh.mesh.geometry.x[:, 0]\n", - "\n", - "for t in [0.1, 0.2, 0.5, 1]:\n", - " idx = np.where(np.isclose(profile.t, t))[0][0]\n", - " data = profile.data[idx]\n", - " plt.plot(x, data, label=f\"{t} s\")\n", - "\n", - "plt.xlabel(\"x (m)\")\n", - "plt.ylabel(\"Mobile concentration (H/m3)\")\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To solve the steady-state problem, simply set:" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "my_model.settings.transient = False\n", - "my_model.settings.stepsize = None\n", - "\n", - "my_model.exports = [profile]" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "my_model.initialise()\n", - "\n", - "my_model.run()" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHACAYAAABeV0mSAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaitJREFUeJzt3XdcVfX/B/DXHXDZIFMQRHAjCAgO3Cs3akMtLXNVlqVGw6x+leVXstKWaWlqWabm1qKU3FtBcOFmiiB773vP7w+UvnxxwOVyzx2v5+NxHw85nHPu66Jy3/czJYIgCCAiIiIyEFKxAxARERFpEosbIiIiMigsboiIiMigsLghIiIig8LihoiIiAwKixsiIiIyKCxuiIiIyKCwuCEiIiKDwuKGiIiIDAqLGyIiIjIoRl3cHD58GKGhoXBzc4NEIsGOHTsadH1ZWRmmTJkCPz8/yOVyjB079r7nfffdd+jYsSPMzc3Rvn17rFu3rvHhiYiI6L6MurgpLi6Gv78/li1bptb1SqUS5ubmmD17NgYPHnzfc1asWIH58+fjo48+wqVLl7BgwQLMmjULu3fvbkx0IiIiegAJN86sJpFIsH379lqtLxUVFXj//fexfv165OXlwdfXF4sXL0b//v3rXD9lyhTk5eXVaf3p2bMnevXqhc8//7zm2Ny5cxEVFYWjR4820ashIiIyXnKxA+iyqVOnIjExERs3boSbmxu2b9+OYcOG4cKFC2jbtm297lFeXg4zM7Nax8zNzXH69GlUVlbCxMSkKaITEREZLaPulnqYmzdvYsOGDdi8eTP69OmD1q1b480330Tv3r2xdu3aet9n6NCh+PHHHxEdHQ1BEBAVFYU1a9agsrISWVlZTfgKiIiIjBNbbh7g7NmzEAQB7dq1q3W8vLwcDg4O9b7P//3f/yE9PR09evSAIAhwcXHBlClT8Nlnn0Emk2k6NhERkdFjcfMAKpUKMpkM0dHRdYoQKyuret/H3Nwca9aswQ8//IA7d+7A1dUVK1euhLW1NRwdHTUdm4iIyOixuHmAwMBAKJVKZGRkoE+fPo2+n4mJCdzd3QEAGzduxKhRoyCVsleQiIhI04y6uCkqKsKNGzdqvk5ISEBsbCzs7e3Rrl07TJo0CZMnT8aSJUsQGBiIrKws7N+/H35+fhgxYgQAIC4uDhUVFcjJyUFhYSFiY2MBAAEBAQCAa9eu4fTp0+jevTtyc3OxdOlSXLx4ET///LO2Xy4REZFRMOqp4AcPHsSAAQPqHH/++efx008/obKyEgsXLsS6deuQmpoKBwcHhISEYMGCBfDz8wMAtGrVCklJSXXuce/HevnyZUycOBFXr16FiYkJBgwYgMWLF6N9+/ZN++KIiIiMlFEXN0RERGR4OOiDiIiIDAqLGyIiIjIoRjegWKVS4fbt27C2toZEIhE7DhEREdWDIAgoLCyEm5vbI2cbG11xc/v2bXh4eIgdg4iIiNSQkpJSs7TKgxhdcWNtbQ2g+odjY2MjchoiIiKqj4KCAnh4eNS8jz+M0RU397qibGxsWNwQERHpmfoMKeGAYiIiIjIoLG6IiIjIoLC4ISIiIoPC4oaIiIgMCosbIiIiMigsboiIiMigsLghIiIig8LihoiIiAwKixsiIiIyKCxuiIiIyKCIWtwcPnwYoaGhcHNzg0QiwY4dO+p97bFjxyCXyxEQENBk+YiIiEj/iFrcFBcXw9/fH8uWLWvQdfn5+Zg8eTIGDRrURMmIiIhIX4m6cebw4cMxfPjwBl/30ksvYeLEiZDJZA1q7SEiw1OlVKG8SoWKKhUqlCpUqQSYyCRQyGQwlUthKpdCJn30RntEZDj0blfwtWvX4ubNm/j111+xcOFCseMQURMqrVAiPqsIKTklSMouQXJOCW7nlSKnuAI5JRXIKapAcYXykfexMZPDwUqBZhYmcLBSoIWdOTwdLNDS3gKeDhbwdLCEiYxDEIkMhV4VN9evX8c777yDI0eOQC6vX/Ty8nKUl5fXfF1QUNBU8YioEcoqlYhJzsO5W3mIu12AuLQCxGcWQSXU/x5SCSCXSlGhVNU6XlBWhYKyKiQ84DpTuRTtXazh42oDHzcbBLa0g4+rDeQseIj0kt4UN0qlEhMnTsSCBQvQrl27el8XHh6OBQsWNGEyIlJHRZUKpxNycPxmFk4n5ODcrTxUKutWMs0sTODpYFnTytLCzhwOVgrYW5rC3tIUduYmMDORwUQmqSlGBEFAlUpARZUKZZVK5JZUIKe4EjnF5cgsLMet3FIk51S3BCVmFaO4QokLqfm4kJpf87yWpjIEtbJHdy979G7jCL8WtpCye4tIL0gEQWjA56KmI5FIsH37dowdO/a+38/Ly0OzZs0gk8lqjqlUKgiCAJlMhr1792LgwIF1rrtfy42Hhwfy8/NhY2Oj8ddBRA+WVVSO/ZczsP9KBo5cz6zTpeRsrUBwq2bo5GYLHzcbdHK1gbONWZNmUqkE3MotRVxaPuJuF+BCaj6iknJRWFZV6zxHKwUGtHfCwA7O6NvOCZYKvflsSGQQCgoKYGtrW6/3b73532ljY4MLFy7UOrZ8+XLs378fW7ZsgZeX132vUygUUCgU2ohIRPdRUFaJPRfTsevcbRy7kVWrm8nJWoG+bZ3Q3bu6haSlvQUkEu22jkilErR0sEBLBwsM83UFAChVAq6mF+J0QjZOxufg6I0sZBWVY3P0LWyOvgUzEykGd3TBmIAW6NvOEQq57BHPQkTaJGpxU1RUhBs3btR8nZCQgNjYWNjb26Nly5aYP38+UlNTsW7dOkilUvj6+ta63tnZGWZmZnWOE5G4VCoBJ+Kz8dupZERevoOKqn/HwPi1sMWgjs4Y2MEZvm662dUjk0rg41Y9/mZKLy9UVKlwJjEH+69k4J/Ld5CUXYI/zqfhj/NpsDGTI9TfDc90awnfFrZiRyciiFzcREVFYcCAATVfh4WFAQCef/55/PTTT0hLS0NycrJY8YiogXKKK7AlOgW/nUpGYnZJzfE2zlYY4++GUH83tHK0FDGhekzlUvRq44hebRzx/siOuJCaj12xt7H7/G3cKSjH+lPJWH8qGf4edpjUrSVG+bvCwlRvGsaJDI7OjLnRlob02RFR/dzMLMLKQ/HYHpNaM1PJSiHHE11aYEJXD/i42mi9u0kblCoBp+Kz8dvpZOy5lF4zINrOwgSTe3hics9WcLRitziRJjTk/ZvFDRGpLSY5F98fuom9cXdw7zdJZ3dbTOzWEqH+bkY16DarqBxbom/ht1PJSM6pbrVSyKV4KsgdL/Tx1ssWKyJdwuLmIVjcEDVedFIOvthzDSfis2uODe7ogpf7eyPI017EZOJTqgTsvZSO7w/H41xKHgBAIgHGBrTA3MFt4enAIodIHSxuHoLFDZH6LqcV4Is9V7HvSgYAwEQmwdiAFnipnzfaOFuLnE63CIKA0wk5+OFwPPbf/XnJpRKMC/bA7EFt4GprLnJCIv3C4uYhWNwQNVxKTgk+33MVu8/fhiBUzyYaH+yO1wa2hZsd36Qf5cKtfHyx9yoOXcsEUD1AeXIPT7w2qC1szU1ETkekH1jcPASLG6L6K6mowoqDN/HD4fia6dyh/m54fXBbeDtZiZxO/5xJzMHne67idEIOAMDB0hRvDm2P8cEe3NyT6BFY3DwEixuiRxMEAbvPpyE84jLS8ssAAL3aOODdER3RyY1ruTSGIAg4dC0TC/+8jBsZRQAAH1cbfBjqg+7eDiKnI9JdLG4egsUN0cPdzCzC/G0XaloX3JuZ4/2RPhjaycUgp3OLpVKpwi8nkvDlP9dqtnp4oksL/N9IHzSzNBU5HZHuYXHzECxuiO6vUqnCD4du4pt9N1ChVMHMRIpZ/dvghb7eMDPh9gJNJbuoHEsir2HD6WQIAmBvaYoPQ30w2t+NxSTRf2Fx8xAsbojqOn8rD29vOY8r6YUAgH7tnPCfx33h3sxC5GTG42xyLt7Zeh7X7lR3VfVr54SFY33hYc+/AyKAxc1Dsbgh+ldFlQpf/nMNPxy6CZUANLMwwQehPhgb0IKtBiKoqKpuPft2f3XrmaWpDB+O7oRxQe78+yCjx+LmIVjcEFW7kVGIORtjcel2AQBgtL8bPgz1gQO3CxDdzcwizNtyHlFJuQCAoZ1csOhxP/7dkFFjcfMQLG7I2AmCgF9OJuE/f15GeZUKdhYmCH/cD8P9XMWORv9FqRLww+Gb+DLyGiqVAhytFPj8qc4Y0MFZ7GhEomBx8xAsbsiY5RRX4I3fY3HgavVicn3aOuKLcf5wsTETORk9yMXUfLy+KRbX704bn9qrFeYP7whTuVTkZETaxeLmIVjckLE6m5yLWevPIi2/DKZyKd4Z1gFTeraClIvH6byySiUW/30Fa48lAgD8Pezw3cRADvgmo8Li5iFY3JCxEQQBa48lYlHEZVSpBHg5WmL5pC7o6Mp///pm76V0vLn5HArKqmBrboKl4/0xqKOL2LGItKIh799s1yQyYIVllXhl/Vl8/EccqlQCRvq5YtervVjY6KkhnZrjz9l90NndFvmllZj+cxQW/30FSpVRfUYleiQWN0QGKjGrGI8vP46/LqbDRCbBR6E+WDYxENZm3KhRn3nYW2DzzBBM6dkKALDi4E1M//kM8ksrxQ1GpENY3BAZoGM3sjDmu2O4kVGE5jZm+P2lEEzp5cW1UgyEQi7DR6M74eunA6CQS3HwaiYeX34M8ZlFYkcj0gksbogMiCAI+OlYAiavOY380koEeNhh16u9ENiymdjRqAmMCWiBLTN7wtXWDPGZxRjz3TEcvJohdiwi0bG4ITIQlUoV3t1+ER/tjoNSJeCJwBbY+GIPOHOat0Hzc7fFrld7I8izGQrLqjDtpzNYeyxB7FhEomJxQ2QAisurMOPnKGw4nQyJBHh3RAcsGe/PDS+NhJO1Ar+90B0Tgj2gEoAFu+Ow8I84qDjQmIwUixsiPZdRWIYJK0/g0LVMmJlIseq5YLzYtzXH1xgZhVyGT5/0w9vD2gMAfjyagFc3nEVZpVLkZETax+KGSI/dzCzCE8uP42JqAewtTbHxxRAM9uG6J8ZKIpHglf5t8PXTATCRSRBxIR3P/ngKucUVYkcj0ioWN0R6KjopB0+uOI5buaXwdLDAtpd7IsDDTuxYpAPGBLTAumndYWMmR1RSLp78/jhu55WKHYtIa1jcEOmhg1czMHHVKeSVVMLfww7bXu6JVo6WYsciHRLS2gFbX+6JFnbmiM8sxrjvTyAhq1jsWERaweKGSM/8fTENL6yLQnmVCgPaO2HDC93hYKUQOxbpoLYu1tg8MwTejpZIzSvFuO9P4HJagdixiJocixsiPbI95hZm/RaDSmX1Vgo/PBcMC1O52LFIh7nZmeP3mSHwcbVBVlE5JvxwAtFJuWLHImpSLG6I9MT6U0kI+/0clCoB44Lc8c0zgTCV878wPZqjlQIbXuyBYM9mKCirwrM/nsLR61lixyJqMvzNSKQHVh2Ox3vbL0IQgCk9W2Hxk50hk3KqN9WfrbkJ1k3vhj5tHVFaqcS0n8/g8LVMsWMRNQkWN0Q6btXhePwn4jIA4JX+rfFhqA+kLGxIDRamcvz4fDAe83FBRZUKL6yLwpHrLHDI8LC4IdJha44m1BQ2cwe3xdvDOnBxPmoUhVyG7yZ2wWM+LiivUmHGz1HsoiKDw+KGSEetO5GIj/+IAwDMHtgGcwe3EzkRGQpTuRTfTeyCwR2dUV6lwvSfz7DAIYPC4oZIB/16Mgkf7LwEoLor6vXHWNiQZpnKpfhuUhcM6vBvgXPsBgscMgwsboh0zMbTyXh/x0UAwEt9vfHW0PbsiqImoZDLsPzZLhh4t8CZ8XMUopNyxI5F1Ggsboh0yO5ztzF/+wUAwPTeXnhnOMfYUNNSyGVY8WwX9G3nhNJKJaauPYO421zoj/QbixsiHXHoWibCfo+FIACTurfE+yM7srAhrVDIZfj+2S416+BMXnOKWzWQXmNxQ6QDopNyMfOXaFQqBYzq7IqPx/iysCGtsjCVY/WUrndXMq7Asz+e4mabpLdELW4OHz6M0NBQuLm5QSKRYMeOHQ89f9u2bXjsscfg5OQEGxsbhISEYM+ePdoJS9RErqYXYtpPZ1BaqUTfdk5YOj6AC/SRKGzNTfDztG7wursX1bOrTyG7qFzsWEQNJmpxU1xcDH9/fyxbtqxe5x8+fBiPPfYYIiIiEB0djQEDBiA0NBQxMTFNnJSoaaTklOC51aeQX1qJLi3t8P2zXbilAonKyVqBX2d0h5utGeIzizFl7RkUl1eJHYuoQSSCIAhihwAAiUSC7du3Y+zYsQ26rlOnTpgwYQI++OCDep1fUFAAW1tb5Ofnw8bGRo2kRJqRU1yBJ5YfQ2J2Cdq7WGPTSz1gZ2EqdiwiAMDNzCKM+/4EcoorMKC9E1ZNDoZcxsKbxNOQ92+9/peqUqlQWFgIe3v7B55TXl6OgoKCWg8isZVVKjHj5zNIzC6BezNzrJvejYUN6ZTWTlb48flgmJlIceBqJv5v50XoyGdhokfS6+JmyZIlKC4uxvjx4x94Tnh4OGxtbWseHh4eWkxIVJdKJeD1TbE4m5wHGzM5fpraFS42ZmLHIqqjS8tm+ObpQEglwIbTKfjuwA2xIxHVi94WNxs2bMBHH32ETZs2wdnZ+YHnzZ8/H/n5+TWPlJQULaYkqmtRxGX8dTEdpjIpVk4ORhtna7EjET3QkE7N8dHoTgCAL/Zew9boWyInIno0udgB1LFp0yZMnz4dmzdvxuDBgx96rkKhgEKh0FIyoof7+XgifjyaAAD4fFxn9PB2EDkR0aNNDmmF1NxS/HA4HvO2noeLjRl6t3UUOxbRA+ldy82GDRswZcoU/Pbbbxg5cqTYcYjqLTLuDhbsrt4v6q2h7TEmoIXIiYjqb96wDgj1d0OVSsDL66NxI6NI7EhEDyRqcVNUVITY2FjExsYCABISEhAbG4vk5GQA1V1KkydPrjl/w4YNmDx5MpYsWYIePXogPT0d6enpyM/PFyM+Ub1dup2P2RtioBKAZ7p54JX+rcWORNQgUqkEX4zrjK6tmqGwrAozfj6DvJIKsWMR3ZeoxU1UVBQCAwMRGBgIAAgLC0NgYGDNtO60tLSaQgcAfvjhB1RVVWHWrFlwdXWtecyZM0eU/ET1kVVUjhfXRaO0Uok+bR3xCVcfJj1VvQ9VEFrYmSMxuwSvrD+LSqVK7FhEdejMOjfawnVuSJvKq5SYtOoUopJy4eVoiR2v9IKthYnYsYga5Up6AZ5cfhzFFUpM6t4SC8eyYKemZzTr3BDpMkEQ8H87LiIqKRfWZnKsmhzMwoYMQofmNvj66UBIJMD6U8lYdyJJ7EhEtbC4IWoia48l4veoW5BKgG+fCUQbZyuxIxFpzGAfF8wb1gEA8PEfcTh8LVPkRET/YnFD1AQOX8vEwj/jAADvjuiI/u0fvBYTkb56qa83nuziDqVKwGsbYpCcXSJ2JCIALG6INC45uwSv/nYWKgF4Ksgd03t7iR2JqElIJBIsesIXAR52yC+txEu/RqO0Qil2LCIWN0SaVFapxMxfo1FQVoUADzv853EOtCTDVj2DqgscrUxxOa0A87ed5x5UJDoWN0QaIggC3tt+EXFpBXCwNMWKZ7tAIZeJHYuoybnammPZxC6QSSXYEXsbPx9PFDsSGTkWN0Qa8tvpZGw9++8AYldbc7EjEWlND28HvDuiIwBg4Z+XcTohR+REZMxY3BBpQGxKHhbsqh5A/NbQDujZhvvukPGZ1qsVRt/douGV9Wdxp6BM7EhkpFjcEDVSdlE5Xvk1GhVKFYZ2csHMft5iRyIShUQiwadP+qFDc2tkFZVjFlcwJpGwuCFqBKVKwJyNsbidXwZvR0t8Ps6fA4jJqFmYyvH9s0GwVsgRlZSLpZHXxI5ERojFDVEjfLPvOo7eyIK5iQzfPxcEGzOuQEzUytESi5/qDABYcfAmDlzNEDkRGRsWN0RqOnEzG9/uvw4AWPSEL9q5WIuciEh3jPBzxeQQTwBA2KZYpOWXipyIjAmLGyI1ZBeVY87GGKgEYFyQOx4PdBc7EpHOeXdER/i2sEFuSSVmb4hBFcffkJawuCFqIJVKwBubzyGjsBxtnK2wYEwnsSMR6SQzExm+m9gF1go5ziRy/A1pD4sbogZadSQeB69mQiGXYtnEQFiYysWORKSzPB0s8emT1eNvlh+8iYMcf0Na0ODfyoIg4NChQzhy5AgSExNRUlICJycnBAYGYvDgwfDw8GiKnEQ64WxyLj7fcxUA8EGoDzo0txE5EZHuG9nZFSfjPfHLySSE/X4Of83pAxcbM7FjkQGrd8tNaWkpFi1aBA8PDwwfPhx//vkn8vLyIJPJcOPGDXz44Yfw8vLCiBEjcPLkyabMTCSK/NK74wZUAkZ2dsXEbi3FjkSkN94b2RE+rjbIKa7Am5vPQaXi/lPUdOpd3LRr1w5nz57F999/j4KCApw8eRJbt27Fr7/+ioiICCQnJ+PmzZvo06cPJkyYgFWrVjVlbiKtEgQB726/gFu5pWhpb4HwJ/y4ng1RA5iZyPDNMwEwM5HiyPUsrDmWIHYkMmASoZ7bt168eBG+vr71umlFRQWSkpLQtm3bRoVrCgUFBbC1tUV+fj5sbNilQPWz7ewthP1+DnKpBFte7okADzuxIxHppV9PJuH9HRdhKpNix6xe8HHj72Gqn4a8f9e75aa+hQ0AmJqa6mRhQ6SOlJwSfLDzEgBg7uC2LGyIGmFS95YY3NEZFUoV5m6KQVmlUuxIZIDUmi2lVNb+x3jq1CkcPnwYlZWVGglFpCuUKgFhv8eiqLwKwZ7N8HL/NmJHItJrEokEi5/sDEcrBa7dKcKnf10ROxIZoAYVN2lpaejduzcUCgX69euH3NxcjBo1CiEhIejfvz98fX2RlpbWVFmJtO6HwzdxJjEXlqYyfDkhADIpx9kQNZaDlQJfjKueHv7T8UQcuMLp4aRZDSpu5s2bB0EQsH37dri6umLUqFEoKChASkoKkpKS4OLigv/85z9NlZVIqy6m5mPp3upFxz4a3Qke9hYiJyIyHP3bO2Nqr1YAgLe2nENWUbm4gcigNGidm3/++Qfbtm1Djx490KtXLzg6OiIyMhItWrQAACxYsAAzZsxokqBE2lRaocScjdXTvof7NsdTQdxegUjT5g3rgOM3snH1TiHe2XoBqyYHcRYiaUSDWm5yc3NrChl7e3tYWFjA09Oz5vutW7dmtxQZhE//uoybmcVwtlZg0eOc9k3UFMxMZPj6mQCYyCT45/IdbDubKnYkMhANKm6cnZ1rFS+vvvoq7O3ta77Ozc2FpaWl5tIRieDo9Sz8fCIJAPDFOH80szQVORGR4erQ3AZzB7cDAHy0+xJ3DyeNaFBxExAQgBMnTtR8/emnn9Yqbo4ePYrOnTtrLh2RlhWWVWLe1vMAgMkhnujbzknkRESG76W+3vD3sENhWRXmbb2Aei6/RvRADRpzs3Pnzod+v1u3bujXr1+jAhGJaVHEFaTmlcLD3hzzhnUQOw6RUZDLpFgyzh8jvzmCw9cyseF0CiZ25/YmpD6N7gretWvXBi32R6RLjlzPxIbTyQCAz570h6WCu30TaUsbZyu8NbQ9AOA/f8YhJadE5ESkz9T+7Z2amopjx44hIyMDKpWq1vdmz57d6GBE2lRYVol5W6q7o54P8URIaweRExEZn6m9vLDnUjrOJObirS3n8NuMHpBybSlSg1rFzdq1azFz5kyYmprCwcGh1kwSiUTC4ob0zn/+vIzb+WVoaW+BecPZHUUkBplUgi/G+WPYV0dwMj4H604kYkovL7FjkR5Sq1vqgw8+wAcffID8/HwkJiYiISGh5hEfH6/pjERN6tC1TGw8kwIA+PypzrAwZXcUkVg8HSzx7ojqDxif/n0FydnsnqKGU6u4KSkpwdNPPw2pVKNDdoi0rqCsEu/cnR01pWcrdPdmdxSR2CZ190QPb3uUVarw7nbOnqKGU6s6mT59OjZv3qzpLERaFx5xBWn5ZfB0sMDbw9qLHYeIAEilEnz6RGco5FIcvZGFzdG3xI5EekYiqFESK5VKjBo1CqWlpfDz84OJiUmt7y9dulRjATWtoKAAtra2yM/Ph42NjdhxSESn4rMxYeVJAMDGF3ugB1ttiHTKD4duIvyvK7Axk+OfN/rB2dpM7Egkooa8f6s1uGDRokXYs2cP2rev/qT7vwOKiXRdWaUS87dfAAA8082DhQ2RDpre2wt/nE/DhdR8fLjzElY8GyR2JNITahU3S5cuxZo1azBlyhQNxyHSjuUHbiA+sxhO1gq8M7yj2HGI6D7kMik+fdIPo5cdw18X0/H3xXQM820udizSA2qNuVEoFOjVq1ejn/zw4cMIDQ2Fm5sbJBIJduzY8chrDh06hKCgIJiZmcHb2xvff/99o3OQcbl2pxArDt0EACwY3Qm25iaPuIKIxNLJzRYv9fUGAHyw8yLySytFTkT6QK3iZs6cOfj2228b/eTFxcXw9/fHsmXL6nV+QkICRowYgT59+iAmJgbvvvsuZs+eja1btzY6CxkHlUrA/G0XUKkUMLijC4bzUyCRzps9qC28HS2RUViO8IjLYschPaDWgOLHH38c+/fvh4ODAzp16lRnQPG2bdsaHkQiwfbt2zF27NgHnjNv3jzs2rULly//+4975syZOHfuXK0NPR+GA4qN2y8nEvF/Oy/B0lSGf97oB1dbc7EjEVE9nE7Iwfgfqn/P//ZCd/Rs7ShyItK2hrx/q9VyY2dnhyeeeAL9+vWDo6MjbG1taz2ayokTJzBkyJBax4YOHYqoqChUVt6/qbK8vBwFBQW1HmSc0vJLsfjvqwCAt4d1YGFDpEe6edlj0t3NNN/fcRHlVUqRE5Eua9CA4qKiIlhZWWHt2rVNleeh0tPT4eLiUuuYi4sLqqqqkJWVBVdX1zrXhIeHY8GCBdqKSDpKEAR8sPMSisqrENjSDs/28BQ7EhE10NvDOmDPpTuIzyzGqsPxeHVgW7EjkY5qUMuNo6Mjhg8fjhUrVuD27dtNlemh/neq+b1etQdNQZ8/fz7y8/NrHikpKU2ekXTPnkt3EBl3Byay6sXBZNyMj0jv2Jqb4P9GVc9u/Hb/DSRlF4uciHRVg4qbq1evYsSIEdi6dSu8vLzQtWtXfPLJJzh//nxT5aulefPmSE9Pr3UsIyMDcrkcDg73X6dEoVDAxsam1oOMS3F5FT7efQkA8FLf1mjf3FrkRESkrtH+bujVxgHlVSp8sPMSt2ag+2pQcePp6YnXXnsN//zzDzIyMhAWFoZLly6hb9++8PLywpw5c7B//34olU3TFxoSEoLIyMhax/bu3Yvg4OA6g5qJ7vlm/3Xczi+DezNzzBrQRuw4RNQIEokEn4zxhalMikPXMhFxIf3RF5HRUXvnS1tbWzzzzDPYuHEjsrKy8MMPP0ClUmHq1KlwcnLC+vXrH3mPoqIixMbGIjY2FkD1VO/Y2FgkJycDqO5Smjx5cs35M2fORFJSEsLCwnD58mWsWbMGq1evxptvvqnuyyADd/1OIVYfSQBQvaaNualM5ERE1FjeTlZ4uX9rAMCC3ZdQWMa1b6g2jWzrLZfLMWTIEHz77bdISkrCvn370K5du0deFxUVhcDAQAQGBgIAwsLCEBgYiA8++AAAkJaWVlPoAICXlxciIiJw8OBBBAQE4JNPPsE333yDJ598UhMvgwyMIAj4v50XUaWqXtNmUEeXR19ERHrh5f6t0crBAhmF5Viy95rYcUjHNGidm/qMrZFIJPDz82tUqKbEdW6Mx46YVMzdFAszEykiX+8HD3sLsSMRkQYduZ6J51afhlQC7Hq1N3xbNN1SJCS+Jts4MyAgABKJpM4Mpf+ujyQSSZONuSGqr4KySiz8s3qxx9cGtmVhQ2SA+rR1wmh/N+w6dxvvbb+A7a/0gpQzIQkNLG4SEhJq/iwIAnx9fREREQFPT64ZQrpl6d5ryCoqh7ejJWb08RI7DhE1kfdHdsT+Kxk4dysfW6JvYXxXD7EjkQ5oUHHzv0WMRCKBu7s7ixvSKRdT87HuRCIA4OMxvlDIOYiYyFA525hhzqC2+E/EZSz++wqG+jbnZrikmQHFRLpCpaoeRKwSgFGdXdG7LfefITJ0z/dshdZOlsgursBX/3BwMbG4IQOz9ewtxCTnwdJUhvdH+ogdh4i0wFQuxUejOwEA1p1IwtX0QpETkdgaXdw8aNsDIm0rLKus2Rhz9qC2aG5rJnIiItKWPm2dMLSTC5QqAR/t4srFxq5BY24CAwNrFTOlpaUIDQ2FqalprfPOnj2rmXREDbDswA1kFZXDy9ESU3txEDGRsXl/pA8OXs3Eifhs/HUxHSP86m6mTMahQcXN2LFja309ZswYTWYhUltCVjHWHK2ezff+yI4wlbPHlcjYeNhbYGa/1vh633X858/LGNDemauSG6kGFTcffvhhU+UgapT//BmHSqWAfu2cMLCDs9hxiEgkM/u1xpboW0jNK8WKgzcQNqS92JFIBPx4S3rv0LVM/HM5A3KpBP83qiPHgREZMXNTGd4f2REA8P3heCRnl4iciMRQ7+Jm2LBhOH78+CPPKywsxOLFi/Hdd981KhhRfVQqVfjkjzgAwOSQVmjjbC1yIiIS2zDf5ujVxgEVVSr8JyJO7Dgkgnp3S40bNw7jx4+HtbU1Ro8ejeDgYLi5ucHMzAy5ubmIi4vD0aNHERERgVGjRuHzzz9vytxEAIBfTiThRkYR7C1NMWdwW7HjEJEOkEgk+DC0E4Z/fQR7Lt3Byfhs9PB2EDsWaVGDNs6sqKjAli1bsGnTJhw5cgR5eXnVN5FI4OPjg6FDh+KFF15A+/a628fJjTMNR3ZROfp/cRCFZVVY9LgfJnZvKXYkItIh7++4gF9PJsO3hQ12zerNfaf0XEPevxtU3Pyv/Px8lJaWwsHBASYm+rHcNYsbw/He9gtYfyoZPq422P1ab8j4i4uI/kt2UTn6f34QheVV+GKcP54Kchc7EjVCQ96/GzWg2NbWFs2bN9ebwoYMx5X0Amw4nQwA+DDUh4UNEdXhYKXAqwPbAAA+33MFJRVVIicibeFsKdJL4RFXoBKA4b7N0Z196UT0AFN6tYKHvTnuFJTjh0PxYschLWFxQ3rn8LVMHLqWCROZBPOGdRA7DhHpMIVchvnDq6eG/3D4JtLzy0RORNrA4ob0ilIlYFHEZQDAcz1aoZWjpciJiEjXDfdtjmDPZiirVOGzPVfEjkNawOKG9MrWs7dwJb0QNmZyvHa3L52I6GEkEgn+b5QPAGDb2VScv5UnbiBqco0qbioqKnDr1i0kJyfXehA1hZKKKizZW73r92sD26KZpekjriAiqubvYYfHA1sAABb+eZm7hhs4tYqb69evo0+fPjA3N4enpye8vLzg5eWFVq1awcuLuzFT0/jxSALuFJTDvZk5Jvf0FDsOEemZt4a2h0IuxemEHOy5lC52HGpCDdo4854pU6ZALpfjjz/+gKurK/fyoSaXUViG7w/dBADMG9YBCjl3+iWihnGzM8eLfb3x7f4b+OzvqxjU0QUmMo7OMERqFTexsbGIjo5Ghw6cqULa8WXkdZRUKBHgYYdRnV3FjkNEeurFvt5YfyoZ8VnF+D0qBZO6sxXYEKlVsvr4+CArK0vTWYju69qdQmw6Uz2W672R3PWbiNRnbWaC2XcnI3z1z3Uu7Geg1CpuFi9ejLfffhsHDx5EdnY2CgoKaj2INCk84jJUAjCsU3N0bWUvdhwi0nMTu3vCw94cmYXlWH0kQew41ATU2ltKKq2uif73E7QgCJBIJFAqlZpJ1wS4t5R+OXEzG8+sOgm5VILIsH7w4ro2RKQBO2NTMWdjLKwUchx6qz8crBRiR6JHaMj7t1pjbg4cOKBWMKKGEAShZsGtp7t5sLAhIo0J7eyGVUficTG1AMsO3MCHoZ3EjkQapFZx069fP03nIKojMu4OYpLzYGYixeyBbcWOQ0QGRCqV4J1hHfHs6lP49WQSpvb0QksHC7FjkYaoVdwAQF5eHlavXo3Lly9DIpHAx8cH06ZNg62trSbzkZFSqgR8vqd6wb5pvbzgbGMmciIiMjS92zqiT1tHHLmehSWRV/H104FiRyINUWtAcVRUFFq3bo0vv/wSOTk5yMrKwtKlS9G6dWucPXtW0xnJCG2PScX1jCLYmpvgpX6txY5DRAbq3ua7O2Nv42JqvshpSFPUKm5ef/11jB49GomJidi2bRu2b9+OhIQEjBo1CnPnztVwRDI25VVKfBl5DQDwSv/WsDU3ETkRERkq3xa2GBPgBgBY/Dc31TQUarfczJs3D3L5v71acrkcb7/9NqKiojQWjozT+pPJSM0rhYuNAs/3bCV2HCIycG8OaQ8TmQRHrmfh6HWu4WYI1CpubGxs7rtBZkpKCqytrRsdioxXUXkVlh24AQCYO7gdzEy4zQIRNS0Pe4ualYo/33uVm2oaALWKmwkTJmD69OnYtGkTUlJScOvWLWzcuBEzZszAM888o+mMZER+PBKPnOIKeDtaYlyQu9hxiMhIzBrQBuYmMpxLycO+yxlix6FGUmu21BdffAGJRILJkyejqqp66WoTExO8/PLL+PTTTzUakIxHVlE5Vh2OBwC8MaQ95NzQjoi0xMlagSm9WmHFwZv4Yu9VDOzgDKmUW73oK7XePUxNTfH1118jNzcXsbGxiImJQU5ODr788ksoFFzlkdTz3YEbKK5Qwq+FLUb4NRc7DhEZmZf6esNaIceV9EL8eSFN7DjUCI36aGxhYQE/Pz907twZFhZc/IjUl5ZfivUnq8dxvT2sPTfHJCKts7MwxQt9vQEAX0ZeQ5VSJXIiUle9i5snnniiZlPMJ5544qGPhli+fDm8vLxgZmaGoKAgHDly5KHnr1+/Hv7+/rCwsICrqyumTp2K7OzsBj0n6Z5l+2+gQqlCdy979G7jKHYcIjJSU3u1QjMLE8RnFWNbTKrYcUhN9S5ubG1taz5N29jYwNbW9oGP+tq0aRPmzp2L9957DzExMejTpw+GDx9+35lYAHD06FFMnjwZ06dPx6VLl7B582acOXMGM2bMqPdzku5JySnB71EpAICwx9qx1YaIRGNtZoKX+1cvHPr1P9dRUcXWG32k1q7gmtK9e3d06dIFK1asqDnWsWNHjB07FuHh4XXO/+KLL7BixQrcvHmz5ti3336Lzz77DCkpKfV6Tu4KrnvmbTmPTVEp6N3GEb/O6C52HCIycqUVSvT7/AAyCsvxyZhOeC6kldiRCA17/1ZrzM3AgQORl5d33yceOHBgve5RUVGB6OhoDBkypNbxIUOG4Pjx4/e9pmfPnrh16xYiIiIgCALu3LmDLVu2YOTIkQ98nvLychQUFNR6kO5Iyi7GlrO3AACvP9ZO5DRERIC5qQyvDmwDAPh2/w2UVihFTkQNpVZxc/DgQVRUVNQ5XlZW9sgxM/dkZWVBqVTCxcWl1nEXFxekp6ff95qePXti/fr1mDBhAkxNTdG8eXPY2dnh22+/feDzhIeH1+oy8/DwqFc+0o6v912HUiWgf3snBHk2EzsOEREA4OmuLdHCzhwZheX45WSi2HGogRpU3Jw/fx7nz58HAMTFxdV8ff78ecTExGD16tVo0aJFgwL87/gKQRAeOOYiLi4Os2fPxgcffIDo6Gj8/fffSEhIwMyZMx94//nz5yM/P7/mUd/uK2p6NzOLsOPugL3XB7PVhoh0h6lcijmD2wIAVhy8iaLyKpETUUM0aBG/gIAASCQSSCSS+3Y/mZubP7QV5b85OjpCJpPVaaXJyMio05pzT3h4OHr16oW33noLANC5c2dYWlqiT58+WLhwIVxdXetco1AouPaOjvr6n+tQCcDgji7w97ATOw4RUS1PBLbA9wdvIj6rGD8fT8SsAW3EjkT11KCWm4SEBNy8eROCIOD06dNISEioeaSmpqKgoADTpk2r171MTU0RFBSEyMjIWscjIyPRs2fP+15TUlICqbR2ZJmseu8h7gWiX67dKcTu87cBAK8/1lbkNEREdcllUrw2qLqgWXUknq03eqRBLTeentUbi6lUmpkaFxYWhueeew7BwcEICQnBypUrkZycXNPNNH/+fKSmpmLdunUAgNDQULzwwgtYsWIFhg4dirS0NMydOxfdunWDm5ubRjKRdnz1zzUIAjDctzk6udV/+QAiIm0K7eyGb/fdQHxWMdadSMQr/dl6ow/U2lvqnri4OCQnJ9cZXDx69Oh6XT9hwgRkZ2fj448/RlpaGnx9fREREVFTRKWlpdVa82bKlCkoLCzEsmXL8MYbb8DOzg4DBw7E4sWLG/MySMvibhcg4kI6JJLqnb+JiHSVXCbFqwPbIOz3c1h1OB7Ph7SCpaJRb52kBWqtcxMfH4/HH38cFy5cgEQiqekSujcQWKnU3WlzXOdGfC+si0Jk3B2E+rvh22cCxY5DRPRQVUoVBi89hMTsEswb1qFmkT/SriZf52bOnDnw8vLCnTt3YGFhgUuXLuHw4cMIDg7GwYMH1bklGYmLqfmIjLsDqQSYM4hjbYhI98llUrw2sPr31crDN1HMsTc6T63i5sSJE/j444/h5OQEqVQKqVSK3r17Izw8HLNnz9Z0RjIg3+6/DgAI9XdDG2crkdMQEdXPmAA3tHKwQG5JJX45mSR2HHoEtYobpVIJK6vqNyZHR0fcvl0968XT0xNXr17VXDoyKFfSC7Dn0h1IJMBrAzkoj4j0R/XYm3utN/FsvdFxahU3vr6+NYv5de/eHZ999hmOHTuGjz/+GN7e3hoNSIbj2/03AAAjfF3Rxtla5DRERA0zNsANng4WyCmuwK9svdFpahU377//fs108IULFyIpKQl9+vRBREQEvvnmG40GJMNwI6MQERfSAKBmzxYiIn0il0nx6t2F/FYejkdJBVtvdJVa89mGDh1a82dvb2/ExcUhJycHzZo1e+DWCWTcvjtwE4IAPObjgo6unKVGRPrp8cAW+Hb/DSTnlODXk0l4sS9nTumiBrfcVFVVQS6X4+LFi7WO29vbs7Ch+0rMKsbO2Oo9pGYP5AwpItJfbL3RDw0ubuRyOTw9PXV6LRvSLcsP3oBKAAa0d4KfO1cjJiL99niXFvCwN0dWUQXWn0x+9AWkdWqPuZk/fz5ycnI0nYcMTEpOCbadrW61eY3r2hCRATCRSTGr/797TpVV8sO+rlFrzM0333yDGzduwM3NDZ6enrC0tKz1/bNnz2okHOm/FYduokoloHcbR3Rp2UzsOEREGvFEF3d8ve860vLLsPXsLUzq7il2JPovahU3Y8aM4fgaeqS0/FJsiboFgOvaEJFhMZVL8WJfbyzYHYfvD93EhGAPyGVqdYZQE1CruPnoo480HIMM0Q+H4lGhVKG7lz26ezuIHYeISKOe7toS3+6/gZScUuw+fxuPB7qLHYnuUqvM9Pb2RnZ2dp3jeXl5XMSPAAAZhWXYcLp6oN1sjrUhIgNkbirD9N5eAIDlB25CpWrwPtTURNQqbhITE+87W6q8vBy3bt1qdCjSf6uPJKC8SoUuLe3QszVbbYjIMD0X4glrhRzXM4oQefmO2HHorgZ1S+3atavmz3v27IGt7b/TepVKJfbt2wcvLy/NpSO9lF9SWbM0+awBbTg+i4gMlo2ZCSb39MR3B25i+YEbGOLjwt95OqBBxc3YsWMBABKJBM8//3yt75mYmKBVq1ZYsmSJxsKRfvrlZCKKK5To0NwaAzs4ix2HiKhJTevlhdVHE3DuVj6O3shCn7ZOYkcyeg3qllKpVFCpVGjZsiUyMjJqvlapVCgvL8fVq1cxatSopspKeqC0Qom1xxIBAC/3b81PMERk8BysFHimW0sAwHcHboichgA1x9wkJCTA0dFR01nIAGyOTkF2cQXcm5ljpJ+r2HGIiLTixb7eMJFJcDI+B9FJXOBWbGpNBQeAffv2Yd++fTUtOP9tzZo1jQ5G+qdSqcIPh+IBAC/19eaaD0RkNFxtzfFkF3dsPJOC5QduYvUUe7EjGTW13n0WLFiAIUOGYN++fcjKykJubm6tBxmnP87fRmpeKRytTDEu2EPsOEREWjWzX2tIJcC+KxmIu10gdhyjplbLzffff4+ffvoJzz33nKbzkJ5SqQSsOHgTADC1lxfMTGQiJyIi0q5WjpYY1dkNu87dxncHb+C7iV3EjmS01Gq5qaioQM+ePTWdhfTY/isZuHanCFYKOZ7twT1WiMg4vTKgNQDgrwtpSM4uETmN8VKruJkxYwZ+++03TWchPSUIApYfrJ4hMKlHS9iam4iciIhIHB2a26B/eyeoBODHo/FixzFaanVLlZWVYeXKlfjnn3/QuXNnmJjUfjNbunSpRsKRfjiTmIuzyXkwlUsxvRcXcSQi4/ZS39Y4eDUTv0elYM6gtnCwUogdyeioVdycP38eAQEBAICLFy/W+h7XNTE+91ptngpyh7ONmchpiIjE1cPbHp3dbXH+Vj7WnUjC64+1EzuS0VGruDlw4ICmc5CeirtdgINXMyGVAC/24aapREQSiQQv9W2NWb+dxboTiZjZrzXMTTnJQpsatRDJjRs3sGfPHpSWlgKoHntBxuX7Q9UzpEb4uaKVo6XIaYiIdMMw3+ZoaW+B3JJKbI5OETuO0VGruMnOzsagQYPQrl07jBgxAmlpaQCqBxq/8cYbGg1IuutWbgn+vFD9dz+zX2uR0xAR6Q6ZVIIX+lSPQVx1JB5VStUjriBNUqu4ef3112FiYoLk5GRYWFjUHJ8wYQL+/vtvjYUj3bb2WCKUKgG92jjAt4Xtoy8gIjIiTwV5wN7SFCk5pfjrYrrYcYyKWsXN3r17sXjxYri7u9c63rZtWyQlJWkkGOm2/NJKbDydDAB4gWNtiIjqMDeVYXJI9bpfKw/Hc+iGFqlV3BQXF9dqsbknKysLCgWnvBmDjaeTUVyhRDsXK/Rr5yR2HCIinTQ5pBXMTKS4kJqPEzezxY5jNNQqbvr27Yt169bVfC2RSKBSqfD5559jwIABGgtHuqmiSoW1xxIBADP6eHP6PxHRA9hbmmLC3b32vj/MRf20Ra2p4J9//jn69++PqKgoVFRU4O2338alS5eQk5ODY8eOaToj6Zg/zt9GekEZnKwVGBPgJnYcIiKdNqOPN345mYTD1zIRd7sAPm42YkcyeGq13Pj4+OD8+fPo1q0bHnvsMRQXF+OJJ55ATEwMWrfmrBlDJggCVh1JAABM6dkKCjnXbiAiehgPewuM8HMFUD1zipqeWi03ANC8eXMsWLBAk1lIDxy7kY3LaQWwMJVhUveWYschItILL/VtjT/Op2HXudt4c2h7tLAzFzuSQVOr5Wbt2rXYvHlzneObN2/Gzz//3OhQpLtW3v3UMT7YA3YWpiKnISLSD37utgjxdoBSJWDd8USx4xg8tYqbTz/9FI6OjnWOOzs7Y9GiRY0ORbrpSnoBDl+r3mphGjfIJCJqkBl3F/X77XQyisurRE5j2NQqbpKSkuDlVffNzdPTE8nJyQ261/Lly+Hl5QUzMzMEBQXhyJEjDz2/vLwc7733Hjw9PaFQKNC6dWusWbOmQc9J6vnx7lib4b6uaOlQdykAIiJ6sAHtneHtaInCsipsjuKWDE1JreLG2dkZ58+fr3P83LlzcHBwqPd9Nm3ahLlz5+K9995DTEwM+vTpg+HDhz+0QBo/fjz27duH1atX4+rVq9iwYQM6dOigzsugBrhTUIadsakA/v30QURE9SeVSjC1VysAwNrj1Su8U9NQq7h5+umnMXv2bBw4cABKpRJKpRL79+/HnDlz8PTTT9f7PkuXLsX06dMxY8YMdOzYEV999RU8PDywYsWK+57/999/49ChQ4iIiMDgwYPRqlUrdOvWDT179lTnZVAD/HQ8EZVKAV1bNUNgy2ZixyEi0ktPBrnD1twESdkl+OfyHbHjGCy1ipuFCxeie/fuGDRoEMzNzWFubo4hQ4Zg4MCB9R5zU1FRgejoaAwZMqTW8SFDhuD48eP3vWbXrl0IDg7GZ599hhYtWqBdu3Z48803a3Ylv5/y8nIUFBTUelDDFJdXYf3J6m01uNUCEZH6LEzlmHh3punqowkipzFcak0FNzU1xaZNm/DJJ5/g3LlzMDc3h5+fHzw9Pet9j6ysLCiVSri4uNQ67uLigvT0+28wFh8fj6NHj8LMzAzbt29HVlYWXnnlFeTk5Dxw3E14eDinrDfStrO3UFBWhVYOFhjc0eXRFxAR0QM9H9IKqw7H43RCDi7cyoefOzce1jS1Wm7uadeuHcaNG4dRo0Y1qLD5b/+7dL8gCA9czl+lUkEikWD9+vXo1q0bRowYgaVLl+Knn356YOvN/PnzkZ+fX/NISeEgroZQqYSarRam9vKCVMqtFoiIGqO5rRlGda5e1G/1US7q1xTUarlRKpX46aefsG/fPmRkZEClUtX6/v79+x95D0dHR8hksjqtNBkZGXVac+5xdXVFixYtYGv7b5XbsWNHCIKAW7duoW3btnWuUSgU3MyzEQ5dy0R8VjGsFXI8GeT+6AuIiOiRpvf2xo7Y2/jjfBreGd4RzW3NxI5kUNRquZkzZw7mzJkDpVIJX19f+Pv713rUh6mpKYKCghAZGVnreGRk5AMHCPfq1Qu3b99GUVFRzbFr165BKpXC3Z1vvE1hzbHqPuEJXT1gpVB7QWsiIvovfu626NbKHlUqAetOJIodx+Co9W61ceNG/P777xgxYkSjnjwsLAzPPfccgoODERISgpUrVyI5ORkzZ84EUN2llJqaWrMD+cSJE/HJJ59g6tSpWLBgAbKysvDWW29h2rRpMDfnUtaadv1OIY5cz4JUAjzfs5XYcYiIDMr0Pl44nZiD9aeS8erANrAw5QdITVF7QHGbNm0a/eQTJkxAdnY2Pv74Y6SlpcHX1xcRERE143fS0tJqrXljZWWFyMhIvPbaawgODoaDgwPGjx+PhQsXNjoL1bX27hLhj/m4wMOei/YREWnS4I4uaGlvgeScEmw9m4rneqg3dpXqkgiC0OBVhJYsWYL4+HgsW7bsgYN/dVVBQQFsbW2Rn58PGxtuO/8geSUV6BG+D2WVKmx8sQd6eNd/cUYiIqqftccSsGB3HLwdLfFPWD9O2niIhrx/q9Vyc/ToURw4cAB//fUXOnXqBBMTk1rf37Ztmzq3JR2y4XQKyipV8HG1QXcve7HjEBEZpHHBHlgaeQ3xWcU4cDUDg7jchkaoVdzY2dnh8ccf13QW0hGVSlXNALepvVrpXescEZG+sFLI8Uy3llh5OB4/HU9kcaMhahU3a9eu1XQO0iF/X0xHWn4ZHK1MEervJnYcIiKD9lwPT/x4JB5HrmfhRkYR2jhbiR1J7zVqEb/MzEwcPXoUx44dQ2ZmpqYykcjW3p3+Pam7J8xMZCKnISIybB72FjUtNpwWrhlqFTfFxcWYNm0aXF1d0bdvX/Tp0wdubm6YPn06SkpKNJ2RtCg2JQ9nk/NgIpNgUo+WYschIjIKU+4ut7El+hYKyirFDWMA1CpuwsLCcOjQIezevRt5eXnIy8vDzp07cejQIbzxxhuazkhadK/VJtTfDc7WXDGTiEgberZ2QFtnK5RUKLEl6pbYcfSeWsXN1q1bsXr1agwfPhw2NjawsbHBiBEjsGrVKmzZskXTGUlL0vPL8Of5NADAtF5eIqchIjIeEomkZrHUdScSoVI1eJUW+i9qFTclJSX33f/J2dmZ3VJ6bP2pJFSpBHRt1Qy+LbhLLRGRNj0e2ALWZnIkZpfg0HWOY20MtYqbkJAQfPjhhygrK6s5VlpaigULFiAkJERj4Uh7yquU2HC6ejXoKT3ZakNEpG2WCjnGB3sAAH46lihuGD2n1lTwr7/+GsOGDYO7uzv8/f0hkUgQGxsLMzMz7NmzR9MZSQv+vpiOrKIKuNgoMKQT11kgIhLD5BBPrDmWgEPXMhGfWQRvJ04LV4daLTe+vr64fv06wsPDERAQgM6dO+PTTz/F9evX0alTJ01nJC1YdyIJAPBMt5YwkTVqhQAiIlKTp4MlBrZ3BvDv72VqOLW3IDU3N8cLL7ygySwkkoup+YhOyoVcKsHEbpz+TUQkpud7tsK+KxnYEn0Lbw5tDysFdwtvKLU+ooeHh2PNmjV1jq9ZswaLFy9udCjSrl/ufjoY5tsczjac/k1EJKbebRzh7WSJovIqbI3mtHB1qFXc/PDDD+jQoUOd4506dcL333/f6FCkPXklFdgRmwoANdMQiYhIPFKpBM+HtAIA/Mxp4WpRq7hJT0+Hq6trneNOTk5IS0trdCjSns1Rt1BepUKH5tYI9mwmdhwiIgLwZJA7rBRyxGcW4+iNLLHj6B21ihsPDw8cO3aszvFjx47BzY0bLeoLlUrALyeru6Se78ndv4mIdIWVQo6ngtwBAD8fTxQ3jB5Sa5TSjBkzMHfuXFRWVmLgwIEAgH379uHtt9/m9gt65NC1TCTnlMDaTI4xASxKiYh0yeQQT/x0PBH7r2YgJacEHvYWYkfSG2oVN2+//TZycnLwyiuvoKKiAgBgZmaGefPmYf78+RoNSE3n57u7z44P9oCFKUfjExHpEm8nK/Ru44ijN7Kw4XQy3h5Wd6wr3Z9a3VISiQSLFy9GZmYmTp48iXPnziEnJwcffPCBpvNRE0nMKsaha9XLez/bw1PkNEREdD/P9qhenmPTmRSUVylFTqM/GrVam5WVFbp27QpfX18oFApNZSIt+PVkEgQB6NfOCV6OlmLHISKi+xjc0QUuNgpkF1fg74vpYsfRG1yK1giVVijxe1QKgOo+XSIi0k1ymRTP3F1c9deTXLG4vljcGKGdsakoKKuCh705+t9d5puIiHTT011bQiaV4ExiLq6kF4gdRy+wuDEygiDU7FfybHdPyKSc/k1EpMua25phiE/1hsbrTyaLnEY/sLgxMmeT8xCXVgCFXIrxwR5ixyEionq4N/Fj29lbKCqvEjmN7lO7uPnll1/Qq1cvuLm5ISmpuiXgq6++ws6dOzUWjjRv/anqv6tRnd3QzNJU5DRERFQfPVs7wNvJEsUVSuyISRU7js5Tq7hZsWIFwsLCMGLECOTl5UGprJ6eZmdnh6+++kqT+UiD8koq8Of56u0xJvXg7t9ERPpCIpFgUvfq1pvq2a7cb+ph1Cpuvv32W6xatQrvvfceZDJZzfHg4GBcuHBBY+FIs7aeTa3ZRyrQw07sOERE1ABPdXGHmYkUV9ILEZ2UK3YcnaZWcZOQkIDAwMA6xxUKBYqLixsdijRPEISaLqlJPTy5jxQRkZ6xtTDBaP/qrXI4Lfzh1CpuvLy8EBsbW+f4X3/9BR8fn8ZmoiZwKiEH8ZnFsDCVYSz3kSIi0kv3BhZHXEhHdlG5yGl0l1obCr311luYNWsWysrKIAgCTp8+jQ0bNiA8PBw//vijpjOSBqw/VT19cEyAG6zNTEROQ0RE6ujsbofO7rY4fysfv0fdwsv9W4sdSSepVdxMnToVVVVVePvtt1FSUoKJEyeiRYsW+Prrr/H0009rOiM1UlZROf6+WD2QeGI3rkhMRKTPnu3hibe3nMdvp5PwYl9vrld2H2pPBX/hhReQlJSEjIwMpKenIyUlBdOnT9dkNtKQLdG3UKkU4O9uCz93W7HjEBFRI4R2doONmRwpOaU4fHcDZKqt0Yv4OTo6wtmZS/jrKpVKwIbT1V1SE7tz+jcRkb4zN5XhqaDqRVjvTRSh2urdLRUYGFjvGTZnz55VOxBp1rGbWUjKLoG1Qo5Qfw4kJiIyBBO7e2DNsQTsv5KB9PwyNLc1EzuSTql3cTN27NgmjEFN5be7A4mf6NICFqZqDbEiIiId08bZGt1a2eN0Yg42R6XgtUFtxY6kU+r9bvfhhx82ZQ5qAhkFZdgbdwcAMLE7BxITERmSZ7p74HRiDjaeScErA9pwYPF/4caZBuz3qBQoVQKCPZuhfXNrseMQEZEGDfd1hY2ZHKl5pThynQOL/1u9ixt7e3tkZWUBAJo1awZ7e/sHPhpi+fLl8PLygpmZGYKCgnDkyJF6XXfs2DHI5XIEBAQ06PmMhVIlYMPpFADcR4qIyBCZmcjwRBd3AMDGu7/vqVq9u6W+/PJLWFtXf/rX1OaYmzZtwty5c7F8+XL06tULP/zwA4YPH464uDi0bPngN+T8/HxMnjwZgwYNwp07dzSSxdAcupaB1LxS2FmYYLivq9hxiIioCTzTrSV+Op6Ify7fQUZBGZxtOLAYACSCiFuLdu/eHV26dMGKFStqjnXs2BFjx45FeHj4A697+umn0bZtW8hkMuzYseO+W0E8SEFBAWxtbZGfnw8bG5vGxNdpM34+g38uZ2BGby+8P4pbYhARGaonVxxHdFIu3hraHrMGtBE7TpNpyPu32mNulEoltmzZgk8++QQLFy7E1q1bUVVVVe/rKyoqEB0djSFDhtQ6PmTIEBw/fvyB161duxY3b96s9wDn8vJyFBQU1HoYuvT8Muy/kgEAeIZr2xARGbSnu1avebPpTApUKtHaK3SKWnODL168iDFjxiA9PR3t27cHAFy7dg1OTk7YtWsX/Pz8HnmPrKwsKJVKuLi41Dru4uKC9PT0+15z/fp1vPPOOzhy5Ajk8vpFDw8Px4IFC+p1rqHYEp0ClQB087JHaycrseMQEVETGtXZDR//EYfknBIcv5mN3m0dxY4kOrVabmbMmIFOnTrh1q1bOHv2LM6ePYuUlBR07twZL774YoPu9b8LAwqCcN/FApVKJSZOnIgFCxagXbt29b7//PnzkZ+fX/NISTHsQVcqlYBNUdWv8V41T0REhsvcVIbHA1sAQM2K9MZOrZabc+fOISoqCs2aNas51qxZM/znP/9B165d63UPR0dHyGSyOq00GRkZdVpzAKCwsBBRUVGIiYnBq6++CgBQqVQQBAFyuRx79+7FwIED61ynUCigUCga8vL02on4bKTklMLaTM6BxERERuLpri2x7kQS9salI6uoHI5WxvO+dz9qtdy0b9/+vrOUMjIy0KZN/QYzmZqaIigoCJGRkbWOR0ZGomfPnnXOt7GxwYULFxAbG1vzmDlzJtq3b4/Y2Fh0795dnZdicDaeqW61GRvQAuamMpHTEBGRNvi42cDfww6VSgFbo2+JHUd09W65+e+BuIsWLcLs2bPx0UcfoUePHgCAkydP4uOPP8bixYvr/eRhYWF47rnnEBwcjJCQEKxcuRLJycmYOXMmgOoupdTUVKxbtw5SqRS+vr61rnd2doaZmVmd48Yqt7gCey5Wt4RNYJcUEZFRmdjNA+dS8rDxTApe7Otd7/0gDVG9ixs7O7taPyhBEDB+/PiaY/dmlIeGhkKpVNbrnhMmTEB2djY+/vhjpKWlwdfXFxEREfD0rN4qIC0tDcnJ7D+sr+0xqahQquDbwga+LWzFjkNERFo0qrMbPt4dh4SsYpyMz0FIawexI4mm3uvcHDp0qN437devn9qBmpqhrnMjCAKGfXUEV+8U4pOxvniuB/eSIiIyNu9uv4DfTiVjtL8bvnkmUOw4GtWQ9+96t9zocsFCQGxKHq7eKYSZiRSj/d3EjkNERCKY2K0lfjuVjL8vpiOnuAL2lqZiRxKFWrOlACAvLw+rV6/G5cuXIZFI4OPjg2nTpsHWlt0hYth0dyDxCD9X2JqbiJyGiIjE4NvCFr4tbHAxtQDbY1IxvbeX2JFEodZsqaioKLRu3RpffvklcnJykJWVhaVLl6J169Y4e/aspjPSIxSVV2HXudsAqqcDEhGR8Zpw931gc1QKRNxhSVRqFTevv/46Ro8ejcTERGzbtg3bt29HQkICRo0ahblz52o4Ij3Kn+dvo6RCCW9HS3Rt1ezRFxARkcEa7e8GhVyKK+mFuJCaL3YcUajdcjNv3rxaWyDI5XK8/fbbiIqK0lg4qp97a9tM6Oph1FP/iIgIsDU3wTDf5gCA36MMe1X+B1GruLGxsbnvFO2UlBRYW1s3OhTV39X0QsQk50EuleCJLu5ixyEiIh0wPrh6rbOdsbdRVlm/5VkMiVrFzYQJEzB9+nRs2rQJKSkpuHXrFjZu3IgZM2bgmWee0XRGeoh7A4kHd3SBk7VxL7dNRETVQrwd0MLOHIVlVdhz6f6bURsytWZLffHFF5BIJJg8eTKqqqoAACYmJnj55Zfx6aefajQgPVh5lRLbYqqX2Z7QjSsSExFRNalUgnHB7vjqn+v4PSoFYwJaiB1Jq9RquTE1NcXXX3+N3NxcxMbGIiYmBjk5Ofjyyy+NapNKse29dAd5JZVwtTVD37ZOYschIiId8lSQOyQS4NiNbKTklIgdR6vUKm7usbCwgJ+fHzp37gwLCwtNZaJ6utclNS7IHTIpBxITEdG/3JtZoHcbRwDAZiPbTLNB3VLTpk2r13lr1qxRKwzVX2peKY7dzAIAjAtmlxQREdU1LtgDR65nYUtUCuYMams0H4QbVNz89NNP8PT0RGBgoNEuDKQrtkXfgiAAPbzt4WHPVjMiIqpriI8LbMzkuJ1fhuM3s9DHSIYwNKi4mTlzJjZu3Ij4+HhMmzYNzz77LOzt7ZsqGz2AIAjYcra6iXFcEFttiIjo/sxMZBgb2ALrTiTh96hbRlPcNGjMzfLly5GWloZ58+Zh9+7d8PDwwPjx47Fnzx625GjRmcRcJGWXwNJUhuF+zcWOQ0REOuzemjd7LqUjr6RC5DTa0eABxQqFAs888wwiIyMRFxeHTp064ZVXXoGnpyeKioqaIiP9j813V5wc2dkVFqZq731KRERGoJObDTq62qCiSlWzD6Gha9RsKYlEAolEAkEQoFKpNJWJHqK4vAp/XkgDwIHERET0aBKJBOODq1ewvzfL1tA1uLgpLy/Hhg0b8Nhjj6F9+/a4cOECli1bhuTkZFhZWTVFRvovf11MR0mFEq0cLBDsyU0yiYjo0cYGtICpTIpLtwtw0Qg202xQn8Yrr7yCjRs3omXLlpg6dSo2btwIBweHpspG97Elurrqrl6cyTim9BERUeM0szTFY51c8Of5NGyJvgXfFrZiR2pSEqEBI4GlUilatmyJwMDAh76xbtu2TSPhmkJBQQFsbW2Rn58PGxsbseM0SHJ2Cfp+fqB6xcl5A+FmZy52JCIi0hOHrmXi+TWnYWtugtPvDYJCLhM7UoM05P27QS03kydPZmuBiLbenf7du40jCxsiImqQ3m0c4WprhrT8Muy7nIERfq5iR2oyDV7Ej8ShUgnYcnf57KeC3EVOQ0RE+kYmlWBsYAusOHgTW6NvGXRx06jZUqQ9J+OzkZpXCmszOYZ24to2RETUcE92qf5wfPBaJjILy0VO03RY3OiJe602of5uMDPRr35SIiLSDW2creDvYQelSsDO2FSx4zQZFjd6oLCsEhEXq9e2YZcUERE1xlNdWgAAtp5lcUMiiriQhrJKFVo7WSLQw07sOEREpMdC/d1gKpPicloB4m4XiB2nSbC40QObo+4NJPbgbDUiImoUOwtTDOroDADYdncWrqFhcaPj4jOLEJWUC6kEeOJuUyIREVFj3BtYvCP2NqqUhrd9EosbHbftbp9o33ZOcLExEzkNEREZgn7tneBgaYqsonIcvp4pdhyNY3Gjw1QqAdtjqoube1U2ERFRY5nIpBgTcHdgcbThDSxmcaPDTifmVK9to5DjMR8XseMQEZEBeTKouriJjLuD/JJKkdNoFosbHbb9bpfUCD9Xrm1DREQa1cnNFh2aW6NCqcLu87fFjqNRLG50VFmlEhEXqte2eZwDiYmIqAncWzttq4HNmmJxo6Mi4+6gsLwKLezM0a2VvdhxiIjIAI0OcINMKkFMch5uZhaJHUdjWNzoqHsDiR8PbAGplGvbEBGR5jlbm6FvW0cAhrXmDYsbHZRZWI5D16qn5rFLioiImtKTd7umtp9NhUoliJxGM1jc6KDd525DqRLg72GH1k5WYschIiIDNrijC2zM5LidX4YT8dlix9EIFjc66F6X1BOBbLUhIqKmZWYiwyh/NwDA1mjD6JoSvbhZvnw5vLy8YGZmhqCgIBw5cuSB527btg2PPfYYnJycYGNjg5CQEOzZs0eLaZve9TuFuJCaD7lUgtC7/9iIiIia0r2FYv++lI6SiiqR0zSeqMXNpk2bMHfuXLz33nuIiYlBnz59MHz4cCQnJ9/3/MOHD+Oxxx5DREQEoqOjMWDAAISGhiImJkbLyZvOtrutNv3bO8Pe0lTkNEREZAy6tLSDp4MFSiqUiIy7I3acRpMIgiDa6KHu3bujS5cuWLFiRc2xjh07YuzYsQgPD6/XPTp16oQJEybggw8+qNf5BQUFsLW1RX5+PmxsbNTK3VRUKgG9Fu9HWn4Zlk/qghF+rmJHIiIiI7E08hq+2Xcd/ds74aep3cSOU0dD3r9Fa7mpqKhAdHQ0hgwZUuv4kCFDcPz48XrdQ6VSobCwEPb2D14Hpry8HAUFBbUeuupkfDbS8stgbSbHwA7OYschIiIjMjageijEketZyCwsFzlN44hW3GRlZUGpVMLFpfaeSS4uLkhPT6/XPZYsWYLi4mKMHz/+geeEh4fD1ta25uHh4dGo3E3pXpfUqM5u3G6BiIi0ytvJCv4edlCqBPyh59sxiD6gWCKpvUCdIAh1jt3Phg0b8NFHH2HTpk1wdn5wK8f8+fORn59f80hJSWl05qZQWqHEX3e3W3iCa9sQEZEIHr/berMjlsWNWhwdHSGTyeq00mRkZNRpzflfmzZtwvTp0/H7779j8ODBDz1XoVDAxsam1kMX7Y1LR3GFEh725gj2bCZ2HCIiMkKj/Ku3YziXkod4Pd6OQbTixtTUFEFBQYiMjKx1PDIyEj179nzgdRs2bMCUKVPw22+/YeTIkU0dU2u2nb233YJ7vVquiIiINM3RSoE+d7dj0OfWG1G7pcLCwvDjjz9izZo1uHz5Ml5//XUkJydj5syZAKq7lCZPnlxz/oYNGzB58mQsWbIEPXr0QHp6OtLT05Gfny/WS9CIjIIyHLl+d7sFLtxHREQiuvc+tCMmFSJOqG4UUYubCRMm4KuvvsLHH3+MgIAAHD58GBEREfD09AQApKWl1Vrz5ocffkBVVRVmzZoFV1fXmsecOXPEegkasevcbaiE6nUGvBwtxY5DRERG7DEfF1iYypCcU4KYlDyx46hF1HVuxKCL69yM+vYILqYW4JOxvniuh6fYcYiIyMiFbYrFtphUTA7xxMdjfMWOA0BP1rmhajcyinAxtQByqQQjuWgfERHpgDF3u6Z2n7uNSqVK5DQNx+JGZLtiqwcS923nxO0WiIhIJ/Rq7QBHKwVySypx+Fqm2HEajMWNiARBwM5z1aPRxwRwk0wiItINcpkUo/31d80bFjciOncrH0nZJTA3keExn4ev7UNERKRN92ZN7b2UjsKySpHTNAyLGxHtvNslNaSTCyxM5SKnISIi+pdvCxt4O1mivEqFPZf0a6dwFjciqVKqsPtc9XYL7JIiIiJdI5FI8HjAv2ve6BMWNyI5EZ+NrKJyNLMwQZ+2TmLHISIiqmPM3eLm2M0s3CkoEzlN/bG4EcnOuwO0Rvi5wkTGvwYiItI9LR0sEOzZDIJQPS1cX/BdVQRllUr8fbF6w9Cx3G6BiIh02L01b7brUdcUixsR7L+SgaLyKrSwM0dQS+4ATkREumuUnytMZBJcul2AGxmFYsepFxY3Irg3SyrU3w1SKXcAJyIi3dXM0hR9744N3aUna96wuNGy/NJKHLhSvdojZ0kREZE+CL27oN/u82l6sVM4ixst23MxHRVKFdq7WKOjq25s3ElERPQwj/m4wMxEioSsYlxMLRA7ziOxuNGyneequ6RGs9WGiIj0hKVCjkEdq1fS33VO9wcWs7jRojsFZTh+MxsAavbsICIi0gehnavft/44nwaVSre7pljcaNHuc7chCECQZzN42FuIHYeIiKje+rd3grVCjrT8MkQl5Yod56FY3GjRLu4ATkREesrMRIahvs0B6H7XFIsbLYnPLML5W/mQSSUY6ecqdhwiIqIGuzekIuJCOqqUKpHTPBiLGy2512rTp60jHKwUIqchIiJquJ6tHeBgaYqc4gocuzuGVBexuNECQRBqFj5ilxQREekruUyKEXd7H3R5QT8WN1pw6XYB4rOKoZBL8ZhPc7HjEBERqe3eUiZ7L6WjrFIpcpr7Y3GjBX+cTwMADOzgDCuFXOQ0RERE6gtq2QyutmYoLK/CwauZYse5LxY3TUwQBPxxvrrpLpRr2xARkZ6TSiX/bsdwTje7pljcNLHYlDzcyi2FhakMA9o7ix2HiIio0e7Nmvrn8h0UlVeJnKYuFjdN7F6X1OCOLjA3lYmchoiIqPE6udnA29ES5VUq/BN3R+w4dbC4aUIqlYA/7xY3ozpzbRsiIjIMEokEo+623uzSwa4pFjdNKCopF+kFZbA2k6Nfeyex4xAREWnMva6pw9cykVtcIXKa2ljcNKF7A4mH+DSHQs4uKSIiMhxtnK3g42qDKpWAvy+lix2nFhY3TaRKqULEhbtdUv7skiIiIsNzb9aUri3ox+KmiZxKyEFWUQXsLEzQu42j2HGIiIg0LvTuh/eTCdm4U1Amcpp/sbhpIve6pIb7NoeJjD9mIiIyPO7NLBDk2QyCgJreCl3Ad90mUKlU4a+L1f2Pozpz4T4iIjJc92YD31v6RBewuGkCR29kIa+kEo5WpujuZS92HCIioiYzws8VEgkQnZSL23mlYscBwOKmSfxxrrp6HeHnCjm7pIiIyIC52Jiha6vqD/K60jXFd14NK69SYu8ldkkREZHxuNc1tVtHuqZY3GjYoauZKCyvQnMbMwR7NhM7DhERUZMb5tscUglwLiUPKTklYscRv7hZvnw5vLy8YGZmhqCgIBw5cuSh5x86dAhBQUEwMzODt7c3vv/+ey0lrZ97A6pGdnaFVCoROQ0REVHTc7Y2Q3cvBwDAnzrQNSVqcbNp0ybMnTsX7733HmJiYtCnTx8MHz4cycnJ9z0/ISEBI0aMQJ8+fRATE4N3330Xs2fPxtatW7Wc/P5KK5T453L1BmLcS4qIiIzJvQVr7y2FIiZRi5ulS5di+vTpmDFjBjp27IivvvoKHh4eWLFixX3P//7779GyZUt89dVX6NixI2bMmIFp06bhiy++0HLy+9t/JQMlFUq4NzNHgIed2HGIiIi0Zlin5pBJJbiYWoDErGJRs4hW3FRUVCA6OhpDhgypdXzIkCE4fvz4fa85ceJEnfOHDh2KqKgoVFZWNlnW+rpXrY7s7AqJhF1SRERkPBysFOjZWje6pkQrbrKysqBUKuHi4lLruIuLC9LT778BV3p6+n3Pr6qqQlZW1n2vKS8vR0FBQa1HUygqr8L+KxkAgFDOkiIiIiM00u/urKlz4nZNiT6g+H9bOARBeGirx/3Ov9/xe8LDw2Fra1vz8PDwaGTi+0vOLoGzjQJejpbo5GbTJM9BRESky4b5NodcKoFcJkFhmXg9KnKxntjR0REymaxOK01GRkad1pl7mjdvft/z5XI5HBwc7nvN/PnzERYWVvN1QUFBkxQ4Pm42OPzWAGQWlrNLioiIjJKdhSmOvzMQzjZmouYQreXG1NQUQUFBiIyMrHU8MjISPXv2vO81ISEhdc7fu3cvgoODYWJict9rFAoFbGxsaj2aikQiEf0vlIiISEy68D4oardUWFgYfvzxR6xZswaXL1/G66+/juTkZMycORNAdavL5MmTa86fOXMmkpKSEBYWhsuXL2PNmjVYvXo13nzzTbFeAhEREekY0bqlAGDChAnIzs7Gxx9/jLS0NPj6+iIiIgKenp4AgLS0tFpr3nh5eSEiIgKvv/46vvvuO7i5ueGbb77Bk08+KdZLICIiIh0jEe6NyDUSBQUFsLW1RX5+fpN2UREREZHmNOT9W/TZUkRERESaxOKGiIiIDAqLGyIiIjIoLG6IiIjIoLC4ISIiIoPC4oaIiIgMCosbIiIiMigsboiIiMigsLghIiIig8LihoiIiAyKqHtLieHebhMFBQUiJyEiIqL6uve+XZ9do4yuuCksLAQAeHh4iJyEiIiIGqqwsBC2trYPPcfoNs5UqVS4ffs2rK2tIZFINHrvgoICeHh4ICUlxSg35TT21w/wZ2Dsrx/gz4Cv37hfP9B0PwNBEFBYWAg3NzdIpQ8fVWN0LTdSqRTu7u5N+hw2NjZG+48a4OsH+DMw9tcP8GfA12/crx9omp/Bo1ps7uGAYiIiIjIoLG6IiIjIoLC40SCFQoEPP/wQCoVC7CiiMPbXD/BnYOyvH+DPgK/fuF8/oBs/A6MbUExERESGjS03REREZFBY3BAREZFBYXFDREREBoXFjYYsX74cXl5eMDMzQ1BQEI4cOSJ2JK05fPgwQkND4ebmBolEgh07dogdSavCw8PRtWtXWFtbw9nZGWPHjsXVq1fFjqVVK1asQOfOnWvWtQgJCcFff/0ldizRhIeHQyKRYO7cuWJH0ZqPPvoIEomk1qN58+Zix9Kq1NRUPPvss3BwcICFhQUCAgIQHR0tdiytadWqVZ1/AxKJBLNmzdJ6FhY3GrBp0ybMnTsX7733HmJiYtCnTx8MHz4cycnJYkfTiuLiYvj7+2PZsmViRxHFoUOHMGvWLJw8eRKRkZGoqqrCkCFDUFxcLHY0rXF3d8enn36KqKgoREVFYeDAgRgzZgwuXbokdjStO3PmDFauXInOnTuLHUXrOnXqhLS0tJrHhQsXxI6kNbm5uejVqxdMTEzw119/IS4uDkuWLIGdnZ3Y0bTmzJkztf7+IyMjAQDjxo3TfhiBGq1bt27CzJkzax3r0KGD8M4774iUSDwAhO3bt4sdQ1QZGRkCAOHQoUNiRxFVs2bNhB9//FHsGFpVWFgotG3bVoiMjBT69esnzJkzR+xIWvPhhx8K/v7+YscQzbx584TevXuLHUOnzJkzR2jdurWgUqm0/txsuWmkiooKREdHY8iQIbWODxkyBMePHxcpFYkpPz8fAGBvby9yEnEolUps3LgRxcXFCAkJETuOVs2aNQsjR47E4MGDxY4iiuvXr8PNzQ1eXl54+umnER8fL3Ykrdm1axeCg4Mxbtw4ODs7IzAwEKtWrRI7lmgqKirw66+/Ytq0aRrfx7E+WNw0UlZWFpRKJVxcXGodd3FxQXp6ukipSCyCICAsLAy9e/eGr6+v2HG06sKFC7CysoJCocDMmTOxfft2+Pj4iB1LazZu3IizZ88iPDxc7Cii6N69O9atW4c9e/Zg1apVSE9PR8+ePZGdnS12NK2Ij4/HihUr0LZtW+zZswczZ87E7NmzsW7dOrGjiWLHjh3Iy8vDlClTRHl+o9s4s6n8b2UqCIIo1SqJ69VXX8X58+dx9OhRsaNoXfv27REbG4u8vDxs3boVzz//PA4dOmQUBU5KSgrmzJmDvXv3wszMTOw4ohg+fHjNn/38/BASEoLWrVvj559/RlhYmIjJtEOlUiE4OBiLFi0CAAQGBuLSpUtYsWIFJk+eLHI67Vu9ejWGDx8ONzc3UZ6fLTeN5OjoCJlMVqeVJiMjo05rDhm21157Dbt27cKBAweafOd5XWRqaoo2bdogODgY4eHh8Pf3x9dffy12LK2Ijo5GRkYGgoKCIJfLIZfLcejQIXzzzTeQy+VQKpViR9Q6S0tL+Pn54fr162JH0QpXV9c6hXzHjh2NZmLJf0tKSsI///yDGTNmiJaBxU0jmZqaIigoqGZU+D2RkZHo2bOnSKlImwRBwKuvvopt27Zh//798PLyEjuSThAEAeXl5WLH0IpBgwbhwoULiI2NrXkEBwdj0qRJiI2NhUwmEzui1pWXl+Py5ctwdXUVO4pW9OrVq84SENeuXYOnp6dIicSzdu1aODs7Y+TIkaJlYLeUBoSFheG5555DcHAwQkJCsHLlSiQnJ2PmzJliR9OKoqIi3Lhxo+brhIQExMbGwt7eHi1bthQxmXbMmjULv/32G3bu3Alra+uaVjxbW1uYm5uLnE473n33XQwfPhweHh4oLCzExo0bcfDgQfz9999iR9MKa2vrOmOsLC0t4eDgYDRjr958802EhoaiZcuWyMjIwMKFC1FQUIDnn39e7Gha8frrr6Nnz55YtGgRxo8fj9OnT2PlypVYuXKl2NG0SqVSYe3atXj++echl4tYYmh9fpaB+u677wRPT0/B1NRU6NKli1FNAz5w4IAAoM7j+eefFzuaVtzvtQMQ1q5dK3Y0rZk2bVrNv38nJydh0KBBwt69e8WOJSpjmwo+YcIEwdXVVTAxMRHc3NyEJ554Qrh06ZLYsbRq9+7dgq+vr6BQKIQOHToIK1euFDuS1u3Zs0cAIFy9elXUHNwVnIiIiAwKx9wQERGRQWFxQ0RERAaFxQ0REREZFBY3REREZFBY3BAREZFBYXFDREREBoXFDRERERkUFjdERERkUFjcEBER0X0dPnwYoaGhcHNzg0QiwY4dO5r8OVNTU/Hss8/CwcEBFhYWCAgIQHR0dIPuweKGiPTe6tWrMWTIkEbdIyMjA05OTkhNTdVQKiL9V1xcDH9/fyxbtkwrz5ebm4tevXrBxMQEf/31F+Li4rBkyRLY2dk16D7cfoGI9Fp5eTm8vb2xceNG9OnTp1H3CgsLQ0FBAX788UcNpSMyHBKJBNu3b8fYsWNrjlVUVOD999/H+vXrkZeXB19fXyxevBj9+/dX6zneeecdHDt2DEeOHGlUVrbcEJFe27p1K6ysrBpd2ADA1KlTsX79euTm5mogGZHhmzp1Ko4dO4aNGzfi/PnzGDduHIYNG4br16+rdb9du3YhODgY48aNg7OzMwIDA7Fq1aoG34fFDRHphMzMTDRv3hyLFi2qOXbq1CmYmppi7969D7xu48aNGD16dK1jU6ZMwdixY7Fo0SK4uLjAzs4OCxYsQFVVFd566y3Y29vD3d0da9asqXWdn58fmjdvju3bt2v2xREZoJs3b2LDhg3YvHkz+vTpg9atW+PNN99E7969sXbtWrXuGR8fjxUrVqBt27bYs2cPZs6cidmzZ2PdunUNug+LGyLSCU5OTlizZg0++ugjREVFoaioCM8++yxeeeWVh46nOXLkCIKDg+sc379/P27fvo3Dhw9j6dKl+OijjzBq1Cg0a9YMp06dwsyZMzFz5kykpKTUuq5bt26NbhInMgZnz56FIAho164drKysah6HDh3CzZs3AQCJiYmQSCQPfbz66qs191SpVOjSpQsWLVqEwMBAvPTSS3jhhRewYsWKBmWTa/SVEhE1wogRI/DCCy9g0qRJ6Nq1K8zMzPDpp58+8Py8vDzk5eXBzc2tzvfs7e3xzTffQCqVon379vjss89QUlKCd999FwAwf/58fPrppzh27BiefvrpmutatGiBmJgYzb84IgOjUqkgk8kQHR0NmUxW63tWVlYAqv8/Xb58+aH3adasWc2fXV1d4ePjU+v7HTt2xNatWxuUjcUNEemUL774Ar6+vvj9998RFRUFMzOzB55bWloKAPc9p1OnTpBK/22cdnFxga+vb83XMpkMDg4OyMjIqHWdubk5SkpKGvsyiAxeYGAglEolMjIyHjjmzcTEBB06dKj3PXv16oWrV6/WOnbt2jV4eno2KBuLGyLSKfHx8bh9+zZUKhWSkpLQuXPnB57r4OAAiURy3wHAJiYmtb6WSCT3PaZSqWody8nJgZOTUyNeAZHhKCoqwo0bN2q+TkhIQGxsLOzt7dGuXTtMmjQJkydPxpIlSxAYGIisrCzs378ffn5+GDFiRIOf7/XXX0fPnj2xaNEijB8/HqdPn8bKlSuxcuXKBt2HY26ISGdUVFRg0qRJmDBhAhYuXIjp06fjzp07Dzzf1NQUPj4+iIuL01iGixcvIjAwUGP3I9JnUVFRCAwMrPk/ERYWhsDAQHzwwQcAgLVr12Ly5Ml444030L59e4wePRqnTp2Ch4eHWs/XtWtXbN++HRs2bICvry8++eQTfPXVV5g0aVKD7sOWGyLSGe+99x7y8/PxzTffwMrKCn/99RemT5+OP/7444HXDB06FEePHsXcuXMb/fwlJSWIjo6uNWOLyJj1798fD1sOz8TEBAsWLMCCBQs09pyjRo3CqFGjGnUPttwQkU44ePAgvvrqK/zyyy+wsbGBVCrFL7/8gqNHjz50psQLL7yAiIgI5OfnNzrDzp070bJlS42smUNE4uEKxUSk98aPH4/AwEDMnz+/Uffp1q0b5s6di4kTJ2ooGRGJgS03RKT3Pv/885qpp+rKyMjAU089hWeeeUZDqYhILGy5ISIiIoPClhsiIiIyKCxuiIiIyKCwuCEiIiKDwuKGiIiIDAqLGyIiIjIoLG6IiIjIoLC4ISIiIoPC4oaIiIgMCosbIiIiMij/D/F6JQfdZiNaAAAAAElFTkSuQmCC", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "data = profile.data[0]\n", - "plt.plot(x, data, label=f\"{t} s\")\n", - "plt.xlabel(\"x (m)\")\n", - "plt.ylabel(\"Mobile concentration (H/m3)\")\n", - "plt.show()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "festim-workshop", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.13.5" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/book/content/applications/task02.ipynb b/book/content/applications/task02.ipynb deleted file mode 100644 index 42263575..00000000 --- a/book/content/applications/task02.ipynb +++ /dev/null @@ -1,555 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# TDS simulation\n", - "\n", - "Thermo-desorption spectra (TDS) are a valuble source of experimental data for understanding the mechanics of hydorgen transport. The nature of the spectra produced by thermo-desorption experiments can give insight to the trapping properties of a given material. There are three stages in a TDS experiment; The implantation stage, the resting stage and the desoption stage. Each stage can be modelled, and the desportion flux spectra reproduced.\n", - "\n", - "In this task, we'll simulate a thermo-desorption experiment for a sample of tungsten." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import festim as F\n", - "\n", - "my_model = F.HydrogenTransportProblem()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's create a mesh from a list of vertices with more refinement close to $x=0$." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "vertices = np.concatenate(\n", - " [\n", - " np.linspace(0, 30e-9, num=200),\n", - " np.linspace(30e-9, 3e-6, num=300),\n", - " np.linspace(3e-6, 20e-6, num=200),\n", - " ]\n", - ")\n", - "\n", - "my_model.mesh = F.Mesh1D(vertices)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The material we want to simulate is tungsten. The only property we need is the diffusion coefficient." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "tungsten = F.Material(\n", - " D_0=4.1e-07, # m2/s\n", - " E_D=0.39, # eV\n", - ")\n", - "\n", - "volume_subdomain = F.VolumeSubdomain1D(id=1, borders=[0, 20e-6], material=tungsten)\n", - "left_boundary = F.SurfaceSubdomain1D(id=1, x=0)\n", - "right_boundary = F.SurfaceSubdomain1D(id=2, x=20e-6)\n", - "\n", - "my_model.subdomains = [\n", - " volume_subdomain,\n", - " left_boundary,\n", - " right_boundary,\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "w_atom_density = 6.3e28 # atom/m3\n", - "\n", - "H = F.Species(\"H\")\n", - "trapped_H1 = F.Species(\"trapped_H1\", mobile=False)\n", - "trapped_H2 = F.Species(\"trapped_H2\", mobile=False)\n", - "empty_trap1 = F.ImplicitSpecies(n=1.3e-3 * w_atom_density, others=[trapped_H1])\n", - "empty_trap2 = F.ImplicitSpecies(n=4e-4 * w_atom_density, others=[trapped_H2])\n", - "my_model.species = [H, trapped_H1, trapped_H2]\n", - "\n", - "trapping_reaction_1 = F.Reaction(\n", - " reactant=[H, empty_trap1],\n", - " product=[trapped_H1],\n", - " k_0=4.1e-7 / (1.1e-10**2 * 6 * w_atom_density),\n", - " E_k=0.39,\n", - " p_0=1e13,\n", - " E_p=0.87,\n", - " volume=volume_subdomain,\n", - ")\n", - "trapping_reaction_2 = F.Reaction(\n", - " reactant=[H, empty_trap2],\n", - " product=[trapped_H2],\n", - " k_0=4.1e-7 / (1.1e-10**2 * 6 * w_atom_density),\n", - " E_k=0.39,\n", - " p_0=1e13,\n", - " E_p=1.0,\n", - " volume=volume_subdomain,\n", - ")\n", - "\n", - "my_model.reactions = [\n", - " trapping_reaction_1,\n", - " trapping_reaction_2,\n", - "]" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The source term is defined as:\n", - "\\begin{equation}\n", - " S_{ext} = \\varphi \\cdot f(x) \\quad \\forall \\, t<400 \\text{s}\n", - "\\end{equation}\n", - "\n", - "where $\\varphi =2.5 \\times 10^{19} \\text{m}^{-2}\\text{s}^{-1}$ and $f(x)$ is a Gaussian spatial distribution with a mean value of $4.5 \\: \\text{nm}$ and a width of $2.5 \\: \\text{nm}$.\n", - "\n", - "FESTIM has a special class for this case: `ImplantationFlux`.\n", - "\n", - "The ion flux is temporally defined using a Sympy Piecewise expression, to be active for the `implantation_time`.\n", - "\n", - "Below, `t` is a built-in FESTIM variable that represent time in $\\text{s}$." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import ufl\n", - "\n", - "implantation_time = 400 # s\n", - "incident_flux = 2.5e19 # H/m2/s\n", - "\n", - "def ion_flux(t):\n", - " return ufl.conditional(t <= implantation_time, incident_flux, 0)\n", - "\n", - "\n", - "def gaussian_distribution(x, center, width):\n", - " return (\n", - " 1\n", - " / (width * (2 * ufl.pi) ** 0.5)\n", - " * ufl.exp(-0.5 * ((x[0] - center) / width) ** 2)\n", - " )\n", - "\n", - "\n", - "source_term = F.ParticleSource(\n", - " value=lambda x, t: ion_flux(t) * gaussian_distribution(x, 4.5e-9, 2.5e-9),\n", - " volume=volume_subdomain,\n", - " species=H,\n", - ")\n", - "\n", - "my_model.sources = [source_term]" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Boundary conditions (BCs) can be of several types in FESTIM, the most simple of them being the `FixedConcentrationBC` where an analytical expression is given in the argument: `value`. The argument `subdomain` is the subdomain on which the BC is applied. If no BC is applied on a surface, it will be considered as a non flux surface (ie $\\frac{\\partial c}{\\partial\\textbf{n}} = 0$).\n", - "\n", - "In this case, the solute concentration is set to zero on the left and right surface." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "my_model.boundary_conditions = [\n", - " F.FixedConcentrationBC(subdomain=left_boundary, value=0, species=H),\n", - " F.FixedConcentrationBC(subdomain=right_boundary, value=0, species=H),\n", - "]" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this example, the temperature is constant from $t=0$ to $t=450 \\text{s}$ (implantation + resting phase), then increases from $t=450 \\text{s}$ to $t=500 \\text{s}$ in order to perform the thermo-desorption (TDS phase).\n", - "\n", - "\\begin{equation}\n", - " T(t) =\n", - " \\begin{cases}\n", - " 300, & \\text{if} \\: t < 450 \\\\\n", - " 300 + 8(t - 450), & \\text{else} \\\\\n", - " \\end{cases}\n", - "\\end{equation}\n", - "\n", - "$T$ is expressed in $\\text{K}$." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "implantation_temp = 300 # K\n", - "temperature_ramp = 8 # K/s\n", - "\n", - "start_tds = implantation_time + 50 # s\n", - "\n", - "\n", - "def temp_fun(t):\n", - " if t <= start_tds:\n", - " return implantation_temp\n", - " else:\n", - " return implantation_temp + temperature_ramp * (t - start_tds)\n", - "\n", - "\n", - "my_model.temperature = temp_fun" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "my_model.settings = F.Settings(atol=1e10, rtol=1e-10, final_time=500)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "my_model.settings.stepsize = F.Stepsize(\n", - " initial_value=0.5,\n", - " growth_factor=1.1,\n", - " cutback_factor=0.9,\n", - " target_nb_iterations=4,\n", - " max_stepsize=lambda t: 0.5 if t > start_tds else None,\n", - " milestones=[implantation_time, start_tds, start_tds + 50],\n", - ")" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `Stepsize` object defines the simulation stepsize.\n", - "\n", - "The argument `initial_value` is the initial stepsize is expressed in $\\text{s}$.\n", - "\n", - "An adaptive stepsize algorithm has been implemented in order to save computational cost.\n", - "`growth_factor` and `cutback_factor` define by how much the stepsize is increased or decreased after each iteration (depending on the number of Newton iterations required to converged).\n", - "\n", - "The optional argument `max_stepsize` sets the maximum stepsize. It takes a function of time. In this case, we cap the stepsize at 0.5 s after the start of the TDS.\n", - "We also set `milestones` in order to make sure the simulation doesn't over step the end of the implantation and the start of the TDS." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We want to plot the evolution of the surface fluxes as a function of time.\n", - "\n", - "To do so, we'll use 'derived quantities' objects.\n", - "There is a wide range of derived quantities available in FESTIM.\n", - "\n", - "Here, we'll use `TotalVolume` (volume integration) and `HydrogenFlux`." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "left_flux = F.SurfaceFlux(surface=left_boundary, field=H)\n", - "right_flux = F.SurfaceFlux(surface=right_boundary, field=H)\n", - "total_mobile_H = F.TotalVolume(field=H, volume=volume_subdomain)\n", - "total_trapped_H1 = F.TotalVolume(field=trapped_H1, volume=volume_subdomain)\n", - "total_trapped_H2 = F.TotalVolume(field=trapped_H2, volume=volume_subdomain)\n", - "\n", - "profile_exports = [\n", - " F.Profile1DExport(\n", - " field=spe,\n", - " times=[implantation_time, start_tds, start_tds + 50],\n", - " )\n", - " for spe in [H, trapped_H1, trapped_H2]\n", - "]\n", - "\n", - "my_model.exports = [\n", - " total_mobile_H,\n", - " total_trapped_H1,\n", - " total_trapped_H2,\n", - " left_flux,\n", - " right_flux,\n", - "] + profile_exports" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "2d350a2ef7e64d9b8ea89c131b50dbae", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/500 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "my_model.initialise()\n", - "my_model.run()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "tags": [ - "hide-input" - ] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAK7CAYAAACODM43AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAnRlJREFUeJzs3Xl8U1X6x/Fvkrbp3lKgpUBZREH21RFQBESRXRR3Z1DQmWEEUYFBUUfErYMr4ygwjoD6AxFZRUUdRAvIpmxuIAoCZWlFtpYWmm7390dJIDQtbWly0+bzfs0dm5t7b56EcrhPzjnPsRiGYQgAAAAAAJjOanYAAAAAAACgCEk6AAAAAAB+giQdAAAAAAA/QZIOAAAAAICfIEkHAAAAAMBPkKQDAAAAAOAnSNIBAAAAAPATJOkAAAAAAPgJknQAAAAAAPwESXoAe/XVV2WxWNSqVasSj3n88cfVoEEDBQUFKTY2VidPntSTTz6plJQU3wUqyWKx6Mknn/Tpazq99dZbslgs2rNnj1df57nnntOSJUsqfH5pfza+eg8Azm/Dhg264YYb1KBBA9ntdiUkJKhLly4aO3as23FTp07VW2+95ZUYvNmW79mzR/3791dcXJwsFosefPDBYsc8+eSTslgs59169OghSbr77rvd9kdERKhRo0YaNGiQZs2aJYfDUew18vLy9J///EeXXXaZ4uLiFB4eroYNG+r666/X4sWLK/19A9VBSkpKiX8f169fX+z4zZs365prrlFkZKRiY2N144036tdffzUhcs/Mvo89t+0qabv77rslST169HDts1qtioqK0sUXX6ybb75ZCxYsUGFhYbHXyM7O1uTJk9W2bVtFR0crKipKTZo00S233KKVK1de8HvYtm2bnnzySa/dQy5btsy0e3x/FmR2ADDPzJkzJUk//vijNmzYoMsvv9zt+Q8++EDPPvusHnvsMfXt21d2u10nT57UpEmTJMl18+QL69atU/369X32emZ47rnndNNNN2nw4MEVOr+0P5v+/ftr3bp1SkxMvMAoAVyIjz/+WIMGDVKPHj30/PPPKzExUWlpadq4caPee+89vfTSS65jp06dqlq1arlu3iqTN9vyhx56SBs2bNDMmTNVp04dj+3Ovffeqz59+rgep6Wl6cYbb9T999+vO+64w7U/Ojra9XNYWJi++OILSdKpU6e0b98+ffLJJ/rzn/+sl156SZ9++qnbvxN/+tOftGjRIj344IOaNGmS7Ha7fv31V3366af67LPPdMMNN1Tq+waqk+eee049e/Z023dup85PP/2kHj16qF27dnr//feVk5OjJ554Qt26ddPWrVtVu3ZtX4ZcjD/cx/7jH//QiBEjXI83b96skSNHFvt8z/6sLrroIs2ZM0dSUQK+e/duLVmyRDfffLO6deumDz/8UDExMZKkgoIC9e7dW99//73+/ve/6w9/+IMk6ZdfftGHH36o1atXq3v37hf0HrZt26ZJkyapR48eatSo0QVdy5Nly5bp9ddfJ1E/B0l6gNq4caO+/fZb9e/fXx9//LFmzJhRLEn/4YcfJEmjR49WfHy8JOnw4cNeiScvL08Wi0VBQZ5/JTt37uyV1w0UtWvXNv0fSwDS888/r8aNG+uzzz5za+9uu+02Pf/8815/fcMwlJOT49XX+OGHH/SHP/yh1C8c69ev75ZQO3toGjRoUGJ7b7Vaiz03dOhQDRs2TAMGDNBNN93k6unbvXu35s2bpyeeeMJ1Qy5JvXr10p///GePvVEAzrjkkkvOe+/1xBNPyG6366OPPnJ9odaxY0ddcsklevHFFzV58mRfhFoif7iPbdKkiZo0aeJ67Gx/S/t8w8LCij137733atasWRo+fLj+8pe/aN68eZKkVatWae3atZo5c6aGDRvmOv66667TqFGj/LqtO3nypMLDw80Ow28x3D1AzZgxQ5L0z3/+U127dtV7772nkydPup5v1KiRHn/8cUlSQkKCayiOM9GbNGlSsSE6UtE3d3fccYfi4+Nlt9vVvHlzvf76626v7RxK9X//938aO3as6tWrJ7vdrp07d5YY77nD3Z3Dt7/44gv9+c9/Vs2aNRUdHa2hQ4cqOztb6enpuuWWWxQbG6vExESNGzdOeXl5rvP37Nkji8Wi559/Xs8++6waNGig0NBQderUSStWrDjv57d8+XJdf/31ql+/vkJDQ3XxxRfrr3/9a7HG3zmk88cff9Ttt9+umJgYJSQkaPjw4crIyHB7f9nZ2Xr77beLDfP8/fffdd9996lFixaKjIxUfHy8rr76aq1evdrt/ZT2Z1PScPeZM2eqbdu2Cg0NVVxcnG644QZt377d7Zi7775bkZGR2rlzp/r166fIyEglJSVp7NixHoeYAijZkSNHVKtWLY9fSFqtZ/5JbtSokX788UetXLnS9ffZ2YORk5OjsWPHql27doqJiVFcXJy6dOmiDz74oNg1LRaLRo0apenTp6t58+ay2+16++23z9uWe5Kamqo//vGPbu37Sy+95LoJdLbtO3fu1CeffOK6rren2fTu3Vt//vOftWHDBq1atUpS0ecsqcTRQ2d/1gDKLz8/Xx999JGGDBniNuKlYcOG6tmzZ5mmlMyfP1+XX365YmJiFB4erosuukjDhw8/73mvv/66rrrqKsXHxysiIkKtW7fW888/73af52/3sZVh2LBh6tevn+bPn6+9e/dKqpy2btq0aWrbtq0iIyMVFRWlSy+9VI8++qikovvHm2++WZLUs2dP12fmnIpV3vvhzZs366abblKNGjXUpEkT3X333a7P9+zh/0zPpCc9IJ06dUpz587VZZddplatWmn48OG69957NX/+fN11112SpMWLF+v111/XjBkz9OmnnyomJkaJiYm6/fbb1adPH91zzz269957JZ0ZorNt2zZ17dpVDRo00EsvvaQ6deros88+0+jRo3X48GFNnDjRLY4JEyaoS5cumj59uqxWq+tbzvK49957deONN+q9997Tli1b9Oijjyo/P187duzQjTfeqL/85S/6/PPPNXnyZNWtW1djxoxxO/+1115Tw4YNNWXKFBUWFur5559X3759tXLlSnXp0qXE1921a5e6dOmie++9VzExMdqzZ49efvllXXnllfr+++8VHBzsdvyQIUN066236p577tH333+vCRMmSDoz5WDdunW6+uqr1bNnT/3jH/+QdGaY59GjRyVJEydOVJ06dZSVlaXFixerR48eWrFihXr06KHExER9+umnJf7ZeJKcnKxHH31Ut99+u5KTk3XkyBE9+eST6tKli7755htdcsklrmPz8vI0aNAg3XPPPRo7dqxWrVqlp59+WjExMXriiSfK9GcFQOrSpYvefPNNjR49Wnfeeac6dOhQrL2Qitrgm266STExMZo6daokyW63S5IcDoeOHj2qcePGqV69esrNzdXnn3+uG2+8UbNmzdLQoUPdrrVkyRKtXr1aTzzxhOrUqaO4uLhytxe///67unbtqtzcXD399NNq1KiRPvroI40bN067du3S1KlT1aFDB61bt0433HCDmjRpohdffFFSyTePlWnQoEGaOnWqVq1apauuukrNmzdXbGysJk2aJKvVqt69e3tlmCZQXY0cOVK33XabwsPD1aVLF/3jH//QlVde6Xp+165dOnXqlNq0aVPs3DZt2mj58uXKyclRaGiox+uvW7dOt956q2699VY9+eSTCg0N1d69e11TWkqza9cu3XHHHWrcuLFCQkL07bff6tlnn9VPP/3kuq+qKvex5TVo0CAtW7ZMq1evVsOGDdWpUycFBwfrgQce0BNPPKGrr766XG3ue++9p/vuu0/333+/XnzxRVmtVu3cuVPbtm2TVDRd8rnnntOjjz6q119/XR06dJAk1+iA8t4P33jjjbrttts0YsQIZWdnq1WrVsrOztaCBQu0bt0613FMz5RkIOC88847hiRj+vTphmEYxokTJ4zIyEijW7dubsdNnDjRkGT8/vvvrn2///67IcmYOHFiseted911Rv369Y2MjAy3/aNGjTJCQ0ONo0ePGoZhGF9++aUhybjqqqvKHPO5rzlr1ixDknH//fe7HTd48GBDkvHyyy+77W/Xrp3RoUMH1+Pdu3cbkoy6desap06dcu3PzMw04uLijGuuuabYa+3evdtjbIWFhUZeXp6xd+9eQ5LxwQcfuJ5zfobPP/+82zn33XefERoaahQWFrr2RUREGHfdddd5P4v8/HwjLy/P6NWrl3HDDTe49pf2Z3Puezh27JgRFhZm9OvXz+241NRUw263G3fccYdr31133WVIMt5//323Y/v162c0a9bsvPECOOPw4cPGlVdeaUgyJBnBwcFG165djeTkZOPEiRNux7Zs2dLo3r37ea/pbBPuueceo3379m7PSTJiYmJc7a9Tae2FJ4888oghydiwYYPb/r/97W+GxWIxduzY4drXsGFDo3///mW6rpOzTX7hhRc8Pn/XXXcZERERJZ6/fft2Q5Lxt7/9zbXv448/NmrVquX6rGvWrGncfPPNxtKlS8sVGxBINm/ebDzwwAPG4sWLjVWrVhkzZ840mjdvbthsNuPTTz91HbdmzRpDkjF37txi13juuecMScbBgwdLfJ0XX3zRkGQcP378guItKCgw8vLyjHfeecew2WxubZ0/3cc6Oc+dP3++x+e7d+9utGzZssTzP/nkE0OSMXnyZNe+GTNmGJGRka62LjEx0Rg6dKixatWq88YzatQoIzY2ttRj5s+fb0gyvvzyy1KPK8v98BNPPFHsvJEjRxqkpMUF9HivVatWaeDAgapbt64sFku5K2unpKTo+uuvV2JioiIiItSuXTtXoQdP1qxZo6CgILVr1+7CAr9AM2bMUFhYmG677TZJUmRkpG6++WatXr1av/zyS4WumZOToxUrVuiGG25QeHi48vPzXVu/fv2Uk5NTrCrokCFDLvi9DBgwwO1x8+bNJRV983fufufQoLPdeOONbt/yRkVFaeDAgVq1apUKCgpKfN1Dhw5pxIgRSkpKUlBQkIKDg9WwYUNJKjZcXCr65vNsbdq0UU5Ojg4dOnSed1hk+vTp6tChg0JDQ12vt2LFCo+vVRbr1q3TqVOnig1vTUpK0tVXX11syL/FYtHAgQOLvQdPnymAktWsWVOrV6/WN998o3/+85+6/vrr9fPPP2vChAlq3bp1medLzp8/X1dccYUiIyNdbcKMGTM8tglXX321atSocUFxf/HFF2rRooWrKJHT3XffLcMwytT75U2GYRTb169fP6Wmpmrx4sUaN26cWrZsqSVLlmjQoEEaNWqUCVEC/q99+/aaMmWKBg8erG7dumnYsGFau3atEhMTNX78+GLHWyyWEq9V2nOXXXaZJOmWW27R+++/rwMHDpQ5xi1btmjQoEGqWbOmbDabgoODNXToUBUUFOjnn38u83XOZtZ9bHl5auuGDx+u/fv3691339Xo0aOVlJSk2bNnq3v37nrhhRdKvd4f/vAHHT9+XLfffrs++OCDcs/ZL+/9sBmfWVUV0El6dna22rZtq9dee61C569du1Zt2rTRwoUL9d1332n48OEaOnSoPvzww2LHZmRkaOjQoerVq9eFhn1Bdu7cqVWrVql///4yDEPHjx/X8ePHddNNN0k6M/y6vI4cOaL8/Hz9+9//VnBwsNvWr18/ScWLdVTGUJa4uDi3xyEhISXu91QsqU6dOh735ebmKisry+NrFhYWqnfv3lq0aJHGjx+vFStW6Ouvv3Y13qdOnSp2Ts2aNd0eO4etejr2XC+//LL+9re/6fLLL9fChQu1fv16ffPNN+rTp0+ZzvektDlMdevWdT3vFB4eXmzImt1u93oBKqC66tSpkx5++GHNnz9fBw8e1EMPPaQ9e/aUqXjcokWLdMstt6hevXqaPXu21q1bp2+++UbDhw/3+HeyMtraI0eOlNheOJ83k/MLQ2c8TmFhYRo8eLBeeOEFrVy5Ujt37lSLFi30+uuv68cffzQjVKDKiY2N1YABA/Tdd9+57juc9zWe/u4fPXpUFotFsbGxJV7zqquu0pIlS5Sfn6+hQ4eqfv36atWqlebOnVtqLKmpqerWrZsOHDigf/3rX64vPZ3zmi/kvsiM+9jyKqmti4mJ0e23365//etf2rBhg7777jslJCToscce0/Hjx0u83p/+9CfNnDlTe/fu1ZAhQxQfH6/LL79cy5cvP28sFbkfZhh72QX0nPS+ffuqb9++JT6fm5urxx9/XHPmzNHx48fVqlUrTZ482VXQy1lUwWn06NH67LPPtHjx4mK9jn/96191xx13yGazXdBa2Bdq5syZMgxDCxYs0IIFC4o9//bbb+uZZ56RzWYr13Vr1Kghm82mP/3pTxo5cqTHYxo3buz2uLRvWH0lPT3d476QkBBFRkZ6POeHH37Qt99+q7feess1h1+S1wqGzJ49Wz169NC0adPc9p84caLC13T+45qWllbsuYMHD6pWrVoVvjaA8gkODtbEiRP1yiuvuKoRl2b27Nlq3Lix5s2b59aOllTIsTLa2po1a5bYXkgyvc1YunSppPMvqdSgQQP95S9/0YMPPqgff/xRLVu29EF0QNXn7MF1tidNmjRRWFiYvv/++2LHfv/997r44otLnI/udP311+v666+Xw+HQ+vXrlZycrDvuuEONGjUqsS7QkiVLlJ2drUWLFrl6bCVp69atFXxnRarKfezSpUtlsVh01VVXlXpcy5Ytddttt2nKlCn6+eefi42COtuwYcM0bNgwZWdna9WqVZo4caIGDBign3/+2e0zPldF7of94d6/qgjonvTzGTZsmNasWaP33ntP3333nW6++Wb16dOn1CHhGRkZxXpxZ82apV27dhUrOOFrBQUFevvtt9WkSRN9+eWXxbaxY8cqLS1Nn3zySYnXKKkHODw8XD179tSWLVvUpk0bderUqdh2bm+yP1i0aJFbz9OJEyf04Ycfqlu3biV+UeFsYJyfhdN//vOfC4rFbrd7/NbRYrEUe63vvvvOrcDG2fGU5VvkLl26KCwsTLNnz3bbv3//fn3xxRemj/gAqitPia50Zljg2b0jpbUJISEhbjc76enpHqu7l6Q87YVUtHTZtm3btHnzZrf977zzjiwWS7H1lH1p+fLlevPNN9W1a1dXYasTJ06UOBrK02cNoGTHjh3TRx99pHbt2rkS76CgIA0cOFCLFi1y6zRITU3Vl19+qRtvvLHM17fb7erevbtrybYtW7aUeKynezDDMPTf//63zK8lVc372FmzZumTTz7R7bffrgYNGkgqGgGQm5vr8fiffvpJUtnbuoiICPXt21ePPfaYcnNzXaONSvrMKut+uLz/HgWKgO5JL82uXbs0d+5c7d+/3/XLPW7cOH366aeaNWuWnnvuuWLnLFiwQN98843bL+cvv/yiRx55RKtXry5xDXBf+eSTT3Tw4EG30QBna9WqlV577TXNmDGj2Fxvp6ioKDVs2FAffPCBevXqpbi4ONWqVUuNGjXSv/71L1155ZXq1q2b/va3v6lRo0Y6ceKEdu7cqQ8//ND0OYue2Gw2XXvttRozZowKCws1efJkZWZmuq2re65LL71UTZo00SOPPCLDMBQXF6cPP/ywTEODStO6dWulpKToww8/VGJioqKiotSsWTMNGDBATz/9tCZOnKju3btrx44deuqpp9S4cWPl5+e7zi/tz+ZcsbGx+sc//qFHH31UQ4cO1e23364jR45o0qRJCg0NNf0LJaC6uu6661S/fn0NHDhQl156qQoLC7V161a99NJLioyM1AMPPOA6tnXr1nrvvfc0b948XXTRRQoNDVXr1q01YMAALVq0SPfdd59uuukm7du3T08//bQSExPLXFekPO2FJD300EN655131L9/fz311FNq2LChPv74Y02dOlV/+9vf1LRp08r4eEpVWFjoGkbpcDiUmpqqTz75RO+//76aN2+u999/33Xsjh07dN111+m2225T9+7dlZiYqGPHjunjjz/WG2+8oR49eqhr165ejxmoau644w41aNBAnTp1Uq1atfTLL7/opZde0m+//eZadstp0qRJuuyyyzRgwAA98sgjysnJ0RNPPKFatWpp7Nixpb7OE088of3796tXr16qX7++jh8/rn/9618KDg5W9+7dSzzv2muvVUhIiG6//XaNHz9eOTk5mjZtmo4dO1am91cV7mNPnTrlNmT8119/1ZIlS/TRRx+pe/fumj59uuvYL7/8Ug888IDuvPNOde3aVTVr1tShQ4c0d+5cffrpp66pBCX585//rLCwMF1xxRVKTExUenq6kpOTFRMT46ob0KpVK0nSG2+8oaioKIWGhqpx48aVdj/cunVrSdLkyZPVt29f2Ww2tWnTxjWFNWCZVrLOz0gyFi9e7Hr8/vvvG5KMiIgIty0oKMi45ZZbip3/5ZdfGhEREcbbb7/t2pefn2906tTJmDZtmmvfxIkTjbZt23rzrZRo8ODBRkhIiHHo0KESj7ntttuMoKAgIz093WNVTMMwjM8//9xo3769YbfbDUluFcl3795tDB8+3KhXr54RHBxs1K5d2+jatavxzDPPuI45X2VLT1RCdfdvvvnG7biSYj63MrCzkvDkyZONSZMmGfXr1zdCQkKM9u3bG5999pnbuZ6qu2/bts249tprjaioKKNGjRrGzTffbKSmphaLs6R4PF1z69atxhVXXGGEh4cbklxVnR0OhzFu3DijXr16RmhoqNGhQwdjyZIlxl133WU0bNjQ7bol/dmUVKH+zTffNNq0aWOEhIQYMTExxvXXX2/8+OOPpX525743AGU3b94844477jAuueQSIzIy0ggODjYaNGhg/OlPfzK2bdvmduyePXuM3r17G1FRUYYkt7/v//znP41GjRoZdrvdaN68ufHf//7X499JScbIkSM9xlJaW+7J3r17jTvuuMOoWbOmERwcbDRr1sx44YUXjIKCArfjvFXdXacrF0sywsLCjAYNGhgDBw40Zs6caTgcDrfjjx07ZjzzzDPG1VdfbdSrV88ICQkxIiIijHbt2hnPPPOMcfLkyXLFBwSK5ORko127dkZMTIxhs9mM2rVrGzfccIPx9ddfezx+48aNRq9evYzw8HAjOjraGDx4sLFz587zvs5HH31k9O3b1/X3Mz4+3ujXr5+xevXq85774YcfGm3btjVCQ0ONevXqGX//+99dVc/PrkDuT/exZT23e/fubm1dRESEcdFFFxk33XSTMX/+/GLt7b59+4zHH3/cuOKKK4w6deoYQUFBRlRUlHH55Zcb//73v438/PxS43n77beNnj17GgkJCUZISIhRt25d45ZbbjG+++47t+OmTJliNG7c2LDZbIYkY9asWYZhXPj9sGEU3efee++9Ru3atQ2LxVLqikqBxGIYHsoEBiCLxaLFixdr8ODBkqR58+bpzjvv1I8//lhs2HNkZKRbwbGVK1dqwIABeumll/SXv/zFtf/48eOuOS5OhYWFMgxDNptN//vf/3T11Vd7943Boz179qhx48Z64YUXNG7cOLPDAQAAAABJDHcvUfv27VVQUKBDhw6pW7duJR6XkpKiAQMGaPLkyW4JuiRFR0cXK6gxdepUffHFF1qwYEGxAhQAAAAAgMAW0El6VlaWWwXC3bt3a+vWrYqLi1PTpk115513aujQoXrppZfUvn17HT58WF988YVat26tfv36KSUlRf3799cDDzygIUOGuCqFh4SEKC4uTlar1TWPwyk+Pl6hoaHF9gMAAAAAENDD3VNSUjxWpL3rrrv01ltvKS8vT88884zeeecdHThwQDVr1lSXLl00adIktW7dWnfffbfefvvtYud3795dKSkpHl/zySef1JIlSy54qQgAAAAAQPUT0Ek6AAAAAAD+hHXSAQAAAADwEyTpAAAAAAD4iYBM0g3DUGZmphjpDwDuaB8BwDPaRwC+YmqSvmrVKg0cOFB169aVxWLRkiVLznvOypUr1bFjR4WGhuqiiy7S9OnTy/26J06cUExMjE6cOFGBqAGg+qJ9BADPaB8B+IqpSXp2drbatm2r1157rUzH7969W/369VO3bt20ZcsWPfrooxo9erQWLlzo5UgBAAAAAPA+U9dJ79u3r/r27Vvm46dPn64GDRpoypQpkqTmzZtr48aNevHFFzVkyJASz3M4HHI4HK7HmZmZFY4ZAKoT2kcA8Iz2EYBZqtSc9HXr1ql3795u+6677jpt3LhReXl5JZ6XnJysmJgY15aUlOTtUAGgSqB9BADPaB8BmKVKJenp6elKSEhw25eQkKD8/HwdPny4xPMmTJigjIwM17Zv3z5vhwoAVQLtIwB4RvsIwCymDnevCIvF4vbYWWHz3P1ns9vtstvtXo0LAKoi2kcA8Iz2EYBZqlRPep06dZSenu6279ChQwoKClLNmjVNigoAAAAAgMpRpZL0Ll26aPny5W77/ve//6lTp04KDg4u9/UOHDtZWaEBAAAAAHDBTE3Ss7KytHXrVm3dulVS0RJrW7duVWpqqqSiuUBDhw51HT9ixAjt3btXY8aM0fbt2zVz5kzNmDFD48aNq9DrT1j0/QW/BwAAAAAAKoupSfrGjRvVvn17tW/fXpI0ZswYtW/fXk888YQkKS0tzZWwS1Ljxo21bNkypaSkqF27dnr66af16quvlrr8Wmk2px7XkSzH+Q8EAAAAAMAHLIaz8loAyczMLFpK48H39djgDvpr9yZmhwQAfsHZPmZkZCg6OtrscADAb9A+AvCVKjUn3Rve/TpVhYUB9z0FAAAAAMAPBXySvvfISX21s+Q11gEAAAAA8JWATtKbJURKkuZs2GtyJAAAAAAABHiSfm2LOpKkz7cfUnpGjsnRAAAAAAACXUAn6Q3jwtWybrQKCg3N+2af2eEAAAAAAAJcQCfpVqtFfVoW9aa/902q8gsKTY4IAAAAABDIAjtJt0hXXFxL0aFBSsvI0Zc7fjc7JAAAAABAAAvoJN1isSjYZtU1zRMkUUAOAAAAAGCugE7SrRaLJOm600PeV/78u/YdPWlmSAAAAACAABbgSXrRf+vGhqldUqwMQ3r361RzgwIAAAAABKzATtKdWbqkvq2KetPf/2afcvMpIAcAAAAA8L3ATtItZ5L0PzSKU1xEiI5k5+qzH9NNjAoAAAAAEKgCPEk/83OQzareLSggBwAAAAAwT4An6Ra3x71b1JHVIq3/9ah2HsoyKSoAAAAAQKAiST9L7Si7LmsUJ0l6dwMF5AAAAAAAvhXgSXrxfX1OF5BbsGmfcvIKfBwRAAAAACCQBXSSbvGQpLdPqqH4KLsyc/L10Xdpvg8KAAAAABCwAjpJt3noSrdZLerTsqg3ffZ6CsgBAAAAAHwnoJP0c+ekO13TIkFBVou27juuHw5k+DgqAAAAAECgCugkvYQcXTXCQ9SlSU1J0rtfU0AOAAAAAOAbgZ2kl/Jc39ND3j/YckBZjnzfBAQAAAAACGiBnaSX1JUuqVW9GNWLDVN2boGWbDngw6gAAAAAAIEqoJP00lgsFvU9vRzbnA2pMgzD5IgAAAAAANUdSXoprr40XiE2q7anZWrLvuNmhwMAAAAAqOb8IkmfOnWqGjdurNDQUHXs2FGrV68u9fg5c+aobdu2Cg8PV2JiooYNG6YjR45UelxRocG68pJaRa+5ngJyAAAAAADvMj1Jnzdvnh588EE99thj2rJli7p166a+ffsqNdVzUvzVV19p6NChuueee/Tjjz9q/vz5+uabb3Tvvfd6JT7nkPePvjuo4ydzvfIaAAAAAABIfpCkv/zyy7rnnnt07733qnnz5poyZYqSkpI0bdo0j8evX79ejRo10ujRo9W4cWNdeeWV+utf/6qNGzd6Jb5mCVFqXCtCjvxCLdi03yuvAQAAAACAZHKSnpubq02bNql3795u+3v37q21a9d6PKdr167av3+/li1bJsMw9Ntvv2nBggXq379/ia/jcDiUmZnptpXV2QXk3qWAHIBq5kLaRwCozmgfAZjF1CT98OHDKigoUEJCgtv+hIQEpaenezyna9eumjNnjm699VaFhISoTp06io2N1b///e8SXyc5OVkxMTGuLSkpqVxxdm9aW2HBNv16OFvrfq38ue8AYJYLbR8BoLqifQRgFtOHu0vF1ys3DKPENcy3bdum0aNH64knntCmTZv06aefavfu3RoxYkSJ158wYYIyMjJc2759+8oVX3hIkHo0qy2paDk2AKguLrR9BIDqivYRgFmCzHzxWrVqyWazFes1P3ToULHedafk5GRdccUV+vvf/y5JatOmjSIiItStWzc988wzSkxMLHaO3W6X3W6/oFj7tqqjT35I12c/pOv3Ew7Vjrqw6wGAP6iM9hEAqiPaRwBmMbUnPSQkRB07dtTy5cvd9i9fvlxdu3b1eM7JkydltbqHbbPZJMmr88Ub14pUs4Qo5Rcaen8j36QCAAAAACqf6cPdx4wZozfffFMzZ87U9u3b9dBDDyk1NdU1fH3ChAkaOnSo6/iBAwdq0aJFmjZtmn799VetWbNGo0eP1h/+8AfVrVvXq7E6C8jN/TpVBYUUkAMAAAAAVC5Th7tL0q233qojR47oqaeeUlpamlq1aqVly5apYcOGkqS0tDS3NdPvvvtunThxQq+99prGjh2r2NhYXX311Zo8ebLXY73yklr671e/av+xU1r1y+/q2Sze668JAAAAAAgcFiMA1xTLzMxUTEyM1m5LVWRUdLnO/e/qX7X024O6pnm83rzrMi9FCADmcLaPGRkZio4uX/sIANUZ7SMAXzF9uHtV4xzy/sVPh3Tg+CmTowEAAAAAVCck6eVUv0a42tSLUaEhzfua5dgAAAAAAJWHJL0C+pzuTX/vm33KKyg0ORoAAAAAQHVBkl4BnS+qqdiwYB064dCK7b+ZHQ4AAAAAoJogSa+AYJtV17ZIkCTN2cCQdwAAAABA5SBJr6DeLevIImn1L4e153C22eEAAAAAAKoBkvQKqhMdqg4Na0iS5lJADgAAAABQCUjSL4BzObb3N+6TI7/A5GgAAAAAAFUdSfoF6NQwTrUi7Tp2Mk+ffJ9udjgAAAAAgCqOJP0C2KwWXdfSWUBur8nRAAAAAACqOpL0C3Rt8wRZLdI3e45pR/oJs8MBAAAAAFRhJOkXqGakXZc3rilJepfedAAAAADABSBJrwTOAnKLNh/Qydx8k6MBAAAAAFRVJOmVoG1SrBJjQnXCka8Pvz1odjgAAAAAgCqKJL0SWC0W9WlZ1Js+ZwNrpgMAAAAAKoYkvZL0ap6gIKtF3+3P0Hf7j5sdDgAAAACgCiJJryQxYcG68uJakqQ56+lNBwAAAACUH0l6JepzuoDc0m8PKuNUnsnRAAAAAACqGpL0StQiMVoN4sJ1Kq9AS7YcMDscAAAAAEAVQ5JeiSwWi2s5tjkb9sowDJMjAgAAAABUJSTplaxns3jZg6z6+bcsbdx7zOxwAAAAAABVCEl6JYuwB+mqprUlSXPW7zU5GgAAAABAVUKS7gV9T6+Zvuz7dB3NzjU5GgAAAABAVUGS7gWXJETp4tqRyi0o1IJN+8wOBwAAAABQRZCke0nf1kW96e9uSFVhIQXkAAAAAADn5xdJ+tSpU9W4cWOFhoaqY8eOWr16danHOxwOPfbYY2rYsKHsdruaNGmimTNn+ijasrnqktoKD7Fpz5GTWrPrsNnhAAAAAACqANOT9Hnz5unBBx/UY489pi1btqhbt27q27evUlNTSzznlltu0YoVKzRjxgzt2LFDc+fO1aWXXurDqM8vNNimq5vFS5LmrC/5vQAAAAAA4GQxTF7M+/LLL1eHDh00bdo0177mzZtr8ODBSk5OLnb8p59+qttuu02//vqr4uLiyvQaDodDDofD9TgzM1NJSUlauy1VkVHRF/4mSrD3SLZGzd0im9WitY9crYToUK+9FgBUREntY0ZGhqKjvdc+AoC/o30EYBZTe9Jzc3O1adMm9e7d221/7969tXbtWo/nLF26VJ06ddLzzz+vevXqqWnTpho3bpxOnTpV4uskJycrJibGtSUlJVXq+yhJw5oRapEYrYJCQ/O+oYAcAP9jVvsIAP6O9hGAWUxN0g8fPqyCggIlJCS47U9ISFB6errHc3799Vd99dVX+uGHH7R48WJNmTJFCxYs0MiRI0t8nQkTJigjI8O17dvnu4S5b6uiAnJzv05VfkGhz14XAMrCzPYRAPwZ7SMAswSZHYAkWSwWt8eGYRTb51RYWCiLxaI5c+YoJiZGkvTyyy/rpptu0uuvv66wsLBi59jtdtnt9soPvAy6NqmlN1b/qrSMHKXs+F3XtEg4/0kA4CNmto8A4M9oHwGYxdSe9Fq1aslmsxXrNT906FCx3nWnxMRE1atXz5WgS0Vz2A3D0P79+70ab0WEBFl1TfOi9zJnw16TowEAAAAA+DNTk/SQkBB17NhRy5cvd9u/fPlyde3a1eM5V1xxhQ4ePKisrCzXvp9//llWq1X169f3arwV1adl0ZD3lJ9/176jJ02OBgAAAADgr0xfgm3MmDF68803NXPmTG3fvl0PPfSQUlNTNWLECElF84GGDh3qOv6OO+5QzZo1NWzYMG3btk2rVq3S3//+dw0fPtzjUHd/UDc2TO2SYmUYRXPTAQAAAADwxPQk/dZbb9WUKVP01FNPqV27dlq1apWWLVumhg0bSpLS0tLc1kyPjIzU8uXLdfz4cXXq1El33nmnBg4cqFdffdWst1AmzgJy72/cp9x8CsgBAAAAAIozfZ10M2RmZiomJsbr66SfLb+gUPe8vVFHT+bqtTvaa0Cbuj55XQAoD2f7yDrAAOCO9hGAr5jekx4ogmxWXdvydAG59Qx5BwAAAAAUR5LuQ71bJMhqkdb9ekQ7D2Wd/wQAAAAAQEAhSfeh+KhQdWoYJ4kCcgAAAACA4kjSfcxZQG7Bpv3KySswORoAAAAAgD8hSfex9g1qKD7KroxTefr4uzSzwwEAAAAA+BGSdB+zWS3q07KoN33Ohr0mRwMAAAAA8CdB5T0hMzOzTMexNEXJrmmRoDlfp2pz6nFtO5ipFnX5rAAAAAAAFUjSY2NjZbFYSnzeMAxZLBYVFDDfuiQ1wkPU5aKa+mrnYc3ZsFfP3tDa7JAAAAAAAH6g3En6l19+6frZMAz169dPb775purVq1epgVV3fVvV0Vc7D2vJlgOa0K+5Iu3l/qMAAAAAAFQz5c4Mu3fv7vbYZrOpc+fOuuiiiyotqEDQul6M6sWG6cDxU/pg6wHdeXlDs0MCAAAAAJiMwnEmsVgs6nN6ObbZ61NlGIbJEQEAAAAAzEaSbqJel8YrxGbV9rRMbd133OxwAAAAAAAmq5QkvbRCcihZVGiwrrykliRpzoZUk6MBAAAAAJit3HPSb7zxRrfHOTk5GjFihCIiItz2L1q06MIiCxB9W9XRFz8d0offHtQ/+rdQTHiw2SEBAAAAAExS7iQ9JibG7fEf//jHSgsmEDVLiFLjWhHafThbCzbv1z1XNjY7JAAAAACAScqdpM+aNcsbcQQsi8Wivq3qaGrKLs3ZsFfDr2jE9AEAAAAACFAUjvMD3ZvWVliwTb/+nq31vx41OxwAAAAAgElI0v1AeEiQujetLUmas2GvydEAAAAAAMxCku4nnGumf/Zjun4/4TA5GgAAAACAGUjS/UST2pFqlhClvAJD8zftMzscAAAAAIAJSNL9SN/TvenvbkhVYaFhcjQAAAAAAF8jSfcjV15SSxF2m/YfO6VVv/xudjgAAAAAAB8jSfcj9iCbel2aIEmasyHV5GgAAAAAAL5Gku5nnAXkVmz/TQePnzI5GgAAAACAL/lFkj516lQ1btxYoaGh6tixo1avXl2m89asWaOgoCC1a9fOuwH6UFKNcLWuF6NCQ3rvGwrIAQAAAEAgMT1Jnzdvnh588EE99thj2rJli7p166a+ffsqNbX04d4ZGRkaOnSoevXq5aNIfcdZQO69r1OVV1BocjQAAAAAAF8xPUl/+eWXdc899+jee+9V8+bNNWXKFCUlJWnatGmlnvfXv/5Vd9xxh7p06eKjSH2n80U1FRMWrEMnHFqx/ZDZ4QAAAAAAfMTUJD03N1ebNm1S79693fb37t1ba9euLfG8WbNmadeuXZo4cWKZXsfhcCgzM9Nt82fBNquube4sILfX5GgAVGdVrX0EAF+hfQRgFlOT9MOHD6ugoEAJCQlu+xMSEpSenu7xnF9++UWPPPKI5syZo6CgoDK9TnJysmJiYlxbUlLSBcfubde1qiOLpNW/HNbeI9lmhwOgmqqK7SMA+ALtIwCzmD7cXZIsFovbY8Mwiu2TpIKCAt1xxx2aNGmSmjZtWubrT5gwQRkZGa5t3z7/L8hWJzpUHRrWkCS9+zXLsQHwjqrYPgKAL9A+AjBL2bqivaRWrVqy2WzFes0PHTpUrHddkk6cOKGNGzdqy5YtGjVqlCSpsLBQhmEoKChI//vf/3T11VcXO89ut8tut3vnTXhR31Z1tGnvMc3fuF9jrm0qe5DN7JAAVDNVtX0EAG+jfQRgFlN70kNCQtSxY0ctX77cbf/y5cvVtWvXYsdHR0fr+++/19atW13biBEj1KxZM23dulWXX365r0L3iU4N41QrMkRHs3P16Q+eh/8DAAAAAKoPU3vSJWnMmDH605/+pE6dOqlLly564403lJqaqhEjRkgqGmp04MABvfPOO7JarWrVqpXb+fHx8QoNDS22vzqwWS3q3aKO3v06VXPWp+r6dvXMDgkAAAAA4EWmJ+m33nqrjhw5oqeeekppaWlq1aqVli1bpoYNG0qS0tLSzrtmenXWu0WC3vsmVV/vOaqffzuhpglRZocEAAAAAPASi2EYhtlB+FpmZqZiYmK0dluqIqOizQ7nvJ5btl3rfj2iu7s20pODWpodDoBqzNk+ZmRkKDra/9tHAPAV2kcAvuIX1d1Ruj6t6kiSFm7er5O5+SZHAwAAAADwFpL0KqBdUqwSY0J1IidfH32bZnY4AAAAAAAvIUmvAqwWi/q0LOpNn7Nhr8nRAAAAAAC8hSS9iujVPEFBVou+3Z+h7/dnmB0OAAAAAMALSNKriJiwYF1xcS1J9KYDAAAAQHVFkl6F9D1dQO6DrQeVmZNncjQAAAAAgMpGkl6FtEiMVlJcuE7lFWjJlgNmhwMAAAAAqGQk6VWIxWJRX2cBufWpCsAl7gEAAACgWiNJr2J6Xhove5BVO347oU17j5kdDgAAAACgEpGkVzGR9iBd1bS2JGnOhlSTowEAAAAAVCaS9CrIOeT94+/TdDQ71+RoAAAAAACVhSS9CrokIUoX145Ubn6hFm7ab3Y4AAAAAIBKQpJeRfU5vRzbu1+nqrCQAnIAAAAAUB2QpFdRV11SW+EhNu0+nK21u46YHQ4AAAAAoBKQpFdRYSE29WwWL0mas2GvydEAAAAAACoDSXoV1ud0Abn/bftNv2XmmBwNAAAAAOBCkaRXYY1qRah5YrQKCg29/80+s8MBAAAAAFwgkvQqrt/pAnJzv05VAQXkAAAAAKBKI0mv4ro2qaWo0CAdzMhRyo5DZocDAAAAALgAJOlVXEiQVdc0T5AkzdmQanI0AAAAAIALQZJeDTgLyH2545D2HztpcjQAAAAAgIoiSa8G6saGqV1SrAyjaG46AAAAAKBqIkmvJpy96fO+2a/c/EKTowEAAAAAVARJejVxeeM41QgP1uEsh5Zv+83scAAAAAAAFUCSXk0E2azq3aKoN33Ohr0mRwMAAAAAqAi/SNKnTp2qxo0bKzQ0VB07dtTq1atLPHbRokW69tprVbt2bUVHR6tLly767LPPfBit/+rdMkFWi7R21xHt+j3L7HAAAAAAAOVkepI+b948Pfjgg3rssce0ZcsWdevWTX379lVqqucCaKtWrdK1116rZcuWadOmTerZs6cGDhyoLVu2+Dhy/xMfFapODeMkSXNZjg0AAAAAqhyLYRiGmQFcfvnl6tChg6ZNm+ba17x5cw0ePFjJycllukbLli1166236oknnvD4vMPhkMPhcD3OzMxUUlKS1m5LVWRU9IW9AT+zcc9RTfpom2LDg7V+Qi+FBtvMDgmAHyupfczIyFB0dPVqHwGgPGgfAZjF1J703Nxcbdq0Sb1793bb37t3b61du7ZM1ygsLNSJEycUFxdX4jHJycmKiYlxbUlJSRcUtz9r36CG4qPsOn4yT8u+TzM7HAB+LpDaRwAoD9pHAGYxNUk/fPiwCgoKlJCQ4LY/ISFB6enpZbrGSy+9pOzsbN1yyy0lHjNhwgRlZGS4tn379l1Q3P7MZrXoupbOAnIMeQdQukBqHwGgPGgfAZglyOwAJMlisbg9Ngyj2D5P5s6dqyeffFIffPCB4uPjSzzObrfLbrdfcJxVxbXNE/Tu16natPeYtqdlqnkiQ7IAeBZo7SMAlBXtIwCzmNqTXqtWLdlstmK95ocOHSrWu36uefPm6Z577tH777+va665xpthVjk1IkLU+aKakliODQAAAACqElOT9JCQEHXs2FHLly932798+XJ17dq1xPPmzp2ru+++W++++6769+/v7TCrpL6tioa8L958QFmOfJOjAQAAAACUhelLsI0ZM0ZvvvmmZs6cqe3bt+uhhx5SamqqRowYIaloPtDQoUNdx8+dO1dDhw7VSy+9pM6dOys9PV3p6enKyMgw6y34pTb1YlQvNkzZuQVauvWg2eEAAAAAAMrA9CT91ltv1ZQpU/TUU0+pXbt2WrVqlZYtW6aGDRtKktLS0tzWTP/Pf/6j/Px8jRw5UomJia7tgQceMOst+CWLxaI+rZwF5PbK5JX2AAAAAABlYPo66WbIzMxUTExMtVwn/WwncvJ016yvlVdgaMnIK9QuKdbskAD4OWf7yDrAAOCO9hGAr5jekw7viQoNVreLa0uS5qyngBwAAAAA+DuS9GrOWUDuw+8OKuNknsnRAAAAAABKQ5JezTWrE6VGNcOVk1eohZv3mx0OAAAAAKAUJOnVnMViUd9WiZIoIAcAAAAA/o4kPQD0aFZbocFW7fo9Wxt2HzU7HAAAAABACUjSA0B4SJB6NI2XJM2mgBwAAAAA+C2S9ADhLCD32Y/pOnQix+RoAAAAAACekKQHiItqR6p5nSjlFRia9/U+s8MBAAAAAHhAkh5A+rUuKiD37tepyi8oNDkaAAAAAMC5SNIDyBUX11JMWLDSMnK04qdDZocDAAAAADgHSXoACbZZ1btFgiTp/9ZRQA4AAAAA/A1JeoDp07KOLJK+2nlYu37PMjscAAAAAMBZSNIDTHx0qC5rFCdJmrM+1eRoAAAAAABnI0kPQM4CcvM37dPJ3HyTowEAAAAAOJGkB6D2DWKVGBOqEzn5Wrr1oNnhAAAAAABOI0kPQFaLRX1b1ZEkvbNurwzDMDkiAAAAAIBEkh6wrmmeoBCbVdvSMrU59bjZ4QAAAAAARJIesKJCg3VV01qSpNnrWY4NAAAAAPwBSXoA69eqqIDcx9+l6UiWw+RoAAAAAAAk6QHskoQoXRIfqdyCQs3buM/scAAAAAAg4JGkB7j+p5djm7M+VQWFFJADAAAAADMFmR0AzHXlJbU046vdOnD8lFJ2HFKv5glmhwSgmjqZm6+j2bk6lp2nYydzi7bsXGXnFsiRV6BTp7ecvELl5hdKks796jDEZlVosFWhwTaFBlsVFmxThD1IseHBig0PUY3wEMWGBatGRIiiQ4NksVh8/0YBAAAuAEl6gLMH2XRNiwQt3nJAM77aTZIOoMIc+QXafThbOw9lad/RUzp4/JQOHD/z3xM5+T6NJyzYpsTYUNWNCVNiTKgSY8PUIC5cF8dHqkntCEWFBvs0HgAAgLIgSYcGtEnU0m8Pau2uI9q095g6NqxhdkgA/NzhLIe+239cW/dlaNvBDO08lKXUoyd1vlkzQVaLosOCFR0apOjQYEWFBiksxCZ7kE32IGvRFmxTkNWiczvBDUPKKzCUm1+g3IJCOfKLtpO5BcrKydOJnHxl5uQry5GnnLxCncor0K+/Z+vX37M9xpIQbdfF8ZG6uHakWtePVdv6MbqodqRsVnrfAQCAefwiSZ86dapeeOEFpaWlqWXLlpoyZYq6detW4vErV67UmDFj9OOPP6pu3boaP368RowY4cOIq5f4qFBdfWm8lm/7Ta998YtmDfuD2SEB8DP7jp7Uql9+17pdR7R133HtP3bK43ERITYlxYWrTkyo4qNCFR9lV+1Iu2pH2VUzMkRhwTafDEHPySvQ0exc/Z7l0OETDh3Ocuj3Ew6lZeRo37GTOnYyT79lOvRbpkNrdh6RtNcVf6t6MerQsIa6NqmpTg3jFBZi83q8AAAATqYn6fPmzdODDz6oqVOn6oorrtB//vMf9e3bV9u2bVODBg2KHb97927169dPf/7znzV79mytWbNG9913n2rXrq0hQ4aY8A6qh5s61NeK7b/pyx1FN+FdmtQ0OyQAJsovKNSanYf1yQ9pWv3LYe09ctLteYuk+jXCdElClC6uHakGNcOVVCNcNcKD/WIeeGiwTXVjw1Q3Nszj81mOfO0/dlL7j53SnsPZ2vl7lnYeylJ2boE27D6qDbuPalrKLoXYrGrfIFZXNa2tHs1qq0VitF+8PwAAUH1ZDMMwtaT35Zdfrg4dOmjatGmufc2bN9fgwYOVnJxc7PiHH35YS5cu1fbt2137RowYoW+//Vbr1q0r02tmZmYqJiZGa7elKjIq+sLfRDXx+pc79emP6aoVadeTg1qoca0IhQbbVNm3o9zgojpoXCvC7BC8wtk+tntssY7ln5mzbbNadGmdKLVLilXzxGhdXDtSEXbTv+etVAWFhvYdPamfD53Qjwcz9d3+4zqclet2TJ3oUPW8tLa6N41X/RphRW1kKU1aaa0dbSGqq+rePqb9fkTR0dw/AqiY8JDz3z+ZeoeVm5urTZs26ZFHHnHb37t3b61du9bjOevWrVPv3r3d9l133XWaMWOG8vLyFBxcvBCQw+GQw+FwPc7IyJAk5ZzKUpCNmySnO9rX0g970pR65Jjum7XG7HAAv/bDpOsUFRVV5ROtktrH349mKDomSpc3jtNljeLUsm60+z8qBaeUc/Lcq1V9dcKlOo0idFWjCBlGHaVlFM2935J6XN8dyNDB309qzu9HNWf1DrNDBfxWdW8fOz3xoaz2cLPCAlDFlamNNEx04MABQ5KxZs0at/3PPvus0bRpU4/nXHLJJcazzz7rtm/NmjWGJOPgwYMez5k4caKhopV82NjY2Cpty8jIqJzG0ES0j2xsbN7YaB/Z2NjYSt7O10b6xVjFc79FMAyj1G8WPB3vab/ThAkTNGbMGNfj48ePq2HDhkpNTVVMTExFww44mZmZSkpK0r59+xjmVQ58bhVTFT63qKgos0O4YLSPlaMq/L76Iz63iqkKnxvtI5yqwu+rP+Jzq5iq8rmdr400NUmvVauWbDab0tPT3fYfOnRICQme1+uuU6eOx+ODgoJUs6bnYmd2u112u73Y/piYGL/+w/NX0dHRfG4VwOdWMXxu3kX7WLn4fa0YPreK4XPzLtrHysXva8XwuVVMVf/crGa+eEhIiDp27Kjly5e77V++fLm6du3q8ZwuXboUO/5///ufOnXq5HE+OgAAAAAAVYWpSbokjRkzRm+++aZmzpyp7du366GHHlJqaqpr3fMJEyZo6NChruNHjBihvXv3asyYMdq+fbtmzpypGTNmaNy4cWa9BQAAAAAAKoXpc9JvvfVWHTlyRE899ZTS0tLUqlUrLVu2TA0bNpQkpaWlKTU11XV848aNtWzZMj300EN6/fXXVbduXb366qvlWiPdbrdr4sSJHocwoWR8bhXD51YxfG7m4HOvGD63iuFzqxg+N3PwuVcMn1vF8LlVTHX53ExfJx0AAAAAABQxfbg7AAAAAAAoQpIOAAAAAICfIEkHAAAAAMBPkKQDAAAAAOAnSNIBAAAAAPATJOkAAAAAAPgJknQAAAAAAPwESToAAAAAAH6CJB0AAAAAAD9Bkg4AAAAAgJ8gSQcAAAAAwE+QpAMAAAAA4CdI0gEAAAAA8BMk6QAAAAAA+AmSdAAAAAAA/ARJOgAAAAAAfiKgk/RVq1Zp4MCBqlu3riwWi5YsWVKu81NSUnT99dcrMTFRERERateunebMmVPsGIvFUmz76aefKvGdAAAAAACqgyCzAzBTdna22rZtq2HDhmnIkCHlPn/t2rVq06aNHn74YSUkJOjjjz/W0KFDFR0drYEDB7odu2PHDkVHR7se165d+4LjBwAAAABULxbDMAyzg/AHFotFixcv1uDBg137cnNz9fjjj2vOnDk6fvy4WrVqpcmTJ6tHjx4lXqd///5KSEjQzJkzJRX1pPfs2VPHjh1TbGysd98EAAAAAKBKC+jh7uczbNgwrVmzRu+9956+++473XzzzerTp49++eWXEs/JyMhQXFxcsf3t27dXYmKievXqpS+//NKbYQMAAAAAqiiS9BLs2rVLc+fO1fz589WtWzc1adJE48aN05VXXqlZs2Z5PGfBggX65ptvNGzYMNe+xMREvfHGG1q4cKEWLVqkZs2aqVevXlq1apWv3goAAAAAoIoI6Dnppdm8ebMMw1DTpk3d9jscDtWsWbPY8SkpKbr77rv13//+Vy1btnTtb9asmZo1a+Z63KVLF+3bt08vvviirrrqKu+9AQAAAABAlUOSXoLCwkLZbDZt2rRJNpvN7bnIyEi3xytXrtTAgQP18ssva+jQoee9dufOnTV79uxKjRcAAAAAUPWRpJegffv2Kigo0KFDh9StW7cSj0tJSdGAAQM0efJk/eUvfynTtbds2aLExMTKChUAAAAAUE0EdJKelZWlnTt3uh7v3r1bW7duVVxcnJo2bao777xTQ4cO1UsvvaT27dvr8OHD+uKLL9S6dWv169dPKSkp6t+/vx544AENGTJE6enpkqSQkBBX8bgpU6aoUaNGatmypXJzczV79mwtXLhQCxcuNOU9AwAAAAD8V0AvweZcHu1cd911l9566y3l5eXpmWee0TvvvKMDBw6oZs2a6tKliyZNmqTWrVvr7rvv1ttvv13s/O7duyslJUWS9Pzzz+uNN97QgQMHFBYWppYtW2rChAnq16+ft98eAAAAAKCKCegkHQAAAAAAf8ISbAAAAAAA+ImATNINw1BmZqYYRAAA7mgfAcAz2kcAvhKQSfqJEycUExOjEydOmB0KAPgV2kcA8Iz2EYCvBGSSDgAAAACAPyJJBwAAAADAT5CkAwAAAADgJ0jSAQAAAADwEyTpAAAAAAD4CZJ0AAAAAAD8RJDZAZjpq52HFRHpkEWSxSJZZJHVIumsny0W53+LfrZIslossliK/quzHjv3FV3P4vb47GNc19RZ+855vWCb9fRmkeX06wAAAAAAqreATtJH/N8mWe3hZodxXjarRcE2i4KtVgUHWRVktbgS+CCbVb/+nqVL4qNUKypEESFBigwNUpQ9SDZr0UCJVvWiVScmVHWiQ9UgLlxBNgZQAAAAAIA/qnJJen5+vp588knNmTNH6enpSkxM1N13363HH39cVmv5ks9GtcIVZI+QJBUahiTJMKTC0z8Ypx8bZ/3sPK7QkCSj6L+GVChDp/9XdMxZ+4qOLdpfdB1Dpw+R4XY9zwoKDRUUGspRoeTwfMyO305ox2/nf8/2IKsc+YX6y1UX6bqWCerYMO78JwEAAAAAfKLKJemTJ0/W9OnT9fbbb6tly5bauHGjhg0bppiYGD3wwAPlu9aNbRQZFe2lSMvP+WVAYaGh/NNbQaGh/ILCMz+f9Ti/0FDB6Z+PZufKZrXoVF6BTuUW6GRugU7m5mvfsVP6LTNHNqtF+4+dkiO/UJL0xqpf9caqXxVktWjF2O5qWDPC3DcPAAAAAKh6Sfq6det0/fXXq3///pKkRo0aae7cudq4caPJkV0415x3m0VBtsq/fqFh6ODxU/r+QIY+2HpQB46fUn6hoe4vpOirh3uqfg3/H/oPAAAAANVZlUvSr7zySk2fPl0///yzmjZtqm+//VZfffWVpkyZUuI5DodDDseZceKZmZk+iNT/WC0W1a8Rrvo1wtW3VaJ2/Z6lB+dtlSRdOflL7flnf3MDBOBzZraPp3ILdCTboZy8QuXkFciRX+D6+XCWQzFhIa5jnfUzrRaLQoOtCgu2KdS1WRUTFqxIexCFNgFUGu4fAZilyiXpDz/8sDIyMnTppZfKZrOpoKBAzz77rG6//fYSz0lOTtakSZN8GGXV0KR2pF6/o4NGvrtZkvTr71m6qHakyVEB8CVvtY95BYXaeShLG/ccVXZugfYfO6n9x04pZcfvqhMdqmMnc13TbypLiM2qGhHBOpGTrwZx4WpTP0ZJNcJVNzZMiTGhatcgVuEhVe6fPQAm4f4RgFkshrNyWRXx3nvv6e9//7teeOEFtWzZUlu3btWDDz6ol19+WXfddZfHczx9E5qUlKS121L9ak66WYa99bUOZ+Wqca0IfTmuh9nhAPChktrHjIwMRUeXvX08kuXQht1HtXbXYc1en6oQm1W5BWVLwiPtQQoJssoeZFWIzarUoyfVNCFKVuvpXvGz/pkqNCRHfoEc+YXKzS+UI79QWY78MscZFmxT63oxurFDPXVrWlv1YsPKfC6AwFJZ7SMAlFeV61L4+9//rkceeUS33XabJKl169bau3evkpOTS0zS7Xa77Ha7L8OsUi6Oj9ThrKPafTjb7FAA+NiFtI95BYWavX6v1uw8os+3uy8v4UzQG9UMV6NaEUqICpU92KqGcRGqER6sqLBgRYcGKSzYVilD1HPyCpSZk6fMU/nKzMnT7sPZOpVXoCNZDv2W6dD3BzIkSafyCvT1nqP6es9RSUVLVA5uV0+D2tVVfFToBccBoPrg/hGAWapckn7y5MliS63ZbDYVFlbusMlAcnPHJK3/9ahiwoLNDgVAFWAYhl77YqdeWv6z2/56sWGqXyNMXS6qqZb1YpQQZffZHHHn/PT4qKLHHRrUKHbMsexc7TqcpeXbflNaRo52H87WDwcy9cOBTD3z8XZ1uaimpt7ZQTUiQoqdCwAA4CtVLkkfOHCgnn32WTVo0EAtW7bUli1b9PLLL2v48OFmh1Zl1Y0pGu6ZcSpP2Y58Rdir3K8FAB85cPyUrvjnF277hnSop6svTVCDOP9eIaJGRIg6RcSpU8M4SdLxk7la/cthffDtAf2W6dC6X4+o/dPL9fT1LfWnLo3MDRYAAASsKpeN/fvf/9Y//vEP3XfffTp06JDq1q2rv/71r3riiSfMDq3KigwNUlRokE7k5GvvkZNqUZd5VgCK2/V7lnq9tNL1eGCbRA3t0kihwV5YM9IHYsNDNLBtXQ1ok6iNe4/pqY+2SZL+8cGPyjiVp1FXX2JyhAAAIBBVucJxlSEzM1MxMTEUjjvLwNe+kiSNvbap7u/FjSkQqJzt47mFkfYczlaPF1Ncj6fd2UH1a/h3z3l5OfIL9MJnO7Rhd9F89eFXNNYTA1uYHBUAf1FS+wgAlc16/kMQSM6dYwoAOXkFrgTdapFm33N5tUvQJckeZNNj/Zrr5o71JUkz1+zWki0HTI4KAAAEGpJ0SJK6XFRTknRLp/omRwLA34ycs9n188y7LqvWRSYtFouGdmnkWprtwXlbdTQ71+SoAABAICFJhySpca0ISZLNyq8EgDMOZzm04qdDkqS/XnWRakYGxnJE/769vevnx5d8b2IkAAAg0JCRQZIUHlJU+OlETp7JkQDwJ48s/M71c//WiSZG4lvBNqtG9bxYkrTs+3R60wEAgM+QpEOSFBFSVOg/y5FvciQA/EV+QaE+317Ui37PFY19tua5v+jdIsH184JN+0yMBAAABBKSdEiSwlw96STpAIos/fag6+f+bQKnF93JYrFoWNdGkqTnlv1kbjAAACBgkKRDkhRhP92TTpIO4LTl236TJMWGBSvYFpj/XPS8NN7188Hjp0yMBAAABIrAvOtCMcxJB3Cur3YeliSN6N7E5EjMUyM8RJfWiZIkLfs+zeRoAABAICBJh6SzknTmpAOQtP/oSdf0l9b1YkyOxlzO9vGZj7ebHAkAAAgEJOmQJIWfVTiusNAwORoAZtt1OMv1c3Q1Xhe9LK6+NOH8BwEAAFQSknRIOtNTZBjSybwCk6MBYLZdh4qS9G6X1DI5EvN1aBDr+jnjFFOCAACAd5GkQ5JkD7LKenp1JealA/jlt6IkvWFcuMmRmC8qNFg1wotGE/x4MMPkaAAAQHVHkg5JRUsNOUe5U+EdwM+ne9Ib1owwORL/cOxk0ZeXL3y2w+RIAABAdUeSjmJW/XLY7BAAmCz1aLYkqX6NMJMj8Q8X1S76siJQl6IDAAC+w90GiqkXy005EOhO5RZKkmpF2k2OxD/0blFHkhQT4EX0AACA95Gkw+Xi2pGSiuanA0CUPUihwTazw/ALtSNDJElpGadMjgQAAFR3ZGNwCbYVVY5z5BeaHAkAf1DzdGKKMyMK0o7nmBwJAACo7kjS4RJ0eq5lXgFJOgBpz5GTZofgN5xJ+pHsXOWwTCUAAPAiknS4OHvSSdIBSFKQc11GKCo0yPXzztOV7wEAALyBJB0uQdaiX4dchrsDkDSwbV2zQ/AbFsuZLywWbNpvYiQAAKC6I0mHCz3pAM52du8xzujQsIbZIQAAgGqMJB0uzjnpFI4DIEnRoSw3drbLGhUl56dy802OBAAAVGck6XA505NumBwJAH8Qaacn/WzhIUWfx4kcknQAAOA9JOlwYU46gLNFM9zdTXhI0ZrxWQ6SdAAA4D0k6XBhTjqAs0WSpLtxJen0pAMAAC8iSYeLc056Lkk6AEnBNv6JOFvY6eHu9KQDAABv4g4MLs4bcoa7A5AoHHeu8OCinnTmpAMAAG8iSYdLkLVouDs96QAkKfR0UooizuHuJ+hJBwAAXkSSDhdnT3oePelAwLNaztSpQJHw09Xus3LyTI4EAABUZyTpcAmy0ZMOoEhIkFUWC0n62ajuDgAAfIEkHS7BVqq7AygSGsQ/D+dyzkmnujsAAPCmKnkXduDAAf3xj39UzZo1FR4ernbt2mnTpk1mh1XlBVE4DsBpduajFxN+urr7wYwckyMBAADVWZVbBPfYsWO64oor1LNnT33yySeKj4/Xrl27FBsba3ZoVV6wa7i7YXIkAMxmpye9mLNHGWWcylNMGNXvAQBA5atySfrkyZOVlJSkWbNmufY1atTIvICqkTNLsBWYHAkAs1HZvbj4aLvrZ8Pgy0wAAOAdpneVfPvtt7LZyn4zuHTpUnXq1Ek333yz4uPj1b59e/33v/8t9RyHw6HMzEy3DcUFueakc/MJBIqS2sdCktBiws764qKgkM8HqO64fwRgFtOTdKl8PRK//vqrpk2bpksuuUSfffaZRowYodGjR+udd94p8Zzk5GTFxMS4tqSkpMoIu9oJZk46EHBKah93Hso2OTL/Y7FYZOPLTCBgcP8IwCwWw8tj9m688cZSn8/IyFBKSooKCso2xDokJESdOnXS2rVrXftGjx6tb775RuvWrfN4jsPhkMPhcD3OzMxUUlKS1m5LVWRUdJleNxBs3Xdc//jgB11aJ0qfPniV2eEA8IGS2sf2jy/R23/tYV5gfuqm6WvlyC/U6vE9lRQXbnY4ALyopPYxIyND0dHcPwLwHq/PSf/www917bXXKiEhwePzZU3OnRITE9WiRQu3fc2bN9fChQtLPMdut8tut5f4PIq4CsfRkw4EjJLax0sTo0yIxv8FWS1yiKUqgUDA/SMAs3g9SW/evLmGDBmie+65x+PzW7du1UcffVTm611xxRXasWOH276ff/5ZDRs2vKA4IQVZTw935+YTCHjBVr+YDeV3ipaqLGC4OwAA8Bqv34V17NhRmzdvLvF5u92uBg0alPl6Dz30kNavX6/nnntOO3fu1Lvvvqs33nhDI0eOrIxwAxo96QCcgk63B3B3psAm7SQAAPAOr/ekT58+vdQh7c2bN9fu3bvLfL3LLrtMixcv1oQJE/TUU0+pcePGmjJliu68887KCDegBZ0uHMfNJ4AgC0m6JzaSdAAA4GVeT9K9MZdnwIABGjBgQKVfN9DRkw7Aycpwd4+CXV9mMtwdAAB4h9eT9LKuKUmVTPM556Rz8wkgmOHuHjHcHQAAeJvXk/TY2FhZShk2aRiGLBZLuau8o/K5etILCl1/LgACkzMZhTubjSQdAAB4l9eT9C+//NL1s2EY6tevn958803Vq1fP2y+NcnLOSZeKetNDgrhJBwLV2e0BzghmxBEAAPAyryfp3bt3d3tss9nUuXNnXXTRRd5+aZST7aye84JCbkCBQGajJ92jIHrSAQCAl9FVApezl1zKL+QGFAhk9KR7RnV3AADgbdyFwcV6Vk96PkM5gYAWTE+6RxTYBAAA3mZKkk5BMv909j15PsPdgYDGcHfPghnuDgAAvMzrc9JvvPFGt8c5OTkaMWKEIiIi3PYvWrTI26HgPCwWi4KsFuUXGsxJBwJcEOuke+T88iKfJB0AAHiJ15P0mJgYt8d//OMfvf2SuABWq0UqNOglAgJckM3sCPyT88uLXIa7AwAAL/F6kj5r1qxyHb9//37VrVtXVnpxTOGs8E5POhDYGO7uGdXdAQCAt/ldJtyiRQvt2bPH7DACVpBzKCdJOhDQDhzPMTsEv+RsI/PySdIBAIB3+F2Sbhgkh2ZyzbdkCTYgoDWMCzc7BL/kXJoujy8yAQCAl/hdkg5zWV1FkbgBBQKZc1g33AWxTjoAAPAyknS4cd6AMicdCGw2lsr0iOHuAADA20jS4Ybh7gAkiRzdM+dwd+p2AAAAb/G7JN3CnaGprBaGuwM40xbAnbMnPZfh7gAAwEv8LkmncJy5GO4OQCJJLwnD3QEAgLd5fZ308tq2bZvq1q1rdhgByzncncrFQGAjR/fMWVCP4e4AAMBbvJqk33jjjWU+dtGiRZKkpKQkb4WDMrC6etLpJQICGT3pngVZiwagMdwdAAB4i1eHu8fExLi26OhorVixQhs3bnQ9v2nTJq1YsUIxMTHeDAPlEMQSbABEkl4SZ086w90BAIC3eLUnfdasWa6fH374Yd1yyy2aPn26bDabJKmgoED33XefoqOjvRkGysHGnHQAkmx+V7HEP7BOOgAA8Daf3YbNnDlT48aNcyXokmSz2TRmzBjNnDnTV2HgPJxrIzMnHQhs9KR7xhJsAADA23yWpOfn52v79u3F9m/fvl2FzH/2GzbmpAMQSXpJXEuwMdwdAAB4ic+quw8bNkzDhw/Xzp071blzZ0nS+vXr9c9//lPDhg3zVRg4Dxtz0gGI6u4lYbg7AADwNp8l6S+++KLq1KmjV155RWlpaZKkxMREjR8/XmPHjvVVGDgPV5LOUE4goFnI0j1iuDsAAPA2nyXpVqtV48eP1/jx45WZmSlJFIzzQyTpAKQzyzHCnY3h7gAAwMt8Wr83Pz9fn3/+uebOnevqpTl48KCysrJ8GQZK4ZqTzlBOIKCRo3vmbCMLDb7IBAAA3uGznvS9e/eqT58+Sk1NlcPh0LXXXquoqCg9//zzysnJ0fTp030VCkrhrO5OTzoQ2GwMd/eINhIAAHibz3rSH3jgAXXq1EnHjh1TWFiYa/8NN9ygFStW+CoMnAfD3QFIzEkvyZkVMGgjAQCAd/isJ/2rr77SmjVrFBIS4ra/YcOGOnDggK/CwHlwAwpAYrh7SVgBAwAAeJvPetILCwtVUFBQbP/+/fsVFRXlqzBwHjaWFwIg1kkvifNz4YtMAADgLT5L0q+99lpNmTLF9dhisSgrK0sTJ05Uv379Knzd5ORkWSwWPfjggxceJOhJByCJJL0kTAkCAADe5rPh7q+88op69uypFi1aKCcnR3fccYd++eUX1apVS3Pnzq3QNb/55hu98cYbatOmTSVHG7goigRAYrh7Sc58kcloIwAA4B0+S9Lr1q2rrVu3au7cudq8ebMKCwt1zz336M4773QrJFdWWVlZuvPOO/Xf//5XzzzzjBciDkxn5ltyAwoEMjrSPeOLTAAA4G0+S9IlKSwsTMOHD9fw4cMv+FojR45U//79dc0115w3SXc4HHI4HK7HmZmZF/z61RVDOYHAUlL7yHB3z5gSBAQO7h8BmMVnc9IlaceOHRo1apR69eqla665RqNGjdJPP/1U7uu899572rx5s5KTk8t0fHJysmJiYlxbUlJSuV8zUHADCgSWktpHhrt7Zj39ryZfZALVH/ePAMzisyR9wYIFatWqlTZt2qS2bduqTZs22rx5s1q3bq358+eX+Tr79u3TAw88oNmzZys0NLRM50yYMEEZGRmubd++fRV9G9Xemeru3IACgaCk9tFKlu6RjeruQMDg/hGAWXw23H38+PGaMGGCnnrqKbf9EydO1MMPP6ybb765TNfZtGmTDh06pI4dO7r2FRQUaNWqVXrttdfkcDhks9nczrHb7bLb7Rf+JgIARZGAwFJS+8hwd8/OHm1kGIYsfE5AtcX9IwCz+KwnPT09XUOHDi22/49//KPS09PLfJ1evXrp+++/19atW11bp06ddOedd2rr1q3FEnSUD0WRAKBktrNGGNCbDgAAvMFnPek9evTQ6tWrdfHFF7vt/+qrr9StW7cyXycqKkqtWrVy2xcREaGaNWsW24/yO1PdnZtPADjX2Ul6fqGhIL4XBgAAlcxnSfqgQYP08MMPa9OmTercubMkaf369Zo/f74mTZqkpUuXuh0LcwRROA4ASnT2NADaSQAA4A0+S9Lvu+8+SdLUqVM1depUj89JksViUUFBQbmunZKScsHxoYjVtQQbc9IB4Fzn9qQDAABUNp8l6YUkfVUCw90BoGTMSQcAAN7m03XS4f+CrBSOA4CSWC0WOdN0RhwBAABv8GmSvmLFCg0YMEBNmjTRxRdfrAEDBujzzz/3ZQg4DytrAANAqWzU7gAAAF7ksyT9tddeU58+fRQVFaUHHnhAo0ePVnR0tPr166fXXnvNV2HgPJw3n3kF9BABgCdWpgUBAAAv8tmc9OTkZL3yyisaNWqUa9/o0aN1xRVX6Nlnn3XbD/NQ3R0ASmc7PeKo0KCdBAAAlc9nPemZmZnq06dPsf29e/dWZmamr8LAediYkw4ApaKdBAAA3uSzJH3QoEFavHhxsf0ffPCBBg4c6KswcB4swQYApWNOOgAA8CafDXdv3ry5nn32WaWkpKhLly6SpPXr12vNmjUaO3asXn31Vdexo0eP9lVYOEeQteh7G+ZaAoBnzuHutJMAAMAbfJakz5gxQzVq1NC2bdu0bds21/7Y2FjNmDHD9dhisZCkm8h2em0heogAwDMrPekAAMCLfJak796921cvhQtgZa4lAJTKdnqiGNOCAACAN/h0nXT4P9dwd24+AcAj53B3etIBAIA3+KwnXZL279+vpUuXKjU1Vbm5uW7Pvfzyy74MBSVwFURiriUAeER1dwAA4E0+S9JXrFihQYMGqXHjxtqxY4datWqlPXv2yDAMdejQwVdh4DycwzjzuPkEAI+o7g4AALzJZ8PdJ0yYoLFjx+qHH35QaGioFi5cqH379ql79+66+eabfRUGzsN2erg7N58A4Bm1OwAAgDf5LEnfvn277rrrLklSUFCQTp06pcjISD311FOaPHmyr8LAeZxZWog56QDgyZk56bSTAACg8vksSY+IiJDD4ZAk1a1bV7t27XI9d/jwYV+FgfNgriUAlM7VTlK7AwAAeIHP5qR37txZa9asUYsWLdS/f3+NHTtW33//vRYtWqTOnTv7KgycB0k6AJSOOekAAMCbfJakv/zyy8rKypIkPfnkk8rKytK8efN08cUX65VXXvFVGDgPbj4BoHSuaUG0kwAAwAt8kqQXFBRo3759atOmjSQpPDxcU6dO9cVLo5zOTtINw5Dl9M0oAKCIlS8zAQCAF/lkTrrNZtN1112n48eP++LlcAGcSbpELxEAeMK0IAAA4E0+KxzXunVr/frrr756OVSQ7ayec3qJAKA4qrsDAABv8lmS/uyzz2rcuHH66KOPlJaWpszMTLcN/uHsnvQ8lmEDgGLoSQcAAN7ks8Jxffr0kSQNGjTIbZ6zc95zQUGBr0JBKc5O0ulJB4DinM0kbSQAAPAGnyXps2bNUlJSkmw2m9v+wsJCpaam+ioMnMdZOTq9RADgAeukAwAAb/JZkj58+HClpaUpPj7ebf+RI0d0zTXX6K677vJVKCiFxWKRzWpRQaHBDSgAeEB1dwAA4E0+m5Ne0nJeWVlZCg0N9VUYKIMz8y2Zkw4A52KddAAA4E1e70kfM2aMpKIe2n/84x8KDw93PVdQUKANGzaoXbt23g4D5XCmcjE3oABwLpuV6u4AAMB7vJ6kb9myRVJRT/r333+vkJAQ13MhISFq27atxo0b5+0wUA7OG9A8hrsDQDFUdwcAAN7k9ST9yy+/lCQNGzZM//rXvxQdHe3tl8QFCmK+JQCUiNFGAADAm3xa3R1Vg5U56QBQIis96QAAwIt8VjgOVQfLCwFAyWyMNgIAAF5U5ZL05ORkXXbZZYqKilJ8fLwGDx6sHTt2mB1WtRJELxEAlMhV3Z0vMgEAgBdUuSR95cqVGjlypNavX6/ly5crPz9fvXv3VnZ2ttmhVRtW5lsCQIlYphIAAHiTz+akV5ZPP/3U7fGsWbMUHx+vTZs26aqrrjIpqurlzHB3bkAB4FxUdwcAAN5U5ZL0c2VkZEiS4uLiSjzG4XDI4XC4HmdmZno9rqqM4e5A4KB9LL9gW9EgtNx8vsgEqjPaRwBmqXLD3c9mGIbGjBmjK6+8Uq1atSrxuOTkZMXExLi2pKQkH0ZZ9VgpigQEDNrH8gu2FbWRJOlA9Ub7CMAsVTpJHzVqlL777jvNnTu31OMmTJigjIwM17Zv3z4fRVg1OYsi5THcHaj2aB/LL+h0TzptJFC90T4CMEuVHe5+//33a+nSpVq1apXq169f6rF2u112u91HkVV9QTZ60oFAQftYfvSkA4GB9hGAWapckm4Yhu6//34tXrxYKSkpaty4sdkhVTuu5YVI0gGgmCDr6Tnp9KQDAAAvqHJJ+siRI/Xuu+/qgw8+UFRUlNLT0yVJMTExCgsLMzm66sHK8kIAUCJ60gEAgDdVuTnp06ZNU0ZGhnr06KHExETXNm/ePLNDqzZc1d0L6EkHgHO5qrvTkw4AALygyvWkGwaJo7fZqO4OACVy1u2gcBwAAPCGKteTDu+zOqu7k6QDQDGskw4AALyJJB3FuKq700sEAMWQpAMAAG8iSUcxVHcHgJI563bkUbcDAAB4AUk6ijlT3Z0bUAA4l7Mn3UFPOgAA8AKSdBQTROE4ACjRmSXYCkyOBAAAVEck6SjGxhJsAFCioNM96Qx3BwAA3kCSjmLOzElnKCcAnCv49BeZrJMOAAC8gSQdxdiYkw4AJXLOSS8oNJgWBAAAKh1JOoqxMScdAErkXKZSkvLoTQcAAJWMJB3F2FzLC3HzCQDncvakS1R4BwAAlY8kHcWwvBAAlMy5AoYk5dJOAgCASkaSjmLsQUW/FqdyWV4IAM5lsVhciTojjgAAQGUjSUcxocE2SdLJ3HyTIwEA/+QccURPOgAAqGwk6SgmNLjo1+IkPekA4JGzeBzLsAEAgMpGko5i7EFFPek5eSTpAOAJPekAAMBbSNJRzJnh7iTpAOBJMD3pAADAS0jSUYxzuDuF4wDAsyArPekAAMA7SNJRjHO4Oz3pAOCZsyed6u4AAKCykaSjGLurcBzV3QHAE+akAwAAbyFJRzGhp3vST1E4DgA8CiJJBwAAXkKSjmKcc9LzCgyGcgKABxSOAwAA3kKSjmKc1d0letMBwJOw0+1kloNpQQAAoHKRpKOYIKtF1qJOIiq8A4AHUaFBkqTjJ/NMjgQAAFQ3JOkoxmKxsFY6AJQiKjRYknQsO9fkSAAAQHVDkg6PQl3LsDGUEwDOFe1M0ulJBwAAlYwkHR45l2FjuDsAFHdmuDs96QAAoHKRpMMje5BzrXSSdAA4V/TpJP0YSToAAKhkJOnwiDnpAFAy55x0CscBAIDKRpIOjyLt9BIBQEmi6EkHAABeQpIOj+rEhEqS9hzJNjkSAPA/zsJxGafyVFhomBwNAACoTkjS4VG92DBJ0u7fSdIB4FyRp3vSCw0pM4ch7wAAoPJU2SR96tSpaty4sUJDQ9WxY0etXr3a7JCqlboxRUk6PekAUFywzaqo09OC9h45aXI0AACgOqmSSfq8efP04IMP6rHHHtOWLVvUrVs39e3bV6mpqWaHVm3UjXUm6ScZygkAHrSoGy1JWrPrsMmRAACA6iTI7AAq4uWXX9Y999yje++9V5I0ZcoUffbZZ5o2bZqSk5NNjq56qB1lV4jNqtz8Qq379YiuuLiW2SEBgF9pWz9WG3YfVcpPv+tv3ZvIYrGYHRIAHziZm6+g3HyzwwBQRYWHnD8Fr3JJem5urjZt2qRHHnnEbX/v3r21du1aj+c4HA45HA7X44yMDElSdtYJ7wVaDXRrFK7l2w7pT9NSdGlitMKDbSrrPWh57lUt4sYWVc9/7+qkqKioKp+Y0T5WXPNaQVLuSa3fcVJXPvOxakYUfblps1bt3wngQlX39rHTEx/Kag83KywAVdwPk647fxtpVDEHDhwwJBlr1qxx2//ss88aTZs29XjOxIkTDUlsbGxslbplZGT4otnzKtpHNjY2b2y0j2xsbGwlb+drIy2GYRiqQg4ePKh69epp7dq16tKli2v/s88+q//7v//TTz/9VOycc78JPX78uBo2bKjU1FTFxMT4JO7qIDMzU0lJSdq3b5+io6PNDqfK4HOrmKrwuVXHniLax4qpCr+v/ojPrWKqwudG+winqvD76o/43Cqmqnxu52sjq9xw91q1aslmsyk9Pd1t/6FDh5SQkODxHLvdLrvdXmx/TEyMX//h+avo6Gg+twrgc6sYPjfvon2sXPy+VgyfW8XwuXkX7WPl4ve1YvjcKqaqf25Vrrp7SEiIOnbsqOXLl7vtX758ubp27WpSVAAAAAAAXLgq15MuSWPGjNGf/vQnderUSV26dNEbb7yh1NRUjRgxwuzQAAAAAACosCqZpN966606cuSInnrqKaWlpalVq1ZatmyZGjZsWKbz7Xa7Jk6c6HEIE0rG51YxfG4Vw+dmDj73iuFzqxg+t4rhczMHn3vF8LlVDJ9bxVSXz63KFY4DAAAAAKC6qnJz0gEAAAAAqK5I0gEAAAAA8BMk6QAAAAAA+AmSdAAAAAAA/ARJOgAAAAAAfoIkHQAAAAAAP0GSDgAAAACAnyBJBwAAAADAT5CkAwAAAADgJ0jSAQAAAADwEyTpAAAAAAD4CZJ0AAAAAAD8BEk6AAAAAAB+giQdAAAAAAA/QZIOAAAAAICfIEkHAAAAAMBPBHSSvmrVKg0cOFB169aVxWLRkiVLynV+SkqKrr/+eiUmJioiIkLt2rXTnDlzih1jsViKbT/99FMlvhMAAAAAQHUQZHYAZsrOzlbbtm01bNgwDRkypNznr127Vm3atNHDDz+shIQEffzxxxo6dKiio6M1cOBAt2N37Nih6Oho1+PatWtfcPwAAAAAgOrFYhiGYXYQ/sBisWjx4sUaPHiwa19ubq4ef/xxzZkzR8ePH1erVq00efJk9ejRo8Tr9O/fXwkJCZo5c6akop70nj176tixY4qNjfXumwAAAAAAVGkBPdz9fIYNG6Y1a9bovffe03fffaebb75Zffr00S+//FLiORkZGYqLiyu2v3379kpMTFSvXr305ZdfejNsAAAAAEAVRZJegl27dmnu3LmaP3++unXrpiZNmmjcuHG68sorNWvWLI/nLFiwQN98842GDRvm2peYmKg33nhDCxcu1KJFi9SsWTP16tVLq1at8tVbAQAAAABUEQE9J700mzdvlmEYatq0qdt+h8OhmjVrFjs+JSVFd999t/773/+qZcuWrv3NmjVTs2bNXI+7dOmiffv26cUXX9RVV13lvTcAAAAAAKhySNJLUFhYKJvNpk2bNslms7k9FxkZ6fZ45cqVGjhwoF5++WUNHTr0vNfu3LmzZs+eXanxAgAAAACqPpL0ErRv314FBQU6dOiQunXrVuJxKSkpGjBggCZPnqy//OUvZbr2li1blJiYWFmhAgAAAACqiYBO0rOysrRz507X4927d2vr1q2Ki4tT06ZNdeedd2ro0KF66aWX1L59ex0+fFhffPGFWrdurX79+iklJUX9+/fXAw88oCFDhig9PV2SFBIS4ioeN2XKFDVq1EgtW7ZUbm6uZs+erYULF2rhwoWmvGcAAAAAgP8K6CXYnMujneuuu+7SW2+9pby8PD3zzDN65513dODAAdWsWVNdunTRpEmT1Lp1a9199916++23i53fvXt3paSkSJKef/55vfHGGzpw4IDCwsLUsmVLTZgwQf369fP22wMAAAAAVDEBnaQDAAAAAOBPWIINAAAAAAA/QZIOAAAAAICfCMgk3TAMZWZmipH+AOCO9hEAPKN9BOArAZmknzhxQjExMTpx4oTZoQCAX6F9BADPaB8B+EpAJukAAAAAAPgjknQAAAAAAPwESToAAAAAAH6CJB0AAAAAAD9Bkg4AAAAAgJ8wNUlPTk7WZZddpqioKMXHx2vw4MHasWNHqeekpKTIYrEU23766ScfRQ0AAAAAgHcEmfniK1eu1MiRI3XZZZcpPz9fjz32mHr37q1t27YpIiKi1HN37Nih6Oho1+PatWuX+/X7/muVgkI9v47l3MeWc/cUP+bcHRW5xrmHWM45wsMlil/znINKe40fD2ZKkh685hKNvvoSWa1leAEA1d7tb6xXvi1UMWHB+vVwlprUjlShYajQkOu/hmGo0DC07WCmGteKkD3IVqkxeHMlYqulqC20nv6i13r656L9Zz+26EROnrannVBuQaHqxYbp0we7KSo02IvRAQCAQGZqkv7pp5+6PZ41a5bi4+O1adMmXXXVVaWeGx8fr9jY2At6/X1HT8lqJymVpCmf/6JffsvS63d2MDsUAH7g+wMZstrzXI8PZx0t9fhdv2d7OyS/cOD4KT343lbNuPsys0MBAADVlKlJ+rkyMjIkSXFxcec9tn379srJyVGLFi30+OOPq2fPniUe63A45HA4XI8zM4t6j58a1FLhkVHFjj+398Ywzt+fc+4hxc7wcI1ir3OeAzxFcW5s5b2GIUOTPtwmSfr4+zT9u9CgNx0IICW1j50bx6njJfWUk1eg2lH2oqlFKuqBtlotsqiot9mRX6iQIKtsXmo3vHFV4/T/FcqQYRQ1z4bOjA4wTo8WcP1XUlZOvt5Y/askacVPh+TIL6j0kQMA/EtJ7SMAeJvfJOmGYWjMmDG68sor1apVqxKPS0xM1BtvvKGOHTvK4XDo//7v/9SrVy+lpKSU2PuenJysSZMmFdvfrE6UIqOiPZwRWBb9ratunLa26OctB3RTx/omRwTAV0pqHx+6tint4zmsVoumr9wlSTqRky97JEk6UJ2V1D4CgLdZjLJ0E/vAyJEj9fHHH+urr75S/frlSxIHDhwoi8WipUuXenze0zehSUlJWrstlZvQ0wa+9pUkKS4iRJv/ca3J0QDwFdrHskvLOKW//N8mSdLXj/ZSfHSoyREB8KaS2seMjAy3ukgAUNn8oif9/vvv19KlS7Vq1apyJ+iS1LlzZ82ePbvE5+12u+x2+4WEWO1dfWm8vvjpkLo3LX8BPgBVF+1j2SXGhLl+LvSLr7cBeBPtIwCzmLoEm2EYGjVqlBYtWqQvvvhCjRs3rtB1tmzZosTExEqOLrBcXDtSkpSbX2hyJADgv+xBRf9s5hXQVgIAAO8wtSd95MiRevfdd/XBBx8oKipK6enpkqSYmBiFhRX1WEyYMEEHDhzQO++8I0maMmWKGjVqpJYtWyo3N1ezZ8/WwoULtXDhQtPeR3UQE1a0nNCRbMd5jgSAwBVss8qRXygHX2gCAAAvMTVJnzZtmiSpR48ebvtnzZqlu+++W5KUlpam1NRU13O5ubkaN26cDhw4oLCwMLVs2VIff/yx+vXr56uwq6WY8NNJelauyZEAgP8KshXVm6cnHQAAeIupSXpZata99dZbbo/Hjx+v8ePHeymiwBXr6kknSQeAkgTbioa7MzUIAAB4i6lz0uE/ok8n6cdO5qqAikgA4FHQ6fXgc+lJBwAAXkKSDklSdGiwLJIMoyhRBwAU5+xJz6MnHQAAeAlJOiRJNqtFzv7z3YezTY0FAPyVc066g550AADgJSTpKGbjnmNmhwAAfinYSk86AADwLpJ0uDiXYbs0McrkSADAPwXbmJMOAAC8iyQdLnVjQiVJjjxuPgHAkyDnnHSSdAAA4CUk6XAJDir6dXDkF5gcCQD4J1dPOsPdAQCAl5CkwyXE5kzSufkEAE+CTs9Jzy1gqUoAAOAdJOlwCSZJB4BSOdtJetIBAIC3kKTDJSSIm08AKE0Qw90BAICXkaTD5cxwd+akA4AnwRSOAwAAXkaSDhdnDxHV3QHAs2ArPekAAMC7SNLhQuE4ACgdS7ABAABvI0mHSwhLsAFAqZxLsPFlJgAA8BaSdLhQ3R0ASsecdAAA4G0k6XChujsAlC6IOekAAMDLSNLhQk86AJTOtU46PekAAMBLSNLh4iocl8ecdADwxLkKBsPdAQCAt5Ckw4WCSABQOldPOu0kAADwEpJ0uFDdHQBK5/wyM7fAMDkSAABQXZGkw4U56QBQuiCrsyedLzMBAIB3kKTD5cycdJJ0APAk2DUnnZ50AADgHSTpcAkOomoxAJQmiDnpAADAy0xN0pOTk3XZZZcpKipK8fHxGjx4sHbs2HHe81auXKmOHTsqNDRUF110kaZPn+6DaKs/V086wzgBwCObleruAADAu0xN0leuXKmRI0dq/fr1Wr58ufLz89W7d29lZ2eXeM7u3bvVr18/devWTVu2bNGjjz6q0aNHa+HChT6MvHoKCTpd3Z3h7gDgkdVS1E4ajHYHAABeEmTmi3/66aduj2fNmqX4+Hht2rRJV111lcdzpk+frgYNGmjKlCmSpObNm2vjxo168cUXNWTIEG+HXK0FUTgOAEp1uiNdBWTpAADAS0xN0s+VkZEhSYqLiyvxmHXr1ql3795u+6677jrNmDFDeXl5Cg4OLnaOw+GQw+FwPc7MzKykiKsXhrsDgYf2sXycPemFhSTpQHVH+wjALH5TOM4wDI0ZM0ZXXnmlWrVqVeJx6enpSkhIcNuXkJCg/Px8HT582OM5ycnJiomJcW1JSUmVGnt1EXJWT7pBLxEQEGgfy8d6uiudnnSg+qN9BGAWv0nSR40ape+++05z584977GW0z0ZTs6E8tz9ThMmTFBGRoZr27dv34UHXA0510k3DCmfXiIgINA+lo9ruDttJFDt0T4CMItfDHe///77tXTpUq1atUr169cv9dg6deooPT3dbd+hQ4cUFBSkmjVrejzHbrfLbrdXWrzVlbNqsVR0AxpsMzEYAD5B+1g+FI4DAgftIwCzmNqTbhiGRo0apUWLFumLL75Q48aNz3tOly5dtHz5crd9//vf/9SpUyeP89FRdmcn6fSkA0BxziSdnnQAAOAtpibpI0eO1OzZs/Xuu+8qKipK6enpSk9P16lTp1zHTJgwQUOHDnU9HjFihPbu3asxY8Zo+/btmjlzpmbMmKFx48aZ8RaqFbee9AJuQAHgXFR3BwAA3mZqkj5t2jRlZGSoR48eSkxMdG3z5s1zHZOWlqbU1FTX48aNG2vZsmVKSUlRu3bt9PTTT+vVV19l+bVKcFaOrvxClmEDgHNR3R0AAHibqXPSy1JB/K233iq2r3v37tq8ebMXIgpsFotFVotUaDCUEwA8obo7AADwNr+p7g7/4BzynkeSDgDFUN0dAAB4G0k63DiTdOakA0BxVHcHAADeVu4k/eOPP9a9996r8ePH66effnJ77tixY7r66qsrLTj4nu30DShz0gGgONdwd3rSAQCAl5QrSX/33Xd1/fXXKz09XevWrVP79u01Z84c1/O5ublauXJlpQcJ37FxAwoAJXL+o8mcdAAA4C3lKhz34osv6pVXXtH9998vSVqwYIGGDRumnJwc3XPPPV4JEL7lTNJZJx0AinP2pFPdHQAAeEu5kvSff/5ZAwYMcD2+6aabVKtWLQ0aNEh5eXm64YYbKj1A+BY96QBQMuecdHrSAQCAt5QrSY+OjtZvv/2mxo0bu/b16NFDH374oQYMGKD9+/dXeoDwLauFnnQAKImzurthFC0jajndZgIAAFSWcs1J/8Mf/qBPPvmk2P7u3bvrww8/1JQpUyorLpjkTE86heMA4FzWs5JyvssEAADeUK4k/aGHHlJoaKjH53r06KGPPvpIQ4cOrZTAYA7XnHSWYAOAYpxz0iWmBQEAAO8o13D37t27q3v37iU+36NHD/Xo0eNCY4KJnEuwcfMJAMWdlaOrkHnpAADAC8qVpGdmZpbpuOjo6AoFA/NR3R0ASnb2cHe+zAQAAN5QriQ9Nja21CI5ziI6BQUFFxwYzGGlujsAlMgtSacnHQAAeEG5kvQvv/zS9bNhGOrXr5/efPNN1atXr9IDgzmcw93zCigcBwDnchvuzpeZAADAC8o9J/1sNptNnTt31kUXXVSpQcE8rJMOACU7u3AczSQAAPCGclV3R/UXxJx0ACgRc9IBAIC3kaTDDXPSAaB0zs50qrsDAABvuOAkvbRCcqh6qO4OAKWzslQlAADwonLNSb/xxhvdHufk5GjEiBGKiIhw279o0aILjwymOLNOOoXjAMCToiTdIEkHAABeUa4kPSYmxu3xH//4x0oNBuajJx0ASme1SipguDsAAPCOciXps2bNKtfF9+/fr7p168pqZep7VcGcdAAonXO4O80kAADwBq9mzy1atNCePXu8+RKoZM7h7vkF3H0CgCfMSQcAAN7k1STdYChglWM7/RvBzScAeEZ1dwAA4E2MQ4cb5qQDQOnoSQcAAN5kapK+atUqDRw4UHXr1pXFYtGSJUtKPT4lJUUWi6XY9tNPP/km4ABwZrg71d0BwBOSdAAA4E3lKhxX2bKzs9W2bVsNGzZMQ4YMKfN5O3bsUHR0tOtx7dq1vRFeQLLSkw4ApXLWQmW4OwAA8AavJumW070NJenbt6/69u1b7uvGx8crNja2glGhNDaquwNAqajuDgAAvMmrSbq3Cse1b99eOTk5atGihR5//HH17Nmz1OMdDoccDofrcWZmplfiqg6C6EkHAgrtY/kx3B0IDLSPAMzi1Tnp27ZtU8OGDSvteomJiXrjjTe0cOFCLVq0SM2aNVOvXr20atWqUs9LTk5WTEyMa0tKSqq0mKqbMz3pzEkHAgHtY/lR3R0IDLSPAMxiMcrY3X3jjTeW+aKLFi0qfyAWixYvXqzBgweX67yBAwfKYrFo6dKlJR7j6ZvQpKQkrd2Wqsio6BLPC0TvrNuj+Zv2a9gVjTRxYEuzwwHgZbSP5fe3OZu0/9gpvfeXzup8UU2zwwHgJSW1jxkZGW61kQCgspV5uHtMTIzrZ8MwtHjxYsXExKhTp06SpE2bNun48ePlSuYrQ+fOnTV79uxSj7Hb7bLb7T6KqGpjTjoQWGgfy89Zb6WQdhKo1mgfAZilzEn6rFmzXD8//PDDuuWWWzR9+nTZbDZJUkFBge677z6ff7O4ZcsWJSYm+vQ1qzPWSQeA0tlOD3cvYLg7AADwggoVjps5c6a++uorV4IuSTabTWPGjFHXrl31wgsvlOk6WVlZ2rlzp+vx7t27tXXrVsXFxalBgwaaMGGCDhw4oHfeeUeSNGXKFDVq1EgtW7ZUbm6uZs+erYULF2rhwoUVeRvwwLlOekEBN58A4AnV3QEAgDdVKEnPz8/X9u3b1axZM7f927dvV2E5Co5t3LjRrTL7mDFjJEl33XWX3nrrLaWlpSk1NdX1fG5ursaNG6cDBw4oLCxMLVu21Mcff6x+/fpV5G3AA3rSAaB0Voa7AwAAL6pQkj5s2DANHz5cO3fuVOfOnSVJ69ev1z//+U8NGzaszNfp0aNHqcu0vfXWW26Px48fr/Hjx1ckZJSRleruAFAq6+l1UajdAQAAvKFCSfqLL76oOnXq6JVXXlFaWpqkouXRxo8fr7Fjx1ZqgPAt53D3PG4+AcAj1zrpzEkHAABeUKEk3Wq1unq1MzMzJYmlKKoJV3V35qQDgEdUdwcAAN5kreiJ+fn5+vzzzzV37lzXDcvBgweVlZVVacHB95iTDgCls1LdHQAAeFGFetL37t2rPn36KDU1VQ6HQ9dee62ioqL0/PPPKycnR9OnT6/sOOEjNuakA0CpbFR3BwAAXlShnvQHHnhAnTp10rFjxxQWFubaf8MNN2jFihWVFhx8j550ACids8Amw90BAIA3VKgn/auvvtKaNWsUEhLitr9hw4Y6cOBApQQGc7jWSefmEwA8cg13p50EAABeUKGe9MLCQhUUFBTbv3//fkVFRV1wUDAPPekAUDqquwMAAG+qUJJ+7bXXasqUKa7HFotFWVlZmjhxovr161dZscEEZ9ZJ5+YTADyxUt0dAAB4UYWGu7/yyivq2bOnWrRooZycHN1xxx365ZdfVKtWLc2dO7eyY4QPOYe705MOAJ5ZqO4OAAC8qEJJet26dbV161bNnTtXmzdvVmFhoe655x7deeedboXkUPVQ3R0ASmelujsAAPCiCiXpkhQWFqbhw4dr+PDhlRkPTOaak17A3ScAeEJ1dwAA4E0VTtJ37Nihf//739q+fbssFosuvfRSjRo1Spdeemllxgcfs1G1GABKRTsJAAC8qUKF4xYsWKBWrVpp06ZNatu2rdq0aaPNmzerdevWmj9/fmXHCB+yUt0dAEp1Zrg77SQAAKh8FepJHz9+vCZMmKCnnnrKbf/EiRP18MMP6+abb66U4OB7Z5ZgY046AHjiWoKNLzMBAIAXVKgnPT09XUOHDi22/49//KPS09MvOCiYJ8ha9CtRwJx0APCI6u4AAMCbKpSk9+jRQ6tXry62/6uvvlK3bt0uOCiYx3b6N4Lh7gDgmXNaEDk6AADwhgoNdx80aJAefvhhbdq0SZ07d5YkrV+/XvPnz9ekSZO0dOlSt2NRdTCMEwBKRzsJAAC8qUJJ+n333SdJmjp1qqZOnerxOUmyWCwqKCi4gPDgazYKxwFAqaxUdwcAAF5UoSS9kKJi1ZYzSefmEwA8s1HdHQAAeFGF5qSj+nLefFLdHQA8s/JlJgAA8KIKJ+krVqzQgAED1KRJE1188cUaMGCAPv/888qMDSagJx0ASmelujsAAPCiCiXpr732mvr06aOoqCg98MADGj16tKKjo9WvXz+99tprlR0jfMjKnHQAKJXFQnV3AADgPRWak56cnKxXXnlFo0aNcu0bPXq0rrjiCj377LNu+1G12M66+SwsNFxJOwCgCNXdAQCAN1WoJz0zM1N9+vQptr93797KzMws83VWrVqlgQMHqm7durJYLFqyZMl5z1m5cqU6duyo0NBQXXTRRZo+fXp5Qsd52M5KyvOYlw4AxVDdHQAAeFOFkvRBgwZp8eLFxfZ/8MEHGjhwYJmvk52drbZt25Z5iPzu3bvVr18/devWTVu2bNGjjz6q0aNHa+HChWV+TZTu7CSdG1AAKM45wojq7gAAwBsqNNy9efPmevbZZ5WSkqIuXbpIktavX681a9Zo7NixevXVV13Hjh49usTr9O3bV3379i3z606fPl0NGjTQlClTXHFs3LhRL774ooYMGVKRt4JznJ2kMy8dAIqzMdwdAAB4UYWS9BkzZqhGjRratm2btm3b5tofGxurGTNmuB5bLJZSk/TyWrdunXr37u2277rrrtOMGTOUl5en4OBgj+c5HA45HA7X4/IMyQ80bj3pBdyAAtUd7WP5sQoGEBhoHwGYpUJJ+u7duys7jjJJT09XQkKC276EhATl5+fr8OHDSkxM9HhecnKyJk2a5IsQqzyrxSKLJEP0pAOBgPax/JxJeh5fZALVGu0jALNUeJ10sziXvnEyTs8JPHf/2SZMmKCMjAzXtm/fPq/GWNXRSwQEDtrH8jsz3J3imkB1RvsIwCwV6kmXpP3792vp0qVKTU1Vbm6u23Mvv/zyBQfmSZ06dZSenu6279ChQwoKClLNmjVLPM9ut8tut3slpurIarVIhYbyuQEFqj3ax/JzfpHJaCOgeqN9BGCWCiXpK1as0KBBg9S4cWPt2LFDrVq10p49e2QYhjp06FDZMbp06dJFH374odu+//3vf+rUqVOJ89FRfhRFAoCSMdoIAAB4U4WGu0+YMEFjx47VDz/8oNDQUC1cuFD79u1T9+7ddfPNN5f5OllZWdq6dau2bt0qqWiu+9atW5Wamup6naFDh7qOHzFihPbu3asxY8Zo+/btmjlzpmbMmKFx48ZV5G2gBPQSAUDJaCMBAIA3VShJ3759u+666y5JUlBQkE6dOqXIyEg99dRTmjx5cpmvs3HjRrVv317t27eXJI0ZM0bt27fXE088IUlKS0tzJeyS1LhxYy1btkwpKSlq166dnn76ab366qssv1bJ6CUCgJI5RxvlFzAlCAAAVL4KDXePiIhwLUlRt25d7dq1Sy1btpQkHT58uMzX6dGjh6vwmydvvfVWsX3du3fX5s2byxcwyuXMDShJOgCcy0pPOgAA8KIKJemdO3fWmjVr1KJFC/Xv319jx47V999/r0WLFqlz586VHSN8zEpPOgCUKIg2EgAAeFGFkvSXX35ZWVlZkqQnn3xSWVlZmjdvni6++GK98sorlRogfM92ehJEHtXdAaAY5qQDAABvKneSXlBQoH379qlNmzaSpPDwcE2dOvX/27v/8Jrv+//jj+MkJwmSaERCiNBR1K+SrIRqu3HFj0snvVzWaz9UVXUUKxlKrd3Ftsa16labCmlR69ry2ZUyU9pmq6LYFDG2Zn60iMvia/Fzicovr+8fkcNxTlI5Ocn7nJP77brOdSWv8/7xPG/JU57v14+3zwODdVjdHQBqxmgjAADQkOq8cJzdbtfw4cN16dKlBggH/sB+oyudOekA4M65bgdFOgAAaABere7eu3dvffnll76OBX7CXvX3J71EAOCBc7g7q7sDAIAG4FWR/stf/lKzZ8/W5s2bVVhYqCtXrri8ENhuzrfkD1AAuB0LxwEAgIbk1cJxI0aMkCR95zvfke3GsD9JMsbIZrOpsrLSN9HBEjwnHQBqxiPYAABAQ/KqSF+zZo0SExNlt9td2q9fv66CggKfBAbrMN8SAGrGjUwAANCQvCrSn3zySRUWFiouLs6l/fz58xo2bJgmTJjgk+BgDVYuBoCa3byRyZQgAADge17NSa8e1n674uJihYeH1zsoWItnAANAzW4uHEeOBAAAvlennvSMjAxJks1m0wsvvKDmzZs736usrNTf//533XfffT4NEI3v5nPS6SUCgNvdeEolNzIBAECDqFORnpeXJ6mqJ/3w4cNyOBzO9xwOh/r27avZs2f7NkI0OnqJAKBm9mZVVTpTggAAQEOoU5G+bds2SdLEiRO1dOlSRUVFNUhQsBbD3QGgZs456TwnHQAANACvV3dH8GrG6u4AUCNWdwcAAA3Jq4XjENxC7Df+AKWXCADc3BjtrnKKdAAA0AAo0uGG56QDQM1uLq5JjgQAAL5HkQ43PCcdAGoWYr+5cJwx5EkAAOBbFOlww8JxAFCz6p50iZuZAADA9yjS4YahnABQs2a3/M/JzUwAAOBrFOlwQ086ANSsOkdK3MwEAAC+R5EONzcfL8Tq7gBwu1uHu1dUUqQDAADfokiHG56TDgA1u7UnvYKbmQAAwMco0uHG2ZNODxEAuLHZbKqu0xnuDgAAfI0iHW6Ykw4AtSNPAgCAhuIXRfry5cvVuXNnhYeHKzk5WTt37qxx208++UQ2m83t9e9//7sRIw5utq/fBACatJtrd1CkAwAA37K8SF+/fr1mzpypBQsWKC8vT0OGDNHIkSNVUFBQ635HjhxRYWGh89W1a9dGihgA0NRVLx5XXsmcdAAA4FshVgfw61//WpMmTdJTTz0lSXr11Vf14YcfKisrS5mZmTXuFxcXp1atWt3ROUpLS1VaWur8/sqVK/WKuakwhh4iINiRH73TjJ50IOiRHwFYxdKe9LKyMu3fv19paWku7Wlpadq9e3et+/br10/t2rXT0KFDtW3btlq3zczMVHR0tPOVmJhY79iDWYi96o/PMhaOA4Ie+dE7IcxJB4Ie+RGAVSwt0ouKilRZWan4+HiX9vj4eJ09e9bjPu3atVN2drZycnL03nvvqVu3bho6dKh27NhR43nmz5+vy5cvO1+nT5/26ecINg571Y9FaUWlxZEAaGjkR+8wJx0IfuRHAFaxfLi7VPU4m1sZY9zaqnXr1k3dunVzfp+amqrTp09ryZIlevDBBz3uExYWprCwMN8FHORCnUU6cy2BYEd+9E4zGz3pQLAjPwKwiqU96bGxsbLb7W695ufOnXPrXa/NwIEDdezYMV+H12Q5Qm4U6eUU6QDgifMRbCwcBwAAfMzSIt3hcCg5OVm5ubku7bm5uRo0aNAdHycvL0/t2rXzdXhNVijD3QGgVjwnHQAANBTLh7tnZGRo/PjxSklJUWpqqrKzs1VQUKApU6ZIqpoPdObMGf3+97+XVLX6e6dOndSzZ0+VlZXpD3/4g3JycpSTk2Plxwgqzp50hrsDgEfVj2BjTjoAAPA1y4v0xx57TOfPn9eiRYtUWFioXr16acuWLUpKSpIkFRYWujwzvaysTLNnz9aZM2cUERGhnj176v3339eoUaOs+ghBx3FjdXeKdADwzG6nJx0AADQMy4t0SXrmmWf0zDPPeHzvzTffdPl+7ty5mjt3biNE1XQ5h7uXM9wdADy52ZPOzUwAAOBbls5Jh3+qHu5exoJIAODRzYXj6EkHAAC+RZEONzd70inSAcATFo4DAAANhSIdbhw8Jx0AamXnOekAAKCBUKTDzc3V3ZmTDgCehNxYOK6cm5kAAMDHKNLhJpSedACoVViIXZJ0lQU2AQCAj1Gkw41z4biK6zKGoZwAcLvw0Ko8+VVZhcWRAACAYEORDjehN4ZxSvSmA4An4aFVPeklpfSkAwAA36JIh5vqheMkinQA8CTiRpF+lZ50AADgYxTpcGNvZlN1XzqLxwGAu3BnkU6OBAAAvkWRDjc2m02hITwrHQBqUj0nnSIdAAD4GkU6POJZ6QBQs5tz0hnuDgAAfIsiHR7dLNLpJQKA20Uw3B0AADQQinR4FBpSNSudnnQAcBfGwnEAAKCBUKTDI2dPOnPSAcANPekAAKChUKTDI+fCcQx3BwA31QvHldCTDgAAfIwiHR6xcBwA1Cw85EZPeik3MgEAgG9RpMMjx42e9K8YygkAbsIdDHcHAAANgyIdHrWKCJUkFRWXWhwJAPif6jnpX5VXqvK6sTgaAAAQTCjS4VFMC4ck6f9duWZxJADgf6rnpEtVhToAAICvUKTDo5tFOj3pAHA7h72ZbDe+5jFsAADAlyjS4VHrFmGS6EkHAE9sNptahIVIki6UlFkcDQAACCYU6fCI4e4AULv2rSIkSV+cK7E4EgAAEEwo0uHRrcPdjWFRJAC4XWJMVZF+7Nz/LI4EAAAEE78o0pcvX67OnTsrPDxcycnJ2rlzZ63bb9++XcnJyQoPD9fdd9+tFStWNFKkTUd1kf5VeaWuXGO+JQDcLvGu5pKkY+eKLY4EAAAEE8uL9PXr12vmzJlasGCB8vLyNGTIEI0cOVIFBQUetz9x4oRGjRqlIUOGKC8vT88//7x+/OMfKycnp5EjD27hoXbFtqwq1HcdL7I4GgDwPx1bVxXp+YVXGHEEAAB8xmYs/stiwIAB6t+/v7KyspxtPXr0UHp6ujIzM922f+6557Rp0ybl5+c726ZMmaJ//OMf2rNnzx2d88qVK4qOjtbuzwvUMjKq/h8iSL31t1P6v32n1TGmuaY89A1FR4TKZqt5+1reqnU/IBCN6NXO6hAaBPnxzl26WqYn136m8kqjHwzoqJROdyksxF5rLqwrcicCUbDnx8L/nldUFPkRgHeaO0K+dpuv36IBlZWVaf/+/Zo3b55Le1pamnbv3u1xnz179igtLc2lbfjw4Vq1apXKy8sVGhrqtk9paalKS28+Suzy5cuSJFP+lUy5pZfAr43oGqVNn13TycKrmreO3nTgVv9cOFyRkZGyBXgVRX70XnSo9N2+sXprzym9tePfemuH1REB/iHY82PKi39Ws7DmVoUFIMDdSY609C+woqIiVVZWKj4+3qU9Pj5eZ8+e9bjP2bNnPW5fUVGhoqIitWvnfvc2MzNTCxcudGsf3LdbPaIH0JRFv1r1B1ug96aQHwH4WrDnxzNZTzR+MACCxp3kSL/oJrn9LoIxptY7C56299Rebf78+crIyHB+f+nSJSUlJamgoEDR0dHeht3kXLlyRYmJiTp9+nTA/8fbmLhu3gmE6xYZGWl1CPVGfvSNQPh59UdcN+8EwnUjP6JaIPy8+iOum3cC5bp9XY60tEiPjY2V3W536zU/d+6cW295tbZt23rcPiQkRK1bt/a4T1hYmMLCwtzao6Oj/fofz19FRUVx3bzAdfMO161hkR99i59X73DdvMN1a1jkR9/i59U7XDfvBPp1s3R1d4fDoeTkZOXm5rq05+bmatCgQR73SU1Nddv+o48+UkpKisf56AAAAAAABArLH8GWkZGhN954Q6tXr1Z+fr5mzZqlgoICTZkyRVLVUKPHH3/cuf2UKVN06tQpZWRkKD8/X6tXr9aqVas0e/Zsqz4CAAAAAAA+Yfmc9Mcee0znz5/XokWLVFhYqF69emnLli1KSkqSJBUWFro8M71z587asmWLZs2apddee00JCQn67W9/q7Fjx97xOcPCwvSzn/3M4xAm1Izr5h2um3e4btbgunuH6+Ydrpt3uG7W4Lp7h+vmHa6bd4Lluln+nHQAAAAAAFDF8uHuAAAAAACgCkU6AAAAAAB+giIdAAAAAAA/QZEOAAAAAICfaHJF+vLly9W5c2eFh4crOTlZO3futDokv7djxw498sgjSkhIkM1m08aNG60Oye9lZmbqm9/8piIjIxUXF6f09HQdOXLE6rACQlZWlvr06aOoqChFRUUpNTVVW7dutTqsJoH8WHfkR++QI71DfrQO+bHuyI/eIT96J9jyY5Mq0tevX6+ZM2dqwYIFysvL05AhQzRy5EiXR7zBXUlJifr27atly5ZZHUrA2L59u6ZNm6a//e1vys3NVUVFhdLS0lRSUmJ1aH6vQ4cOWrx4sfbt26d9+/bp29/+tsaMGaN//etfVocW1MiP3iE/eocc6R3yozXIj94hP3qH/OidYMuPTeoRbAMGDFD//v2VlZXlbOvRo4fS09OVmZlpYWSBw2azacOGDUpPT7c6lIDy3//+V3Fxcdq+fbsefPBBq8MJODExMXr55Zc1adIkq0MJWuTH+iM/eo8c6T3yY8MjP9Yf+dF75EfvBXJ+bDI96WVlZdq/f7/S0tJc2tPS0rR7926LokJTcfnyZUlVyQJ3rrKyUuvWrVNJSYlSU1OtDidokR9hNXJk3ZEfGwf5EVYjP9ZdMOTHEKsDaCxFRUWqrKxUfHy8S3t8fLzOnj1rUVRoCowxysjI0AMPPKBevXpZHU5AOHz4sFJTU3Xt2jW1bNlSGzZs0L333mt1WEGL/AgrkSPrhvzYuMiPsBL5sW6CKT82mSK9ms1mc/neGOPWBvjS9OnTdejQIX366adWhxIwunXrpoMHD+rSpUvKycnRhAkTtH379oBNtIGC/AgrkCPrhvxoDfIjrEB+rJtgyo9NpkiPjY2V3W53u+t57tw5t7ujgK/MmDFDmzZt0o4dO9ShQwerwwkYDodDXbp0kSSlpKTos88+09KlS7Vy5UqLIwtO5EdYhRxZd+THxkV+hFXIj3UXTPmxycxJdzgcSk5OVm5urkt7bm6uBg0aZFFUCFbGGE2fPl3vvfeePv74Y3Xu3NnqkAKaMUalpaVWhxG0yI9obORI3yE/NizyIxob+dF3Ajk/NpmedEnKyMjQ+PHjlZKSotTUVGVnZ6ugoEBTpkyxOjS/VlxcrOPHjzu/P3HihA4ePKiYmBh17NjRwsj817Rp0/TOO+/oT3/6kyIjI5134KOjoxUREWFxdP7t+eef18iRI5WYmKj//e9/WrdunT755BN98MEHVocW1MiP3iE/eocc6R3yozXIj94hP3qH/OidoMuPpol57bXXTFJSknE4HKZ///5m+/btVofk97Zt22Ykub0mTJhgdWh+y9P1kmTWrFljdWh+78knn3T+jrZp08YMHTrUfPTRR1aH1SSQH+uO/OgdcqR3yI/WIT/WHfnRO+RH7wRbfmxSz0kHAAAAAMCfNZk56QAAAAAA+DuKdAAAAAAA/ARFOgAAAAAAfoIiHQAAAAAAP0GRDgAAAACAn6BIBwAAAADAT1CkAwAAAADgJyjSAQSEHTt26JFHHlFCQoJsNps2btzY4Oc8c+aMfvjDH6p169Zq3ry57rvvPu3fv7/BzwsAdUF+BADPAjU/UqQj6Jw8eVI2m00HDx6sdbuHH35YM2fObJSYXnjhBT399NP1Osbhw4fVoUMHlZSU+CiqwFJSUqK+fftq2bJljXK+ixcvavDgwQoNDdXWrVv1+eef65VXXlGrVq0a5fwAcKfIjwDgWcDmRwNYYMKECUaSkWRCQkJM586dzU9+8hNTXFxc72NXVFSYwsJCU15ebowxZtu2bUaSuXjxost258+fN1euXKn3+b7O2bNnTWRkpDlx4kS9j/Xoo4+an//85/UPKsBJMhs2bHBpKy0tNXPmzDEJCQmmefPm5v777zfbtm3z+hzPPfeceeCBB+oXKAA0MvIjAHgWSPmRnnRYZsSIESosLNSXX36pX/ziF1q+fLlmz55d7+Pa7Xa1bdtWISEhtW4XExOjyMjIep/v66xatUqpqanq1KlTvY81ceJEZWVlqbKysv6BBZmJEydq165dWrdunQ4dOqRx48ZpxIgROnbsmFfH27Rpk1JSUjRu3DjFxcWpX79+ev31130cNQA0PPIjAHjmt/mx3mU+4IUJEyaYMWPGuLQ99dRTpm3btsYYY65du2ZmzJhh2rRpY8LCwszgwYPN3r17ndteuHDBfP/73zexsbEmPDzcdOnSxaxevdoYY8yJEyeMJJOXl+f8+tbXhAkTjDHGPPTQQ+bZZ591Oeb48eNNq1atTEREhBkxYoQ5evSo8/01a9aY6Oho88EHH5ju3bubFi1amOHDh5v//Oc/tX7W3r17m2XLlrm0PfTQQ2b69Onm2WefNa1atTJxcXFm5cqVpri42DzxxBOmZcuW5u677zZbtmxx2a+0tNSEhYWZv/71r3d0nYOVbrsTevz4cWOz2cyZM2dcths6dKiZP3++V+cICwszYWFhZv78+ebAgQNmxYoVJjw83Kxdu7Y+oQNAgyI/AoBngZQf6UmH34iIiFB5ebkkae7cucrJydHatWt14MABdenSRcOHD9eFCxckVc3x/vzzz7V161bl5+crKytLsbGxbsdMTExUTk6OJOnIkSMqLCzU0qVLPZ7/iSee0L59+7Rp0ybt2bNHxhiNGjXKGZMkXb16VUuWLNFbb72lHTt2qKCgoNbe/4sXL+qf//ynUlJS3N5bu3atYmNjtXfvXs2YMUNTp07VuHHjNGjQIB04cEDDhw/X+PHjdfXqVec+DodDffv21c6dO+/gijYdBw4ckDFG99xzj1q2bOl8bd++XV988YWkm2sV1PaaPn2685jXr19X//799dJLL6lfv3760Y9+pMmTJysrK8uqjwkAdUZ+BADP/Dk/1j4eGGgke/fu1TvvvKOhQ4eqpKREWVlZevPNNzVy5EhJ0uuvv67c3FytWrVKc+bMUUFBgfr16+csfmsaSm632xUTEyNJiouLq3HRhmPHjmnTpk3atWuXBg0aJEl6++23lZiYqI0bN2rcuHGSpPLycq1YsULf+MY3JEnTp0/XokWLavxcp06dkjFGCQkJbu/17dtXP/3pTyVJ8+fP1+LFixUbG6vJkydLkl588UVlZWXp0KFDGjhwoHO/9u3b6+TJkzWesym6fv267Ha79u/fL7vd7vJey5YtJVVdt/z8/FqPc9dddzm/bteune69916X93v06OG86QMAgYD8CACe+XN+pEiHZTZv3qyWLVuqoqJC5eXlGjNmjH73u9/piy++UHl5uQYPHuzcNjQ0VPfff7/zl2Tq1KkaO3asDhw4oLS0NKWnpzuLa2/k5+crJCREAwYMcLa1bt1a3bp1c/nFbN68ubNAl6p+Ec+dO1fjcb/66itJUnh4uNt7ffr0cX5tt9vVunVr9e7d29kWHx8vSW7Hj4iIcOldh9SvXz9VVlbq3LlzGjJkiMdtQkND1b179zs+5uDBg3XkyBGXtqNHjyopKalesQJAYyI/AoBn/pwfKdJhmW9961vKyspSaGioEhISFBoaKkkqLCyUJNlsNpftjTHOtpEjR+rUqVN6//339Ze//EVDhw7VtGnTtGTJEq9iqZqm4rn91jiqY6xms9lq3FeScwj+xYsX1aZNG5f3PB3r1rbq816/ft1luwsXLrjcKGgqiouLdfz4cef3J06c0MGDBxUTE6N77rlHP/jBD/T444/rlVdeUb9+/VRUVKSPP/5YvXv31qhRo+p8vlmzZmnQoEF66aWX9N3vfld79+5Vdna2srOzffmxAKDeyI8A4FnA5kevZsQD9eRp4bhqxcXFxuFwmLffftvZVlZWZtq3b29efvllj/usWLHCREZGGmNcF44zxphdu3YZSaaoqMhln1sXjjt69KiRZHbt2uV8v6ioyERERJg//vGPxpibC8fdasOGDaa2X6PKykoTFRXl9riH2xetM8aYpKQk85vf/MalTR4eFdGhQwfzxhtv1HjOYFX9KL3bX9ULAZaVlZkXX3zRdOrUyYSGhpq2bduaRx991Bw6dMjrc/75z382vXr1MmFhYaZ79+4mOzvbR58GAHyH/AgAngVqfqQnHX6nRYsWmjp1qubMmaOYmBh17NhRv/rVr3T16lVNmjRJUtV87eTkZPXs2VOlpaXavHmzevTo4fF4SUlJstls2rx5s0aNGqWIiAjnPJNqXbt21ZgxYzR58mStXLlSkZGRmjdvntq3b68xY8Z4/VmaNWumYcOG6dNPP1V6errXx6l28uRJnTlzRsOGDav3sQLNww8/XOuohdDQUC1cuFALFy702TlHjx6t0aNH++x4ANAQyI8A4Fmg5kdWd4dfWrx4scaOHavx48erf//+On78uD788EPnwgwOh0Pz589Xnz599OCDD8put2vdunUej9W+fXstXLhQ8+bNU3x8vMsKjLdas2aNkpOTNXr0aKWmpsoYoy1btrgNS6+rp59+WuvWrXMbtu6Nd999V2lpacz7AwAAAIKUzdR2awFAvRljNHDgQM2cOVPf+973vD5OaWmpunbtqnfffddlUT0AAAAAwYOedKCB2Ww2ZWdnq6Kiol7HOXXqlBYsWECBDgAAAAQxetIBAAAAAPAT9KQDAAAAAOAnKNIBAAAAAPATFOkAAAAAAPgJinQAAAAAAPwERToAAAAAAH6CIh0AAAAAAD9BkQ4AAAAAgJ+gSAcAAAAAwE9QpAMAAAAA4Cf+P8EwAURmFaO6AAAAAElFTkSuQmCC", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "time_labels = [\"After implantation\", \"Start of TDS\", \"50 s after TDS start\"]\n", - "\n", - "fig, axs = plt.subplots(3, 3, sharex=True, sharey=\"row\", figsize=(12, 8))\n", - "for i, profile in enumerate(profile_exports):\n", - " axs[i, 0].set_ylabel(profile.field.name)\n", - " for j, time in enumerate(profile.times):\n", - " axs[0, j].set_title(time_labels[j])\n", - " plt.sca(axs[i, j])\n", - " plt.plot(profile.x, profile.data[j])\n", - " plt.fill_between(\n", - " profile.x,\n", - " profile.data[j],\n", - " alpha=0.2,\n", - " )\n", - "\n", - "for ax in axs.flat:\n", - " ax.spines[\"top\"].set_visible(False)\n", - " ax.spines[\"right\"].set_visible(False)\n", - " ax.set_ylim(bottom=0)\n", - "plt.xlim(0, 3.5e-6)\n", - "axs[2, 0].set_xlabel(\"Position (m)\")\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAHACAYAAABNgAlmAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAARapJREFUeJzt3Xl8VOXd///3TCYbkATCkkVAAigim5goBGUrFsQqItrbWitQxd5UxIVy91use73FtopKVRAFLG54V5bqT6ugAoGKSyDIKgWMEEJijEACJGSb8/sjZGCWIGTWnPN6Ph7zIGeZM5+cWubNdV3numyGYRgCAACwCHu4CwAAAAglwg8AALAUwg8AALAUwg8AALAUwg8AALAUwg8AALAUwg8AALAUwg8AALAUwg8AALAUwg8AALAUws9p5OTk6JprrlF6erpsNpuWL19+Vu8/fvy4Jk6cqD59+sjhcGjs2LE+z3v++efVs2dPxcfHq0ePHlq0aJH/xQMAAJ8IP6dx7Ngx9evXT88991yT3l9XV6f4+HjddddduuKKK3yeM2fOHM2YMUMPP/ywtm3bpkceeURTpkzRu+++60/pAACgETYWNj0zNptNy5Ytc2u9qa6u1v3336/XX39dhw8fVu/evfXnP/9Zw4YN83r/xIkTdfjwYa/Wo0GDBumyyy7TX//6V9e+e+65R7m5uVq3bl2QfhsAAKzLEe4CmrNf//rX+vbbb7V48WKlp6dr2bJluvLKK7Vlyxadd955Z3SNqqoqxcXFue2Lj4/XF198oZqaGkVHRwejdAAALIturybas2eP3nzzTf3jH//Q4MGD1a1bN02fPl2XX365Fi5ceMbXGTVqlF5++WVt2LBBhmEoNzdXCxYsUE1NjUpLS4P4GwAAYE20/DTRxo0bZRiGzj//fLf9VVVVatu27Rlf54EHHlBxcbEGDhwowzCUkpKiiRMn6i9/+YuioqICXTYAAJZH+Gkip9OpqKgobdiwwSuktGrV6oyvEx8frwULFujFF1/Ud999p7S0NM2bN08JCQlq165doMsGAMDyCD9N1L9/f9XV1amkpESDBw/2+3rR0dHq2LGjJGnx4sW6+uqrZbfTKwkAQKARfk7j6NGj2r17t2s7Pz9fmzZtUnJyss4//3zdfPPNGj9+vJ566in1799fpaWl+uSTT9SnTx9dddVVkqTt27erurpaBw8e1JEjR7Rp0yZJ0kUXXSRJ+s9//qMvvvhCAwYM0KFDhzRr1ixt3bpVf//730P96wIAYAk86n4aq1ev1vDhw732T5gwQa+88opqamr02GOPadGiRSosLFTbtm2VnZ2tRx55RH369JEkdenSRXv37vW6RsNt37Fjh375y19q586dio6O1vDhw/XnP/9ZPXr0CO4vBwCARRF+AACApUTsoJKZM2fqkksuUUJCgjp06KCxY8dq586dp33P6tWrZbPZvF5ff/11iKoGAACRLmLDz5o1azRlyhR99tlnWrlypWprazVy5EgdO3bsR9+7c+dOFRUVuV5nOuEgAAAwv2bT7fX999+rQ4cOWrNmjYYMGeLznIYxOocOHVLr1q2b9DlOp1MHDhxQQkKCbDabHxUDAIBQMQxDR44cUXp6+o8+Ld1snvYqKyuTJCUnJ//ouf3799fx48d14YUX6v777/c5aLkxBw4cUKdOnZpcJwAACJ+CggLX1DGNaRbhxzAMTZs2TZdffrl69+7d6HkNEwRmZmaqqqpKr776qkaMGKHVq1c32lpUVVWlqqoqt8+S6m9eYmJiYH8RAAAQFOXl5erUqZMSEhJ+9Nxm0e01ZcoUvffee1q3bt2PpjlP11xzjWw2m9555x2fxx9++GE98sgjXvvLysoIPwAANBPl5eVKSko6o+/viB3w3GDq1Kl65513tGrVqrMOPpI0cOBA7dq1q9HjM2bMUFlZmetVUFDgT7kAACDCRWy3l2EYmjp1qpYtW6bVq1crIyOjSdfJy8tTWlpao8djY2MVGxvb1DIBAEAzE7HhZ8qUKXrjjTf0z3/+UwkJCSouLpYkJSUlKT4+XlJ9q01hYaEWLVokSXrmmWfUpUsX9erVS9XV1Xrttde0ZMkSLVmyJGy/BwAAiCwRG37mzJkjSRo2bJjb/oULF2rixImSpKKiIu3bt891rLq6WtOnT1dhYaHi4+PVq1cvvffee651tgAAAJrFgOdQOpsBUwAAIDKYasAzAABAIBF+AACApRB+AACApRB+AACApRB+AACApRB+AACApUTsPD8AgObBMAwZhmQ0/OzaLxmqPyYf+xrOlxp+rv+h4Qqe12y4jlF/ktc+t/Mb+cyTn3XqNesPJLeMVXLLmEDeGkQowg8QJg1/QdcZhpwNPzvrf3Ya9cfrt0/8fGK/0+n5vvr9De894+uceG+d0/tnz+uc+nmnXtM4cZ363+fEdU75WTpRr8dxNVxHDdc45cvLaGSf12c0HHP/XOOU484TX4ZOo+HL0pDT6f650snfqf7ck1/ITp+fcfJL1nnKzyf3N3yG+5ew15ez6z+E04cG9y/xU35Pr4Bw4lMa/YI/5TMaCR6eAUGGe92eNZjRLwd01v+O7S2bzRbuUhBEhB9EHMMwVFNnqKq2TlW1TtXUOVVTa6jGWf9zbZ1Rv6/OUG2dUzVOQzW1TtU6nao+sa+2zlB1nbP+Z2fDzyffV+d0qs6p+j9PfJHX1hmunz1ftSdCgK9zap2GnE5DtU6nnIbq/3TW/+l9zonrOA3TfnkAzdkbn+/TrZdlqHuHVuEuBUFE+MEZMQxDVbVOVVTX6VhVrSqq61RRXeuxXb/vWFX9n8dr6sNLda1TVbVOV5hpeFU37Ktp2D55HADCpaiskvBjcoQfi6morlXpkWp9f7RKPxyt0uHKGpVX1qiskdexqlpVVNXpWHXtiS4CADA3WmXNj/BjIuXHa7T/YKX2H6rQ/kOV2n+oUgcOV+r7o1UqPVql749UqaK6LtxlIkjsNslus8lut5382XbiZ/spP5+y32azKeqU8202ndi2nTgm1892mxRls7nOazjXpoZtm2yq328/5eeG/ae+7+S5J+o4cVw2yaaG2k78bJd04jPsbsdtJ37vE9dV/e9pqz/dVcOpx22un0/5DF/7PH6nhs+zn/ilPK97svaT+xv+lE7W6ronOvlendgnr32n3sP69zRcxOZx/MS7T77/lPM9f/dT6zjtZ+rk+fKxz/P3OHmux/0+zft9feapNcvzPY2cL5vO6DN9123ToCc+1nflVa5zyD7mR/hpho4cr9HO4iP6uviIdp54/afkiA5X1IS7tJCIibLLEWVTdJRd0VE2Oex2RTtsiraf3O+IsivmxDFHlM3jPXZF2W1y2OuDguPEl73DXh8EvI7ZG47ZFWWToqLsirJ5HjvlZbMpKsrmOieqsdepocJuc/vSjLKf/NluO3GuXfIVYBoCD4CmORmX6rHet/kRfpqBssoafZF/UJ9/84M+zz+obQfKIqILKj46Si1jo9QixqEWMVFqEROllrENPzsUFx2lWIddsdF2xUbZFduw7bArxmFXrOPk8ZioqPrzPI857Ip22OvDi70hFPBFDyBw+CvFegg/Eaqyuk4f7fhO/9xUqNU7v1dtgNNOXLRd7VrFqnWLaCXFn3wlxrtvt4p1qFWs42TAiY1SyxiH4qOjaG0AYAqef5NFwL8tEWSEnwhTVFapl3Ly9X+5BTpaVXvW77fZpJSEOHVsE6+ObeJ1Tpt4pSbGqV2rWLVLiFX7E3+2jImiBQUAfCH9mB7hJ0Icr6nTC6t268Wcb87oUW+H3aZu7VupR2pC/SslQd06tFJ66zjFOqJCUDEAmAP/ELQewk8E2F1yRFNez9PO7440ek6Mw67Mzm00oGuyBnZtq4s6tVZcNCEHAALNoOnH9Ag/YfZF/kHd9vcvdeS4dxeX3SYN6tZO116Urit7pyohLjoMFQKAuXk2/PCwl/kRfsJoy/4y/XrhFzrmMfdOlN2mGy/ppN8O7aZOyS3CVB0AWBPhx/wIP2FyuKJav3k11yv4XJCaoGd+cZEuSE0MU2UAYC0M+bEewk+YPPrudhWVHXfbd0XPDvrbTRcrPoaxPAAQKl6THIapDoQO4ScMvio4rKV5hW77Ls1I1vM3X8yTWgAQYt5jfog/ZmcPdwFW9Pyq3W7bCXEOzf5Ff4IPAEQAoo/5EX5CrPBwpT7a8Z3bvinDuys1KS5MFQGAtTHkx3oIPyH23uYDbutytYyJ0q8Gnhu+ggDA4jwnOaTXy/wIPyH20fYSt+1r+qWrVSxDrwAgXLxbfkg/Zkf4CaGjVbXK3XvQbd/IXilhqgYA4AstP+ZH+AmhLfvL3Lq8HHabBnVrF76CAAAM+rEgwk8IfbX/sNt2z7RE1ucCgDDzzD40/Jgf4SeEth0od9vu2zEpTJUAABow4Nl6CD8htO+HY27bPVITwlQJAKAxrOpufoSfENp3sMJtuzOLlgJA2DHkx3oIPyFSfrxGhypq3PYRfgAg/LyXtwhPHQgdwk+I7D9Y6bZts0kd2xB+ACDSkH3Mj/ATIocqqt2227SIUYyD2w8A4ea1qjtNP6bHt2+IeIaf1i2iw1QJAOBUnt1eMD/CT4h4jvdp0yImTJUAAGBthJ8QKfPq9qLlBwAiEb1e5kf4CRHPlp+keFp+ACASeE5yCPMj/ISI94BnWn4AIBJ4L29B04/ZEX5C5MjxWrftpHjCDwBEAub5sR7CT4hU1TrdtuNjWNAUACIR4cf8CD8hUlVT57bNHD8AEBkY8mM9fAOHiGfLTyzhBwAigtckh2GqA6HDN3CIeIcfur0AIBJ4j/kh/pgd4SdEqmrdu71o+QGAyET0MT++gUOkqsaj5SeaWw8AkYAhP9bDN3CI0O0FABHKq98rPGUgdAg/IeLZ7cXTXgAQGZjk0Hr4Bg4RnvYCgOaB8c7mxzdwCBiGoWq6vQAgIjHPj/UQfkLAs9VHouUHACKFd7cXzI5v4BDwGX542gsAIoLnqu50e5kf38Ah4NnlJdHtBQCRigHP5kf4CQHPJ70knvYCgEjBkB/r4Rs4BGrrvP8V4bDzfzcAiATey1uEpw6EDuEnBOp8/D8pivADABGBhU2th/ATAk6nj/DDs5UAEJlo+jG9iA0/M2fO1CWXXKKEhAR16NBBY8eO1c6dO3/0fWvWrFFmZqbi4uLUtWtXzZ07NwTVnp6vlh87LT8AEBn469hyIjb8rFmzRlOmTNFnn32mlStXqra2ViNHjtSxY8cafU9+fr6uuuoqDR48WHl5ebrvvvt01113acmSJSGs3FudR8sPuQcAIgfz/FiPI9wFNOaDDz5w2164cKE6dOigDRs2aMiQIT7fM3fuXHXu3FnPPPOMJKlnz57Kzc3Vk08+qeuvvz7YJTfKs+GH8T4AELno9TK/iG358VRWViZJSk5ObvSc9evXa+TIkW77Ro0apdzcXNXU1AS1vtPxbvkh/ABApOCvZOuJ2JafUxmGoWnTpunyyy9X7969Gz2vuLhYKSkpbvtSUlJUW1ur0tJSpaWleb2nqqpKVVVVru3y8vLAFX6C55gfWn4AIHJ4Pe1F04/pNYuWnzvvvFObN2/Wm2+++aPnek9Tbvjc32DmzJlKSkpyvTp16uR/wR48n/biSS8AiBxe8/yEpwyEUMSHn6lTp+qdd97RqlWr1LFjx9Oem5qaquLiYrd9JSUlcjgcatu2rc/3zJgxQ2VlZa5XQUFBwGpv4NXtRcsPAEQsGn7ML2K7vQzD0NSpU7Vs2TKtXr1aGRkZP/qe7Oxsvfvuu277VqxYoaysLEVHR/t8T2xsrGJjYwNSc2Po9gKAyEVjvPVEbMvPlClT9Nprr+mNN95QQkKCiouLVVxcrMrKStc5M2bM0Pjx413bkydP1t69ezVt2jTt2LFDCxYs0Pz58zV9+vRw/AouTo91TRnwDACRgxmerSdiw8+cOXNUVlamYcOGKS0tzfV66623XOcUFRVp3759ru2MjAy9//77Wr16tS666CL96U9/0uzZs8P6mLvkq+UnTIUAALx4r+1F/DG7iO72+jGvvPKK176hQ4dq48aNQaio6TwHPNPyAwBA+NAGEQJOg/ADAECkIPyEgOfTXgx4BoDI4T1FSpgKQcgQfkLAs+WH8AMAkcN7bS/Sj9kRfkKgzutpr/DUAQD4cbT8mB/hJwSY5wcAIhfDMK2H8BMCPO0FAJHLu9sLZkf4CQEGPANA5GLAs/UQfkKAbi8AaD4Y8Gx+hJ8QoNsLACIXfyNbD+EnBDyyD097AUAE8V7eIjx1IHQIPyFAtxcARDL+TrYawk8I0O0FAM0HC5uaH+EnBHjaCwAiF/8etR7CTwiwvAUARC6veX5o+DE9wk8IeLb80O0FAJGL7GN+hJ8QYMAzAEQu/j1qPYSfEGDAMwBELpuY4dlqCD8h4LmqexR3HQAihtc8P3R8mR5fwyHg2e1Fyw8ARC5afsyP8BMCnnNG2BnzAwARg3+PWo8jEBepqalRcXGxKioq1L59eyUnJwfisqbhNc8P/08DgIjhNeYnTHUgdJrc8nP06FG9+OKLGjZsmJKSktSlSxddeOGFat++vc4991zdfvvt+vLLLwNZa7PF014AEMGY6MdymhR+nn76aXXp0kUvvfSSfvKTn2jp0qXatGmTdu7cqfXr1+uhhx5SbW2tfvrTn+rKK6/Url27Al13s8LTXgDQfBB9zK9J3V6ffvqpVq1apT59+vg8fumll+rWW2/V3LlzNX/+fK1Zs0bnnXeeX4U2Z61bxKhL2xaqMww5nVJyy+hwlwQAOIF/jlpPk8LPP/7xjzM6LzY2VnfccUdTPsJUpgzvrinDu4e7DACADzYb8/xYDU97AQAszWvIDx1fphew8LNhw4ZAXQoAgLCh5cf8AhZ+rrvuukBdCgCAkOEZFOs5qzE///Vf/+Vzv2EYOnjwYEAKAgAglLy7vWB2ZxV+PvroI7366qtq1aqV237DMJSTkxPQwgAACAUGPFvPWYWfYcOGqVWrVho6dKjXsf79+wesKAAAwoUBz+Z3VuFn6dKljR774IMP/C4GAIBQY8iP9fg14Lm4uDhQdQAAEB4M+rEcv8LPyJEjA1UHAABhwcKm1uNX+DEYFQYAAJoZv8KP5wh5AACaG8+vMv5hb34sbwEAsDSvIT9kH9Mj/AAAcAqyj/n5FX5iYmICVQcAAGHBCA7r8Sv85ObmBqoOAADCwutpL5p+TI9uLwCApXkNeKbjy/T8Dj+VlZWqqKhwbe/du1fPPPOMVqxY4e+lAQAIOVp+zM/v8HPttddq0aJFkqTDhw9rwIABeuqpp3Tttddqzpw5fhcIAEAwMebHevwOPxs3btTgwYMlSW+//bZSUlK0d+9eLVq0SLNnz/a7QAAAgov0YzV+h5+KigolJCRIklasWKFx48bJbrdr4MCB2rt3r98FAgAQTExyaD1+h5/u3btr+fLlKigo0Icffuha76ukpESJiYl+FwgAQCgRfczP7/Dz4IMPavr06erSpYsGDBig7OxsSfWtQP379/e7QAAAgolOL+tx+HuBG264QZdffrmKiorUr18/1/4RI0bouuuu8/fyAAAElXe3V3jqQOj4HX4kKTU1VampqW77Lr300kBcGgCAoPKa5JCOL9NjkkMAAE5By4/5EX4AAJbGPD/WQ/gBAFiaZ/ah4cf8CD8AAEuz2VjY1GrOOvxUVlaqsLDQa/+2bdsCUhAAAOFF+jG7swo/b7/9ts4//3xdddVV6tu3rz7//HPXsVtuuSXgxQEAAATaWYWfxx57TBs3btRXX32lBQsW6NZbb9Ubb7whienAAQDNE/P8WM9ZzfNTU1Oj9u3bS5KysrKUk5OjcePGaffu3V59pgAANAde8/wQfkzvrFp+OnTooM2bN7u227Ztq5UrV2rHjh1u+wEAACLVWYWfV199VR06dHDbFxMTozfffFNr1qwJaGEAAISCV7cXA55N76zCT8eOHd2WsSguLnb9fNlllwWuKgAAQsRrnh+yj+n5Nc/PyJEjA1WHTzk5ObrmmmuUnp4um82m5cuXn/b81atXy2azeb2+/vrroNYJADAPso/5+bWwabCf8Dp27Jj69eunX//617r++uvP+H07d+5UYmKia7thkDYAAJ54Xsd6/Ao/wX7Ca/To0Ro9evRZv69Dhw5q3bp14AsCAJgOMzxbjymXt+jfv7/S0tI0YsQIrVq16rTnVlVVqby83O0FALAO77W9SD9mZ6rwk5aWpnnz5mnJkiVaunSpevTooREjRignJ6fR98ycOVNJSUmuV6dOnUJYMQAg4pB9TM+vbq+YmJhA1REQPXr0UI8ePVzb2dnZKigo0JNPPqkhQ4b4fM+MGTM0bdo013Z5eTkBCACshDE/luNXy09ubm6g6giagQMHateuXY0ej42NVWJiotsLAGAdXjM8h6kOhI5fLT8Njh8/rs2bN6ukpEROp9Pt2JgxYwLxEU2Wl5entLS0sNYAAIhc3mt7EX/Mzu/w88EHH2j8+PEqLS31Omaz2VRXV9fkax89elS7d+92befn52vTpk1KTk5W586dNWPGDBUWFmrRokWSpGeeeUZdunRRr169VF1drddee01LlizRkiVLmlwDAMBaiD7m5/eA5zvvvFM///nPVVRUJKfT6fbyJ/hI9d1q/fv3V//+/SVJ06ZNU//+/fXggw9KkoqKirRv3z7X+dXV1Zo+fbr69u2rwYMHa926dXrvvfc0btw4v+oAAJgXQ36sx2b42b6XmJiovLw8devWLVA1hVV5ebmSkpJUVlbG+B8AsIC/fvi1nl+1x7U9pl+6Zt/UP4wVoSnO5vvb75afG264QatXr/b3MgAAhAUDnq3H7zE/zz33nH7+859r7dq16tOnj6Kjo92O33XXXf5+BAAAIcOAZ/PzO/y88cYb+vDDDxUfH+9aWLSBzWYj/AAAIhpre1mP3+Hn/vvv16OPPqo//OEPsttNNWE0AMACvJe3gNn5nVaqq6t14403EnwAAM2T10Q/4SkDoeN3YpkwYYLeeuutQNQCAEDYsbCp+fnd7VVXV6e//OUv+vDDD9W3b1+vAc+zZs3y9yMAAAgahvxYj9/hZ8uWLa5JCLdu3ep2zMYoMgBAhPNe3iI8dSB0/A4/q1atCkQdAACEhdc8P4Qf02OUMgAAsJQmhZ9T19M6E4WFhU35GAAAgs77YS+afsyuSeHnkksu0e23364vvvii0XPKysr00ksvqXfv3lq6dGmTCwQAIJi85vkh+5hek8b87NixQ48//riuvPJKRUdHKysrS+np6YqLi9OhQ4e0fft2bdu2TVlZWfrrX/+q0aNHB7puAACCguxjfk1q+UlOTtaTTz6pAwcOaM6cOTr//PNVWlqqXbt2SZJuvvlmbdiwQf/+978JPgCAiMaDydbj19NecXFxGjdunMaNGxeoegAACCnPaVno9jI/nvYCAMAN6cfsCD8AAJyClh/zI/wAACyNMT/WQ/gBAFia1wzPYaoDoeN3+Pnoo48aPfbiiy/6e3kAAILKe20v4o/Z+R1+fvazn+l3v/udqqurXfu+//57XXPNNZoxY4a/lwcAIKSIPubnd/jJycnRu+++q0suuUTbtm3Te++9p969e+vo0aP66quvAlEjAABBw5Af6/E7/AwYMEB5eXnq27evMjMzdd111+l3v/udPvnkE3Xq1CkQNQIAEDTe3V7hqQOhE5ABzzt37tSXX36pjh07yuFw6Ouvv1ZFRUUgLg0AQFAx4Nl6/A4/TzzxhLKzs/XTn/5UW7du1ZdffulqCVq/fn0gagQAIGQY8Gx+foefZ599VsuXL9ff/vY3xcXFqVevXvriiy80btw4DRs2LAAlAgAQPMzzYz1+re0lSVu2bFG7du3c9kVHR+uvf/2rrr76an8vDwAAEFB+t/x4Bp9TDR061N/LAwAQVCxsaj1+t/w8+uijpz3+4IMP+vsRAACEjMGQZ9PzO/wsW7bMbbumpkb5+flyOBzq1q0b4QcAENEY8mM9foefvLw8r33l5eWaOHGirrvuOn8vDwBAUDHPj/UEZWHTxMREPfroo3rggQeCcXkAAALGs+WH8GN+QVvV/fDhwyorKwvW5QEAAJrE726v2bNnu20bhqGioiK9+uqruvLKK/29PAAAQeX1tBcDnk3P7/Dz9NNPu23b7Xa1b99eEyZMYFV3AEDEY8yP9fgdfvLz8wNRBwAAEYHsY35BG/MDAEBzwKPu1tOklp9p06ad8bmzZs1qykcAABAaXv1e4SkDodOk8ONrbh9fPAeRAQAQabwedSf9mF6Tws+zzz6rXr16KSoqKtD1AAAQVgx4Nr8mjfnp37+/Dh48KEnq2rWrfvjhh4AWBQBAqNBJYT1NCj+tW7fWN998I0n69ttv5XQ6A1oUAAChYpPnPD8wuyZ1e11//fUaOnSo0tLSZLPZlJWV1WgXWENIAgAgEnnP80P8MbsmhZ958+Zp3Lhx2r17t+666y7dfvvtSkhICHRtAACEHNHH/Jo8yWHD0hUbNmzQ3XffTfgBADRLDPmxHr9neF64cGEg6gAAICxY3sJ6mOEZAGBpDHi2HsIPAACnounH9Ag/AABrY9CP5RB+AACW5r28BczO7wHPkvTxxx/r448/VklJideEhwsWLAjERwAAEBSe61DS62V+foefRx55RI8++qiysrJckx4CANBcsbCp+fkdfubOnatXXnlFt9xySyDqAQAgpPgnu/X4PeanurpagwYNCkQtAACEHPP8WI/f4WfSpEl64403AlELAAAhR/ixHr+7vY4fP6558+bpo48+Ut++fRUdHe12fNasWf5+BAAAQMD4HX42b96siy66SJK0detWt2MMfgYARDpmeLYev8PPqlWrAlEHAABh4d3tRfwxOyY5BAAAlhKQ8HP48GE99dRTmjRpkm6//XbNmjVLZWVlfl83JydH11xzjdLT02Wz2bR8+fIffc+aNWuUmZmpuLg4de3aVXPnzvW7DgAAYB5+h5/c3Fx169ZNTz/9tA4ePKjS0lI9/fTT6tatmzZu3OjXtY8dO6Z+/frpueeeO6Pz8/PzddVVV2nw4MHKy8vTfffdp7vuuktLlizxqw4AgHkxw7P1+D3m595779WYMWP00ksvyeGov1xtba0mTZqke+65Rzk5OU2+9ujRozV69OgzPn/u3Lnq3LmznnnmGUlSz549lZubqyeffFLXX399k+sAAJiX99pepB+z8zv85ObmugUfSXI4HPr973+vrKwsfy9/VtavX6+RI0e67Rs1apTmz5+vmpoar8fwJamqqkpVVVWu7fLy8qDXCQCIXLT8mJ/f3V6JiYnat2+f1/6CggIlJCT4e/mzUlxcrJSUFLd9KSkpqq2tVWlpqc/3zJw5U0lJSa5Xp06dQlEqACBCMCuL9fgdfm688Ubddttteuutt1RQUKD9+/dr8eLFmjRpkm666aZA1HhWvPtuDZ/7G8yYMUNlZWWuV0FBQdBrBABEDub5sR6/u72efPJJ2Ww2jR8/XrW1tZKk6Oho/fa3v9UTTzzhd4FnIzU1VcXFxW77SkpK5HA41LZtW5/viY2NVWxsbCjKAwBEIOb5sR6/w09MTIyeffZZzZw5U3v27JFhGOrevbtatGgRiPrOSnZ2tt599123fStWrFBWVpbP8T4AAHgi+pif3+GnQYsWLdSnT59AXU6SdPToUe3evdu1nZ+fr02bNik5OVmdO3fWjBkzVFhYqEWLFkmSJk+erOeee07Tpk3T7bffrvXr12v+/Pl68803A1oXAMA8GPJjPU0KP9OmTdOf/vQntWzZUtOmTTvtuf4sbJqbm6vhw4e7fa4kTZgwQa+88oqKiorcBltnZGTo/fff17333qvnn39e6enpmj17No+5AwAa5TUklKYf02tS+MnLy1NNTY3r58b4u7DpsGHDTtv3+sorr3jtGzp0qN+TKwIArIQBz1bTpPBz6mKmf//739WxY0fZ7e4PjhmGwZNTAIBmhwHP5uf3o+4ZGRk+59A5ePCgMjIy/L08AABBxTw/1uN3+GksIR89elRxcXH+Xh4AgKBiyI/1NPlpr4bBxzabTQ8++KDbo+11dXX6/PPPddFFF/ldIAAAwcTCptbT5PDTMNDZMAxt2bJFMTExrmMxMTHq16+fpk+f7n+FAACEEAubml+Tw0/DoOdf//rXevbZZ5WYmBiwogAACBWG/FiP35McLly40PXzj62jBQBApPFe3iI8dSB0/B7wLEnz589X7969FRcXp7i4OPXu3Vsvv/xyIC4NAEBQEX6sx++WnwceeEBPP/20pk6dquzsbEnS+vXrde+99+rbb7/VY4895neRAAAAgeJ3+JkzZ45eeukl3XTTTa59Y8aMUd++fTV16lTCDwAgotkY9WM5fnd71dXVKSsry2t/Zmamamtr/b08AADB5dXtRb+X2fkdfn71q19pzpw5XvvnzZunm2++2d/LAwAQVExyaD1+d3tJ9QOeV6xYoYEDB0qSPvvsMxUUFGj8+PFuq777s8I7AABAIPgdfrZu3aqLL75YkrRnzx5JUvv27dW+fXtt3brVdR6PvwMAIhEzPFuP3+Hn1BXeAQBobry7vUg/ZufXmJ+amhoNHz5c//nPfwJVDwAAYUXLj/n5FX6io6O1detWurQAAM0WX2HW4/fTXuPHj9f8+fMDUQsAACHnOc8PDT/m5/eYn+rqar388stauXKlsrKy1LJlS7fjPOEFAIhkLG9hPQF92stz7A/dYQCA5of0Y3Y87QUAsDT+mW49AZnk8PDhw5o/f7527Nghm82mCy+8ULfeequSkpICcXkAAIKHbi/L8XvAc25urrp166ann35aBw8eVGlpqWbNmqVu3bpp48aNgagRAICgYcCz9fjd8nPvvfdqzJgxeumll+Rw1F+utrZWkyZN0j333KOcnBy/iwQAIFRY2NT8/A4/ubm5bsFHkhwOh37/+9/7XO0dAIBIwrM51uN3t1diYqL27dvntb+goEAJCQn+Xh4AgKBiVXfr8Tv83Hjjjbrtttv01ltvqaCgQPv379fixYs1adIk3XTTTYGoEQCAoGFhU+vxu9vrySeflM1m0/jx41VbWyupftmL3/72t3riiSf8LhAAgFBizI/5+R1+YmJi9Oyzz2rmzJnas2ePDMNQ9+7d1aJFi0DUBwBAUDHmx3r87vaqrKxURUWFWrRooT59+igpKUnz5s3TihUrAlEfAABBxZgf6/E7/Fx77bVatGiRpPrJDgcMGKCnnnpK1157rebMmeN3gQAABJNXyw/px/T8Dj8bN27U4MGDJUlvv/22UlJStHfvXi1atEizZ8/2u0AAAIBA8jv8VFRUuB5pX7FihcaNGye73a6BAwdq7969fhcIAEBwMcOz1fgdfrp3767ly5eroKBAH374oUaOHClJKikpUWJiot8FAgAQTJ7dXjztZX5+h58HH3xQ06dPV5cuXTRgwABlZ2dLqm8F6t+/v98FAgAQTAz5sR6/H3W/4YYbdPnll6uoqEj9+vVz7R8xYoSuu+46fy8PAAAQUH6HH0lKTU1Vamqq275LL700EJcGACComOHZevzu9pKktWvX6le/+pWys7NVWFgoSXr11Ve1bt26QFweAICg8e72Iv2Ynd/hZ8mSJRo1apTi4+OVl5enqqoqSdKRI0f0+OOP+10gAAChRMuP+fkdfh577DHNnTtXL730kqKjo137Bw0apI0bN/p7eQAAgorlLazH7/Czc+dODRkyxGt/YmKiDh8+7O/lAQAIKhvz/FiO3+EnLS1Nu3fv9tq/bt06de3a1d/LAwAQVCxvYT1+h5///u//1t13363PP/9cNptNBw4c0Ouvv67p06frjjvuCESNAACEDAOezc/vR91///vfq6ysTMOHD9fx48c1ZMgQxcbGavr06brzzjsDUSMAAEDABGSen//93//VH//4R23fvl1Op1MXXnihWrVqFYhLAwAQVN7LW4SnDoSOX+HH6XTqlVde0dKlS/Xtt9/KZrMpIyNDN9xwg2655RaviaMAAIg0DHi2niaP+TEMQ2PGjNGkSZNUWFioPn36qFevXtq7d68mTpzI0hYAgGaJhU3Nr8ktP6+88opycnL08ccfa/jw4W7HPvnkE40dO1aLFi3S+PHj/S4SAIBgoZPCeprc8vPmm2/qvvvu8wo+kvSTn/xEf/jDH/T666/7VRwAAMHmNeYnPGUghJocfjZv3qwrr7yy0eOjR4/WV1991dTLAwAQEl5jfkg/ptfk8HPw4EGlpKQ0ejwlJUWHDh1q6uUBAACCosnhp66uTg5H40OGoqKiVFtb29TLAwAQEoz5sZ4mD3g2DEMTJ05UbGysz+MNq7sDABDJfGUfwzCYrsXEmhx+JkyY8KPn8KQXACDS+co4hkGLkJk1OfwsXLgwkHUAAACEhN8LmwIA0Lx5N/HwwJe5EX4AAJbmu9uL+GNmhB8AgKX5HPAc8ioQSoQfAABgKREffl544QVlZGQoLi5OmZmZWrt2baPnrl69Wjabzev19ddfh7BiAEBz4uuRdnq9zC2iw89bb72le+65R3/84x+Vl5enwYMHa/To0dq3b99p37dz504VFRW5Xuedd16IKgYANDe+u71IP2YW0eFn1qxZuu222zRp0iT17NlTzzzzjDp16qQ5c+ac9n0dOnRQamqq6xUVFRWiigEAZkDLj7lFbPiprq7Whg0bNHLkSLf9I0eO1Keffnra9/bv319paWkaMWKEVq1aFcwyAQDNHJMZWk+TJzkMttLSUtXV1XktnpqSkqLi4mKf70lLS9O8efOUmZmpqqoqvfrqqxoxYoRWr16tIUOG+HxPVVWV21Ic5eXlgfslAAARz3NVd5hfxIafBp4D0U633kqPHj3Uo0cP13Z2drYKCgr05JNPNhp+Zs6cqUceeSRwBQMAmpXGlreAeUVst1e7du0UFRXl1cpTUlLi1Rp0OgMHDtSuXbsaPT5jxgyVlZW5XgUFBU2uGQBgDgx4NreIDT8xMTHKzMzUypUr3favXLlSgwYNOuPr5OXlKS0trdHjsbGxSkxMdHsBAADziuhur2nTpumWW25RVlaWsrOzNW/ePO3bt0+TJ0+WVN9qU1hYqEWLFkmSnnnmGXXp0kW9evVSdXW1XnvtNS1ZskRLliwJ568BAIhgdHtZT0SHnxtvvFE//PCDHn30URUVFal37956//33de6550qSioqK3Ob8qa6u1vTp01VYWKj4+Hj16tVL7733nq666qpw/QoAgAjnc5LDMNQRKoZh6Iv8gyo4VKnLu7dTalJcuEsKOZvB6m1uysvLlZSUpLKyMrrAAMACCg9X6rInPnHbt+XhkUqIiw5TRcFTXevU3Yvz9K+t9eNpYx12zb6pv0b1Sg1zZf47m+/viB3zAwBAKFjpQfeX1n7jCj6SVHUiDO0/VBHGqkKP8AMAsDSfY35CX0bQHa+p07ycb3zsd2rumj1hqCh8CD8AAEvzNcmhGQeErN5ZorLKGp/H/u/L/fr+SJXPY2ZE+AEAwJMJw8+qr79v9Fh1nVPvfHUghNWEF+EHAGBpVlnb67P8H057fFne/hBVEn6EHwCApfnKPmab4bmorFJ7f3Af1PyH0Re4bW8tLNeu746EsqywIfwAAKzNApMcfpF/0G07Mc6h2y7PUIeEWLf9y/IKQ1lW2BB+AAAwuc37y9y2L+mSrOgou669KN1t//K8QjmdJkt+PhB+AACW5vNprzDUEUzbD5S7bfc+J0mSNLb/OW77D5Qd1/pvTj82yAwIPwAAS/O9tpd54o9hGNpe5B5+LkyvnwH5wrREXZCa4Hbs7Q3mH/hM+AEAWJrvAc/mcaDsuNf8Phem1Ycfm82mn2d1cjv2r61FOnLc93xAZkH4AQDAxHZ4dHklxDnUsU28a/vai9LlsJ+MgMdrnHpvc1HI6gsHwg8AwNJ8rupuoqafPd8fddu+IDXB7Xdu1ypWwy/o4HaO2bu+CD8AAEsz+zw/33x/zG27a7tWXuf8PLOj23bu3kPKLz3mdZ5ZEH4AAPBknuyjb0rdW366tm/pdc7wCzqobcsYt33LNpq39YfwAwCwNLMvb+HZgtO1vXfLT3SUXWM85vxZauI5fwg/AABLM/M8P2WVNSo9Wu22L6Odd8uPJI3r7971tf9QpXL3HgpabeFE+AEAWJuJl7f4xmOwc5Tdps7JLXye2/ucRHXv4N4qZNbFTgk/AAB4MMuAZ88ur87JLRTj8P3Vb7PZNO5i9xmf/7/NRaqqrQtafeFC+AEAWJqZx/x4P+nlu8urwdiLznG7H0eO1+rT3eZb7oLwAwCwNJ+Pupuj4cfrSa/Gxvs0SG8dr4s7t3Hbt2J7ccDrCjfCDwDA0nxOchiGOoLBq+XHx5Nenkb1SnHbXrn9O9WZ7Kkvwg8AAB7MsLCp02n4eMz99C0/kjTywlS37dKj1dq4z1xPfRF+AACWZtYhPwfKKlVV63Tbdybhp0u7luqR4r7S+ydflwS0tnAj/AAALM3XgGcTNPx4dXm1inWofavYM3rviJ7ua33l/Of7gNUVCQg/AABL8zXJoRn46vLyNb7JlyHnt3fb3nagXN8fqQpYbeFG+AEAwIM5Wn481vT6kSe9TnVx5zZqGRPltu/fu0sDUlckIPwAACzNrPP8fOPR8pPhYzX3xsQ47Mru1tZtn5m6vgg/AAB4MMMMz96PuZ95y4/k3fWVs6vUNAudEn4AAJZmxgHPx2vqdKCs0m3fWYef89zDT+nRKn1dfMTv2iIB4QcAAJPJLz3mFeB+bHZnT13atfRaBDVnlzm6vgg/AABL8/W0VzNv+PHq8kpLilOLGMdZX2fwee3cts0y7ofwAwCwNN/dXs07/uR7rOl1tl1eDTzH/eR+e0gV1bVNritSEH4AAJbmc2HTkFcRWLtLPB9zP/MnvU41qFtbOewn71B1nVOffdP8V3kn/AAAYDJ7PLq9undoWvhJiIv2WuU95z/Nf74fwg8AwNJ8rurejJt+DMPQHo8JDrudwWrujRlyvvu4nzUmGPdD+AEAWJrvOQ6bb/opKjuuiuo6t31NbfmRvMf95JceU8HBiiZfLxIQfgAA8NCcW348W31axTqUknhmC5r60js9ScktY9z2NffWH8IPAMDSzLa8hedg525nsaCpL3a7zXSPvBN+AACW5nPMTxjqCJRAjvdp4Dnb86d7flBNndPv64YL4QcAAA/NudvLq+XHj/E+DQZ7DHo+WlWrjXsP+X3dcCH8AADgoTkvbOr5mHsgWn46JMSpZ1qi276Pdnzn93XDhfADALA8s4z7Kaus0fdHqtz2+fOk16lGXNDBbftfW4ub7UzYhB8AgOV5Zp9m+p3uNd7HYbfp3LYtGjn77FzZO9Vte/+hSm07UB6Qa4ca4QcAYHmeg56ba/jZWXzEbfvcti0UHRWYr/pe6Yleq7z/a2tRQK4daoQfAAA8NNcxPzuK3FtiLvAYp+MPm82m0R6tP8vzDqjO2fzuFeEHAGB5Jhnyo+0e3VAXBjD8SNLVfdPdtgsPV2rtruY35w/hBwBgeZ4Dnptjt5fTaehrj26vQIef3uckqle6+zXf/GJfQD8jFAg/AADLs5mg7afgUIWOVtW67bswPbDhx2az6aZLO7vt+2hHib7xGGgd6Qg/AAB4aI4tP57jfZJbxqhDQtPX9GrMtRelq0VMlGu7zmnooXe2NasZnwk/AAA0/4Yfr/E+PdMS/FrTqzEJcdEan93Fbd/aXaUa8PjHmvT3XK3c/l3Ez/9D+AEAWJ7XPD/N8GmvLYVlbts9UwPb5XWq3w7r5rXS+8Fj1fpox3e6fVGuHnl3e0QHIMIPAMDymvuAZ8MwlFdw2G1f306tg/Z5SfHReu6X/RXTyBxCr3z6rRb8+9ugfb6/CD8AADRz+aXHdLiixm3fxZ1bB/UzB3Vrp9cmDdAFqQk+j//lg6914HBlUGtoKsIPAMDyPJ/2amYNP8rbd9htu31CrM5pHR/0z700I1n/unuwVt47RPf/rKfbsapap578cGfQa2gKwg8AwPK8u72aV/z5Iv+g23b/Tq2DMtjZF5vNpvNSEjRpcFfdMvBct2PLNxXq29JjjbwzfAg/AADL8x7w3HwYhqF1u0vd9l2akRyWWu796flqecpj8E5DmrN6T1hqOR3CDwAAzdg3pcdU6DG2Zsj57cNSS3LLGN3i8Rj8ko37veoLN8IPAMDymvOq7h9t/85tOyUxVud1aBWmaqTbLs9QrONkvKh1GnpxTWS1/hB+AACW59ntdfBYdVjqOFuGYej/cgvc9g09v33Ixvv40j4h1msJjMVfFqik/HiYKvIW8eHnhRdeUEZGhuLi4pSZmam1a9ee9vw1a9YoMzNTcXFx6tq1q+bOnRuiSgEAzVXH5BZu27cvytW8nD36eMd32lpYptKjVaqujbzlGz7d84P2fO8+oPj6izuGqZqT/ntoV0VHnQxg1bVO/e/7O8JYkTtHuAs4nbfeekv33HOPXnjhBV122WV68cUXNXr0aG3fvl2dO3f2Oj8/P19XXXWVbr/9dr322mv697//rTvuuEPt27fX9ddfH4bfAADQHPzy0k564J/b3PY9/v7XXufFRNnVIjZKLWMcahETpfiYKDnsNjmi7K4/o+02OaJO2We3KzrKJrvdJrtNsttssttssrl+rv9THts226nn68T2yX2Fhyv19ob9bvV1adsibIOdT5WWFK8bMju5rfj+z00HlBDn0I1ZndUjNUExjvC1v9iMCH6eb8CAAbr44os1Z84c176ePXtq7Nixmjlzptf5/+///T+988472rHjZLqcPHmyvvrqK61fv/6MPrO8vFxJSUkqKytTYmLwpgYHAESOmjqnRj2do28i8LHss/HY2N76lcfj5uFSVFapkU/n6MjxWq9jMVF2Db+gvV68JStgn3c2398R2+1VXV2tDRs2aOTIkW77R44cqU8//dTne9avX+91/qhRo5Sbm6uamhqf76mqqlJ5ebnbCwBgLdFRdi2YeIky2rUMdylNdnHn1vrFJZ3CXYZLWlK8nhjX1+ex6jpnfWtXmERs+CktLVVdXZ1SUlLc9qekpKi4uNjne4qLi32eX1tbq9LSUp/vmTlzppKSklyvTp0i5z8cAEDodGnXUivvHaK5v8rULwd0Vr9OrZWSGCt7M1jxfViP9po/4RI5GllrK1x+1jdNf72hr9v4nwZ9O7YOfUEnRPSYH8nX44fGaUex+zrf1/4GM2bM0LRp01zb5eXlBCAAsChHlF1X9k7Vlb1TXftq65z64Vi1jlXVqqK6TkeralVRXatjVXWqrKlTndNQbZ1TNXWGap0n/qwzVOd0quaUY4ZhyGlIzhN/1m+f3Gd4HDu5fer57uckxkXrqj5puqpPalif8Dqdn2d1Uua5bfTyunyt3/OD8k90LfbrmBS2miI2/LRr105RUVFerTwlJSVerTsNUlNTfZ7vcDjUtm1bn++JjY1VbGxsYIoGAJiOI8qulMS4cJfRrHVt30qPX9dHklRWUaOtB8rUL4irzv+YyGofO0VMTIwyMzO1cuVKt/0rV67UoEGDfL4nOzvb6/wVK1YoKytL0dHRQasVAACcmaQW0bqsezu1jA1f+0vEhh9JmjZtml5++WUtWLBAO3bs0L333qt9+/Zp8uTJkuq7rMaPH+86f/Lkydq7d6+mTZumHTt2aMGCBZo/f76mT58erl8BAABEmIjt9pKkG2+8UT/88IMeffRRFRUVqXfv3nr//fd17rn1j/EVFRVp376TcwhkZGTo/fff17333qvnn39e6enpmj17NnP8AAAAl4ie5yccmOcHAIDmxxTz/AAAAAQD4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFhKRC9vEQ4NE16Xl5eHuRIAAHCmGr63z2ThCsKPhyNHjkiSOnXqFOZKAADA2Tpy5IiSkpJOew5re3lwOp06cOCAEhISZLPZAnbd8vJyderUSQUFBawZFkTc59DhXocG9zk0uM+hEcz7bBiGjhw5ovT0dNntpx/VQ8uPB7vdro4dOwbt+omJifwfKwS4z6HDvQ4N7nNocJ9DI1j3+cdafBow4BkAAFgK4QcAAFgK4SdEYmNj9dBDDyk2NjbcpZga9zl0uNehwX0ODe5zaETKfWbAMwAAsBRafgAAgKUQfgAAgKUQfgAAgKUQfkLkhRdeUEZGhuLi4pSZmam1a9eGu6RmJScnR9dcc43S09Nls9m0fPlyt+OGYejhhx9Wenq64uPjNWzYMG3bts3tnKqqKk2dOlXt2rVTy5YtNWbMGO3fvz+Ev0Vkmzlzpi655BIlJCSoQ4cOGjt2rHbu3Ol2Dvc5MObMmaO+ffu65jrJzs7Wv/71L9dx7nNwzJw5UzabTffcc49rH/fafw8//LBsNpvbKzU11XU8Iu+xgaBbvHixER0dbbz00kvG9u3bjbvvvtto2bKlsXfv3nCX1my8//77xh//+EdjyZIlhiRj2bJlbsefeOIJIyEhwViyZImxZcsW48YbbzTS0tKM8vJy1zmTJ082zjnnHGPlypXGxo0bjeHDhxv9+vUzamtrQ/zbRKZRo0YZCxcuNLZu3Wps2rTJ+NnPfmZ07tzZOHr0qOsc7nNgvPPOO8Z7771n7Ny509i5c6dx3333GdHR0cbWrVsNw+A+B8MXX3xhdOnSxejbt69x9913u/Zzr/330EMPGb169TKKiopcr5KSEtfxSLzHhJ8QuPTSS43Jkye77bvggguMP/zhD2GqqHnzDD9Op9NITU01nnjiCde+48ePG0lJScbcuXMNwzCMw4cPG9HR0cbixYtd5xQWFhp2u9344IMPQlZ7c1JSUmJIMtasWWMYBvc52Nq0aWO8/PLL3OcgOHLkiHHeeecZK1euNIYOHeoKP9zrwHjooYeMfv36+TwWqfeYbq8gq66u1oYNGzRy5Ei3/SNHjtSnn34apqrMJT8/X8XFxW73ODY2VkOHDnXd4w0bNqimpsbtnPT0dPXu3Zv/HRpRVlYmSUpOTpbEfQ6Wuro6LV68WMeOHVN2djb3OQimTJmin/3sZ7riiivc9nOvA2fXrl1KT09XRkaGfvGLX+ibb76RFLn3mLW9gqy0tFR1dXVKSUlx25+SkqLi4uIwVWUuDffR1z3eu3ev65yYmBi1adPG6xz+d/BmGIamTZumyy+/XL1795bEfQ60LVu2KDs7W8ePH1erVq20bNkyXXjhha6/7LnPgbF48WJt3LhRX375pdcx/psOjAEDBmjRokU6//zz9d133+mxxx7ToEGDtG3btoi9x4SfEPFcId4wjICuGo+m3WP+d/Dtzjvv1ObNm7Vu3TqvY9znwOjRo4c2bdqkw4cPa8mSJZowYYLWrFnjOs599l9BQYHuvvturVixQnFxcY2ex732z+jRo10/9+nTR9nZ2erWrZv+/ve/a+DAgZIi7x7T7RVk7dq1U1RUlFd6LSkp8UrCaJqGpwpOd49TU1NVXV2tQ4cONXoO6k2dOlXvvPOOVq1apY4dO7r2c58DKyYmRt27d1dWVpZmzpypfv366dlnn+U+B9CGDRtUUlKizMxMORwOORwOrVmzRrNnz5bD4XDdK+51YLVs2VJ9+vTRrl27Iva/Z8JPkMXExCgzM1MrV650279y5UoNGjQoTFWZS0ZGhlJTU93ucXV1tdasWeO6x5mZmYqOjnY7p6ioSFu3buV/hxMMw9Cdd96ppUuX6pNPPlFGRobbce5zcBmGoaqqKu5zAI0YMUJbtmzRpk2bXK+srCzdfPPN2rRpk7p27cq9DoKqqirt2LFDaWlpkfvfc1CGUcNNw6Pu8+fPN7Zv327cc889RsuWLY1vv/023KU1G0eOHDHy8vKMvLw8Q5Ixa9YsIy8vzzVdwBNPPGEkJSUZS5cuNbZs2WLcdNNNPh+l7Nixo/HRRx8ZGzduNH7yk5/wuOopfvvb3xpJSUnG6tWr3R5ZraiocJ3DfQ6MGTNmGDk5OUZ+fr6xefNm47777jPsdruxYsUKwzC4z8F06tNehsG9DoTf/e53xurVq41vvvnG+Oyzz4yrr77aSEhIcH3HReI9JvyEyPPPP2+ce+65RkxMjHHxxRe7Hh/GmVm1apUhyes1YcIEwzDqH6d86KGHjNTUVCM2NtYYMmSIsWXLFrdrVFZWGnfeeaeRnJxsxMfHG1dffbWxb9++MPw2kcnX/ZVkLFy40HUO9zkwbr31VtffB+3btzdGjBjhCj6GwX0OJs/ww732X8O8PdHR0UZ6eroxbtw4Y9u2ba7jkXiPWdUdAABYCmN+AACApRB+AACApRB+AACApRB+AACApRB+AACApRB+AACApRB+AACApRB+AACApRB+AACApRB+AES8hx9+WBdddFHYPv+BBx7Qb37zmzM6d/r06brrrruCXBEAf7C8BYCwstlspz0+YcIEPffcc6qqqlLbtm1DVNVJ3333nc477zxt3rxZXbp0+dHzS0pK1K1bN23evFkZGRnBLxDAWSP8AAir4uJi189vvfWWHnzwQe3cudO1Lz4+XklJSeEoTZL0+OOPa82aNfrwww/P+D3XX3+9unfvrj//+c9BrAxAU9HtBSCsUlNTXa+kpCTZbDavfZ7dXhMnTtTYsWP1+OOPKyUlRa1bt9Yjjzyi2tpa/c///I+Sk5PVsWNHLViwwO2zCgsLdeONN6pNmzZq27atrr32Wn377benrW/x4sUaM2aM2763335bffr0UXx8vNq2basrrrhCx44dcx0fM2aM3nzzTb/vDYDgIPwAaJY++eQTHThwQDk5OZo1a5YefvhhXX311WrTpo0+//xzTZ48WZMnT1ZBQYEkqaKiQsOHD1erVq2Uk5OjdevWqVWrVrryyitVXV3t8zMOHTqkrVu3Kisry7WvqKhIN910k2699Vbt2LFDq1ev1rhx43RqI/qll16qgoIC7d27N7g3AUCTEH4ANEvJycmaPXu2evTooVtvvVU9evRQRUWF7rvvPp133nmaMWOGYmJi9O9//1tSfQuO3W7Xyy+/rD59+qhnz55auHCh9u3bp9WrV/v8jL1798owDKWnp7v2FRUVqba2VuPGjVOXLl3Up08f3XHHHWrVqpXrnHPOOUeSfrRVCUB4OMJdAAA0Ra9evWS3n/z3W0pKinr37u3ajoqKUtu2bVVSUiJJ2rBhg3bv3q2EhAS36xw/flx79uzx+RmVlZWSpLi4ONe+fv36acSIEerTp49GjRqlkSNH6oYbblCbNm1c58THx0uqb20CEHkIPwCapejoaLdtm83mc5/T6ZQkOZ1OZWZm6vXXX/e6Vvv27X1+Rrt27STVd381nBMVFaWVK1fq008/1YoVK/S3v/1Nf/zjH/X555+7nu46ePDgaa8LILzo9gJgCRdffLF27dqlDh06qHv37m6vxp4m69atmxITE7V9+3a3/TabTZdddpkeeeQR5eXlKSYmRsuWLXMd37p1q6Kjo9WrV6+g/k4AmobwA8ASbr75ZrVr107XXnut1q5dq/z8fK1Zs0Z333239u/f7/M9drtdV1xxhdatW+fa9/nnn+vxxx9Xbm6u9u3bp6VLl+r7779Xz549XeesXbtWgwcPdnV/AYgshB8AltCiRQvl5OSoc+fOGjdunHr27Klbb71VlZWVSkxMbPR9v/nNb7R48WJX91liYqJycnJ01VVX6fzzz9f999+vp556SqNHj3a9580339Ttt98e9N8JQNMwySEAnIZhGBo4cKDuuece3XTTTT96/nvvvaf/+Z//0ebNm+VwMKwSiES0/ADAadhsNs2bN0+1tbVndP6xY8e0cOFCgg8QwWj5AQAAlkLLDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsJT/H7KqqNYad0qfAAAAAElFTkSuQmCC", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "t = left_flux.t\n", - "flux_total = np.array(left_flux.data) + np.array(right_flux.data)\n", - "\n", - "plt.plot(t, flux_total, linewidth=3)\n", - "\n", - "plt.ylabel(r\"Desorption flux (m$^{-2}$ s$^{-1}$)\")\n", - "plt.xlabel(r\"Time (s)\")\n", - "plt.show()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Make use of numpy to compute the time derivative of the traps inventories!" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "contribution_trap_1 = -np.diff(total_trapped_H1.data) / np.diff(t)\n", - "contribution_trap_2 = -np.diff(total_trapped_H2.data) / np.diff(t)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can now plot the TDS spectrum with the 3 traps contributions" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 0, 'Time (s)')" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAHACAYAAABd4Ee6AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAm4hJREFUeJzs3Xd8VHXWP/DPnZreeyEJCQmkQSChd6QpTaWISFPQtayFx8dd97frrvu4us3uioJIUwTp64r03gkhvZPe+0wm02fu749sBoYkpMxkWs779ZqXcufeOwcIM2e+5RyGZVkWhBBCCCGkE465AyCEEEIIsVSUKBFCCCGEdIMSJUIIIYSQblCiRAghhBDSDUqUCCGEEEK6QYkSIYQQQkg3KFEihBBCCOkGJUqEEEIIId2gRIkQQgghpBuUKBFCCCGEdIMSpS5cvHgRCxcuREBAABiGwZEjR/p0vVwux7p16xAXFwcej4clS5Z0ed7333+PkSNHwsHBAf7+/li/fj0aGxsN/w0QQgghxCgoUepCW1sbRo4ciS+++KJf12s0Gtjb2+PVV1/FI4880uU5ly9fxpo1a/Dcc88hKysL+/fvx61bt7BhwwZDQieEEEKIEVGi1IX58+fjvffewxNPPNHl80qlEm+99RYCAwPh6OiIcePG4fz587rnHR0dsXnzZmzcuBF+fn5d3uP69esIDQ3Fq6++irCwMEyePBkvvPACkpOTB+K3RAghhJB+oESpH9avX48rV65g7969SE9Px7JlyzBv3jwUFBT0+h4TJ05ERUUFjh07BpZlUVtbiwMHDuCxxx4bwMgJIYQQ0heUKPXR3bt38cMPP2D//v2YMmUKwsPD8eabb2Ly5MnYvn17r+8zceJEfP/991ixYgUEAgH8/Pzg5uaGzz//fACjJ4QQQkhfUKLURykpKWBZFpGRkXByctI9Lly4gLt37/b6PtnZ2Xj11Vfxzjvv4Pbt2zh+/DiKi4vxq1/9agCjJ4QQQkhf8MwdgLXRarXgcrm4ffs2uFyu3nNOTk69vs8HH3yASZMm4X//938BAPHx8XB0dMSUKVPw3nvvwd/f36hxE0IIIaTvKFHqo4SEBGg0GtTV1WHKlCn9vo9UKgWPp//H35F4sSxrUIyEEEIIMQ5KlLogkUhQWFio+3VxcTFSU1Ph4eGByMhIrFq1CmvWrMGHH36IhIQENDQ04OzZs4iLi8Ojjz4KoH1qTalUoqmpCa2trUhNTQUAjBo1CgCwcOFCbNy4EZs3b8bcuXNRXV2N119/HWPHjkVAQICpf8uEEEII6QLD0vBFJ+fPn8eMGTM6HV+7di127NgBlUqF9957D7t27UJlZSU8PT0xYcIEvPvuu4iLiwMAhIaGorS0tNM97v/j/vzzz/HVV1+huLgYbm5umDlzJv72t78hMDBw4H5zhBBCCOk1m0qUKisr8Zvf/Aa//PILZDIZIiMjsW3bNowZM8bcoRFCCCHECtnM1FtzczMmTZqEGTNm4JdffoGPjw/u3r0LNzc3c4dGCCGEECtlMyNKv/3tb3HlyhVcunTJ3KEQQgghxEbYTKIUHR2NuXPnoqKiAhcuXEBgYCBeeuklbNy4scvzFQoFFAqF7tdarRZNTU3w9PQEwzCmCpsQQgghBmBZFq2trQgICACHMwDlIVkbIRQKWaFQyL799ttsSkoK+9VXX7F2dnbszp07uzz/j3/8IwuAHvSgBz3oQQ962MCjvLx8QPILmxlREggESExMxNWrV3XHXn31Vdy6dQvXrl3rdP6DI0oikQhDhgxBeXk5XFxcTBIzIYQQQgwjFosRHByMlpYWuLq6Gv3+NrOY29/fH9HR0XrHRowYgYMHD3Z5vlAohFAo7HTcxcWFEiVCCCHEygzUshmb6fU2adIk5OXl6R3Lz89HSEiImSIihBBCiLWzmUTpjTfewPXr1/H++++jsLAQe/bswZYtW/Dyyy+bOzRCCCGEWCmbSZSSkpJw+PBh/PDDD4iNjcX//d//4ZNPPsGqVavMHRohhBBCrJTNLOY2lFgshqurK0QiEa1RIoQQQqzEQH9+28yIEiGEEEKIsVGiRAghhBDSDUqUCCGEEEK6QYkSIYQQQkg3KFEihBBCCOkGJUqEEEIIId2gRIkQQgghpBuUKBFCCCGEdIMSJUIIIYSQblCiRAghhBDSDUqUCCGEEEK6QYkSIYQQQkg3KFEihBBCCOkGJUqEEEIIId2gRIkQQgghpBs8cwdAyGCQkpKClpYWAADDMOByuRgxYgS8vb3NGxghhJCHokSJkAGmUqmQlpaGsrIyveMXLlzA1KlTMXnyZHC5XDNFRwgh5GEoUSLEyMrLy3H69GksWbIEQqEQGo0GERER8PT0BMuyYFkWzc3NKCsrw/nz51FWVobVq1ebO2xCCCFdoESJECNRKpU4duwY0tLSAABnzpzB3LlzAQCjRo3SO5dlWeTm5uLcuXOIjY0Fy7JgGMbUIRNCCOkBJUqEGIFWq8WBAwdQUFAAAIiNjcXkyZO7PZ9hGIwYMQJhYWEQCoVoa2uDvb09VCoVhEIhJU2EEGIhKFEixEAsy+Knn35CQUEBuFwuHn/8cQwZMqRX19rZ2enukZ+fj+PHj2PSpEkYO3bsQIZMCCGkl6g8ACEGOnfuHFJTU8EwDBYsWNDrJOlBdXV1EIvFOHnyJGpqaowcJSGEkP6gRIkQA6hUKuTl5QEAZs2ahfDw8H7fKyEhAUOHDoVGo8GBAwegVCqNFSYhhJB+okSJEAPweDwsX74c8+bNQ3x8vEH3YhgGc+fOhZOTExobG3Hs2DEjRUkIIaS/KFEipB86tvnLZDIIBAJER0cb5b729vZ49NFHwTAM0tLSdDvoCCGEmAclSoT0kVarxa5du3DhwoUBmR4LCgrChAkTAAA///wzGhoajP4ahBBCeod2vRHSR7du3UJJSQmqqqoQFRUFJycno7/G2LFjUVlZCScnJ3A49H2GEELMhRIlQvpAJBLh7NmzAIApU6YMSJIEABwOB0888QQYhhmw1yCEENIz+qpKSC+xLItjx45BqVQiMDDQ4MXbPekoOkm73wghxHwoUSKkl7Kzs5Gfnw8ul4tHHnnEZNWza2pqcOTIEdTW1prk9QghhNxDiRIhvSCTyfDLL78AaF8/5OnpabLXvnr1KtLS0nDp0iWTvSYhhJB2lCgR0gvl5eWQy+Xw8PBAUlKSSV973LhxAICsrCzaAUcIISZGiRIhvTBs2DCsXr0a8+fPB49n2j0Q3t7euorfly9fNulrE0LIYEeJEiG9oFQq4eHhAV9fX7O8fkeT3PT0dDQ3N5slBkIIGYwoUSLkIWpqalBZWWn2nWf+/v4ICQkBy7K4cuWKWWMhhJDBhBIlQrrBsiyOHz+Ob775Bunp6eYOR7dWKTU1FWKx2MzREELI4EAFJwnpRnFxMUpLS8HlchEWFmbucBAUFISIiAj4+/tDIBCYOxxCCBkUKFEipAssy+LcuXMAgPj4eDg7O5s5onaLFi0Ch8OBnZ2duUMhhJBBgabeCOlCYWEhKioqwOPxdAupLYVWq4VWqzV3GIQQMihQokTIA+4fTRo1ahQcHR3NHJE+tVqNjIwMXL9+3dyhEEKIzbOZROlPf/oTGIbRe/j5+Zk7LGKF8vLyUF1dDT6fb/Likr1RX1+PI0eO4OzZs1AoFOYOhxBCbJrNJEoAEBMTg+rqat0jIyPD3CERK6RWq+Ho6IjRo0fD3t7e3OF04ufnBzc3N6hUKuTk5Jg7HEIIsWk2tZibx+PRKBIxWHR0NAICAsCyrLlD6RLDMIiOjsbVq1eRnp6OUaNGmTskQgixWTY1olRQUICAgACEhYXhqaeeQlFRUbfnKhQKiMVivQchQHsVbj6fb9Fb8EeMGAGgvYQB/ewSQsjAsZlEady4cdi1axdOnDiBrVu3oqamBhMnTkRjY2OX53/wwQdwdXXVPYKDg00cMbE09fX1yM7Otop1P66urggMDAQAiyiGSQghtophLXV+wUBtbW0IDw/HW2+9hU2bNnV6XqFQ6H0gisViBAcHQyQSwcXFxZShEgtx+PBh3VTWzJkzzR1Oj9LT03H69Gl4e3vjxRdfBMMw5g6JEEJMTiwWw9XVdcA+v21mROlBjo6OiIuLQ0FBQZfPC4VCuLi46D3I4NXa2orMzEwA7WuUrEFkZCS4XC74fD7kcrm5wyGEEJtkU4u576dQKJCTk4MpU6aYOxRiBW7dugWtVouAgACr2RBgZ2eH5557Dp6enha9nooQQqyZzYwovfnmm7hw4QKKi4tx48YNLF26FGKxGGvXrjV3aMTCqVQqJCcnAwBGjx5t5mj6xsnJCSqVytxhEEKIzbKZEaWKigqsXLkSDQ0N8Pb2xvjx43H9+nWEhISYOzRi4dLS0iCTyeDi4oKIiAhzh9NnWq0WUqkUKpUKrq6u5g6HEEJsis0kSnv37jV3CMQKsSyLGzduAGgfTeJwrG+QNTMzE2fOnEFcXBwWL15s7nAIIcSmWN+nAiFGJJVKIRQKIRAIEBMTY+5w+sXFxQUajQb5+fkWWySTEEKslc2MKBHSH46OjnjmmWfQ1NQEoVBo7nD6JTAwEAKBAFKpFJWVlQgKCjJ3SIQQYjNoRIkMaizLQqVSwdnZ2dyh9BuXy0VoaCgAID8/37zBEEKIjaFEiQxaZWVlaG1tNXcYRjF06FAAlCgRQoixUaJEBiW1Wo29e/fi888/R319vbnDMVhYWBgYhkFtbS1EIpG5wyGEEJtBiRIZlLKzsyGTyWBvbw9PT09zh2Mwe3t7+Pv7A0C31egJIYT0HS3mJoNSSkoKACA2NtYqSwJ0JSEhASNGjMCwYcPMHQohhNgMSpTIoNPQ0IDS0lIwDIPY2Fhzh2M0UVFRYBgGTk5O5g6FEEJshm18lSakD27fvg2gfQG0Ne926wrLstBoNOYOgxBCbAaNKJFBRa1WIy0tDQAQFxdn5miMTyaTIScnBwzDICkpydzhEEKI1aMRJTKoVFZWQi6Xw8nJSVd7yJbU1NTgl19+wcWLF6lKNyGEGAGNKJFBJSQkBC+99BLq6+ttZhH3/YKDg8Hn8yGRSFBTU6PbCUcIIaR/bO+TgpCHYFkWQqHQZtt88Hg8DBkyBAAVnySEEGOgRIkMGnK5HCqVytxhDDiq0k0IIcZDiRIZFNRqNT7//HPs2bMHbW1t5g5nQHUkSlVVVTbTooUQQsyFEiUyKOTn50MqlaKhoQH29vbmDmdAOTo6wtfXFwBV6SaEEEPRYm4yKHSUBIiOjrbIRdxlTTLcKGlBvUSBpjYVmqQqNLYp0arQwMdJgEgfRwzzccQwb0cM9XKAgPfw30NYWBjq6urQ1NRkot8BIYTYJkqUiM2TSCS6kZWYmBgzR3OPWK7G8ew6/JRRh9QKcbfnFdS14UpRs+7XXAZIDHHDstH+mBnpCT63c9KUkJCAxMREm+hjRwgh5kSJErF5GRkZYFkWfn5+8PDwMHc4SKsUY9eNCpzPb4RS0/daRxoWuFHSghslLfByFODJBD8sTfCDn4ud7pyO6UWtVmuRI2iEEGItKFEiNq9j2s3co0lSpQYfny3G3ttVRrtnQ5sSX18uw9YrZZgzwhubZobB3/VewqTRaMAwDBiGMdprEkLIYEKJErFpNTU1qK2tBZfLRWRkpNniuFbcjD/9nI8qkaLbc9wd+BgV5AJPRz48HATwcOTDUcBFWbMMBXVtKKhrQ2U312tZ4Hh2PS4UNOL5yUOwdlwQ6mqqcfnyZTg7O2PFihUD9VsjhBCbRokSsWkeHh547LHH0NzcbJbdbq1yNT48U4SDqTVdPs/nMpg+zBML43wxOdy9y/VG95Mo1LhQ0IQfU6qQUt55XZNMpcWn50rw7/RavDbODZWVlRAIBDQFRwgh/cSw1BAKACAWi+Hq6gqRSAQXFxdzh0OMqK2tDVqt1uSvW94sw/N7MlDRIu/0nB2PgxemDMGyBH+42vP7df/8ujb8eLsKP2XWQarUdHqeAYs1jungaFV47rnnbLYaOSFkcBvoz2/6iklsmkajMUuSlF/XhjU707pMkhKHuOLgxjHYMHFIv5MkAIj0ccTv5w/DyVfGYvlofzy4CokFgzKVIwDgempOv1+HEEIGM0qUiM06deoUrly5AplMZtLXTa8UY/3uNDS0KfWOOwi4+P28CGx7Jh5DPIw3Dehqz8cf5g/DnvUJiPZz0nuuWtP+7erMrUx8d70UNIBMCCF9Q4kSsUlSqRTXr1/HuXPnIJFITPa6N0qaseH7dIjlar3jw30dcfj5MVgxJgCcAdqBFhvgjD3rE/D7eRFwtmtfflitdQYAeDGt+OORdLy2NxUShfphtyGEEHIfSpSITcrMzIRWq4WPjw+8vb1N8prn8hvx0t5MyFT6U30JQS7Y9sxIBNy3bX+gcDkMVowJwIENoxEf4AwRa4c2lg8ew8KHI8G/06qw6IvLKGmw7X53hBBiLJQoEZt0f8sSU0gua8Gmg9mdCkhOGuqOr5+Og4udaTeYBrjaYceakXhmbBBKNe4o1bhBzbb/cy+qb8PjX15Bcgm1NyGEkJ5QokRsTn19PaqqqsDhcDB8+PABf72KFhk2HcyBWqufJM0e7oXPl8fAns8d8Bi6wudy8JvZ4Vi5aB5uMcNRz95bv9QsVeHprTdwNLXSLLERQoi1oESJ2JyMjAwAQGhoKBwcHAb0tdoUavz6xyw0S1V6x5fE++Ifj4/osS6SKcwa7oV9zyVguJ+z3nGlRovX9qbiszMFtMibEEK6Yf53cUKMiGVZXaI00KNJGi2L3xzJRWG9VO/41AgP/OmxSHA5ltM2JMjNDl8vi8TscMdOz310Kh9v7k+HSmP6MgqEEGLpKFEiNkWhUMDf3x/29vYIDw8f0Nf69HwxLhTqr/OJ8HbA35YMt6gkCQAuXbqEHd98jccDZVgzIaTT8wdTKvDC7tuQqzoXriSEkMGMEiViU+zs7LBkyRI8//zz4PP7X8yxJ/9Or8X2axV6x9zsefhsWQychJbXGcjPzw8AUFJSjHcXxeCdBdF4sErB2dw6rNl2E2K5qos7EELI4ESJErE5KpUKXO7ALaDOr2vDu8fy9Y7xOAw+ejIawe6m7yfXG8HBwQDaF7q3tbXh2clh2LI6EXZ8/beAmyVNeOrr66hv7b55LyGEDCaUKBGb0dDQgLq6ugFtWaJUa/G7o7mdygD8fl4EkkLcBux1DWVvb6+rJ1VcXAwAmB3ti++eG9epdEF2tRjLvrqK8iZpp/sQQshgQ4kSsRkXLlzA5s2bcevWrQF7jS8vlSKvTr9Y49OJAXgywX/AXtNYOkaVSktLdccSQz2w74UJ8HIS6p1b0ijFsq+uoaC21aQxEkKIpaFEidgEhUKB3NxcAPcSAmO7Uy7C9mvlescivB2wadbQAXk9YwsKCgKgnygBwAh/Fxx8cQKCH+g/VyOWY9nX15Ba3mKqEAkhxOJQokRsQm5uLtRqNdzc3ODr62v0+0uVGvzu33m4v6Ykj8Pgr4uHQ8izjn9GgYGBANqnKNva9EfFQjwdceBXExHlq19rqUWqwtNbr+NKYYPJ4iSEEEtiHe/whPSgo3bSiBEjwAxA09l/nL6Liha53rGXp4Ugytepmyssj729PSZPnoxly5ZBIBB0et7XxQ77XhiPhCFueselSg3Wb7+F45k1JoqUEEIsByVKxOpJJBIUFRUBGJgikxcLGnHgjn6SMCrIBevHD8wU30AaO3YswsPDuy2d4OYgwPcbxmHKMC+940qNFi99fxs/3irv8jpCCLFVRkmUVCoVysvLkZeXh6Ym8zfa/OCDD8AwDF5//XVzh0JMICsrCyzLws/PD+7u7ka9t1iuxh9/LtA7Zs/n4P1FURZXVLK3NJqHF5V0EPDwzdpEPBanv0BdywJvHUzH1otFAxkeIYRYlH4nShKJBF9//TWmT58OV1dXhIaGIjo6Gt7e3ggJCcHGjRsHdPdRd27duoUtW7YgPj7e5K9NzCMvLw/AwIwmfXGhBA1tSr1j//tIuMXWS+oJy7IoLi7G+fPnoVB0XytJyOPis5UJWDl2SKfn/nIsB387nkv94Qghg0K/EqWPP/4YoaGh2Lp1K2bOnIlDhw4hNTUVeXl5uHbtGv74xz9CrVZj9uzZmDdvHgoKCnq+qRFIJBKsWrUKW7duNfrIArFcK1euxMKFC42eKOXUSLDvdpXescnh7lia4GfU1zElhmFw6tQpXLhwAeXlD59G43IYvP94LF6c3rkVzObzd/G7wxnQaClZIoTYtn71Wrh69SrOnTuHuLi4Lp8fO3Ysnn32WXz11VfYtm0bLly4gGHDhhkUaG+8/PLLeOyxx/DII4/gvffee+i5CoVC7xu1WCwe6PDIADL2z5eWZfGX44V6u9yEPA7+37yIAVksbkqBgYEQiUQoLS1FRETEQ89lGAa/mTcc7g58vH8sV++5H26WQyxT46MVIyHkDVwldEIIMad+JUr79+/v1XlCoRAvvfRSf16iz/bu3YuUlJReT/d98MEHePfddwc4KjLQWJaFSmX83mRH02uRVqmfPG+YGIwgN+uccrtfUFAQsrOzUVZW1utrnp8aDjd7AX57KF0vefw5oxpiuQpfPTMGjhbY444QQgxlE7veysvL8dprr+G7776DnZ1dr655++23IRKJdI+epiGI5amrq8O//vUvXL161aj3FclU+Phssd6xIe52WD/B+na5daWjnlJlZSXUanWvr1ueFIwvV42BgKv/tnGpoAGrvrmB5gfWchFCiC0wWqJ0+/ZtY92qX69dV1eHMWPGgMfjgcfj4cKFC/jss8/A4/G63OUjFArh4uKi9yDWJTMzE42NjaiurjbqfT8/X4Jmqf4o1dtzI6ymsGRP3Nzc4OjoCI1Gg8rKyj5dOy/WDzvWJ8FRoD/VllreguVfX0ONSN7NlYQQYp2M9s7/+OOPG+tWfTZr1ixkZGQgNTVV90hMTMSqVauQmpo6oJ3kiXmwLIusrCwAQFRUlNHum1Xdih9T9BOvWVGemBzuYbTXMDeGYXSjSg+2M+mNiRFe2LNxPNwd9GsxFdRJ8OTmqyhuaOvmSkIIsT59WlSwfPnyLo+zLGvW+knOzs6IjY3VO+bo6AhPT89Ox4ltqK6uRlNTE3g8HsLDO+/K6g8ty+L944W4fx+XHY+Dt2Yb5/6WJCgoCPn5+aiqqur55C6MDHbD/l9NwOptN1F93yhSZYsMy766ih3rxyI20NVY4RJCiNn0KVE6ffo0du/eDScn/bYNLMvi4sWLRg2MkIfJzMwEAAwdOrTLdhz9cTy7HulVrXrHnp88BAGuvVv3Zk0iIyMRGBiI0NDQft8jwscZB16ciNXf3EDRfaNIDRIlntpyHV89MwaTH6jwTQgh1qZPidL06dPh5OSEadOmdXouISHBaEEZw/nz580dAhkgAzHtplRr8dn5Er1jIR72WDsuyCj3tzQODg5wcHAw+D6BbvbY/6sJWLv9JjLv2yUoUaixbvtN/O3JeDw5xjb/DAkhg0Of1igdOnSoyyQJAI4fP26UgAjpSXl5OcRiMQQCAcLCwoxyzx9TqlH5QNPbN2aGQWAjC7i701M7k97wdBLih43jMX6o/joutZbF/+xPw+dnCqiKNyHEahn0KVBTQ93EienZ2dkhLi4O0dHR4PEMr93TKlfj68v6i5pHBblgZqSnwfe2ZPX19fj3v/+Nn3/+2eB7OdvxsWP92E794QDgw1P5ePtQBtQarcGvQwghpmZQojRnzhxjxUFIr/n4+GDu3LmYOXOmUe63/Vo5WmT69YT+Z1aY1Vfg7olarUZmZqauqbCh7PhcfL4yAc9N7jzKt/dWOTbsSkabovd1mwghxBIYlCjRcDoxB41GA63WOKMTtWIFdt/UryU0M9ITo4Jsf8eWj48PeDweZDIZ6uvrjXJPDofBHxZE450F0XgwzzyfV48VW66hrpVqLRFCrIdBiZKtf+MmlicrKwvl5eVGS9I3XyqFXH0v6eIwwGszjLPuydJxuVwEBAQA6F89pYd5dnIYvnx6dKcinZmVYjzx5VUU1kmM+nqEEDJQbHulKrEpGo0G//nPf7Bz584+V5TuSlGDFIfT9NfZPT7SD0O9DN8NZi06Ck/2pe9bb82P88eejePg9kBhyopmGZ7cfBW3SsxXe40QQnqLEiViNe7evQu5XA5HR0fdSIghPjlXrNfg1Y7HwUtTQwy+rzW5v0L3QEyljwnxwMEXJyLYQ7+ZsEimwqpvbuDndOO2nyGEEGMzKFEyVqE/Qnqjo8hkZGQkOBzDcvz0SjHO5TfqHVs9LhA+zkKD7mtt/P39weFw0NraCpFINCCvEe7thEMvTkL8A+u+lGotXt6Tgs3n79J6R0KIxTLo0yY5OdlYcRDyUCqVCnl5eQCMU2Ry8yX9NTnuDnw8OyHY4PtaGz6fD19fX3h7e0MiGbh1Q97OQux9fjxmDvfp9NzfjufitwczoKLyAYQQC2R4ERpCTKCgoABKpRIuLi7w9+9cq6cv0irFuHy3We/YsxOC4CQcnP8cli9fDnt7ewiFAzua5iDgYcvqMXjn31nYc0N/TdS+5HJUtEjx5aoxcLXnd3MHQggxPYPXKMlkMkilUt2vS0tL8cknn+DkyZOG3poQnY5pt6ioKIN3W26+qD+a5OHIx/LRhq95slZcLtcoFbp7g8fl4C9LYvH2/OGdnrtS2IgnN19FeZO0iysJIcQ8DE6UFi9ejF27dgEAWlpaMG7cOHz44YdYvHgxNm/ebHCAhGi1Wl2Xe0On3VIrxLhS9MBo0vhgOAi4Bt3X2mk0GqhUKpMkTAzD4IVp4di8qnP5gMI6CZb86wpSypq7uZoQQkzL4EQpJSUFU6ZMAQAcOHAAvr6+KC0txa5du/DZZ58ZHCAhHA4HL730EpYvXw5vb2+D7vXVA2uTPB35WD7GsKk8W3DixAn8/e9/R35+vslec36cP/a9MAFeTvpTfo1tSqzcch3HMmhHHCHE/AxOlKRSKZydnQEAJ0+exBNPPAEOh4Px48cbvYgdGby0Wi2CgoIMmnbrcjRpQjDs+YN7NAlon35Tq9UDUk/pYUYFu+HIyxMR6eukd1yh1uKl71Pw5flC2hFHCDErgxOliIgIHDlyBOXl5Thx4oSu/1tdXR1cXFwMDpAMbh3tStRqw3uEPbjTzdORj2WjaTQJGNjCkz0JcnfAgRcnYsowr07P/f14Hu2II4SYlcGJ0jvvvIM333wToaGhGDduHCZMmACgfXQpISHB4ADJ4JaamoqPP/4Yt2/fNuw+FSJcfWA06bmJNJrUoSNRqq6uhlKpNPnru9jx8e26JKwcO6TTc/uSy7Fu+02IZCqTx0UIIQYnSkuXLkVZWRmSk5Nx/Phx3fFZs2bh448/NvT2ZJDLysqCRCIxeETpywd2unk5CrAsgUaTOri4uMDZ2Rksy6KiosIsMfC5HLz/eCx+9+jwTg11aUccIcRcjNLCxM/PDwkJCXrVkseOHYvhwztvASakt1pbW1FcXAzAsN1u6ZViXCtu0Tv23MRg2NFokp7725mYC8MweH5q+444Oz7tiCOEmB/1eiMWKzs7G0B7mw1XV9cezu7eN1fL9X7t7STA0gQ/g2KzRUFBQQDMs07pQfNi/bH3+e53xFGPOEKIqVCiRCxWVlYWAMNGkwrq2jr1dFs7LohGk7oQFBSEoUOHWsxI8MN2xFGPOEKIqVCiRCxSS0sLysvbR4IiIyP7fZ9t1/RHk1zseLTTrRseHh5YsmQJkpKSzB2KzsN2xP3teC7eOZoFjZaSJULIwKFEiVikjtGk4OBgODk59XB218qbZTieVad3bFVSwKCvwt0TU7Uz6a2H7Yjbfb0Uv/ruNmRKy4qZEGI7+pwoyWQyVFZWdjre8cFGiDGEh4djzJgxiIuL6/c9dlyvgOa+wQZ7PgdPJwYaITrb1tzcjJKSEnOHoadjR1xXPeJOZdfi6W+uo6nN9GUNCCG2r0+J0oEDBxAZGYlHH30U8fHxuHHjhu651atXGz04Mnj5+vpi2rRp/V4vU9+qwJG0Gr1jy0b7w82BOtM/TE1NDTZv3owff/zR4tb/dPSI+2xlAgRc/beuO2UteHLzVZQ1UvkAQohx9SlReu+995CSkoK0tDR8++23ePbZZ7Fnzx4AsLg3VWLdDK2btPtmJZT3DSfxuQzWjA0yNCyb5+3tDR6PB5lMhvr6enOH06VFIwOw89mxcLbj6R0vbmjDE5uvIrtKbKbICCG2qE+Jkkql0jUlTUxMxMWLF/H111/jz3/+s0E9uAjpwLIszp49i8LCQmi1/WtbIZKpsC9Ff/v4ojhf+LoIu7mCdOByufD3b1/sbgllArozIdwTB1+ciABXO73jDRIFVnx9DTeKGru5khBC+qZPiZKPjw/S09N1v/b09MSpU6eQk5Ojd5yQ/qqtrcWlS5dw8OBBqFT9a1nxQ3IVpPct7uUw7c1vSe+Ys+9bX0T6OuPQS5Mw3M9Z73irQo01397EqexaM0VGCLElfUqUdu/eDR8fH71jAoEAP/zwAy5cuGDUwMjglJmZCQAICwuDUNj3ESCpUoPvb+lvNpg7whtDPOyNEt9gYAkVunvLz9UOP/5qAsaGeegdV6i1+NV3t7E/ubybKwkhpHf6lCgFBQXBz+9eReOamnuLZSdNmmS8qMigxLKsbvdkfxdxH0mrQYtMf33TcxNpNKkv/P39wTAMxGIxWlpazB1Oj1zs+Nj17Fg8MsJX77hGy+J/D6Rj68UiM0VGCLEFBtVRmjNnjrHiIASVlZVoaWkBn89HWFhYn69Xa1nsuqk/mjQ53B1Rvv2rwzRYCQQC3cixpU+/dbDjc/HVM6OxbEznBft/OZaDT07n04YTQki/8Ho+pXv0xkOMqWPaLTw8HHx+37fxn85tQGWLXO8YrU3qn7Fjx4LL5SIiIsLcofQaj8vB35fGw8NJgK8v6I8ifXK6ADKlBr+dP5w2nhBC+sSgRInecIixaLVag3q7sSyLHdf116PE+DshcUj/m+kOZsOGDQOXy4WDg4O5Q+kThmHw9vwR8HAQ4INfcvWe+/piEaRKDd5dFAMOh967CCG9Qy1MiEUQi8Xg8/kQCoUICQnp8/XJZSJkVUv0jq0bH0zJvAEsrZVJX7wwLRz/tyS20/Hd10vx1sF06g9HCOk1g0aUCDEWNzc3vPDCC2hoaACP1/cfy+3XKvR+Hehmh0eGd26kSnqvpqYGKSkpGDp0KIKDrW8Kc/X4ENjzuXjrQBruz4sO3K6AQq3Fx8tHgsel74qEkIczKFESCATGioMQqNVquLi49Pm6wvo2XLrbpHdszdhA8Gh6xSAZGRnIyMiAQqGwykQJAJaOCYI9n4vX9t6B+r5s6ae0KjAAPqJkiRDSA4PeIZKTk40VBxnE2traoFQq+12Je8d1/dEkV3seloz06+Zs0lvWUniyJ4/F++Pr1WMg4Om/3f07rQr/sz8Nak3/fu4IIYODUabe5HI50tPTUVdX1+nDbtGiRcZ4CWLDTp06hdzcXMycORMjRozo07W1YgV+zqzTO/bUmAA4CLjGDHFQ6kiUqquroVQqrXoEedYIX2xbm4gNO5OhUN97jzqaWgUA+HAZjSwRQrpmcKJ0/PhxrFmzBg0NDZ2eYxjGqheEkoGnVquRm5sLhULRr2m375Mr9aZUhDwOViYGGDPEQcvFxQVOTk6QSCSorKzsV20rSzJlmDe2rknExl1dJ0sfLR8FLk3XEkIeYPBXqFdeeQXLli1DdXU1tFqt3oOSJNKTgoICKBQKODk5ISCgbwlOm0KNA100v/V0tN6RD0vCMIxVtTPpjamR7cnSg9NwR1Or8L/706Cl3XCEkAcYnCjV1dVh06ZN8PX17flkQh5wf+2kvm7lP5xWi1bFvWScAbBmXKAxwxv0OhKl8nLb6Zk2NdIb33SRLB26U4k/HM2kQrqEED0GJ0pLly7F+fPnjRCKYTZv3oz4+Hi4uLjAxcUFEyZMwC+//GLusMhDKJVK5OXlAeh7bzeNlsV3DzS/nR7piVBP6yqQaOk6EqXa2lqbSiC6S5a+v1GG94/l2NTvlRBiGIPXKH3xxRdYtmwZLl26hLi4uE6tJ1599VVDX6JXgoKC8Ne//lXXcmHnzp1YvHgx7ty5g5iYGJPEQPomLy8ParUabm5uut5ivXUuv7FTuxIaTTI+Ly8vPP300wgNDbW54p1TI73x9eoxeH5XMlSae4nR1kvFcBDw8MbsSDNGRwixFAYnSnv27MGJEydgb2+P8+fP672ZMgxjskRp4cKFer/+y1/+gs2bN+P69euUKFkoQ6bddt/ULwkwws8JY4KpXYmxMQwDPz/bLbUwI8oHn69MwMt77uhV6/70TAEcBFy8MC3cjNERQiyBwYnS73//e/z5z3/Gb3/7W3A4lrG9VqPRYP/+/Whra8OECRO6PEehUEChUOh+LRaLTRUe+a9Zs2bB3d29z9NumVWtSCnX//taMy7Q5kY8LIlGo+lXo2JrMC/WH/9cpsGmH9Nw/4zbB7/kwlHIwzPj+95ShxBiOwzObJRKJVasWGERSVJGRgacnJwgFArxq1/9CocPH0Z0dHSX537wwQdwdXXVPay18rA1c3d3x8SJE+Hh4dGn63Y9MJrk4yTA3BHexgyN3Ecmk+HYsWPYtm2bza7deTwhCO910RvuD0czcSyjuosrCCGDhcHZzdq1a7Fv3z5jxGKwqKgopKam4vr163jxxRexdu1aZGdnd3nu22+/DZFIpHvY0q4ea6FWq/t8TY1YjpPZ9XrHViYFgE/FAgeMQCBATk4OKioquqyXZitWjQvB7x/TL3jKssDre1NxpdB2f9+EkIczeOpNo9Hg73//O06cOIH4+PhOw/MfffSRoS/RawKBQLeYOzExEbdu3cKnn36Kr7/+utO5QqEQQqHQZLGRe9ra2vDLL78gIiICQ4cO7dOU2Z7kKty37hb2fA6WJfgPQJSkA5fLhZ+fHyoqKlBaWgpvb9sdvdswZSjEcjU+O1OgO6bUaPH8rmTsfX4C4oJoHRwhg43BiVJGRgYSEhIAAJmZmXrPmXvNCMuyeuuQiGXIzs5GVlYWGhoaEB7e+8WyUqWmc4HJeF+42tvm2hlLEhwcjIqKCpSUlCAxMdHc4QyoNx4ZhqY2Bb67fq/HXZtSg3Xbb+LAixMR5uVoxugIIaZmcKJ07tw5Y8RhsN/97neYP38+goOD0drair179+L8+fM4fvy4uUMjD+hIqPu6iPtIWo1egUkAeCaJSgKYQnBwMK5du4bi4mKwLGv2L0EDiWEYvLsoFs1tKvx83/qkxjYlVm+7gYMvToSvi50ZIySEmJLNLOyora3F6tWrERUVhVmzZuHGjRs4fvw4Zs+ebe7QyH1aWlp03egjI3tfp6bLApPDPKjApIn4+/uDx+NBKpWivr6+5wusHJfD4KMVIzEpwlPveEWzDOu230KrXGWmyAghptavRKnjg663Kisrez7JQNu2bUNJSQkUCgXq6upw+vRpSpIsUMdoUlBQEJydnXt93YWCRpQ36xeYXD02yKixke5xuVxdle7i4mIzR2MaQh4XX69ORFyg/rqknGoxXvo+BSqNtpsrCSG2pF+JUlJSEjZu3IibN292e45IJMLWrVsRGxuLQ4cO9TtAYlsyMjIAACNGjOjhTH27buon28N9HZEUQgtrTSk4OBgeHh7g8QyesbcaTkIedqxP6rQu6VJBA94+lGGz5RIIIff06x0vJycH77//PubNmwc+n4/ExEQEBATAzs4Ozc3NusW6iYmJ+Mc//oH58+cbO25ihWpra1FXVwcul4thw4b1+rqs6lbcLhPpHVszLsim18lYoqSkJIwbNw5OTk7mDsWkPJ2E2LE+CU98eRWNbUrd8QO3KxDoZk+tTgixcf0aUfLw8MA///lPVFVVYfPmzYiMjERDQwMKCtq31K5atQq3b9/GlStXKEkiOnK5HL6+vggLC4OdXe8Xw+5+YDTJ20mAedG2u0XdUjEMA5ZlodUOvimnEE9HbFuXBDu+/lvmp2cK8OMtqsFGiC1jWBo7BtDewsTV1RUikQguLi7mDsdmSaVSyOXyXrfDqBUrMO9fN6G+rw/Xq9NDsXHSkIEKkfSAz+dDrVYPupElADidXYvndyfjvh9HcDkMvl2XhGmRlLwTYg4D/fltM7veiOXTarV97hn2w+0qvSTJjkcFJs2poKAAH330EY4ePWruUMzikWhfvLtYv9WJRsvile9TUFDbaqaoCCEDiRIlYhIVFRWQSCR9ukaq1GB/FwUm3RyowKS5uLm5QaVSoaysDBqNpucLbNDq8SH41TT9QqmtCjWe3XkLjRIqcEuIraFEiQw4tVqN77//Hp9//nmfeoX9O70WYrl+P7hnxlKBSXPy8vKCnZ0dlEolqqqqzB2O2bw1NwoL4vVHNsubZPjVd7ehUA/OBJIQW0WJEhlwhYWFkMvlEAqF8PDw6NU1WrZzgcmpER4IowKTZsUwDIKDgwEMnnpKXeFwGPxz2UiMDHbTO36rpBm/O5RJZQMIsSEGJ0qnT5/u9rmumtGSwaejdtLw4cPB4fTuR+5iQRNKm2R6x1bTaJJF6EiUSkpKzBuImdnxudi6egz8XfV3cB5MqcBXF4rMFBUhxNgMTpQee+wx/M///A+Uynv1Rerr67Fw4UK8/fbbht6eWDmFQoH8/HwAfevttvtmhd6vI30cMS7UzZihkX7qSJTKysqgVqt7ONu2+bjY4Zu1iXAQcPWO//1ELk5k1ZgpKkKIMRmcKF28eBE//fQTkpKSkJWVhZ9//hmxsbGQSCRIS0szRozEiuXk5ECtVsPDwwM+Pj69uia3RoKbpfoFJlePDaQCkxbCw8MDjo6O0Gg0qKio6PkCGxcT4IpPVozC/T+eLAu8vjcVmZWi7i8khFgFgxOlcePG4c6dO4iPj8eYMWPw+OOP43/+539w9uxZ3TdPMnjdP+3W20TnwdEkT0c+Ho3pXZJFBh7DMEhISMC0adPg5uZm7nAswpwYP/xmnv6IqUylwYadyagVy7u5ihBiDYyymDsvLw+3bt1CUFAQeDwecnNzIZVKjXFrYsVkMpluHUtvp93qWhU4lqXfnf6pMQEQ8GjfgSUZO3Ysxo0bR4nSfV6YOhTLxug3aq4Ry7FxVzJkStoJR4i1MvjT569//SsmTJiA2bNnIzMzE7du3dKNMF27ds0YMRIrZW9vj5deeglz587t9Qfq3mT9ApNCHgfLR1OBSUs0WOsodYdhGPzl8TiMDdPf2ZleIcKb+9Og1dJOOEKskcGJ0qeffoojR47g888/h52dHWJiYnDz5k088cQTmD59uhFCJNbMwcEBMTExvTpXptLgxzv6BSYXxPrAw1EwEKERA0kkEqSnp6O2ttbcoVgMAY+Dr54ZgyEe+mUsfs6oxien880UFSHEEAYnShkZGZ0a3/L5fPzjH//AyZMnDb09sVIsy4Jl2T7tivopvRYimf75VBLAcl25cgWHDx/GnTt3zB2KRfFwFODbdYlwtuPpHf/sbCGOplZ2cxUhxFIZnCh5eXl1+9y0adMMvT2xUhcvXsR3332HsrKyXp2vZVnsfqDA5KSh7gj3dhyI8IgRhIaGAmgvKEr0Rfg4419PjwaXo7+B4a0D6UivaDFPUISQfuH1fMrD/fnPf37o8++8846hL0GsDMuySEtLQ3NzM6Kionp1zeXCJpQ06heYXDMuqJuziSUICQkBh8NBY2Mjmpub4e7ubu6QLMrUSG/8cWE03jmapTumUGvx/K7b+Pcrk+DjYveQqwkhlsLgROnw4cN6v1apVCguLgaPx0N4eDglSoNQZWUlmpubwefzERER0atrdt3UH02K8HbAhDC3AYiOGItQKIS/vz8qKytRWFiIpKQkc4dkcdZMCEV+bSu+u35vZLVGLMcL393GDxvHw47PfcjVhBBLYHCi1NX6BLFYjHXr1uHxxx839PbECnXUTgoPDwefz+/x/LxaCW6UtOgdWzM2iApMWoGwsDBKlHrwx4UxKKyT4HpRk+7YnbIW/P5IJv6xNJ5+zgmxcANSnMbFxQV//vOf8Yc//GEgbk8smFarRVZW+1TDiBEjenXN7gdGkzwc+Xg0lgpMWoOOdUrFxcWDvp1Jd/hcDr5cNQZB7vZ6xw/crsC2y4O3sTAh1mLAqvi1tLRAJKLy/YNNUVER2traYG9vjyFDhvR4fn2rAj9n1ukde2p0AIRUYNIqeHt7w9HRESqVClVVVeYOx2J5OAq67An3/rEcXMiv7+YqQoglMHjq7bPPPtP7NcuyqK6uxu7duzFv3jxDb0+sTMe0W2RkJLjcntdf7HmgwKSAy2D5GCowaS0YhsFjjz0GHx8feHp6mjscsCwLsViMyspKVFVVQSaT6aa2GIbBuHHjdDt1WZY16bTXcD8XfLR8FH713W3dMS0LvLInBUdfnoSh3k4mi4UQ0nsGJ0off/yx3q85HA68vb2xdu1avP3224benliZoUOHorGxsVfTblKlBj+m6BeYXBjnC08qMGlVgoKCepUUm8Lly5dx9uzZbp+PiIiAi4sLuFwuMjMzcebMGfj7+yM0NBSxsbFwdnYe0Pjmxfph0+xIfHTqXvHJVrkaG3Yl48jLk+Bi1/OaPkKIaRmcKBUX0xw7uSc2NhZDhw7t1bmH02ogluuva6GSANZJo9GYfIRGLBbjxo0biI+Ph6enJ9RqNVxdXcEwDLy8vODn5wdnZ2ewbPuIJcuycHBwgEKhAACUlZWhtbUVra2tyM/Px6lTpxAWFob4+HiMGDECAsHAJOy/nhmBvJpW/Jxx70tCUX0bXv3hDratTepUe4kQYl4M2/EuMsiJxWK4urpCJBLBxcXF3OFYLblcDpVK1eN5Gi2LxzbfQmXLvc7q0yI88MWK2IEMjwyQ/Px8ZGdnIzY2FgkJCQP6WvX19bhy5QoyMjKg1WoRHR2tm+ZXq9VgWbZXuy2VSiXq6+tRU1ODgoICvTVWfD4fGzduhLe394D8HqRKNZZuvobsarHe8RemDsXbj/ZuEwQhpN1Af373a0Rp06ZNvT73o48+6s9LECsjkUiQlZWFoUOHws6u50J6Z/Ia9JIkAFg7nkaTrFVTUxOKiorA5/MHLFFiWRY3btzAqVOnoNVqAQCBgYGIjIzUncPj9f4tTSAQIDAwEIGBgRgzZgxaWlqQm5uL7OxsODg4wMXFRTdKplQqjTrC5CDgYcuaMVj8xRU0til1x7++WIQoP2c8MZr+LRBiKfqVKPW2txPVBxk8MjIycPLkSQQGBmLFihUPPZdlWey8XqF3LNrPCYlDXAcyRDKAwsLCcPXqVRQXF0Oj0Rh9zZJUKsXRo0eRn5+ve73x48fD3994C//d3Nwwfvx4jBs3DkqlEkqlEiqVChqNBlu2bMHw4cMxdepUuLoa5+c0yN0BX60eg6e3XodKc29g/7eHMjDU2wmjgt2M8jqEEMP0K1H69NNPERMTYzELOIn5paWlAQCGDx/e47mpFWKkV7XqHVs3ngpMWjMfHx84ODhAKpWirKwMYWFhRr3/rVu3kJ+fDy6Xi2nTpmHkyJED9vPCMAyEQiGA9qQ+OzsbUqkUKSkpyMjIwIwZMzBu3DhwOIaXsEgK9cD/LY7Fbw9l6I4p1Vo8vysZP/16MnypzQkhZtevf+kJCQloamqvMtuxy4kMXjU1NaitrQWXy9WbBunOjgdGk/xdhJg9YmDWghDTYBhmwJrksiyLMWPGYMSIEXj66acxatQokybVsbGxWLFiBQIDA6FSqXDy5Els3boVlZWVPV/cC0+NHYK1E0L0jtW1KvD8rmTIVRqjvAYhpP/6lSi5ubmhqKgIAFBSUqJbL0AGp9TUVADtLUvs7e0fem5pkwzn8vUT62fGBoJHO32snrETpfz8fKjVarS1tYFlWcyfP3/AFlf3JDAwEMuXL8fs2bMhFApRU1ODb775Br/88guMsR/m9wuiMTFcvw5VWoUIbx/KMMr9CSH916+ptyeffBLTpk2Dv78/GIZBYmJit9NwHQkVsU0ajUZXZDI6OrrH83ffqMD9b/vOQi6eHOU3QNERUwoJCQHDMKirq4NIJDJoLc+1a9dw8uRJjBgxAvPmzbOIaVmGYRAXF4fw8HBcuHABOTk5UCgURomNz+XgX0+PxuJ/XUFZk1R3/PCdSozwd8bzU8MNfg1CSP/0K1HasmULnnjiCRQWFuLVV1/Fxo0bB7xQG7FMhYWFkEqlcHBw0I0odKdZqsLR9Fq9Y0sT/OEoNLicF7EA9vb2CAgIgFAo1NUq6o/bt2/j5MmTAAB3d3eLSJLu5+DggPnz5yMmJgbe3t6QyWSws7ODUqkEn8/v99ol9/+2OXn8X1fQprw35fbBL7kY5uOMGcOp/yEh5tDvT6iOuiW3b9/Ga6+9RonSINXQ0AAOh4MRI0b0+AGx73YV5Op707Q8DoOnkwIHOkRiQsuWLYNAIOhxCrY7GRkZ+M9//gMASExMxLhx44wZnlF19DLsmB48evQoNBoNHn/88X6/H0b6OuOTpxLw/O5kdMy4sSzw6g93cPjlSYjwoTYnhJiawds2tm/fTknSIDZp0iS88MILSExMfOh5CrUWP9zWb5o6L9obfi7CgQyPmBiHw9FV6e6r3NxcHD58GAAwcuRITJkyxeJGk7rT0NCA0tJSFBcXY/PmzSgoKOj3vWZH++LNOVF6x1oVajy/Kxkiac/FXAkhxkUt2olB1Go17O3t4ejo+NDz/pNRi6Y2/Tf5tdSuxCaxLIvm5mbU19f3+pqGhgYcOnQILMsiOjoaM2fOtJokCQA8PT2xatUq+Pj4QCaTYc+ePbh06VK/F2K/ND0cC+L1a0QVNbTh13vvQK2hzTOEmBIlSqTfxGJxr9qVaFkWO2/olwQYH+aG4X40jWCLMjIy8Pnnn+PUqVO9vqa2thZarRbBwcGYM2eOVSVJHTw8PPDUU08hPj4eAHD27FkcPHgQSqWyhys7YxgG/1g6ErGB+u0YLubX46+/5BolXkJI71CiRPqlvr4eH3/8MX744Ycey0NcLmxCcaNM7xiNJtmugIAAAMDdu3chl8t7OLtdVFQUVq1ahXnz5hmlkKO58Hg8PPLII5g1axY4HA6ysrJw8ODBft3LXsDFltWJ8HLSb53yzeViHLhd0c1VhBBjs953JGJWHZW4e7PLZ8cDo0kR3g6YNNR9wGIj5uXp6QkPDw9otVpdy5GHYVkWcrkcXl5eNrPeceTIkVi6dClcXFwwceLEft8nwM0eX68eAz5Xf4Ttd4cykFLWbGiYhJBeMMq+7DNnzuDMmTOoq6vrNLrw7bffGuMliAXRarW6RKmn2klZ1a24VSrSO7ZmHLUrsXXDhg3DjRs3kJOTo5uKepBMJsOPP/6IyZMnw8fH9ra+BwUFYf369eByuboSAm1tbXBy6tuU85gQD/xlSRzeOpiuO6bUaPHC7tv49yuT4O/avx2GhJDeMXhE6d1338WcOXNw5swZNDQ0oLm5We9hKh988AGSkpLg7OwMHx8fLFmyBHl5eSZ7/cGksLAQEokE9vb2CA9/eCG8B9cmeTkK8FiM7X0oEn3Dhg0D0P6z0tUaHZZl8fPPP6OkpATHjh2z2er+HYV41Wo17t69i88++wxXrlzp8yLv5UnBWD8pVO9YfasCz++6TW1OCBlgBo8offXVV9ixYwdWr15tjHj67cKFC3j55ZeRlJQEtVqN//f//h/mzJmD7OzsHndkkb65c+cOAGDEiBEPbYxcLZLjZLb+zqdVSQEQ8GjG19Z5e3vD1dUVIpEIhYWFnUYe09PTkZWVBYZhMHfuXKtel9RbRUVFUKlUOH36NFpaWjB//vw+/b7/36MjUFArweXCBt2xjEoR3jqQjk+fMm3/O0IGE4PfnZRKpUFz8MZy/PhxrFu3DjExMRg5ciS2b9+OsrIy3L5929yh2RSJRKJbdxIbG/vQc7+7VQnNfV+c7fkcLBvt3/0FxGYwDIOIiAgA7fWR7ieVSnH8+HEAwMSJE+HvPzh+JiZMmIDp06cDAJKTk7Fv374+7YjjcTn44ukEhHo66B3/d1oVvrpAraIIGSgGJ0obNmzAnj17jBGLUYlE7etiPDw8unxeoVBALBbrPUjPMjIyoNVq4efnBy8vr27PE8lUOHCnRu/Y4yP94GrPH+gQiYWIjY3Fo48+ikcffVTv+MWLF3WLt5OSkswUnXmMHj0aCxYsAJfLRX5+Pnbt2gWZTNbzhf/l5tDe5sTpgbY/fz+RizM5td1cRQgxhMFTb3K5HFu2bMHp06cRHx8PPl//g/Cjjz4y9CX6jGVZbNq0CZMnT+521OODDz7Au+++a+LIrF9iYiL4fH6nv+cH7btdDel9/ao4DPDMWGpXMph4enrC09NT72elqakJt27dAgBMmzZtUEy5PSgyMhJOTk44cuQIKisrsX37dqxdu7bXSwQifJzx6VOjsGGXfpuT1/am4vBLEzHM1zZ2DhJiKQx+l0pPT8eoUaPA4XCQmZmJO3fu6B6pqalGCLHvXnnlFaSnp+OHH37o9py3334bIpFI9ygvLzdhhNaLy+UiKioKQ4cO7fYcmUqD729V6h2bG+2NYHfanTMYqdVq3f/fuXMHWq0WoaGhCAkJMWNU5hUQEIDly5fD0dERbm5ufe6NN2uEL96aO1zvmEShxoZdyWiR9r3AJSGkewzb3xr7FurXv/41jhw5gosXLyIsLKzX14nFYt3iUxcXl54vGKQUCkWP6yp+SK7C+ycK9Y4d2DAaUb5UiXuwUalUSE1NRUVFBVatWgWGYXDnzh3daNNg19raCnt7ezg4OEAo7FvfQ5Zl8fq+VBxN1e+hODnCCzvWJ4HHHXyjdWRwGujPb5v5l8SyLF555RUcOnQIZ8+e7VOSRHqmVCqxZcsWXLlyBRpN99uRVRotdlzXH52bHO5OSdIgxeVykZycjOLiYhQXF0OpVCIyMpKSpP9ydnYGj8eDUqmETCbDiRMnUFZW1qtrGYbB356MR1ygq97xy4UN+MuxnIEIl5BBySiJUktLCz788ENs2LABGzduxEcffaRbTG0qL7/8Mr777jvs2bMHzs7OqKmpQU1NTZ8WSpLuZWVlobq6GhkZGQ9dV3Iipx5VIoXesecmBg90eMRCcTgcREVFAWjf6dWb3oCD1e3bt3H9+nV89913KC4u7tU1dnwutqwZA29n/dGo7VdK8OMtWk5AiDEYnCglJycjPDwcH3/8MZqamtDQ0ICPP/4Y4eHhSElJMUaMvbJ582aIRCJMnz4d/v7+use+fftMFoMt61hvFhsb2229FpZlse2q/pvzyEAXjAl27fJ8MjgMH96+liYvLw+lpaVmjsZyRUdHIyQkBCqVCnv27EFhYWHPFwHwd21vcyJ4YKrt/x3JQHJJ00CESsigYnCi9MYbb2DRokUoKSnBoUOHcPjwYRQXF2PBggV4/fXXjRBi77As2+Vj3bp1JovBVjU0NKCsrAwMw2DEiBHdnnepsAmF9VK9Y89NDKZCeINcVdW9NTSNjY1mjMSy8fl8LF68GEOHDoVarcbevXs71aDqzugh7nj/iTi9YyoNi199dxuVLTSqToghjDKi9Jvf/AY83r1KAzweD2+99RaSk5MNvT2xAB2VuENDQx/atHTbNf3RpHAvB0wb1nUdKzI4qFQqXTkAoHPxSaKPx+Nh4cKFGDZsGDQaDfbv34+srKxeXbt0TBA2TNZfm9kgUeL5XcmQKtXdXEUI6YnBiZKLi0uXiw/Ly8ttphP4YKbRaHQNcB9WiTulXISUcv2inc9OCAaHRpMGtezsbMhkMl0j2JqaGhpV6gGXy8Vjjz2G4cOHQ6vV4vDhw70uiPvb+cMxNdJb71hWlRiv7U2FRmtTG5wJMRmDE6UVK1bgueeew759+1BeXo6Kigrs3bsXGzZswMqVK40RIzGj3NxctLW1wdHR8aG1kx5cm+TnIsT8GO9uziaDgVar1bUQio+Px9ChQ3XNcsnDcTgczJs3D3FxcZg/f36vv3TyuBx8/lQCwrz0i1eeyq7Fez9nD0SohNg8gytz//Of/wTDMFizZo2usByfz8eLL76Iv/71rwYHSMzL09MT0dHRcHNz67YBbk6NBBcL9ReNrhsfBD7VcRnUioqK0NLSAoFAgKioKMTExIDL5cLBwaHniwk4HA5mz54NoL0/nr29PdRqNQQCwUOvc3XgY+uaRDzx5RWI5fem3LZfKUGwuwOenUylUwjpC6MVnJRKpbh79y5YlkVERITVvRlSwcmusSwLiUTy0HPeOJCN03n3Opq7O/Bx/OWxcBB0nViRweHKlSu4ceMGRo0ahbFjx+qO29vbd5t0k+61tbXhxx9/RGJiYq8akV8vasTqbTeguq8zNcMAXz0zBnNj/AYyVEJMymoKTjo4OCAuLg7x8fFWlySR7vVU96awvk0vSQKANeMCKUkimDBhAlasWIG4OP3dWHV1dcjOpmmgvsrLy0NzczNOnTqFixcv9nj++KGe+MfSkXrH2nvC3UFqecsARUmI7enX1NumTZvwf//3f3B0dMSmTZseeq45muISw6nVapw7dw6RkZHw8Oh+59rWK/oL+Z3teHhqTMBAh0esgEqlgqurfg2tlpYW/Pjjj+ByuQgLC+tzj7PBbPTo0VAqlbh69SrOnTsHtVqNGTNmPLT8xpKEQJQ3SfHhqXzdMblKiw07b+HgixMR4tm7RryEDGb9SpTu3LmjG2no2DreFaqfY71yc3Nx9epVpKenY8OGDV1W4y5tkuF4dr3esWeSAuAkNHjpG7FiEokEarUafD6/03Nubm7w9PREY2Mj8vLyMGrUKNMHaMXGjx8PHo+Hixcv4tKlS1Cr1Zg9e/ZD32tfmRmB8mYpfkyu0B1rkCix9tubOPDiRHg59a3HHCGDTb8+0c6dO6f7/507dyIoKKjTBynLsigvpxL61qpjt1JsbGy3LUu+uVKG+3ccOwi4WJUUaIrwiAW7efMm0tLSkJSU1GUiFBkZiWvXriErK4sSpX5ITEwEl8vFuXPncO3aNWg0GsybN6/bZIlhGPzl8ThUtchxufDeNHlJoxTP7riFHzaOhyN9uSGkWwavUQoLC0NDQ0On401NTdSY1ko1NDSgpKQEDMN0Wl/SobJFjv9k1ukdW5kYAFf7zqMIZPCQyWTIzMwEy7Lw9u66PERERAQYhkFtbS3q6uq6PIc8XEJCAh555BEAwN27d6FQKB56Pp/LwZfPjMYIf/2FrukVIrz4fQpUGu2AxUqItTM4Uepu05xEIoGdnZ2htydm0DGaFBYW1m39lm+vlUN933CSHY+D1WNpNGmwS09Ph1qthqenJwICul6rZm9vr/sSZcp+kLYmPj4eCxYswNKlS7uc5nyQix0fO9cnIdBNf13Yxfx6/OZAerfv5YQMdv0eb+1YxM0wDN555x29nW4ajUa3LZhYF7VaravEHR8f3+U5tWIFDqfV6B1bOtofno4Pr+9CbJtWq9X72XnYupn4+HgUFRUhNzcXkydP1lXuJn0TGRkJoH0kz97eHmVlZQgJCel2utzHxQ67nhuLpZuvoll6b0froTuV8HYR4u353fdyJGSw6nei1LGIm2VZZGRk6BVBEwgEGDlyJN58803DIyQmlZOTA5lMBmdnZ4SGhnZ5zo7rFXq1WfhcBuvGBZkoQmKpSktLIZFIIBQKH1rFHQB8fHzg6+sLsViMpqYmSpQMxLIsUlJScOzYMYwYMQJPPvlkt7Wqwr2d8O26JDy99QZkKo3u+NcXiuDuIMCvpoWbKmxCrEK/E6WOBd3r16/Hp59+SkUabYRKpYK9vX23i7jrWhX4MaVK79gTI/3g60I7Zwa7juatw4YN61VByRkzZsDJyYneO4yEz+eDy+UiJycHP/74I5YtW6bXrPx+CUPc8a9VCdi467ZeD7i//pILFzs+nh43xFRhE2LxDF6jtH37dt0bHcuyNM9t5RISErBx40aMGTOmy+e3XS2H8r7RJB6HwfoJwaYKj1golUqF0tJSAPemg3ri4uICDoeja31EDBMeHo5FixaBy+UiPz8f+/bte2jB2JnDffHXJzpv1vh/RzLwU1pVF1cQMjgZpTL3tm3bEBsbCzs7O9jZ2SE2NhbffPONMW5NTEylUoHH43XZT6pGrMD+O9V6xx4f6YdAN1q0P9jx+XysX78ejzzyCLy8vPp0rVKpRGlpKX3JMoKwsDA8/vjj4PF4KCwsxA8//AClUtnt+csSg/H7x/TXJbEs8Ma+VJzLpR2JhABGSJT+8Ic/4LXXXsPChQuxf/9+7N+/HwsXLsQbb7yB3//+98aIkZiATCZDQUHBQ7cZf3O1TG9tEo/DYOMkGk0i7RiG6XFt0oNYlsXBgwdx8OBBlJSUDExgg8yQIUPwxBNPgM/no7i4GN9///1DR+02TBmKV2dG6B1Ta1n86rvbuFHUONDhEmLxDE6UNm/ejK1bt+KDDz7AokWLsGjRInzwwQfYsmULvvrqK2PESEwgJSUFe/bswb///e8un68WyXHwjv5OtycT/ODvSqNJg51arYZWq4VGo+n55AcwDAM/v/YGrVQqwHiCgoLw5JNPQigUwt/fv8c1Y2/MjsS6iaF6xxRqLZ7bmYyUsuYBjJQQy2dwoqTRaJCYmNjp+JgxY2jtgZXQarVITk4GgG5HBLZe0a+bxOcy2DCRFnwS4OLFi/juu+/6XYk/NjYWDMOgtLQU9fX1PV9AeiUgIACrV6/GxIkTe3wvZhgG7yyIxhOj9WuhSRRqrN12E+kVLQMYKSGWzeBE6ZlnnsHmzZs7Hd+yZQtWrVpl6O2JCRQUFKClpQV2dnaIiorq9Hxli7xT3aRlCf7wo51ug55arUZOTg4aGhr63dvx/lIUNKpkXC4uLmAYBnK5HDKZDL/88gva2tq6PJfDYfD3J+MxJ9pX73irQo1nvrmBzEqRKUImxOIYdTH3hg0bsGHDBsTGxmLr1q3gcDjYtGmT7kEs082bNwG0f7PvqsLv1itleqNJQh4Hz02ktUnkXvsMR0fHbitx90ZHcdPc3FxIJBJjhUfu8/PPP+PmzZvYsWMHWltbuzyHx+Xg86cTMD1Kv/2MWK7GM9tuILtKbIpQCbEoBidKmZmZGD16NLy9vXH37l3cvXsX3t7eGD16NDIzM3Hnzh3cuXMHqampRgiXGFt9fT2KiorAMAxGjhzZ6fnyZhmOPDiaNNofPs40mkTa//0DQFRUVLfVoHvD19cXfn5+0Gg0uH79urHCI/cZO3YsnJyc0NDQgO3bt6O5ueu1R0IeF189MwZThunvXmyRqvDMthvIq+k6ySLEVhncMrqj8CSxTrdu3QLQvjbJ1dW10/NfXS7DfRvdYMfj4Dmqm0QAiMXiPtdOepikpCT89NNPaGxshFarNSjxIp25u7tjxYoVOHDgAJqbm/Htt99i9erV8PHx6XSuHZ+LLasT8dzOW7h6997Ot6Y2JZ7eeh3fbRjXqcEuIbbKoHcilUqFGTNmID8/31jxEBNiWRa1tbUA0GVfvsL6Nvwno1bv2IoxAfByop5uBMjOzgYA+Pv7G6W6tr+/PxYtWoQlS5ZQkjRAXF1dsWLFCnh6ekIikWDHjh2orKzs8lx7ARffrE3E2DAPveONbUqs3HodGRW0ZokMDga9G/H5fGRmZvZ7EScxL4Zh8Mwzz+Cpp57CkCGdd7B9fr4E9y1Ngj2fg/UTqKcbaU+yc3JyAKDLDQD95efnB7VaTcUnB5CTkxOWL18OPz8/yGQy7N+/v9vSDg4CHravS0JiiLve8RapCk9vvY7bpVQ6gNg+g7+2rVmzBtu2bTNGLMQMVCoVAgICOiW7aZVinM3XLza3dlwQPB1pNIm0mzx5MiIiIrptntxfLMuitbVVN2JFjM/e3h5Lly5FeHg4FixY8NARPEchDzueHYuxofojS60KNVZvu4Frd6koJbFtBq9RUiqV+Oabb3Dq1CkkJibC0dFR7/mPPvrI0JcgA6CxsRH29vZdfpNkWRafnC3WO+Zmz8Pa8TSaRNoxDIPQ0FD4+/sb/d4qlQp79+6FTCaDm5ubQbvpSPcEAgEWL14MoL0yv729PSQSCZydnTud6yTkYcezSXh+121cLmzQHZcqNVi3/Sa2rEnEtEjvTtcRYguMtuvNxcUF+fn5ul1utNPNsh05cgSfffZZl20jrhY1I7lMf/3BxklD4CQ0OK8mNmSgCsry+XyEhIQAAC5fvkzTcCag0WhQXFyML774AufPn+/yz9xBwMM3axMxc7j+4m+FWosNO29RI11is2jX2yBUXl6OiooKcLlceHvrfwvUsiw+PVeid8zPRYgVY+hbPWnX0NCAvLw8BAcHw8PDo+cL+mH06NEoKChARUUFSktLjT69RzorLS2FUqnEhQsX0Nraiscee6zTlJwdv710wGt77+CXzHtlQ1QaFq/uvYNGiQLrJoWZOnRCBpRRtpa0tLTgww8/xIYNG7Bx40Z8/PHHEIloR4SlunbtGgBg+PDhnaZKT+bUI6dWv+DfS1NDIOTRLiTSLicnBzdu3BjQKtpOTk6Ijo4GQKNKppKYmIhZs2YBaK+Qvn//fqhUqk7nCXgcfL4yAUtG6X95YlngTz9l4+/Hc+nvi9gUgz/9kpOTER4ejo8//hhNTU1oaGjARx99hPDwcGpHYIGampp0u5XGjBmj95xKo8Xn50v0jg31csDCOP2WBmTwYlkWeXl5ALrvC2gsCQkJ4PP5qKurQ0ZGxoC+Fmk3cuRILFy4EFwuF7m5udi1a1eXLU94XA4+Wj4KayeEdHruy/N38ZuD6VBrtKYImZABZ3Ci9MYbb2DRokUoKSnBoUOHcPjwYRQXF2PBggV4/fXXjRAiMaaOqsehoaHw8tKvvHs4tQZlzXK9Y69OCwWPQ+UfSLva2lqIxWLweLwuS0oYk52dna7h9qVLl6i1iYkMGzYMTz75JIRCISoqKrBt2zaIxZ1bl3A4DP60KAb/O7dzeYgfkyuwcVcyWuWdR6QIsTZGGVH6zW9+Ax7v3nInHo+Ht956S9eRnlgGqVSqW2Df8QHUQaJQ418XS/WOxQU4Y2aUp6nCI1agYzRpyJAhev/mB0pMTAy8vb0xdOhQcLncAX890i4oKAgrV66Eq6srXF1dO03Rd2AYBi/PiMBfn4jDg9+nzuXVY+nmayhvkpogYkIGjsGJkouLC8rKyjodLy8v73KbKTGfkpISqNVqeHt7IzhYvw3JtqvlaJLqf/t7fUYYFRMlOizL6qrwh4eHm+Q1ORwOFi5ciClTpkAopP6CpuTh4YGVK1fiscceg1KpBMuy3a49emrsEHy9OrHTWsa82lYs+dcV3CppMkXIhAwIgxOlFStW4LnnnsO+fft0u6n27t2LDRs2YOXKlcaIkRhJdHQ0NmzYgNmzZ+slQFUiOXbdqNA7d/owD4wNdTNxhMSS1dTUoLW1FTwer1OiPZA6Rq4UCgVYloVWS2tfTMXBwQFCoRBqtRptbW04duwYzp0712XCNDvaF99vGAd3B77e8cY2JVZtvYEDtys6XUOINTB47Pyf//wnGIbBmjVrdHVV+Hw+XnzxRfz1r381OEBiPBqNBs7Ozp1G+j45VwzlfZ1vuQzwxsyBXahLrI9IJIJAIEBwcLBJpt0e1NLSgmvXrsHT0xPTpk0z+esPdmVlZbrlFPX19ViyZAkEAv1K/YmhHjj68mQ8t/MWCururSlTarR4c38a8mrEeGvecPC5tIuWWA+GNdI+TqlUirt374JlWURERMDBwcEYtzUZsVgMV1dXiEQiozT4tCRarRZNTU1wdHTsVCQwvVKMVTtS9Y6tTAzA7+ZGmDBCYi1aW1shk8nM8u+7rKwMx48fB8MwWLVqVZdd78nAysrKwunTp6HRaODr64unnnoKbm5unc4Ty1X49Z47uJBf3+m5MSHu+OLpBPi72psgYjIYDPTnt8FpvUwmg1QqhYODA+Li4uDq6ootW7bg5MmTxoiPGEFWVhb+9a9/4fjx43rHWZbFP04X6R1zFnLx4pTOW34J0Wq1YBjGbF+ChgwZgqFDh4JlWZw6darbRq5k4MTExGDZsmVwcHBAbW0ttm7d2uUaVRc7PratTcSzXRSfvF3ajEc/vYTzeXWmCJkQgxmcKC1evBi7du0C0D40Pm7cOHz44YdYvHgxNm/ebHCAxDAsy+LSpUsA2ov43e9UbgNSK/S3/T4/eUinNQaEtLa2dll80NQmTpwIgUCA2tpaXLlyxdzhDEoBAQG6ET2pVIqdO3fizp07nc7jcTl4Z2E0PngiDnyu/qaQZqkK67bfwj9O5FK9JWLxDE6UUlJSMGXKFADAgQMH4Ovri9LSUuzatQufffaZwQESw+Tk5KC+vh5CoRAJCQm640q1Fh890Pg20M0OTycGmjpEYuFYlsXevXuxa9cuNDc3mzUWBwcH3fqk5ORkFBUV9XAFGQjOzs5YsWIFoqKioNVqO30Ju9/KsUNw8MWJCHLvPNX2r3N3sfzrayisoxpZxHIZnChJpVLd4uCTJ0/iiSeeAIfDwfjx41FaWtrD1cZz8eJFLFy4EAEBAWAYBkeOHDHZa1uq+0eTRo0apbe9+rtblahs0S8u+cbMMAioVQl5QENDA1pbW/X+rZtTWFgYYmJiAADHjx9Ha2urmSManPh8Ph599FE89dRT8PPz061/7GpKND7IDT//egpmR3eu8p9S1oJHP7uEL88X0ugSsUgGfypGRETgyJEjKC8vx4kTJzBnzhwAQF1dnUkXRbe1tWHkyJH44osvTPaali4/Px81NTXg8/kYPXq07nitWIGvLuknsaOCXDBnuNeDtyAEd+/eBQAEBgaaZbdbV8aPHw8vLy/Y2dlBqVSaO5xBi2EYBAS093yTyWSoqanBZ599huzs7E7nujrwsWX1GPz+sRGdqv0r1Vr8/XgeHv/yKnKqO1cBJ8ScDH7Xe+edd/D000/jjTfewKxZszBhwgQA7aNL90/1DLT58+dj/vz5Jns9S3f/aNLIkSNhb39v2PvDM0WQqfS/ub31yFAqLkm61JEohYaGmjeQ+3C5XMyZMwdCodDmdqlas+vXr0MsFmP//v1ITEzEnDlzwOffW/PIMAw2TBmK0SHu2LQvFSWN+lW7MypFWPj5ZTw3OQwvzYiAqz2tlyTmZ/CI0tKlS3X1Ne7fVTVr1ix8/PHHht5+wCgUCojFYr2HLRGJRGhqagKPx9NrV3KrtAW/ZOtv2X18pC/iAunDhnQmkUhQW1sLAAPe262vnJycwOfzIZfLwbKsRSw2H+xmzJihe79JTk7G1q1bdT8/9xs9xB2/vDYVGyaH4cHvZ2oti68vFmHaP87hm0tFUKhpdyMxL6PVUbIkDMPg8OHDWLJkSbfn/OlPf8K7777b6bgt1VESi8UoLy/XfcCpNFos35aCwvp73+Kc7Xj4z68S4eEo6O42ZBBLT0/H6dOn4ePj89B/T+bEsiwyMzORlpaGZcuWwdOT+hOaW2lpKY4fP462tjZwuVzMnj0bY8eO7XLUOqWsGW8dSO92QXeQuz3+d24UFsYHgEMNukkXLL6OEtDe2fuZZ57BhAkTUFlZCQDYvXs3Ll++bIzbD4i3334bIpFI9ygvLzd3SEbVUfPm/lGAH5Kr9JIkAPj1tFBKkki3OqbdLG006X5arRZ3796FVCrFoUOHIJHQDipzCwkJwerVqzF06FBoNBocP368yxICQPvo0n9+PRkvTQ/vtHYJACqaZXhtbyqm//M8vrlUBJGMRg6JaRmcKB08eBBz586Fvb097ty5A4VCAaC97sr7779vcIADpWNtw/0PW8CyLAoLC3V/Dx3qWxX48qL+Au7hvo5YPtrflOERKzN69GjExMQgLKxz4UBLweVyMW/ePLi6uqK1tRWHDx/u9PNPTM/BwQGLFy/GzJkzERgYiBEjRnR7rh2fi7fmDcepTdPwaJxfl+eUNUnx3s85GP/+GfzucAZya2xruQSxXAYnSu+99x6++uorbN26VW/R3sSJE5GSkmLo7Ukf5efn4/vvv8f333+v17jy43PFaFPqz/X/v3kR4NJQNnmIwMBATJo0Ce7u7uYO5aHs7Owwf/582Nvbo76+Hj/99BNV7rYADMNg1KhRWL58OdRqNaRSKVQqFf7zn/90WZMrzMsRX64ag0MvTURSaNc/czKVBntulGHeJ5cw88PzeP9YDm4WN1FpATJgDN71lpeXh6lTp3Y67uLigpaWFkNv32sSiQSFhYW6XxcXFyM1NRUeHh4WPW1gTFqtFmfOnAEAXT0pALhdJsJPGfrtAhbF+2JUkKvJYyTWxZqSDRcXF8yfPx8//fQTysrKcOLECcyfP592c1qAjr8DjUaDK1eu4Pbt20hPT8eMGTMwduxYcLlcvfNHD3HHjy9MwKnsWnxyugDZ3ZQMKKpvw5b6Imy5WAQ3Bz6mDPNGfKArYgJcEBPgClfqMkCMwOBEyd/fH4WFhZ22Dl++fBlDh5quA31ycjJmzJih+/WmTZsAAGvXrsWOHTtMFoc5paen66pwJyUlAWivT/LusXy985yEXLwxw3KnUoj5sSyLq1evwsfHB76+vuBwrKMQqZeXF2bPno1ffvkFubm5iIqKQnh4uLnDIvcZPnw4ysvLUV5ejpMnTyIlJQVz585FRIR+I26GYTAnxg+zo32RXNqMHVdLcDyzBhpt1/uPWqQq/JRWhZ/SqnTHAt3sEenrBD9XO/i62MHPxQ6+rnbwdBTA2Y4PZzsenO14EPK4Xd6TEMAIidILL7yA1157Dd9++y0YhkFVVRWuXbuGN998E++8844xYuyV6dOnwwY38PWaWq3GuXPnAABjx46FnZ0dAGDrlTIUN8r0zn15aii8nGgBN+ledXU1bty4AT6fjzVr1pg7nD4JCgrCtGnTIJfLLXpt1WDl5uaGpUuXIjMzE5cvX0ZDQwO+//57DBs2DHPmzIGXl37hW4ZhkBTqgaRQD9SI5NhzoxR7b5WjrrXndWiVLTJUtsh6PE/A48DFjqeXPDkJ7/81/7/P8+DrYodQT0cEutuDz7WOLxDEMAYnSm+99RZEIhFmzJgBuVyOqVOnQigU4s0338Qrr7xijBhJL9y6dQtisRhOTk4YNWoUAKCgrg3fXNXfzRfj74SnEgPMECGxJh091IKDgztNi1iDyMhIAO3Vou3s7KDRaMDj8axmZMzWMQyDuLg4DBs2DDdu3MCdO3dQUFAAhmGwcuXKbq/zc7XDpjlReP2RSGRUinAmpxancuoMruatVGvRIFGiQdL7Ku9cDoMgd3uEeDpiuJ8zEkPcMSbEHZ5Owp4vJlbFaHWUpFIpsrOzodVqER0d/dAmiZZooOswDCS5XI7PPvsMMpkMc+bMQWxsLDRaFmt2pSK98l4fLC4D7HtuNKJ8revvhpjezp070djYiJkzZ3aaErE2arUav/zyC5ydnTF//nyrTPxsXXNzMy5evIgpU6YgICAAPB4Pra2t0Gq1cHNz6/H6imYpLuTXI7NShKwqMXJrWqFUm2dx91AvR4wJccfkYV6YOdwHzna0TmqgDfTnt0EjSlqtFjt27MChQ4dQUlIChmEQFhaGpUuXYvXq1bSI0kQkEglcXV1hb2+P6OhoAMC+21V6SRIArJ8QTEkS6VFLSwsaGxvBMAyCg4PNHY7B6urqUFtbi+rqaqhUKixYsEBvhy4xP3d3dyxevBhA+xc/hmFw9uxZZGRkID4+HpMmTeo0JXe/IHcHrBoXovu1SqNFYZ0EOdViVDbLUCOWo1Ys/+9/FRBJVVAO0C65ooY2FDW0Yf/tCgh4HEyP9MZj8f6YNcIXTkLL6JVI+qbfI0osy2LhwoU4duwYRo4cieHDh4NlWeTk5CAjIwOLFi3CkSNHjBzuwLHmESWgPVlqbW2Fk5MTqkVyLNlyG9L7ygGEeNjjwIbRsOPTt2nycCkpKTh//jwCAgKwYMECc4djFB0LhzUaDQIDA7Fw4UI4ODiYOyzSDZZlceTIERQXF+uOhYSEICEhAdHR0UZJdOUqDVrlarTKVf/9773/F993TKK49/8tMiUqmmVokfa96KWQx8HsaF88OzkMo4dYdrkNazPQn9/9TpS2b9+O1157DUePHtXbbQYAZ8+exZIlS/DFF19YzUJQa06UlEqlrsAey7J4eV8WLt1t0jvn22fikRTiZoboiLXZv38/ysvLMX78eMTHx5s7HKOprq7G8ePHoVKp4OzsjEWLFsHX19fcYZGHqK6uxs2bN1FUVKTbrCMUCjFhwgRMmzbNbHG1SJUoaZSitLENBbUSpJQ1405ZC2Sq3pXTGD3EDc9NHoq5Mb7g0YJwg1lsojRnzhzMnDkTv/3tb7t8/v3338eFCxdw4sQJgwI0FWtMlMrLy5Gfn4/Ro0eDx2sf0v1PZi3ePpqnd96To/zwp8cizREisTIajQbffvstWltb8dRTT1nNv4Xeam5uxsmTJyESicDlcrFgwQIqH2AFWltbkZ2djczMTIhEIkyZMgXTp08Hh8OBXC5HQUEBIiIiYG9vb7YY1RotcqpbkVzahIv59bhc2ACV5uEfr4Fu9nhuchhWjR9CJQoMYLGJkp+fH44fP67bYfWgO3fuYP78+aipqTEkPpOxtkRJq9Viy5YtqK2tRWJiIqZOnYpqkRxPbr2NVsW9bzVejgIceWEMXO1pTQbpHaVSiaqqqoeuCbFmSqUSZ8+eRV1dHZ5++uleLRYmloFlWZSXl8PDwwNOTk7gcDgoKCjA0aNHwTAM/P39ERAQoHt4e3ubbaejSKrCyewa/JxRjcsFDVB3U/8JaE+Y3pwbicUjA6nxbz9YbKIkEAhQWloKf/+ue4VVVVUhLCzManouWVuidOPGDRw/fhxCoRDPPvsshHZ22Ph9Om6WivTO+/jJaDwy3DY/8MjAkMvlUKvV5g5jQLEsC7FYDDc3N9jZ2YHL5UImk5l1RIL0T35+Pq5du4bGxsZOz/H5fKxevVq3KaG5uRkSiQRubm5wdHQ0WRLV3KbE/tvl2HGlBFUiebfnxQS44Lfzh2PKMG+TxGUrLHbXW0ddku5wuVybf7M1F4lEoisuOWXKFNjb22PXjYpOSdLCOB9KkkivdXxnsqa2Jf3FMAxcXV3BsixkMhnKy8tx5swZTJ8+HTExMbRj14pERkYiMjISra2tqKqqQk1NDWpra1FXVwelUgkulwu5XA4Oh4OUlBRcvnwZQPvPgLOzs64purOzMyZOnKj7oO241hjlJNwdBXh+ajjWTwrD8cwafHO5GGnlLZ3Oy6oSY/W2m5ga6Y0/L4pBqJejwa9NDNfvRIllWaxbtw5CYdfFtaxlJMkanT59GgqFAr6+voiNjUVBXRs+PVesd46/ixBvz7Hu+jfEtMrLy/Hzzz9j2LBhGD9+vLnDMamcnBwolUqcPHkShYWFmD17Nhwd6UPKmjg7OyMqKgpRUVEA2j+jmpub4ejoCJVKpTvm7OwMiUSiG1UUi+8Vq0xISIC9vT04HA4uXbqEy5cvw9HRUS+Z8vT0hI+PD4KDg/u8+47P5WDhyAAsiPdHcmkz/nEiDzeLmzqddzG/HnM/uYhXZw3DxilDIeDRgm9z6vfU2/r163t13vbt2/tze5Ozlqm30tJSXe+6lStXwtPbF09vv4O8ujbdOQyAbbTLjfTRuXPncOfOHURGRmL69OnmDsektFot0tPTkZycDK1WC3t7e8ycORORkZE0umSDtFotpFIpWltbdaVVJBIJJk6cqJspOXHiBLKysrq9x0svvQRv7/YpssrKSkilUgQHB+vaR/UGy7I4k1OHvx3PRUGdpMtzonyd8f4TsRgT4tGH3+HgYrFrlGyNtSRK27ZtQ0VFBeLi4jB79mx8fLYY317Tb1OydlwQ3nzEdA2JifVjWRbffvstRCIR5syZ06nJ9WDR2NiIc+fOoamp/Vt+cHAwZs6cCU9PTzNHRkyNZVnI5XK9ZKq1tRVNTU1obm7G6tWrdW1xjh07hszMTADtG52GDBmCiIgIhIWFPXSJSge1RouDKRX46FQ+asWdZ2MYBlg1bgjenj8CjlS0shNKlEzEWhKlxsZGnD17FtOmTUNGrQIbvk/H/X+Bw3wc8cP6BAhpqJb0QUNDA3bt2gUul4s1a9YM6srVGo0GqampSE1NhUajwRNPPDFoE0fSO5cvX0Z+fj5aWlr0jgsEAkRGRmLJkiW9WuskUajx4ck87Lxagq42yQ3xcMBHy0ciMZRGl+5HiZKJWEOixLIspFIptFotasUKLP82BU1t9yrE8rkMflifQG1KSJ/dvHkTly9fxpAhQzBv3jxzh2MRWltbUVxcjJEjR0IgEIDP56O6uho+Pj7UL450SSKRoLKyEuXl5bh79y7a2trg6+uLjRs36n5m6uvr4eXl9dAp3fSKFvz2YAayu2j2y2GAF6aF441HImnt0n9RomQilpwoqdVqlJWVISAgACqVCiqNFs9+l47UCv1/RJtmhmH9BOvvzUVM74cffkB1dTUmT56s6xdI9CkUCnz//fdwdHTE+PHjMWLECLPV6CGWj2VZXX/BkJAQMAwDrVaLL774Ao6OjkhISMCoUaO6/bxRa7TYfqUEH53K77Li9wh/F3y8YiSG+1nW55U5DPTnN/0rtwJnz57F7t27cfbsWQDAR2eKOyVJUyM8sHZ8kDnCI1aura0N1dXVANr7aZGuNTY2gs/nQyQS4cSJE9i5cydycnKg1ZqnSz2xbAzDICAgQPdvimVZVFVVgcPhoKWlBefOncMnn3yCAwcOoKqqqtP1PC4HG6cOxfHXpyAxpHNvuJxqMRZ9cQXbrxSDxjsGFo0o/ZeljigVFxdj165dAIAlS5YgX+6E/z2cq3dOoKsQ+54bTdW3Sb+0tbUhOTkZLS0tmDVrlrnDsWhqtRpZWVlIS0uDXN5eONDNzQ2jR49GTEzMoF7bRXpHpVKhoKAAGRkZqKys1B0PCwvDvHnz4OPj0+kajZbFlotF+OhUXpdtUWZEeeMfy0bCy6nrcj22jqbeTMQSEyW5XI7NmzdDLBYjLi4O4QmT8NS3KZCp7n2DFXAZ7F47CtH+zmaMlFi7wVCN25iUSiWysrKQnp4OhUIBLpeLjRs3wsHBwdyhEStSX1+P5ORk5Oa2f/l95ZVX4OHR/ULt7CoxNv2Yitya1k7PeTkJ8eHykZgWOfiqelOiZCKWmCgdPnwY6enpcHV1xRPLV2Lt91kobpTpnfPuY8PwxKiu28gQ0lttbW00fN8PKpUKeXl5UCgUSEpKAp/PB4/Hw9WrVxEcHIzg4GCqw0R6JBaLUVFRgejoaPB4PAiFQly4cAFBQUGIiIjQ+xlSqDX48GQ+tlws6vJeGyaH4X/nRQ2qJruUKJmIpSVKaWlpOHLkCBiGwZPLluHPF5pwo6RF75zHR/rizwuizBMgsQn19fUQiUTw8vLqVb0X0rOmpiYcOHAAAODq6oq4uDhER0fDyYl2o5Leqa+vx+7duwG01/KaMWMGwsLC9M65VFCPTT+mob61c92laH8XfLYyARE+g+NnjhIlE7GkREkikeDTTz+FWq3G+PHj8VO9B/6TWad3znBfR+xeOwp2/MHzrYEY36lTp5CRkYGYmBhMmjTJ3OHYBLFYjLS0NBQWFupaZzAMg9DQUERFRSEiIgICgcDMURJLJpPJcPPmTV0tLwCIiIjA7Nmz9dYwNUoUeOtAOs7k1nW6hz2fiz8ujMaKJNsf1aREyUQsKVECgPT0dOTk5CDPbji+vVah95yHAx/frRuFYHfqdE76j2VZbNmyBW1tbXj00UcRFES7Jo1JpVKhqKgIubm5qK2t1R1fsmQJhg6lyvmkZxKJBDdv3kR6ejq0Wi0YhkFCQgIeeeQR2Nu3v/+zLItd10rxl2M5UKo778CcH+uHD56Ig5uD7SbnVB5gEFIoFAgLC4PYZ1SnJMmez8G/VsRSkkQMVlNTg7a2NvD5fPj70zo3Y+Pz+YiKisLixYuxfPlyjB49Gj4+PvDy8oJCoYBGo8GVK1fw008/ITs7GzKZrOebkkHFyckJM2fOxNq1azFs2DCwLIvc3Fy9+l0Mw2DtxFD8+5VJiOyi2PAvmTWY/+klXC9qNGXoNoVGlP7L3CNKLMvi9OnTSEhIgFAoxJncBrxxMFuvPQmXAT5bHoupEVS+nhjuypUruHHjBoYOHYpHHnnE3OEMOizLYt++fbru9QzDICgoCEOHDkVoaCg8PDxsfsqE9E1lZSVkMhkiIyMhFArB5XKRl5eHyMhIcDgcyFUavH8sB7uulXa6lmGAV2ZE4NVZw8Dn2tYYCU29mYi5E6UzZ87g8uXLcHZ2xrCpi/HmkXwoHhhGpR1uxJh27dqFhoYGzJgxA8OGDTN3OIMOy7JoaGhASUkJSkpK0NzcrPd8QEAAnnrqKTNFR6xBQUEBfvrpJ/j6+mLOnDm6Kd1T2bV460AamqWqTtckDHHDpysSMMTTdkpZDPTnN21zsQAdfbYAwCUsHm8cyoP6gY6IL00JoSSJGI1IJEJDQwMYhkFwMLW9MQeGYeDt7Q1vb28kJSVBLBajpKQEFRUVqK6uhqurKxQKhW434t69e+Hr64ugoCAEBgbC2Zlqpw12SqUSQqEQtbW12L17t27B9+xoXxx/fSo2/ZiKK4X6U253ylrw6GeX8OfFMXg8IZBGLXuBRpT+y1wjSlevXsWpU6cAAK4hMfgsz75T1+gnR/nhj48Oox9oYjSZmZk4efIk/P39sXDhQnOHQx6gVquhUql0C3br6upw5MgRvXNcXV11SVNISAglToOUTCbD9evXkZaWprfge8aMGXBwcMSWS0X454nOX74B4JERPvjL43HwdbEzQ+TGQ1NvJmKOROnixYs4d+4cAMAxOBpf5NsD0E+GFsX54N0FUeBxKEkixtPRsFMul3fZMoFYFqVSiaqqKlRXV6O6uhqNjY16BUInTpyI8ePHA2j/4KypqYGvry9VCh9EmpubcenSJRQWFgIAhgwZgvXr1wMA0spb8NreOyhplHa6ztmOhz8siMayMUFW+2WcEiUTMXWilJycjJ9//hkAwAuMxtbCzm9oT40JwNtzw8Gx0h9eYtmoGrf1UiqVqK2t1SVO48aNQ0BAADgcDu7evYsTJ04AAFxcXODr66v3sLOz7tED8nCVlZW4cOECpk6disjISHC5XGg0GkhVWrz7UzYO3K7o8rqpkd744Ik4BLpZ345qSpRMxNSJkkQiwfYdO3FX7YEjNZ1f77mJwXhteqjVZvjEsqnVal1TV2JbCgsLcfv2bYhEoi6fv7+OU2trKxQKBdzd3cHlUvFaW8GyrO6zg8fj4ebNm8jNzcWcOXOQ12aH3x/JRINE2ek6ez4Xr8yMwHOTw6yqmDElSiZiikRJoVBAIBBAq9XidlEd3jyQiTJR5x/W16aHYsOkIQMSAyFnzpxBW1sb4uPj4eXlZe5wyABRKpVoaGhAfX096uvr0dDQALFYjKeffhpubm7gcDhITk7G9evXweFw4O7uDi8vL93D09MTLi4uejV7iPXRaDTYtm0bJBIJACAyMhJjJ03DF9fqcPhOZZfXhHg64J0F0Zg1wteUofYbJUomMtB/0JWVldi/fz8SExORp/HG307ehVKj/0fPAPjtnHA8nRRo9NcnBAC0Wi02b94MhUKBRYsWwc/Pz9whEROSy+UQCoW60YZbt24hMzNT12rlQevWrdN1sy8rK4NIJIK7uzvc3d3h4OBAI95WQiaT4dq1a3oVvuPj48ELGIH/O12OWnHnfnEAMCPKG79fEI1wb8vuGUeJkokM1B80y7K4ceMGTp06Ba1WCxXPEXtao6B9oCi6mz0PHywejsnhVEySDJzy8nLs378fQqEQq1evptECApZlIZFI0NzcjKamJjQ1NaG5uRkikQjr1q0Dn88HwzA4e/YscnNzddcJBAK4ubnB3d0dLi4uGDdunK6H3f1TP8RyNDc34+LFi7h79y6A9hIVs+bMx7FqO+y5WYausgEOAzyeEIRXZ0UgxNPRxBH3DtVRsmISiQQ///yz7s2lXOuOC60hnZKkkYEu+OcTw+Fn5Vs0ieUrKioCAISEhFCSRAC0f1g6OzvD2dkZQ4bcm/LvSHY6mrK6u7sjODgYLS0tkEgkUCqVqKurQ11de0PWpKQkaDQacDgcnDx5EiUlJXBxcdF7ODo6wtHREb6+vvTzZwbu7u5YvHgxampqcP36dZSUlCAibAjeG+eDlWOH4E9H05FcJta7RssCB1MqcDS1EkvHBOGVmREIch9cuykpURoAGo0Gt27dwvnz56FQKKAFg5vKIORofPDg9v/VYwPxxswwmyspTywPy7K6rcMhISFmjoZYugdHhOLi4hAXFweg/T1OLBZDJBJBLBZDLpdDrVZDrVYDAJqamtDW1oa2tjZUV1d3uverr76qS5QuXbqE2tpaXRLl4OAAOzs7CIVC2NnZISjo3rb1jmkjY49WaTQaqNVqaDQaaDQaaLVa3X9ZloWnp6cu3ubmZrS2toJlWd3zDMOAw+GAYRj4+/uDz+cDaJ/yUqvV4PF44PP5uuKh5ubn54clS5agtbUVDg4OaGtrwzAvOyz1qMQ4dTMuityR2eYE9r7PK7WWxd5b5TiYUoHFowKxbmIoYgNdzfi7MB3L+FuzMS0iMU6eOg1Wq0G91gHXlCFoZPWHLJ3tePjzY5F4ZDgtpiWm0dTUBJFIBA6Hg6CgIHOHQ6wYl8vVrVXqyuzZs9Ha2orW1lZIJBLdf6VSKbRaLeRyuS7hqaysRFVVVbev9dprr+mSlP/85z+4e/cu+Hw+uFyuLjnpSFTWr1+vO/fixYsoLS3VJTQPJkEvvPCCLnE5efIkcnJyuo3h+eef1xX/TE5ORkZGRrfnrlu3Dq6urmAYBrdu3UJycrLen9v9SeDcuXN1f4b19fVobm6Gg4MDXFxc4OTkNOCjbh1FSlmWhUgkQmFhITQaDRJRhyRXB9yReyJH4QE5+LprVBoWB25X4MDtCowJccfaiaGYF+MHAc92v+xTomQEKpUKRUVFCBgShgMpldh+uRjOCn8oWS4KNF64fxSJAfDEKD+8Oj0UHo4Cs8VMBp+OdQmBgYG6b7yEDAQ7OzvY2dnB29u723NYlgXLskhKSoJIJIJMJoNUKoVMJoNSqWwfjddqIZPJdNfI5XKwLAulsvNu4Y7nO0abmpqaUF9f3+3rt7a26tZUabX3+moyDKNLwjoSsftjEAqFcHd310vQOn4vWq0WarVad75SqQSHw9HdX6PR6EbagPad0HK5HBwOBzk5OXpJVceUqIuLC1xdXTF+/Hi4uraP4KhUKl2MxmJvb4/nnnsOaWlpSE9Ph0wmxSiOFKPsK1CpdUW6ygc1Wv31P7dLm3G7tBnezkIsGRWABfEBiA9ytbn1abSY+7/6uhhMIpEgIzsXKelZaKguB7QanNeOQLGi+8Vu8QHO+N3cCMQEUKsBYnodb8RRUVGIjo42dziE9JlKpYJSqYRKpYJWq9VNfXU8fH3vbWdvbGyEVCrVJTNcLlcvAbq/9IFardabPjM2rVari12hUOgeQ4YM0Y1qZWdno7CwEFKpFBKJRC95A4DVq1fryjpcv34dN2/ehIuLC9zd3XWL6u9fXG9IEqVWq5Gbm4uMjAzd1CkbnIA9RXwo1VpwoQELptN6WwAY4uGAx+L98VicP2ICXEySNNGuNxPp6Q9aq2WRWVKDyzdTUFteBEbapLfaqFUrwE1VMMq0nYeivZ0EeHV6KBbF+1KVbWI2LMvqqnHb2jc+QmwJy7KQSqW66cvW1laMGjVKl/ycO3cOBQUF3V6/fv163ZRecXExWlpadIlUX5OopqYmZGVlISkpCVItD4fSanD9xi1EaMpQoXFBudYNFRpXKLuYoPJyEmJiuCcmRXhiYrgXgj0GZhE4JUom8uAfdKNEgTulTUgtbUBqlRRp5S0QKEVYZHdvHrtB64AyjRvKNG5oZjv3aRvu64hnxgZifrSPTc/fEuugUqmgUHRdL4UQYj06vvR0LKjvWFQvEokgkUiwdu1aXVmH06dPIz8/X3cth8OBq6urLnGaMGEChEJhn17/yNGjKPrvVD7QvjOuiXVArdYJNRpnVGhduxxtCnSzR3yQK2IDXREd4IKYABf4OBu+25sSpT768ssv8Y9//APV1dWIiYnBJ598gilTpvR4Xccf9Atbz6K+vhF20loEc1tQoXHFZVXYf89iMZVfjDqtE8o0bpCi8xojBsD0SE+sHhuIxCG2N1dLrFNJSQk8PDxoSzYhNu7BEePMzExUVlZCLBZDLBbryj0A7eugXnrpJb2kqrKyUjeF5+rqCmdnZzg6OsLJyQmOjo5gGAYsy6KmpgZ3795Fdl4BJKJm3T3VLIPv5Qm6RGkIpxlaMGjSOkAKPh4cUPByEiDE0xEhHg4Y4umAIR4OCHJ3gI+zEN7OQjgKe15KTXWU+mDfvn14/fXX8eWXX2LSpEn4+uuvMX/+fGRnZ+vVB3kYl7un4W8n0P3J+HAkAFi0/+UyuKgaqnc+j8Mg0scR8YEuiA90RlKIK9VDIhalra0Nhw4dApfLxapVq6gpKiE27MEv57GxsYiNjQVwr7hox+iTXC6HSqXSVWavq6vTFR3t6r6vvfaabhF7VVUVlEolRsXFgMvlQiKRoLy2AXWtSoTIeCgWaQAwGMOvhBunva+kguWilRWiVStEKytEM2uPIoknGiRK3C5txr3P2nvs+Vx4Owvh7iiAs5AHRyEXTkI+nO3u/T9XI+sUrzHZVKL00Ucf4bnnnsOGDRsAAJ988glOnDiBzZs344MPPujVPbjQQqIVoEzbPqVWo3XC/X9xfi5CxAc6tydGAc4Y4edkVc0DyeDTsdvNw8ODkiRCBrH7i4sGBnZulTVr1iy0tLTopvLEYjGkUina2trA4XAgk8l0iVJ+fn6XNbIAYBa3Do+/uBHXi1uQn1wFRVsdBKwaQkYDISOFF0cKAJCxPLgwcqSqAwAweFyYBTtGDRXLgRocqFguVOBA2cqFVCxAntYD9VpHAAyGcJphBxXAADJF17sgjcVmEiWlUonbt2/jt7/9rd7xOXPm4OrVq53O79h10EEsbq9GWqt1glrrBA5YhPDFSHBSw3dYHEYGuiIu0BmQiaBUKiEQCMDna6FRyqGCADwej6bZiEXqWPQZFhbWw5mEkMHMyckJTk5OXdZZu393IQAMHz4cvr6+aGtrg0wm09vNx+Vy4Slk8dhwVywYsQhHjx7tMqmyZ9SI49UgVd2etDkySvAZLey6+SiNQR22y8YAAMbxy+HEaU+Q5Fo5LhvjD6AbNpMoNTQ0QKPR6G0PBQBfX1/U1NR0Ov+DDz7Au+++2+m4L0cCO55a92u+io9N85bpfjj2nz6G4uLiTtcxDAOBQIDnn39eV6MmPz8fra2tui2crq6uVL+GmJRMJkN5eTkAYOzYsfD09DRzRIQQW+Dv79/tcw+uk5o/fz5EIhEUCgVUKhXUajUUSiUaxVK0yFT4Q3A0yhrbUFHnDEFtFuzUYjAsCy60YMCCy7BgWQYqcNExw1OndQSX0UIIdTdRGI/NJEodHhzV6W4r9Ntvv41Nmzbpfi0WixEcHIx58+ZBIBBAoVDoiprdP13h5uYGT09P3fMd53QkUq6urrqsOzs7W9dbq4OTkxPc3d3h5eWFyZMnU+JEBlRRURG0Wi18fHwoSSKEmMSDn7nBwcEIDg7u5dVTAQBtCjUaJArUt7Y/RDIVJAo1Xleo0aZQQ6IIRqtcjVqFGs0tIgB/Ne5v4j42kyh5eXmBy+V2Gj2qq6vrNMoEtFdX7WpLZEJCwkNXzS9atEjv1x1VYpVKJdRqNbjce+uVIiIiYG9vr+vKLZfLIZFIIJFIUFdXh0ceeURXMO3SpUtQqVQIDg5GUFCQrlw+IYbomHYbMWKEmSMhhJDecxTy4CjkIcSz+yLOHcRiMVw39Xhav9lMoiQQCDBmzBicOnUKjz/+uO74qVOnsHjx4gF7XYZhuk26JkyYoPt/lmUhk8nQ2NiIxsZGKJVKODg46J4rKChAS0sLUlNTAbQnfsHBwQgNDcWQIUP0EjBCekOlUqG0tBQAqBI3IYT0k03VUdq3bx9Wr16Nr776ChMmTMCWLVuwdetWZGVl9dgtfaDrMDxMxzRdaWkpSkpKOvUn8vHxwTPPPGPSmIht6OjePmrUKNpsQAixSVRHqQ9WrFiBxsZG/PnPf0Z1dTViY2Nx7NixHpMkc2MYBjExMYiJiQHQ/uFWWlqKoqIi5OXlITw8HEKhEGq1GkqlEqdPn0ZkZCRCQkKogCB5KA8PD/j5+Zk7DEIIsVo2NaJkCHOOKD0My7JQqVS6Lte5ubnYt28fgPaF4dHR0YiJidH19SHkfo6OjpRME0Js2kB/ftM7qIXrKDvQwdvbG+PGjYO9vT0kEglu3ryJ7du34+DBgygtLQXlvQRoLzJ56NAh5ObmmjsUQgixapQoWRlPT0/MmzcPmzZtwrJlyxAREQGGYVBaWoqDBw+irq7O3CESC5Cbm4uSkhJdDSVCCCH9Y1NrlAYTHo+H6OhoREdHo7m5GdevX0dDQwNCQkKgUqmg0WhQVVUFHx8f8Hj01zyYKBQKFBYWAgDi4uLMHA0hhFg3+gS1Ae7u7pg/f76uuCafz0draysOHjwIoVCI8ePHIyYmhkoMDBIFBQXQaDTw8vJ6aPVcQgghPaOpNxty//ZvkUikW8d0+vRpbN++HZmZmdBqtWaMkJhCdnY2ACA+Pp5KAhBCiIEoUbJRQUFB+PWvf4158+bB0dERYrEYJ0+exO7du3VFCIntEYvFqKioANCeKBFCCDEMJUo2jMfjYdy4cXjttdfwyCOPwM7ODo2NjTh8+DBaW1vNHR4ZADk5OQCA0NBQuLq6mjkaQgixfrRGaRDg8/mYNGkSRo8ejQsXLoDD4cDT01PX0Fej0dD6JRvh6emJkJAQjBw50tyhEEKITaCCk/9lqQUnB5JWq0V5eTn279+PyZMnIzo6mta0WDmGYeDk5GTuMAghxGSo4CQZMBwOB3fu3EFbWxtOnDiBH3/8EY2NjeYOixiAz+ebOwRCCLEplCgNcgsXLsSsWbPA4/FQWVmJ3bt349KlS1CpVOYOjfSBRqPBnTt3IJfLzR0KIYTYFEqUBjkul4vJkyfj5ZdfRlRUFLRaLW7duoWdO3eiqKjI3OGRXiotLcW5c+ewbds2amNDCCFGRIkSAQC4ubnhqaeewooVK+Dq6gqxWAyxWGzusEgvddROonVmhBBiXLTrjegZPnw4hg4ditu3b2Ps2LFQq9VQKpVoaWmBs7Mz7Y6zQAqFAnfv3gVAtZMIIcTYKFEinQgEAkyYMAEAdInRoUOHwOfzMXv2bPj5+ZkzPPKA/Px8allCCCEDhKbeSI+ampqgUChQX1+PH374ARcuXKDF3haCZVmkpaUBAEaOHEnTboQQYmSUKJEe+fv74+WXX0ZsbCxYlsXt27exa9cuaoViAaqrq1FXVwcej4fRo0ebOxxCCLE5lCiRXnF0dMSTTz6JlStXwsXFBSKRCAcPHsSJEyegVqvNHd6g1dDQAC6Xi9jYWDg4OJg7HEIIsTm0Ron0SWRkJEJCQnDmzBncunULcrmcFnibUXx8PEaOHAmtVmvuUAghxCZRokT6TCgU4tFHH0VcXBxcXFzg4OAAuVwOqVQKtVoNZ2dnc4c4aPD5fNjZ2Zk7DEIIsVk09Ub6LTg4GK6uruDxeHB0dMTly5exc+dOZGZmUtHDAaZWq1FfX08tSwghZIBRokSMQqPRoLm5GUqlEidPnsS///1vSKVSc4dls/Ly8rB7924cPXrU3KEQQohNo0SJGAWPx8P69esxa9YscDgc3L17F7t27dIVQiTGw7Is7ty5AwDw8fExczSEEGLbKFEiRsPhcDB58mRs3LgRPj4+kEqlOHr0KE6cOAGFQmHu8GxGVVUVlQQghBAToUSJGJ2fnx82btyoq+5dUlJCa5aMKDU1FQAQFxdHJQEIIWSA0a43MiB4PB7mzJmDqKgoqFQquLu7Qy6XQ6vVQi6Xw97e3twhWqXW1lbk5+cDAMaOHWvmaAghxPbRiBIZUCEhIYiIiNDtjCssLMS3336L7OxsGmXqh5SUFLAsi5CQEOq5RwghJkCJEjEZhmGQlZUFhUKB48eP49ChQxCJROYOy2potVqUlJQAACZNmmTeYAghZJBgWPpaDwAQi8VwdXWFSCSCi4uLucOxWRqNBteuXcP58+eh0WjA5/MxadIkjBo1ChwO5e094XA4KCkpQXR0NDXAJYQQDPznNyVK/0WJkmk1NDTgp59+QllZGYD2xrtz5syBp6enmSOzbE5OTpQgEULIfQb685u+whOz8PLywrp16/DYY49BIBCgurqaClQ+RHFxMbhcLiVJhBBiYrTrjZgNwzBITExEZGQk8vPzMXz4cMjlcmg0GigUCgiFQnOHaBFqampw+PBheHp64oUXXqC2JYQQYkI0okTMzsXFBYmJieBwOHBwcIBUKsU333yDa9euQaPRmDs8s7t8+TIAICgoiJIkQggxMUqUiMXJzc2FQqHAtWvXsGfPHtTV1Zk7JLMpLS1FWVkZuFwupk+fbu5wCCFk0KFEiVicqVOn4sknn4S9vT3q6+uxZ88eXLlyZdCNLrEsqxtNSkxMhJubm3kDIoSQQYgSJWJxGIZBbGwsXnrpJURHR0Or1eLGjRv4/vvvUVtba+7wTCY3Nxe1tbUQCASYMmWKucMhhJBBiRIlYrGcnJywbNkyLF26FA4ODmhoaEBhYaG5wzKJ1tZWnD17FgAwceJEODo6mjkiQggZnGjXG7F4MTExCA0NxdWrVzFt2jSo1WpoNBpoNBpwuVxzhzcgGIZBQEAA5HI5Jk+ebO5wCCFk0KKCk/9FBSeti0wmw86dOxEUFISJEyfa3G4wDocDe3t7yOVyODg4mDscQgixWAP9+U0jSsQqlZaWora2FrW1tSgqKsKcOXMQGBho7rAMplKpwOfzYWdnpyuXQAghxHxsZo3SX/7yF0ycOBEODg60O2gQGD58OFauXAlnZ2c0Nzdj3759OHPmDBQKhblD6zeNRoMff/wRZ86cgVqtNnc4hBBCYEOJklKpxLJly/Diiy+aOxRiIpGRkXjxxRcxatQoAEBaWhp27NiB/Px8WOOM8vXr11FbW4u8vDyrTvgIIcSW2MzU27vvvgsA2LFjh3kDISZlb2+PxYsXIz4+Hv/5z3/Q1NSElJQUDBs2zNyh9UlpaSlu3rwJAFiwYAGtkyOEEAthM4lSXykUCr1v7WKx2IzREEOFhYXhxRdfxKVLlxATEwOhUAilUgmlUgkOhwMez3J/1CsqKnD06FGwLIv4+HjExMSYOyRCCCH/ZTNTb331wQcf/P/27jQmqqsPA/gzwLDDyLAjOlI2EREVW3FpcaEqFcFgLRqbSLQYY7VqrB+0WrEx1i6SVE1d6lIbG2lTcUloqLayFrVuVKAUERBQWSqKICDbnPeD9b6OMiB1hvX5JZM4955z75n7eGf+3GUGCoVCegwaNKi7h0QvycjICJMnT4aDgwNMTExgYWGBc+fO4fDhwygoKOiRp+Pu3LmD48ePo6WlBR4eHpg1a1Z3D4mIiJ7SowulmJgYyGSydh+XLl36T8tet24dHjx4ID1KS0t1PHrqbq2trbhx4wYePHiAkydPIj4+HlVVVd09LElzczNOnTqF5uZmvPLKK3jnnXd69JEvIqL+qEd/j9Ldu3dx9+7ddtsMGTIEpqam0vNvv/0Wq1atQnV1dafWxe9R6puampqQlpaGc+fOobW1FTKZDMOGDUNgYCAUCkV3Dw/l5eW4ePEi5s6d2+e+C4qIqCv06+9RsrOzg52dXXcPg3oxY2NjTJ06FaNGjcLp06eRl5eHnJwc5ObmYubMmd1y0XdNTQ2sra1hamoKT0/PXnfhORFRf9KjC6XOKCkpwb1791BSUoLW1lZkZmYCADw8PGBpadm9g6Nup1QqMW/ePNy6dQtnz57FrVu3oFKppPld8XMoDQ0NSElJwfXr1xEdHQ0rKyu9ro+IiF5ejz711hlRUVE4fPjwc9OTkpIwadKkDvvz1Fv/Ul1djQEDBkCtVqOpqQlHjhyBsbExRo0aBZVKBZlMptP15efn47fffkN9fT0AYObMmRgzZoxO10FE1B/p+/O7zxRKL4uFUv9179497Ny5U3puY2MDX19fuLu7Q6lU/ueiSQiB27dv4+rVq8jPzwfw+HRyWFgY77IkItIRFkpdhIVS/1ZVVYU//vgDmZmZaGpqkqZbW1tjwoQJ8PHx6fQyjx07huLiYgCATCbDhAkTEBQUxDvbiIh0qF9fzE3UVWxtbRESEoIpU6YgOzsbf//9N4qKilBTUyP9QK1arUZBQQHOnz8Pa2trKBQKCCFQX1+PhoYGNDQ0YPr06bC3t4dcLseQIUNQXl6OoUOHYuzYsXB2du7ul0lERJ3EQonoKSYmJggICEBAQACamppQVFQENzc3GBsbAwBqa2tRUVGBioqKNvu3tLRINw+MGzcOEydO5BEkIqJejO/gRFoYGxvD29tbY9qIESNgb2+P6upqVFdXw8DAABYWFjA3N4eFhQVcXFyktiYmJl09ZCIi0jEWSkSd8OQnb4iIqH9gofSvJ9e088dxiYiIeo8nn9v6ujeNhdK/nvwGGG/bJiIi6n2qqqr0csSfhdK/lEolgMff8M1TK92vpqYGgwYNQmlpKb+uoZsxi56DWfQczKLnePDgAQYPHix9jusaC6V/GRgYAHh8DQr/0/cc1tbWzKOHYBY9B7PoOZhFz/Hkc1zny9XLUomIiIj6ABZKRERERFqwUPqXiYkJNm3axO++6SGYR8/BLHoOZtFzMIueQ99Z8LfeiIiIiLTgESUiIiIiLVgoEREREWnBQomIiIhIi35VKH366aeQyWRYtWqVNC0qKgoymUzjERgYqNGvsbERK1asgJ2dHSwsLBAWFoZbt2518ej7lrayAIDc3FyEhYVBoVDAysoKgYGBKCkpkeYzC91rK4tn94knjy+++EJqwyx0r60sHj58iOXLl8PV1RVmZmbw8fHB7t27NfoxC/1oK4+KigpERUXBxcUF5ubmmDFjBvLz8zX6MY+XFxMT89z7j5OTkzRfCIGYmBi4uLjAzMwMkyZNQk5OjsYydJVDvymULl68iH379mHEiBHPzZsxYwbKysqkx88//6wxf9WqVTh+/Dji4uKQnp6Ohw8fIjQ0FK2trV01/D5FWxYFBQWYOHEihg4diuTkZPz555/YuHEjTE1NpTbMQre0ZfH0/lBWVoaDBw9CJpNhzpw5UhtmoVvasli9ejUSExNx5MgR5ObmYvXq1VixYgVOnjwptWEWutdWHkIIzJ49G4WFhTh58iSuXr0KlUqF4OBg1NXVSe2Yh274+vpqvA9lZWVJ8z7//HPExsZi165duHjxIpycnPDmm2+itrZWaqOzHEQ/UFtbKzw9PcWZM2dEUFCQWLlypTRv4cKFIjw8XGvf6upqIZfLRVxcnDTt9u3bwsDAQCQmJupx1H1Te1lERkaKd999V2tfZqFb7WXxrPDwcDFlyhTpObPQrfay8PX1FZ988olG+9GjR4sNGzYIIZiFPmjLIy8vTwAQ2dnZUtuWlhahVCrFN998I4RgHrqyadMm4e/v3+Y8tVotnJycxLZt26Rpjx49EgqFQuzZs0cIodsc+sURpffffx8zZ85EcHBwm/OTk5Ph4OAALy8vREdHo7KyUpp3+fJlNDc3Y9q0adI0FxcXDB8+HBkZGXofe1+jLQu1Wo2EhAR4eXlh+vTpcHBwwNixY3HixAmpDbPQrY72iycqKiqQkJCAxYsXS9OYhW61l8XEiRNx6tQp3L59G0IIJCUl4fr165g+fToAZqEP2vJobGwEAI2j3IaGhjA2NkZ6ejoA5qFL+fn5cHFxgZubG+bNm4fCwkIAQFFREcrLyzW2sYmJCYKCgqRtrMsc+vxvvcXFxeHKlSu4ePFim/NDQkIwd+5cqFQqFBUVYePGjZgyZQouX74MExMTlJeXw9jYGDY2Nhr9HB0dUV5e3hUvoc9oL4vKyko8fPgQ27Ztw5YtW/DZZ58hMTERERERSEpKQlBQELPQoY72i6cdPnwYVlZWiIiIkKYxC93pKIsdO3YgOjoarq6uMDIygoGBAfbv34+JEycCYBa61l4eQ4cOhUqlwrp167B3715YWFggNjYW5eXlKCsrA8A8dGXs2LH47rvv4OXlhYqKCmzZsgXjx49HTk6OtB0dHR01+jg6OqK4uBiAbnPo04VSaWkpVq5cidOnT2v8BfC0yMhI6d/Dhw/HmDFjoFKpkJCQoPHB8CwhBGQymc7H3Fd1lIVarQYAhIeHY/Xq1QCAkSNHIiMjA3v27EFQUJDWZTOLznmR/eJpBw8exIIFC16oLbPonBfJYseOHTh//jxOnToFlUqF1NRULFu2DM7Ozu0eDWQWnddRHnK5HMeOHcPixYuhVCphaGiI4OBghISEdLhs5tE5T29TPz8/jBs3Du7u7jh8+LB0w9Wz2/NFtvF/yaFPn3q7fPkyKisrERAQACMjIxgZGSElJQU7duyAkZFRmxd0OTs7Q6VSSXcxODk5oampCffv39doV1lZ+Vw1S9p1lIWtrS2MjIwwbNgwjX4+Pj7SXW/MQjc6s1+kpaUhLy8P7733nsYymIVudJRFXV0d1q9fj9jYWMyaNQsjRozA8uXLERkZiS+//BIAs9ClF9k3AgICkJmZierqapSVlSExMRFVVVVwc3MDwDz0xcLCAn5+fsjPz5fufnv2yNDT21iXOfTpQmnq1KnIyspCZmam9BgzZgwWLFiAzMxMGBoaPtenqqoKpaWlcHZ2BgAEBARALpfjzJkzUpuysjJkZ2dj/PjxXfZaeruOsjAxMcGrr76KvLw8jX7Xr1+HSqUCwCx0pTP7xYEDBxAQEAB/f3+NZTAL3egoi9bWVjQ3N8PAQPOt2tDQUDoKyyx0pzP7hkKhgL29PfLz83Hp0iWEh4cDYB760tjYiNzcXDg7O8PNzQ1OTk4a27ipqQkpKSnSNtZpDp269LsPePoOhtraWrFmzRqRkZEhioqKRFJSkhg3bpwYOHCgqKmpkfosXbpUuLq6il9//VVcuXJFTJkyRfj7+4uWlpZuehV9w7N398THxwu5XC727dsn8vPzxc6dO4WhoaFIS0uT2jAL/WjrrrcHDx4Ic3NzsXv37jb7MAv9eDaLoKAg4evrK5KSkkRhYaE4dOiQMDU1FV9//bXUhlnoz7N5/PjjjyIpKUkUFBSIEydOCJVKJSIiIjT6MI+Xt2bNGpGcnCwKCwvF+fPnRWhoqLCyshI3b94UQgixbds2oVAoRHx8vMjKyhLz588Xzs7Oevns7teFUn19vZg2bZqwt7cXcrlcDB48WCxcuFCUlJRo9GloaBDLly8XSqVSmJmZidDQ0OfaUOe19eF84MAB4eHhIUxNTYW/v784ceKExnxmoR9tZbF3715hZmYmqqur2+zDLPTj2SzKyspEVFSUcHFxEaampsLb21ts375dqNVqqQ2z0J9n8/jqq6+Eq6ur9JmxYcMG0djYqNGHeby8yMhI4ezsLORyuXBxcREREREiJydHmq9Wq8WmTZuEk5OTMDExEW+88YbIysrSWIaucpAJIYROjosRERER9TF9+holIiIiopfBQomIiIhICxZKRERERFqwUCIiIiLSgoUSERERkRYslIiIiIi0YKFEREREpAULJSIiIiItWCgRERERacFCiYh6rJiYGIwcObLb1r9x40YsWbLkhdp++OGH+OCDD/Q8IiLqavwJEyLqFjKZrN35CxcuxK5du9DY2AhbW9suGtX/VVRUwNPTE9euXcOQIUM6bF9ZWQl3d3dcu3YNbm5u+h8gEXUJFkpE1C3Ky8ulf//www/4+OOPkZeXJ00zMzODQqHojqEBALZu3YqUlBT88ssvL9xnzpw58PDwwGeffabHkRFRV+KpNyLqFk5OTtJDoVBAJpM9N+3ZU29RUVGYPXs2tm7dCkdHRwwYMACbN29GS0sL1q5dC6VSCVdXVxw8eFBjXbdv30ZkZCRsbGxga2uL8PBw3Lx5s93xxcXFISwsTGPaTz/9BD8/P5iZmcHW1hbBwcGoq6uT5oeFheHo0aMvvW2IqOdgoUREvcrZs2dx584dpKamIjY2FjExMQgNDYWNjQ0uXLiApUuXYunSpSgtLQUA1NfXY/LkybC0tERqairS09NhaWmJGTNmoKmpqc113L9/H9nZ2RgzZow0raysDPPnz8eiRYuQm5uL5ORkRERE4OmD8q+99hpKS0tRXFys341ARF2GhRIR9SpKpRI7duyAt7c3Fi1aBG9vb9TX12P9+vXw9PTEunXrYGxsjN9//x3A4yNDBgYG2L9/P/z8/ODj44NDhw6hpKQEycnJba6juLgYQgi4uLhI08rKytDS0oKIiAgMGTIEfn5+WLZsGSwtLaU2AwcOBIAOj1YRUe9h1N0DICLqDF9fXxgY/P9vPEdHRwwfPlx6bmhoCFtbW1RWVgIALl++jBs3bsDKykpjOY8ePUJBQUGb62hoaAAAmJqaStP8/f0xdepU+Pn5Yfr06Zg2bRrefvtt2NjYSG3MzMwAPD6KRUR9AwslIupV5HK5xnOZTNbmNLVaDQBQq9UICAjA999//9yy7O3t21yHnZ0dgMen4J60MTQ0xJkzZ5CRkYHTp09j586d+Oijj3DhwgXpLrd79+61u1wi6n146o2I+rTRo0cjPz8fDg4O8PDw0Hhou6vO3d0d1tbW+OuvvzSmy2QyTJgwAZs3b8bVq1dhbGyM48ePS/Ozs7Mhl8vh6+ur19dERF2HhRIR9WkLFiyAnZ0dwsPDkZaWhqKiIqSkpGDlypW4detWm30MDAwQHByM9PR0adqFCxewdetWXLp0CSUlJYiPj8c///wDHx8fqU1aWhpef/116RQcEfV+LJSIqE8zNzdHamoqBg8ejIiICPj4+GDRokVoaGiAtbW11n5LlixBXFycdArP2toaqampeOutt+Dl5YUNGzZg+/btCAkJkfocPXoU0dHRen9NRNR1+IWTRERtEEIgMDAQq1atwvz58ztsn5CQgLVr1+LatWswMuLln0R9BY8oERG1QSaTYd++fWhpaXmh9nV1dTh06BCLJKI+hkeUiIiIiLTgESUiIiIiLVgoEREREWnBQomIiIhICxZKRERERFqwUCIiIiLSgoUSERERkRYslIiIiIi0YKFEREREpAULJSIiIiIt/gdX/WMCYzbEjAAAAABJRU5ErkJggg==", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.plot(t, flux_total, linewidth=3)\n", - "plt.plot(t[1:], contribution_trap_1, linestyle=\"--\", color=\"grey\")\n", - "plt.fill_between(t[1:], 0, contribution_trap_1, facecolor=\"grey\", alpha=0.1)\n", - "plt.plot(t[1:], contribution_trap_2, linestyle=\"--\", color=\"grey\")\n", - "plt.fill_between(t[1:], 0, contribution_trap_2, facecolor=\"grey\", alpha=0.1)\n", - "\n", - "plt.xlim(450, 500)\n", - "plt.ylim(bottom=-1.25e18, top=0.6e19)\n", - "plt.ylabel(r\"Desorption flux (m$^{-2}$ s$^{-1}$)\")\n", - "plt.xlabel(r\"Time (s)\")\n", - "\n", - "plt.ylabel(r\"Desorption flux (m$^{-2}$ s$^{-1}$)\")\n", - "plt.xlabel(r\"Time (s)\")" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Task\n", - "1) Increase the implantation temperature to 500 K and see how the TDS spectrum is affected\n", - "2) Vary the detrapping energy of the first trap\n", - "3) At the end of the implantation phase, what is the proportion of hydrogen trapped in trap 2?" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "tags": [ - "hide-cell" - ] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAHACAYAAABNgAlmAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAalZJREFUeJzt3Xl4U3XeNvD7ZG1LN2ihlLVl37fWpSgKLiw6CG7DqI+A6zCOCuKKzuiAjjijgo6OOo6A4zwM8CLggyMjVKW07NCFtbJ2o03pnqTZk3PePxiioVvapjlpcn+uq9dlTk5OvjkguftbBUmSJBARERGFCIXcBRARERH5E8MPERERhRSGHyIiIgopDD9EREQUUhh+iIiIKKQw/BAREVFIYfghIiKikMLwQ0RERCGF4YeIiIhCCsMPERERhRSGn2ZkZmZi5syZ6NWrFwRBwFdffdWq12dkZGDWrFlITExEly5dMG7cOKxdu7bBebt27UJKSgrCwsIwYMAAfPLJJz76BERERHQlhp9mmEwmjB07Fh9++GGbXr93716MGTMGmzZtwtGjR/Hwww9j7ty5+Prrr93nFBQU4LbbbsOkSZOQm5uLl19+GU8//TQ2bdrkq49BREREPyNwY1PvCIKALVu2YPbs2e5jdrsdv/vd77B27VrU1dVh1KhR+NOf/oTJkyc3eZ3bb78dCQkJWL16NQDgxRdfxNatW5Gfn+8+Z8GCBThy5Aj27dvXUR+HiIgoZLHlpx0eeugh7NmzB+vXr8fRo0dx7733Yvr06Thz5kyTr9Hr9ejWrZv78b59+zB16lSPc6ZNm4bDhw/D4XB0WO1EREShiuGnjc6dO4d169Zh48aNmDRpEgYOHIjnnnsO119/PdasWdPoa7788kscOnQIDz30kPtYeXk5EhISPM5LSEiA0+lEVVVVh34GIiKiUKSSu4DOKicnB5IkYciQIR7HbTYb4uLiGpyfkZGB+fPn4+9//ztGjhzp8ZwgCB6PL/dEXnmciIiI2o/hp41EUYRSqUR2djaUSqXHc5GRkR6Pd+3ahZkzZ2LFihWYO3eux3M9e/ZEeXm5x7GKigqoVKpGQxQRERG1D8NPG40fPx4ulwsVFRWYNGlSk+dlZGTgF7/4Bf70pz/h8ccfb/B8Wlqax+wvANixYwdSU1OhVqt9XjcREVGoY/hpRn19Pc6ePet+XFBQgLy8PHTr1g1DhgzBAw88gLlz5+Ldd9/F+PHjUVVVhR9++AGjR4/GbbfdhoyMDNx+++1YuHAh7r77bncLj0ajcQ96XrBgAT788EMsXrwYjz32GPbt24dVq1Zh3bp1snxmIiKiYMep7s3IyMjAlClTGhyfN28ePv/8czgcDrzxxhv44osvUFpairi4OKSlpWHp0qUYPXo05s+fj3/84x8NXn/jjTciIyPD/XjXrl145plncOLECfTq1QsvvvgiFixY0JEfjYiIKGQx/BAREVFI4VR3IiIiCikMP0RERBRSOOD5CqIooqysDFFRUVxnh4iIqJOQJAlGoxG9evWCQtF82w7DzxXKysrQt29fucsgIiKiNigpKUGfPn2aPYfh5wpRUVEALt286OhomashIiIibxgMBvTt29f9Pd4chp8rXO7qio6OZvghIiLqZLwZssIBz0RERBRSGH6IiIgopDD8EBERUUjhmJ82crlccDgccpdBfqRWq6FUKuUug4iI2onhp5UkSUJ5eTnq6urkLoVkEBsbi549e3INKCKiTozhp5UuB58ePXogIiKCX4IhQpIkmM1mVFRUAAASExNlroiIiNoqoMNPZmYm3n77bWRnZ0On02HLli2YPXt2s6/ZtWsXFi9e7N4h/YUXXvDZDukul8sdfOLi4nxyTeo8wsPDAQAVFRXo0aMHu8CIiDqpgB7wbDKZMHbsWHz44YdenV9QUIDbbrsNkyZNQm5uLl5++WU8/fTT2LRpk0/quTzGJyIiwifXo87n8p89x3sREXVeAd3yM2PGDMyYMcPr8z/55BP069cP7733HgBg+PDhOHz4MN555x3cfffdPquLXV2hi3/2RESdX0C3/LTWvn37MHXqVI9j06ZNw+HDh5v8Td1ms8FgMHj8EBERUfAKqvBTXl6OhIQEj2MJCQlwOp2oqqpq9DXLly9HTEyM+4ebmnpv8uTJWLRoUbPnJCUluVvigEstJ1999VWH1kVERNScgO72aosruyUkSWr0+GVLlizB4sWL3Y8vb4zWWh/lfdTq17TVE+Oe8Nt7tdehQ4fQpUsXn12vsLAQycnJyM3Nxbhx4zyemzx5MsaNG+cRtoiIiK4UVOGnZ8+eKC8v9zhWUVEBlUrV5OwsrVYLrVbrj/JCUvfu3eUugYiIyENQdXulpaUhPT3d49iOHTuQmpoKtVotU1Xymzx5Mp566iksWrQIXbt2RUJCAj799FOYTCY89NBDiIqKwsCBA/Gf//zH43W7du3C1VdfDa1Wi8TERLz00ktwOp0e5zidTjz55JOIjY1FXFwcfve737lb24CG3V5XKi0txZw5c9C1a1fExcVh1qxZKCws9OXHJyIi8hDQ4ae+vh55eXnIy8sDcGkqe15eHoqLiwFc6rKaO3eu+/wFCxagqKgIixcvRn5+PlavXo1Vq1bhueeek6P8gPKPf/wD8fHxOHjwIJ566in85je/wb333ouJEyciJycH06ZNw4MPPgiz2QzgUii57bbbcNVVV+HIkSP4+OOPsWrVKrzxxhsNrqtSqXDgwAH85S9/wcqVK/HZZ595VZPZbMaUKVMQGRmJzMxM7N69G5GRkZg+fTrsdrvP7wERUVMcogMWp0XuMshPArrb6/Dhw5gyZYr78eWxOfPmzcPnn38OnU7nDkIAkJycjG3btuGZZ57BX//6V/Tq1Qt/+ctffDrNvbMaO3Ysfve73wG4FBrfeustxMfH47HHHgMAvPrqq/j4449x9OhRXHvttfjoo4/Qt29ffPjhhxAEAcOGDUNZWRlefPFFvPrqq1AoLuXmvn37YuXKlRAEAUOHDsWxY8ewcuVK93Wbs379eigUCnz22WfuMVlr1qxBbGwsMjIyGszc+7mJEye6a7jMYrE0GAdERNQch+jAiaoTyKvIQ7gqHHcMugPhqnC5y6IOFtDhZ/LkyR5dKFf6/PPPGxy78cYbkZOT04FVdU5jxoxx/7dSqURcXBxGjx7tPnZ5ltzl7Rvy8/ORlpbmMVD8uuuuQ319PS5cuIB+/foBAK699lqPc9LS0vDuu+/C5XK1uAJydnY2zp49i6ioKI/jVqsV586da/a1GzZswPDhwz2OPfDAA82+hojoMofLgePVx5FXkQer04LBQhj6WPU4kr8JMT1GYUD8cGiVHA8arAI6/JDvXDnmSRAEj2OXA4woigAuzZJr7cy51hJFESkpKVi7dm2D51oaKN23b18MGjTI49jl7SeIiJpid9lxrOoYjlQegc1pxRAhDKkmO2Ls+ksnGKvhqr4AXZcDkLomQdk1GXGx/RmEggzDDzVqxIgR2LRpk0cI2rt3L6KiotC7d2/3efv37/d43f79+zF48GCv9r2aMGECNmzYgB49eiA6Otq3H4CI6GfsLjuOVh7FkcojcLjsGAoNJphsP4Wen1FKEvrU1wD1NUBJDuq0XWCI7gXhvz9dInsiTBUmw6cgXwnoAc8knyeeeAIlJSV46qmn8OOPP+L//u//8Nprr2Hx4sUeY21KSkqwePFinDp1CuvWrcMHH3yAhQsXevUeDzzwAOLj4zFr1ixkZWWhoKAAu3btwsKFC3HhwoWO+mhEFEJsLhsOlR/CP0/+E4fLD2GQC3ig3oIptRWIsVu9ukaszYTulWcQf24X4nLXQdz3V9Tl/AN1p76BvvQw9HVFMNtNHfxJyJfY8kON6t27N7Zt24bnn38eY8eORbdu3fDII4+4B01fNnfuXFgsFlx99dVQKpV46qmn8Pjjj3v1HhEREcjMzMSLL76Iu+66C0ajEb1798bNN9/MliAiaher04qjlUdxtOooXC4HhkODCUYLIp117b52hNOOCH0ZoC9zH3MoFDCERUEIjwciugHhXSFExEEIj0W4NhoKgW0NgUSQmhtRHIIMBgNiYmKg1+sbfAFbrVYUFBQgOTkZYWFs8gxF/DtAFNgsTguOVB7B8arjEF0OjIQW4+pr0cUhz/IZEgCLOgxSWAwQHgtoY4DwGAhhMYA2GsqwGGjZheYTzX1/X4ktP0RE1OlZnBbkVeTheNVxQHRhJDQYZzQhwgctPe0hAIhwWAGHFTBebPC8U1DArIkAtFGeP5ooCNooQBsJlSYKapXG/8UHMYYfIiLqtMwOM/Iq83Ci6gQE0YXRUGOsQY9wl0Pu0ryikkSobPWArR6ArtFznIICFnUYoI0ENBGAOgrQdAG0XSBFxCOsaxK71VqJ4YeIiDqdn7f0CKILYyU1xhjrEOZytvziTkYliVDZzYDd3OjzxoiucA64EV27D2/0eWqI4YeIiDoNq9OKvMr/dm+5nBgrqTHWUAut6JK7NNlEmWvhOPk1akep0DVusNzldAoMP0REFPBsLhuOVBzB0aqjgMuJ0ZIaY43GoGzpaQu16ILy/E44uiZBrQjdjby9xfBDREQBy+6y40jlERypPMLQ04Lo+mrUVf6I2ITRLZ8c4hh+iIgo4Px8RWbR5fjvQOb6TjOQWS6KinyA4adFDD9ERBQwHC4HjlZdCj0upx2jJDXGGRl6vBVWWwSr3YQwTRe5SwloDD9ERCQ7h+jA8arjyK3IhdNpwyhoMc5YjwgnQ09raFxOGOuKENZjhNylBDSGH+pU5s+fj7q6Onz11Vdyl0JEPuAQHThRdQK5FblwOK3/DT3yL07YmSnqSgCGn2Yx/PjKzuX+e68pS1p1+uTJkzFu3Di89957HVNPAMnIyMCUKVNQW1uL2NhYj+eSkpKwaNEiLFq0CDU1NXjttdewY8cOlJSUID4+HrNnz8brr7+OmJgYeYonCiEu0YWT1SeRU5EDm8OMkdBivNHM0OMLBm4M3RKGHwIASJIEl8sFlSo0/kqUlZWhrKwM77zzDkaMGIGioiIsWLAAZWVl+PLLL+UujyhoiZKIUzWncPjiYZjt9RgBLSYYTejC0OMzGlMV7A4rNGruGdYUrocd5ObPn49du3bh/fffhyAIEAQBhYWFyMjIgCAI2L59O1JTU6HVapGVlYVz585h1qxZSEhIQGRkJK666ip89913HtdMSkrC66+/jvvvvx+RkZHo1asXPvjgA49zBEHAxx9/jBkzZiA8PBzJycnYuHGjxzmlpaWYM2cOunbtiri4OMyaNQuFhYXu510uFxYvXozY2FjExcXhhRdegK/24R01ahQ2bdqEmTNnYuDAgbjpppvwxz/+EV9//TWcTk6hJfI1SZJwpvYM1v+4HhklO9HX4cD99RZMqr2ILhzX41NqUYTT1HAfMfoJw0+Qe//995GWlobHHnsMOp0OOp0Offv2dT//wgsvYPny5cjPz8eYMWNQX1+P2267Dd999x1yc3Mxbdo0zJw5E8XFxR7XffvttzFmzBjk5ORgyZIleOaZZ5Cenu5xzu9//3vcfffdOHLkCP7nf/4H9913H/Lz8wEAZrMZU6ZMQWRkJDIzM7F7925ERkZi+vTpsNsv7b787rvvYvXq1Vi1ahV2796NmpoabNmypcPu1eWdgEOl9YvIXwr0Bfh/p/4fvitKRw+7Bfeb7JhccxFRDpvcpQWvRjZRpZ/wX/kgFxMTA41Gg4iICPTs2bPB88uWLcOtt97qfhwXF4exY8e6H7/xxhvYsmULtm7diieffNJ9/LrrrsNLL70EABgyZAj27NmDlStXelzr3nvvxaOPPgoAeP3115Geno4PPvgAH330EdavXw+FQoHPPvsMgiAAANasWYPY2FhkZGRg6tSpeO+997BkyRLcfffdAIBPPvkE27dv9+pz9+nTp8Exs7nxfXEAoLq6Gq+//jp+/etfe3V9ImpZiaEEB8sPosJ8EcmCFreaHehm08tdVmgwV8pdQUBj+AlxqampHo9NJhOWLl2Kf//73ygrK4PT6YTFYmnQ8pOWltbg8ZUDqhs7Jy8vDwCQnZ2Ns2fPIioqyuMcq9WKc+fOQa/XQ6fTeVxDpVIhNTXVq66vrKysBteePHlyo+caDAbcfvvtGDFiBF577bUWr01EzdPV63Cg/ADK6svQX9DiXosT8VaGHn8STNVylxDQGH5CXJcungthPf/889i+fTveeecdDBo0COHh4bjnnnvcXVHNudyC4805oigiJSUFa9eubXBO9+7dvay+acnJyQ1mezXWnWU0GjF9+nRERkZiy5YtUKu5Jw5RW1WaK3Gg/ACKDcXoI2hxl1VET0uF3GWFJIW5GpIkefXvcihi+AkBGo0GLpd3Ox5nZWVh/vz5uPPOOwEA9fX1HoOQL9u/f3+Dx8OGDWtwbO7cuR6Px48fDwCYMGECNmzYgB49eiA6OrrRWhITE7F//37ccMMNAACn04ns7GxMmDDBq8/SEoPBgGnTpkGr1WLr1q0IC+PMCKK2qLHW4KDuIAr0BegpaDDLJqG3maFHTlqHFRabAeFhXLqjMQw/ISApKQkHDhxAYWEhIiMj0a1btybPHTRoEDZv3oyZM2dCEAT8/ve/hyiKDc7bs2cP/vznP2P27NlIT0/Hxo0b8c0333ics3HjRqSmpuL666/H2rVrcfDgQaxatQoA8MADD+Dtt9/GrFmzsGzZMvTp0wfFxcXYvHkznn/+efTp0wcLFy7EW2+9hcGDB2P48OFYsWIF6urqfHJPjEYjpk6dCrPZjP/93/+FwWCAwWAAcKnlSalU+uR9iIKZ0W7EwfKDOF1zGvGCGrfbgX4mhp5AIVhqAIafRjH8hIDnnnsO8+bNw4gRI2CxWFBQUNDkuStXrsTDDz+MiRMnIj4+Hi+++KI7FPzcs88+i+zsbCxduhRRUVF49913MW3aNI9zli5divXr1+OJJ55Az549sXbtWowYcWnV0YiICGRmZuLFF1/EXXfdBaPRiN69e+Pmm292twQ9++yz0Ol0mD9/PhQKBR5++GHceeed0OvbP3YgOzsbBw4cAHAp8P1cQUEBkpKS2v0eRMHK4rQg+2I2TlSdQDQUmOYQMKCeA2wDjrkW6JosdxUBSZB8tXBKkDAYDIiJiXFPe/45q9WKgoICJCcnh3QXyc9XSm6KIAjYsmULZs+e7be6/IF/ByiUOVwO5FXm4UjlEWhFEVc5gKHGanBUSWCy9r0aYYNulrsMv2nu+/tKbPkhIqJmuUQXjlcfR87FHMBlx1UuBUYZaqDk786BzVondwUBi+GHiIgaJUkSTtWewqHyQ7DZTRgrqTHOUAd1I+MAKfAI1oZDFugShh9qtcZmf12JvalEndt5/Xkc1B2E3lqL0dBivKEe4S5uQ9GpcG2lJjH8EBGRW1l9Gfbr9uOiqRzDEIZfGC2I5KajnZLGYYHdYYFGHS53KQGH4YeIiFBlqcJ+3X6UGIoxQAjDr0wOdLWz5aAzE4BLrT8MPw0w/BARhTCj3YgDugM4U3sGfQQ17rE40d3KTTGDhWQzAFEN93UMdQw/REQhyOq0IudiDo5VHUMclJhpk9CHm2EGH5tR7goCEsMPEVEIcYpOHKs6hpyLOQgTXbjZAQw0VnKtniAlMPw0iuGHiCgESJKE07WncbD8IJwOM652KjHCyLV6gp6tXu4KAhLDD3Uq8+fPR11dHb766iu5SyHqNEoMJdin2we9pebSWj1GPTRebnZMnRxbfhrF8OMjK9NP++29nrl1SKvOnzx5MsaNG4f33nuvYwoKIBkZGZgyZQpqa2sRGxvr8dyV23J8+umn+Ne//oWcnBwYjcZGX0PUmVVZqrCvbB8uGEswAmH4hdGECKdd7rLIn+wMP41h+CEAl5rEXS4XVKrQ+SthNpsxffp0TJ8+HUuWLJG7HCKfMdgNOKg7iDO1Z5AsaDltPZTZTXJXEJAUchdAHWv+/PnYtWsX3n//fQiCAEEQUFhYiIyMDAiCgO3btyM1NRVarRZZWVk4d+4cZs2ahYSEBERGRuKqq67Cd99953HNpKQkvP7667j//vsRGRmJXr164YMPPvA4RxAEfPzxx5gxYwbCw8ORnJyMjRs3epxTWlqKOXPmoGvXroiLi8OsWbM8Vo92uVxYvHgxYmNjERcXhxdeeMGnK0cvWrQIL730Eq699lqfXZNITlanFXtK92Bd/joY64pwp9WF6TUX0dVulrs0konaYYXDYZO7jIDD8BPk3n//faSlpeGxxx6DTqeDTqdD37593c+/8MILWL58OfLz8zFmzBjU19fjtttuw3fffYfc3FxMmzYNM2fORHFxscd13377bYwZMwY5OTlYsmQJnnnmGaSnp3uc8/vf/x533303jhw5gv/5n//Bfffdh/z8fACXWl2mTJmCyMhIZGZmYvfu3YiMjMT06dNht19qln/33XexevVqrFq1Crt370ZNTQ22bNnSwXeMqPNxiS7kVeRhbf5aFFedxFS7hDtrKtDTwi6PUCcAgJ2Dnq8UOn0cISomJgYajQYRERHo2bPhQlfLli3Drbfe6n4cFxeHsWPHuh+/8cYb2LJlC7Zu3Yonn3zSffy6667DSy+9BAAYMmQI9uzZg5UrV3pc695778Wjjz4KAHj99deRnp6ODz74AB999BHWr18PhUKBzz77DIJwaZLtmjVrEBsbi4yMDEydOhXvvfcelixZgrvvvhsA8Mknn2D79u1efe4+ffo0OGY287dfCj7n6s5hX9k+uBwmXOtUYLihGgpwBhf9jMMEIE7uKgIKw0+IS01N9XhsMpmwdOlS/Pvf/0ZZWRmcTicsFkuDlp+0tLQGj68cUN3YOXl5eQCA7OxsnD17FlFRUR7nWK1WnDt3Dnq9HjqdzuMaKpUKqampXnV9ZWVlNbj25MmTW3wdUWdRbirHvrJ9qDSVY5ykxnjutk5N4bifBhh+QlyXLl08Hj///PPYvn073nnnHQwaNAjh4eG455573F1RzbncguPNOaIoIiUlBWvXrm1wTvfu3b2svmnJyckNZm6F0mBuCl4GuwH7y/bjXN05DBW0mFpvRhcHZ3BRM9jt1QC/DUKARqOBy8s1PbKysjB//nzceeedAID6+nqPQciX7d+/v8HjYcOGNTg2d+5cj8fjx48HAEyYMAEbNmxAjx49EB0d3WgtiYmJ2L9/P2644QYAgNPpRHZ2NiZMmODVZyEKJnaXHdkXs3G08igSocK9FgfirXVyl0WdAVt+GmD4CQFJSUk4cOAACgsLERkZiW7dujV57qBBg7B582bMnDkTgiDg97//PcRGmtL37NmDP//5z5g9ezbS09OxceNGfPPNNx7nbNy4Eampqbj++uuxdu1aHDx4EKtWrQIAPPDAA3j77bcxa9YsLFu2DH369EFxcTE2b96M559/Hn369MHChQvx1ltvYfDgwRg+fDhWrFiBuro6n92X8vJylJeX4+zZswCAY8eOISoqCv369Wv2HhH5kyiJOFl9EofKDyHc5cJ0m4j+pgq5y6LOhLP9GuBsrxDw3HPPQalUYsSIEejevXuD8Ts/t3LlSnTt2hUTJ07EzJkzMW3atEZbWp599llkZ2dj/PjxeP311/Huu+9i2rRpHucsXboU69evx5gxY/CPf/wDa9euxYgRIwAAERERyMzMRL9+/XDXXXdh+PDhePjhh2GxWNwtQc8++yzmzp2L+fPnIy0tDVFRUe4WKV/45JNPMH78eDz22GMAgBtuuAHjx4/H1q1bffYeRO1RqC/EhlMbcLh0D662OfHLmir0N9XJXRZ1Ng62/FxJkHy5cEoQMBgMiImJgV6vb9AdY7VaUVBQgOTkZISFhclUofyuXCm5MYIgYMuWLZg9e7bf6vIH/h0gf6iyVGFv2V6UG0sxVtJgvLGa21FQmzmie0OdMrflEzu55r6/r8RuLyKiAGF2mHGw/CDyq/MxBBrcb7Qg0lknd1nU2bHlpwGGHyIimblEF45VHcPhi4cRJwq4x+JAdw5mJl9h+GmA4YdarbHZX1dibyqRdwr0BdhbtheS3YQpdhED62vlLomCjMrpgMNpg1qllbuUgMHwQ0Qkg2pLNfaW7cVFYynGiyqMNdRCJXGRQvK9S1tcmAGGHzeGnzZgq0bo4p89tZfFacGh8kM4WX0SQyQ17jeaEOHkIoXUwZwWAF3lriJgMPy0glqtBnBpj6jw8HCZqyE5XN4f7PLfBSJviZJ4aVxP+WF0E4G7zXZ0t7KLi/yE4348MPy0glKpRGxsLCoqLi0wFhER4dWWDtT5SZIEs9mMiooKxMbGQqlUyl0SdSLFhmLsLt0Nl70ekzmuh+TgsMpdQUBh+GmlyzujXw5AFFpiY2PdfweIWlJrrcWesj3QGS5gAsf1kJy4yrMHhp9WEgQBiYmJ6NGjBxwOh9zlkB+p1Wq2+JBX7C47DpcfxrGqYxgMNR7guB6Sm5MtPz/H8NNGSqWSX4RE5EGSJJyuPY39uv2Icjpxp9mOHtYaucsiAhwWuSsIKAw/REQ+UGmuRFZpFozmSlzrFDDEUA2OCKSA4WC3188x/BARtYPFacFB3UH8WJ2P0dDgFwY99+GiwONky8/PMfwQEbWBKIk4WX0SB3QH0EME5pitiLVxFhcFKLb8eFDIXUBLPvroI/cO2ikpKcjKymr2/LVr12Ls2LGIiIhAYmIiHnroIVRXV/upWiIKBWX1Zfjy9Jc4UroXN1nsmFlTgVgbf7OmAMap7h4COvxs2LABixYtwiuvvILc3FxMmjQJM2bMQHFxcaPn7969G3PnzsUjjzyCEydOYOPGjTh06BAeffRRP1dORMHI5DAhvSgd35zdioFmA+bU1iLZVCd3WUQtEjjg2UNAh58VK1bgkUcewaOPPorhw4fjvffeQ9++ffHxxx83ev7+/fuRlJSEp59+GsnJybj++uvx61//GocPH/Zz5UQUTFyiCzkXc7Dux3VAXQnuM5qRUlfJNXuo01CJLjg43d0tYMOP3W5HdnY2pk6d6nF86tSp2Lt3b6OvmThxIi5cuIBt27ZBkiRcvHgRX375JW6//XZ/lExEQajEWIINpzbgbHkObjPbcGvNRUQ6bXKXRdR67PpyC9gBz1VVVXC5XEhISPA4npCQgPLy8kZfM3HiRKxduxZz5syB1WqF0+nEHXfcgQ8++KDJ97HZbLDZfvqHzGAw+OYDEFGnZnKYsKd0D4rrzuMalwojDVVQgBvbUifGlh+3gG35uezKvbMkSWpyP62TJ0/i6aefxquvvors7Gx8++23KCgowIIFC5q8/vLlyxETE+P+6du3r0/rJ6LORZRE5FXkYV3+v6DUX8D9xnqMNlQy+FDnx3E/bgHb8hMfHw+lUtmglaeioqJBa9Bly5cvx3XXXYfnn38eADBmzBh06dIFkyZNwhtvvIHExMQGr1myZAkWL17sfmwwGBiAiEKUrl6HzAuZEGxG3G6xI9HClmAKImz5cQvY8KPRaJCSkoL09HTceeed7uPp6emYNWtWo68xm81QqTw/0uUtKCSp8d/atFottFqtj6omos7I7DBjn24fCmrP4iqXAqP11WzpoeDDlh+3gA0/ALB48WI8+OCDSE1NRVpaGj799FMUFxe7u7GWLFmC0tJSfPHFFwCAmTNn4rHHHsPHH3+MadOmQafTYdGiRbj66qvRq1cvOT8KEQUgSZJwovoEDugOoL8o4H5DPTcgpeDFlh+3gA4/c+bMQXV1NZYtWwadTodRo0Zh27Zt6N+/PwBAp9N5rPkzf/58GI1GfPjhh3j22WcRGxuLm266CX/605/k+ghEFKAumi4iszQTLose06029Dazi4uCHGd7uQlSU/1BIcpgMCAmJgZ6vR7R0dFyl0NEPmZz2bC/bD/OVOcjVVRhjJ6zuCg0OBLHQT1shtxldJjWfH8HdMsPEZEvna49jb2le5HoEvEro5nr9VBo4eambgw/RBT09DY9Mi9kQl+vw002F/pxSwoKQQLDvhvDDxEFLZfoQm5FLvIu5mC0qMR0Qy3UIrekoNAkseXHjeGHiIKSrl6HjAsZCLOZcZfJgm42s9wlEcmKLT8/YfghoqBidVqxr2wfCmpOI80lYJihGo2vCU8UYjjV3Y3hh4iCxqmaU9hbthf9XRLuMxgR7nLIXRJRwFA47RAlEQoh4He26nAMP0TU6dVZ65BZmglT/UVMs9rRi2v2EDWgkEQ4HVYoNBFylyI7hh8i6rR+PqB5nKjEeH01lFy6jKhJktMKMPww/BBR51RuKkdGSQa62Ey4t96MGDtnshC1ROD2LQAYfoiok3G4HNiv24+z1Scx0SlgqKFa7pKIOg9OdwfA8ENEnUixoRi7LuxCosOBX+k5oJmo1TjdHQDDDxF1AhanBbtLd6O8rgA3coVm8jGbMgJFqiRUSdEYiFL0sJcE7/IInO4OgOGHiALcqZpT2Fe6F4NdEn6l5wrN5BsuQYlydV+cEPsh3xoP0XYp7hxAb3RXjcZV2iIkOQugdQXZ4phs+QHA8ENEAcpgN2BXyS5Y6i/iNrMFPaz1cpdEQaBOHY/TSEKerRdMDnWj51Q6w7HNOQwKDMXgsFoMU5Sil+sCwoIhCLnY8gMw/BBRgJEkCUerjiJbdwjjnMA4fRUU4PR1ajubMgKFqiTkOfqizBLp9etECDhl7YZT6AZgNPpo6jFYVYleqEA350WoxE445ozdXgAYfogogNRaa7GzZCeU5lrcXV/P6evUZi5BiYuavjju8uzWao8L9khcsEcCSIYCEvqojeivrkUCahAnViHcaQj8sULs9gLA8ENEAUCURBypPIK88sO42gGMNFTJXRJ1Unp1PE4LSci19oLJ1Hi3li+IEFDsiEaxIxpAfwBAhMKBvhojEhV6xKMOsWIturj0UEgBNE6NLT8AGH6ISGbVlmrsLNmJMIsB9xqMiORvptRKl2dr5bayW8vXzKL6Z91kl6gEEQkqE3qq6hGvMCIWRkS76hDhMsgTipydsKuuAzD8EJEsRElEzsUcHK/IRZpD4mKF1CqioECFug+OS0k4YfFNt1ZHcEoKlDqiUOqIApDoPq6AhDiVFT1U9YhX1CNGMCFaqkcX0YAwZ33HjXNjyw8Ahh8ikkGVpQo/FP+AaGs9fmkwIIJL7pOX6lWxOKMYgBxbbxjMGrnLaTMRAiqd4ah0hgPo7vHc5WAUpzSjq9KCWMGEKJjQRTQhXKyHxmVu+9gitqwCYPghIj9yiS5kX8xGfuURXGcXMchYI3dJ1Ak4FBpcUCfhiLMfCqwxcpfT4TyDUUMqQUQ3lRVxCgt6q+ow1PkjNN5OYXcx/AAMP0TkJxXmCuws3oluNhN+qddzawpqlgSgRpOIfCkJR60JsNmVcpcUMJySAhWOCFQgAvm2OOxW9MedYbnoaS9u8bUKpx2SJEEQArOb0F8YfoioQ7lEFw5fPIxTlUdxvc2FAfW1cpdEAcyq7ILzqgHIsfVFpbnxlg/yZBVV2GyZgPnaOkQ4Dc2eq5BEOJ1WqNShfW8Zfoiow1we2xNnrceculpoRZfcJVEAurzVxHGxP/KtcZACdPByILNJSmQLIzEJ+1o+2WkDGH6IiHzr8kyukxW5mGRzIZmtPdQIo6orTisGINvau8mtJsh7edaeuEYT1vL4Hw56ZvghIt+qtdbi++LvEW0x4F6O7aErOAUVSjVJyHP0x3lrrNzlBBWnpECZsi+SXGdaOJHhh+GHiHxCkiQcqTyCo+XZmGh3ciYXeTCo4/CjMADZ1l6wmvjV01HOSz2RhBbCD2d8MfwQUfvpbXrsLNkJrakG9xhqEcFVZAmAU6FGsSoZuc7+KLZEy11OSDhj64opCjS/DhBbfhh+iKh9TlSdQLbuAK6xOTHUyFWaCahT90A+kpFnS4SVU9T9yiyqUa+JRZSzrumTGH4Yfoiobert9dhZshNCfSXuNtaii4OrNIcyh0L73/21+uOCJUruckJajTKe4acFDD9E1Gpnas9g34UspNpdGMEd2ENaraYHTkgDkWdNgIOtPAGhQor97z7zTRAZfhh+iMhrNpcNmRcyUV9XjNlGA6Id3CQxFDkUGhSrkpHj6I8LZrbyBBqdq4UtQNjyw/BDRN65YLyAXcU7McJuwy11lW3fWJE6rTp1d5zEAORZE7ndRAArdUQCimZOYPhh+CGi5jlFJw7qDqKk6iSmmU2It5rlLon8yKlQo0SdjGxHEko4lqdTsIoq2NQR0Lqa+H+V4Yfhh4iaVmWpwg9F36O3pR5366uhkkS5SyI/MajjkI+ByLH14oytTqheEdN0+HFxcgLDDxE1cHnBwhPl2bjRYkMfs17uksgPLq++nONIRiHX5enUDIooxEHX+JNs+WH4ISJP9fZ6fF/8PbqYqnFPXTU3Iw0B9apY/KgYhEPW3lx9OUjopcimn2T4Yfghop+crT2L/ReycK3Nzu0pgpwoKKBT90OuawDOWLvKXQ75WI0Y0fST3N6C4YeIAIfLgazSLNTXFmC2QY9I/mYYtKzKLjijHIRDtr7Qm7Vyl0MdpLnwIzjtkCQJghC6czYZfohCXKW5Et8XpWOo1YwpnMIelCQAVZreOCoOwHFrd4j8Uw561c6wJqe7KyURTqcNKnWYf4sKID4JPw6HA+Xl5TCbzejevTu6devmi8sSUQe6PKj5x/Js3GQyo4e1Xu6SyMccijAUqJJxyJGECnMz3SAUdMyiGk6VGiqxiU2GXTaA4af16uvrsXbtWqxbtw4HDx6EzfZTM3mfPn0wdepUPP7447jqqqt8UigR+Y7ZYb40qLm+EnfXVUEtcgp7MKlTd8cJDEIut5wIaRZFJKLE2safDPGu7TaFn5UrV+KPf/wjkpKScMcdd+Cll15C7969ER4ejpqaGhw/fhxZWVm49dZbce211+KDDz7A4MGDfV07EbVBkaEIe4p34WqrhYOag4hLUOKCJhmHHcko5jR1AmBRdEEUmgo/ob3WT5vCz969e7Fz506MHj260eevvvpqPPzww/jkk0+watUq7Nq1i+GHSGYu0YV9un2orDqFmUY9ohyh/ZtfsLAoI3FKOQQHrX1gMqnlLocCiBnhTT8Z4jO+2hR+Nm7c6NV5Wq0WTzzxRFvegoh8qNZai+8K05FkMWJWXSUUkOQuidqpWp2IIxiEo5bukDiAmRpRLzQTftjyQ0TB7FTNKeSW7sVkkwk9LUa5y6F2cAoqFKsH4JAzGWWWZhaxIwJgFJsZ0MyWn9axWCyoqalB7969PY6fOHECI0eO9FlhRNQ+DtGBzAuZcNQW4c66Kq7U3ImZVVH4UTEYh6x9YHawa4u8Y5SaDj9CiO/v1dym9w18+eWXGDJkCG677TaMGTMGBw4ccD/34IMP+rw4Imqbaks1tpzahISq85hec5HBpxOSAFRqeuM79Q341HordpmTYRYZfMh7huZafjjby3tvvPEGcnJy0L17dxw+fBjz5s3DK6+8gvvvvx+SxDEERIHgZPVJHC87gJvqjYi3muQuh1rJKahQpBmIQ/Zk6Mxd5C6HOjG9U9NkE4fksvq3mADTqvDjcDjQvXt3AEBqaioyMzNx11134ezZsyG9TDZRIHC4HNh1YRdQV4w76yq5dk8nY1FG4sf/ztoyc9YW+YBR1EBUCI1OcBCcTSx+GCJaFX569OiBo0ePYsyYMQCAuLg4pKenY968eTh69GiHFEhELauyVOGHwnSMNhkx3FgtdznUCjXqBByRBuOotQe3nSCfkiDAoQyH1mVu+KSTLT9e++c//wmVyvMlGo0G69atw5NPPunTwojIOyeqTiBfdxC3GA3oZmvkHzkKOC5BiVJNEg45BnBBQupQNiEMWjT8d0EK8QHPrQo/ffr08XhcXl6Onj17AgCuu+4631VFRC1yuBzIuJABdV0JZrGbq1OwKcNxVjkYB2z9oDdxR3XqeDZFE2v9cMBz202dOpXdXUQyqLXW4vvCHRht0mOogd1cgc6gjsMxDEaONRFOqVWTbInaxYomQjbX+Wk7zvAi8r8ztWeQd2EPbjLqEcduroAlAbio6YfDrkE4Y+kqdzkUoixC4+FH4ArPbccZXkT+4xJd2FO2B9bqs5jNbq6A5RRUKFIPxH7HAFSYI+Quh0KcpYmFDiW2/BBRoDPajfiucAcGGWsx2lApdznUCKsyAqeVQ7Hf2hcmrsJMAcLURLeXwumAKIlQCKHZDcvwQxTgSgwl2F+8EzfU65FgqZe7HLqCQR2HoxiCXGtPjuehgGOWNI0eV0CC02GFQhOarZPtCj8aTeM3lYjaT5IkHL54GBUVxzCzrhphLqfcJdF/SQAqNH1w2DUIpy1xcpdD1CSTq5lWSJcNAMNPqx0+fNhXdRDRz1idVnxf9B0SDOW4ra6SS98FCJegRLFmIPbbBqCcW09QJ2AUm2mkCOFBzz5po7VarTh48CD+/e9/Y+vWrR4/7fXRRx8hOTkZYWFhSElJQVZWVrPn22w2vPLKK+jfvz+0Wi0GDhyI1atXt7sOIn+pslThmzNbMKaqGKkMPgHBpgzHcc1YrBFvw1em0Sh3MvhQ51Df3Ga4IbzWT7vH/Hz77beYO3cuqqqqGjwnCAJcrrbvJr1hwwYsWrQIH330Ea677jr87W9/w4wZM3Dy5En069ev0df88pe/xMWLF7Fq1SoMGjQIFRUVcDrZXUCdw5naMzh+YQ9u1dci2hHay88HArMqGseEYThk7QWHpJS7HKJWs4hqiEoFFFLD2aGCGLrhR5DauVjPoEGDMG3aNLz66qtISEjwVV0AgGuuuQYTJkzAxx9/7D42fPhwzJ49G8uXL29w/rfffotf/epXOH/+PLp169am9zQYDIiJiYFer0d0NJedJ/8QJRH7y/bDUvUjbqythKqRf6jIf/TqeORIQ3HEmgCJbW/UyT2h3Qaty9LguGvEHVAmjJShoo7Rmu/vdnd7VVRUYPHixT4PPna7HdnZ2Zg6darH8alTp2Lv3r2Nvmbr1q1ITU3Fn//8Z/Tu3RtDhgzBc889B4ul4R86UaCwOC3Ydu7fiCo/gZtrLjL4yKhC0wf/Vk7BasuNyLP2ZPChoOAQmhj3E8L7e7W72+uee+5BRkYGBg4c6It63KqqquByuRqEqoSEBJSXlzf6mvPnz2P37t0ICwvDli1bUFVVhSeeeAI1NTVNjvux2Wyw2X5q+jMYDL77EEQtqDRXIrNwByYa6pBo4d89OYiCAqXqJOx3DsYFc6Tc5RD5nF0IA6Bv+ATH/LTdhx9+iHvvvRdZWVkYPXo01GrPwVVPP/10u65/5SrSkiQ1ubK0KIoQBAFr165FTEwMAGDFihW455578Ne//hXh4Q03eFu+fDmWLl3arhqJ2uJUzSmcurAP0w3V6OII3d/A5OIUVChQD8Je+wDUmJvY/JEoCNib2OKC4acd/vWvf2H79u0IDw9HRkaGRzARBKHN4Sc+Ph5KpbJBK09FRUWTXWyJiYno3bu3O/gAl8YISZKECxcuYPDgwQ1es2TJEixevNj92GAwoG/fvm2qmcgboiRiT+keSFVncHtdBZTcI8+v7MownFYOxV5rf67ETCHB1mS3F8NPm/3ud7/DsmXL8NJLL0Gh8N3qphqNBikpKUhPT8edd97pPp6eno5Zs2Y1+prrrrsOGzduRH19PSIjLzVfnz59GgqFAn369Gn0NVqtFlptE6mYyMesTiu+L0zHwDodhhm5G7s/WZSROKEchoOWPrBx5haFEBuaCD9c56ft7HY75syZ49Pgc9nixYvx2WefYfXq1cjPz8czzzyD4uJiLFiwAMClVpu5c+e6z7///vsRFxeHhx56CCdPnkRmZiaef/55PPzww412eRH5U421Bv85swUpVUUMPn5Ur4rBHnUaPrVNRZa5P4MPhRyr1FS3V+gup9Hulp958+Zhw4YNePnll31Rj4c5c+aguroay5Ytg06nw6hRo7Bt2zb0798fAKDT6VBcXOw+PzIyEunp6XjqqaeQmpqKuLg4/PKXv8Qbb7zh89qIWqNQX4ijJZm4tbYKkSHcz+5PderuyMEwHLV056wtCmkWqYmv+hCe7dXudX6efvppfPHFFxg7dizGjBnTYMDzihUr2lWgv3GdH/K13Ipc1JTn4caaCk5j94MqTS8cFIfilLVta30RBZsJ4eW40bGnwXFXVE8oUx+SoaKO0Zrv73a3/Bw7dgzjx48HABw/ftzjuaZmZRGFAqfoxK6SXehafR436xuugE6+IwEo1/THfucQFJr5SwvRz1ma2uIihFt+2h1+du7c6Ys6iIKKyWHCDwXbMbquAkmmWrnLCVoiBFzQDsBe+2DouNEoUaMsUhPhh2N+iMhXKswV2FuYjhtrq9DVbpa7nKAkCgoUaQZht20QqkyczEDUHFNTLT8hPP6wTeGnuLi4yY1FG1NaWorevXu35a2IOpXzdefxY0kmptdWIszFDXV9zSUoUfjf0FNjCpO7HKJOwSyqGp3brRRdcLmcUCpDrx2kTfPTr7rqKjz22GM4ePBgk+fo9Xr8/e9/x6hRo7B58+Y2F0jUWeRW5OJCUQamV5Uz+PiYS1DijHY4/iHOwFbTKNQ4GXyIvGUWVWhyZlOItv60Ke7l5+fjzTffxPTp06FWq5GamopevXohLCwMtbW1OHnyJE6cOIHU1FS8/fbbmDFjhq/rJgoYLtGF3aVZiKk8ixv0lXKXE1ScCjXOqYdgt3UADKYmFmojomZJEOAU1FBLjoZPOq2ANvTGy7VrqrvVasW2bduQlZWFwsJCWCwWxMfHY/z48Zg2bRpGjRrly1r9glPdqTVsLhu+L9iO4bVlSK7nwGZfcSg0OKMeit2W5KbHKxCR1xZov0W4y9TguCt1PpRRiTJU5Ht+m+oeFhaGu+66C3fddVd7LkPUKeltemQWbEdabTnirQ3/UaHWcyg0OKUehj2WJJjtDD1EvuJQaBsNP+z2IiKv6ep1OFz4HW6qq+CO7D7A0EPUsRxN7u/F8ENEXjhdexpFJXsxvfYi1CJXbG4Ph0KDU6qh2GNNZugh6kCOJnZ2lxh+iKgl2RezYS/Lwy11Fdwtqh0Yeoj8yy5wrZ+fY/gh8oIoidh9IQtxFaeRYuBWFW3lUGhwWjUMu63s3iLyJzsa//9NCNEtLtq0zs/PzZ8/H5mZmb6ohSggOUQHviv4Fv10+RjJ4NMmDoUGJzRjsNo5HTvMg2HmDC4iv2oq/MDFlp82MRqNmDp1Kvr27YuHHnoI8+bN42rOFDTMDjMyCr5FanUpeljr5S6n03EKKpxRD0WWdSBMbOkhko2tyf29QjP8tLvlZ9OmTSgtLcWTTz6JjRs3IikpCTNmzMCXX34Jh6ORBZWIOgm9TY+dZ7/G9RVFDD6tdGlF5mH4hzgD35qHca0eIpnZmmr5Yfhpu7i4OCxcuBC5ubk4ePAgBg0ahAcffBC9evXCM888gzNnzvjibYj8ptxUjn1nv8bNlcWIdoTuzsetJQoKnNMOxT/FGfi3aSQMLq7KTBQIrFITHT0MP+2n0+mwY8cO7NixA0qlErfddhtOnDiBESNGYOXKlb58K6IOU6AvwInz23FLZSn36PKSCAFF2kH4pzQdW02jUOvSyl0SEf2MrYnwI3HMT9s4HA5s3boVa9aswY4dOzBmzBg888wzeOCBBxAVFQUAWL9+PX7zm9/gmWeeaXfBRB0pvzoftRf246aack5l94IEoFQzALscQ1FhipC7HCJqgoVjfjy0O/wkJiZCFEXcd999OHjwIMaNG9fgnGnTpiE2Nra9b0XUoXIu5kAoy8HEOm5O6g2dpj8yncNQZo6UuxQiaoHFxW6vn2t3+Fm5ciXuvfdehIWFNXlO165dUVBQ0N63IuoQkiRhX+ledCs/gWHGarnLCXjV6kRkukah0MyNf4k6C6ukRKPN2SHa7dWuMT8OhwOrV69GcXGxr+oh8itREpFZ/AN6lR1j8GmBQR2Hb5U34gvLRBTaGXyIOhOL2Hhbh8LpgCiF3jY97Wr5UavVOH78OASBoyOo83GIDuwqTMfIigIkWgxylxOwzKpoHBJGI9eSAIkjoYg6JZukgggBCkgexxWQ4HRYodCE1pi9ds/2mjt3LlatWuWLWoj8xuq04odz2zC+/AyDTxNsyggcUF+Nv1tvQY6lJ4MPUSfnUjS+9IQQguN+2j3mx26347PPPkN6ejpSU1PRpUsXj+dXrFjR3rcg8imTw4Ss8//BxMoSruHTCIdCi5Oq4dhjSYJNUspdDhH5iFNQQ41Ggk4Ijvtpd/g5fvw4JkyYAAA4ffq0x3PsDqNAY7AbsO/cf3BDVQkinFyB/OdcghLnNEORYRnErSiIgpCzqZ3dGX5ab+fOnb6og6jD1Vprcfj8t5hSVQKNyyV3OQFDAnBBMwA/2IehxhQudzlE1EGcCq71c1m7ww9RZ1BlqcKR89sxueoC1GLozWxoSpWmFzKco1BijpK7FCLqYA40sd0Mw0/b1NXVYdWqVcjPz4cgCBg+fDgeeeQRxMTE+OLyRO1SbipH/vl0TK4uhVKSWn5BCDCou2GfNBonzfFyl0JEfuJo6is/BMNPu2d7HT58GAMHDsTKlStRU1ODqqoqrFy5EgMHDkROTo4vaiRqs9L6Upw+twM3VjH4AIBV2QV71GlYbZmMk1YGH6JQwvDzk3a3/DzzzDO444478Pe//x0q1aXLOZ1OPProo1i0aBEyMzPbXSRRWxQZilBakIFJNWUhP0nbodDgpGoksiz94eAMLqKQ5GhqwLMz9Ga9tjv8HD582CP4AIBKpcILL7yA1NTU9l6eqE3O1Z1DdWEmJtaWy12KrEQIKNAOwU7rEBjtTfT3E1FIsDe1uanL7t9CAkC7w090dDSKi4sxbNgwj+MlJSXuXd2J/Ols7VkYCzNxdd1FuUuRVYWmN3Y6R6HMxI1HiQiwN9ntxZafVpszZw4eeeQRvPPOO5g4cSIEQcDu3bvx/PPP47777vNFjUReO117GubCLIyvq5C7FNnUq2KwF2Nxwtxd7lKIKIDYJI75uazd4eedd96BIAiYO3cunE4ngEt7fv3mN7/BW2+91e4Cibx1quYUbEW7MS5Eg49DEYY81SjsNfeDGPKjnIjoSmz5+Um7w095eTlWrlyJ5cuX49y5c5AkCYMGDUJ4eDhKSkrQr18/X9RJ1KxTNafgKNyNMfrQCz6ioMBZzVDstAyGmSszE1ET2PLzk3aHn+TkZOh0OvTo0QOjR492H6+urkZycjJcXEmXOtiP1flwFe3BKH2l3KX43UVNX3znGIUKU2jtyExErWdrasAzw0/rSU2snVJfX4+wsLD2Xp6oWflVJyEV78FIfZXcpfiVSRWDPRzXQ0StYG1qmQt2e3lv8eLFAC5tXvrqq68iIuKn3zxdLhcOHDiAcePGtbtAoqbkV52EULQHww2hE3ycCjWOqUZjt6U/nFK71yglohBiFRv/yleKLricDihVodNt3ubwk5ubC+BSy8+xY8eg0fy0hohGo8HYsWPx3HPPtb9Cokacqv4RiqI9GBoiwUcCUKwZhO9sw2Hgej1E1AY2SYkm50I4rQDDT8su7+b+0EMP4f3330d0dLTPiiJqzpma0xALs0KmxadO3QM7XWNRaOb/Y0TUdjZRCTS1wLvLCiB01uZr95ifNWvW+KIOIq+crzsPe2EWRoZA8LEpI3BYMRaHLImQOHWdiNrJJikhQoACjYzVDbFBzz7Z1f3777/H999/j4qKCoii6PHc6tWrffEWRCjQF8B8PgOjgnw6uwgB5zRD8Z11aJN99EREbeFSqKEQG9nOIsQGPbf7X9alS5di2bJlSE1NRWJiIgSBv6GS7xUbimEs2Ikx+uDesqJGnYDvXeNwwcwtKYjI91yCGmo0Fn7Y8tMqn3zyCT7//HM8+OCDvqiHqIESYwlqzn+PcbXBG3xsynAcVozDQUsvuUshoiDmFLjQIeCD8GO32zFx4kRf1ELUgK5eh8rz32NCkO7OLkJAgWYIvrMOhVkMnZkWRCQPl8CFDgGg3QuFPProo/jXv/7li1qIPFRZqlB6/jtMqNHJXUqHqFP3wGbFrdhqHsXgQ0R+4URT4YdjflrFarXi008/xXfffYcxY8ZArfa8sStWrGjvW1AIqrPW4ezZ7bi2+oLcpficQxGGw8qxOGDpzVlcRORXDrb8APBB+Dl69Kh7Jefjx497PMfBz9QW9fZ6nDz3LdKqiuUuxeeKtQOxwzoCRi5USEQycDa5s7vFv4XIrN3h5/Jih0S+YHFacOTct7i2sjCo2kTMqmhkIAWnTN3kLoWIQpiDA54B+GDMDwBkZWXhf/7nfzBx4kSUlpYCAP75z39i9+7dvrg8hQi7y47sc9/i6opzUDaxYW5nIwoKnNSOxmrbTThlZfAhInk5uLkpAB+En02bNmHatGkIDw9HTk4ObLZL6dFoNOLNN99sd4EUGpyiEwfPb8dV5WegvmKhzM6qRp2A/4ep2G4a0vQ/OEREfmTnmB8APgg/b7zxBj755BP8/e9/9xjsPHHiROTk5LT38hQCREnEwcLvMaH8FLSiS+5y2s2h0GKf+hp8YbkOOkcXucshInJzSE11e4VWy0+7x/ycOnUKN9xwQ4Pj0dHRqKura+/lKQRkl2RhVNlJRDgdcpfSbmXaJPzHOpo7rxNRQLIz/ADwQfhJTEzE2bNnkZSU5HF89+7dGDBgQHsvT0HuqO4wkkvzEO3o3P/jWZUR2COk4Kiph9ylEBE1ydbE175SFOFy2KBUa/1ckTzaHX5+/etfY+HChVi9ejUEQUBZWRn27duH5557Dq+++qovaqQgdarqJOKKDyDeapa7lDaTABRpBmO7dTgXKiSigNfs+EOnFWD48c4LL7wAvV6PKVOmwGq14oYbboBWq8Vzzz2HJ5980hc1UhAq0hdCXbgbvc0GuUtpM7MqGjulFJw2cxYXEXUO1ubCjyt0Bj23O/wAwB//+Ee88sorOHnyJERRxIgRIxAZyV2pqXEXTRdhPv8Dhhur5S6lTUQIOKMdjnQzZ3ERUefS5JgfIKQWOvRJ+AGAiIgIpKam+upyFKT0Nj1053ZgXF3n3KHdqOqK78RUFJqi5S6FiKjVbM12e4VOy0+7p7o/9NBD+P777yEFyaJ01HEsTgtOn9uOcZ1wvy4RAvI1I/G5bTIK7Qw+RNQ5NRt+OvnEk9Zod/iprq7G7bffjj59+uDZZ59FXl6eD8qiYOMSXThW8B0mVJyXu5RWq1fF4P8Ut+Bb8zA4JZ8sik5EJAuryJYfwAfhZ+vWrSgvL8drr72G7OxspKSkYMSIEXjzzTdRWFjogxIpGOSWZGKM7sdOtW2FCAGntCPwuW0KW3uIKChwzM8lPvk1NjY2Fo8//jgyMjJQVFSEhx56CP/85z8xaNCgdl/7o48+QnJyMsLCwpCSkoKsrCyvXrdnzx6oVCr3jvMkn+O6wxh84QjCXE65S/GaSRWDrxU3YZtpOAc1E1HQcEoKuJr66g+hhQ592obvcDhw+PBhHDhwAIWFhUhISGjX9TZs2IBFixbhlVdeQW5uLiZNmoQZM2aguLi42dfp9XrMnTsXN998c7ven9rvfM1pxBUdQIy9c/xGIQE4ox2ONbYpOG+PlbscIiKfExVNrEDPMT+ts3PnTjz22GNISEjAvHnzEBUVha+//holJSXtuu6KFSvwyCOP4NFHH8Xw4cPx3nvvoW/fvvj444+bfd2vf/1r3H///UhLS2vX+1P7lNfrgIJdSLR0jrV8rMou2Kacgn+bRrC1h4iCllPgzu7tnurep08fVFdXY9q0afjb3/6GmTNnIiwsrN2F2e12ZGdn46WXXvI4PnXqVOzdu7fJ161Zswbnzp3D//7v/+KNN95o8X1sNpt7J3oAMBg6xxd1oNPb9Kg+/x1GGqrkLsUrxZoB+MY6GlbRZ6s/EBEFJJfA/b3a/S/9q6++invvvRddu3b1RT1uVVVVcLlcDbrOEhISUF5e3uhrzpw5g5deeglZWVlQqbz7aMuXL8fSpUvbXS/9xOFy4Nz5dEzoBFPaHYow7FGmINfcU+5SiIj8wik0sRUPw4/3Hn/8cXz//ff4/vvvUVFRAVEUPZ5fvXp1u64vCILHY0mSGhwDAJfLhfvvvx9Lly7FkCFDvL7+kiVLsHjxYvdjg8GAvn37tr3gECdJEo4W/YCxF8/JXUqLKjR98G/bOOjtobGXDRERALiaCj8hNOan3eFn6dKlWLZsGVJTU5GYmNhoMGmL+Ph4KJXKBq08FRUVjQ6kNhqNOHz4MHJzc917iomiCEmSoFKpsGPHDtx0000NXqfVaqHV8svPV06WH8LQ0hNQSWLLJ8vEJSiRrZ6APeZ+cpdCROR3zqa++kNoqnu7w88nn3yCzz//HA8++KAv6nHTaDRISUlBeno67rzzTvfx9PR0zJo1q8H50dHROHbsmMexjz76CD/88AO+/PJLJCcn+7Q+aqiw9hziiw4iMoAXyjKo47DNeRV05i5yl0JEJAtnE2N+lKIIl9MOpaqJ2WBBpN3hx263Y+LEib6opYHFixfjwQcfRGpqKtLS0vDpp5+iuLgYCxYsAHCpy6q0tBRffPEFFAoFRo0a5fH6Hj16ICwsrMFx8r0qSxXEggwkWIxyl9IoCcBZ7XCu0kxEIc/R3EKHDgvA8NOyRx99FP/617/w+9//3hf1eJgzZw6qq6uxbNky6HQ6jBo1Ctu2bUP//v0BADqdrsU1f6jjWZwW6M6lY7S+Qu5SGmVThmOXcBVOmLrLXQoRkewcTc32AgCXFUCM32qRiyC1c0fShQsX4osvvsCYMWMwZswYqNWeA6lWrFjRrgL9zWAwICYmBnq9HtHR3NKgJaIk4ujZ/2DshaPwzWgv36rU9MZW63gYRI7rIiICgGldTmOE7Vijz7nG3Qdl1yT/FuQjrfn+bnfLz9GjR91bSBw/ftzjOV8NfqbAlV92EMN0JwMu+IiCAkfU47DLnAQp4KojIpJPs91eITLdvd3hZ+fOnb6ogzqhkrrzSCg+GHB7dplVUdguXotCM1vuiIiuZEczK9iHyHR3LmdLbaK36eE4n4G+VpPcpXjQafrjK+s4rtRMRNSE5nd2Z/hp1l133eXVeZs3b27rW1CAcogOlJxLxyj9RblLcXMJSuSqxyPL3F/uUoiIApq9ub0LHaGx1k+bw09MTPCPBqfG/VichREVZ+Uuw82sisJ/xGtRzG4uIqIWOZrr9mLLT/PWrFnjyzqokzhXeRxJF/KgbN8kQZ9hNxcRUevYpSa2twDY8kN0pSpzFcIK9iDKIf8KzqKgQK56PDLNSXKXQkTUqVib6/Ziyw/RTxwuB6rOf49hphq5S4FNGYHtSMM5c6zcpRARdTp2sZlV7tnyQ/ST0yVZGF5ZIHcZqFb3xP/ZU6F3cdFCIqK2sElKNLX8mcSWH6JLCqt+RP+SPCgg7zifM9ph2GYaAZGLFhIRtZlVUjUZfgS2/BABtZYaqAoyZd2p3SmosEd1DXJMPWWrgYgoWNhEJdBEz5fC5YDockKhDO54ENyfjtrFKTpRUfADhtZXy1aDWRWNr8U0lFkiZauBiCiYSBDgEpRQSq4GzwkARIcFUEb5vzA/YvihJp0r3Y9BMq7nU6npjc3WFJjFZqZlEhFRq7kUaihdDcMPAEhOCwCGHwpBOn0RepZky7aez2nNcPzHPJzje4iIOoALagCND24WQmDQM8MPNWBxWmAr2IVEm9nv7+0SlNinuhqHzL38/t5ERKHCKTS91o9kD/5Bzww/1EBxURaG1pb6/X2tygj8R7oOhRZuU0FE1JFcQtPDCQQXW34oxBRVnUS/0qN+f986dQ9stl/N9XuIiPzA2dzXfwhMd2f4ITe9VQ9NwW6Euxx+fd9SbTK2mMfC0dyS60RE5DPOZlp+JIf/hzz4G8MPAQAkSUJF4U4M9vO09hOa0dhhGuLX9yQiCnXNtvxwwDOFisKKI0i6eMpv78eBzURE8nEITX/9h8Iqzww/BL21DpGFe6EWRb+8n0MRhu3CdThjifXL+xERkScHmpnt5WDLDwU5URJRVbATA816v7yfSRWDr1wTUWGP8Mv7ERFRQw6pmcVjOeaHgl3xxaPof/G0X96rTt0DX9qvgdGl8cv7ERFR45pr+eFsLwpqdZYaRBbuhUrq+O6uck0/bLZMgI0zuoiIZGdv5t9iwWmBJEkQhOBdYb+JfV0p2EmShNqiTMRbOr6767xmCNabUxl8iIgChKOZtg+lKMIV5DO+2PIToi5UHkff8o6f3XVMOw7fmQZ2+PsQEZH3bFILX/8OC6AO908xMmD4CUEmhwnaoo7t7hIFBfaprsFBE6eyExEFmmbH/ABAkM/4YvgJQRVFmUiur+mw67sEJX5QXofjlu4d9h5ERNR2Lbf8BPeML4afEFNeex6JZcc77PoOhQbbhUk4Y43tsPcgIqL28arbK4gx/IQQu8sOsSATYS5nx1xfGYavpUkotnFXdiKiQGYTW+r2YvihIFFeehD99LoOubZV2QVbXJNQ7uzSIdcnIiLfsUlKoLmZ7E52e1EQqDNXIbYku0OubVLF4EvndahxBu/MACKiYGITlWh2zHOQt/xwnZ8QYSzKQrTd90m+XhWL9Y4bGHyIiDoRm6SE1NwJQT7gmeEnBOiqfkTPCt9vYWFQd8N6xyQYuF0FEVGn41I0t79XcE91Z/gJcjaXDYrCPT7fsd2gjsN62/Xcp4uIqJNyCaG7uSnDT5CrLD2EBGOFT69Zp+6OdbbrYBKb+R+HiIgCmlNoZthvkI/54YDnIGaw1iLGx4Oc69Q9sM6WBqvIvzpERJ1Zcy0/Coc1qDc3ZctPEDMW7UGUDwc569XxDD5EREHC2Uz7h0JywRXEXV8MP0GqSl+M7hdP+ux6l8b4TGTwISIKEs2FHwBBPe6H4ScIiZIIZ9EeaFwun1zPqOqK/2efCDPH+BARBQ1HcwOeAcAevON+GH6CUEXFCSRUF/rkWvWqGPw/B2d1EREFm2YHPANBPeiZ4SfIOFwOqIr3N7tqubfMqmj8P67jQ0QUlBwtdnuZ/FOIDBh+gkx1eS7i66vafR2rMgKbnNdD79L6oCoiIgo0drTQ7cWWH+oMLA4zwksOtfs6DkUY/k+ahCpuWUFEFLQcElt+KAjoSw8hxmJo1zWcggrfCNejzB7po6qIiCgQ2Zvd2RSc7UWBr95Sh6jS3HZdwyUosUM5CQW2GB9VRUREgcomcbYXdXLmskPo0o6/qBKATGUaTlm7+a4oIiIKWHYOeKbOzGipQVTZsXZdI0eTgjxrgo8qIiKiQGcXW+r2YssPBTDrhYMId9ra/Poz2uHINCf5riAiIgp41hZafgS7GaIk+qka/2L46eSM5mpE6Y63+fVl2iR8Yxruw4qIiKgzsEnNt/woJRGiD/eHDCQMP52c7cIBhLkcbXptraYHNpvHQfLJkohERNSZeLVXY5DO+GL46cTqLdWIKj/RptdalFHYZLsGjhaSPxERBSdrS2N+AEj24Bz0zPDTiVkvHIbW5Wz165wKNbZKE7lfFxFRCPOq5YfhhwKJyVqHyPLWj/URIeAHRRoXMSQiCnEiBDiF5lt/BHZ7USCxlmYjzGlv9evyNONxwtq9AyoiIqLOxqVovgeA3V4UMCz2eoTrjrb6dUWaQdhlTu6AioiIqDNyCS2t8szwQwHCqstDhMPaqtfo1fH42jKqgyoiIqLOyNlS+AnSVZ4ZfjoZh9MOTdmRVr3GrgzDV46rObOLiIg8OMCWH+oE6iuOo4vV+53bRQj4TkhDjTO8A6siIqLOqMWWH4YfkpsoiVCU5rTqNcc047hZKRERNaqllh9FkG5xEfDh56OPPkJycjLCwsKQkpKCrKysJs/dvHkzbr31VnTv3h3R0dFIS0vD9u3b/VhtxzJWn0FMfaXX51/U9MFODnAmIqImtLSzu1IS4QrCLS4COvxs2LABixYtwiuvvILc3FxMmjQJM2bMQHFxcaPnZ2Zm4tZbb8W2bduQnZ2NKVOmYObMmcjNzfVz5R1El+f1qVZlF/yfdQK3riAioibZWxrzAwD2+o4vxM8ESZIkuYtoyjXXXIMJEybg448/dh8bPnw4Zs+ejeXLl3t1jZEjR2LOnDl49dVXvTrfYDAgJiYGer0e0dHRbaq7IxiN5YjI/hxKL/64REGBr4UpOG+P7fjCiIio07o54jzG2JtvIHCMuRfquEF+qqjtWvP9HbAtP3a7HdnZ2Zg6darH8alTp2Lv3r1eXUMURRiNRnTr1vSYF5vNBoPB4PETiETdEa+CDwAcU49l8CEiohbZ4MUs4CAc9Byw4aeqqgoulwsJCQkexxMSElBeXu7VNd59912YTCb88pe/bPKc5cuXIyYmxv3Tt2/fdtXdEWwOM7QXvdvAtFqTyHE+RETkFZvkRbeXLfi6vQI2/FwmCJ5jViRJanCsMevWrcMf/vAHbNiwAT169GjyvCVLlkCv17t/SkpK2l2zr9kqTiLMaWvxPIdCi3/bOc6HiIi8Y5O82dw0+MKPF59aHvHx8VAqlQ1aeSoqKhq0Bl1pw4YNeOSRR7Bx40bccsstzZ6r1Wqh1WrbXW9HkSQJgs67RQ33KFNRYw/r4IqIiChYWLxq+TF2fCF+FrAtPxqNBikpKUhPT/c4np6ejokTJzb5unXr1mH+/Pn417/+hdtvv72jy+xw9fpiRBkrWjyvRDMAuZaefqiIiIiChcWblp8g3OIiYFt+AGDx4sV48MEHkZqairS0NHz66acoLi7GggULAFzqsiotLcUXX3wB4FLwmTt3Lt5//31ce+217laj8PBwxMTEyPY52sWLDUytyghss3LfLiIiah2r6EUMCMIxPwEdfubMmYPq6mosW7YMOp0Oo0aNwrZt29C/f38AgE6n81jz529/+xucTid++9vf4re//a37+Lx58/D555/7u/x2szss0FadbvG8TCEVZtGLpksiIqKfMYuqFvuABHv9pR0GhIDtLGq1gF7nRw6BtM5PfWkOIk83v0J1kXYQNpvG+qkiIiIKJgIkLFRtbnGajCPtt1CHBc7ad40JinV+CEBF89PbbcoIfGsZ4adiiIgo2EgQWt7cFAi6GV8MPwHKbKpARF1ps+fsFSawu4uIiNrFpdC0fJItMBcAbiuGnwAlXcyHAk33SJZr+iHP2vyUfyIiopY4BG/CD1t+qINJkgShMr/J550KNbbbR/uxIiIiClZ2wYu17oJsrR+GnwBk0Rcjwlzb5PPHVKNR4+RihkRE1H4Ob8b8sNuLOlxF060+9apYZJqT/FcLEREFNRu8aflhtxd1IJfogrLqTJPP75LGQ+TeXURE5CM2tvyQ3Gx1RdA2kbB1mv44bevm54qIiCiY2aWWBzwLNiNESfRDNf7B8BNghMpTjR53CUp8bx/p52qIiCjYWdByy49KdMFpDZ7WH4afACJKIpRVZxt97qxmGCqd4X6uiIiIgp3Fi5YfAEHV9cXwE0Ds+hJoGllF06EIww+WQTJUREREwc4sehl+2PJDHaKy8U1Mj6tGeLfzLhERUSuZJC93CrDpO7YQP2L4CSBCdcMuL6uyC/ZY+slQDRERhYJ6b7dJYssP+ZqtvhxaS12D47mKUXBISv8XREREIcHk8q7bS7Ky5Yd8rbqgwSGzKgoHLb1lKIaIiEKFTVLCJbT8S7ZgaXrngc6G4SdQ1JxvcChPMZILGhIRUYdzKFreMklhM8AluvxQTcdj+AkADocZKv0Fj2MWZRQOmXvJVBEREYUSuxfhRyWKcFrrOr4YP2D4CQBSbTGUV6yceUw5jK0+RETkF1bBy3XkGhmb2hkx/ASC2kKPhzZlBMf6EBGR31gFLzY3BYAgGffD8BMAhLpCj8c/KodyhhcREfmN1Zud3QGA3V7kCw5zLdTmn5K0U1Bhv7WvjBUREVGoMUktj/kBAMlS08GV+AfDj9z0JR4PizQDYfZ2wSkiIiIfqJe8bPkxs9uLfKGuyP2fEoCDtmT5aiEiopBkEL0LP0prHRwuewdX0/EYfuT2synuVepeKHd2kbEYIiIKRUbRu24vtSjCFQStPww/MnJY9VD/bNrgUWmAfMUQEVHIqnV52e0FQLJUd2Al/sHwI6eftfrYlBE4bu0hYzFERBSqrKIKToWX403NDD/UHvpS938WqAZwUUMiIpKNVRHh3Ymmqo4txA8YfmQkGHXu/862c3o7ERHJx6KI9Oo8yczwQ20kupxQ1F8EANSpe6DC4WXiJiIi6gAmePc9pDbXwuHs3DO+GH5kItZfhOK/u+OeEfrJXA0REYU6o+DdbGO16ILDXNnB1XQshh+5/LfLS4SAI7ZEmYshIqJQVyd6ubkpANRXdFwhfsDwI5f/dnnVaBJhdGlkLoaIiEJdjasVwy9MDD/UFv8NP2fBgc5ERCS/ytaEHyPDD7WS5HJBYaqCCAHHbVzbh4iI5Gd0aeBQeLnNRf1FOERHB1fUcRh+ZCBaqqEQXahTd2eXFxERBQyTMsar87QuB+ydeNwPw48cTJdGyZcIvWUuhIiI6Cd6RbTX50rGsg6spGMx/MhA+O/qmKcd3WWuhIiI6CfVkvfhB3pdy+cEKIYfOZirYFVG4IIjSu5KiIiI3MpF77q9AACGC5AkqeOK6UAMP3Iw16JCxbV9iIgosFywe/9LeReLHqZOusM7w4+fSaIIwVKDEpGzvIiIKLCYRDUsSu8CkABA/NkG3Z0Jw4+fSTYDBNGFs45ucpdCRETUQI0yzutzJX1RB1bScRh+/M1aB4syEjXOMLkrISIiaqAc3ocfRV0JREnswGo6BsOPv1nqUKPiLC8iIgpM553eh58oiwHG+s4364vhx9+sdSiX2OVFRESBqdQeCYeiFb0TtZ2v64vhx88EqxGlrli5yyAiImqUBAEXWzMjubag44rpIAw/fiba6ls1lZCIiMjfzkveh5+wulKYbfUdWI3vMfz4mckpwCYp5S6DiIioSSds3eESvPuu0oou2Os6V+sPw4+fGZwquUsgIiJqllVU4aKmr/cvqDnfccV0AIYfP5IcNtRJ4XKXQURE1KITrn5en6uqLYZDdHRgNb7F8ONPDjNqxEi5qyAiImrRCWs8zCrvxqhG2uph1l/o4Ip8h+HHjwSXDdWuLnKXQURE1CIJAk4ohnr/gk7U9cXw408OCyqc7PYiIqLO4YClD6zKCO9OrjnXaXZ5Z/jxI6vdAbOolrsMIiIirzgkJbIVY706N7q+GkbTxQ6uyDcYfvzI4pS7AiIiotY5ZElEjTqhxfMEAFL1uY4vyAcYfvzILLHVh4iIOhcJAv7jnACnwovvsOqzHV+QDzD8+JFJ0spdAhERUatVOCKwR3l1i+dFGnQwmav9UFH7MPz4UT3DDxERdVI5lp44qhnf7DlKSYKr6pSfKmo7hh8/kiDIXQIREVGbfW8egOOa5gdAC5U/+qmatmP4ISIiIq+lmwdhr+baJvf+ijRcRL2h1M9VtQ7DDxEREbXKAXNvbMbNMKjjGjwnAIDuiN9rao2ADz8fffQRkpOTERYWhpSUFGRlZTV7/q5du5CSkoKwsDAMGDAAn3zyiZ8qJSIiCh0XHFFYY7kROZoJcAieM8G0FSdhsxlkqqxlAR1+NmzYgEWLFuGVV15Bbm4uJk2ahBkzZqC4uLjR8wsKCnDbbbdh0qRJyM3Nxcsvv4ynn34amzZt8nPlREREwU+EgF3mZPxTnIZSTZL7uNrpgKN4v3yFtUCQAngt6muuuQYTJkzAxx9/7D42fPhwzJ49G8uXL29w/osvvoitW7ciPz/ffWzBggU4cuQI9u3b59V7GgwGxMTEQK/XIzo6uv0f4meyi2qQebrKp9ckIiIKFKPCKnG9lINwVz1cggL2cfchPNb73eHbozXf3wHb8mO325GdnY2pU6d6HJ86dSr27t3b6Gv27dvX4Pxp06bh8OHDcDgcHVYrERERAcet3bHGfguOacfBpdBAdfIr2PWBN/hZJXcBTamqqoLL5UJCgueS2gkJCSgvL2/0NeXl5Y2e73Q6UVVVhcTExAavsdlssNls7sd6vR7ApQTpawqHBd21Lp9fl4iIKJAccSbhuNAPAxQ1iM/PhrarDtro7lBpukCpUgOC75d+ufy97U2HVsCGn8uEK26QJEkNjrV0fmPHL1u+fDmWLl3a4Hjfvn1bWyoRERHJzGg0IiYmptlzAjb8xMfHQ6lUNmjlqaioaNC6c1nPnj0bPV+lUiEuruF0PABYsmQJFi9e7H4siiJqamoQFxfXbMhqLYPBgL59+6KkpMTnY4noJ7zP/sN77R+8z/7B++wfHXmfJUmC0WhEr169Wjw3YMOPRqNBSkoK0tPTceedd7qPp6enY9asWY2+Ji0tDV9//bXHsR07diA1NRVqdeMbsmm1Wmi1nttOxMbGtq/4ZkRHR/N/LD/gffYf3mv/4H32D95n/+io+9xSi89lATvgGQAWL16Mzz77DKtXr0Z+fj6eeeYZFBcXY8GCBQAutdrMnTvXff6CBQtQVFSExYsXIz8/H6tXr8aqVavw3HPPyfURiIiIKMAEbMsPAMyZMwfV1dVYtmwZdDodRo0ahW3btqF///4AAJ1O57HmT3JyMrZt24ZnnnkGf/3rX9GrVy/85S9/wd133y3XRyAiIqIAE9DhBwCeeOIJPPHEE40+9/nnnzc4duONNyInJ6eDq2o9rVaL1157rUEXG/kW77P/8F77B++zf/A++0eg3OeAXuSQiIiIyNcCeswPERERka8x/BAREVFIYfghIiKikMLw4ycfffQRkpOTERYWhpSUFGRlZcldUqeSmZmJmTNnolevXhAEAV999ZXH85Ik4Q9/+AN69eqF8PBwTJ48GSdOnPA4x2az4amnnkJ8fDy6dOmCO+64AxcuXPDjpwhsy5cvx1VXXYWoqCj06NEDs2fPxqlTpzzO4X32jY8//hhjxoxxr3WSlpaG//znP+7neZ87xvLlyyEIAhYtWuQ+xnvdfn/4wx8gCILHT8+ePd3PB+Q9lqjDrV+/XlKr1dLf//536eTJk9LChQulLl26SEVFRXKX1mls27ZNeuWVV6RNmzZJAKQtW7Z4PP/WW29JUVFR0qZNm6Rjx45Jc+bMkRITEyWDweA+Z8GCBVLv3r2l9PR0KScnR5oyZYo0duxYyel0+vnTBKZp06ZJa9askY4fPy7l5eVJt99+u9SvXz+pvr7efQ7vs29s3bpV+uabb6RTp05Jp06dkl5++WVJrVZLx48flySJ97kjHDx4UEpKSpLGjBkjLVy40H2c97r9XnvtNWnkyJGSTqdz/1RUVLifD8R7zPDjB1dffbW0YMECj2PDhg2TXnrpJZkq6tyuDD+iKEo9e/aU3nrrLfcxq9UqxcTESJ988okkSZJUV1cnqdVqaf369e5zSktLJYVCIX377bd+q70zqaiokABIu3btkiSJ97mjde3aVfrss894nzuA0WiUBg8eLKWnp0s33nijO/zwXvvGa6+9Jo0dO7bR5wL1HrPbq4PZ7XZkZ2dj6tSpHsenTp2KvXv3ylRVcCkoKEB5ebnHPdZqtbjxxhvd9zg7OxsOh8PjnF69emHUqFH8c2iCXq8HAHTr1g0A73NHcblcWL9+PUwmE9LS0nifO8Bvf/tb3H777bjllls8jvNe+86ZM2fQq1cvJCcn41e/+hXOnz8PIHDvccAvctjZVVVVweVyNdiMNSEhocEmrNQ2l+9jY/e4qKjIfY5Go0HXrl0bnMM/h4YkScLixYtx/fXXY9SoUQB4n33t2LFjSEtLg9VqRWRkJLZs2YIRI0a4/7HnffaN9evXIycnB4cOHWrwHP9O+8Y111yDL774AkOGDMHFixfxxhtvYOLEiThx4kTA3mOGHz+5cod4SZJ8ums8te0e88+hcU8++SSOHj2K3bt3N3iO99k3hg4diry8PNTV1WHTpk2YN28edu3a5X6e97n9SkpKsHDhQuzYsQNhYWFNnsd73T4zZsxw//fo0aORlpaGgQMH4h//+AeuvfZaAIF3j9nt1cHi4+OhVCobpNeKiooGSZja5vKsgubucc+ePWG321FbW9vkOXTJU089ha1bt2Lnzp3o06eP+zjvs29pNBoMGjQIqampWL58OcaOHYv333+f99mHsrOzUVFRgZSUFKhUKqhUKuzatQt/+ctfoFKp3PeK99q3unTpgtGjR+PMmTMB+/eZ4aeDaTQapKSkID093eN4eno6Jk6cKFNVwSU5ORk9e/b0uMd2ux27du1y3+OUlBSo1WqPc3Q6HY4fP84/h/+SJAlPPvkkNm/ejB9++AHJyckez/M+dyxJkmCz2Xiffejmm2/GsWPHkJeX5/5JTU3FAw88gLy8PAwYMID3ugPYbDbk5+cjMTExcP8+d8gwavJwear7qlWrpJMnT0qLFi2SunTpIhUWFspdWqdhNBql3NxcKTc3VwIgrVixQsrNzXUvF/DWW29JMTEx0ubNm6Vjx45J9913X6NTKfv06SN99913Uk5OjnTTTTdxuurP/OY3v5FiYmKkjIwMjymrZrPZfQ7vs28sWbJEyszMlAoKCqSjR49KL7/8sqRQKKQdO3ZIksT73JF+PttLknivfeHZZ5+VMjIypPPnz0v79++XfvGLX0hRUVHu77hAvMcMP37y17/+Verfv7+k0WikCRMmuKcPk3d27twpAWjwM2/ePEmSLk2nfO2116SePXtKWq1WuuGGG6Rjx455XMNisUhPPvmk1K1bNyk8PFz6xS9+IRUXF8vwaQJTY/cXgLRmzRr3ObzPvvHwww+7/z3o3r27dPPNN7uDjyTxPnekK8MP73X7XV63R61WS7169ZLuuusu6cSJE+7nA/Eec1d3IiIiCikc80NEREQhheGHiIiIQgrDDxEREYUUhh8iIiIKKQw/REREFFIYfoiIiCikMPwQERFRSGH4ISIiopDC8ENEREQhheGHiALeH/7wB4wbN0629//973+Pxx9/3Ktzn3vuOTz99NMdXBERtQe3tyAiWQmC0Ozz8+bNw4cffgibzYa4uDg/VfWTixcvYvDgwTh69CiSkpJaPL+iogIDBw7E0aNHkZyc3PEFElGrMfwQkazKy8vd/71hwwa8+uqrOHXqlPtYeHg4YmJi5CgNAPDmm29i165d2L59u9evufvuuzFo0CD86U9/6sDKiKit2O1FRLLq2bOn+ycmJgaCIDQ4dmW31/z58zF79my8+eabSEhIQGxsLJYuXQqn04nnn38e3bp1Q58+fbB69WqP9yotLcWcOXPQtWtXxMXFYdasWSgsLGy2vvXr1+OOO+7wOPbll19i9OjRCA8PR1xcHG655RaYTCb383fccQfWrVvX7ntDRB2D4YeIOqUffvgBZWVlyMzMxIoVK/CHP/wBv/jFL9C1a1ccOHAACxYswIIFC1BSUgIAMJvNmDJlCiIjI5GZmYndu3cjMjIS06dPh91ub/Q9amtrcfz4caSmprqP6XQ63HfffXj44YeRn5+PjIwM3HXXXfh5I/rVV1+NkpISFBUVdexNIKI2Yfghok6pW7du+Mtf/oKhQ4fi4YcfxtChQ2E2m/Hyyy9j8ODBWLJkCTQaDfbs2QPgUguOQqHAZ599htGjR2P48OFYs2YNiouLkZGR0eh7FBUVQZIk9OrVy31Mp9PB6XTirrvuQlJSEkaPHo0nnngCkZGR7nN69+4NAC22KhGRPFRyF0BE1BYjR46EQvHT728JCQkYNWqU+7FSqURcXBwqKioAANnZ2Th79iyioqI8rmO1WnHu3LlG38NisQAAwsLC3MfGjh2Lm2++GaNHj8a0adMwdepU3HPPPejatav7nPDwcACXWpuIKPAw/BBRp6RWqz0eC4LQ6DFRFAEAoigiJSUFa9eubXCt7t27N/oe8fHxAC51f10+R6lUIj09HXv37sWOHTvwwQcf4JVXXsGBAwfcs7tqamqavS4RyYvdXkQUEiZMmIAzZ86gR48eGDRokMdPU7PJBg4ciOjoaJw8edLjuCAIuO6667B06VLk5uZCo9Fgy5Yt7uePHz8OtVqNkSNHduhnIqK2YfghopDwwAMPID4+HrNmzUJWVhYKCgqwa9cuLFy4EBcuXGj0NQqFArfccgt2797tPnbgwAG8+eabOHz4MIqLi7F582ZUVlZi+PDh7nOysrIwadIkd/cXEQUWhh8iCgkRERHIzMxEv379cNddd2H48OF4+OGHYbFYEB0d3eTrHn/8caxfv97dfRYdHY3MzEzcdtttGDJkCH73u9/h3XffxYwZM9yvWbduHR577LEO/0xE1DZc5JCIqBmSJOHaa6/FokWLcN9997V4/jfffIPnn38eR48ehUrFYZVEgYgtP0REzRAEAZ9++imcTqdX55tMJqxZs4bBhyiAseWHiIiIQgpbfoiIiCikMPwQERFRSGH4ISIiopDC8ENEREQhheGHiIiIQgrDDxEREYUUhh8iIiIKKQw/REREFFIYfoiIiCik/H+EOg/fBjDgjwAAAABJRU5ErkJggg==", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.stackplot(\n", - " t,\n", - " total_trapped_H1.data,\n", - " total_trapped_H2.data,\n", - " total_mobile_H.data,\n", - " labels=[\"trapped H1\", \"trapped H2\", \"mobile H\"],\n", - " alpha=0.5,\n", - ")\n", - "plt.legend(reverse=True)\n", - "plt.ylabel(r\"Inventory (m$^{-2}$)\")\n", - "plt.xlabel(r\"Time (s)\")\n", - "plt.show()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "festim-workshop", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.13.5" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/book/content/applications/task03.ipynb b/book/content/applications/task03.ipynb deleted file mode 100644 index 41242b17..00000000 --- a/book/content/applications/task03.ipynb +++ /dev/null @@ -1,325 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Simple permeation simulation\n", - "\n", - "In this task, we'll go through the basics of FESTIM and run a simple permeation simulation on a 1D domain." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import festim as F" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The first step is to create a model using a `Simulation` object." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "my_model = F.HydrogenTransportProblem()\n", - "\n", - "H = F.Species(\"H\")\n", - "my_model.species = [H]" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We'll consider a 3 mm-thick material and a regular mesh (1000 cells)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "my_model.mesh = F.Mesh1D(vertices=np.linspace(0, 3e-4, num=1001))" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "`Material` objects hold the materials properties like diffusivity and solubility.\n", - "\n", - "Here we only need the diffusivity defined as an Arrhenius law: $D = D_0 \\exp{(-E_D/k_B T)}$ where $k_B$ is the Boltzmann constant in eV/K and $T$ is the temperature in K. From this, the pre-exponential coefficient, $D_0$ in units m2/s, and the diffusion actiavtion energy, $E_D$ in units eV are needed.`" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "material = F.Material(D_0=1.9e-7, E_D=0.2)\n", - "\n", - "volume_subdomain = F.VolumeSubdomain1D(id=1, borders=(0, 3e-4), material=material)\n", - "left_boundary = F.SurfaceSubdomain1D(id=1, x=0)\n", - "right_boundary = F.SurfaceSubdomain1D(id=2, x=3e-4)\n", - "\n", - "my_model.subdomains = [volume_subdomain, left_boundary, right_boundary]" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The temperature is set at 500 K" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "my_model.temperature = 500" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "FESTIM has a `SievertsBC` class representing Sievert's law of solubility: $c = S \\ \\sqrt{P}$ at metal surfaces.\n", - "\n", - "> Note:\n", - "> \n", - "> A similar class exists for non-metallic materials behaving according to Henry's law: `HenrysBC`\n", - "\n", - "We'll use this boundary condition on the left surface (`id=1`) and will assume a zero concentration on the right side (`id=2`)." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "P_up = 100 # Pa\n", - "\n", - "my_model.boundary_conditions = [\n", - " F.SievertsBC(subdomain=left_boundary, S_0=4.02e21, E_S=1.04, pressure=P_up, species=H),\n", - " F.FixedConcentrationBC(subdomain=right_boundary, value=0, species=H),\n", - "]" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "With `Settings` we set the main solver parameters." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "my_model.settings = F.Settings(atol=1e-2, rtol=1e-10, final_time=100) # s" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's choose a stepsize small enough to have good temporal resolution:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "my_model.settings.stepsize = F.Stepsize(1 / 20)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For this permeation experiment, we are only interested in the hydrogen flux on the right side:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "permeation_flux = F.SurfaceFlux(field=H, surface=right_boundary)\n", - "\n", - "my_model.exports = [permeation_flux]" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/100 [00:00, ?it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Solving HydrogenTransportProblem: 100%|██████████| 100/100 [00:13<00:00, 7.28it/s] \n" - ] - } - ], - "source": [ - "my_model.initialise()\n", - "\n", - "my_model.run()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This problem can be solved analytically. The solution for the downstream flux is:\n", - "\n", - "$$\\mathrm{downstream \\ flux} = \\frac{P_\\mathrm{up} \\Phi}{L} \\left(1 + 2 \\sum_{n=1}^{\\infty} \\left(-1\\right)^{n} \\exp{(- \\frac{\\pi^{2} D n^{2} t}{L^{2}})}\\right) $$" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "def downstream_flux(t, P_up, permeability, L, D):\n", - " \"\"\"calculates the downstream H flux at a given time t\n", - "\n", - " Args:\n", - " t (float, np.array): the time\n", - " P_up (float): upstream partial pressure of H\n", - " permeability (float): material permeability\n", - " L (float): material thickness\n", - " D (float): diffusivity of H in the material\n", - "\n", - " Returns:\n", - " float, np.array: the downstream flux of H\n", - " \"\"\"\n", - " n_array = np.arange(1, 10000)[:, np.newaxis]\n", - " summation = np.sum(\n", - " (-1) ** n_array * np.exp(-((np.pi * n_array) ** 2) * D / L**2 * t), axis=0\n", - " )\n", - " return P_up**0.5 * permeability / L * (2 * summation + 1)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can compare the computed downstream flux to the analytical solution:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHACAYAAACMB0PKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYMBJREFUeJzt3XecVPW9//HXOWfa9r4LC0sHQUBFMcYuFiKWWGKiRmOL914ToyjGWBM1MaLJjT9TLNEkGm9sscbrTYyQgARjo0lVpHeW3YXtOzPnnO/vj1lWlro7DGx7Px+Pecic852znz0hnM98y+drGWMMIiIiIp2Q3dEBiIiIiOyJEhURERHptJSoiIiISKelREVEREQ6LSUqIiIi0mkpUREREZFOS4mKiIiIdFpKVERERKTTUqIiIiIinZYSFREREem0uk2iMmPGDM4991xKS0uxLIs33nij3dcwxvDf//3fDBs2jHA4TFlZGQ888EDqgxUREZE2CXR0AKlSX1/P4YcfztVXX83Xvva1pK4xceJE3nnnHf77v/+b0aNHU11dTUVFRYojFRERkbayuuOmhJZl8frrr3P++ee3HIvFYtx9990899xzbNu2jVGjRvHQQw9xyimnALBkyRIOO+wwFi5cyCGHHNIxgYuIiEgr3WboZ1+uvvpq3nvvPV588UXmz5/P17/+dc4880w+//xzAP73f/+XQYMG8dZbbzFw4EAGDBjAtddeS1VVVQdHLiIi0nP1iERl+fLlvPDCC7z88suceOKJDB48mO9///uccMIJPP300wCsWLGC1atX8/LLL/Pss8/yzDPPMHv2bC666KIOjl5ERKTn6jZzVPZmzpw5GGMYNmxYq+PRaJSCggIAfN8nGo3y7LPPtrT7/e9/z1FHHcVnn32m4SAREZEO0CMSFd/3cRyH2bNn4zhOq3OZmZkA9O7dm0Ag0CqZGTFiBABr1qxRoiIiItIBekSiMmbMGDzPo7y8nBNPPHG3bY4//nhc12X58uUMHjwYgKVLlwLQv3//gxariIiIfKHbrPqpq6tj2bJlQCIxefjhhxk3bhz5+fn069ePyy+/nPfee49f/OIXjBkzhoqKCv75z38yevRozjrrLHzf5+ijjyYzM5NHHnkE3/e5/vrryc7O5p133ung305ERKRn6jaJyvTp0xk3btwux6+88kqeeeYZ4vE4999/P88++yzr16+noKCAY489lvvuu4/Ro0cDsGHDBm644QbeeecdMjIymDBhAr/4xS/Iz88/2L+OiIiI0I0SFREREel+esTyZBEREemalKiIiIhIp9WlV/34vs+GDRvIysrCsqyODkdERETawBhDbW0tpaWl2Pbe+0y6dKKyYcMGysrKOjoMERERScLatWvp27fvXtt06UQlKysLSPyi2dnZHRyNiIiItEVNTQ1lZWUtz/G96dKJyvbhnuzsbCUqIiIiXUxbpm1oMq2IiIh0WkpUREREpNNSoiIiIiKdlhIVERER6bSUqIiIiEinpURFREREOi0lKiIiItJpKVERERGRTkuJioiIiHRaSlRERESk0+rSJfRFuirf99m4rYFP1lSxaGMN1Q0xLGOwLAvX8zGABRjAtixsi92ea0ubZM919Oe76rU7c2z6vfV7t+fawUCA4pwIh/fNZXTfXHLSw20qeZ9qSlRE2iEej/Pxqkrmra5i7dYmLOO3+x+E+qjHp+X1rKlqoC7ekb+NiMi+RQIwpDiTy44dwFmjSslJCx7Un69ERXo8YwzVDVHmr6nik7Xb2FzThOf7uyQaG6sbWbi5nso6D9OxIYuIHDRNLizZWMfj05bTEHW56Kh+BzVZUaIiPYbruixYt5WPVlSyrqoR1/eIuz6rtzayvKKOqsaOjjA1LHwC+Nj4OC0vD2fnY1bivQVYmB1e7OXPO7f/4s80/9ne8ZzV+tzuPrNr/Hv73faWIu75XLLX3Pu5g3vNvf1+IgfSJpPPQjOEitoo0z4t56iyPA7vl3fQhoE6NFFxXZd7772X5557jk2bNtG7d2+uuuoq7r77bmxb83wlOTvP/9hWH2VTdSOLNtazpc7FO2A/2ZBJI9k0kG41kU6UdCtKGtHmPze1/DnNSvw3TJwQcYKWS4jEK4jbfMxrPhZvPua2tPsi8TAE8FoSkIDlH7DfTkR6pr94x3FT/Hu4ns/arQ3MW7eNIb2yyQwfnBSiQxOVhx56iCeeeII//vGPjBw5klmzZnH11VeTk5PDxIkTOzI06UI8z2PZ5ho+WlnJwvXVLFpfy6qq+v2c/2HIpoEiaxuF1FBoVSf+bFWTTy3ZVj051JNtNZBDPTlWPdnU41id+1uvZ6zmtMbGxWnpH/F36OMwu/SRJP6cSIvYoV8EjGn9GX/Hc/u4pr+X/oO995vs7XPJXXNvfRnJXvPAxCly8K00vQAwBlzXUNvk4noH70tRhyYq77//Pueddx5nn302AAMGDOCFF15g1qxZHRmWdHLGGLbVN/Hxikqmf1bOzGVb2VTdRKwd17DwKaWSMnsLfa0t9KGCvtYW+lqJ/xZb2whbyWU6UROgnggNRGg0YRoI00iYRhNq/nOEhubjUUJETYA4AWIEiRMgjkPUBJuPfXEu1twuTgC3VbJh4xl7hwQk8V8Pe7dJiYhIeyWGciEQsMiKBAg4B2/Uo0MTlRNOOIEnnniCpUuXMmzYMD755BNmzpzJI488stv20WiUaDTa8r6mpuYgRSodbftwzvvLtvD6J+tZsK6amui+PweG/tZmRlhrGGKtZ4i9nqHWegZZG0mz9p3a1Jg0tphcKshhi8lhi8mlymRRTQY1JoNqMqg2GdSQ3vzfDKKE9vv3FRHpTGwg4NiU5aVzRN9cMkLOQfvZHZqo3HbbbVRXVzN8+HAcx8HzPH76059y6aWX7rb95MmTue+++w5ylNJRtq/G+cfijfz543Us3FBDvbv3z5RQxZH25xxmr2C0tYLR9kpyrIbdto0Zh/WmkHWmaIdXIetNIZsoYIvJUdIhIgJgQWFWmHHDixlYnHVQ66l0aKLy0ksv8ac//Ynnn3+ekSNHMm/ePG666SZKS0u58sord2l/xx13MGnSpJb3NTU1lJWVHcyQ5SDwPI9P1m7l+Q9WMeWzzVTvZTVOMVv5sr24+bWEQfamXdpETZBPTRnLTB+W+X1YZkpZZvqwxhTjcfC+FYiIdEWRAAxtrqMyoQPqqFjGmA6bu1VWVsbtt9/O9ddf33Ls/vvv509/+hOffvrpPj9fU1NDTk4O1dXVZGdnH8hQ5SDwPI8pizbyxLsrWLi+lt13nhhGWSs5w5nDafYcRtmrWl/DWCwx/fnEH8x8M4gF/kCWmr64nXglvgP0yXIY2TeLosy0LlW5sqvGpt9bv7d+746tTNue53eH/uvd0NCwyzJkx3HwfS2x7Ek8z+OdhRv45T+W8Wn57oZpDIdaqznfeY9znffpbVW1nPGNxUIzgA/8Q3nfP5RZ/iHUkn5Q4i7OsBjVK5OSnPR2/4PgG8hMCzGkOJPD+uYyuDgLx1HvjojIzjo0UTn33HP56U9/Sr9+/Rg5ciRz587l4Ycf5pprrunIsOQg8X2fGZ9t5qG3P2XJ5l0TlDxq+LrzLhc6Mxlur205Xm/CzPAPY6p3FNP8I6gidb1pDtAr02Jkn2wKMyK7JBrhUJABhekc1jeXUX1yCQQ6b0+NiEh30KFDP7W1tfzwhz/k9ddfp7y8nNLSUi699FJ+9KMfEQrtexKjhn66JmMMi9dv5cdvLuLDNbuu3BppreJK5+981fk3keYlwlETZKo/hje8E5jhH7bfk1wL02F0ryx656aDZZERCTGgMJ2jB+QzuDhbvRsiIgdQe57fHZqo7C8lKl1PVW0jD729hFdnb9xlDsqX7cXc6LzGcc7ilmPz/YE8753GX71jqCGj3T/PAUozbUb0yaJ3bhZ989M4ekC+ekNERDpQl5mjIj2HMYb/+2QtP35zEeUNrecgfdlezE2BV/myvQSAuHH4q38Mf3THM8cMpT1FyjJtGFqaydH98xnWK0vzP0REujglKnLAVdU2cvcb8/nroopWxwdYG7kr8BxnOHOAREXXl7xxPO5+lY0UtPn6/XKCnDiskFMOKWHsgHxyMyIHdY2/iIgcOEpU5ID6x6IN3PnqJ2zeoRclnSZuDLzGNc7fCFkecePwgncqj7lfZVMbEhQHGN4rnTNH9eYrI0s0p0REpBtToiIHhDGGJ6Z9xi/eWd5qLspx9kIeCjxFmb0FgOne4fzEvZzlps8+r1maHeKCMb259Ev9Kc3L0A7bIiI9gBIVSblt9VHufeMT3liwpeVYOk3cFXiOywL/AGCdKeSH8auZ5o/Z67VCwJEDs7j6+MGcNrxEE2BFRHoY/asvKbVo/TbufmUOczd+Ufd+qLWOx4OPMMTeAMCz7hk85F5CPWl7vE6aBeNHlfCdcYMZ1itHvSciIj2UEhVJmQ+WlXPLS3NYX+u1HPuaPYP7g38gzYqx2eRyU/x63vdH7vEaIeCMkQX84MxD6Vd4cDe+EhGRzkeJiqTE1IXr+cGf51EVS7y38bkr8BzfDvwNgBneaG6Of5dKcvZ4jWP6Z/PDcw9lZJ98JSgiIgIoUZEUeHPuGu56dQG1zbNm02niV8Ffc7ozF4CH4xfxa+98DLsfvhlSmMadZw3nlOG9NMQjIiKtKFGR/TJlwTrueu2LJCWPGp4NPchoexVNJsik+Hf4q//l3X42DHz7xP7ccuYILS8WEZHdUqIiSZuycD3ff/kTahPb8VDEVp4LPcAwez0VJptrY99nnhmy288OzAtx/4WjOX5or4MYsYiIdDVKVCQp/1i8gR+8Mo/q5jkpvankudBPGWRvYqPJ57LYnawwpbv97Dmj8vnx+WPIz4wcxIhFRKQrUqIi7bZgXRX3/GUhW5sS7wuobklS1vpFfDN+J2tNyS6fs4Hvnz6I75w2XJNlRUSkTZSoSLtsrY9y//8uZl11Yrwnkwb+GHqIQfYm1plCvhH70W736cly4McXHMoFYwce7JBFRKQLU6IibWaM4Wd/W8SHq6sBCBPjd6FfMMpeRYXJ5vLYHbtNUgozLB688HBOH7nvMvkiIiI7UqIibfbMvz7npVkbm98ZHgw+xZftJdSYNK6M3c4q03uXz/TLDfCbb47lsH5t3w1ZRERkOyUq0iZTFq3n4Smfs30P5P9y3uIC5z1cY3Nd/GYWmQG7fKZfboBHLzua0WX5BzVWERHpPlRdS/ZpVUUtk//v05ZlyOPsudwWeBGAe90r+bc/apfP9Mq0+dnXj1SSIiIi+0WJiuyV7/s8+H+LWFGVWOLT19rCL4OPYluG59zT+JN3+i6fKUy3+X+XHMWXBxcd7HBFRKSbUaIie/W7dz/nnSWVAARw+VXw12RbDczxh3CveyXQeplxVgB+dckYjh1S3AHRiohId6NERfbo38s28+t3l7XMS5kUeIUj7WXUmHRujN9AfKcpTiHg/gtGctwwVZsVEZHUUKIiu1VV18TP315KbXNRt2PtRXw38CYAt8X/g3Vm12Gdm8cP4byjBhzEKEVEpLtToiK7MMbw7AerWLCuBkjshvxQ4EkAnndP5W/+Mbt85pKjSrhu3LCDGqeIiHR/SlRkF59uqubPH66jeUNkbg28RD97C+tMIT91L9ul/aEladw2YZTK4ouISMopUZFWfN/nyXeXs6E2CsDR1qdcHfg7ALfH/4N60lq1zw7Bj84dRZ42GBQRkQNAiYq0MmNpOVOXbAIgiMuDwacAeNE9hZn+6F3af+/UoXxZK3xEROQAUaIiLbbWR3li2jKaO1O42vkbg+2NbDE5PLCbIZ8zhuVz7UlDDnKUIiLSkyhRESAxgfYvc9cyf11iw8FitnJj4HUAHnIvoYaMVu17pdtMmjAC29ZfIREROXD0lBEA1m9t4M+z1tPgJd7fHnyBTKuJOf4QXvVObNXWBr553ECG98o5+IGKiEiPokRFMMbw51lrWLqpDoAjraVc6MzENxb3xK/C7PTXZFTvDL715QFa5SMiIgecEhXh003VvD5nffNyZMNtwcSGg694J7HADGrVNt2G744bqlU+IiJyUChR6eF83+eZ91ayYVtiBu3J9nyOsT8laoL8P/eiXdqfemgR40f1PthhiohID9WhicqAAYnhg51f119/fUeG1aPMXVvFu59twQMsfG4NvATA/3ins5GCVm0L02yuOWGwJtCKiMhBE9h3kwPn448/xvO8lvcLFy7kjDPO4Otf/3oHRtVz+L7PKx+vo6I2DsBZ9keMsldRa9J4zD2vVVsLOGNkb47ol9cBkYqISE/VoYlKUVHrje0efPBBBg8ezMknn9xBEfUsyzbX8v6KSlwSvSk3BV4F4HfuWVSR3aptv9wwVxw/QL0pIiJyUHWap04sFuNPf/oT11xzjVaTHATGGN6av4ENVYntkcfbsxlqr6fGpPMHb0KrtmEbvvnl/lqOLCIiB12H9qjs6I033mDbtm1cddVVe2wTjUaJRqMt72tqag5CZN3T+q0NTF1STgwAw3cDfwHgj954aklv1XZMWTYXH91PCaSIiBx0naZH5fe//z0TJkygtLR0j20mT55MTk5Oy6usrOwgRth9GGOYumQTaysTdVOOtxdyuL2CRhPiaffMVm3TA3DFcQPJzQh3RKgiItLDdYpEZfXq1UydOpVrr712r+3uuOMOqqurW15r1649SBF2L7VNcf6+aDP1iTm0fNd5E4AXvXG7zE05om8OJwzTpoMiItIxOsXQz9NPP01xcTFnn332XtuFw2HCYX2z319z1lSxZMNWfGC0tYLjnUXEjcNTbuv7nxmAr4wqJSsS7JhARUSkx+vwHhXf93n66ae58sorCQQ6Rd7Urfm+zyuz1lGdmEPLVYG3Afhf/1g2UNiqbb+iLE4bWaK5KSIi0mE6PFGZOnUqa9as4ZprrunoUHqEuWur+GhVJQYooJpz7A8A+KM7vlW7kAXjDy2iT276bq4iIiJycHR4F8b48eMxxnR0GD3C9gJvVbWJXX0ucaYRtlzm+YP5xAxp1bZXdpizRpeqN0VERDpUh/eoyMGzbHMtH66swgccPC4PTAXgGfcrrdoFgBMOKWRIcdbBD1JERGQHSlR6CGMM7y2vZEttIwBfsWfR26pii8nmr/4xrdoWZAa56MgyVaEVEZEOpydRD1EXdXl/+RYaYuADlztTAHjBO5UYX6zqsYAvDyrQnj4iItIpKFHpIZZs3Mb89dX4wABrM8c5i/GNxYvuqa3a5UQsLjyyj3pTRESkU9DTqAfwfZ+/zt9EdX0cC7jAmQHATH9Uy5Jkm0Rvysg+OYzpn99hsYqIiOxIiUoPsKy8jg9XVBLzwcbnouZE5c/eKUDiL4EBMoNw+vDeKvAmIiKdhhKVbs4Yw78+L2fjtgYs4AR7EX2sSqpNOlP8o1raWUBZYRYnDCvUkmQREek0OryOihxYtU1x3l9WSUPcYAFfc6YD8BfveGKEsEhkq0EHvjwwl8FFmR0XrIiIyE6UqHRzSzfXsmxzYpfkDBoYb88C4BXv5JYkxQfyMkKcOapUk2hFRKRT0VOpGzPGsGBtNVsbYxgfzrBmEbbiLPX7sMAMxCIxN8UCDu+bx4jSnA6OWEREpDUlKt1YXdRl3toqmuI+vgXnBv4NwFvesVhYLUlKehiOG5JPZlgdbCIi0rkoUenG1lbWs3BjDb6BfFPDcdZCAN7yj8Wxvxj26ZWdwVH98zWJVkREOh19he6mjDHMXL6FytootgUT7A8JWD4L/IGsNL2xDdgWhGwY1SebsoKMjg5ZRERkF+pR6aZqm+J8vGIrTXEfLDjHeR+A//WObZmbYgM5aUGOGVigYR8REemU9HTqppZurmV582qfYlPJWOszAP7qHYvTnKn4QK+cNI4akKdhHxER6ZSUqHRD21f7VDZEMT6cbs/Ctgyz/GFspADLIpGsWDCmLEe1U0REpNPS0E83tH21T9RNDPuMdxK1U6b4R2MBlp/oTUkPOxw7uEC1U0REpNPSE6obWltZz5KNtfgGcu06jraWADDVOwrHge2TVPrnZXCoaqeIiEgnpqGfbsYYw6zV26hsiBG04UQzl4Dl85lfxmrTC9tA0AbLhkN6Z5GbEe7okEVERPZIPSrdTF3UZfHGbcRcH9/AGc3DPu/4YzEW+Cax4icrEmJMWZ5W+4iISKemRKWb2dYQY1l5Pb5nCFkxTrTmAzDNjCXYPOTjGSjNjWi1j4iIdHpKVLqZVRX1bNzagOPA8dYC0q0oG0wBi8wALMsiGEgUejtcq31ERKQLUL9/N2KMYdnmOhriPgY4xZoDwFT/KAwWWAbHglDI4ej++VrtIyIinZ6eVN1IXdRl0cZtxOIecc/nROsTAP5ljsBqnp9iYdEnL53BxVkdHK2IiMi+JdWjsmrVKv71r3+xatUqGhoaKCoqYsyYMRx77LFEIpFUxyhttLaynsXra7AswzCzjt5WFU0myCxzKEHHBmPAgqHFWfTOTevocEVERPapXYnK888/z69+9Ss++ugjiouL6dOnD2lpaVRVVbF8+XIikQiXXXYZt912G/379z9QMctubF+WXFUfIxyyOTGemET7kTmUKCEsDI5t4TgWI3pnkxUJdnDEIiIi+9bmROXII4/Etm2uuuoq/vznP9OvX79W56PRKO+//z4vvvgiY8eO5bHHHuPrX/96ygOW3du+LLnR9fF9w4nWPAD+ZQ7Dx8L2wViG/KwIh5flaLWPiIh0CW1OVH7yk59w9tln7/F8OBzmlFNO4ZRTTuH+++9n5cqVKQlQ2mZdVQOfbajFdX0iNHGU8ykAM80R2DbYWFg2DCrKoF9+RgdHKyIi0jZtTlT2lqTsrLCwkMLCwqQCkvYzxjB/XTWba5sIBODL3kKClscaU8waemNZFo5tYVuGEb2yKc5SNVoREekaklr1M2fOHBYsWNDy/i9/+Qvnn38+d955J7FYLGXBSdvURV0+3VRDzDM4tsOJdmJ+ykxzOMYAxsd1PdJDQcYOyNOyZBER6TKSemL913/9F0uXLgVgxYoVXHLJJaSnp/Pyyy/zgx/8IKUByr5VN8TZsLURC4PnG46zdkhUsPB8C9uyGFSUwSAVeRMRkS4kqURl6dKlHHHEEQC8/PLLnHTSSTz//PM888wzvPrqq6mMT9qgIeqysbqRqOeRH99MPzbjGptZDCcQtAgFLAIBm6HFmeSkhzo6XBERkTZLKlExxuD7PgBTp07lrLPOAqCsrIyKiorURSdtsrG6gU21jbiu4VhnCQCLGEStnw4+idL5tsPwkmxtQigiIl1KUonK2LFjuf/++/mf//kf3n333ZaJtitXrqSkpKRd11q/fj2XX345BQUFpKenc8QRRzB79uxkwuqRfN9n9qptxOKGgONwjLUIgA/NoQDEPB9jDLkZQQaXZGpZsoiIdClJfb1+5JFHuOyyy3jjjTe46667GDJkCACvvPIKxx13XJuvs3XrVo4//njGjRvH3/72N4qLi1m+fDm5ubnJhNUjlddGWbSxGgCDx5dIJCofmZHYjo1lDLZl0b8gnZJsVQ0WEZGupV2JytKlSxk2bBiHHXZYq1U/2/385z/HcZw2X++hhx6irKyMp59+uuXYgAED2hNSj7emsp41VQ3YFvRhC72pJG4cPrGGEwxYOIDBok9umuaniIhIl9OuoZ8xY8YwYsQIbrvtNt5///1dzkciEYLBtpdmf/PNNxk7dixf//rXKS4uZsyYMTz11FN7bB+NRqmpqWn16smMMXy6qY7aRpdAAI5hIQCfMIyoFcEYcGybcMBhSHGm5qeIiEiX065EpbKykp/97GdUVlZywQUXUFJSwre//W3efPNNmpqa2v3DV6xYweOPP87QoUP5+9//znXXXceNN97Is88+u9v2kydPJicnp+VVVlbW7p/ZndRFXdZVNWAscD2LL1mLAfiIkYkGPkRdQ0FmiCP75Wl+ioiIdDmWMcYk80FjDO+//z5vvvkmb775JqtXr+b000/nvPPO45xzzqG4uHif1wiFQowdO5Z///vfLcduvPFGPv7449322ESjUaLRaMv7mpoaysrKqK6uJjs7O5lfo0tbV9XAg39bwiert1ITc/mH+U8KrWqu9u9hFiPwjSHg2Jx9WG/uOOtQbUQoIiKdQk1NDTk5OW16fiddotSyLI477jgefPBBFi9ezLx58zjppJN45plnKCsr49FHH93nNXr37s2hhx7a6tiIESNYs2bNbtuHw2Gys7NbvXqyhqjLpppGjAX9WU+hVU2TCTLfGoJlWwRsiARsjuibq2EfERHpklL29Bo6dCi33HILt9xyC5WVlVRVVe3zM8cffzyfffZZq2NLly6lf//+qQqrW6tpilFRFyPm+RzjfA4eLLSG4BEkErQxPqSHAgwu0rJkERHpmpLqUdle7G1nxhjWrFlDQUEBQ4cO3ed1br75Zj744AMeeOABli1bxvPPP8+TTz7J9ddfn0xYPYoxhuVbGojFfXwMo/3EbsnzOQTLsnB9QyjgUJQVIjOi3hQREema2pWo1NTU8I1vfIOMjAxKSkq455578Dyv5Xx5eTkDBw5s8/WOPvpoXn/9dV544QVGjRrFT37yk5YaLbJ3dVGXFVvqsS3wDRxuEonKXIZjWRaWMQRsi5LsNDI07CMiIl1Uu55gP/zhD/nkk0/4n//5H7Zt28b999/P7Nmzee211wiFEjU62js395xzzuGcc85p12cksRHhqspafGPI87bSn434WCy0hxFwbIzv4fkWffJUP0VERLqudvWovPHGG/z2t7/loosu4tprr2X27NlUVFRw7rnntqzG0VyIg2NzTSNrqhoAGGMvA2A5fak2GdgWhJoL7w0qzNBEWhER6bLalahUVFS0muhaUFDAlClTqK2t5ayzzqKhoSHlAcqujDEsK6+nttEDy3AkiWGfeQwHIO4lerWy0wMMLtZEWhER6bralaiUlZWxZMmSVseysrJ45513aGxs5IILLkhpcLJ72+enAMQ9OMwk/jeZZw3HAMb3AUO/PO3vIyIiXVu7EpXx48e32pdnu8zMTP7+978TieiheDBUN8RZv60Bx4KQH+UQsxKAeWZYYiItADYDCjM0P0VERLq0dk1euO+++9iwYcNuz2VlZTF16lRmz56dksBkz7YXevOMYYRZShCPcvLYbBcTcGx8z8Og+SkiItL1tesplpeXR15e3h7PZ2ZmcvLJJ+93ULJ3OxZ6O8JeCR58wiH4BgIWYFuEA7YKvYmISJeX9Nftjz76iOnTp1NeXr5LAbiHH354vwOT3du50Nuh/lIAFllDMEDM80kL2Cr0JiIi3UJST7IHHniAu+++m0MOOYSSkpJW39r1Df7A2rnQ26EmsTR5oRmMZavQm4iIdC9JPcl++ctf8oc//IGrrroqxeHIvuxY6K3Qq6QXlXhYfGYPVqE3ERHpdpLa68e2bY4//vhUxyJtsGOht1F2YrXPCvpSb8Iq9CYiIt1OUonKzTffzKOPPprqWGQfdi70dhjNwz4kNoBUoTcREelukvrK/f3vf5+zzz6bwYMHc+ihhxIMBludf+2111ISnLS2c6G3Ec3zU7ZPpMX3wbFV6E1ERLqNpBKVG264gWnTpjFu3DgKCgr0zf0gaSn0ZoOJm91OpFWhNxER6U6SSlSeffZZXn31Vc4+++xUxyN70RB1qayLEQxYDHU3kuU30ESI9cEBhCwb11WhNxER6V6SmqOSn5/P4MGDUx2L7IMxhvqYi+fDaGsFAJ9Zg/DsAGmBALZjq9CbiIh0K0klKvfeey/33HOPdks+yOpiLlHXI+r6DPM+B2CxNRjXN8Q8j5xIQIXeRESkW0nqifarX/2K5cuXU1JSwoABA3aZTDtnzpyUBCdfMMawfmsTzRsjM9RP9KgssQZjJQ4RDgbok5ehQm8iItJtJPVEO//881MchuxLXdRleUUdAdsC4zPErAJgqTUQAMs3eD70K1ChNxER6T7alagsXbqUYcOGcc899xyoeGQPqhviLCuvxTM+pWYjGTQlJtJafQgFbHzPx/V9hhRlaSKtiIh0G+2aozJmzBhGjBjBbbfdxvvvv3+gYpLd2FzTyMqKelzPMMpeBcAyqx8xbCzLIhSwCTo2fXLTNJFWRES6jXYlKpWVlfzsZz+jsrKSCy64gJKSEr797W/z5ptv0tTUdKBi7PG2V6StaXCJ+z7DW4Z9BmFh4fk+oYBNblqAjLDTscGKiIikULsSlUgkwrnnnsvvfvc7Nm7cyOuvv05RURG33347BQUFnHfeefzhD3+gvLz8QMXbI22vSGtZYIzFEH85AKuDg0kLOYAh7vkUZIQ1kVZERLqVpJYnA1iWxXHHHceDDz7I4sWLmTdvHieddBLPPPMMZWVl2gsohaob4mypbSQnPYhlDIO9xGaEC80APN/HwiLuox2TRUSk20nZ1++hQ4dyyy23cMstt1BZWUlVVVWqLt3jNcRcqhtdDIZcbwt51OBis9z0wwC2bWFbFoOKVJFWRES6l3Y91d588819trEsi3PPPZeCgoKkg5LWXN+noj5KbYPLcfZqAFbRl0aChK1EFZWctCCjSnM0kVZERLqVdiUqO9dPsSwLY8wuxzzP2+/AJMEYw4otDTTGPDxgqJ8Y9vnMGogBonGP7IhD//x08jPDHRqriIhIqrVrjorv+61e6enpLFu2rNUxJSmpVRd1+WxTLcGATcSxOcQkKtKuDAwm7Dg4NgQDDv0KMggHkp5yJCIi0ilpQkMnV90QZ8O2BrLDAWzLYnDDKgA+YyChgAXY2LZNSVaEYEBLk0VEpHvRV/BOriHmUhdz8Q0Qq6W3SSz9XuH0w/UT+/tgQV5GkIyQEhUREelelKh0cmlBm/oml/KaJkpjqwCosPJwQ7mkhxxqm+IEgEGFGZpIKyIi3c5+Df1YlqWH4wHWEPPY1ujSEPMZzBoAVtCP6iaXoG3hODbZaQHyMlQ/RUREup92JSp5eXmtEpO6ujrGjBmDbbfumFENldQwxvDppjpczyctZDM4nkhUVjr9Cdo2vmXICQcoyIjg+WYfVxMREel62pWoPPLIIyn94ffeey/33Xdfq2MlJSVs2rQppT+nq0qUzq8jLWQTCFgMbErUUFlOf0IBCxuIOBa56QH1bImISLfUrkTlyiuvTHkAI0eOZOrUqS3vHUcTQreraYyzrTGGjUVDk8sgv3nop3kibVZaANdATlqI7LRgB0crIiKSegdsebIxpk3f8gOBAL169TpQYXRpxhgqaqPURV3S41XkUoOPRXmoP+mOQ0PUJeQ4DFbpfBER6abavOpnxIgRPP/888Risb22+/zzz/nOd77DQw891Kbrfv7555SWljJw4EAuueQSVqxY0daQur36qMvm2iYwcHh4PQDrrd7UeCFirk/cM0RCNof0ytLQj4iIdEtt/hr+6KOPctttt3H99dczfvx4xo4dS2lpKZFIhK1bt7J48WJmzpzJ4sWL+d73vsd3v/vdfV7zmGOO4dlnn2XYsGFs3ryZ+++/n+OOO45Fixbtdq+gaDRKNBpteV9TU9PW8LscYwxrqhrABztgUdZc6G2F3Q/LMng+ZIYd+uSkkx5Sb4qIiHRPbX7CnXrqqXz88cf8+9//5qWXXuL5559n1apVNDY2UlhYyJgxY7jiiiu4/PLLyc3NbdM1J0yY0PLn0aNHc+yxxzJ48GD++Mc/MmnSpF3aT548eZfJt91VfcxjY3UTWBaeZ+jrrgJgudUP1zNEgjZ5GSGKc0LqTRERkW6r3V/FjzvuOI477rgDEQsZGRmMHj2azz//fLfn77jjjlYJTE1NDWVlZQcklo4Wdz221ESJeT6+gSGmeWmy3R/btnFs8D1DUUZEE2lFRKTb6lRjBtFolCVLlnDiiSfu9nw4HCYc7hk7BEddnw01TViAYwwDmlf8VKQPIoMATfE41VGX/gXpmkgrIiLdVoeW0P/+97/Pu+++y8qVK/nwww+56KKLqKmpOSDLoLuauOtT2xgnErTpF9hChChRgnweL8b1fTwg5NgMVOl8ERHpxjr0q/i6deu49NJLqaiooKioiC9/+ct88MEH9O/fvyPD6hQa4x5R16cu6jKkYTkAa6y+uMYG1ycjZJOTHiTgaLsmERHpvjo0UXnxxRc78sd3aq7vs60xRm2jx0BrIwCr7DJ8LHIjASJBi0jAIS2oREVERLovPeU6IWMMK7Y0EHMNgQD0N+sAKA+VkRkK0Oh6xDxDdiRAMKBKviIi0n0llaj8/ve/3+1x13W544479isgSezxs7qijpyIQzhg08ddC8BSrw9x38MyBs8YeuWkEQ4o1xQRke4rqafcLbfcwte+9rVWuyR/+umnfOlLX+LPf/5zyoLrqWoa42ypjxEI2PgelPmJHpWVlBKN+xgLwo5NSVZEPSoiItKtJZWozJ07l82bNzN69GimTJnCo48+ypFHHsmoUaOYN29eikPseYwxVNfHaIp5FAdryKIBD5vqjH5khB0c28IYKM2NkBFSoiIiIt1XUpNpBw4cyIwZM7j55ps588wzcRyHZ599lksuuSTV8fVIjm1RHfVodH2GxhPDPpvsEgLBEFmhIBW1TVi2RVl+mpYmi4hIt5b0BIe33nqLF154geOOO47c3FyeeuopNmzYkMrYeqxtDXHqmxI9KqXxRKG31VYfKmpdNldHSQs69MqKaI8fERHp9pJKVP7rv/6Lb3zjG/zgBz9gxowZzJ8/n3A4zOjRozVHZT8ZY1hWXo/rG7LSAvQziV2TNwT6EgpaGHzyMkP0yVNvioiIdH9JfSV/7733+PDDDzn88MMB6NWrF3/961959NFHueaaa/jGN76R0iB7krqoy7qtdaSHA0TjLv2aJ9KutspIDzlEHJu465ObEdQePyIi0u0llajMnj17t3vuXH/99Zx++un7HVRPVtMYp6ohTtix2bzNa1mavDFYRtwFLB83BmV52uNHRES6v6SGfva2MeAhhxySdDCSGPqprI0R83yKw3GKTQUAa50++PjUNcUJ2haDi7THj4iIdH9Jr/rZ20NyxYoVSQfU0zm2RX3MJe76DHMSpfO3WjlUk0Uk4BCwICPikJse6uBIRUREDrykEpWbbrqp1ft4PM7cuXN5++23ufXWW1MRV4/l+QYsi6r6GJFYYjPC9U4ZYcfGBxzHJhIMJNqJiIh0c0klKhMnTtzt8UcffZRZs2btV0A9XW3Upa4pTsC2GEhixc8apy9RzycYsMkKOSqbLyIiPUZKn3gTJkzg1VdfTeUlexRjDBu3NeL7EAk5LaXzV9OHcMAmIxggFHSIBG0CjpIVERHp/lK6bOSVV14hPz8/lZfsUepjHuW1UWwLahtdSt1Ej8rGYF/iLtiWh21DQWZYvSoiItIjJJWojBkzptVkWmMMmzZtYsuWLTz22GMpC66nibseG7Y2AZAZtuhdm5hMu8HpjY9PfdQnPeRQlpumzQhFRKRHSCpROf/881u9t22boqIiTjnlFIYPH56KuHqkqOuzpbaRcMAmO76NCDFcHDZQ0rzix8b4PsXZ2oxQRER6hqQSlXvuuSfVcQjgej61MZ+tjTGGNiT2+Cm3iwkHgziOTVM8TjgcpCQ7rBoqIiLSI7Q5UampqWnzRbOzs5MKpqerjbpsrY/ieYZB9iYANjilNMZ9cH3SAzZ5aUGyIiqdLyIiPUObE5Xc3Nx9fos3xmBZFp7n7XdgPc2OK36CAZvixsT8lLVWKaGARSQYJD1kkZ0W0IofERHpMdqcqEybNu1AxtHj7bzip1c8seJnk1OK61nEbY+Y52jFj4iI9ChtTlR++ctf8swzz5Cdnc2zzz7LxRdfvNc9f6R9dlzxkxFxKG3YAMBGp5dW/IiISI/V5q/mb731FvX19QBcffXVVFdXH7CgeqIdV/yEbejtJeaorLVKiQQcssMBrfgREZEep809KsOHD+eOO+5g3LhxGGP485//vMdJs1dccUXKAuwpdlzxk9G0mXDz0uSaUC8CWvEjIiI9VJsTlSeeeIJJkybxf//3f1iWxd13373bB6ZlWUpUkrDjip/BzmYANtsl1LsWeHGt+BERkR6pzYnKcccdxwcffAAkCrwtXbqU4uLiAxZYT7Lzip/ezfNT1tuliaGgYEArfkREpEdK6qm3cuVKioqKUh1Lj7V9xU84aOP5hj5+IlGpDPchEgxgjE/MM1rxIyIiPU5ST73+/ftrnkQKxV2Pivoo6aEA6SGHglhiafIKv4Qm1yXu+QQdSyt+RESkx9HX804g5hnqmlxc36ch5tPXJIq9rbdKicZ9wgGbgG1TkpOmFT8iItKjKFHpBII21DW51DTGSAtY9PISiUpDVj9y0kJUN8axMAwoSFNPloiI9ChJbUooqRXzDE0xj6DjkBvdSIg4cQIsa8rD2DEiQYeMUIBwUP9ziYhIz6InXyfgej4eYFmGEj9R6G2LU0JGehqODbYFtmPjen7HBioiInKQJZWoVFZW8qMf/Yhp06ZRXl6O77d+gFZVVaUkuJ4kHk/MT8mPJlb8bHZ6EwlapAUCxH0PDfiIiEhPlFSicvnll7N8+XK+/e1vU1JSkpJ5E5MnT+bOO+9k4sSJPPLII/t9va6kIeaxLRqnKe5R1Fw6fz1FVNTGKMiEnHCItKCtGioiItLjJJWozJw5k5kzZ3L44YenJIiPP/6YJ598ksMOOywl1+tKjDGsqmjA83wCtkWpSVSlrY6UkhkOUt0YJ2BbHJKTqRoqIiLS4yT15Bs+fDiNjY0pCaCuro7LLruMp556iry8vJRcsyupi7qsqKglNz1ERsihIJ7oUVnlFRF1veZWhl65EdVQERGRHiepROWxxx7jrrvu4t1336WyspKamppWr/a4/vrrOfvsszn99NP32TYaje7Xz+qMahrjVNbHCNk2tm1TahKJyrZQKY5tkR0JYLDITw+rhoqIiPQ4SQ395ObmUl1dzamnntrquDEGy7LwPG8Pn2ztxRdfZM6cOXz88cdtaj958mTuu+++dsfbmRljqGlysTGkmSay/WoAtoZ7kxUKEHM9HAd652jXZBER6XmSSlQuu+wyQqEQzz//fNKTadeuXcvEiRN55513iEQibfrMHXfcwaRJk1re19TUUFZW1u6f3ZkEHJummMe6bY30i68DoNbKZIubTtC44BsKsyLkZYQ7OFIREZGDL6lEZeHChcydO5dDDjkk6R88e/ZsysvLOeqoo1qOeZ7HjBkz+M1vfkM0GsVxWg91hMNhwuHu9cBuinvUNbnURz162+UAVAR6EXJsLBssC7IjAUKOelNERKTnSSpRGTt2LGvXrt2vROW0005jwYIFrY5dffXVDB8+nNtuu22XJKU7MsawsqIeLMhND5K7LbEZ4XqKiXs+lgfFOWGyIgHiqvUmIiI9UFKJyg033MDEiRO59dZbGT16NMFgsNX5tiwzzsrKYtSoUa2OZWRkUFBQsMvx7qo+5rG5pgnbsgjaFgOcCgAqgr1xbIuMsINjWWRGgupRERGRHimpROXiiy8G4Jprrmk5ZllWuyfT9nRx16OiPkrQsYnZFgWxRFXaymBvsiIBXM8n5vkUZYS0NFlERHqkpBKVlStXpjoOAKZPn35ArttZxTxDXZOLZYFvoKS52NtmpxcNMY+QY2MMlOSkaWmyiIj0SEklKv379091HD1S0IaY6+P7PgEbCpuLvW2ye5EWsqlrdMmMhBlQkKalySIi0iPt1+7JixcvZs2aNcRisVbHv/rVr+5XUD3F9gmyja6PqdtChCg+FitjeTQ2RclJdyjIDBMJBfd+IRERkW4qqURlxYoVXHDBBSxYsKBlbgrQ8q1fc1TaZnuPSlPUZVjz0uQqu4D0jAyy7MR9tJrbiYiI9ERJPQInTpzIwIED2bx5M+np6SxatIgZM2YwduzYHjfPZH/EPENNk0fMh4LYRgC2BHqRFrTJDgdJCweJxj1inungSEVERDpGUj0q77//Pv/85z8pKirCbt6j5oQTTmDy5MnceOONzJ07N9Vxdktb62NUN8SIOBZ9rUSPSnnzRFrHtsmJBHFsG9dTERUREemZkupR8TyPzMxMAAoLC9mwIbGstn///nz22Wepi64bM8awflsjjp0oo58XTfSolAd6kR5yiLkeWIactKAm0oqISI+VVI/KqFGjmD9/PoMGDeKYY47hZz/7GaFQiCeffJJBgwalOsZuqT7msbUhRsBxaIrH6d28NLncTvSopIUconGfvMwQ2WmaTCsiIj1TUonK3XffTX19PQD3338/55xzDieeeCIFBQW89NJLKQ2wu4q7iUQlO+JQ0xijIJ7oUdnkJJYme55PgzEMLswgM7xfi7NERES6rKSegF/5ylda/jxo0CAWL15MVVUVeXl5GqZoo5hn2NoQxzfguy4FfqJ8/kq3gIqaKOGATe/cCAOLMnVPRUSkx9qvha/Lli3j73//O42NjeTn56cqph4haENtY5zymiYGRGpw8HEJEE8vJjMcwBhDdjhIfrqGfUREpOdKKlGprKzktNNOY9iwYZx11lls3JgYtrj22mu55ZZbUhpgd7V9aXJD3CetvnmPH6eISChIXlqIvIwQxhgtTRYRkR4tqUTl5ptvJhgMsmbNGtLT01uOX3zxxbz99tspC64723Fpcqm1BYAKp4jGmIcP5KaFtDRZRER6vKTmqLzzzjv8/e9/p2/fvq2ODx06lNWrV6cksO5sx6XJxrHJjiZW/FQ4xV8sTY7YWposIiI9XlI9KvX19a16UrarqKggHA7vd1Dd3Y5Lk13f0ItEj8oWp5iGmIdtW1qaLCIiQpKJykknncSzzz7b8t6yLHzf5+c//znjxo1LWXDd1Y5Lk31jyI0lelSqmntUPM+nIeZpabKIiPR4ST0Ff/7zn3PKKacwa9YsYrEYP/jBD1i0aBFVVVW89957qY6x29m+NDnoOKSHAhR5zeXz7SLqoi74hsKcsJYmi4hIj5dUj8qhhx7K/Pnz+dKXvsQZZ5xBfX09F154IXPnzmXw4MGpjrHbCdoQjXvUR+Pkpwcp8hOJymaKiARtIiGHwoywliaLiEiP1+4elXg8zvjx4/ntb3/LfffddyBi6vbizQt5GuM+pmErYRMFwM/pi+1ZhAI2oYDd0k5ERKSnanePSjAYZOHChRqS2A/B5rsesKHEJHpTttl5VEVt0kIBAo6FtUM7ERGRniqpR+EVV1zB73//+1TH0mNs7ylxfUNm0yYAqoMlFGaFiLkeng9mh3YiIiI9VVKTaWOxGL/73e+YMmUKY8eOJSMjo9X5hx9+OCXBdVdBG2KuT1PMa5lIu5FCaptcirIiNMVc9aiIiIiQZKKycOFCjjzySACWLl2a0oB6gsr6ONWNLo5jU9w8kbYurRdBx6KmMU5eeohwwFGPioiI9HhJJSrTpk1LdRw9hjGGzTWN2BaEAzY58UQNlTVeATHPkB4E2zbkZ4QIOZoHJCIiPVtSgwvXXHMNtbW1uxyvr6/nmmuu2e+gurP6mMemmii+b6hqiJHfnKhUOiU0xXzqYy5NcUNeZohgwOngaEVERDpWUonKH//4RxobG3c53tjY2Kpirewq7nps3NpI1POJBByK/ET5/MpAEQaTmLsSd+mdHSEjpERFRER6tnYN/dTU1GCMwRhDbW0tkUik5Zznefz1r3+luLg45UF2J1HXZ2N1IxHHxrIayfG3AVAZKCE95NAUc4nGPYqywloCLiIiPV67EpXc3Fwsy8KyLIYNG7bLecuyVARuH1zPp9H1qY+79PIrAGi00mhwsnHjHp6BSChAWlC9KSIiIu1KVKZNm4YxhlNPPZVXX32V/Pz8lnOhUIj+/ftTWlqa8iC7m3jcp7rRZWBsAwCVThEBxyY9aOMZj3BA65JFRESgnYnKySefDMDKlSvp16+fhiaS0BDzqI97BCwotRI9KlucYhpjHoGITUYwRFrQJuAoWREREUnqabhkyZJWuyQ/+uijHHHEEXzzm99k69atKQuuuzHGUF7bRFrQBiyyo4mqtJVOMekhh5jrEfNdeuekqVdFRESEJBOVW2+9lZqaGgAWLFjApEmTOOuss1ixYgWTJk1KaYDdyfalyWnBAOGg3VKVdotdRF3UJer6BJ0AvfPStDRZRESEJAu+rVy5kkMPPRSAV199lXPPPZcHHniAOXPmcNZZZ6U0wO4k7npU1UcJBy3SQg7FzUuTN1vFRII26aEAjo2WJouIiDRLqkclFArR0NAAwNSpUxk/fjwA+fn5LT0tsquYZ9jaEMcYC2MsCpvL53vZfUgLOsTiHj6G4uyI5v+IiIiQZKJywgknMGnSJH7yk5/w0UcfcfbZZwOJfX/69u3b5us8/vjjHHbYYWRnZ5Odnc2xxx7L3/72t2RC6hKCNkTjHvXRONlhm1y3EoCVsVzinsEzkBMJkp8e7OBIRUREOoekEpXf/OY3BAIBXnnlFR5//HH69OkDwN/+9jfOPPPMNl+nb9++PPjgg8yaNYtZs2Zx6qmnct5557Fo0aJkwur0tm8y2Bj3aKgpJ0gcHwsnpze+MYQDNqGArc0IRUREmiU1R6Vfv3689dZbuxz/f//v/7XrOueee26r9z/96U95/PHH+eCDDxg5cmQyoXVqQZtEifyYR+/m3pRqO5fqmEVJdoSmmIvV3E5ERESSTFQAfN9n2bJllJeX4/utuwBOOumkdl/P8zxefvll6uvrOfbYY3fbJhqNEo1GW953tfkwlfVxqhtdHMemyE3UUKkJFhF0LGoa4+SlhwgHHPWoiIiINEsqUfnggw/45je/yerVqzHGtDpnWRae57X5WgsWLODYY4+lqamJzMxMXn/99ZYVRTubPHlyly3Rb4xhc00jtgWRgE12bWLFTzkFxD1DWhBs25CfESLkaCKtiIgIJDlH5brrrmPs2LEsXLiQqqoqtm7d2vKqqqpq17UOOeQQ5s2bxwcffMB3vvMdrrzyShYvXrzbtnfccQfV1dUtr7Vr1yYTfofYXkMlYNu4vqGweZ+f+kgxQcci5vk0xQ15mSHVUBEREWmWVI/K559/ziuvvMKQIUP2O4BQKNRynbFjx/Lxxx/zy1/+kt/+9re7tA2Hw4TD4f3+mR1hxxoqgZhFTjzRo7LByyfuGcJBB8/3VUNFRERkB0n1qBxzzDEsW7Ys1bEAiSGSHeehdBc711ApaO5RiWWUEHQsojFXNVRERER2klSPyg033MAtt9zCpk2bGD16NMFg67ofhx12WJuuc+eddzJhwgTKysqora3lxRdfZPr06bz99tvJhNWp7VhDJSsSILd5Mu2aWB7xsGqoiIiI7E5SicrXvvY1AK655pqWY5ZlYYxp12TazZs3861vfYuNGzeSk5PDYYcdxttvv80ZZ5yRTFid2hc1VHzqmlzyvUSiEs8sUQ0VERGRPUh6r59U+P3vf5+S63QF22ujBGzI8BsJmyYA1sRzScsIYGFUQ0VERGQnSSUq/fv3T3Uc3d72nhLXN+Q2bQKg3k5sHVAXdQnYNmaHdiIiIpLkZNrS0lK++c1v8uSTT/LZZ5+lOqZuaceqtIXNwz4VdgG1TS6FmREiAVs9KiIiIjtJ6rH4i1/8guzsbB5++GFGjBhB7969ueSSS3jiiSdYsmRJqmPsFnasSltIIlGpDRW3VKXNCAdVlVZERGQnSQ39XHrppVx66aVAYkLstGnTeOutt7jhhhvwfb9dlWl7gl2q0sYSicomk6+qtCIiInuR9F4/dXV1zJw5k3fffZfp06czd+5cRo8ezcknn5zK+LqFHavS1vtuSw2VxjRVpRUREdmbpBKVY445hvnz5zNq1ChOOeUU7rzzTk488URyc3NTHF73sHNV2lw3UZV2vZunqrQiIiJ7kdQclc8//5z09HQGDRrEoEGDGDJkiJKUvdi5Ku0XNVR6qyqtiIjIXiSVqFRVVTFt2jSOP/54pk6dysknn0yvXr24+OKLeeKJJ1IdY5e3c1XavOaqtKtiOcQ9VaUVERHZk6QXwx522GHceOONvPrqq/ztb39jwoQJvPbaa1x//fWpjK9b+KIqrce2mm1kmDoArOw+qkorIiKyF0nNUZk7dy7Tp09n+vTp/Otf/6K2tpbDDz+ciRMnMm7cuFTH2OXtWEOl1KsEoMFKo8INU5IdoSnmqoaKiIjIbiSVqBx99NGMGTOGk08+mf/4j//gpJNOIjs7O9WxdRs71lApbp6fUhMoaqmhkpceUg0VERGR3UgqUamqqlJi0kY711DJqkus+Cm3ClRDRUREZB+SSlS2JymzZ89myZIlWJbFiBEjOPLII1MaXHewcw2VIpPoUakPq4aKiIjIviSVqJSXl3PJJZcwffp0cnNzMcZQXV3NuHHjePHFFykqKkp1nF3WzjVUsmOJHpWNfr5qqIiIiOxDUtM3b7jhBmpqali0aBFVVVVs3bqVhQsXUlNTw4033pjqGLu0nWuoFJjEZNqm9BLVUBEREdmHpHpU3n77baZOncqIESNajh166KE8+uijjB8/PmXBdQc711DJjSd6VNbG81RDRUREZB+SSlR83ycY3PXBGgwG8X0tXdnRFzVUfOqiHvnN+/zEMkpUQ0VERGQfkhr6OfXUU5k4cSIbNmxoObZ+/XpuvvlmTjvttJQF1x1sr40SsCHNdsn2tgGw1s0jLRQg4FiqoSIiIrIHST0ef/Ob31BbW8uAAQMYPHgwQ4YMYeDAgdTW1vLrX/861TF2adt7Slwf0qPliWNWkHB2ITHXw/PB7NBOREREvpDU0E9ZWRlz5sxhypQpfPrppxhjOPTQQzn99NNTHV+Xt72nJOLYDAzVALAtUITjOJTmhKhpjKtHRUREZA+SSlS2O+OMMzjjjDNSFUu3tL2nxFgQqNsIwFanCAuDMVCQGVZVWhERkT1od6Li+z7PPPMMr732GqtWrcKyLAYOHMhFF13Et771LS2x3UlT3KPJ9bAMlNhVAFQFCqlt8nAch5ygQ35mWFVpRUREdqNdAw7GGL761a9y7bXXsn79ekaPHs3IkSNZvXo1V111FRdccMGBirNLMsawsbqRoG1jBywyGjcDUBMoJCviEIu7xH2f3tlhVaUVERHZjXb1qDzzzDPMmDGDf/zjH7vskvzPf/6T888/n2effZYrrrgipUF2VfUxjy21UYKOjfGgiESxt0on0aOSGQ4Q93yKstNUlVZERGQ32tWj8sILL3DnnXfukqRAYsny7bffznPPPZey4Lq6uOuxqaaJkGMTDNhkNa/6qQkUkxVxcH0P1zf0yg5pyExERGQ32pWozJ8/nzPPPHOP5ydMmMAnn3yy30F1FzHPUFUfoz7mEQ7aLcXeKpwCaps8wCIcsAkH92tOs4iISLfVrkSlqqqKkpKSPZ4vKSlh69at+x1Ud7G9fP7W+ii2cclyE5Np60Il5GUEAaOlySIiInvRrq/ynucRCOz5I47j4LrufgfVXXxRPt/DqtuCg4+HQyySz9b6GI5lqdibiIjIXrQrUTHGcNVVVxEOh3d7PhqNpiSo7iJoQ8z1aYp5lLmJzQir7AIqGzyKsiI0xVz1qIiIiOxFuxKVK6+8cp9ttOLnC5X1caobXRzHpiieWPFTGyok6FjUNMbJSw+p2JuIiMhetCtRefrppw9UHN2OMYbNNY3YFkQCNtmxRI/KZgqIe4a0INi2IT8jpGJvIiIie6BBhwOkPuaxqSZKwLZxfUOhSaz4aQgXE3QsYp5PU9yQlxlSsTcREZE96NBEZfLkyRx99NFkZWVRXFzM+eefz2effdaRIaVM3PWoqo8SDloEHIvseCJRWe/nE/cMAcfG8316Z0dU7E1ERGQPOjRReffdd7n++uv54IMPmDJlCq7rMn78eOrr6zsyrJSIeYatDXGMsTDGosBLJCqx9F4EHYtozMXHUJwdUbE3ERGRPejQSmNvv/12q/dPP/00xcXFzJ49m5NOOqmDokqN7TVU6qNxsiIBcptX/ayJ5xL3DJ6BnEiQ/PRgB0cqIiLSeXWqkqjV1dUA5Ofnd3Ak+++LGio+9U1x8vzEqp94Ri98YwgHbEIBWyt+RERE9qLTJCrGGCZNmsQJJ5zAqFGjdtsmGo22qtVSU1NzsMJrt+21UQI2ZPi1BE0cH4u18WwyMgJYqkorIiKyT53mMfm9732P+fPn88ILL+yxzeTJk8nJyWl5lZWVHcQI22d7T4nrGyJNmwCodfLIy84g5np4PqpKKyIisg+dIlG54YYbePPNN5k2bRp9+/bdY7s77riD6urqltfatWsPYpTts2NV2kIvMexTYRVQ2+RSmBkhErDVoyIiIrIPHTr0Y4zhhhtu4PXXX2f69OkMHDhwr+3D4fAey/d3NjtWpS00zVVpm2uoqCqtiIhI23RoonL99dfz/PPP85e//IWsrCw2bUoMkeTk5JCWltaRoe2XnavS5jRXpd1k8lWVVkREpB06dODh8ccfp7q6mlNOOYXevXu3vF566aWODGu/7VyVtqC5Km1TWomq0oqIiLRDhw/9dEetqtLGLHLjiR6VdW4ecc8QDjqqSisiItIGmsp5AOxclTbfT/SoxDNUlVZERKQ9lKgcAK2q0oYdct1EorIqpqq0IiIi7dFpCr51JztWpfUaq4mYJgDsnFL8mKrSioiItJUSlQNge22UiGMzwE5sC1BnZ2OCaZRlONQ0xlVDRUREpA30qDwAtveUGAuc2g0AbAsUYmEwBgoyw6qhIiIi0gZKVA6AprhHk+thGehlVwGw1Smktskj5hvSgg75mWHVUBEREdkHJSopZoxhY3UjQdvGDlikN24GYFuwiKyIQyzuEvd9emeHVUNFRERkH5SopFh9zGNLbZSgY2M8KLISPSpVzT0qtmUT93yKstNUQ0VERGQflKikWNz12FTTRMixCQZsspoSPSrVgWKyIg6u7+H6hl7ZIdVQERER2QclKikW8wxV9THqYx7hoN1SPr+yuUcFLMIBm3BQC65ERET2RYlKim0v9ra1PgrQUj6/NlRMXkYQMFqaLCIi0kb6Wp9iOxZ7cxurSPPrAagJFVFVF8OxLcwO7URERGTP9L0+xbb3lARsKDSJibT1Vgbr6wMEAzaOjXpURERE2kiPyxTb3lPi+oaM6EYAqoNFFGaFiLkeno96VERERNpIiUqKBW2IuT5NMY8CtxKAcgqobXIpzIwQCdjqUREREWkjPS5TrLI+TnWji+PYFDav+KmPFBN0LGoa42SEgyqfLyIi0kZKVFLIGMPmmkZsCyIBm5zmFT8bvXzinsG2wLYN+Rkhlc8XERFpAyUqKVQf89hUEyVg27i+ocBP9Kg0ZfQi6FjEPJ+muCEvM6Ty+SIiIm2gRCWF4q5HVX2UcNAi4FjkuYkelTXxPOKeIeDYeL5P7+yIyueLiIi0gRKVFIp5hq0NcYyxMMYi30v0qHiZvQk6FtGYi4+hODui8vkiIiJtoIJvKbS9Km19NE5BKE6GXwvAimgOxjJ4BnIiQfLTgx0cqYiISNegHpUU+qIqrYdbvQGAJiuNjOw8fGMIB2xCAVsrfkRERNpIiUoKta6hkpifUmEXUhfzKMlOIy3oqIaKiIhIO+iRmUI71lApaq6hUhtSDRUREZFkKVFJkT3VUNmEaqiIiIgkS4lKiuyphkpjpEQ1VERERJKkRCVFdq6hktvco7LeUw0VERGRZClRSZFdaqg096jEMlRDRUREJFlKVFJkxxoqWZFAS1XaVbFc4p5qqIiIiCRDBd9SZMcaKvUN9WT5NYkDOX3w46qhIiIikgz1qKTI9hoqjTGP3ObelCYrTHk8ohoqIiIiSdJjM0Uq6+NU1MdoiPtkNJYDUGUX0hQ3VNQ1qYaKiIhIEjT0kwLGGFZuqac+6pIRtOnrVQFQ5RRiMDTFfFzfVw0VERGRdurQHpUZM2Zw7rnnUlpaimVZvPHGGx0ZTtLqoi4rKmrJDAewbYucpsQ+PxVOMekhB9sy1DbFyM0IqoaKiIhIO3RoolJfX8/hhx/Ob37zm44MY7/VNMaprI8Rsm18A71ILE3e4pTQEPNwHJuYZ8hPD6uGioiISDt06NDPhAkTmDBhQkeGkBLGGGqaXGwLgo5FXnwTAJWBRI9KzPWwbYfeOWHVUBEREWmHLjVHJRqNEo1GW97X1NR0YDRfSFSdNWxrjBMOOhT7iVU/5XYxDTEP3/MpzIqQlxHu4EhFRES6li616mfy5Mnk5OS0vMrKyjo6JABCjkU4YNMU92hoipHvJlb9bHFKcGwLx7HIjgQ0kVZERKSdulSicscdd1BdXd3yWrt2bUeHBCSKvYUDNuGgjdNUQYg4PjbbAkXEPZ+0UEDF3kRERJLQpYZ+wuEw4XDnGz7ZXuzN9QyD7EoAqux8fCfAgLw0onFPxd5ERESSoEdnCuxY7C2nKTGRtsIpxnWhsj6qYm8iIiJJ6tAelbq6OpYtW9byfuXKlcybN4/8/Hz69evXgZG13S7F3mKJpckVTrGKvYmIiOynDk1UZs2axbhx41reT5o0CYArr7ySZ555poOiap8di701RF1yotuXJpeQHnKIu56KvYmIiCSpQxOVU045BWNMR4aw33Ys9lZnoJdpvTQ5ElSxNxERkWRpjsp+2qXYm7sZ+KLYm+v5GFCxNxERkSQoUdlPOxZ7sy2LIi9RQ6Uy2IvGuEcs7pMdCarYm4iISBK61PLkzijkWNjA1oYYOTSQbhoA2BosJjsQpMF2VexNREQkSepR2U+V9XFqoi4+kNW8a/I2K4d1dRZbG2OUZKWRHQlqabKIiEgSlKjshx2XJueEAxwSTixN3uz0JiMUIGBZ2DZamiwiIpIkJSr7YcelyZZtkdu0HoDyQG8yIw6OjZYmi4iI7AclKvth+9JkDNQ0upS4iaGfNaaEitoYPpaWJouIiOwHJSr7wRhDZW2M+phLJOhQajYCUJ3el8xwkNqmGHHXaGmyiIhIkpSo7AfHtqiPucRdn3DApthNJCor3GJc38fCIhy0yE0PdXCkIiIiXZOWJ+8HzzdgWVTVx3D8OIV+YjJteaA3cd9g2xaRYCDRTkRERNpNPSr7oTbqUtcUJ2Bb9HW2YGNoJEK5n43BkBlyCAd0i0VERJKlp2iSjDFs3NaI70Mk5NDHT2xGuMHuRTjokBEMEAo6RII2AUe3WUREJBka+klSfcyjvDaKbUFto0txPDE/ZZPTm7gLtuVh21CQGVavioiISJL0BE1S3PXYsLUJgIyIQ1+TqKGy0emNj099NI4FlOWmqYaKiIhIktSjkqSo67OltpFwwMb1bfp5awFYbZURCTgELBvj+xRnR1RDRUREJEnqUUmS6/nUxny2NsbY2hCnb3OisjnUj4Bj0+T5WI5DSbZqqIiIiCRLPSpJqo26VNQ2UdsYJ91qpMBsBWBhtIS4HycrbJOXFiQrEuzgSEVERLou9agkwRjD8vJ6qhvj+FgM8NYBUGHlUWdnYtuQHnLITgtoxY+IiMh+0FM0CXVRl8821WLbFgHLYiCJRGW9U0ZmKIDredTEPPIztOJHRERkf+gpmoTqhjgbtjWQHQ4QDjn0iq0BYAV9ifselgW+gZKsiFb8iIiI7AclKkloiLnUxVx8A41xj0FmNQArrDJiriEUcMCCvIygVvyIiIjsByUqSUgL2tQ3uZTXNBGNuQz1VgCwJjiY9JBDbVOcADCoMEMrfkRERPaDVv0koSHmsa3RpT7m0dupJp9qPGzmxfvi+3EcxyY7LUBehnZNFhER2R/qUWknYwyfbqojGk+UyB/sfg7AakppIoRnDJnhAAUZEe2aLCIisp+UqLRTXdRl7tqtNMZc4p7HQDcx7LOEgRjA8g2ObZGbHtCwj4iIyH5SotJO66oaWLh2Gw0xD99YjLJWAvCpNQBjDI5j0xTzyUkLkZ2mYm8iIiL7Q3NU2sEYw/x11WysaQLLYHw4jKUAfGoNxbItXOPTGHcpzYmQGdbtFRER2R96krZDXdTlk3VbE0uTXZ/+1kYK7GqaTJA5/mC8mI9nQWZWkMHFmRr6ERER2U9KVNphXVUDi9dV48Y9fCzGWosB+IShNPkONgbLhr55aZRkRzo4WhERka5Pc1Ta6Ithn0Y8A55vGGsWAjDLHw4YbBss22JAQTo56VqaLCIisr+UqLRRXdTlveXlbGtwiXpg+XFOtj8BYJp3OK5n8HyfSMBheK9szU8RERFJAT1N2+ijZVt499Nyon7i/bH2QrKsRjaZPOb5gwGwMBRnhxndN0fzU0RERFKgwxOVxx57jJ///Ods3LiRkSNH8sgjj3DiiSd2aEyu67Jw/Tbmrq5idUUDayprmLm8ltgObS50ZgLwjjcWDxvHAgsYVpJF3/yMDolbRESku+nQROWll17ipptu4rHHHuP444/nt7/9LRMmTGDx4sX069evQ2L6aFUlv52+jI9WVFAb232bPmxhgv0RAC9644DEbsnBgM3I3lka9hEREUmRDp2j8vDDD/Ptb3+ba6+9lhEjRvDII49QVlbG448/3iHxfLSqkp++tYiZn+05SbHw+XHwGYKWx0xvJIvNgERFWiAnPcSovrka9hEREUmRDvvqH4vFmD17Nrfffnur4+PHj+ff//73QY/HdV1e/mgVyzfVkm8qOcxeTgAfB48gHo7lESbOeHsWJzoLiRmHn7jfavm8BRxSksnQkqyDHruIiEh31WGJSkVFBZ7nUVJS0up4SUkJmzZt2u1notEo0Wi05X11dTUANTU1+x3P4g3bmL9yC360gcP9T/hZ6KnWDbbvL+jDlniAu+LfZolfCDQAEA7ZnNg/AxNrpCbetN/xiIiIdFfbn9vG7Hvz3g6fTLHzMIkxZo9DJ5MnT+a+++7b5XhZWVlKY1oC/Hafrf57lyNX/SylYYiIiHRrtbW15OTk7LVNhyUqhYWFOI6zS+9JeXn5Lr0s291xxx1MmjSp5b3v+1RVVVFQUJDSeSE1NTWUlZWxdu1asrOzU3Zd2ZXu9cGh+3xw6D4fHLrPB8eBvM/GGGprayktLd1n2w5LVEKhEEcddRRTpkzhggsuaDk+ZcoUzjvvvN1+JhwOEw6HWx3Lzc09YDFmZ2fr/wQHie71waH7fHDoPh8cus8Hx4G6z/vqSdmuQ4d+Jk2axLe+9S3Gjh3Lsccey5NPPsmaNWu47rrrOjIsERER6SQ6NFG5+OKLqays5Mc//jEbN25k1KhR/PWvf6V///4dGZaIiIh0Eh0+mfa73/0u3/3udzs6jFbC4TD33HPPLsNMknq61weH7vPBoft8cOg+Hxyd5T5bpi1rg0REREQ6gHZPFhERkU5LiYqIiIh0WkpUREREpNNSorIbjz32GAMHDiQSiXDUUUfxr3/9q6ND6tImT57M0UcfTVZWFsXFxZx//vl89tlnrdoYY7j33nspLS0lLS2NU045hUWLFnVQxN3D5MmTsSyLm266qeWY7nNqrF+/nssvv5yCggLS09M54ogjmD17dst53ef957oud999NwMHDiQtLY1Bgwbx4x//GN/3W9roPidnxowZnHvuuZSWlmJZFm+88Uar8225r9FolBtuuIHCwkIyMjL46le/yrp16w5MwEZaefHFF00wGDRPPfWUWbx4sZk4caLJyMgwq1ev7ujQuqyvfOUr5umnnzYLFy408+bNM2effbbp16+fqaura2nz4IMPmqysLPPqq6+aBQsWmIsvvtj07t3b1NTUdGDkXddHH31kBgwYYA477DAzceLEluO6z/uvqqrK9O/f31x11VXmww8/NCtXrjRTp041y5Yta2mj+7z/7r//flNQUGDeeusts3LlSvPyyy+bzMxM88gjj7S00X1Ozl//+ldz1113mVdffdUA5vXXX291vi339brrrjN9+vQxU6ZMMXPmzDHjxo0zhx9+uHFdN+XxKlHZyZe+9CVz3XXXtTo2fPhwc/vtt3dQRN1PeXm5Acy7775rjDHG933Tq1cv8+CDD7a0aWpqMjk5OeaJJ57oqDC7rNraWjN06FAzZcoUc/LJJ7ckKrrPqXHbbbeZE044YY/ndZ9T4+yzzzbXXHNNq2MXXnihufzyy40xus+psnOi0pb7um3bNhMMBs2LL77Y0mb9+vXGtm3z9ttvpzxGDf3sIBaLMXv2bMaPH9/q+Pjx4/n3v//dQVF1P9t3vc7Pzwdg5cqVbNq0qdV9D4fDnHzyybrvSbj++us5++yzOf3001sd131OjTfffJOxY8fy9a9/neLiYsaMGcNTT32x27ruc2qccMIJ/OMf/2Dp0qUAfPLJJ8ycOZOzzjoL0H0+UNpyX2fPnk08Hm/VprS0lFGjRh2Qe9/hBd86k4qKCjzP22VTxJKSkl02T5TkGGOYNGkSJ5xwAqNGjQJoube7u++rV68+6DF2ZS+++CJz5szh448/3uWc7nNqrFixgscff5xJkyZx55138tFHH3HjjTcSDoe54oordJ9T5LbbbqO6uprhw4fjOA6e5/HTn/6USy+9FNDf5wOlLfd106ZNhEIh8vLydmlzIJ6VSlR2Y+edmI0xKd2duSf73ve+x/z585k5c+Yu53Tf98/atWuZOHEi77zzDpFIZI/tdJ/3j+/7jB07lgceeACAMWPGsGjRIh5//HGuuOKKlna6z/vnpZde4k9/+hPPP/88I0eOZN68edx0002UlpZy5ZVXtrTTfT4wkrmvB+rea+hnB4WFhTiOs0tGWF5evkt2Ke13ww038OabbzJt2jT69u3bcrxXr14Auu/7afbs2ZSXl3PUUUcRCAQIBAK8++67/OpXvyIQCLTcS93n/dO7d28OPfTQVsdGjBjBmjVrAP19TpVbb72V22+/nUsuuYTRo0fzrW99i5tvvpnJkycDus8HSlvua69evYjFYmzdunWPbVJJicoOQqEQRx11FFOmTGl1fMqUKRx33HEdFFXXZ4zhe9/7Hq+99hr//Oc/GThwYKvzAwcOpFevXq3ueywW491339V9b4fTTjuNBQsWMG/evJbX2LFjueyyy5g3bx6DBg3SfU6B448/fpfl9UuXLm3ZTFV/n1OjoaEB2279iHIcp2V5su7zgdGW+3rUUUcRDAZbtdm4cSMLFy48MPc+5dNzu7jty5N///vfm8WLF5ubbrrJZGRkmFWrVnV0aF3Wd77zHZOTk2OmT59uNm7c2PJqaGhoafPggw+anJwc89prr5kFCxaYSy+9VMsMU2DHVT/G6D6nwkcffWQCgYD56U9/aj7//HPz3HPPmfT0dPOnP/2ppY3u8/678sorTZ8+fVqWJ7/22mumsLDQ/OAHP2hpo/ucnNraWjN37lwzd+5cA5iHH37YzJ07t6UMR1vu63XXXWf69u1rpk6daubMmWNOPfVULU8+mB599FHTv39/EwqFzJFHHtmyjFaSA+z29fTTT7e08X3f3HPPPaZXr14mHA6bk046ySxYsKDjgu4mdk5UdJ9T43//93/NqFGjTDgcNsOHDzdPPvlkq/O6z/uvpqbGTJw40fTr189EIhEzaNAgc9ddd5loNNrSRvc5OdOmTdvtv8lXXnmlMaZt97WxsdF873vfM/n5+SYtLc2cc845Zs2aNQckXu2eLCIiIp2W5qiIiIhIp6VERURERDotJSoiIiLSaSlRERERkU5LiYqIiIh0WkpUREREpNNSoiIiIiKdlhIVERER6bSUqIiIiEinpURFRFLq3nvv5Ygjjuiwn//DH/6Q//zP/2xT2+9///vceOONBzgiEdkfKqEvIm1mWdZez1955ZX85je/IRqNUlBQcJCi+sLmzZsZOnQo8+fPZ8CAAftsX15ezuDBg5k/f/4uu3qLSOegREVE2mzTpk0tf37ppZf40Y9+xGeffdZyLC0tjZycnI4IDYAHHniAd999l7///e9t/szXvvY1hgwZwkMPPXQAIxORZGnoR0TarFevXi2vnJwcLMva5djOQz9XXXUV559/Pg888AAlJSXk5uZy33334bout956K/n5+fTt25c//OEPrX7W+vXrufjii8nLy6OgoIDzzjuPVatW7TW+F198ka9+9autjr3yyiuMHj2atLQ0CgoKOP3006mvr285/9WvfpUXXnhhv++NiBwYSlRE5ID75z//yYYNG5gxYwYPP/ww9957L+eccw55eXl8+OGHXHfddVx33XWsXbsWgIaGBsaNG0dmZiYzZsxg5syZZGZmcuaZZxKLxXb7M7Zu3crChQsZO3Zsy7GNGzdy6aWXcs0117BkyRKmT5/OhRdeyI4dyV/60pdYu3Ytq1evPrA3QUSSokRFRA64/Px8fvWrX3HIIYdwzTXXcMghh9DQ0MCdd97J0KFDueOOOwiFQrz33ntAomfEtm1+97vfMXr0aEaMGMHTTz/NmjVrmD59+m5/xurVqzHGUFpa2nJs48aNuK7LhRdeyIABAxg9ejTf/e53yczMbGnTp08fgH321ohIxwh0dAAi0v2NHDkS2/7ie1FJSQmjRo1qee84DgUFBZSXlwMwe/Zsli1bRlZWVqvrNDU1sXz58t3+jMbGRgAikUjLscMPP5zTTjuN0aNH85WvfIXx48dz0UUXkZeX19ImLS0NSPTiiEjno0RFRA64YDDY6r1lWbs95vs+AL7vc9RRR/Hcc8/tcq2ioqLd/ozCwkIgMQS0vY3jOEyZMoV///vfvPPOO/z617/mrrvu4sMPP2xZ5VNVVbXX64pIx9LQj4h0OkceeSSff/45xcXFDBkypNVrT6uKBg8eTHZ2NosXL2513LIsjj/+eO677z7mzp1LKBTi9ddfbzm/cOFCgsEgI0eOPKC/k4gkR4mKiHQ6l112GYWFhZx33nn861//YuXKlbz77rtMnDiRdevW7fYztm1z+umnM3PmzJZjH374IQ888ACzZs1izZo1vPbaa2zZsoURI0a0tPnXv/7FiSee2DIEJCKdixIVEel00tPTmTFjBv369ePCCy9kxIgRXHPNNTQ2NpKdnb3Hz/3nf/4nL774YssQUnZ2NjNmzOCss85i2LBh3H333fziF79gwoQJLZ954YUX+I//+I8D/juJSHJU8E1Eug1jDF/+8pe56aabuPTSS/fZ/v/+7/+49dZbmT9/PoGApuyJdEbqURGRbsOyLJ588klc121T+/r6ep5++mklKSKdmHpUREREpNNSj4qIiIh0WkpUREREpNNSoiIiIiKdlhIVERER6bSUqIiIiEinpURFREREOi0lKiIiItJpKVERERGRTkuJioiIiHRa/x/TIUPevMc9hQAAAABJRU5ErkJggg==", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "times = permeation_flux.t\n", - "\n", - "D = 1.9e-7 * np.exp(-0.2 / F.k_B / 500)\n", - "S = 4.02e21 * np.exp(-1.04 / F.k_B / 500)\n", - "\n", - "import matplotlib.pyplot as plt\n", - "\n", - "plt.scatter(times, np.abs(permeation_flux.data), alpha=0.2, label=\"computed\")\n", - "plt.plot(\n", - " times,\n", - " downstream_flux(times, P_up, permeability=D * S, L=3e-4, D=D),\n", - " color=\"tab:orange\",\n", - " label=\"analytical\",\n", - ")\n", - "plt.ylim(bottom=0)\n", - "plt.xlabel(\"Time (s)\")\n", - "plt.ylabel(\"Downstream flux (H/m2/s)\")\n", - "plt.show()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Phew! We have a good agreement between our model and the analytical solution!\n", - "\n", - "To reproduce simple permeation experiments, the analytical solution is obviously enough.\n", - "However, for more complex scenarios (transients, trapping regimes,..) a numerical model provides more flexibility." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "festim-workshop", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.13.3" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/book/content/applications/task04.ipynb b/book/content/applications/task04.ipynb deleted file mode 100644 index 5ad477ab..00000000 --- a/book/content/applications/task04.ipynb +++ /dev/null @@ -1,525 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Permeation barrier modelling\n", - "\n", - "In this task, we will model permeation barriers on tungsten and compute the associated Permeation Reduction Factor (PRF).\n", - "\n", - "The PRF is the ratio of the steady state permeation flux without barriers by that of the case with barriers." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 1) Model with barrier\n", - "\n", - "Let's first create a model where tungsten is coated with 1 micron of barrier material on both sides." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import festim as F\n", - "\n", - "model_barrier = F.HydrogenTransportProblemDiscontinuous()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's create three ``VolumeSubdomain1D`` instances for the three subdomains and assign them to ``model_barrier.subdomains``.\n", - "\n", - "```{admonition} Note\n", - "By default, the solubility law of the materials is `\"sievert\"`.\n", - "However, it can be changed by overriding the `solubility_law` argument to `\"henry\"`\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "barrier_thick = 1e-6\n", - "substrate_thick = 3e-3\n", - "\n", - "barrier = F.Material(\n", - " D_0=1e-8,\n", - " E_D=0.39,\n", - " K_S_0=1e22,\n", - " E_K_S=1.04,\n", - ")\n", - "\n", - "tungsten = F.Material(\n", - " D_0=4.1e-7,\n", - " E_D=0.39,\n", - " K_S_0=1.87e24,\n", - " E_K_S=1.04,\n", - ")\n", - "\n", - "volume_barrier_left = F.VolumeSubdomain1D(\n", - " id=1, borders=[0, barrier_thick], material=barrier\n", - ")\n", - "volume_tungsten = F.VolumeSubdomain1D(\n", - " id=2, borders=[barrier_thick, substrate_thick + barrier_thick], material=tungsten\n", - ")\n", - "volume_barrier_right = F.VolumeSubdomain1D(\n", - " id=3,\n", - " borders=[substrate_thick + barrier_thick, substrate_thick + 2 * barrier_thick],\n", - " material=barrier,\n", - ")\n", - "\n", - "boundary_left = F.SurfaceSubdomain1D(id=1, x=0)\n", - "boundary_right = F.SurfaceSubdomain1D(id=2, x=substrate_thick + 2 * barrier_thick)\n", - "\n", - "model_barrier.subdomains = [\n", - " volume_barrier_left,\n", - " volume_tungsten,\n", - " volume_barrier_right,\n", - " boundary_left,\n", - " boundary_right,\n", - "]\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "model_barrier.surface_to_volume = {\n", - " boundary_left: volume_barrier_left,\n", - " boundary_right: volume_barrier_right,\n", - "}\n", - "\n", - "model_barrier.interfaces = [\n", - " F.Interface(id=3, subdomains=[volume_barrier_left, volume_tungsten], penalty_term=1e10),\n", - " F.Interface(id=4, subdomains=[volume_tungsten, volume_barrier_right], penalty_term=1e10),\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "H = F.Species(\"H\", subdomains=model_barrier.volume_subdomains)\n", - "model_barrier.species = [H]" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To avoid cells overlapping the domains boundaries, we create 3 lists of vertices." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "vertices_left = np.linspace(0, barrier_thick, num=50)\n", - "\n", - "vertices_mid = np.linspace(barrier_thick, substrate_thick + barrier_thick, num=50)\n", - "\n", - "vertices_right = np.linspace(\n", - " substrate_thick + barrier_thick, substrate_thick + 2 * barrier_thick, num=50\n", - ")\n", - "\n", - "vertices = np.concatenate([vertices_left, vertices_mid, vertices_right])\n", - "\n", - "model_barrier.mesh = F.Mesh1D(vertices)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The temperature is homogeneous across the domain." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "model_barrier.temperature = 600" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A Sievert's boundary condition is applied on the left surface and the concentration is assumed to be zero on the right surface." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "left_bc = F.SievertsBC(\n", - " subdomain=boundary_left, S_0=barrier.K_S_0, E_S=barrier.E_K_S, pressure=100, species=H\n", - ")\n", - "\n", - "right_bc = F.FixedConcentrationBC(species=H, subdomain=boundary_right, value=0)\n", - "\n", - "model_barrier.boundary_conditions = [left_bc, right_bc]" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For this task, we want to compute the permeation flux, that is the flux at the right surface.\n", - "\n", - "We will also export the concentration profiles at three different times" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "permeation_flux = F.SurfaceFlux(field=H, surface=boundary_right)\n", - "\n", - "vtx_exports = [\n", - " F.VTXSpeciesExport(filename=f\"h_{i}.bp\", field=H, subdomain=vol) for i, vol in enumerate(model_barrier.volume_subdomains)\n", - "]\n", - "\n", - "\n", - "profile_exports = [\n", - " F.Profile1DExport(field=spe, subdomain=vol, times=[100, 17000, 8e5])\n", - " for spe in model_barrier.species\n", - " for vol in model_barrier.volume_subdomains\n", - "]\n", - "model_barrier.exports = [permeation_flux] + vtx_exports + profile_exports" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "model_barrier.settings = F.Settings(\n", - " atol=1e0,\n", - " rtol=1e-09,\n", - " final_time=8e5,\n", - ")\n", - "\n", - "\n", - "model_barrier.settings.stepsize = F.Stepsize(\n", - " initial_value=5, growth_factor=1.1, cutback_factor=0.9, target_nb_iterations=4, milestones=[100, 17000, 8e5]\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "99a7e32250034788baab765e005fa956", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblemDiscontinuous: 0%| | 0.00/800k [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "model_barrier.initialise()\n", - "model_barrier.run()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can plot the concentration profiles at different times and notice the jump of concentrations at interfaces:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "tags": [ - "hide-input" - ] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABo4AAAGHCAYAAACOMKA3AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAyfZJREFUeJzs3Xl4VOX9/vF7MkkmmewbIQtI2AlhUQgUFAEREAsKqFWrqCi2CnXjaxXrUrEoivxQa4OKglit1rqgVq2oyKqiyKLs+05C9kz2ZTK/PyYZMiRgyEwyWd6v65prZs55znM+c5p6DnPP8xyDzWazCQAAAAAAAAAAAG2el6cLAAAAAAAAAAAAQPNAcAQAAAAAAAAAAABJBEcAAAAAAAAAAACoQnAEAAAAAAAAAAAASQRHAAAAAAAAAAAAqEJwBAAAAAAAAAAAAEkERwAAAAAAAAAAAKhCcAQAAAAAAAAAAABJBEcAAAAAAAAAAACoQnAEoE0ZMWKERowY0aBty8rKdMcddygmJkZGo1H9+/fXiRMn9Pjjj2vLli1urRMAAAAAAKCxdOrUSbfcckuDth0xYoSSkpJ+tR3fmQAtl7enCwCAluKll17SK6+8ohdffFEDBgxQYGCgTpw4odmzZ6tTp07q37+/p0sEAAAAAAD4VcuWLVNwcHCj7oPvTICWi+AIAOpp27Zt8vf315/+9CfHsp9++smDFQEAAAAAANRfcXGx/P39df7553u6FADNGFPVAfhVBoPhjI9Dhw452n3yyScaMmSIzGazgoKCNHr0aH3//fe1+lu3bp1GjRqloKAgmc1mDR06VJ999plTm6VLl8pgMOibb77R7bffroiICAUHB+umm25SYWGh0tLS9Lvf/U6hoaGKiYnR/fffr/Ly8gZ9vrKyMs2ZM0c9e/aUyWRSVFSUpk6dqoyMDKdj8Nprr6m4uNjx2ZcuXark5GRJ0tSpUx3LH3/88QbVAQAAAAAAPKs1fQfSqVMnjR8/Xh9++KHOP/98+fn5afbs2Y51p09Vt337do0ZM0Zms1lRUVGaMWOGPvvsMxkMBq1atapW/xs2bNCwYcNkNpvVuXNnPf3006qsrJQkrVq1iu9MgBaMEUcAftXpFz7FxcWaMmWKrFarwsPDJUlvv/22brjhBo0ZM0bvvPOOSktLNW/ePI0YMUIrVqzQRRddJElavXq1Ro8erb59+2rx4sUymUxauHChJkyYoHfeeUfXXnut076mTZumyZMn69///rc2b96sv/zlL6qoqNDu3bs1efJk/eEPf9DXX3+tZ555RrGxsZo5c+Y5fbbKykpdeeWVWrt2rR544AENHTpUhw8f1l//+leNGDFCP/30k/z9/fX999/rb3/7m1auXKlvvvlGkhQTE6PXX39dU6dO1SOPPKLf/va3kqT4+PgGHWcAAAAAAOBZre07kE2bNmnnzp165JFHlJCQoICAgDrbpaamavjw4QoICNBLL72kdu3a6Z133nGadaWmtLQ03XDDDfq///s//fWvf9WyZcv00EMPKTY2VjfddJMuuOACvjMBWjIbAJyDiooK25VXXmkLDAy0bdy40Waz2WxWq9UWGxtr69Onj81qtTra5ufn29q1a2cbOnSoY9lvfvMbW7t27Wz5+flOfSYlJdni4+NtlZWVNpvNZnv99ddtkmx33XWX0/4nTpxok2RbsGCB0/L+/fvbLrjggl+tf/jw4bbhw4c73r/zzjs2SbYPPvjAqd2GDRtskmwLFy50LLv55pttAQEBdbZ7/fXXf3XfAAAAAACg5Wjp34Gcd955NqPRaNu9e3ed626++WbH+z//+c82g8Fg2759u1O7sWPH2iTZVq5c6Vg2fPhwmyTbDz/84NQ2MTHRNnbsWMd7vjMBWi6mqgNwTv70pz/ps88+03vvvacLLrhAkrR7926dOHFCU6ZMkZfXqf+sBAYG6qqrrtL69etVVFSkwsJC/fDDD7r66qsVGBjoaGc0GjVlyhQdO3ZMu3fvdtrf+PHjnd736tVLkhy/VKm5/PDhw+f8eT799FOFhoZqwoQJqqiocDz69++v9u3b1zkUGwAAAAAAtH6t4TuQvn37qnv37r/abvXq1UpKSlJiYqLT8uuvv77O9u3bt9egQYNq7ash380AaH6Yqg5Avc2ZM0cvv/yyFi9erMsuu8yxPCsrS5J96rbTxcbGqrKyUjk5ObLZbLLZbGdsV7OvatXDwKv5+vqecXlJSck5f6aTJ08qNzfX0e/pMjMzz7lPAAAAAADQsrWW70Dq2n9dsrKylJCQUGt5dHR0ne0jIiJqLTOZTCouLq7X/gA0bwRHAOpl6dKlevTRR/X444/r1ltvdVpXfbGQmppaa7sTJ07Iy8tLYWFhstls8vLyOmM7SYqMjGyE6s8sMjJSERER+uKLL+pcHxQU1KT1AAAAAAAAz2pN34EYDIZ6tYuIiNDJkydrLU9LS3N3SQBaAKaqA/CrvvjiC91+++269dZb9de//rXW+h49eiguLk5vv/22bDabY3lhYaE++OADDRkyRGazWQEBARo8eLA+/PBDp1+gVFZW6q233lJ8fHy9hk+70/jx45WVlSWr1aqBAwfWevTo0eOs25tMJkniFzUAAAAAALQCrfk7kLMZPny4tm3bph07djgt//e//93gPvnOBGi5GHEE4KwOHjyoa665Rp07d9bUqVO1fv16p/Xnn3++TCaT5s2bpxtuuEHjx4/XH//4R5WWlurZZ59Vbm6unn76aUf7uXPnavTo0Ro5cqTuv/9++fr6auHChdq2bZveeeedev8Sxl2uu+46/etf/9Lll1+ue+65R4MGDZKPj4+OHTumlStX6sorr9SkSZPOuH2XLl3k7++vf/3rX+rVq5cCAwMVGxvrGHYOAAAAAABahtb+HcjZ3HvvvVqyZInGjRunJ554QtHR0Xr77be1a9cuSXK6n1N98Z0J0HIx4gjAWR0+fFgFBQXas2ePhg0bpiFDhjg9qodc//73v9dHH32krKwsXXvttZo6daqCg4O1cuVKXXTRRY7+hg8frm+++UYBAQG65ZZbdN111ykvL0+ffPKJrr322ib/fEajUZ988on+8pe/6MMPP9SkSZM0ceJEPf300/Lz81OfPn3Our3ZbNaSJUuUlZWlMWPGKDk5WYsWLWqi6gEAAAAAgLu09u9AziY2NlarV69W9+7ddccdd+iGG26Qr6+vnnjiCUlSaGjoOffJdyZAy2Ww1RxTCQAAAAAAAACApD/84Q965513lJWVJV9fX0+XA6CJMFUdAAAAAAAAALRxTzzxhGJjY9W5c2cVFBTo008/1WuvvaZHHnmE0AhoYwiOAAAAAAAAAKCN8/Hx0bPPPqtjx46poqJC3bp104IFC3TPPfd4ujQATYyp6gAAAAAAAAAAACBJ8vJ0AQAAAAAAAAAAAGgeCI4AAAAAAAAAAAAgieAIAAAAAAAAAAAAVbw9XUBLUllZqRMnTigoKEgGg8HT5QAA0CzYbDbl5+crNjZWXl78JqUxcS0CAEBtXIs0La5HAABw1hqvRQiOzsGJEyfUoUMHT5cBAECzdPToUcXHx3u6jFaNaxEAAM6Ma5GmwfUIAAB1a03XIgRH5yAoKEiS/Q8gODjYw9UAANA8WCwWdejQwXGeROPhWgQAgNq4FmlaXI8AAOCsNV6LEBzVQ0pKilJSUmS1WiVJwcHBXBwBAHAapippPFyLAADw67gWaVxcjwAAcHat6VrEYLPZbJ4uoqWwWCwKCQlRXl4eF0cAAFTh/Nh0ONYAANTG+bFpcbwBAHDWGs+NreNOTQAAAAAAAAAAAHAZwREAAAAAAAAAAAAkERwBAAAAAAAAAACgirenC2jNrFarysvLPV0GmhFvb28ZjcZWdaM0AAAAAAAAAEDrQXDUCGw2m9LS0pSbm+vpUtAMGY1GtWvXTiEhIQRIAAAAAAAAAIBmheCoHlJSUpSSkiKr1Vqv9tWhUbt27WQ2mwkHIMkeKFZUVMhisSg1NVXFxcWKiYnxdFkAgBbgXK9FAAAA3I3rEQAA2g6DzWazebqIlsJisSgkJER5eXkKDg6us43VatWePXvUrl07RURENHGFaCkyMzOVmZmpbt26yWg0erocAHBJfc6PcA+ONQAAtXF+bFocbwAAnLXGc6OXpwtobarvaWQ2mz1cCZqzgIAA2Ww27oEFAAAAAAAAAGhWCI4aCdPT4Wz4+wAAAAAAAAAANEcERwAAAAAAAAAAAJBEcAQAAAAAAAAAAIAqBEc4J5s3b9bEiRMVGxsrs9msnj176oknnlBRUVGttps2bdKll16qwMBAhYaGavLkyTpw4ECd/b744ovq2bOnTCaTEhISNHv27Drv/5Oenq5bbrlFkZGRMpvNGjJkiFasWFFnn19//bWGDBkis9msyMhI3XLLLUpPT6/Vrry8XLNnz1anTp1kMpnUs2dPvfjii+d4ZAAAAAAAAAAAaPkIjlBvO3bs0NChQ3Xo0CE9//zz+vTTT3XdddfpiSee0PXXX+/UdteuXRoxYoTKysr0n//8R0uWLNGePXs0bNgwZWRkOLV98skndc8992jy5Mlavny5pk+frqeeekozZsxwaldaWqpRo0ZpxYoVeuGFF/Txxx8rOjpal112mVavXu3UdvXq1Ro3bpyio6P18ccf64UXXtDXX3+tUaNGqbS01Knt9OnTNXfuXM2YMUPLly/XpEmTdM899+ipp55y49EDAAAAAAAAAKD58/Z0AWg53n77bZWUlOiDDz5Qly5dJEmXXHKJUlNTtWjRIuXk5CgsLEyS9Nhjj8lkMunTTz9VcHCwJGnAgAHq1q2b5s+fr2eeeUaSlJWVpTlz5uj22293BDUjRoxQeXm5HnnkEd17771KTEyUJC1evFjbtm3Td999pyFDhkiSRo4cqX79+umBBx7QDz/84Kj1z3/+s7p37673339f3t72P/OEhARdeOGFWrJkie68805J0vbt27V48WI9+eST+vOf/+zYf3Vdd9xxh8LDwxv1uAIAAAAAAAAA0Fww4qgeUlJSlJiYqOTkZE+X4lE+Pj6SpJCQEKfloaGh8vLykq+vrySpoqJCn376qa666ipHaCRJ5513nkaOHKlly5Y5ln3xxRcqKSnR1KlTnfqcOnWqbDabPvroI8eyZcuWqUePHo7QSJK8vb1144036scff9Tx48clScePH9eGDRs0ZcoUR2gkSUOHDlX37t2d9v/RRx/JZrPVuf/i4mJ98cUXZz0mGRkZ+sMf/qAOHTrIZDIpKipKF154ob7++uuzbgcAwLngWgQAAHga1yMAALQdjDiqhxkzZmjGjBmyWCy1QpP6sNlsKiouaYTKGs7s7yeDwXBO29x88816/vnndeedd+qZZ55RVFSUVq9erVdeeUUzZsxQQECAJGn//v0qLi5W3759a/XRt29fffXVVyopKZGfn5+2bdsmSerTp49Tu5iYGEVGRjrWS9K2bds0bNiwOvuU7KOH4uLiHNucaf/ffvutU59RUVFq3759nX3W3H9dpkyZok2bNunJJ59U9+7dlZubq02bNikrK+us2wEAcC5cvRYBAABwFdcjAAC0HQRHTaCouETtLxjt6TKcpG36SgFm/3PaplOnTvr+++81adIkx1R1knT33Xfr+eefd7yvDk3qmuItPDxcNptNOTk5iomJUVZWlkwmkyN0Or1tzQAmKyvrjH3W3O+v7b8+fQYEBMjX1/dXA6Bvv/1W06ZN0+233+5YduWVV551GwAAAAAAAAAAmiuCI9TboUOHNGHCBEVHR+v9999XVFSUfvjhB82ZM0cFBQVavHixU/uzjWiqua6+7dzV1pU+Tzdo0CAtXbpUERERuvTSSzVgwADHlH4AAAAAAAAAALQ0BEdNwOzvp7RNX3m6DCdmf79z3mbWrFmyWCzasmWLY4TQxRdfrMjISN1666266aabNHz4cEVEREhSnaN1srOzZTAYFBoaKkmKiIhQSUmJioqKZDaba7UdMGCA431ERMQZ+5ROjTD6tf3XHGEUERGhLVu21GpXWFiosrKyOkcj1fTuu+9qzpw5eu211/Too48qMDBQkyZN0rx582pNfwcAAAAAAAAAQHPn5ekC2gKDwaAAs3+zepzr/Y0kacuWLUpMTKw1rVz1jTGr7wfUpUsX+fv7a+vWrbX62Lp1q7p27So/P3twVX1vo9PbpqWlKTMzU0lJSY5lffr0OWOfkhxtq5/P1Pb0PjMyMpSWlnbWPs8kMjJSzz//vA4dOqTDhw9r7ty5+vDDD3XLLbecdTsAAAAAAAAAAJojgiPUW2xsrLZv366CggKn5d9//70kKT4+XpLk7e2tCRMm6MMPP1R+fr6j3ZEjR7Ry5UpNnjzZseyyyy6Tn5+fli5d6tTn0qVLZTAYNHHiRMeySZMmadeuXfrhhx8cyyoqKvTWW29p8ODBio2NlSTFxcVp0KBBeuutt2S1Wh1t169fr927dzvt/8orr5TBYNAbb7xRa//+/v667LLL6n18OnbsqD/96U8aPXq0Nm3aVO/tAAAAAAAAAABoLpiqDvV27733auLEiRo9erTuu+8+RUZGav369Zo7d64SExM1btw4R9vZs2crOTlZ48eP16xZs1RSUqLHHntMkZGR+r//+z9Hu/DwcD3yyCN69NFHFR4erjFjxmjDhg16/PHHNW3aNCUmJjra3nrrrUpJSdE111yjp59+Wu3atdPChQu1e/duff311061PvPMMxo9erSuueYaTZ8+Xenp6Zo1a5aSkpI0depUR7vevXvrtttu01//+lcZjUYlJyfryy+/1KJFizRnzpyzTlWXl5enkSNH6ve//7169uypoKAgbdiwQV988YVTOAUAAAAAAAAAQEtBcIR6u+KKK7RixQo9/fTTuueee5SXl6cOHTroj3/8ox566CH5+vo62vbs2VOrVq3Sgw8+qKuvvlre3t665JJLNH/+fEVFRTn1+/DDDysoKEgpKSmaP3++2rdvr1mzZunhhx92amcymbRixQo98MADuuuuu1RUVKT+/fvrf//7n4YPH+7UdsSIEfr888/12GOPacKECTKbzRo/fryeffZZmUwmp7YLFy5UXFycXnzxRaWlpalTp0564YUXdNddd531ePj5+Wnw4MF68803dejQIZWXl6tjx4568MEH9cADDzTkEAMAAAAAAAAA4FEGm81m83QRLYXFYlFISIjy8vIUHBxcZ5uSkhIdPHhQCQkJjvv4AKfj7wRAa1Kf8yPcg2MNAEBtnB+bFscbAABnrfHcyD2OAAAAAAAAAAAAIKkVB0eTJk1SWFiYrr76asey3bt3q3///o6Hv7+/PvroI88VCQAAAAAAAAAA0Iy02uDo7rvv1j//+U+nZT169NCWLVu0ZcsWrVu3TgEBARo9erSHKgQAAAAAAAAAAGheWm1wNHLkSAUFBZ1x/SeffKJRo0YpICCgCasCAAAAAAAAAABovpplcLRmzRpNmDBBsbGxMhgMdU4nt3DhQiUkJMjPz08DBgzQ2rVrz2kf//nPf3Tttde6qWIAAAAAAAAAAICWr1kGR4WFherXr5/+8Y9/1Ln+3Xff1b333quHH35Ymzdv1rBhwzRu3DgdOXKkXv1bLBZ9++23uvzyy91ZNgAAAAAAAAAAQIvm7ekC6jJu3DiNGzfujOsXLFig2267TdOmTZMkPf/881q+fLleeuklzZ0791f7//jjjzV27Fj5+fmdtV1paalKS0sd7y0WSz0/AQAAgOu4FgEAAJ7G9QgAAG1PsxxxdDZlZWXauHGjxowZ47R8zJgx+u677+rVR32nqZs7d65CQkIcjw4dOjSoZgAAgIbgWgQAAHga1yMAALQ9LS44yszMlNVqVXR0tNPy6OhopaWlOd6PHTtW11xzjT7//HPFx8drw4YNkqS8vDz9+OOPGjt27K/u66GHHlJeXp7jcfToUfd+GAAAgLPgWgQAAHga1yMAALQ9zXKquvowGAxO7202m9Oy5cuX17ldSEiITp48Wa99mEwmmUwmpaSkKCUlRVarteEFAwAAnCOuRQAAgKdxPQIAQNvT4kYcRUZGymg0Oo0ukqT09PRao5DcZcaMGdqxY4dj1BIAAEBT4loEAAB4GtcjAAC0HS0uOPL19dWAAQP01VdfOS3/6quvNHToUA9V1Tbk5+frgQce0JgxYxQVFSWDwaDHH3+8zrYGg+GMj549e9Zq/+KLL6pnz54ymUxKSEjQ7NmzVV5eXqtdenq6brnlFkVGRspsNmvIkCFasWJFnTV8/fXXGjJkiMxmsyIjI3XLLbcoPT3dpWMAAAAAAAAAAEBr1iyDo4KCAm3ZskVbtmyRJB08eFBbtmzRkSNHJEkzZ87Ua6+9piVLlmjnzp267777dOTIEd1xxx2NUk9KSooSExOVnJzcKP23FFlZWVq0aJFKS0s1ceLEs7b9/vvvaz2ef/55SdKkSZOc2j755JO65557NHnyZC1fvlzTp0/XU089pRkzZji1Ky0t1ahRo7RixQq98MIL+vjjjxUdHa3LLrtMq1evdmq7evVqjRs3TtHR0fr444/1wgsv6Ouvv9aoUaNUWlrq8rEAAKApcS0CAAA8jesRAADaDoPNZrN5uojTrVq1SiNHjqy1/Oabb9bSpUslSQsXLtS8efOUmpqqpKQkPffcc7r44osbtS6LxaKQkBDl5eUpODi4zjYlJSU6ePCgEhIS5Ofn16j1NLXqPxWDwaDMzExFRUXpr3/96xlHHZ1u6tSpeuONN7Rnzx517dpVkj2Mio+P10033aRXXnnF0fapp57SI488om3btikxMVGS/X/zGTNm6LvvvtOQIUMkSRUVFerXr58CAwP1ww8/OLYfNGiQCgsL9fPPP8vb234rr++++04XXnihFi5cqDvvvNPl4+GK1vx3AqDtqc/5Ee7BsQYAoDbOj02L4w0AgLPWeG5sliOORowYIZvNVutRHRpJ0vTp03Xo0CGVlpZq48aNjR4aucJms6mopKxZPRqSF1ZPNdcQ+fn5eu+99zR8+HBHaCRJX3zxhUpKSjR16lSn9lOnTpXNZtNHH33kWLZs2TL16NHDERpJkre3t2688Ub9+OOPOn78uCTp+PHj2rBhg6ZMmeIIjSRp6NCh6t69u5YtW/ar9b700kuOQCooKEg9e/bUX/7ylwZ9dgAAAAAAAAAAWgrvX2+ClJQUpaSkyGq1Nmj74tJydblprpurcs3+fz4ks59vk+3v3//+twoLCzVt2jSn5du2bZMk9enTx2l5TEyMIiMjHeur2w4bNqxW33379pUkbd++XXFxcY5tqpef3vbbb7/91VqnT5+uu+66S/Pnz5eXl5f27dunHTt21OOTAgDgfq5eiwAAALiK6xEAANoOgqN6mDFjhmbMmOEYcoZzt3jxYoWGhuqqq65yWp6VlSWTyaSAgIBa24SHhysrK8upbXh4eJ3tqtfXfD5T25p91uXbb79VaGio/v73vzuWjRo16qzbAADQmLgWAQAAnsb1CAAAbQfBURPwN/lo/z8f8nQZTvxNPk22r+3bt+uHH37QjBkz6ryfz9mmvzt9nTva/tp0e4MGDdI//vEPXX/99bruuut04YUXKjIy8qzbAAAAAAAAAADQGhAcNQGDwdCk08I1N4sXL5akWtPUSVJERIRKSkpUVFQks9nstC47O1sDBgxwalvXaKHs7GxJp0YYRURESNIZ29Y1EqmmKVOmqKKiQq+++qquuuoqVVZWKjk5WXPmzNHo0aPPui0AAAAAAAAAAC2Zl6cLaAlSUlKUmJio5ORkT5fS4pSVlenNN9/UgAED1L9//1rrq+9ttHXrVqflaWlpyszMVFJSklPb09vV3La6bfXzmdrW7PNMpk6dqu+++055eXn67LPPZLPZNH78eB0+fPhXtwUAwN24FgEAAJ7G9QgAAG0HwVE9zJgxQzt27NCGDRs8XUqL88knnygzM1O33XZbnesvu+wy+fn5aenSpU7Lly5dKoPBoIkTJzqWTZo0Sbt27dIPP/zgWFZRUaG33npLgwcPVmxsrCQpLi5OgwYN0ltvveV0087169dr9+7dmjx5cr3rDwgI0Lhx4/Twww+rrKxM27dvr/e2AAC4C9ciAADA07geAQCg7WCqOpyT//3vfyosLFR+fr4kaceOHXr//fclSZdffnmt6eYWL14sf39//f73v6+zv/DwcD3yyCN69NFHFR4erjFjxmjDhg16/PHHNW3aNCUmJjra3nrrrUpJSdE111yjp59+Wu3atdPChQu1e/duff311079PvPMMxo9erSuueYaTZ8+Xenp6Zo1a5aSkpI0derUs37G22+/Xf7+/rrwwgsVExOjtLQ0zZ07VyEhIfyyCgAAAAAAAADQqrklOCovL1daWpqKiooUFRX1q/eQQct15513Ok3X9t577+m9996TJB08eFCdOnVyrDt69Ki+/PJL3XjjjQoJCTljnw8//LCCgoKUkpKi+fPnq3379po1a5Yefvhhp3Ymk0krVqzQAw88oLvuuktFRUXq37+//ve//2n48OFObUeMGKHPP/9cjz32mCZMmCCz2azx48fr2WeflclkOutnHDZsmJYuXar//Oc/ysnJUWRkpC666CL985//VFRUVH0PFQAAAAAAAAAALY7BZrPZGrJhQUGB/vWvf+mdd97Rjz/+qNLSUse6+Ph4jRkzRn/4wx9axQiNlJQUpaSkyGq1as+ePcrLy1NwcHCdbUtKSnTw4EElJCTIz8+viStFS8HfCYDWxGKxKCQk5KznR7jmXK5FAABoa7gWaRpcjwAAULfWeC3SoODoueee05NPPqlOnTrpiiuu0KBBgxQXFyd/f39lZ2dr27ZtWrt2rZYtW6bf/OY3evHFF9WtW7fGqL9J1ecPgEAA9cHfCYDWpDVeIDVXHGsAAGrj/Ni0ON4AADhrjefGBk1V991332nlypXq06dPnesHDRqkW2+9VS+//LIWL16s1atXt4rgCAAAAAAAAAAAoDVrUHBUfU+bX2MymTR9+vSG7AIAAAAAAAAAAABNzMvTBQAAAAAAAAAAAKB5OOfgKCcnR9nZ2ZKkjIwMffDBB9q2bZvbC2tOUlJSlJiYqOTkZE+XAgAA2iCuRQAAgKdxPQIAQNtxTsHRa6+9poEDB2rAgAF66aWXNGnSJK1YsULXXXedFi1a1Fg1etyMGTO0Y8cObdiwwdOlAACANohrEQAA4GlcjwAA0Hac0z2OXnzxRW3fvl1FRUXq2LGjDh48qKioKFksFl188cX6wx/+0Fh1AgAAAAAAAAAAoJGdU3BkNBrl5+cnPz8/de3aVVFRUZKk4OBgGQyGRikQAAAAAAAAAAAATeOcpqrz9vZWSUmJJGn16tWO5fn5+e6tCgAAAAAAAAAAAE3unIKjb775RiaTSZIUEhLiWF5cXKzFixe7tzIAAAAAAAAAAAA0qXMKjgIDA+uckq5du3a64IIL3FYUmqf8/Hw98MADGjNmjKKiomQwGPT444+fsf2mTZt06aWXKjAwUKGhoZo8ebIOHDhQZ9sXX3xRPXv2lMlkUkJCgmbPnq3y8vJG+iQAAAAAAAAAAKAu5xQcnUlJSYl+/PFHffrpp/rkk0+cHq1BSkqKEhMTlZyc7OlSPCorK0uLFi1SaWmpJk6ceNa2u3bt0ogRI1RWVqb//Oc/WrJkifbs2aNhw4YpIyPDqe2TTz6pe+65R5MnT9by5cs1ffp0PfXUU5oxY0YjfhoAAFoOrkUAAICncT0CAEDbYbDZbDZXOvjiiy900003KTMzs3bnBoOsVqsr3TcrFotFISEhysvLU3BwcJ1tSkpKdPDgQSUkJMjPz6+JK2xc1X8qBoNBmZmZioqK0l//+tc6Rx397ne/08qVK7V//37HsTp8+LC6deum++67T88884wkexgVHx+vm266Sa+88opj+6eeekqPPPKItm3bpsTExMb/cE2sNf+dAGh76nN+hHtwrAEAqI3zY9PieAMA4Kw1nhtdHnH0pz/9Sddcc41SU1NVWVnp9GhNoRHsgVFdUxWerqKiQp9++qmuuuoqp/+jnHfeeRo5cqSWLVvmWPbFF1+opKREU6dOdepj6tSpstls+uijj866r6KiIt1///2OACY8PFwDBw7UO++8c24fDgAAAAAAAAAAyNvVDtLT0zVz5kxFR0e7o55WyWazqbi8eYVo/j7GeoVADbF//34VFxerb9++tdb17dtXX331lUpKSuTn56dt27ZJkvr06ePULiYmRpGRkY71ZzJz5ky9+eabmjNnjs4//3wVFhZq27ZtysrKct8HAgAAAAAAAACgjXA5OLr66qu1atUqdenSxR31tErF5VYlPrbc02U42fHEWJl9Xf6fv07VoU14eHitdeHh4bLZbMrJyVFMTIyysrJkMpkUEBBQZ9tfC4C+/fZbjRkzRvfdd59j2W9/+1sXPwEAAAAAAAAAAG2Ty8nBP/7xD11zzTVau3at+vTpIx8fH6f1d999t6u7QAt1thFNNdfVt11dBg0apH/961+aNWuWLrvsMg0ePFj+/v7nXiwAAAAAAAAAAHA9OHr77be1fPly+fv7a9WqVbUCAYIj+7RwO54Y6+kynPj7GBut74iICEmqc7RQdna2DAaDQkNDHW1LSkpUVFQks9lcq+2AAQPOuq+///3vio+P17vvvqtnnnlGfn5+Gjt2rJ599ll169bNPR8IAAAAAAAAAIA2wuXg6JFHHtETTzyhWbNmycvLyx01tToGg6HRpoVrjrp06SJ/f39t3bq11rqtW7eqa9eu8vPzk3Tq3kZbt27V4MGDHe3S0tKUmZmppKSks+4rICBAs2fP1uzZs3Xy5En973//06xZszRhwgTt2rXLjZ8KAAAAAAAAAIDWz+U0o6ysTNdeey2hERy8vb01YcIEffjhh5o3b56CgoIkSUeOHNHKlSud7kd02WWXyc/PT0uXLnUKjpYuXSqDwaCJEyfWe7/R0dG65ZZb9PPPP+v555+vcxQTWo+9B48oO9fi6TIASCosKPB0CXDBrv2HlJuXLx8fb3kbjfI2GmX0tj/7eHvL2/vMy7y8vH51WlkAAAAAANCyuBwc3XzzzXr33Xf1l7/8xR31oJn73//+p8LCQuXn50uSduzYoffff1+SdPnllzuCmtmzZys5OVnjx4/XrFmzVFJSoscee0yRkZH6v//7P0d/4eHheuSRR/Too48qPDxcY8aM0YYNG/T4449r2rRpSkxMPGs9gwcP1vjx49W3b1+FhYVp586devPNNzVkyBBCo1Zuzt9f04f/+8bTZQCQZLNWeLoEuOCJ5xfpv1+tafD21SGSt9EoHx9vGatee3vbQyZj1evq0Ml4Wntvo9HRxsfb27Gt8bSQyrvm63ruq7qfmvvyNhrlXeN1zRqqX9es0yk8MzbeVL8AAAAAADQXLgdHVqtV8+bN0/Lly9W3b1/5+Pg4rV+wYIGru/C4lJQUpaSkyGq1eroUj7vzzjt1+PBhx/v33ntP7733niTp4MGD6tSpkySpZ8+eWrVqlR588EFdffXV8vb21iWXXKL58+crKirKqc+HH35YQUFBSklJ0fz589W+fXvNmjVLDz/88K/Wc8kll+iTTz7Rc889p6KiIsXFxemmm26q17Zo2dpFhKtzxzhPlwFAUkV5mXbs83QVrVtjXotU//e0vKJCFRVWVVitqqiwymo99bq8okI2m63O7Ssq7G3aAoPB4BRwGU8LpKrDrFqBl9EoHx/nAOxUSOZdK+zyrhGgVQdiNUOtmm18vI3O708Lv3y8z/Dex7tWPT5VQRujyAAAdeG7EQAA2g6D7UzfAtTTyJEjz9y5waBvvmk9IwIsFotCQkKUl5en4ODgOtuUlJTo4MGDSkhIcNzHBzgdfycAWpP6nB/hHp481pWVlaeCJatV5eUVtcKlCqtV1hrhU4XVvqyi3L7eWlnd1iqr9VRQVV5hlbWiwv5cae+7wloVXtXou7zcqspKq1PIZbWeal/dxmo91d5eS4VTnVZHfaf6stb4XBVWqyorK5v0+DYnzkFWzWCpjtDqtEDLsU1VOOUIvryNzutPC89qBl6n9+vj7V1rP97V7YzeTqFc9T7r6tfbm1AMaK24FmlaHG8AAJy1xnNjg0cc/eUvf9HEiRO1cuVKd9YDAACAZsjLy0u+vl7ylc+vN24FagZlNcOl8oqKqvCp0v5cI9iyj76qcHpfHVRVB1I1Q7LqUKu8onZIVlG1z1OhWYVj/46Aq+Z+nbap0bdjvxV11leX6lFkJaVlTXzUG19dgZUjrKoVNDmPxqodolVvbw+wvL2NNfrzPhVuOT3XCLeqlju/r27jPNrMuU/n9QAAAADgbg0OjlJTUzV+/HgZjUZNmDBBEydO1KhRo2QymdxZHwAAANDk2kJQZrPZnKYndIRcNUKr08Ox8ooKVZwWRpVXnBrV5Rj9VSu0Oj0Iq7FNVduawdypkOvc11fXUZfWNrWiwWCoEUYZTwufaoRTTkGXc1B2etDlWObjc2rUl8+Z+/b18XGMCqt+X1cI5hSc1dhv9TJGgwEAAADNR4ODo9dff102m03r1q3Tf//7X82cOVPHjx/X6NGjdcUVV2j8+PGKjIx0Z60AAAAA3MRgMDi+xG9tbDZbVZBUYyRXjdCprveOAKyiZkBlD6XKK2oHYKfWO48Us7evO+Cq3md1n1Zr1bryCuf1FadGldXsq67PWVZerrLycg8cZfcyGo3yrTn6qs4gyj6NYXVYVR2A+fr41Ai8nAOpWu9PC798ay7z9XHap2/NPmvs01GTz6k2jP4CAABAa+LSvxINBoOGDRumYcOGad68edq5c6f++9//6tVXX9Uf//hHDR48WFdccYWuv/56xcVxE3sAAAAAjc9gMFRNLdd6QrHqEWKnT1dY7gijrM7vq0aHldcMusprrq8r6LL3U1Ze/qtBVvX+nNuePQSzt7VPzXg6q9WqYqtVxSr1wNF1ncFgqAq0jPaQqUao5Ai36lhXM5Dy8fGR7xnDq1Pbnb7O18enKlA71dZpnbe3fH1PvfdxWse9vwAAAFCbW/8l1atXL/Xq1UsPPPCAMjIy9Mknn+iTTz6RJN1///3u3BUAAAAAtBmtaYSYzWZzCqzsoVYdgVXVMudAzKrysnLH+7LyCqcArOy0gKus7NR7e19Wx+tTgVbNQKxGmFYVdDlqqAriysrLZbPZan2m0rIy2W8NVuyR49pQp4KkUyHX6a/PFFzZgygf59DK98x9VAdovj4+6prQQUk9unr648MFn361RuaAAE+XAbR5/PcUQGNotH91REVF6bbbbtNtt93WWLto1k7/hwRQE38fAAAAaKsMBoN8fe2ja1qq6ntqlVUHTeXljmCrZtBU5hRCVQVbNUKu09fV7Kusxkitsurl5c77KCs/NeqrvPwMgVj19lVtTlcdlhU1cd5155SrNe/he5t2p3CrP8yaI4Ox5YfZQEt3z22/15w/ExwBcK8Gn+EtFku92gUHBzd0Fy2Sj4/9Hz9FRUXy9/f3cDVorgoLC6t+Ndpy/7EMAAAAtFVGo1FGo1F+JpOnSzkn1VMeVt8bq+br8nJrVchUM8g67XV5hUrLTo0MK6sRVlWP5Corq2O7Gq+rg7DOHeM9fTjgot9c0FfePr6eLgNo8zrFx3i6BACtUIODo9DQ0LPOhWyz2WQwGOqcv7o1MxqNCg0NVXp6uiTJbDYzZzQkVf8jrUIWi0UWi0WhoaHcRBcAAABAk6k55WGA+KEjXPPhq/Pb3I+FAQBoKxocHK1cudLx2maz6fLLL9drr72muLg4txTWkrVv316SHOERUJPRaFRMTIxCQkI8XQoAAAAAAAAAAE4aHBwNHz7c6b3RaNRvfvMbde7c2eWi3GHSpElatWqVRo0apffff9+x/ODBg7r11lt18uRJGY1GrV+/XgFuvpmjwWBQTEyM2rVrp/Lycrf2jZbN29tbRqORUWgAAAAAAAAAgGap1d7F8O6779att96qN954w2n5Lbfcojlz5mjYsGHKzs6WqRHnpK6e9xoAAAAAAAAAAKAl8PJ0AY1l5MiRCgoKclq2fft2+fj4aNiwYZKk8PBweXu32uwMAAAAAAAAAADgnLg1OHLX9Ftr1qzRhAkTFBsbK4PBoI8++qhWm4ULFyohIUF+fn4aMGCA1q5d+6v97t27V4GBgbriiit0wQUX6KmnnnJLvQAAAAAAAAAAAK1Bg4fbTJ482el9SUmJ7rjjjlr3C/rwww/Pue/CwkL169dPU6dO1VVXXVVr/bvvvqt7771XCxcu1IUXXqhXXnlF48aN044dO9SxY8cz9lteXq61a9dqy5YtateunS677DIlJydr9OjRdbYvLS1VaWmp473FYjnnzwIAANBQXIsAAABP43oEAIC2p8EjjkJCQpweN954o2JjY2stb4hx48Zpzpw5tcKpagsWLNBtt92madOmqVevXnr++efVoUMHvfTSS2ftNz4+XsnJyerQoYNMJpMuv/xybdmy5Yzt586d6/RZOnTo0KDPAwAA0BBciwAAAE/jegQAgLanwSOOXn/9dXfWUW9lZWXauHGjZs2a5bR8zJgx+u677866bXJysk6ePKmcnByFhIRozZo1+uMf/3jG9g899JBmzpzpeG+xWLhAAgAATYZrEQAA4GlcjwAA0PY0KDg6cuTIWaeEO93x48cVFxfXkF3VkpmZKavVqujoaKfl0dHRSktLc7wfO3asNm3apMLCQsXHx2vZsmVKTk7WU089pYsvvlg2m01jxozR+PHjz7gvk8kkk8nklroBAADOFdciAADA07geAQCg7WnQVHXJycm6/fbb9eOPP56xTV5enl599VUlJSU16D5Hv8ZgMDi9t9lsTsuWL1+ujIwMFRUV6dixY0pOTpZknwZv69at2rZtmxYsWFCvfaWkpCgxMdHRBwAAQFPiWgQAAHga1yMAALQdDRpxtHPnTj311FO67LLL5OPjo4EDByo2NlZ+fn7KycnRjh07tH37dg0cOFDPPvusxo0b57aCIyMjZTQanUYXSVJ6enqtUUjuMmPGDM2YMUMWi6XB920C4F4vfLhW63ce9nQZcIPTfwiAlqe8pMjTJbR6jXktsuD91fppzzGFBforLMi/6tl86jnIX+GB9ucAP1/+PwsAQBvFdyMAALQdDQqOwsPDNX/+fM2ZM0eff/651q5dq0OHDqm4uFiRkZG64YYbNHbsWCUlJbm7Xvn6+mrAgAH66quvNGnSJMfyr776SldeeaXb9wegedpx+KRW/bzf02UAkFRZXuLpEuCCzfuOa+WWffVq62P0coRJYYFmR9AUXh0wBZmdQqfwILNCA/1k9GrQIHcAAAAAAOABDQqOqvn5+Wny5MmaPHmyu+qRJBUUFGjfvlNfYBw8eFBbtmxReHi4OnbsqJkzZ2rKlCkaOHCghgwZokWLFunIkSO644473FpHtZSUFKWkpMhqtTZK/wDO3S1jk3XpgG6eLqPFsNk8XUELwwE7J4WFBbr1o6c9XUar1pjXIn+aeJF+O7iXcvKLlVNQrJyColOv86tfF6m03Kpya6XScwuUnltQ7/4NBinE7OcIkqpDp/DgU+FTeI111eGTr7fR7Z8VAAA0HN+NAADQdhhstub37diqVas0cuTIWstvvvlmLV26VJK0cOFCzZs3T6mpqUpKStJzzz2niy++uFHrqh6OnZeXp+Dg4EbdFwAALQXnx6bjqWNts9lUXFqu7NPCpJz8YmXnF1WFTPZl2ZYiR+hkKSpt8D4D/X2rAiZzrVFNEcFmx7qaYZSfr0u/iQIAtFBcizQtjjcAAM5a47mxWQZHzVVr/AMAAMBVnB+bTks71uUVVuUWFCu7oLgqUKoKnarCpuqQKTu/yB5A5Rcrt6BYlQ28PA3w83UawXR62FQ9mqnmOpMPYRMAtHQt7fzY0nG8AQBw1hrPjfxLuR4Yjg0AADyppV6L+HgbFRUaqKjQwHpvU1lpU15RiXJqhEn25yJlWYocI5xOX2ettKmwpEyFJWU6lpFX7/0F+Pnag6TqYCnQ3/G6ZuBU3SYs0F8+TKMHAGiDWur1CAAAOHeMODoHrTE5BADAVZwfmw7Hum42m02WolJHiJSTX6ysquCpeqRTtsUeMmVZCh1T6VkrG3YZHGw2VYVKATVCJ3+nAKr6dURwgELMfvLyMrj5UwMAqnF+bFocbwAAnLXGcyMjjgAAANCiGQwGhQT4KSTATwntw+u1TWWlTfnFpY5wqXq6vCxLoWMkU1aN5dn5RcotKJbNJlmKSmUpKtWhkzn12peXwXBqCr2awVL1iKaqZRHVYVSwWWaTjwwGwiYAAAAAQNNzS3C0YsUKrVixQunp6aqsrHRat2TJEnfswqMYjg0AADyJaxH38/I697DJWlmp3IISx6ilmoGTc/hU5Jhqz1JUqkqbTVkW+3Idr199Jh+j86im00OmYOdRTUyhBwBobFyPAADQdrg8Vd3s2bP1xBNPaODAgYqJian1y8hly5a5VGBz0hqHnAEA4CrOj02HY93ylFVYHSHS6eFS9fusGuuyLIUqLW/YF3LBZlOdQVOEI2wKqBE2mRXkb2JUE4BWgfNj0+J4AwDgrDWeG10ecfTyyy9r6dKlmjJlijvqAQAAAFoNX2+josOCFB0WVK/2NptNxaXl9hFKNabPOxUs1Q6fcgqKnKbQO5iWXa99+Ri9aoxgCnAayXQqdDq1PCzILF9GNQEAAABAq+dycFRWVqahQ4e6oxYAAACgTTMYDDL7+crs56sO7ULrtU31FHrZpwVNtUKmqpFNWZZCFZWWq9xaqZM5BTqZU1Dv+oLNplOjloICThvRVCOEYlQTAAAAALRYLgdH06ZN09tvv61HH33UHfUAAAAAOAdGLy9FVAU19VVcVq6c/GJ7yFRj9JLT+9MCp0qbzTGq6dDJnHrtp65RTeFB/k7h0unT6DGqCQAAAAA8y+XgqKSkRIsWLdLXX3+tvn37ysfHx2n9ggULXN2Fx3EDSAAA4Elci8Dd/H195B/ho9iI+s2/XVlpU15RSa1wqfp1tqVYWfnOI50KS8oaNKopyN/kFCrVNZqp5rKQAD9GNQFAE+B6BACAtsNgs9lsrnQwcuTIM3duMOibb75xpftmpTXe5AoAAFdxfmw6HGu0JCVlFaemznNMk1djOr2qEU/Vy3Lyi2StPPd/mngbvRQW6O8UKjlGNVWNYqoZNIUHm+Xv6/PrHQNoMTg/Ni2ONwAAzlrjudHlEUcrV650Rx0AAAAAWhE/X2/FRgS7NKrJaWSTpdj5Pk75RSooLlOFtVIZeYXKyCusd23+Jh+nEU2O+zYFn/a+6nVYkFneRq+GHgoAAAAAaFFcDo4AAAAAwFVeXgaFBforLNBfXWIj6rVNaXmFI1zKyT9tRJOlyDGqqWabcmulikvLdSwjT8cy8updX2iAX40RTWan0Uw1X4cF+Ss8yKzQAH95eTGFHgAAAICWxy3BUW5urhYvXqydO3fKYDCoV69euu222xQSEuKO7gEAAACgFpOPt2LCgxUTXr9RTTabTfnFpVWh0qkRTdWjnHIKih3hU/X0ermFxbLZpNzCEuUWluhAana99uVlMCg00N8RJFVPlxcW6K/wYLPCAs1Vz6fehwb6yejFyCYAAAAAnuVycPTTTz9p7Nix8vf316BBg2Sz2fTcc8/pqaee0pdffqkLLrjAHXV6FDeABAAAnsS1COAeBoNBwWY/BZv91Kl9eL22qbBWKrew2HGPppwCe6CUU1DsFEDVHNVkKSpVpc3mWL5fWfWsTwoN8HcauRQWVDNcqhE6BfkrLMis0EB/+XobXTksAFAvXI8AANB2GGw227nfgbaGYcOGqWvXrnr11Vfl7W3PoSoqKjRt2jQdOHBAa9ascUuhzUFrvMkVAACu4vzYdDjWQMtQXmFVTkGxffq8qpFLNUcx5RTY79eUk1/9bA+bGirQ31dhgfawKSzIrPCqkU7Vy+wjn6qX25cF+ZtkMDCVHloHzo9Ni+MNAICz1nhudMuIo5qhkSR5e3vrgQce0MCBA13tHgAAAABaFB9vo9qFBqpdaGC9tymvsCq3KlDKrhEoVQdMNUc45RTYl1VPo1dQXKaC4jIdzcit9/6MXvap9EIDT92T6VTIZL/XVGigf9UUeqfeB/r7EjgBAAAArZzLwVFwcLCOHDminj17Oi0/evSogoKCXO0eAAAAAFo9H2+jokIDFXUOYZO1slJ5hSVVwVJVwJRfpOyq0U65BcWO0Ckn/9RIp5KyClkrbcqqmn6vvlPpSZK30csROIUF+iskwM/xPtTptf05JNC+LMTsJx+m1AMAAABaBJeDo2uvvVa33Xab5s+fr6FDh8pgMGjdunX685//rOuvv94dNQIAAAAATmP08lJ4kFnhQWZJEfXerrisXLkFxbWCJceygmJl5xcrr9C+3r6sSKXlVlVYK5WZV6jMvMJzrjfAz9cpYAoJ8FdooJ9CAvwUHOCn0AB7EBVS1aZ6WXCAH/dxAgAAAJqQy8HR/PnzZTAYdNNNN6miokKS5OPjozvvvFNPP/20ywUCAAAAANzH39dH/uE+igk/t/nXqwOn6pFNuYUlyi2oCpiqQqfcghKn93kFJcovtt+/qbCkTIUlZTqemXfuNZt8FGL2U0ign4LN9rApJMBfIQEmx/ugqudgsz10Cjabqp4JngAAAIBz4XJw5OvrqxdeeEFz587V/v37ZbPZ1LVrV5nNZnfUBwAAAABoBhoaOFVY7VPq5RUWK68qbLIHTiXKLbSHS5aiEkfoVL3cUlgiS5E9dCouLVdxabnScvIbVLufj7eCA/wUZLYHTdXPwWaT07Igf5OCzH4K8jdVratabjbJz8eb+zsBAACgTXA5OKpmNpvVp08fd3XXrKSkpCglJUVWq9XTpQAAgDaIaxEALZm30UsRwWZFBJ/7jwutlZXKLyqtCp7sAVN1CGUpLFFuYYnyi0qUV1hqD5qKS2Sp0baguEySVFJeoZLcAqXnFjT4cxi9DAryNymwKmAK9Dc5wqYAP18F+psU6O+rQD97m8CqZQHVy/yr3vv5yt/XR15ehFBoWbgeAQCg7TDYbDbbuW40c+ZM/e1vf1NAQIBmzpx51rYLFixocHHNjcViUUhIiPLy8hQcfG6/sgMAoLXi/Nh0ONYAcG6qg6f8olJZiuwjmOzPJY5l1c8FRWWyFJc42ucXlyq/yD7V3rn/q/nsDAbJbPKtCpx8Zfazvw7w81WAqfq9j8ymU+vMJh+Zq59NvjJXrzf5yL/GMqOXl3uLbQE4PzYtjjcAAM5a47mxQSOONm/erPLycsfrM2EYPwAAAADAU4xeXgoN9FdooH+D+6istKm4rNwRJhUUl9b5urC4epn9Xk4FxaUqqHouLC5TQUmpCkvKZLNJNtupez6l57rv80qSr7dR/iYf+9SCVaGS47Wvj/x8veXneD712mzycbw2+XjLVPXs7+vj9N7Px1u+PkaZfLzl6+Mtk4+xTYZVAAAArVmDgqOVK1c6Xr/xxhuKj4+X12kXijabTUePHnWtOgAAAAAAPMjLy+AYDdReQS71ZbPZVFxa7giNCkpOhUyFxWUqKi1TUdX6oqp1RaXlzq9Ly1RUUu5oW1y1rHpUVFmFVWUVVuUVlrjh09eP0csg3xqhkq+3t3y9jfLxNla9t7/28ba/9vX21ugB3XTdyPObrEa434y/fyhfP+5vDXjaZYN66JqL+3m6DACtjMv3OEpISFBqaqratWvntDw7O1sJCQnMfQsAAAAAgOyzcpj97NPPRbmxX5vNppLyChWVlKukrFzFZfZAqbi09uuSsgoVl9rblZRVOJbZH/bXpeX2h/PrcpVWtSutqHCavs9aaXPso77io0LceATgCV9u3C0vHz9PlwG0eZ3ah3m6BACtkMvB0ZlukVRQUCA/Py4gAAAAAABoTAaDwT4dna9Pk+zPZrOpwlqpsgqrSssrVFZudQRMZRVWlVU9l1dYVVZuPfW6wqqyigqVV1jVs2N0k9SKxjP7prHyDwj0dBlAm9e7E/89BeB+DQ6OZs6cKcl+gfrYY4/JbD41PNlqteqHH35Q//79XS4QAAAAAAA0HwaDwTH1XICfr6fLgYf8ftQFreYG4AAAwFmDg6PNmzdLsv/SaOvWrfL1PXWx6Ovrq379+un+++93vUIAAAAAAAAAAAA0iQYHRytXrpQkTZ06VS+88AK/MgEAAAAAAAAAAGjhvFzt4PXXX2/1oVFKSooSExOVnJzs6VIAAEAbxLUIAADwNK5HAABoOww2m83mjo527NihI0eOqKyszGn5FVdc4Y7umwWLxaKQkBDl5eW1+rAMAID64vzYdDjWAADUxvmxaXG8AQBw1hrPjQ2eqq7agQMHNGnSJG3dulUGg0HVOZTBYJAkWa1WV3cBAAAAAAAAAACAJuDyVHX33HOPEhISdPLkSZnNZm3fvl1r1qzRwIEDtWrVKjeUCAAAAAAAAAAAgKbg8oij77//Xt98842ioqLk5eUlLy8vXXTRRZo7d67uvvtubd682R11AgAAAAAAAAAAoJG5POLIarUqMDBQkhQZGakTJ05Iks477zzt3r3b1e4BAAAAAAAAAADQRFwecZSUlKRffvlFnTt31uDBgzVv3jz5+vpq0aJF6ty5sztqBAAAAAAAAAAAQBNwOTh65JFHVFRUJEmaM2eOxo8fr2HDhikiIkLvvvuuywUCAAAAAAAAAACgabgUHJWXl+vpp5/WK6+8Iknq3LmzduzYoezsbIWFhclgMLilSAAAAAAAAAAAADQ+l4IjHx8fbdu2rVZAFB4e7lJRAAAAAAAAAAAAaHpernZw0003afHixe6oBQAAAAAAAAAAAB7k8j2OysrK9Nprr+mrr77SwIEDFRAQ4LR+wYIFru6iQSZNmqRVq1Zp1KhRev/99x3Lvb29lZSUJEkaOHCgXnvtNY/UBwAAAAAAAAAA0Ny4HBxt27ZNF1xwgSRpz549Tus8eY+ju+++W7feeqveeOMNp+WhoaHasmWLZ4oCAAAAAAAAAABoxlwOjlauXOmOOtxu5MiRWrVqlafLAAAAAAAAAAAAaDFcvsfRkSNHZLPZzriuIdasWaMJEyYoNjZWBoNBH330Ua02CxcuVEJCgvz8/DRgwACtXbu2Xn1bLBYNGDBAF110kVavXt2g+gAAAAAAAAAAAFojl4OjhIQEZWRk1FqelZWlhISEBvVZWFiofv366R//+Eed6999913de++9evjhh7V582YNGzZM48aNq1dQdejQIW3cuFEvv/yybrrpJlkslgbVCAAAAAAAAAAA0Nq4PFWdzWar815GBQUF8vPza1Cf48aN07hx4864fsGCBbrttts0bdo0SdLzzz+v5cuX66WXXtLcuXPP2ndsbKwkKSkpSYmJidqzZ48GDhxYZ9vS0lKVlpY63hMyAQCApsS1CAAA8DSuRwAAaHsaHBzNnDlTkmQwGPToo4/KbDY71lmtVv3www/q37+/ywWerqysTBs3btSsWbOclo8ZM0bffffdWbfNycmR2WyWyWTSsWPHtGPHDnXu3PmM7efOnavZs2e7pW4AAIBzxbUIAADwNK5HAABoexocHG3evFmSfcTR1q1b5evr61jn6+urfv366f7773e9wtNkZmbKarUqOjraaXl0dLTS0tIc78eOHatNmzapsLBQ8fHxWrZsmcrLy/XHP/5RXl5eMhgMeuGFFxQeHn7GfT300EOOgEyy/6qmQ4cObv9MAAAAdeFaBAAAeBrXIwAAtD0NDo5WrlwpSZo6dapeeOEFBQcHu62o+jh9erzTp8xbvnx5ndtt3bq13vswmUwymUxKSUlRSkqKrFZrw4oFAABoAK5FAACAp3E9AgBA2+Plagevv/56k4ZGkZGRMhqNTqOLJCk9Pb3WKCR3mTFjhnbs2KENGzY0Sv8AAABnw7UIAADwNK5HAABoOxo84qimFStWaMWKFUpPT1dlZaXTuiVLlrhjFw6+vr4aMGCAvvrqK02aNMmx/KuvvtKVV17p1n0BAAAAAAAAAAC0JS4HR7Nnz9YTTzyhgQMHKiYmptYUcg1RUFCgffv2Od4fPHhQW7ZsUXh4uDp27KiZM2dqypQpGjhwoIYMGaJFixbpyJEjuuOOO1zed10Yjg0AADypsa9FKitt8vJy/RoOAAC0Xnw3AgBA22Gw2Ww2VzqIiYnRvHnzNGXKFHfVpFWrVmnkyJG1lt98881aunSpJGnhwoWaN2+eUlNTlZSUpOeee04XX3yx22qoi8ViUUhIiPLy8pr8nk4AnC1Zd1Cbj+bWue5MX33WlWufuW3da874teoZVhjOsOJMGXtdi8/c9hz7Psfiz6XGM7V3x+e3tz+3L7TP5Zi543Palzfe34zbanTT/x6nb1BSWKCHJw3g/NgEGuNaZO3eDD31+S69cWuy2gX5uaVPAACaEv9Wb1ocbwAAnLXGc6PLI47Kyso0dOhQd9TiMGLECP1anjV9+nRNnz7drfsF0HJsPJyjz7ameroMAJIqS4s8XQIaqMJaqdn/3aF96QWa+voG/fsPv1GQn4+nywIAAAAAAB7kcnA0bdo0vf3223r00UfdUU+zxHBsoPm5ekC8BnYKq7X8TJlzXYvPdcDlmfuue8W51HKm9ufa95mc6bO6o0Z7+9orzrXvM23gjlrO1N5dfZ/j4nP636MxP//ZnLHGOpaVFBbo2XPrHueosa5FvI1eWnzzQF310nfafsKiO97aqNdvGSRfby+37gcAALR8fDcCAEDb4fJUdffcc4/++c9/qm/fvurbt698fJx/pbpgwQKXCmxOWuOQMwAAXMX5sek01rH+5Viurlu0XkVlVl3ZP1bP/a4/9zwCALQYXIs0LY43AADOWuO50eURR7/88ov69+8vSdq2bZvTunO9JwUAAACaXt/4UL104wDdtnSDPt5yQu2CTHr4t4meLgsAAAAAAHiAy8HRypUr3VEHAAAAPGh49yjNu7qvZv7nZ7269qCig/00bVhnT5cFAAAAAACamFsmsF+7dq1uvPFGDR06VMePH5ckvfnmm1q3bp07uve4lJQUJSYmKjk52dOlAACANqiprkUmXxCvWeN6SpLmfLZTH2853qj7AwAALQffjQAA0Ha4HBx98MEHGjt2rPz9/bVp0yaVlpZKkvLz8/XUU0+5XGBzMGPGDO3YsUMbNmzwdCkAAKANasprkT9e3FlTL+wkSbr/vZ/17b7MRt8nAABo/vhuBACAtsPl4GjOnDl6+eWX9eqrr8rHx8exfOjQodq0aZOr3QMAAKAJGQwGPfrbRP22b4zKrTb98c2N2nY8z9NlAQAAAACAJuJycLR7925dfPHFtZYHBwcrNzfX1e4BAADQxLy8DFrwu376TedwFZRW6JbXN+hodpGnywIAAAAAAE3A5eAoJiZG+/btq7V83bp16ty5ddxQmXl8AQCAJ3niWsTkbdSimwaqZ/sgZRaU6pbXf1R+SXmT7R8AADQvfDcCAEDbYbDZbDZXOpg3b57eeOMNLVmyRKNHj9bnn3+uw4cP67777tNjjz2mP/3pT+6q1eMsFotCQkKUl5en4OBgT5cDAECzwPmx6XjiWJ+0lOjKf3yrNEuJxvaO1ks3DJCXl6FJ9g0AQH1wLdK0ON4AADhrjedGb1c7eOCBB5SXl6eRI0eqpKREF198sUwmk+6///5WFRoBAAC0RdHBfnrpxgt07SvrtXz7Sb20er9mjOzq6bIAAAAAAEAjcXmqOkl68sknlZmZqR9//FHr169XRkaG/va3v7mjawAAAHjY+R3DNPvK3pKk+V/u1qrd6R6uCAAAAAAANBa3BEeSZDabNXDgQA0aNEiBgYHu6hYAAADNwPWDOur6QR1ks0n3/HuLjmQVebokAAAAAADQCFwOjubOnaslS5bUWr5kyRI988wzrnYPAACAZuLxK3qrf4dQ5RWX6w9v/qSisgpPlwQAAAAAANzM5eDolVdeUc+ePWst7927t15++WVXu28WUlJSlJiYqOTkZE+XAgAA2qDmci1i8jbqpRsvUGSgr3al5WvWB1tls9k8WhMAAGgazeV6BAAAND6DzcV/7fv5+Wnnzp1KSEhwWn7gwAElJiaqpKTEpQKbE4vFopCQEOXl5Sk4ONjT5QAA0Cxwfmw6zeVY/3AgSze89oMqKm165Le9NG1YZ4/VAgBAczk/thUcbwAAnLXGc6PLI446dOigb7/9ttbyb7/9VrGxsa52DwAAgGZmcOcIPfLbXpKkuf/bpe/2Z3q4IgAAAAAA4C4uB0fTpk3Tvffeq9dff12HDx/W4cOHtWTJEt133326/fbb3VEjAAAAmpmbh3bS5PPjZK206a63N+tEbrGnSwIAAAAAAG7g7WoHDzzwgLKzszV9+nSVlZVJsk9f9+CDD+qhhx5yuUAAAAA0PwaDQU9N7qPdJ/O1/YRFd761Ue/+cYj8fIyeLg0AAAAAALjA5RFHBoNBzzzzjDIyMrR+/Xr9/PPPys7O1mOPPeaO+gAAANBM+fkY9fKNAxRm9tHPx/L07PLdni4JAAAAAAC4yOXgqFpgYKCSk5OVlJQkk8nkrm6bhZSUFCUmJio5OdnTpQAAgDaoOV+LdAg3a8Hv+kuSFq87qDV7MjxbEAAAaBTN+XoEAAC4l8Fms9lc7WTFihVasWKF0tPTVVlZ6bRuyZIlrnbfbFgsFoWEhCgvL0/BwcGeLgcAgGaB82PTac7H+rGPt+mf3x9WuyCTvrj3YoUH+Hq6JABAG9Gcz4+tEccbAABnrfHc6PKIo9mzZ2vMmDFasWKFMjMzlZOT4/QAAABA6/eXy3upa7tApeeX6sEPfpEbfpsEAAAAAAA8wNvVDl5++WUtXbpUU6ZMcUc9AAAAaIH8fIx64br+mpjyrb7acVL/3nBU1w/q6OmyAAAAAADAOXJ5xFFZWZmGDh3qjloAAADQgvWODdEDY3tKkp747w4dyCjwcEUAAAAAAOBcuRwcTZs2TW+//bY7agEAAEALd9tFCbqwa4SKy626990tKrdW/vpGAAAAAACg2XB5qrqSkhItWrRIX3/9tfr27SsfHx+n9QsWLHB1FwAAAGghvLwM+n/X9NfY59fol2N5ev7rPfpz1SgkAAAAAADQ/LkcHP3yyy/q37+/JGnbtm1O6wwGg6vdAwAAoIVpH+Knpyf30Z3/2qSFq/br4m5RGtw5wtNlAQAAAACAenA5OFq5cqU76gAAAEArMq5PjH43MF7/+emYZv7nZ31+zzCF+Pv8+oYAAAAAAMCjXA6OJCk3N1eLFy/Wzp07ZTAYlJiYqFtvvVUhISHu6B4AAAAt0F8n9NYPB7N1OKtIj3y0TX+/rj8j0gEAAAAAaOa8XO3gp59+UpcuXfTcc88pOztbmZmZWrBggbp06aJNmza5o0aPS0lJUWJiopKTkz1dCgAAaINa6rVIgMlbz1/bX0Yvg/778wl9tOW4p0sCAAAN1FKvRwAAwLkz2Gw2mysdDBs2TF27dtWrr74qb2/7AKaKigpNmzZNBw4c0Jo1a9xSaHNgsVgUEhKigB4XyujrJ6O3j7x9fOXra5LZ30+BAf4KCw5UVGiQIkODFBEapIiQIAWa/RUQYFaA2V8B/n5Vz/4KCPB3vPb3M/ELXABAi1R9fszLy1NwcLCny2nVGuNYhw34rSoKLbrjrrv07IzfuaXP0/19xV4t+GqPQvx99NXMi9UuyK9R9gMAaJu4FmlaHG8AAJy1xnOjy1PV/fTTT06hkSR5e3vrgQce0MCBA13tvnmyVqiyrESVZSUql1QsKc/FLg0GgyNYCqwOmcz+CjT7y+x/6nVAQNWz2XxqmfnUssAAswIdgZSf0/8uAAAAp7P/hsim8nJro+1j+ogu+nJHmrYdt2j2f3co5fcXNNq+AAAAAACAa1xOFYKDg3XkyBH17NnTafnRo0cVFBTkavfN0qOPPaaTlhIdy8xVRnaeci0Fyi8oVFFxscpLS1RZUSZbRbls1nKp0ipbpbX2s7XC/myrlGT/0qagsEgFhUU6mZnttlr9TL72QKk6YAqwv64Op4ICzAoIqHqutf7U66AAeyjFyCgAAFob+3ndam284Mjb6KWnJ/fVlSnf6rNfUjWx/0mNToxutP0BAAAAAICGczk4uvbaa3Xbbbdp/vz5Gjp0qAwGg9atW6c///nPuv76691RY7Nz55UXnXHImc1mk6W4QmmWEh3LKdT+tFwdSs/T0Yx8ncwtUKalULn5RSotK5Os5aqsKJetvES28lLJWiZbZWVVuFRhf7ZWB04VtQIoVVrl4yV5qVIGW6Vs1gpZKypUVlaqykp7IFVSWqaS0jJl5eS65bN7eXk5hUynvw6segQHmh3hU1CAf43lAY7XQQFmmXx93VIXAABomOofhFitlY26n6S4EN0+rLNeXr1fj360TYM7hyvYz6dR9wkAAAAAAM6dy8HR/PnzZTAYdNNNN6miokKS5OPjozvvvFNPP/20ywW2NAaDQSFmH4WYfdSjfZBG9WpfZ7uC0gql5RXrRG6JUquej2Tl62iGRcez85WRW6jS0lL7qCVrhWzWcqfXqqz9q2CD7P+DektVAZQ9bLJVWuXrZVOIv6+C/b0V4GuUn7eXfI2Sr5ehKniyqrIqdCosKlFhUZHyC4tUUFSswqpnSaqsrFRefoHy8gvccrx8fXwcIVJQoHO4FBQYoEDzqRAqKDCgql2AggLNp14H2Jf7+vLlEwAA58wRHFU0+q7uvbSb/rctVYezijTvi12aM7FPo+8TAAAAAACcG5eDI19fX73wwguaO3eu9u/fL5vNpq5du8psNrujvlYr0OStru2C1LVd3dP52Ww25RaV63husU7kFjs9H88t0bGsQmVaCk8FShVVgVLV+5qvVVkpq6Rsq5TtyHtO/1WxlyRfeRv9FBUSq+gOQeoSFqTosEBFhwWpXWiAQgNMCjb5yN/HS0ZDpSNQKiisCpmqHs6v7esLioqUX1DoWFdcUipJKisvV3ZunrJzXb1LlH1avqDAAAU7BUxV7wPNCgoIUHBQ9fuqdVXtgoMCFRRoVkhgIAEUAKBNqR5xVGmzNfq+/HyMmju5j37/6g96a/0RXdk/Tsmdwht9vwAAAAAAoP5cDo6qmc1m9enDr0bdxWAwKCzAV2EBvkqKC6mzTUm59VSYlFOsYznFOpZTpOO5xTqaXayT+SWy2VR1T6WqQKmiouq1/T5M3rLK21Yha0WZSkvLVGGtVGp2vlKz889an6+3UdFhQWofHqT2Vc8xkVHq1T1IMRHBigkPVvvwIJl86v4Tq6iocAqYLAVVQVONcKmgqEiWgsKqNsWyFBTa11e1ya9qXx1CVU/Ll5GV49KxN/n6OgKm6pDJ/j7QvqxG+BQSFOhYFxJkD6CCAwMUYPbnXlAAgJbB4CWp8aeqqza0S6SuHdhB7/50VLM++EWf3T1Mfj7GJtk3AAAAAAD4dS4HR3PnzlV0dLRuvfVWp+VLlixRRkaGHnzwQVd3gTPw8zGqc1SgOkcF1rm+tMKqE7klOppdpKM5RTqWU6wj2UU6ll2koznFyi4skyRVT3rna6u0T4VXYQ+WvG1WBfnY5OdVKUNlucqrprGzFBarrMKqoxm5OpqRe9YaI4LNigm3B0kxEfZQKTY8WLGRIVXLItQhtu7p/OqrvPxUCJVfUChLoT1csuQXOsKl/IIi5RcWKi+/wP66qp0l/1QYVT0dX2lZmTKyXAugjEajggPN9rCpOlgKtodLIUFBjvApJDjIaVlIUKD9ERzI/Z8AAE2kasRRHdPgNpa/XN5L3+xO1/6MQi1cuU8zx/Rosn0DAAAAAICzczk4euWVV/T222/XWt67d29dd911BEceZPI2KiEyQAmRAXWuzy8p19Fse5h0NLtIR7KLdCirUEeyi3Q8p1gVlTZZJFkcHUoKsgdMPjaroswGhfsZFGC0yWirkLW8TEXFxcq2FCo1y6KS8gplWYqUZSnStkNpZ6wzLNBfsRHBio0IUWxksOIiQ5we7cOC5G30OuP2Pj7eCg8NVnhocIOPlSRZrVblFxY5wqS8AnvIZMkvqHpfWPW6SJaCAuXl299bqpbn5RfKUlAoq9Uqq9WqnLx85eSdfeTW2fiZfKuCJXuYFBocWDXCqTqEClRocJBCq9sEByokKEihwfblTLkHAKiP6hGyFU004kiSQsw+euKK3rrzX5u0cNV+Xd43Rj3bu3YeBwAAAAAA7uFycJSWlqaYmJhay6OiopSamupq92hEQX4+Soz1UWJs7S9qKqyVOpFbokNZhTqcXaTDmYU6lFWkw1Xvyyq8lFoipZZUb+EtyU9SsMyhRvXqYlaHUJMi/KQAb5t8VKGK0lJl5BboRLZFJ7IsOpGZp6LScuUUFCunoFjbD5+ss04vg0Htw4MUFxmi+MgQxUXZn+MjQxUfFaL4qFAF+Lk+OsdoNDqCmIay2WwqKi6RJd8ePNkDpQL7+xohU/X7vPwC5VryZckvtIdRFnsbqWrqvYwsnczIalAt/n4me7gUUh0uBSms6nVocJBCqgKm6vVhNV6b/f2Yag8A2oqq/9zbmuAeRzVdltReYxKj9eWOk5r1wVZ9cOdQGb049wAAAAAA4GkuB0cdOnTQt99+q4SEBKfl3377rWJjY13tvsEmTZqkVatWadSoUXr//fed1hUVFalXr1665pprNH/+fA9V2Lx5G73UMcKsjhHmWuuslTal5hXrYGahDmUW6mBmkQ5mFuhgZqGO5hSrqMyqHan52pFae7RNXGiQusTGaHS/QHWOMismyFcBxkoVFhXreFZeVaBk0fGsPB3PzFNqlkVlFVb78iyLNuw+Wme9YYH+io8KVYeoUHVoF2J/jgpVh3ah6tguzC3BUn0YDAYFmP0VYPZXTHRkg/qoHvmUZ6kOnQqUUxUu5eXnO5bnWgoc73Mt+Y4AKi+/QJJUXFKq4pJSpTUgePLx8XYETKHB9sApLCS46nWwQkNOhVBhocEKCwlWeNV6RjoBQEtjD2ua6h5Hjr0aDHriyiR9vz9LW47m6o3vDunWixJ+fUMAAAAAANCoXA6Opk2bpnvvvVfl5eW65JJLJEkrVqzQAw88oP/7v/9zucCGuvvuu3XrrbfqjTfeqLXuySef1ODBgz1QVetg9DIoPsys+DCzhnWLclpXVlGpozlFOpBRqAMZBdqfUaADGYXan1GgnKJyHc8t1vHcYq3Zk+G0XUSAr7pFB6pbu3YaOKCzrm8XpB7tgxTq76OMvAIdz7QHSccyqp4z83QsI1fHMvOUV1jiGLW09WDdo9zCgvzVsV2YOkaFqmO7UHWMDlPHdmE6LzpMcZEh8vVuPjfldnXkk9VqlaXAHiDl5uU7nnMs+cqrCphyLacCpxxLvnLzTi2vqLCqvLxCGVk5DbrPU6DZvypYCq7xsAdM4aEhjvfhoSEKD7FPMRgWGsw9nQDAQ6pHmFbamjY4kqT2IX6adXlPPbxsm+Z/uVujE6PVIbz2j1YAAAAAAEDTcTk4euCBB5Sdna3p06errKxMkuTn56cHH3xQDz30kMsFNtTIkSO1atWqWsv37t2rXbt2acKECdq2bVvTF9bK+Xp7qUtUoLpEBUqKdlqXXVim/RkF2pduf+zPKNDekwU6nlusrMIyZR3I1voD2U7bRAb6qnt0kLpHB6ln+yD9pn+sukcHKcB06k83v6hURzNydSwjV0erH+l5OpKRo2PpucotLFFOfrFy8ov18/4TtWr2MhgUFxmi86LDHI9O0WHq1D5cnaLDFWQ2NcqxaixGo9ER2Cj+3La12WwqLCp2hEjVgVNOnsURLlW/zqnxPifPolxLgWw2mwqKilVQVKxjqenntO8As789RKoKk8JDQ2q8t7+OCAt1rIsIC1FIUCBT6gGAq6r+O2qrbPrgSJKuT+6ojzef0I+HsvXwR9v0xtRk/tsOAAAAAIAHuRwcGQwGPfPMM3r00Ue1c+dO+fv7q1u3bjKZGv5l+5o1a/Tss89q48aNSk1N1bJlyzRx4kSnNgsXLtSzzz6r1NRU9e7dW88//7yGDRv2q33ff//9evbZZ/Xdd981uD40THiAr8IDwpXcKdxpeVFZhfanF2pver72nCzQ3pP52pOer6PZxcosKFNmQZa+2+883VrHcLN6xQSpZ/tg9YoJVq+YIF3aoZ286rg3gqWoREfTc3Uk3R4qHTmZoyPpuTqcnqMj6TkqKatwBE7rth2sXXeQWQntw9WpfbgS2ocpISZCCe3DldA+XKGB/u49SB5mMBgUGGBWYIBZ8THRv75BDVarVXn5hafCpFx7oJSda3Esy87NU1Zu7XWVlfbpCguLinX0RN33uqqL0WjU3Af/pDtvuuZcPyoAoIpjxFFl097jqJqXl0Fzr+qjcc+v1Zo9Gfp8a5p+27f2/TMBAAAAAEDTcDk4qhYYGKjk5GS39FVYWKh+/fpp6tSpuuqqq2qtf/fdd3Xvvfdq4cKFuvDCC/XKK69o3Lhx2rFjhzp27HjGfj/++GN1795d3bt3JzhqRsy+3uoTH6I+8SFOywtLK7QvvUC7T+Zrd1q+9pzM1660fGXkl+pIdpGOZBdp+fZTIUOgyVu9YoKUGBOsxNhgJcaEqHv7QAWb/dS7U3v17tS+1r5tNpvScwt0+GSODp3M0ZGq58Mns3XoZI4y8wqVnV+k7Pwibdx7rNb2YUH+6hIToYT2EeocG64uMRHqHBOhhJgImU1t614/RqOxajRQsKS4em9XWVmpvPwC5eTlKzs3r+phD5eycy1Oy+zBk/11YVGxrFar/P39Gu9DAUCbUDXiyOaZ4EiSukQF6s4RXfTCir168rMduqRnO/n7Np9pZAEAAAAAaEvcFhy507hx4zRu3Lgzrl+wYIFuu+02TZs2TZL0/PPPa/ny5XrppZc0d+7cM263fv16/fvf/9Z7772ngoIClZeXKzg4WI899lid7UtLS1VaWup4b7FYGviJ0BABJm/16xCqfh1CnZZnFZRqd1q+dqbla2eqRbvSLNpzskAFpRXacChHGw6dui+Pt5dB3aOD1CcuRElxwUqKC1GvmGD5+di/jDIYDIoOC1J0WJAG9awdOhYUl+rQyRwdSsvWwbRsHUrL1oHUbB1My9LJnALl5Bfrp/xj+mlP7VApNiJYXWMj1TUuQl1jI9UlNlJd4yIVEx7EFDw1eHl5OabW69yx/oFTSWmpsnMtCgzgXhgAWq+muBYJ656svNwu6tX3fLf3fS7uGN5F7288puO5xXpp9X7NHN3do/UAAAA7vhsBAKDtaZbB0dmUlZVp48aNmjVrltPyMWPG/Oooorlz5zqCpaVLl2rbtm1nDI2q28+ePdv1ouFWEYEmDe1q0tCukY5lFdZK7c8o1I7UPO04YdGOVIu2n7Aot6hcO1Lt79/9yd62ZpjUJz5E/eJD1TMmSD5Gr1r7CvQ3KalTeyXVMVqpsKRMB9OydeBElg6kZenAiWwdSM3S/hOZyi0s0Yksi05kWbRm6wGn7QL8fNU1LlLdHI8odY+P0nnRYfKuowbUzc9kUmx0lKfLAIBG1RTXIl6+Jnn5mOTt49mRsv6+Rj38216a/q9Nenn1fl0zIF4dwvlxAAAAnsZ3IwAAtD0tLjjKzMyU1WpVdLTz/Veio6OVlpbmeD927Fht2rRJhYWFio+P17Jly855Kr2HHnpIM2fOdLy3WCzq0KGDax8AjcLb6KUe7YPUo32QJlX9YNpms+l4brG2Hbdo+4k8bT2ep63H8pRVWFYjTDoqSTJ5e6l3bLD6dQhV/w6huqBjmOLD/M86MijAz/eMoVKWpUj7T2TqQGqW9h3P1L4TWdp3IlOHT+aosKRMP+8/oZ/3n3DaxtfbqC6xEeoebw+SenRop54d2qlT+zAZvQiUAKAtaoprkeoznQdnqnMYl9ReQzpH6PsDWXrys516ecoAT5cEAECbx3cjAAC0PS0uOKp2+hf6NpvNadny5cvPuv0tt9zyq/swmUwymUxKSUlRSkqKrFZrg2qFZxgMBsWHmRUfZtZlSfZwx2azKTWvRL8cy9O243n6+ViufjmWp7zicm06kqtNR3Id20cGmnR+R3uIdEFH+5R51VPc/ZqIYLMigjvWmv6uvMKqQydztPd4hvYey9Te45nacyxD+05kqri0XDuPpGvnkXSnbfx8vNU1LlI9OrRT4nnt1LNjtHp1bKf2YUx5BwCtXZNci1SdSiqbQXJkMBj01ysS9du/r9MX29O0bm+mLuoW+esbAgCARsN3IwAAtD0GWwPvhFzfOW2Dg4Mb0r2DwWDQsmXLNHHiREn2qerMZrPee+89TZo0ydHunnvu0ZYtW7R69WqX9nc2FotFISEhysvLc/lzofmw2Ww6lFWkn4/masvRXG0+mqsdJ/JUbnX+v4aP0aDesSEaeF6YBnYK08BO4YoMNLmlhspKm45l5mrPsQztPpqhPccytOtouvYcy1BJWUWd24QF+qvXedFKPC9aiR2jldgpWj3i28nPt8XmwQBaKM6PTacxjnWvO15Ubna2brtypObccLFb+nTV459s19LvDqlbu0B9fs+wOqeTBQCgGtciTYvjDQCAs9Z4bmzwN8yhoaFnHe1QPQLI3b9E8fX11YABA/TVV185BUdfffWVrrzySrfuC22DwWBQQmSAEiIDNPH8OElSSblV20/kadPhXG06kqONh3OUnl+qLVXh0mvrDkqSukQFaFBChAYnhGtQQrhiQ/0bVIOXl0Ed24WpY7swXXrBqZuBWysrdTQ9VzuPpGvX0XTtOpKunUdO6kBqlnIKivXd9kP6bvshR3ujl0Hd4qKUlNBevTu1V59O7ZWUEKOQAL+GHyAAQKtmqBpy1BxGHFW779Lu+uTnE9qbXqA3vz+sWy9K8HRJAAA3WfX9T/p+4y9K7tdblw4b7OlyAKDF+ubbDfp+4y+KiY5UbHSUYqOjFBMdqciws39nCwD10eDgaOXKlY7XNptNl19+uV577TXFxcW5XFRBQYH27dvneH/w4EFt2bJF4eHh6tixo2bOnKkpU6Zo4MCBGjJkiBYtWqQjR47ojjvucHnfdWE4dtvj52PUgPPCNeC8cEn2v/FjOcX66XC2fjqUo58O5Wj3yXztzyjU/oxCvfPjEUlSx3CzhnSO0JAu9kd0sGuBjdHLS53ah6tT+3CNG9TTsbykrEJ7j2dox+GTjsf2w2nKyS+2B0xH0/X+ml8c7c+LDlOfhBj17RzjeA4P4objANBStLVrkRCzj/48toce+nCrnvt6j67oH+u2Ub4AAM9a+d1PWvDqW5px8+8IjlqYtnY9AjR3X61dr38sfbfWcl8fH8W0i1Rs+yhHoBTXvp3ioqMU297+un1UhIzG+t2OAUDb1OCp6k4XFBSkn3/+WZ07d3a5r1WrVmnkyJG1lt98881aunSpJGnhwoWaN2+eUlNTlZSUpOeee04XX9y406u0xiFnaLjcojJtOJSjHw9m6ceD2dp6PE+Vp/2/qXNUgC7qGqmLukbqN10iFOzn02j12Gw2pWbna/uhNG09mKrth05q68FUHc3IrbP9edFh6tc5Vv26xKh/lzj16xKrAD/fRqsPQOvF+bHpNMaxTrzzH8rJytItE4Zr7pQRbunTHayVNl2Zsk7bjlt07cAOeubqvp4uCQDgBrOfe0XzX3lTd065WvMevtctfXIt0rQ43kDz8PGXq7Vi3Q86cTJTqekZOnEyQ5nZufXa1mg0qn1UhGKjoxQf084eLLVvpw4x0YqLsT9HRYTJy4spo4H6aI3nxmZ5M5QRI0bo1/Ks6dOna/r06U1UEVBbqNlXoxOjNToxWpKUX1KuDYey9f3+LH1/IEvbT1h0IKNQBzIK9c/vD8voZVC/+BBd3D1Kw7tHqW98qIxe7hs6bDAYFBsRrNiIYI0ecGq6u9yCYm09mGp/HEjTzwdO6GBatg6fzNHhkzn65PvtkiQvg0E9OkTp/K5xOr9rnAZ0j1f3+CgZuUgAgFateqq65sboZdDjE3rr6pe/1382HtXvB3dUvw6hni4LAOCi6umTKk//1R0A4JxcOWa4rhwz3GlZWVm5UtMzdSI9Q6knM3TiZKaOp6UrNT1Tx1LTdeKk/XVFhVXH09J1PC1dG37eXmf/vj4+imsfpfiYaMXHRKtDbLQ6xLZXhxj7c3xMO5n9uTUC0Fo1y+CouWE4NuojyM9Hl/SM1iU97UFSXlG5vj+QpXX7MvTtviwdzCzUpiO52nQkV89/vVdhZh8N62YPkUb0iFJEI03BExror2F9OmtYn1OjAavDpC37T2jLvhPasv+4TmRZtPNIunYeSdfb32yWJAX6+9pDpG7xGtijgwZ278D9kgDAA5riWqQ53eOo2sBO4Zp0fpyWbT6ux/+7XR/cMVRebvzRBQCg6VX/et1Nk5+gCfHdCND8+fr66Lz4GJ0XH3PGNlarVemZOTp+Ml3HU9N1/GS6jqXaQ6Rjqek6lnpSaRlZKisv18GjJ3Tw6Ikz9hUZHqqOse3VIba9Osa1V8eq5/PiYtQxLkZBgdwmAWip3DpV3S+//KKEhNZ78+LWOOQMTedYTpHW7c3Umr0ZWrs3U/klFY51BoN0fodQjeoVrVG92qlHdFCT38jwZE6+Nu87rk17j2vzPvujsKTMqY3BIPWIb6dBPTsouUdHDe7VUR2iQpu0TgDND+fHptMYxzppeoqyMjN10/iL9cxNtacK9rSTlhKNnL9KRWVW/b9r+umqAfGeLgkA4IIn/75YTy98Xbf/fpIWPPZ/bumTa5GmxfEGWr/y8gr7KKW0kzp24qSOpp7UsdSTOnKi6v2JNOUXFv1qP2EhwTovrr3Oi49Vx7j26hQfo/PiY3VefIw6xcfIz8R9TNE6tMZzY4NHHE2ePNnpfUlJie644w4FBAQ4Lf/www8bugugVYkPM+u6QR113aCOqrBWavPRXK3enaFvdqVrR6rFMRrp2eW7FR/mr7G922ts7/YacF6YW6e0O5PosCBdltxTlyX3lCRZKyu160i6Nu49po17jumnPUd1IDVbu46ma9fRdP3zq42SpLjIEA1JPE+/6WV/dI4Jb/LQCwDgiqr/ZjfTH35HB/vprku66ZkvdunpL3ZpTO9oBTXiPQMBAI2reuQoU9UBQPPl4+NtH0EU114aUHu9zWZTriVfR0+c1JETaTp6PE1HTqTpyPE0HTmeqiMnTio7N085eRbl5Fm0ZceeOvcT0y5SnTrEqlN8rBI6xKpTh1gldIhT545xiooI4/slwIMaHByFhIQ4vb/xxhtdLgZoK7yNXkruFK7kTuG6f2wPpeYV65td6fpmZ7rW7cvUsZxiLV53UIvXHVRkoP1eSuOSYjS0S4S8jU1zzyGjl5d6d2qv3p3a66bRAyVJGbkF+nH3UW3YfUQ/7jqqXw6c0PHMPL2/5he9v+YXSVL7sCAN7d1JFyUl6MKkTurYLqxJ6gUAuKY5Txl060Wd9O6GIzqUVaR/rNynh8b18nRJAIAGqv4SsDmfdwAAZ2cwGBQWEqywkGD17dWtzjaWgkIdPZ6mw8dTdfhYqg4fT9WhY6k6fOyEDh9LVX5hkVLTM5WanqnvN/5Sa/sAs78SOsQqoWOcOneMV+eOcVWPeMXHtHNMfQqgcTQ4OHr99dfdWUezxjy+aGwxIf66YfB5umHweSous2rN3gwt35amr3eeVGZBmd758aje+fGowgN8NbZ3e03oG6PBnSOaZCRSTVGhgfrt4F767WD7F3aFJWX6ac9Rrd9xWOt3HtGmvceUlpOvD9dt1YfrtkqSOkSF6uK+nTW8b2ddmJSg8CDmtwWAc9XWr0VM3kY9Oj5Rt73xk17/9pBuGtJJcaH+ni4LANAABEctV1u/HgFwboIDA9S7Rxf17tGl1jqbzaas3DwdPpaqQ1X3UTp49HjV6+M6lpquwqJibdu9X9t276+1vcnXVwkdY9W5Y7y6nBevrp06qFunDuraqaPat4tgpBLgBm67x1Fb0BrnKkTzVm6t1PoDWfrftjR9sS1N2YWn7jkUGWjSFf1iNfmCOPWODW4WJ8XisnJt3HNM67Yd1HfbD2nzvuOqsFY61hsMUp+EGI3o10WXnN9NA7rFN9kIKgCNh/Nj02mMY91nxkJlZmToxsuH6dlbLnFLn43BZrPpukXr9cPBbF09IF7zr+nn6ZIAAA0w76Wl+tsLr+mWayboxb896JY+uRZpWhxvAI2ttKxMR46n6cCR4zp45LgOHDmmA0dOaP/hozp8PFXl5RVn3DbA7O8IkroldLS/TuiobgkdFRjAj5nROFrjubHBI44AND4fo5eGdYvSsG5ReuKK3lp/IFuf/nJCX2xPU2ZBqZZ8e1BLvj2oru0CNen8OE06P06xHvwFtr+vjy5KStBFSQmS7COS1u84rNW/7NearQe0+2iGfjmQql8OpOrvy9YpJMBPF/fprEvO76pR53dTVGigx2oHgLbO1lxvclTFYDDooct7aWLKt/pg0zFNG5agnu1bxwU5ALQljhFHHq4DANB8mXx9HWHP6SoqKnQ09aQOHD6u/YePav/hY9p3+Jj2HzqqQ8dSVVhUrJ937NHPddxXKa59O3Xv3FE9OndyPPfocp7aRXK/buB0BEdAC+Ft9NJF3SJ1UbdI/W1iktbsydCHm4/rqx0ntS+9QM8u3635X+7Wxd2idF1yB43qFS1fb8+O5gnw89WoC7pp1AX2+W7TsvO15pf9Wrllv1b/sl85BcX67/od+u/6HTIYpPO7xmn0gO4aM6CHenVsx0kbAJpQSxiD3r9DqC7v016fb03TM//bpdenDvJ0SQCAc8ZUdQCAhvP29lZChzgldIjTqIuc/z1QVlauQ8dStffQEe096PzIzM7V8bR0HU9L18rvfnLaLiwkSN07d1LPrp3Us0sn9eqaoF7dEhTTLpLvptBmERzVA/P4ornxMXppVK9ojeoVLUtJub7YmqYPNh3TDweztXpPhlbvyVBEgK+uGhCv6wd1VEJkgKdLliS1Dw/S70b01+9G9Je1slJb9p3QN1v2asXmffp5/wlt2ntcm/Ye1zP/XqkOUaEaN6inLh/cSwO7x8vITQ8BtGGNey3Ssv4h9OexPfXl9pNauTtD3+/P0pAuEZ4uCQBwDrjHUcvFdyMAmjtfXx9179xR3TvXHqmUnWvR3oNHtPvAIe05cES79x/SngOHdehYqnLy8vXD5q36YfNWp21CggLVs2uCErslKLFbZ/Xu3lm9undWZFhoE30iwHPcco+jtWvX6pVXXtH+/fv1/vvvKy4uTm+++aYSEhJ00UUXuaPOZqE1zlWI1uVgZqH+89NRvb/xmDLySx3Lh3eP0i1DO2l49yh5eTXPLwjTsvP19aY9+vKnPVq79YBKasxXGxkSoMuSe2j8bxJ1Ye8E7osENDOcH5tO49zj6CVlZqTr95ddqP9366Vu6bOxPfrRNr25/rD6dQjVR9OH8itAAGhB/t+iN/X4gld04+TL9dJTf3FLn1yLNC2ON4DWpKS0VPsOHdWufYe0a/8h7dx7ULv2H9L+w8fOGJS3j4pQUo8uSuzeRUk97I8enTvJ19eniatHc9Eaz40ujzj64IMPNGXKFN1www3avHmzSkvtX1bn5+frqaee0ueff+5ykQDqJyEyQA9e1lMzR3fXqt0Z+tcPh7Vqd4ZjFNJ5EWZN+c15uja5g4L8mtfJrH14kG68dIBuvHSAikrLtfrn/frfj7v05cbdyswr1Ftfb9JbX29SRLBZ43+TqCuG9tbgnh0ZiQQALmqJmcvdo7rpg03H9PPRXH2+NU2/7Rvj6ZIAAPV0asSRhwsBAECSn8mkpB5dldSjq9Py0rIy7Tt4VDv2HtCOvQe0fc8B7dx7QIeOpSotI0tpGVn6et2PjvY+Pt7q2aWT+vTspj49u6pvz27q06urwkJaR4iAtsfl4GjOnDl6+eWXddNNN+nf//63Y/nQoUP1xBNPuNo9gAbwMXppdGK0RidG61Bmod5af1j/+emoDmcVac5nO/XCir268TfnaerQTmoX7Ofpcmsxm3w0blBPjRvUU+UVVn2345A+W79Tn/2wU1mWIr3x5U9648ufFB0WqD//bqRuGHWBp0sGgBavsgV9gRcVZNLtwzrrhRV79ezyXRrTO1o+jEYFgBaBqeoAAC2ByddXvXt0Ue8eXZyW5xcUaee+A9q2e7927LE/b9u9T3n5Bdq6a5+27trn1P68uBj1S+yufond1L93D53fu6eiIsKa8qMADeJycLR7925dfPHFtZYHBwcrNzfX1e4BuKhTZIAeGZ+omWO666PNJ7R43QHtzyjUS6v2a/Hag5p0fpz+MLyzukQFerrUOvl4GzW8bxcN79tFT946Tt9uP6SPv92m/23YpZM5BfL1MXq6RACAB9x+cWf964fDOpRVpH//eERThnTydEkAAAAAWrmgQLMG9U/SoP5JjmU2m01HT5zUL7v2atuuffp55x5t3blPh4+nOh6ffLXa0T6ufTv1791DFyT10AVJvXRBn14KD2VkEpoXl4OjmJgY7du3T506dXJavm7dOnXu3NnV7psFbgCJ1sDs663fD+6o65I7aMWudL2yer9+Opyjd386qvc2HtXE/nG6e1Q3dYoM8HSpZ+TjbdSIfl00ol8XPV3+W63+eb+GJHbydFkA0Oga81qkR4+eyvWJUN/u57m978YUaPLWPaO66dGPt+uFFXs16YJ4BZpcvrQFADQyRhy1XHw3AgB1MxgM6hjXXh3j2mv8qGGO5dm5Fm3dtVc/79ijn3fs0ebtu7Xv0FEdT0vX8bR0fbZiraNt545xuiCppwb0TVRyv97ql9hNfiaTJz4OIEky2Fy8Wps3b57eeOMNLVmyRKNHj9bnn3+uw4cP67777tNjjz2mP/3pT+6q1eNa402u0Lb9dChbL63arxW70iVJRi+DJp8fp7su6aaOEWYPVwegpeD82HQa41jf8vqPWrU7Q/Ov6aerB8S7pc+mUm6t1OgFq3Uoq0j3XtpN917a3dMlAQB+xQuL39Yjzy7U9VeO1aJnHnVLn1yLNC2ONwA0XH5BkX7euUdbtu/W5m27tHHrTu0/fKxWOx8fb/Xt2U3J/Xpr8PlJGnx+kuJjoh0/wEDz0hrPjS7/LPOBBx5QXl6eRo4cqZKSEl188cUymUy6//77W1VoBLRGAzuFa/Et4frlWK6e+2qPVu7O0Hsbj2nZ5uP6/eCOuvfS7goP8PV0mQAA1MnH6KU/j+2pGW9v0qI1B3TD4PMUFcSv8gAAAAA0T0GBZl2U3F8XJfd3LMvJs2jztt3auHWHNvy8Qxt+3q7M7Fxt3LpTG7fu1MtvvS9JimkXqcHnJ+k3F/TVkAv6qm+vrvL2ZtYFNA63/GU9+eSTevjhh7Vjxw5VVlYqMTFRgYHN834pAGrrGx+q16cO0uYjOXru671asydD//z+sJZtPq67Lumqm4d2ksmbewkBQGvWUqcMurxPe/XrEKqfj+bq7yv26m8Tk359IwCAx5yaqs7DhQAA0EyEhQTrkguTdcmFyZLs/zY7fDxVG7Zs149btuvHLdv08869Sk3P1EfLV+mj5askSYFmfw3qn6ShA/vpwuT+Gti3F9PbwW3cFkmazWYNHDjQXd0B8IDzO4bpn7cO0nf7MzXn053akWrRU5/v0pvrD+uhcb00Lqk9Q2IBAM2KwWDQQ+N66rpF6/XOj0d060UJSmjG9+sDgLaOexwBAHB2BoNBneJj1Sk+VteMHy1JKiwq1uZtu7R+8zZ9v+kX/bBpq/LyC/TNdxv0zXcbJEkmX18N6t9bwwadr4uS+2vQ+Uky+TKTEBqmQcHRzJkz6912wYIFDdkFAA8a2iVS/73rIn246ZieXb5bR7OLNf1fmzSiR5T+dmWSOoRz/yMAQPPxm84RGtkjSit3Z2j+8t1KueECT5cEADgDgiMAAM5dgNlfFw06XxcNOl+SVFlZqR17D+i7n37Wdxt/0boNW3QyI0trf9ystT9uliT5mXw1ZEBfDf/NAI0YMlD9E7vLaGRGIdRPg4KjzZs316sdIxOAlsvoZdA1Azvo8j4xemX1fr28+oBW7c7QmOfW6P/GdNctQzvJ2+jl6TIBAC5qLVdrD47rqVV7MvTZ1lTdeTxPSXEhni4JAAAAABqFl5eXknp0VVKPrvrDDVfJZrNp78GjWrdhs9b9uFlrftyskxlZWvndT1r53U+SXlFocKBGDBmoURcN1qgLk9Uhtr2nPwaasQYFRytXrnR3Hc1aSkqKUlJSZLVaPV0K0OQCTN6aOaaHrugfp78s26ofD2Zrzmc79dGW43p6cl++mAOAJsC1yK/r2T5YE/vHadnm43r+6z167eZkT5cEAECrwvUIADRfBoNB3Tt3VPfOHXXrtVfKZrNp9/5DWvX9Rq1av1HrftysXEuB0z2Sunc+T6OHDdbY4UM0dGA/prWDE4ON8eH1ZrFYFBISory8PAUHB3u6HKDJVVba9N7Go3rys52ylFTIx2jQA2N76raLEuTl1Vp+sw7gXHF+bDqNcaynvv6jVu7O0Lyr++p3Azu4pU9POZBRoEsXrFalTfp4xoXq1yHU0yUBAE6T8sZ/NGvu33XNby/Vkv/3uFv65FqkaXG8AaDlqaio0KZtu7Ri3Y9a8e0Gbfh5uyorKx3rA83+GjF0oMYOH6pxI4YqOirCg9W2PK3x3Njgexz97W9/U0BAwK/e74h7HAGth5eXQdcmd9TInu306EfbtHz7ST35+U6t2Zuh//e7fmoX5OfpEgEA56g1TS3cOSpQk86P1webjun5r/fo9amDPF0SAOA01acdfsMKAEDT8fb21qD+SRrUP0kP/elW5Vryteq7n/Tl2vX6cs16nczI0qdfr9WnX6+VwWDQwL6JGn/pMP121DD16Hyep8uHBzT4Hkfl5eWO12fSmr6IAHBKuyA/vXzjAL3z41E98el2rd2bqXHPr9X8a/ppZM92ni4PANCG3T2qqz7aclwrd2do85Ecnd8xzNMlAQAAAECzEhocpImXjdTEy0aqsrJSP+/Yoy/XrNf/Vn6rjVt3asPP27Xh5+366/97Wd0SOmri2BGadNlIJfXoynf+bYTL9zhqa/c7AmBnMBj0+8EdldwpTHe9s1m70vI1dekG/WlkV80c3Z2p6wCgpWklP/w+LyJAk8+P03sbj+m5r/fqn7cy6ggAmqNWctoBAKDF8/Ly0vlJPXV+Uk89OP0WnTiZoc+/WafPVqzV6h82ae/BI3r25X/q2Zf/qS7nxevKMSN01eWj1KcnIVJr5uXOzmw2G8PNgTamW3SQPppxoW4Z2kmS9I+V+/SndzapuIwbpgIAPOOuS7rJ28ugNXsytPFwjqfLAQDUYBBfMAEA0JzFRkdp2vWTtOy1BTr0/Wda/OxjmjD6YvmZfLX/8DEtePUtXThpqpLHT9G8l5bqwJHjni4ZjcAtwdHixYuVlJQkPz8/+fn5KSkpSa+99po7ugbQAvj5GPX4Fb01/5p+8jEa9PnWNF276HudtJR4ujQAQBvUMcKsqwfES5Ke/3qPh6sBANTEL5MBAGg5ggMD9LsJY/T2i0/p4Hef6o3nZuvKMSNk8vXV7v2H9LcXXlO/Mddq5LV/0OJ/f6RcS76nS4abuBwcPfroo7rnnns0YcIEvffee3rvvfc0YcIE3XfffXrkkUfcUSOAFuLqAfH617TfKMzso1+O5enKf3yrbcfzPF0WAKANmjGyq7y9DFq7N1MbDmV7uhwAwGmYrQQAgJYlMMCsyeNG6a2/z9H+bz/RS0/9RZcMTZaXl5d++nmH7n18vrpedKWmzvyrVqz7UVYrsxG1ZC4HRy+99JJeffVVzZ07V1dccYWuuOIKzZ07V4sWLdLLL7/sjhoBtCCDEsL18YyL1LVdoNIsJfrdK9/rhwNZni4LAPArbK3sbhMdws36XXIHSdJzXzHqCACaC0YcAQDQ8oUEBerGyZfr4yXPac/qZXrqwT8psVtnlZaV6f3PV2jitJlKuvQazXtpqU5m8L1gS+RycGS1WjVw4MBaywcMGKCKigpXuwfQAnWMMOvD6UN1UddIFZVZNXXpBv14kF97A0Bz1Jq/vpsxsqt8jAZ9tz9L6/kRAwA0K4w4AgCgdYiOitBdU6/T+k/e0Jr3X9Mffj9ZYSFBOpaarr+98Jp6jpysKfc8otXrN3L+b0FcDo5uvPFGvfTSS7WWL1q06P+3d9/xNd3/H8BfJzd77y0RMyLECE3s2IoaRav2apWgVH2pfn/VZbSo1qYl9NvSQfBtqVISW60QYmYIGUK2IJHk8/sjcr+uBNnnjtfz8cgjued+7jnv9znnc+8n930Ghg0bVtnZq4WVK1fCx8cHrVq1kjsUIo1haWyA70b5o339ouLR6I3/8FJBREQVxLFIxbhZm+DNVh4AeNYRERFRZXE8QkRELyJJEpr7emPJ/83AtUM7sG7RR3ileRPk5xdgx94w9Bk9Da+8NhIhv/4Xj3Jz5Q6XXkISFSjzzZgxQ/l3fn4+QkJC4OHhgYCAAADAiRMncOvWLYwcORLLly+vumhllpWVBSsrK2RmZsLS0lLucIg0wqPHBRi/6TSO3LgHM0MFNo9rjZaetnKHRURViJ+PNac61vW4kFP4+0oKFr3eBG88KbJok6TMh+j4ZRjyCgrx04RX0KauvdwhERHptHU/bsP7n32NAT2DsHnZZ1UyT45FahbXNxERlUfklevY8PNObN25F/cfPAQA2NtaY8LQARg/dAAc7TX/e0Jt/Gys0BlH586dU/5ERkaiZcuWcHBwQHR0NKKjo+Hg4IAWLVrg0qVLVR0vEWkYYwMF1o/0R5u6dsjJK8CoDadw5ma63GEREZGOcLEywdDWRfc6WrbvOi+NQESkJvh+TEREpBuaeNfH1x/PxJXwUHwxazJquTrhXloGFqzcCJ/OgzDj0yWIT0iWO0x6hn5FXnTw4MGqjoOItJiJoQLfj2qFsSGncDwmFRM2n8au4LZwtzGVOzQiItIBk4LqYcupW/gnLg1Hb6SiXX2edUREJBdJ0ua76xEREdHzWFmYY+rYoZg0cjB27QvH8pCfcfp8FNb/FIqNv+zCW/17YcaE4ajr6S53qIQquMcREVFZmBgq8P1of/i6WSItJw8T/3MGjx4XyB0WEZHO04Xv75wsjTHslSf3Otp/jUe5ExERERERyURfXx8De3XBga1rsXvTt+gY0BL5+QXY/NvvaNHrLbz9r89x83aS3GHqvCopHGVkZGDJkiUYP348JkyYgKVLlyIzM7MqZk1EWsTUUB9rhreErZkhLiZk4cPQSH55R0RENeLdjnVhpK+HMzfTcej6PbnDISLSefw3gIiISLdJkoT2r7TA7yHfYN9Pq9G9YyAKCwuxZeefaNHrLcxe8C3upWfIHabOqnTh6PTp06hbty6+/vprpKWl4d69e/j6669Rt25dnD17tipiJCIt4m5jihVDm0NPArafTcDm4zflDomIiHSAo6UxRgR4AgBWHLguczRERLqLl6ojIiKiZwW0aIJta79C2K/r0TGgJfIeP8bKTb+gadch+HJ1CHIePJQ7RJ1T6cLR9OnT8dprryEuLg7bt29HaGgoYmNj0adPH7z33ntVECIRaZs29ezx4auNAACf/R6Ff2LTZI6IiIh0wdsd6sBQoYdTcen87CEikhmvPEBERETPatmkEf67cRl2fLcUfj4NkJ3zAJ998x38ew/Dzr/COX6oQfqVncHp06exfv166Ov/b1b6+vqYNWsW/P39Kzt7ItJS49p54fztTPz3fCIm/XgGv09pD2crY7nDIiIiLeZoaYxB/u746WQ8VoXdQGuv1nKHRESkcw5HxgAAohN52VAiospY8/tx/GffGTjbWsDZ1hIuthYqf7vYWcLR2hwKPd7injSLJEno0q41gtr4Y/ueA/h4yRrEJyZj+NS56NquNb6c+x7qe3nIHabWq3ThyNLSEvHx8fD29laZfuvWLVhYWFR29kSkpSRJwqLXm+D6nWxcSc7GvF2XsGZES7nDIiLSWbpy4NbEDnWx9Z94hF29i4sJmfB1s5I7JCIinZLzKA8AkPu4QOZIiIg0W1xyGqKTUhGdlPrcNnqSBCcbc7jYWcLF1hIudpZwffLbxc4SrnaWcLaxgIG+ogYjJyobPT09DOrdFa92bocl637Asu9+wv4j/yDgtVGYOvZN/GvSaBgbGckdptaqdOHojTfewLhx47B48WK0adMGkiThyJEj+OCDDzB06NCqiJGItJSpoT6+ebM5Xv32MP68lIxD1+6iQwMHucMiItIxunWvCQ87U7zm54odEYlYHRaNlcNayB0SEZFOKb7HkYCOHLFARFRNpg1sj9cCGyMpLQvJadlISsvCnfT7SErNevJ3NgoKBZLSspGUlg0godT5SBLgaG0OVzsruNpZws3+f7+Lf+wtzaCnp1v/N5D6MDUxxr+nTcDQfj0x64tl2Hf4JBav/QG//30Y6xZ+hOa+3i+fCZVbpQtHixcvhiRJGDlyJPLz8yGEgKGhId59910sXLiwKmKskAEDBiAsLAxdunTBb7/9BgDIzs5G586d8fjxYxQUFGDq1KmYMGGCbDESEdDQ2QKjAmtjw9FYzNt1CXveaw8jHulCRETV6N1O9bAjIhG7LyYh5u591HEwlzskIiKdIenYAQtERNXFxbboLKLnKSgsxL3MnCeFpKLCUlJqFhKf/BQ/zssvwJ30+7iTfh/nbpReXDLUV8DVzhLuDtZws7eC+5OCkruDFdwdrOFqZwkjg0p/zUz0QvVq18K2dYuxa98hzPh0Ca7ciEPQG+9g1sSR+GDiKBhwH6xSlV6bhoaG+Oabb7BgwQJER0dDCIF69erB1NS0KuKrsKlTp2Ls2LHYtGmTcpqpqSnCw8NhamqKBw8ewNfXFwMHDoSdnZ2MkRLRe93qY9f5RMTcy8H3R2IxqVM9uUMiIiIt1tDZAl0bOWH/5TtYEx6NLwf5yR0SEZHOeHLCkc5cIpWISC4KPT042VjAycYCzZ7TprBQIDUrBwmpWUhMzUTivaLfCcrfmUhOz0ZefgHi7qQj7k56qfORJMDJ2gLuDlao5WANdwdr1HK0Ri0H6yePrVhYoiohSRL6de+Itq38MOOTJQj98yAWrNyIPQePYt2ij9Cofh25Q9QaFe6xY8eOLVO7DRs2VHQRlRIUFISwsDCVaQqFQlnQevToEQoKCiA4WiWSnaWxAT581RszfjmP5X/fQP9mbnC1NpE7LCIi0mKTgupi/+U72H42AdO6NoAbP3eIiGqG8oQj/i9ORCQ3PT0JDtbmcLA2R7O6rqW2eZxfgOS0bNy+l4nb9zKQcK+ooHT7bmbRtLsZeJSXj+T0bCSnZ+P0tdulzsfZxgK1HK3h4WgDD0dreDrZwMPRBp5ONnC2seCl8Khc7G2ssXnZZ9i2+29M/2QJIqKuoePgCVjx2b8wpG93ucPTChUuHIWEhMDT0xPNmzev8uLLoUOH8NVXX+HMmTNISkpCaGgo+vfvr9Jm1apV+Oqrr5CUlITGjRtj2bJlaN++/UvnnZGRgY4dO+L69ev46quvYG9vX6WxE1HFDGjuhi3/xONUXDq++OMy7zlBRETVqoWHDQLr2OF4TCrWH4rBvNcayx0SEZFO0Cu+xxHrRkREGsFAX1F09pCjNQDPEs8LIZCa/QC3UzJw627Rz+27mcq/41My8DD3sbKwdOrqrRLzMDJQwN2hqJhU28kGnk62Rb+dbeHpaANjQ56tRKV7/dUuaOvvh4lz5uPvo/9g3Aef4vSFKHwxK5iXrqukCq+9iRMnYuvWrYiJicHYsWMxfPhw2NraVklQOTk58PPzw5gxY/D666+XeP7nn3/Ge++9h1WrVqFt27ZYu3YtevXqhaioKHh4eLxw3tbW1jh//jzu3LmDgQMHYtCgQXByciq1bW5uLnJzc5WPs7KyKpcYET2XJEn45DVf9Fl+GH9EJmHo9XtoV5+FXSLSbRyLVK/JQfVwPCYVW0/FY0rnerAzN5I7JCIiHcAjyjUNxyNE9CKSJMHe0gz2lmZoVs+txPPFhaVbKRmIT0lHfPHvOxm4mZKO23czkPu4ANGJqYhOTC1l/kX3c6rtXFRM8nK2hZeLHeq42MLTyRamRgY1kSapMWdHe2xb9xXmr9iAL1dvwuoffsP5y9ex+etP4eTAW9RUVIULR6tWrcLXX3+N7du3Y8OGDZgzZw569+6NcePGoXv37pCkig8Ge/XqhV69ej33+aVLl2LcuHEYP348AGDZsmXYu3cvVq9ejQULFpRpGU5OTmjatCkOHTqEwYMHl9pmwYIF+OSTT8qfABFViI+rJUYG1kbIsTh8vOsi9r7XAfoKPbnDIiKSDcci1attPTv4uVvh/O1MbDwah5k9GsodEhERkdrheISIKuPpwlLzUgpL+QWFSEzNRFxyOm6mpCP+yb2Ubt5JR1xyGrIf5iIxNQuJqVk4dimuxOtdbC1Qx8XuyY9t0W9XO3g62sBAX1EDGZI6UCgU+Pe0CWju6413/vU5jp0+j3YDx2LLygXwb+ojd3gaqVLnaxkZGWHo0KEYOnQobt68iZCQEEyaNAmPHz9GVFQUzM3NqypOpby8PJw5cwazZ89Wmd69e3ccO3bsha+9c+cOTExMYGlpiaysLBw6dAjvvvvuc9vPmTMHM2bMUD7OyspCrVq1KpcAEb3Q9G4NsDMiAdF3c3DgSgq6N3aWOyQiItnU5FhEF68YJEkS3u1UDxP/cwabjsfhnY51YGHMIxaJiKpT8TGmvN+w5uB3I0RUnfQVek/ue2RT4jkhBNKyHyIuOQ2xyWmITU5FbHI6YpNSEZuchsycR0hKy0ZSWjaOPlNU0lfowdPRBnVc7FDX1Q713OyLflztYWdpWkPZUU3r06U9wn5dj2FT5+Ly9Vj0GT0NW1cuQKdAf7lD0zhVdqE/SZIgSRKEECgsLKyq2ZZw7949FBQUlLi8nJOTE5KTk5WPe/TogbNnzyInJwfu7u4IDQ2Fnp4exo0bByEEhBAIDg5G06ZNn7ssIyMjGBnxkiVENcnKxABDWtXC2vAYbPknnoUjItJpHItUv+4+TqjnaI4bKffxnxPxeLdTXblDIiLSarxQnebheISI5CJJEuwsTWFnaYqWDdxLPJ+W/QCxSWmISU5FTGIqYp76+0HuY0QnpSI6KRX7zqq+ztbCFPXc7FH/yU8DdwfUd3eAm51lpa6iReqhvpcHDmxdi2FT5uLAsVN4/e0PsHHpPLzWraPcoWmUShWOcnNzlZeqO3LkCPr06YMVK1agZ8+e0NOr3stLPduJhRAq0/bu3Vvq6yIiIsq9rJUrV2LlypUoKCgo92uJqPzebOWBteExCLt2FwkZD+FmbSJ3SEREsuJYpPro6UmY1KkuZvxyHt8ficGYtrVhbMBLWhARVR9+IaepOB4hInVja2EKW4uSRSUhBJLSshGdeA/Riam48dTv23czkZb9AP9cicc/V+JVXmdmbIj6bvZoWMsRDd0d0KCWA7xrOcKVBSWNY25mil/WLMK4mZ9i519hGDHt31jx2b8w4vXecoemMSpcOJo0aRK2bt0KDw8PjBkzBlu3boWdXfXfbMre3h4KhULl7CIASElJKXEWUlWZPHkyJk+ejKysLFhZWVXLMojof7zszdCmrh2ORafi51O3MKNbA7lDIiKSFcci1auvnyuW/HUNCRkP8cvpWxgZWFvukIiItJbyUnU6eZFUzcbxCBFpCkmS4GpnCVc7S7RvUkfluQeP8hCdlIrrCfdw/fZdXE+4h2u37yI2OQ05j/IQEZ2IiOhElddYmBjB28MR3rUci357OKKRhxNszHmgszozMjREyNJ5mPrxV/hh2x+YNHcBMrKyMWXMm3KHphEqXDhas2YNPDw84OXlhfDwcISHh5fabvv27RUOrjSGhoZo2bIl9u3bhwEDBiin79u3D/369avSZRXjUTVENW9oaw8ci07FL6duYWrnetBXVO9ZjERE6oxjkeploNDDxI518O+dl7A2PAZDW3vAgJ87RETV43+VI9IwHI8QkTYwNTZEEy8XNPFyUZn+OL8AMclpuH77Lq7eSsG12/dw9XYKohNTkf0wF6eu3sKpq7dUXuNqZwlvD0f4eDihcW1n+Hg6oa6rHRTVfCUuKjt9fX2s/Hw2bKws8e2GLfhw0QqYmhhj3Jv95Q5N7VW4cDRy5MhqO0Xv/v37uHHjhvJxbGwsIiIiYGtrCw8PD8yYMQMjRoyAv78/AgMDsW7dOsTHx2PixInVEg+PqiGqed0bO8HWzBDJWY8QdvUuuvpUzxmFRESagGOR6jfYvxa++fsGEjIeYldEIl5vWfIa6kREVHn8Kk1zcTxCRNrMQF+Bhu4OaOjugD4BPsrpefkFiElMxZVbKbgcfwdX4lNwOT4Ft+5mIDE1C4mpWThw7n/fYxsb6sO7liMa13Z+UqByRiNPJ5gYGsiRFqHoDLTPP5gEE2MjLFoVghmfLoWLoz1e7dxO7tDUWoULRyEhIVUYhqrTp08jKChI+XjGjBkAgFGjRiEkJARvvPEGUlNT8emnnyIpKQm+vr7YvXs3PD09qy0mIqpZRvoKDGrpjnWHYrDln3gWjoiIqFoZGygwrp0XFv15BavCbmBAczfo6fE65kREVe7JAag84YiIiDSBob5CeXm6/m19ldOzHjx6UkS6g0txdxB18w6i4u/gYe7jEpe705Mk1He3RxMvFzSt4wK/Oq7wre0MU2NDOVLSSZIkYe6UcUhKuYfNv/2OMe/Pw+7Ny9GySSO5Q1NbFS4cVadOnTpBiBcPIydNmoRJkybVUEREJIc3W9XCukMxOHg1BYkZD+FqzWvHEhFR9Rke4IFVYTcQfTcHB66k8KAFIiIiIiIqlaWpMVp7e6C1t4dyWkFhIeKS03EpLhkXn/xExibhXmYOrt66i6u37uK3QxcAFBWT6rnZo3k9NzSr64pmdV3RyNMJRgZq+XW9VpAkCcs+nomkO3ex7/BJDJ44C39vXQOvWm5yh6aWuCeWAa/jSySPOg7mCKhjixMxafj51C1M79ZA7pCIiGTBsUjNsDA2wFutPbD2UAzWH45h4YiIqBrwXE7NxfEIEdGLKfT0UNfVDnVd7fBam8YAACEE7qTfR2RsEi7EJOJCTBIuxCQhOT0b127fxbXbd/FzWASAorObGtd2Rov6bmhR3x0t6rnB08mm2m4Xo4sMDPSx6evP0GtkMM5HXcPACTOxf8sa2NnwEqzPksTLTu0hpeLr+GZmZsLS0lLucIh0ws6IBEzbGgEXK2McnhUEfd6snEjt8POx5lTHuh6/6TT2X76DBQObYGhrj5e/QMslZT5E+0UHkV8osCu4LZq6W8sdEhGRVhn14VJs374dtbzqImrPpiqZJ8ciNYvrm4io8u6kZ+P8k0vaRUQnIuJGAtLvPyzRzs7SFP4NasG/gTv8G9aCX11X3i+pCiSn3EOXNyciPjEZ7Vo1w+8h30ChUFR4ftr42cgzjohIrfX0dYaNqQGSMh8h/NpddGnEo7+JiKj6uFiZoK+fK0LPJWD94VgsH9pc7pCIiLQKj5omIiICnGws0N2/Ibr7NwRQdGZSfEoGzl6/jTPXb+PcjQRExiQhNesB9p6+ir2nrwIA9BV6aFrHBa0beuCVRh5o1dADdpamcqaikZwd7bFt/WJ0HvI2jpyKwIqQnzFt3Ftyh6VWWDgqA56OTSQfI30FBrV0x/rDsfjl9C0WjohIJ3EsUrPGt/dC6LkE7I5Mwuxe3nDjPfaIiKoM60aai+MRIqLqI0kSPJ1s4OlkgwHtmgAAch/nIzI2Caev3cbpq7dw6uotpGTcx9nrCTh7PQFrfj8OAKjvZo+ARp5o07g2An084WRjIWcqGsO7bm0smDMVwR8txKfL1qN7hwA0ql9H7rDUBi9VVw7aeMoZkSY4G5+OgauOwd7cEKfmduVRikRqhp+PNac61vWEzaexL4qXqnvWW+tP4Fh0Ksa388JHfXzkDoeISGuM+WgZfvvtN16qToNxfRMRyUMIgdt3M3HySjz+uRKPk1fice323RLt6rraIdDHE+18vdDW1wv2lmYyRKsZhBAYPPFf2Bt+DM18GuDAz+tgYFD+c2208bORZxwRkdpr5GwJPQm4dz8PKdm5cLI0ljskIiLSchM61MGx6FRsPXULU7vWh6UxryNORFSVeAQrERFR+UiShFqO1qjlaI1BHZoCAFKzHuDU1Xgcj7qJY1FxuBSXjOjEVEQnpuI/+88CAHw8ndDO1wsdmtRBoI8nTI0N5UxDrUiShBWfzULrviMQEXUNi9duxpzgsXKHpRZYOCIitWdiqEA9R3Ncu3MfFxMyWTgiIqJq16mBA+o7muN6yn1s/Sceb3eoK3dIREREREREKuwsTdGzlTd6tvIGAGTcf4iTV+Jx9GIsjlyMxeX4FETdvIOom3ew7o8TMNRXoLW3Bzo2rYNOzerBx8MJenq6fWUfZ0d7LP2/9zHm/Xn4cs0m9OzUBs19veUOS3YsHBGRRvB1tXpSOMrifY6IiKjaSZKE8e298K9tkdh4NA5j2nrBQKEnd1hERBpPedVpnnJERERU5azNTdDDvyF6+DcEANzLzMHRS7E4HBmL8AvRuH03E0eeFJW++OlvONmYo3OzeujSogE6Nq0DcxMjmTOQx+uvdsGufeEI/fMg3p79OQ5v+x7GRrq5LoqxcFQGvAEkkfwau1lh+7kEXErMlDsUIqIax7GIPPo1c8NXe68hKfMR/riQhP7N3eQOiYhIi7BypGk4HiEi0jz2Vmbo18YX/dr4QgiBmKQ0hJ2/gbDz0Th6KQ530u9jy8EIbDkYAQOFHgJ8PNG9ZUP0aNUQtRys5Q6/xkiShKUfv4+jp8/jyo04LPvuJ8yePEbusGTFwybLYPLkyYiKisKpU6fkDoVIZzV2Lbqx3KXELJkjISKqeRyLyMPYQIFRgZ4AgPWHYyAEv+QkIqosSdLty+FoMo5HiIg0myRJqOtqh3G9XsEPs9/C5Q2zsGXucIx/9RV4OdvicUEhDkfG4t8hf6L15G/Q9YM1+OqXg7gYl6wT/wvZ21hj4ewpAIBVm39B1v0cmSOSFwtHRKQRfJ4UjhIyHiItJ0/maIiISFcMD/CEsYEeLiVm4XhMqtzhEBERERERVQkjA3108quLz0b3xLFvp+DoN8H4eGR3BDTyhJ4k4dLNO1j62yF0m7UWbaYuxxc/7kdEdKJWF5EG9uqM+l4eSM/MxndbQuUOR1YsHBGRRrA0NkBtO1MA4OXqiIioxtiYGWJQS3cAwPpDMTJHQ0Sk+Xi+ERERkXqq42KHiX0CEfrJaFxYPxPfTOqHXq29YWygj7g76Vix8yh6zVmPV4K/xRc/7kfUzTtaV0RSKBSY+c4IAMDyjVvx4OEjmSOSDwtHRKQxGrtZAQAuJvBydUREVHPGtasDSQIOXr2LGynZcodDRERERERUrewsTTGkUzNsmPkGLn7/AdZNH4TXAhvDxMgAt+5mYMXOo+jywRoEzVyNZdsP4eaddLlDrjKDe3dDbXcX3EvLQMivu+QORzYsHJXBypUr4ePjg1atWskdCpFO83UtKhzxjCMi0jUci8jLy94M3Ro5AQC+OxwrczRERBruySlHWnaAsk7geISISDeZGRuib2BjrJ0+CBe/+wDrZwxG71cawchAgau37mLR1oMImPItBnwcgp/DIpDzSLNvMWFgoI/p44cBAJZ99xNy8zQ7n4pi4agMeANIIvXQ+Ml9ji4l8owjItItHIvIb0KHOgCA7WcTcDc7V+ZoiIg0l8SL1WksjkeIiMjUyAB9Anzw3ftDcGH9TCyb1A8dmhRdoeHE5Zt4b9VONJ2wGO+t2omTV+I19lJ2wwa+ChdHeySl3MOPoXvkDkcWLBwRkcYoLhzF3stB9qPHMkdDRES6xN/TBs1qWSOvoBA/HI+TOxwiIiIiIiJZWZoa441OzfDzv0fg9KrpmP1mZ9RxscWD3Mf4OSwC/f9vI4JmrsaGP/9B1gPNuleQkaEh3hv/FgBg6br/4PHjfJkjqnksHBGRxrAzN4KrlTEAIIpnHRERUQ2SJAkT2heddfTDiZt4mFcgc0RERERERETqwdXOEtMGtseRZcHY+ekYDA1qBhMjA1y9dRdzN+xBs3eW4v01u3ApLlnuUMts9ODXYG9rjZsJSfj1j31yh1PjWDgiIo3S2K3oPkcXWTgiIqIa1qOxE9xtTJD+4DG2nb0tdzhERERERERqRZIktPb2wNJ3++Hcmhn4YmwvNHB3wMPcx/jpwDl0nbUWgz/djP1nr6GwUL0vY2dqYowpY94EACxe+wMKCnTr4EEWjohIo/zvPkeZMkdCRES6Rl+hhzFtvQAAIcfiNPZ63UREaoHvoURERFrNyswYY3u2RtiSdxH6yWi8FtgYCj0JRy7GYsTCLegwYyU2/XUaj/LU9zJw44cOgJWFOa7HxuP42Ui5w6lRLBwRkUbxdS064+hSAs84IiKimjfY3x1mhgrcSLmPozdS5Q6HiEhjsWxERESkGyRJQkAjT6ydPggnVkzDu30DYWFihOjEVMz+7g8ETPkGa38/jgeP8uQOtQRLczP06BgIANh/+KTM0dQsFo7KYOXKlfDx8UGrVq3kDoVI5/k+uVTd9ZRs3l+CiHQGxyLqw9LYAINaugMAQo7FyhwNEZHmkSRJ7hCogjgeISKiynK3t8L/jeiOs2um49PRPeBqZ4k76fcxb/NfaDX5G3wbehjZD3LlDlNFtw4BAIB9h0/IHEnNYuGoDCZPnoyoqCicOnVK7lCIdJ6TpRHszQ1RKIAryTzriIh0A8ci6mVkm9oAgL+vpOBmao68wRAREdUQjkeIiKiqmJsYYcKrATi+fCoWv9MXnk42SMt+gAVbDuCVJ2cg5T5Wj0vYdWnbGgBw4fJ1JKfckzmamsPCERFpFEmS0PjJ5eouJrJwRERENa+ugzk6NnCAEMDm4zflDoeISKPwfCMiIiIqZqivwLAuLXBkWTCWBw9AXVc7pGc/xLzNf6HdeyvwS/h5FBQWyhqjg50NWvh6AwD2H/lH1lhqEgtHRKRxGrtaAgCiEjNljoSIiHTV6La1AQC/nLqFnFz1OBKOiIiIiIhIE+kr9DCoQ1OELZmEJRP7wsXWArfvZmLayh3oNmstDl2IkTW+ru1fAQDsP6I79zli4YiINE7xfY4uJvCMIyIikkfH+g7wsjdDdm4+tp+9LXc4REREREREGk9foYe3OrfA0W+n4KNhXWFlZozL8Sl44/Mf8PbSX5GYKs93gd3aF93n6MDRf5CfrxsHDrJwREQax/fJpequJmcjL1/e01WJiEg36elJGBXoCQAIORaHwkIhc0RERERERETawcTQAJP7tcWJ5VMx/tVXoCdJ+O+JKLR/bwVW7DiCvPyCGo3Hv2kjWFuaIz0zG2cir9TosuXCwhERaZxatiawMNZHXkEhrqdkyx0OERHpqNdbusPcSB/Rd3Nw5Ibu3CSViIiIiIioJlibm+Cz0T2x78t30NrbAw9yH+OLn/5Glw/W4PS1WzUWh76+Pjq3bQ0A2H9YNy5Xx8IREWkcSZKUZx1d4uXqiIhIJhbGBhjU0h1A0VlHREREREREVPV8PJ2w45PR+Da4P+ytzHAj4R76/XsjvvhpP3If18yl47q2K7rP0b7DJ2pkeXJj4YiINFJTdyvUczSHnp4kdyhERBrNxcoYdR3MYGGsL3coGml0m9qQJODAlRTE3suROxwiIiIiIiKtJEkSBnfww+GvJ2NQh6YoFAIrdhxFrznrcTEuudqX3619UeHo7MUruJuWXu3LkxsLR2WwcuVK+Pj4oFWrVnKHQkRPzO7ljf0zOiqP9CYi0mbVORb5tJ8v/n6/E/o0da3yeeuC2vZmCGroCADYfDxO3mCIiIiqEb8bISIidWBtboLlwQPw3ftDYGdpisvxKeg1Zz2+DT1crfeedXa0RxPvehBC4MDRU9W2HHXBwlEZTJ48GVFRUTh1Svt3CCJNIUk804iIdAfHIuptdJvaAIBfT9/G/dyauUwCEZGmq76vdai6cDxCRETqpPcrjRC2ZBJ6tfZGfkEhFmw5gDFfbUXWg0fVtsyuT8460oX7HLFwRERERERUCe3r26Ougxnu5+Zj25nbcodDRKTeePwXERERVRF7KzN8//4QLJnYF0YGCvx15hp6zVmPK/Ep1bK87u0DAAD7j5xEYWFhtSxDXbBwRERERERUCZIkKc862nQsrlovj0BERERERET/I0kS3urcAjs+HQs3eyvEJKXh1bnfYeexi1W+rFeaN4GFmSnupWUg4tK1Kp+/OmHhiIiIiIiokga2cIeFkT5i7uUg/PpducMhIiIiIiLSKc3qumLvwrfRoUkdPMx9jInLtuHLnw9CiKo7sM/AQB+d2vgDAPYfOVFl81VHLBwREREREVWSmZE+hrSqBQAIORonbzBEREREREQ6yM7SFD/NHYbg/m0BAF9vO4S5G/ZU6VUhurYrus/R30e1+55/LBwREREREVWBkYGekCQg/NpdRN+9L3c4RERqSZJ4kyMiIiKqPgo9Pcx9qysWjn8VkgRs3HsKwStC8Ti/oErmX8+z6IDB9MysKpmfumLhiIiIiIioCnjamaGLtyMAYPOxOHmDISIiIiIi0mGjurfCqqmvQ1+hh9AjkRi7+Gc8zHssd1gag4UjIiIiIqIqMqatFwDgtzO3cT83X+ZoiIiIiIiIdFf/tr4I+eBNGBvoY//Z6xj6xX/w4FGe3GFpBBaOiIiIiIiqSJu6dqjjYIacvAKEnkuQOxwiIiIiIiKd1qVFfWz5aDgsTIxw8nI8Ji7bhvyCQrnDUnssHBERERERVRFJkjD8FU8AwI8nbkKIqrsJKxEREREREZVfQCNP/DR3GIwN9LHv7DV8+P1u/q/2ElpbOBowYABsbGwwaNAg5bRbt26hU6dO8PHxQdOmTfHrr7/KGCERERERaaPXW7rD2EAPV5KzcfpmutzhEBERERER6Tz/BrWwctpASBLww/4zWL7jiNwhqTWtLRxNnToVmzdvVpmmr6+PZcuWISoqCvv378f06dORk5MjU4REREREpI2sTAzQz88NAPDD8ZsyR0NEREREREQA8GrrRvhsdE8AwIItB7Dt8AWZI1JfWls4CgoKgoWFhco0FxcXNGvWDADg6OgIW1tbpKWlyRAdEREREWmzEYFFl6vbczEJ9+7nyhwNERERERERAcC4Xq9gYp9AAMD0VTtx5GKszBGpJ7UsHB06dAh9+/aFq6srJEnCjh07SrRZtWoVvLy8YGxsjJYtW+Lw4cPlWsbp06dRWFiIWrVqVVHURERERERFfN2s4FfLGo8LBH4+dUvucIiI1A/vK0BEREQy+ffwbngtsDEeFxTina9/w92M+3KHpHbUsnCUk5MDPz8/rFixotTnf/75Z7z33nuYO3cuzp07h/bt26NXr16Ij48v0/xTU1MxcuRIrFu3rirDJiIiIiJSGhFQdNbRTyfjUVDIL0iJiABAkjsAIiIi0nl6ehK+mdwfjT2dkJb9AB+s+x2CB7Wo0Jc7gNL06tULvXr1eu7zS5cuxbhx4zB+/HgAwLJly7B3716sXr0aCxYseOG8c3NzMWDAAMyZMwdt2rR5advc3P9dWiQzMxMAkJWVVdZUiIiItF7x5yIHWVWPYxHN1qG2GSz08nDrzgP8cSYanRo6yh0SEZHs8h49hCjIR0H+4yr7PONYpHpxPEJERNpq/qiuGDhvI/YcP49Nu90xsH3Tl74mJ+d+0VjmcZ7ys1AbxyJqWTh6kby8PJw5cwazZ89Wmd69e3ccO3bsha8VQmD06NHo3LkzRowY8dJlLViwAJ988kmJ6by8HRERUUmpqamwsrKSOwytwrGI9ui3TO4IiIjUS8yNk7Cy+qVK55mdnc2xSDXgeISIiHTBmB0LMaYc7c+WMpbRpu9FJKHmZTBJkhAaGor+/fsDABITE+Hm5oajR4+qnDE0f/58bNq0CVevXgUA9OjRA2fPnkVOTg5sbW0RGhqK3NxcdOjQAU2b/q9y+MMPP6BJkyalLvvZo2oyMjLg6emJ+Ph4rdkBnpWVlYVatWrh1q1bsLS0lDucasEctQNz1A7MUTtkZmbCw8MD6enpsLa2ljscrfLsWKSwsBBpaWmws7ODJFXNxX50YR8tL66TkrhOSuI6KYnrpCSuk5KqY50IIZCdnQ1XV1fo6anlFfk1Gr8b0c6+yxw1n7bnBzBHbaELOWrj9yIad8ZRsWe/LBFCqEzbu3dvqa8rLCws8zKMjIxgZGRUYrqVlZXW7uTFLC0tmaMWYI7agTlqB13IkV/UVL3SxiLVNQjVhX20vLhOSuI6KYnrpCSuk5K4Tkqq6nWirQUMdcDvRpijptP2HLU9P4A5agtdyFGbvhfRuEzs7e2hUCiQnJysMj0lJQVOTk4yRUVERERERERERERERKT5NK5wZGhoiJYtW2Lfvn0q0/ft26dy6ToiIiIiIiIiIiIiIiIqH7W8VN39+/dx48YN5ePY2FhERETA1tYWHh4emDFjBkaMGAF/f38EBgZi3bp1iI+Px8SJE6s1LiMjI3z88celnqKtLZijdmCO2oE5agfmSOqO268krpOSuE5K4jopieukJK6TkrhONJ8ubEPmqB20PUdtzw9gjtqCOWomSQgh5A7iWWFhYQgKCioxfdSoUQgJCQEArFq1Cl9++SWSkpLg6+uLr7/+Gh06dKjhSImIiIiIiIiIiIiIiLSHWhaOiIiIiIiIiIiIiIiIqOZp3D2OiIiIiIiIiIiIiIiIqHqwcEREREREREREREREREQAWDgiIiIiIiIiIiIiIiKiJ3S+cLRq1Sp4eXnB2NgYLVu2xOHDh1/YPjw8HC1btoSxsTHq1KmDNWvWlGizbds2+Pj4wMjICD4+PggNDa2u8MukPDlu374d3bp1g4ODAywtLREYGIi9e/eqtAkJCYEkSSV+Hj16VN2pPFd5cgwLCys1/itXrqi00+TtOHr06FJzbNy4sbKNOm3HQ4cOoW/fvnB1dYUkSdixY8dLX6NpfbG8OWpiXyxvjprYF8ubo6b1RQBYsGABWrVqBQsLCzg6OqJ///64evXqS1+naX1Sk8k1dnnZcoUQmDdvHlxdXWFiYoJOnTrh0qVLlUu2jNR1nZT2HhAQEFC5ZMtIjnVSlvdIXdtPyrJOdG0/KcvnjK7tJ2VZJ7q2n6xevRpNmzaFpaWlciy8Z88elTZy7ic1QZPXe25uLqZMmQJ7e3uYmZnhtddew+3bt1XapKeno3Xr1tDT04MkSbCzs8Pu3btV2sTHx6Nv374wMzODvb09Xn/9dbRo0UIlx8jISHTs2BEmJiZwc3PDm2++qTE5nj9/HkOHDkWtWrVgYmKCRo0aYcqUKSrb8Ysvvij1fwUPDw+NyBHAc+PXlu34vP/nJEnSmO34xRdfoE6dOsocS3vP0fT++LIctaE/lmU7anp/fFmOmt4f4+LiMG7cOHh5ecHExAR169bFxx9/jLy8PJX5PNsfp06dWqLNs9vx008/hRAC5SJ02NatW4WBgYFYv369iIqKEtOmTRNmZmbi5s2bpbaPiYkRpqamYtq0aSIqKkqsX79eGBgYiN9++03Z5tixY0KhUIj58+eLy5cvi/nz5wt9fX1x4sSJmkpLRXlznDZtmli0aJH4559/xLVr18ScOXOEgYGBOHv2rLLNxo0bhaWlpUhKSlL5kUt5czx48KAAIK5evaoSf35+vrKNpm/HjIwMldxu3bolbG1txccff6xso07bcffu3WLu3Lli27ZtAoAIDQ19YXtN7IvlzVET+2J5c9TEvljeHDWtLwohRI8ePcTGjRvFxYsXRUREhOjdu7fw8PAQ9+/ff+5rNLFPaiq5xi5lWe7ChQuFhYWF2LZtm4iMjBRvvPGGcHFxEVlZWdW3QsoY29Nqcp2MGjVK9OzZU6Vvp6amVt/KKEdsT6uqdVKW90hd20/Ksk50bT8py+eMru0nZVknuraf7Nq1S/zxxx/i6tWr4urVq+LDDz8UBgYG4uLFi8o2cu0nNUHT1/vEiROFm5ub2Ldvnzh79qwICgoSfn5+KuN8Pz8/IUmSmD17tvjpp5+EnZ2dUCgUyhzz8/OFr6+vCAoKEmfPnhWbN28WkiQJPz8/lRytrKzEm2++KSIjI8X8+fMFANGrVy+NyPH7778XU6ZMEWFhYSI6OlosWbJEABCdOnVSyRGA2L9/v0hKShL//e9/hUKhEJ999plG5CiEEADExo0bRVJSkjh58qQwMTERkydP1prt+ODBA5X35pMnTwqFQiHc3Nw0Zju+/vrrQqFQiG7duglzc/MS7zna0B9flqM29MeX5agN/fFlOWp6f9yzZ48YPXq02Lt3r4iOjhY7d+4Ujo6O4v3331fO49n+uG/fPuHq6iqCg4OVbTIzM4WTk5NyO27btk1YWFiIxYsXi/LQ6cJR69atxcSJE1WmeXt7i9mzZ5faftasWcLb21tl2jvvvCMCAgKUj4cMGSJ69uyp0qZHjx7izTffrKKoy6e8OZbGx8dHfPLJJ8rHGzduFFZWVlUVYqWVN8fiL6vT09OfO09t246hoaFCkiQRFxennKZu27FYWb6M18S++LSy5Fgade+LTytP4UiT+uLTKrIdNakvFktJSREARHh4+HPbaHqf1CRyjV1ettzCwkLh7OwsFi5cqHz+0aNHwsrKSqxZs6YcGZafuq4TIYq+6O3Xr1+58qkK6jDGLe09Uhf3k6e9qHCkq/uJECU/Z3R9PxGi9M9eXd9PhBDCxsZGfPfdd0IIefeTmqDJ6z0jI0MYGBiIrVu3KtskJCQIPT098eeffwohhIiKihIAxIABA5Rtjh8/LgCICRMmCCGKCu96enoiISFBmaOrq6swMjISmZmZQggh2rVrJxQKhXj06JEyxwYNGghXV1dRWFio9jk+a9asWcLa2loEBQUpp7311lsCgDh37pwyR03ajkKofv6Vtq9q23YMDg4WAMTmzZuV09R5Owrxv/ecp/83ffo9R9P7Y1lyfJam9cey5qjJ/bGsOT5NE/vjs7788kvh5eWlfPxsfxRCiC1btqj0x1WrVgkrKyvldhRCiAULFqhsx7LQ2UvV5eXl4cyZM+jevbvK9O7du+PYsWOlvub48eMl2vfo0QOnT5/G48ePX9jmefOsThXJ8VmFhYXIzs6Gra2tyvT79+/D09MT7u7u6NOnD86dO1dlcZdHZXJs3rw5XFxc0KVLFxw8eFDlOW3bjt9//z26du0KT09Plenqsh3LS9P6YlVQ975YGZrSF6uCJvbFzMxMACix7z1NF/ukHOQau5RlubGxsUhOTlZpY2RkhI4dO1brNlbndVIsLCwMjo6OaNCgASZMmICUlJTyJ1oO6jzG1bX9pDx0eT959nOG+8nzP3t1dT8pKCjA1q1bkZOTg8DAQADy7Sc1QdPX+5kzZ/D48WOVNq6urvD19VW2Kb6s0IgRI5RtAgICYGhoiPDwcGW8vr6+cHV1VT7u06cPcnNzcebMGQCAQqFAYWEh9PT0VNokJiYiLi5O7XN81vHjx+Hk5KTS9zt06AAA6Nu3LxwdHbFjxw44OTmpvE4TcgwODoa9vT1WrVoFFxcXFBYWKp/Ttu34xx9/wNDQEIMGDVJOU+ftWJb3HE3vjxV9X9Wk/lieHDW1P1ZkO2pafyxNZmamyn74bH8sjvfp/nj8+HF07NgRRkZGKm2e3o5lobOFo3v37qGgoKDEjuHk5ITk5ORSX5OcnFxq+/z8fNy7d++FbZ43z+pUkRyftWTJEuTk5GDIkCHKad7e3ggJCcGuXbuwZcsWGBsbo23btrh+/XqVxl8WFcnRxcUF69atw7Zt27B9+3Y0bNgQXbp0waFDh5RttGk7JiUlYc+ePRg/frzKdHXajuWlaX2xKqh7X6wITeuLlaWJfVEIgRkzZqBdu3bw9fV9bjtd7JNykGvsUpblFv+u6W2szusEAHr16oUff/wRBw4cwJIlS3Dq1Cl07twZubm5FUu4DNR5jKtr+0lZ6fJ+UtrnjK7vJ8/77NXF/SQyMhLm5uYwMjLCxIkTERoaCh8fH+U8il9X1tg0haav9+TkZBgaGsLGxua5bWJiYkqdj4WFBdLS0kqNNzk5GZ6enjA0NFTO58GDBxBCqORYp06dErGqa47PiouLw/Xr1/HOO+8op9WqVQsAsHbtWuzevRv5+fnYvHkz/vOf/5S6XHXM8bPPPsOvv/6K/fv3w9jYGEeOHMH8+fOVz2vbdkxISECzZs1gYmKinKbO27GsY31N7o8VeV/VtP5Y1hw1uT9WZDtqWn98VnR0NJYvX46JEycqp5X2eW5jY6PSH5/3mf90rGWhX+aWWkqSJJXHQogS017W/tnp5Z1ndatoPFu2bMG8efOwc+dOODo6KqcHBASo3Ii1bdu2aNGiBZYvX45vv/226gIvh/Lk2LBhQzRs2FD5ODAwELdu3cLixYuVVefyzrMmVDSekJAQWFtbo3///irT1XE7locm9sWK0qS+WB6a2hcrShP7YnBwMC5cuIAjR468tK0u9Um5yTV2qao21UFd18kbb7yh/NvX1xf+/v7w9PTEH3/8gYEDB74opUpT5zGuru0nL6PL+8mLPmd0dT953jrRxf2kYcOGiIiIQEZGBrZt24ZRo0YhPDxc+SVNRWLTJNq23sv6OVp8lHtpz0uSVKb5PD1N3XMsdunSJSQmJqJz587o1q2bcrqVlRUAoEWLFnB2doZCoUBQUBC+/PJLDB8+XCNy/Oijj5R/29jYoFWrVvjqq69Uppc2n6enqXuOxY4fP468vDy0atVKZbqmbscXvX9oS38sbT7a1h+fnqat/bG0+WhyfwSAxMRE9OzZE4MHDy5xAHJp7V/WZ0sbF7yMzp5xZG9vD4VCUaLKlpKSUqIiV8zZ2bnU9vr6+rCzs3thm+fNszpVJMdiP//8M8aNG4dffvkFXbt2fWFbPT09tGrVSpaj4yuT49MCAgJU4teW7SiEwIYNGzBixAgYGhq+sK2c27G8NK0vVoam9MWqos59sTI0sS9OmTIFu3btwsGDB+Hu7v7CtrrUJ+Uk19ilLMt1dnYGUPLoperexuq8Tkrj4uICT0/Pau3f6jzG1bX9pKJ0ZT953ueMLu8n5fns1YX9xNDQEPXq1YO/vz8WLFgAPz8/fPPNN8p5ADW/n9QETV/vzs7OyMvLQ3p6+nPbPHv0erH79+8rj8R+Nl5nZ2fExcXh8ePHyvmYmppCkiSVHJ89Q0SdcywWFRWFzp07w9XVVeULyOJ5PrsdHRwcVPq+JuRYzNnZGWZmZsjKysKdO3cAaM92BIDvvvsOZmZmUCgUJeaprtuxrGN9Te6P5Xlf1dT+WNHPDk3qj+XNURP7Y7HExEQEBQUhMDAQ69atU3mutM/z9PR0lf74vM98oORZUS+is4UjQ0NDtGzZEvv27VOZvm/fPrRp06bU1wQGBpZo/9dff8Hf3x8GBgYvbPO8eVaniuQIFJ3dMHr0aPz000/o3bv3S5cjhEBERARcXFwqHXN5VTTHZ507d04lfm3YjgAQHh6OGzduYNy4cS9djpzbsbw0rS9WlCb1xaqizn2xMjSpLwohEBwcjO3bt+PAgQPw8vJ66Wt0pU/KTa6xS1mW6+XlBWdnZ5U2eXl5CA8Pr9ZtrM7rpDSpqam4detWtfZvdR7j6tp+UlHavp+87HNGF/eTinz2avt+UhohhPLSfHLtJzVB09d7y5YtYWBgoNImKSkJFy9eVLZp3749AODHH39Utjl58iTy8vLQsWNHZbwXL15EUlKS8vEff/wBIyMjtGzZEgCU9+EoPoq6uI2rqytq166t9jkCRWc2BAUFYdSoURg6dGiZtuOxY8dU+r665/i0wMBAHDlyBMbGxrC2tgagHdsRKCom/fLLL2Xuj+qyHcvynqPp/bGs76ua3B8r+tmhSf2xPDlqan8Eii6v16lTJ7Ro0QIbN24scXbjs/2xON6n+2NgYCAOHTqEvLw8lTZPb8cyETps69atwsDAQHz//fciKipKvPfee8LMzEzExcUJIYSYPXu2GDFihLJ9TEyMMDU1FdOnTxdRUVHi+++/FwYGBuK3335Ttjl69KhQKBRi4cKF4vLly2LhwoVCX19fnDhxosbzE6L8Of70009CX19frFy5UiQlJSl/MjIylG3mzZsn/vzzTxEdHS3OnTsnxowZI/T19cXJkydrPD8hyp/j119/LUJDQ8W1a9fExYsXxezZswUAsW3bNmUbTd+OxYYPHy5eeeWVUuepTtsxOztbnDt3Tpw7d04AEEuXLhXnzp0TN2/eFEJoR18sb46a2BfLm6Mm9sXy5lhMU/qiEEK8++67wsrKSoSFhansew8ePFC20YY+qankGru8bLlCCLFw4UJhZWUltm/fLiIjI8XQoUOFi4uLyMrK0sl1kp2dLd5//31x7NgxERsbKw4ePCgCAwOFm5ub1q6Tl71HCqF7+8nL1oku7idl+ZzRtf3kZetEF/eTOXPmiEOHDonY2Fhx4cIF8eGHHwo9PT3x119/KdvItZ/UBE1f7xMnThTu7u5i//794uzZs6Jz587Cz89P5OfnK9v4+fkJSZLEhx9+KLZs2SLs7OyEQqFQ5jhr1ixhbW0tunTpIs6ePSt++OEHIUmS8PPzU8nRyspKDB06VERGRor58+cLAOLVV1/ViBzHjRsnjIyMxLBhw0RSUpI4efKkMDExEe+8844yR4VCIaZNmyaioqLElStXxOTJkwUA0bt3b43I8fXXXxcBAQEiMjJS3LhxQ7mNmjVrpjXbsbg/fvfdd8LY2FicO3euRH9U9+24YsUKoa+vL/r16ydMTU3FsGHDhImJibh06ZLW9MeX5agN/fFlOWpDf3xZjpreHxMSEkS9evVE586dxe3bt1XGhcXy8/OFr6+vsj/u379fuLu7i+DgYGWbjIwM4eTkpNyO27dvF5aWlmLx4sWiPHS6cCSEECtXrhSenp7C0NBQtGjRQoSHhyufGzVqlOjYsaNK+7CwMNG8eXNhaGgoateuLVavXl1inr/++qto2LChMDAwEN7e3ipfgsqhPDl27NhRACjxM2rUKGWb9957T3h4eAhDQ0Ph4OAgunfvLo4dO1aDGZVUnhwXLVok6tatK4yNjYWNjY1o166d+OOPP0rMU5O3oxBFbxImJiZi3bp1pc5PnbbjwYMHX7jfaUNfLG+OmtgXy5ujJvbFiuyrmtQXhRCl5gdAbNy4UdlGG/qkJpNr7PKi5QohRGFhofj444+Fs7OzMDIyEh06dBCRkZFVk/RLqOM6efDggejevbtwcHAQBgYGwsPDQ4waNUrEx8dXXeIvIMc6edl7pBC6t5+8bJ3o4n5Sls8ZXdtPXrZOdHE/GTt2rHKZDg4OokuXLipfzggh735SEzR5vT98+FAEBwcLW1tbYWJiIvr06VNif01NTRWtWrUSkiQJAMLW1lb8/vvvKjkGBASI3r17CxMTE2FraysGDBggmjVrppLjhQsXRPv27YWRkZFwdnYWgwcP1pgc/fz8Su37hoaGyhxHjhwpGjVqJExNTYWFhYVo2bKlmDJlisbk2LVrV2FmZibMzc2Fqamp8PX1FcHBwVq1HYv7Y2BgoHjrrbeEECX7o7pvx1GjRpW6Lx48eFD5vKb3x5flqA398WU5akN/LMu+qsn9cePGjc8dFz7t5s2bKv0xODhYPHr0SKXNs9tx3rx5orCwUJSHJMSTc8+IiIiIiIiIiIiIiIhIp+nsPY6IiIiIiIiIiIiIiIhIFQtHREREREREREREREREBICFIyIiIiIiIiIiIiIiInqChSMiIiIiIiIiIiIiIiICwMIRERERERERERERERERPcHCEREREREREREREREREQFg4YiIiIiIiIiIiIiIiIieYOGIiIhIAx06dAh9+/aFq6srJEnCjh07qn2ZCQkJGD58OOzs7GBqaopmzZrhzJkz1b5cIiIiIiIiIiKqOSwcEZFGiouLgyRJiIiIKPdrDxw4AG9vbxQWFlZ4+bm5ufDw8OCX5iSbnJwc+Pn5YcWKFTWyvPT0dLRt2xYGBgbYs2cPoqKisGTJElhbW9fI8omI1A3HIkRERCQnjkWIqDqxcERE5TZ69GhIkgRJkmBgYAAnJyd069YNGzZsqNSg40XL69+/f5XNb9asWZg7dy709Cr+FmhkZISZM2fiX//6V5XFRVQevXr1wueff46BAweW+nxeXh5mzZoFNzc3mJmZ4ZVXXkFYWFiFl7do0SLUqlULGzduROvWrVG7dm106dIFdevWrfA8iYgqimMRjkWIiIjkxLEIxyJE2o6FIyKqkJ49eyIpKQlxcXHYs2cPgoKCMG3aNPTp0wf5+flyh/dcx44dw/Xr1zF48OBKz2vYsGE4fPgwLl++XAWREVWtMWPG4OjRo9i6dSsuXLiAwYMHo2fPnrh+/XqF5rdr1y74+/tj8ODBcHR0RPPmzbF+/foqjpqIqOw4FuFYhIiISE4ci3AsQqTNWDgiogoxMjKCs7Mz3Nzc0KJFC3z44YfYuXMn9uzZg5CQEGW7zMxMvP3223B0dISlpSU6d+6M8+fPK5+fN28emjVrhrVr16JWrVowNTXF4MGDkZGRoXx+06ZN2Llzp/JonqfPmoiJiUFQUBBMTU3h5+eH48ePvzDurVu3onv37jA2Ni4Rw4YNG+Dh4QFzc3O8++67KCgowJdffglnZ2c4Ojriiy++UJmXnZ0d2rRpgy1btlR8RRJVg+joaGzZsgW//vor2rdvj7p162LmzJlo164dNm7cWKF5xsTEYPXq1ahfvz727t2LiRMnYurUqdi8eXMVR09EVDYci3AsQkREJCeORTgWIdJmLBwRUZXp3Lkz/Pz8sH37dgCAEAK9e/dGcnIydu/ejTNnzqBFixbo0qUL0tLSlK+7ceMGfvnlF/z3v//Fn3/+iYiICEyePBkAMHPmTAwZMkR5JE9SUhLatGmjfO3cuXMxc+ZMREREoEGDBhg6dOgLj+w5dOgQ/P39S0yPjo7Gnj178Oeff2LLli3YsGEDevfujdu3byM8PByLFi3CRx99hBMnTqi8rnXr1jh8+HCl1htRVTt79iyEEGjQoAHMzc2VP+Hh4YiOjgbwv+thv+gnODhYOc/CwkK0aNEC8+fPR/PmzfHOO+9gwoQJWL16tVxpEhGVwLEIERERyYljESLSFvpyB0BE2sXb2xsXLlwAABw8eBCRkZFISUmBkZERAGDx4sXYsWMHfvvtN7z99tsAgEePHmHTpk1wd3cHACxfvhy9e/fGkiVL4OzsDBMTE+Tm5sLZ2bnE8mbOnInevXsDAD755BM0btwYN27cgLe3d6nxxcXFwdXVtcT0wsJCbNiwARYWFvDx8UFQUBCuXr2K3bt3Q09PDw0bNsSiRYsQFhaGgIAA5evc3NwQFxdX8RVGVA0KCwuhUChw5swZKBQKlefMzc0BFO27L7ucgI2NjfJvFxcX+Pj4qDzfqFEjbNu2rYqiJiKqGhyLEBERkZw4FiEibcDCERFVKSEEJEkCAJw5cwb379+HnZ2dSpuHDx8qz3oAAA8PD+XgCAACAwNRWFiIq1evljooelrTpk2Vf7u4uAAAUlJSnjtAevjwocrp2MVq164NCwsL5WMnJycoFAqVG0U6OTkhJSVF5XUmJiZ48ODBC2MkqmnNmzdHQUEBUlJS0L59+1LbGBgYPLeflKZt27a4evWqyrRr167B09OzUrESEVU1jkWIiIhIThyLEJE2YOGIiKrU5cuX4eXlBaDoaBUXFxeVa+8Ws7a2fu48igdYxb9fxMDAoMTrCgsLn9ve3t4e6enpL5xP8bxKm/bsvNPS0uDg4PDSOImq2v3793Hjxg3l49jYWERERMDW1hYNGjTAsGHDMHLkSCxZsgTNmzfHvXv3cODAATRp0gSvvvpquZc3ffp0tGnTBvPnz8eQIUPwzz//YN26dVi3bl1VpkVEVGkcixAREZGcOBYhIm3AwhERVZkDBw4gMjIS06dPBwC0aNECycnJ0NfXR+3atZ/7uvj4eCQmJipPlT5+/Dj09PTQoEEDAIChoSEKCgqqJMbmzZsjKiqqSuYFABcvXkTz5s2rbH5EZXX69GkEBQUpH8+YMQMAMGrUKISEhGDjxo34/PPP8f777yMhIQF2dnYIDAysUNEIAFq1aoXQ0FDMmTMHn376Kby8vLBs2TIMGzasSvIhIqoKHIsQERGRnDgWISJtoffyJkREJeXm5iI5ORkJCQk4e/Ys5s+fj379+qFPnz4YOXIkAKBr164IDAxE//79sXfvXsTFxeHYsWP46KOPcPr0aeW8jI2NMWrUKJw/fx6HDx/G1KlTMWTIEOXp2LVr18aFCxdw9epV3Lt3D48fP65w3D169MCRI0cql/xTDh8+jO7du1fZ/IjKqlOnThBClPgJCQkBUHS02CeffILY2Fjk5eUhKSkJ27dvR5MmTSq8zD59+iAyMhKPHj3C5cuXMWHChCrKhoio/DgWKcKxCBERkTw4FinCsQiRdmLhiIgq5M8//4SLiwtq166Nnj174uDBg/j222+xc+dOKBQKAEWnMO/evRsdOnTA2LFj0aBBA7z55puIi4uDk5OTcl716tXDwIED8eqrr6J79+7w9fXFqlWrlM9PmDABDRs2hL+/PxwcHHD06NEKxz18+HBERUWVuFdLRRw/fhyZmZkYNGhQpedFRERE5cOxCMciREREcuJYhGMRIm0mCSGE3EEQke6aN28eduzYgYiIiBpb5qxZs5CZmYm1a9dWaj6DBw9G8+bN8eGHH1ZRZERERFTTOBYhIiIiOXEsQkTqiGccEZHOmTt3Ljw9PSt1feDc3Fz4+fkpr1tMREREVFYcixAREZGcOBYhopfhGUdEJCs5jqwhIiIiKsaxCBEREcmJYxEiUkcsHBEREREREREREREREREAXqqOiIiIiIiIiIiIiIiInmDhiIiIiIiIiIiIiIiIiACwcERERERERERERERERERPsHBEREREREREREREREREAFg4IiIiIiIiIiIiIiIioidYOCIiIiIiIiIiIiIiIiIALBwRERERERERERERERHREywcEREREREREREREREREQDg/wFggm536P/WGAAAAABJRU5ErkJggg==", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "xlim_left = (0, barrier_thick * 2)\n", - "xlim_mid = (None, None)\n", - "xlim_right = (substrate_thick, substrate_thick + 2 * barrier_thick)\n", - "\n", - "fig, axs = plt.subplots(nrows=1, ncols=3, sharey=True, figsize=(20, 4))\n", - "\n", - "# three shades of blue for the three times\n", - "colours = [\"#1f77b4\", \"#185580\", \"#0C273B\"]\n", - "\n", - "for ax, xlim in zip(axs, [xlim_left, xlim_mid, xlim_right]):\n", - " plt.sca(ax)\n", - " for profile in profile_exports:\n", - " for i, time in enumerate(profile.times):\n", - " label = f\"{time:.0f} s\" if ax == axs[0] and profile == profile_exports[0] else None\n", - " c = profile.data[i]\n", - " ax.plot(profile.x, c, color=colours[i], label=label)\n", - "\n", - " ax.set_xlim(xlim)\n", - " ax.set_xlabel(\"Depth (m)\")\n", - "\n", - "axs[0].legend(fontsize=12, reverse=True)\n", - "axs[0].set_yscale(\"log\")\n", - "axs[0].set_ylim(bottom=1e12)\n", - "axs[0].set_ylabel(\"Mobile H concentration (H/m$^3$)\")\n", - "axs[0].set_title(\"zoom left\")\n", - "axs[2].set_title(\"zoom right\")\n", - "plt.show()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2) Model without barrier\n", - "\n", - "We can also run the equivalent model without permeation barriers with bare tungsten.\n", - "Let's make a few modifications:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "6bdfa35141f1441aa12f5ca1a147ac1a", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/800k [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "model_no_barrier = F.HydrogenTransportProblem()\n", - "\n", - "boundary_left = F.SurfaceSubdomain1D(id=1, x=barrier_thick)\n", - "boundary_right = F.SurfaceSubdomain1D(id=2, x=substrate_thick + 1 * barrier_thick)\n", - "model_no_barrier.subdomains = [volume_tungsten, boundary_left, boundary_right]\n", - "\n", - "# new mesh\n", - "model_no_barrier.mesh = F.Mesh1D(np.linspace(*volume_tungsten.borders, num=50))\n", - "\n", - "# change the solubility of the Sievert's condition\n", - "left_bc.S_0 = tungsten.K_S_0\n", - "left_bc.E_S = tungsten.E_K_S\n", - "\n", - "model_no_barrier.temperature = model_barrier.temperature\n", - "model_no_barrier.boundary_conditions = model_barrier.boundary_conditions\n", - "model_no_barrier.species = model_barrier.species\n", - "\n", - "model_no_barrier.settings = model_barrier.settings\n", - "\n", - "\n", - "permeation_flux_no_barrier = F.SurfaceFlux(field=H, surface=boundary_right)\n", - "model_no_barrier.exports = [permeation_flux_no_barrier]\n", - "\n", - "model_no_barrier.initialise()\n", - "model_no_barrier.run()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3) Calculate the PRF" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can plot the temporal evolution of permeation flux with or without permeation barriers:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHECAYAAADFxguEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWKJJREFUeJzt3XlcVOX+B/DPmWHfZQdBFrdEURCXzAXNrgu3vKZ1/dmmLRZXrZTMmzczaZGbe1rqtUWvWWamLbdMpRJwTXFDw10EVBARYdiXmfP7Y2QU2YZhhjPL5/16zUvO/p3jiN95nu95HkEURRFEREREZkImdQBERERE+sTkhoiIiMwKkxsiIiIyK0xuiIiIyKwwuSEiIiKzwuSGiIiIzAqTGyIiIjIrTG6IiIjIrDC5ISIiIrPC5IaIiIjMikUnNykpKXjkkUfg7+8PQRDw/ffft/gc33zzDSIiIuDg4ICgoCAsWrRI/4ESERGR1iw6uSktLUWvXr3w0Ucf6XT8L7/8gieffBKxsbE4deoUVq1ahaVLl+p8PiIiImo9gRNnqgmCgO+++w5jx47VrKuqqsLcuXPx5ZdforCwED169MAHH3yAoUOHAgCeeOIJVFdXY8uWLZpjli9fjiVLliArKwuCILTxuyAiIiKLbrlpzrPPPot9+/bh66+/RlpaGh5//HGMGjUK58+fBwBUVlbCzs6uzjH29va4cuUKMjMzpQiZiIjI4jG5acTFixexadMmbNmyBYMHD0bHjh0xa9YsDBo0COvWrQMAjBw5Etu2bcNvv/0GlUqFc+fOYfny5QCAnJwcCaMnIiKyXFZSB2Csjh49ClEU0aVLlzrrKysr4eHhAQCYMmUKLl68iIcffhjV1dVwcXHBq6++ivnz50Mul0sRNhERkcVjctMIlUoFuVyOI0eO1EtUnJycAKjrdD744AMsWLAAubm58PLywm+//QYACA4ObuuQiYiICExuGhUZGQmlUom8vDwMHjy4yX3lcjnat28PANi0aRMGDBgAb2/vtgiTiIiI7mHRyU1JSQkuXLigWc7IyMDx48fh7u6OLl264Mknn8QzzzyDJUuWIDIyEvn5+fj9998RHh6OmJgY5Ofn49tvv8XQoUNRUVGBdevWYcuWLUhOTpbwXREREVk2i34UPCkpCcOGDau3ftKkSVi/fj2qq6vx3nvvYcOGDbh69So8PDwwYMAAxMfHIzw8HPn5+XjkkUdw8uRJiKKIAQMG4P3330f//v0leDdEREQEWHhyQ0REROaHj4ITERGRWWFyQ0RERGbF4gqKVSoVrl27BmdnZ06PQEREZCJEUURxcTH8/f0hkzXdNmNxyc21a9cQGBgodRhERESkg+zsbAQEBDS5j8UlN87OzgDUN8fFxUXiaIiIiEgbCoUCgYGBmv/Hm2JxyU1tV5SLiwuTGyIiIhOjTUkJC4qJiIjIrDC5ISIiIrNicd1S2lIqlaiurpY6DDIz1tbWnDGeiMjAmNzcQxRF5ObmorCwUOpQyEy5ubnB19eXQxEQERkIk5t71CY23t7ecHBw4H9ApDeiKKKsrAx5eXkAAD8/P4kjIiIyT0xu7qJUKjWJjYeHh9ThkBmyt7cHAOTl5cHb25tdVEREBsCC4rvU1tg4ODhIHAmZs9rPF2u6iIgMg8lNA9gVRYbEzxcRkWFJmtwkJCSgb9++cHZ2hre3N8aOHYuzZ882eUxSUhIEQaj3OnPmTBtFTURERMZM0uQmOTkZ06ZNw8GDB5GYmIiamhqMGDECpaWlzR579uxZ5OTkaF6dO3dug4iJiIjI2Ema3OzYsQOTJ09G9+7d0atXL6xbtw5ZWVk4cuRIs8d6e3vD19dX82JhpvbWr18PNze3ZvcTBAHff/+9wePRxuXLlyEIAo4fP95m19T2PhERkXExqpqboqIiAIC7u3uz+0ZGRsLPzw/Dhw/H7t27G92vsrISCoWizsvSTZgwAefOndMsz58/HxEREZLFY0xJ1N3uvU9ERGQajOZRcFEUERcXh0GDBqFHjx6N7ufn54e1a9ciKioKlZWV+OKLLzB8+HAkJSVhyJAh9fZPSEhAfHy8IUM3Ofb29ppHki1dVVUVbGxs6q2vrq7Wy32qrq6GtbV1q85BZC5EUURplRI3iitxo7gS+SWVKKmsQXmVEmVVSpRX1aC8Wv1zVY0KSlGEKAJKlQiVePulApSiCNXtdWKrY9LD+2r9KcyOm701VkyMlOz6RpPcTJ8+HWlpadi7d2+T+3Xt2hVdu3bVLA8YMADZ2dlYvHhxg8nNnDlzEBcXp1munTJdW6IoorxaqfX++mRvLdfqyZr//e9/ePrpp1FQUACZTIbjx48jMjISs2bNwqJFiwAAL730EhQKBTZt2oT169djxowZKCwsxPr16zXJX+211q1bh8mTJwMA8vPz8eijj2Lnzp1o3749lixZgjFjxmiunZycjNdffx0nTpyAu7s7Jk2ahPfeew9WVuqPVnBwMGbMmIEZM2ZojomIiMDYsWMxf/58BAcHAwAeffRRAEBQUBAuX77c6Hs9c+YMpk6diqNHj6Jjx474+OOPMXToUADqcYpefPFF/P7778jNzUWHDh0wdepUvPrqq5rjJ0+ejMLCQvTv3x8rV66EjY0NkpKSEBISgs2bN2PVqlU4ePAgVq9eDUEQNPfp7ns9f/58/Pnnn/D398ekSZPw5ptvat6vIAhYvXo1fvnlF/z666+YNWsWk2uySJU1ShzPKsSJK4U4f70E5/JKcDGvBCWVNVKHRm3A29lW0usbRXLz8ssv48cff0RKSgoCAgJafPz999+PjRs3NrjN1tYWtra63+TyaiXC5u3U+fjWSH9nJBxsmv8rGjJkCIqLi3Hs2DFERUUhOTkZnp6eSE5O1uyTlJSEmTNn1jt2woQJOHXqFHbs2IFff/0VAODq6qrZHh8fj4ULF2LRokVYuXIlnnzySWRmZsLd3R1Xr15FTEwMJk+ejA0bNuDMmTOYMmUK7OzsMH/+fK3e4+HDh+Ht7Y1169Zh1KhRzdZOvf7661i+fDnCwsKwdOlSjBkzBhkZGfDw8IBKpUJAQAC++eYbeHp6Yv/+/XjxxRfh5+eHv//975pz/Pbbb3BxcUFiYiLEu762/fOf/8SSJUuwbt062NraYteuXXWuvXPnTjz11FNYsWIFBg8ejIsXL+LFF18EALz99tua/d5++20kJCRg2bJlrAUji1JQWoXvj13F7rN5OHy5ABXVqgb3c7SRw8vZFl7OtnCytYKDjRXsbeSwt5bDwUYOexs5bKxkkAsCZIIAmUyAXABkstvLggC5TP1lQqaHoRX0MTgDR3ioy85a2t99kiY3oiji5Zdfxnfffaf59qyLY8eOWfRQ9q6uroiIiEBSUhKioqI0iUx8fDyKi4tRWlqKc+fOaVo47mZvbw8nJydYWVnB19e33vbJkydj4sSJAIAFCxZg5cqVOHToEEaNGoVVq1YhMDAQH330EQRBwH333Ydr167hn//8J+bNmweZrPmSLi8vLwB35ltqzvTp0zF+/HgAwOrVq7Fjxw589tlnmD17Nqytreu0koSEhGD//v345ptv6iQ3jo6O+PTTTzXdUbUtRTNmzMC4ceMavfb777+PN954A5MmTQIAhIaG4t1338Xs2bPrJDdPPPEEnnvuuWbfC5G52H8xHxsPZiIx/TqqlXe+MHg62aBvsDu6+jqjs7czOnk7IaCdPRxtjeJ7NZkxST9h06ZNw1dffYUffvgBzs7OyM3NBaD+z7q21mHOnDm4evUqNmzYAABYvnw5goOD0b17d1RVVWHjxo3YunUrtm7dapAY7a3lSH9npEHOrc21tTV06FAkJSUhLi4Oe/bswXvvvYetW7di7969KCwshI+PD+67774Wx9CzZ0/Nz46OjnB2dtbMjXT69GkMGDCgTtfZwIEDUVJSgitXrqBDhw4tvl5zBgwYoPnZysoKffr0wenTpzXr1qxZg08//RSZmZkoLy9HVVVVvWLp8PDwButs+vTp0+S1jxw5gsOHD+P999/XrFMqlaioqEBZWZlm5OHmzkNkLk5kF2LRzrPYeyFfs65ngCvG9PLHoM6e6OrjzEErSRKSJjerV68GgHotCnfXfOTk5CArK0uzraqqCrNmzcLVq1dhb2+P7t274+eff0ZMTIxBYhQEQauuIakNHToUn332GU6cOAGZTIawsDBER0cjOTkZt27dQnR0tE7nvbcYVhAEqFTqpmZRFOv94qrt5qldL5PJ6nT9APqfdqD2Wt988w1mzpyJJUuWYMCAAXB2dsaiRYvwxx9/1Nnf0dGxwfM0tr6WSqVCfHx8g607dnZ2Wp+HyNSVVdVgwfbT2HhQ/bvZWi5gQt9APNEvCGH+LhJHR2QE3VLNWb9+fZ3l2bNnY/bs2QaKyHTV1t0sX74c0dHREAQB0dHRSEhIwK1bt+oU1d7LxsYGSmXLi6bDwsKwdevWOknO/v374ezsjPbt2wNQdzvl5ORojlEoFMjIyKhzHmtra62vf/DgQU3heE1NDY4cOYLp06cDAPbs2YMHHngAU6dO1ex/8eLFFr+vxvTu3Rtnz55Fp06d9HZOIlNzIrsQr359DJdvlgEAxvVuj5kPdUGgO+fkI+NhVOPckO5q6242btyoaQkbMmQIjh492mi9Ta3g4GBkZGTg+PHjyM/PR2VlpVbXnDp1KrKzs/Hyyy/jzJkz+OGHH/D2228jLi5OU2/z4IMP4osvvsCePXtw6tQpTJo0qV6RbXBwMH777Tfk5ubi1q1bTV7z448/xnfffYczZ85g2rRpuHXrlqa+pVOnTkhNTcXOnTtx7tw5vPXWWzh8+LBW70Ub8+bNw4YNGzRPS50+fRqbN2/G3Llz9XYNImP2y8kc/P0/B3D5Zhn8XO3w5Qv9sfTvEUxsyOgwuTEjw4YNg1Kp1CQy7dq1Q1hYGLy8vNCtW7dGjxs/fjxGjRqFYcOGwcvLC5s2bdLqeu3bt8f27dtx6NAh9OrVC7GxsXj++efr/Gc/Z84cDBkyBA8//DBiYmIwduxYdOzYsc55lixZgsTERAQGBiIysulxEf7973/jgw8+QK9evbBnzx788MMP8PT0BADExsZi3LhxmDBhAvr374+bN2/WacVprZEjR+Knn35CYmIi+vbti/vvvx9Lly5FUFCQ3q5BZKz+u/8ypn51FJU1Kjx4nzd2zBiCgZ08pQ6LqEGCqE3fkBlRKBRwdXVFUVERXFzq9g1XVFQgIyMDISEhdWooiPSJnzMyNRsPZmLu96cAAM8MCMK8h8NgJed3Y2pbTf3/fS/jr5QlIiLJ/JR2TZPYvBQdijdG3ccnoMjoMfUmIqIGpV0pxGvfnACgbrFhYkOmgskNERHVU1RWjdgvjqCyRoVhXb3w9iPdmdiQyWByQ0REdYiiiH99fxLXiioQ5OGADydGQi5jYkOmg8kNERHVse3oVfyclgMrmYAP/y8SLnac2Z5MC5MbIiLSKCyrwns/pwMAZv6lCyIC3aQNiEgHTG6IiEhjya5zuFVWja4+znhpSKjU4RDphMkNEREBANKvKfDlH5kAgPljunMsGzJZ/OQSERFEUcTbP56CSgQe7umHAR09pA6JSGdMbizQ+vXr4ebm1ux+giDg+++/b9G5g4ODsXz5cp3i0sXly5chCAKOHz/eZtckMkc/HL+Gw5dvwd5ajjf/2vh0LUSmgMmNBZowYQLOnTunWZ4/fz4iIiKkC6gVAgMDkZOTgx49ekgdCpHJKqmswYLtpwEA0x/sBD9Xe4kjImodTr9ggezt7WFvbzq/vJRKJQRB0Mw0Xquqqgo2Njbw9fVt1flrz0NkqVb+fh55xZUI8nDAC4NDpA6HqNXYctMcUQSqSqV5aTmn6f/+9z+4ublBpVIBAI4fPw5BEPD6669r9nnppZcwceJEAHW7pdavX4/4+HicOHECgiBAEASsX79ec1x+fj4effRRODg4oHPnzvjxxx+bjae4uBhPPPEEnJyc4O/vj5UrV9bZvnTpUoSHh8PR0RGBgYGYOnUqSkpKNNtr4/vpp58QFhYGW1tbZGZmIjg4GO+99x4mT54MV1dXTJkypcFuqfT0dMTExMDJyQk+Pj54+umnkZ+fr9k+dOhQTJ8+HXFxcfD09MRf/vIXre4zkTm6eKMEn+/NAAC8/UgYbK3kEkdE1HpsuWlOdRmwwF+aa//rGmDj2OxuQ4YMQXFxMY4dO4aoqCgkJyfD09MTycnJmn2SkpIwc+bMesdOmDABp06dwo4dO/Drr78CAFxdXTXb4+PjsXDhQixatAgrV67Ek08+iczMTLi7uzcaz6JFi/Cvf/0L8+fPx86dOzFz5kzcd999miRCJpNhxYoVCA4ORkZGBqZOnYrZs2dj1apVmnOUlZUhISEBn376KTw8PODt7a0591tvvYW5c+c2eO2cnBxER0djypQpWLp0KcrLy/HPf/4Tf//73/H7779r9vvvf/+Lf/zjH9i3bx9ELZNIInMjiiLi/5eOaqWIB+/zxoP3+UgdEpFeMLkxA66uroiIiEBSUhKioqI0iUx8fDyKi4tRWlqKc+fOYejQofWOtbe3h5OTE6ysrBrs3pk8ebKmxWfBggVYuXIlDh06hFGjRjUaz8CBA/HGG28AALp06YJ9+/Zh2bJlmuRmxowZmn1DQkLw7rvv4h//+Eed5Ka6uhqrVq1Cr1696pz7wQcfxKxZszTLly9frrN99erV6N27NxYsWKBZ9/nnnyMwMBDnzp1Dly5dAACdOnXCwoULG30PRJbgUEYBUs7dgI1chnkPh0kdDpHeMLlpjrWDugVFqmtraejQoUhKSkJcXBz27NmD9957D1u3bsXevXtRWFgIHx8f3HfffS0OoWfPnpqfHR0d4ezsjLy8vCaPGTBgQL3lu5+g2r17NxYsWID09HQoFArU1NSgoqICpaWlcHRUt1TZ2NjUuXatPn36NHntI0eOYPfu3XBycqq37eLFi5rkprnzEFmC1ckXAQCP9QlAsGfzrcREpoLJTXMEQauuIakNHToUn332GU6cOAGZTIawsDBER0cjOTkZt27dQnR0tE7ntbauO6eMIAia2p6WqJ1NODMzEzExMYiNjcW7774Ld3d37N27F88//zyqq6s1+9vb2zc4A3Ft8tMYlUqFRx55BB988EG9bX5+flqfh8jcpV9TIOnsDcgEcCRiMjtMbsxEbd3N8uXLER0dDUEQEB0djYSEBNy6dQuvvvpqo8fa2NhAqVTqLZaDBw/WW65tNUpNTUVNTQ2WLFmiefrpm2++0du1e/fuja1btyI4OBhWVvx4EzVmze1Wm7/29EeQB5N9Mi98WspM1NbdbNy4UVNbM2TIEBw9erTReptatYW9x48fR35+PiorK1sVy759+7Bw4UKcO3cOH3/8MbZs2aJJrjp27IiamhqsXLkSly5dwhdffIE1a9a06np3mzZtGgoKCjBx4kQcOnQIly5dwq5du/Dcc8/pNYEjMmVZN8vwU5q6uz02mq02ZH6Y3JiRYcOGQalUahKZdu3aISwsDF5eXujWrfERR8ePH49Ro0Zh2LBh8PLywqZNm1oVx2uvvYYjR44gMjIS7777LpYsWYKRI0cCACIiIrB06VJ88MEH6NGjB7788kskJCS06np38/f3x759+6BUKjFy5Ej06NEDr776KlxdXeuNk0NkqT7ZcwkqEYju4oXu/q7NH0BkYgTRwp6DVSgUcHV1RVFREVxcXOpsq6ioQEZGBkJCQmBnZydRhGTu+DkjKd0orsSgD35HZY0KX794P+4P5RxSZBqa+v/7XvwqS0RkQf67/zIqa1SI7OCG/iGNj1dFZMqY3BARWYhqpQpfH84GALw4OLTBJxKJzAGTGyIiC7H7TB7ySyrh6WSLh8I4GjGZLyY3REQWYvPtVpvxUe1hLeevfzJf/HQ3wMJqrKmN8fNFUsgtqsDus+rRxf/eJ1DiaIgMi8nNXWpH4y0rK5M4EjJntZ+ve0d/JjKkrUevQCUC/YLd0dGr/vQkROaEQ7jeRS6Xw83NTTN3koODAwvuSG9EUURZWRny8vLg5uYGuVwudUhkIVQqEd+kqruk/t6XrTZk/pjc3KN2ZuzmJock0pWbm1uDM7ATGcofGQXIvFkGJ1srxITzs0fmj8nNPQRBgJ+fH7y9vetM5EikD9bW1myxoTa3+XAWAGBMhD8cbPhrn8wfP+WNkMvl/E+IiExeUVk1fjmVCwCYwEJishAsKCYiMmM7/8xFZY0KXX2c0TOA80iRZWByQ0RkxrafygEAPNLLjw9IkMVgckNEZKaKyqqx70I+AGB0uJ/E0RC1HSY3RERm6tfT11GtFNHVx5lj25BFYXJDRGSmfrndJTWaj3+ThWFyQ0RkhoorqpFyTt0lFcMuKbIwTG6IiMzQ72fyUKVUoaOXIzp7s0uKLAuTGyIiM7T9pLpLKiacT0mR5WFyQ0RkZkora5B09gYAYHQPdkmR5WFyQ0RkZn4/k4fKGhWCPRzQzc9Z6nCI2hyTGyIiM3PnKSl2SZFlYnJDRGRGqmpUSL7dJTWqOx8BJ8vE5IaIyIykZhagtEoJTycbhLfnXFJkmZjcEBGZkdpWmyGdvSCTsUuKLBOTGyIiM1L7lFR0Vy+JIyGSDpMbIiIzca2wHGevF0MmqFtuiCwVkxsiIjORfE7datMr0A3tHG0kjoZIOkxuiIjMRNLZPADA0C7eEkdCJC0mN0REZqCqRoV9F24CAIay3oYsHJMbIiIzcCTzFkoqa+DuyEfAiZjcEBGZgdp6myGdPfkIOFk8JjdERGZAU2/TlfU2RJImNwkJCejbty+cnZ3h7e2NsWPH4uzZs80el5ycjKioKNjZ2SE0NBRr1qxpg2iJiIxTblEFzuQWQxCAIV1Yb0MkaXKTnJyMadOm4eDBg0hMTERNTQ1GjBiB0tLSRo/JyMhATEwMBg8ejGPHjuFf//oXXnnlFWzdurUNIyciMh4pt7ukega4wZ2PgBPBSsqL79ixo87yunXr4O3tjSNHjmDIkCENHrNmzRp06NABy5cvBwB069YNqampWLx4McaPH2/okImIjM6BS+qnpAZ38pQ4EiLjYFQ1N0VFRQAAd3f3Rvc5cOAARowYUWfdyJEjkZqaiurq6nr7V1ZWQqFQ1HkREZkLURRx4KI6uRnQ0UPiaIiMg9EkN6IoIi4uDoMGDUKPHj0a3S83Nxc+Pj511vn4+KCmpgb5+fn19k9ISICrq6vmFRgYqPfYiYikknmzDLmKCljLBfTu0E7qcIiMgtEkN9OnT0daWho2bdrU7L6CUPcxR1EUG1wPAHPmzEFRUZHmlZ2drZ+AiYiMQG2XVGRgO9jbyCWOhsg4SFpzU+vll1/Gjz/+iJSUFAQEBDS5r6+vL3Jzc+usy8vLg5WVFTw86jfJ2trawtbWVq/xEhEZi4O3k5v7QxvvzieyNJK23IiiiOnTp2Pbtm34/fffERIS0uwxAwYMQGJiYp11u3btQp8+fWBtbW2oUImIjI4oineSG9bbEGlImtxMmzYNGzduxFdffQVnZ2fk5uYiNzcX5eXlmn3mzJmDZ555RrMcGxuLzMxMxMXF4fTp0/j888/x2WefYdasWVK8BSIiyWTkl+K6ohI2chnrbYjuImlys3r1ahQVFWHo0KHw8/PTvDZv3qzZJycnB1lZWZrlkJAQbN++HUlJSYiIiMC7776LFStW8DFwIrI4By8VAAAiOrjBzpr1NkS1JK25qS0Ebsr69evrrYuOjsbRo0cNEBERkemoLSYeEMouKaK7Gc3TUkREpL069TZMbojqYHJDRGSCLt4oxY3iSthYyRDZwU3qcIiMCpMbIiITVNtq05v1NkT1MLkhIjJBBzX1NpxPiuheTG6IiEyMut5G/aQUB+8jqo/JDRGRicm8WYb8EvX4NhGstyGqh8kNEZGJSc28BQAID3CFrRXrbYjuxeSGiMjEHLmd3EQFcVRiooYwuSEiMjFHmdwQNYnJDRGRCSkqr8a5vGIA4HxSRI1gckNEZEKOZxdCFIEgDwd4OdtKHQ6RUWrx3FKiKCI5ORl79uzB5cuXUVZWBi8vL0RGRuKhhx5CYGCgIeIkIiLcVW/DVhuiRmndclNeXo4FCxYgMDAQo0ePxs8//4zCwkLI5XJcuHABb7/9NkJCQhATE4ODBw8aMmYiIotVW2/Tm/U2RI3SuuWmS5cu6N+/P9asWYORI0fC2tq63j6ZmZn46quvMGHCBMydOxdTpkzRa7BERJZMqRJxLIvFxETN0Tq5+eWXX9CjR48m9wkKCsKcOXPw2muvITMzs9XBERHRHWdyFSitUsLZ1gpdfJylDofIaGndLdVcYnM3GxsbdO7cWaeAiIioYbVdUhEd3CCXCRJHQ2S8dHpaaseOHdi7d69m+eOPP0ZERASeeOIJ3Lp1S2/BERHRHRy8j0g7OiU3r7/+OhQKBQDg5MmTeO211xATE4NLly4hLi5OrwESEZHaEdbbEGmlxY+CA0BGRgbCwsIAAFu3bsXDDz+MBQsW4OjRo4iJidFrgEREBOQpKpBdUA5BACIC3aQOh8io6dRyY2Njg7KyMgDAr7/+ihEjRgAA3N3dNS06RESkP0dvt9p09XGGs139p1WJ6A6dWm4GDRqEuLg4DBw4EIcOHcLmzZsBAOfOnUNAQIBeAyQiItbbELWETi03H330EaysrPDtt99i9erVaN++PQD14+KjRo3Sa4BERAScyC4CAERyZGKiZrWo5WbXrl0YNmwYOnTogJ9++qne9mXLluktMCIiUqtRqnDyqjq56RXgKnE0RMavRS03sbGx8PLywoQJE7Bp0yYUFRUZKi4iIrrtwo0SlFcr4WRrhVAvJ6nDITJ6LUpuLl26hJSUFISHh2PZsmXw8fHB8OHDsWLFCly+fNlAIRIRWbYT2YUAgB7tXTh4H5EWWlxz07NnT8ydOxeHDh3CpUuX8Pjjj2PHjh3o1q0bevXqhXnz5iE1NdUQsRIRWaQTV253SfERcCKt6FRQXMvf3x+xsbHYvn078vPzMW/ePFy+fBmjRo3CggUL9BUjEZFFq2256RXgJmkcRKZCp0fBG+Lo6Ijx48dj/PjxUKlUuHnzpr5OTURksSqqlTibWwyALTdE2tKp5ebKlSsoKSmpt766uhopKSmQyWTw8vJqdXBERJbuz2sK1KhEeDrZwN/VTupwiExCi5KbnJwc9OvXD0FBQXBzc8OkSZPqJDkFBQUYNmyY3oMkIrJUaVcKAai7pASBxcRE2mhRcvPGG29ALpfjjz/+wI4dO5Ceno6hQ4fWmQlcFEW9B0lEZKlq6216st6GSGstSm5+/fVXfPjhh+jTpw8eeugh7N27FwEBAXjwwQdRUFAAAPxmQUSkR2maJ6U4eB+RtlqU3BQVFaFduztDf9va2uLbb79FcHAwhg0bhry8PL0HSERkqYrKq3EpvxQAW26IWqJFyU1oaCjS0tLqrLOyssKWLVsQGhqKhx9+WK/BERFZspO3W206uDvA3dFG4miITEeLkpvRo0dj7dq19dbXJjgRERH6iouIyOKduF1M3JPzSRG1SIvGuXn//fdRVlbW8ImsrLBt2zZcuXJFL4EREVm647eLiSM4vg1Ri7So5cbKygouLi6NbpfL5QgKCmp1UEREdOcxcNbbELWMTiMUi6KIb7/9Frt370ZeXh5UKlWd7du2bdNLcEREliq3qALXFZWQCeoJM4lIezolN6+++irWrl2LYcOGwcfHh49/ExHp2amr6mLiTt5OcLDR20w5RBZBp38xGzduxLZt2xATE6PveIiICMCpa+rkpkd7FhMTtZROc0u5uroiNDRU37EQEdFtp64qAADhTG6IWkyn5Gb+/PmIj49HeXm5vuMhIiLc6ZZiyw1Ry+nULfX4449j06ZN8Pb2RnBwMKytretsP3r0qF6CIyKyRDeKK5GrqIAgAN38WExM1FI6JTeTJ0/GkSNH8NRTT7GgmIhIz/68XW8T4ukIJ1sWExO1lE7/an7++Wfs3LkTgwYN0nc8REQW789r6nqbHv7skiLShU41N4GBgU0O5kdERLqrrbdhMTGRbnRKbpYsWYLZs2fj8uXLeg6HiIhO3k5uunPwPiKd6NQt9dRTT6GsrAwdO3aEg4NDvYLigoICvQRHRGRpCsuqcOWW+knU7uyWItKJTsnNsmXLWERMRGQAtfU2Hdwd4Gpv3czeRNSQFiU3u3btwrBhwzB58mQDhUNEZNnujG/DLikiXbWo5iY2NhZeXl6YMGECvvrqKxQWFhooLCIiy3Sq9kkpFhMT6axFyc2lS5eQkpKC8PBwLF++HL6+vhg+fDhWrFjB4mIiIj34s7blhvU2RDpr8dNSPXv2xNy5c3Ho0CFcunQJjz/+OHbs2IFu3bqhV69emDdvHlJTUw0RKxGRWSuuqMal/FIAQHd/dksR6UqnR8Fr+fv7IzY2Ftu3b0d+fj7eeustXL58GaNGjcKCBQv0FSMRkUVIv90l5e9qBw8nW4mjITJdehvX29HREY899hgee+wxqFQq3Lx5U1+nJiKyCLX1Nt1Zb0PUKi1KblasWNHsPoIg4OWXX4aXl5fOQRERWaI/OTIxkV60KLlZtmxZneXs7Gz4+fnByurOaWqTGyIiapnaMW7COBM4Uau0qOYmIyOjzsve3h7Jycl11l26dEnr86WkpOCRRx6Bv78/BEHA999/3+T+SUlJEASh3uvMmTMteRtEREanskaJizdKAABhLCYmahW91dzoorS0FL169cKzzz6L8ePHa33c2bNn60zcyS4wIjJ156+XoEYlwtXeGn6udlKHQ2TSJE1uRo8ejdGjR7f4OG9vb7i5uek/ICIiiZzOUXdJdfNz5vQ2RK3UqkfBpRIZGQk/Pz8MHz4cu3fvbnLfyspKKBSKOi8iImNzOqcYANCN9TZErdailpt7EwNBEFBSUlJv/d1dRvrk5+eHtWvXIioqCpWVlfjiiy8wfPhwJCUlYciQIQ0ek5CQgPj4eIPEQ0SkL3dabpjcELWWIIqiqO3OMpmsTnOpKIoNLiuVypYHIgj47rvvMHbs2BYd98gjj0AQBPz4448Nbq+srERlZaVmWaFQIDAwEEVFRQZLwoiIWkIURUS+m4jCsmr89PIgzitF1ACFQgFXV1et/v9uUctNc11AUrj//vuxcePGRrfb2trC1pYjfRKR8cpVVKCwrBpymYBO3k5Sh0Nk8lqU3ERHRxsqDp0dO3YMfn5+UodBRKSz2mkXOno5ws5aLnE0RKZP6+SmtLQUjo6OWp9Ym/1LSkpw4cIFzXJGRgaOHz8Od3d3dOjQAXPmzMHVq1exYcMGAMDy5csRHByM7t27o6qqChs3bsTWrVuxdetWreMiIjI2tfU2HLyPSD+0flqqU6dOWLBgAa5du9boPqIoIjExEaNHj9ZqqobU1FRERkYiMjISABAXF4fIyEjMmzcPAJCTk4OsrCzN/lVVVZg1axZ69uyJwYMHY+/evfj5558xbtw4bd8GEZHR4ZNSRPqldUHx2bNnMXfuXPz444+IiIhAnz594O/vDzs7O9y6dQvp6ek4cOAArK2tMWfOHLz44ouQy42vebUlBUlERG3hwcVJuJRfig3P9cOQLhyUlKghBiko7tq1K7Zs2YIrV65gy5YtSElJwf79+1FeXg5PT09ERkbik08+QUxMDGQykxw+h4iozZVV1SDjZikAttwQ6UuLRygOCAjAzJkzMXPmTEPEQ0RkUc7mFkMUAU8nW3g588lOIn1gEwsRkYTu1Ns4SxwJkflgckNEJCE+KUWkf0xuiIgkxGkXiPSPyQ0RkURUKhFncvkYOJG+MbkhIpLIlVvlKKmsgY1chlAv7QdJJaKm6ZTcvPXWWw1OjllUVISJEye2OigiIkuQfrtLqrOPE6zl/K5JpC86/WvasGEDBg4ciIsXL2rWJSUlITw8HJcvX9ZXbEREZo31NkSGoVNyk5aWhuDgYEREROCTTz7B66+/jhEjRmDy5MnYu3evvmMkIjJL6UxuiAyixYP4AYCrqyu+/vprvPnmm3jppZdgZWWFX375BcOHD9d3fEREZouPgRMZhs6dvCtXrsSyZcswceJEhIaG4pVXXsGJEyf0GRsRkdlSVFTjyq1yAExuiPRNp+Rm9OjRiI+Px4YNG/Dll1/i2LFjGDJkCO6//34sXLhQ3zESEZmdM7dHJvZ3tYOrg7XE0RCZF52Sm5qaGqSlpeGxxx4DANjb22P16tX49ttvsWzZMr0GSERkjlhMTGQ4OtXcJCYmNrj+r3/9K06ePNmqgIiILAGTGyLD0fvACp6envo+JRGR2WFyQ2Q4OrXcyGQyCILQ6PaGBvgjIiI1pUrE2eucDZzIUHRKbr777rs6y9XV1Th27Bj++9//Ij4+Xi+BERGZq4z8UlRUq2BvLUeQB6ddINI3nZKbv/3tb/XWPfbYY+jevTs2b96M559/vtWBERGZq9ouqa6+zpDLGm8FJyLd6LXmpn///vj111/1eUoiIrPDehsiw9JbclNeXo6VK1ciICBAX6ckIjJLd0YmZr0NkSHo1C3Vrl27OgXFoiiiuLgYDg4O2Lhxo96CIyIyR6dzaouJ2XJDZAg6JTfLli2rk9zIZDJ4eXmhf//+aNeund6CIyIyNwWlVchVVAAA7mNyQ2QQOiU3kydP1nMYRESWobZLKsjDAU62Ov0KJqJmaP0vKy0tTeuT9uzZU6dgiIjMnaaY2JetNkSGonVyExERAUEQIIpik/sJgsBB/IiIGpHOJ6WIDE7r5CYjI8OQcRARWYQ7xcR8UorIULRObh599FH89ttvaNeuHd555x3MmjULDg4OhoyNiMisVNWocCGPT0oRGZrW49ycPn0apaWlAID4+HiUlJQYLCgiInN08UYJqpUinO2sENDOXupwiMxWi2punn32WQwaNAiiKGLx4sVwcnJqcN958+bpLUAiInNxdzFxU5MPE1HraJ3crF+/Hm+//TZ++uknCIKAX375BVZW9Q8XBIHJDRFRA+5Mu8B6GyJD0jq56dq1K77++msA6kH7fvvtN3h7exssMCIic8ORiYnahk4jSKlUKn3HQURk1kRR5ISZRG1Er7OCExFRw24UV+JmaRVkAtDVl91SRIbE5IaIqA3UDt4X4ukIO2u5xNEQmTcmN0REbaA2uQnzd5U4EiLzx+SGiKgNcGRiorbTqilpq6qqkJeXV6/AuEOHDq0KiojI3LCYmKjt6JTcnD9/Hs899xz2799fZ70oipw4k4joHhXVSly6oR7VPYzJDZHB6ZTcTJ48GVZWVvjpp5/g5+fHkTaJiJpw7noxVCLg7mgDb2dbqcMhMns6JTfHjx/HkSNHcN999+k7HiIis3P3yMT8MkhkeDoVFIeFhSE/P1/fsRARmSVNMbEvu6SI2oJOyc0HH3yA2bNnIykpCTdv3oRCoajzIiKiO9JZTEzUpnTqlnrooYcAAMOHD6+zngXFRER1cdoForanU3Kze/dufcdBRGSWrhaWo7iiBtZyAZ28naQOh8gi6JTcREdH6zsOIiKzVFtv09HLCTZWHDeVqC3oPIhfYWEhPvvsM5w+fRqCICAsLAzPPfccXF05tDgRUa3aLimOb0PUdnT6GpGamoqOHTti2bJlKCgoQH5+PpYuXYqOHTvi6NGj+o6RiMhksd6GqO3p1HIzc+ZMjBkzBp988gmsrNSnqKmpwQsvvIAZM2YgJSVFr0ESEZmqOxNmMrkhais6JTepqal1EhsAsLKywuzZs9GnTx+9BUdEZMpKKmuQebMMAFtuiNqSTt1SLi4uyMrKqrc+Ozsbzs6c8ZaICADO5qpbbXxcbOHuaCNxNESWQ6fkZsKECXj++eexefNmZGdn48qVK/j666/xwgsvYOLEifqOkYjIJKXXjkzMVhuiNqVTt9TixYshCAKeeeYZ1NTUAACsra3xj3/8A//+97/1GiARkaliMTGRNHRKbmxsbPDhhx8iISEBFy9ehCiK6NSpExwcHPQdHxGRyWJyQyQNnce5AQAHBweEh4frKxYiIrOhUok4m6vulgrzYy0iUVvSOrkZN24c1q9fDxcXF4wbN67Jfbdt29bqwIiITFlmQRnKqpSwtZIh2MNR6nCILIrWBcWurq4QBAGA+mkpV1fXRl/aSklJwSOPPAJ/f38IgoDvv/++2WOSk5MRFRUFOzs7hIaGYs2aNVpfj4iordR2SXX1dYaVnNMuELUlrVtu1q1bp/l5/fr1erl4aWkpevXqhWeffRbjx49vdv+MjAzExMRgypQp2LhxI/bt24epU6fCy8tLq+OJiNqKpt7Gl/U2RG1Np5qbBx98ENu2bYObm1ud9QqFAmPHjsXvv/+u1XlGjx6N0aNHa33dNWvWoEOHDli+fDkAoFu3bkhNTcXixYuZ3BCRUblTTMx6G6K2plNbaVJSEqqqquqtr6iowJ49e1odVGMOHDiAESNG1Fk3cuRIpKamorq6usFjKisroVAo6ryIiAztNMe4IZJMi1pu0tLSND+np6cjNzdXs6xUKrFjxw60b99ef9HdIzc3Fz4+PnXW+fj4oKamBvn5+fDz86t3TEJCAuLj4w0WExHRvYrKqnG1sBwA0I1zShG1uRYlNxERERAEAYIg4MEHH6y33d7eHitXrtRbcA2pLWquJYpig+trzZkzB3FxcZplhUKBwMBAwwVIRBavdrLMgHb2cLGzljgaIsvTouQmIyMDoigiNDQUhw4dgpeXl2abjY0NvL29IZfL9R5kLV9f3zqtRQCQl5cHKysreHh4NHiMra0tbG1tDRYTEdG9OHgfkbRalNwEBQUBAFQqlUGCac6AAQPwv//9r866Xbt2oU+fPrC25rcjIjIOTG6IpNWqEYrT09ORlZVVr7h4zJgxWh1fUlKCCxcuaJYzMjJw/PhxuLu7o0OHDpgzZw6uXr2KDRs2AABiY2Px0UcfIS4uDlOmTMGBAwfw2WefYdOmTa15G0REenX69mzgHJmYSBo6JTeXLl3Co48+ipMnT0IQhHp1L0qlUqvzpKamYtiwYZrl2tqYSZMmYf369cjJyUFWVpZme0hICLZv346ZM2fi448/hr+/P1asWMHHwInIaNQoVTh3vQQAW26IpKJTcvPqq68iJCQEv/76q6b+5ubNm3jttdewePFirc8zdOhQTWLUkIYGC4yOjsbRo0d1CZuIyOAu3ihFVY0KTrZWCGzHyYSJpKBTcnPgwAH8/vvv8PLygkwmg0wmw6BBg5CQkIBXXnkFx44d03ecREQm4c9rRQDUg/fJZA0/xUlEhqXTIH5KpRJOTk4AAE9PT1y7dg2AuuD47Nmz+ouOiMjE/HlNXW/T3V/7efaISL90arnp0aMH0tLSEBoaiv79+2PhwoWwsbHB2rVrERoaqu8YiYhMRvrt5CaMg/cRSUan5Gbu3LkoLS0FALz33nt4+OGHMXjwYHh4eGDz5s16DZCIyFSIoqjplgpjMTGRZHRKbkaOHKn5OTQ0FOnp6SgoKEC7du0aHSmYiMjcXblVDkVFDazlArr48DFwIqnoVHNT68KFC9i5cyfKy8vh7u6ur5iIiExS7bQLnb2dYWPVql+vRNQKOv3ru3nzJoYPH44uXbogJiYGOTk5AIAXXngBr732ml4DJCIyFX+y3obIKOiU3MycORPW1tbIysqCg8OdcRwmTJiAHTt26C04IiJTkn673qY7kxsiSelUc7Nr1y7s3LkTAQEBddZ37twZmZmZegmMiMjUpPMxcCKjoFPLTWlpaZ0Wm1r5+fmcgZuILNKt0ipcK6oAoB7Aj4iko1NyM2TIEM1kloB6TimVSoVFixbVmSuKiMhS1NbbBHk4wNnOWuJoiCybTt1SixYtwtChQ5GamoqqqirMnj0bf/75JwoKCrBv3z59x0hEZPT+ZL0NkdHQqeUmLCwMaWlp6NevH/7yl7+gtLQU48aNw7Fjx9CxY0d9x0hEZPRqHwPn4H1E0tOp5QYAfH19ER8fr89YiIhMFueUIjIeOic3FRUVSEtLQ15eHlQqVZ1tY8aMaXVgRESmorxKiUs3SgCwW4rIGOiU3OzYsQPPPPMM8vPz620TBAFKpbLVgRERmYozuQqoRMDTyQZeznxilEhqOtXcTJ8+HY8//jhycnKgUqnqvJjYEJGluTMysSvn1yMyAjolN3l5eYiLi4OPj4++4yEiMjma5IbFxERGQafk5rHHHkNSUpKeQyEiMk2nrqofAw9vz2JiImOgU83NRx99hMcffxx79uxBeHg4rK3rDlj1yiuv6CU4IiJjV1mjxJlcdctNzwAmN0TGQKfk5quvvsLOnTthb2+PpKSkOn3MgiAwuSEii3EutwTVShGu9tYIaGcvdThEBB2Tm7lz5+Kdd97BG2+8AZlMp54tIiKzkHa1EIC61YbFxETGQafMpKqqChMmTGBiQ0QWr7bepgfrbYiMhk7ZyaRJk7B582Z9x0JEZHJOspiYyOjo1C2lVCqxcOFC7Ny5Ez179qxXULx06VK9BEdEZMwqa5Q4m1sMgMkNkTHRKbk5efIkIiMjAQCnTp2qs419zkRkKc7mFqNaKcLNgcXERMakxcmNUqnE/PnzER4eDnd3d0PERERkEtKu3OmS4hc7IuPR4pobuVyOkSNHoqioyBDxEBGZDA7eR2ScdCooDg8Px6VLl/QdCxGRSaktJubgfUTGRafk5v3338esWbPw008/IScnBwqFos6LiMjcVVTfKSbmY+BExkWnguJRo0YBAMaMGVOnn1kURQiCwJnBicjsnc0tRo1KhLujDdq7sZiYyJjolNzs3r1b33EQEZmUtLsG72MxMZFx0Sm5iY6O1nccREQm5dTtJ6V6skuKyOjoPH/Cnj178NRTT+GBBx7A1atXAQBffPEF9u7dq7fgiIiMVRqnXSAyWjolN1u3bsXIkSNhb2+Po0ePorKyEgBQXFyMBQsW6DVAIiJjU1GtxPnr6mJiPilFZHx0Sm7ee+89rFmzBp988kmdqRceeOABHD16VG/BEREZo/QcBWpUIjwcbeDnaid1OER0D52Sm7Nnz2LIkCH11ru4uKCwsLC1MRERGbXjWYUAgIhANxYTExkhnZIbPz8/XLhwod76vXv3IjQ0tNVBEREZs2PZhQCAyA5uksZBRA3TKbl56aWX8Oqrr+KPP/6AIAi4du0avvzyS8yaNQtTp07Vd4xEREblePYtAEBEYDuJIyGihuj0KPjs2bNRVFSEYcOGoaKiAkOGDIGtrS1mzZqF6dOn6ztGIiKjcaO4EtkF5RAEoGcgi4mJjJFOyQ2gnoLhzTffRHp6OlQqFcLCwuDk5KTP2IiIjM7x211Snbyc4GJn3fTORCSJFnVLlZWVYdq0aWjfvj28vb3xwgsvIDg4GP369WNiQ0QWobZLivU2RMarRcnN22+/jfXr1+Ovf/0r/u///g+JiYn4xz/+YajYiIiMzrHbT0pFdmC9DZGxalG31LZt2/DZZ5/h//7v/wAATz31FAYOHAilUgm5XG6QAImIjIVSJSLt9rQLEYFu0gZDRI1qUctNdnY2Bg8erFnu168frKyscO3aNb0HRkRkbC7klaCksgYONnJ08XGWOhwiakSLkhulUgkbG5s666ysrFBTU6PXoIiIjNGxLHW9Tc8AV8hlHLyPyFi1qFtKFEVMnjwZtra2mnUVFRWIjY2Fo6OjZt22bdv0FyERkZE4rhm8j/U2RMasRcnNpEmT6q176qmn9BYMEZEx0xQTs96GyKi1KLlZt26doeIgIjJqJZU1OJenngk8go+BExk1naZfICKyNGnZhRBFoL2bPbydORM4kTFjckNEpIXayTLZakNk/JjcEBFpofZJKdbbEBk/JjdERM1QqUSkZqqTm95BfFKKyNgxuSEiasaFGyUoLKuGvbUc4e05EziRsWNyQ0TUjD8yCgAAvYPcYC3nr00iY8d/pUREzTh8O7npG+wucSREpA0mN0RETRBFEYduJzf9QpjcEJkCyZObVatWISQkBHZ2doiKisKePXsa3TcpKQmCINR7nTlzpg0jJiJLcuVWOXIVFbCWC4gMZDExkSmQNLnZvHkzZsyYgTfffBPHjh3D4MGDMXr0aGRlZTV53NmzZ5GTk6N5de7cuY0iJiJLU1tv06O9K+xt5BJHQ0TakDS5Wbp0KZ5//nm88MIL6NatG5YvX47AwECsXr26yeO8vb3h6+urecnl/IVDRIZxmF1SRCZHsuSmqqoKR44cwYgRI+qsHzFiBPbv39/ksZGRkfDz88Pw4cOxe/fuJvetrKyEQqGo8yIi0tahy7eTGxYTE5kMyZKb/Px8KJVK+Pj41Fnv4+OD3NzcBo/x8/PD2rVrsXXrVmzbtg1du3bF8OHDkZKS0uh1EhIS4OrqqnkFBgbq9X0QkfnKK65ARn4pBAHoE8TkhshUtGhWcEMQBKHOsiiK9dbV6tq1K7p27apZHjBgALKzs7F48WIMGTKkwWPmzJmDuLg4zbJCoWCCQ0RaSb2sHpW4q48zXB2sJY6GiLQlWcuNp6cn5HJ5vVaavLy8eq05Tbn//vtx/vz5Rrfb2trCxcWlzouISBt8BJzINEmW3NjY2CAqKgqJiYl11icmJuKBBx7Q+jzHjh2Dn5+fvsMjImJyQ2SiJO2WiouLw9NPP40+ffpgwIABWLt2LbKyshAbGwtA3aV09epVbNiwAQCwfPlyBAcHo3v37qiqqsLGjRuxdetWbN26Vcq3QURmqKi8Gqdz1Q8gsJiYyLRImtxMmDABN2/exDvvvIOcnBz06NED27dvR1BQEAAgJyenzpg3VVVVmDVrFq5evQp7e3t0794dP//8M2JiYqR6C0Rkpo5kFkAUgSAPB3i72EkdDhG1gCCKoih1EG1JoVDA1dUVRUVFrL8hokbF/+9PrNt3GRP7dUDCuHCpwyGyeC35/1vy6ReIiIzRnvP5AIDBnT0ljoSIWorJDRHRPXKKynEhrwQyAXigo4fU4RBRCzG5ISK6R22rTc8AN7g52EgcDRG1lOSD+BERGZva5GYIu6TInIgioKpRv5TVt39WAqpq9TaId/ZT/1D350a3of42QQZ4dDTYW2kOkxsioruoVCL2XVAnN4M6e0kcDVk8UQQqCoGSPKA0Hyi7CZTlA6U31T+XFwBVpepXdRlQVQZUl6r/rCkHlDV3EhpR2XZxO/kCs8623fXuweSGiOgu6TkKFJRWwdFGjsgOblKHQ5ZAFAHFVSD/PHArA7h1Wf0qyABuZQKVRYa9viBXt7QAgGb6I+GuZaHl22ydDRauNpjcEBHdJeX8DQDAgI6esJazLJH0rDaRyT4EXEkFctOA3JPq1pmm2LkBDh6Aoyfg4Ak4uKt/tncHbJ0Aa0fAxgGwdgBsHAFre/XPMiv1S259+2f57T/vWm5kPkdTxuSGiOgue2vrbbqw3ob0pDALuJQMZCQDl/cBxdfq7yPI1TUq7UKAdsGA++0/24UAbh3UiQtpjckNEdFtZVU1mpnAB3VickM6UtYA2X8A534Bzu4Abt4zubMgB3x7AAF9Af9IwDcc8LoPsLKVJl4zxOSGiOi2PzIKUKVUob2bPUI8HaUOh0yJSglk7gdObQVO/6gu9q0lyIH2UUBoNBAyBGjfhy0xBsbkhojotru7pAQzrEMgA8g/DxzbCKRtBopz7qy3bwd0HgF0HQ10fBCwc5UuRgvE5IaI6LaUc+pi4sF8BJyaUlMFpP8AHP4UyD54Z72dK9BtDNBjHBA8BJDzv1ip8M4TEQG4dKME5/NKYCUTMJD1NtSQ0pvAkXXqpKa2lUaQqVtoIp8COo8ErDiitTFgckNEBGDnn9cBAAM6esDV3lriaMioXE8H/lgNpH0D1FSo1zn5AH2eB3o/A7j4SRsf1cPkhogIwM4/cwEAI7v7ShwJGY0rR4DkfwPnd91Z5xcB3D8V6P4oW2mMGJMbIrJ4uUUVOJ5dCEEARoT5SB0OSS37sDqpufCrelmQAd0eUSc1gf3NctA7c8PkhogsXmK6utUmMtAN3i52EkdDkqmX1MiBXhOBIa8B7qHSxkYtwuSGiCxebb0Nu6Qs1PV04Nf5wPmd6mVBDkRMBAYzqTFVTG6IyKIVlVXj4CX1gGtMbiyM4hqwewFw/EtAVN2V1MxST39AJovJDRFZtN/OXEeNSkRXH2cEc1Riy1BRBOz7EDiwCqgpV6/rNgYY/jbg2Una2EgvmNwQkUW785QUC4nNnkqpHqdm94I70yME3g+MeBcI7CdtbKRXTG6IyGKVVymRfHtU4hHskjJvl/cBv/wTuH5SvezRGfhLPNA1hk8/mSEmN0RksZLP3UBFtXqizO7+LlKHQ4ZQdBVInAec+la9bOcKDHtTPQAfp0cwW/ybJSKL9d2xKwCAmHBfTpRpbqorgAMfAXuWANVlAAQgajLw4FuAo4fU0ZGBMbkhIouUX1KJ307nAQAeiwqUOBrSG1EEzu0AdswBbmWo1wX2B0YvBPwjJA2N2g6TGyKySN8fu4oalYieAa7o6ussdTikD/nngR1v3BmEz8lXXSwc/jjraiwMkxsisjiiKOLbI+ouqcejAiSOhlqtQgGkLAIOrgZU1YDMGhgwDRgyC7Bl4mqJmNwQkcU5dVWBM7nFsLGSYUyv9lKHQ7pSqYC0zcCvbwMl6lGm0XkEMOrfgEdHaWMjSTG5ISKLs+VINgD1iMSuDtYSR0M6uXpU/Wj3lUPqZfdQdVLTZaS0cZFRYHJDRBalolqJH45fA8AuKZNUmg/8Fg8c/QKACFg7AtGvq2fstrKVOjoyEkxuiMiiJKZfR1F5Nfxc7TCwk6fU4ZC2lDXA4U/VowtXFqnXhf9dPRCfi7+0sZHRYXJDRBZly+1C4vG9AyCX8Qkak3ApWd0FdeO0etm3p/rR7qAB0sZFRovJDRFZjEs3SrDnvHq6hcfYJWX8CrOAXXOB9B/Uy/buwPB5QO9nAJlc2tjIqDG5ISKLsTblEkQRGH6fN2cAN2bV5cC+FcDeZepZuwUZ0PcFYOgcwMFd6ujIBDC5ISKLcF1RgW1HrwIA/jGUjwkbJVEETm0Ffo0HirLU64IGAaM/AHx7SBsbmRQmN0RkET7fm4EqpQp9g9uhTzC//RudrIPAzn8BV4+ol13aAyPeA7o/ytGFqcWY3BCR2Ssqq8bGg5kAgNhottoYlYJLQOLbwOkf1cs2TsCgGcD90wAbB0lDI9PF5IaIzN7GPzJRWqVEVx9nDOvqLXU4BABlBeoZu//4j3rKBEEGRD4NDHsTcPaROjoycUxuiMisVVQrsW6fenbo2KGhkPHxb2lVlqjngNq/AqhUqNd1HK7ugvIJkzY2MhtMbojIrG0+nI38kiq0d7PHwz052JtkaiqB1HXAnsVAqfpxfPj0AB6KBzo/JG1sZHaY3BCR2bpVWoVlv54DAMRGh8JaLpM4IgukrFZPbpn0wZ0noNqFAA/OBbqPA2T8OyH9Y3JDRGZr0a6zKCyrRlcfZ0zs10HqcCxLTRVw4itgz1KgUF3MDWc/IHq2urZGzglLyXCY3BCRWTp5pQibDqlbCt75W3dYsdWmbVRXAMe+APYuBxTqqS7g4AkMfAXo9yJgbS9peGQZmNwQkdlRqUTM+/EURBH4W4Q/+od6SB2S+asqBY5uAPZ9CBTnqNc5+QADXwWiJgM2HBGa2g6TGyIyO1uPXsGxrEI42sjxr5huUodj3hQ5wKG1QOrnQEWhep1Le2DgDKD302ypIUkwuSEis3KjuBIf7DgDAHj1oc7wcbGTOCIzlZMGHPhYPV2Cqlq9rl2wOqmJeAKwspUyOrJwTG6IyGxUK1WY9tVR5JdUoYuPEyY/ECJ1SOZFWQOc+0U98N7lPXfWd3gAGDAN6Dqas3WTUWByQ0RmY+GOMziUUQAnWyusejIKNlYsItaLwix1Pc3RL4CSXPU6Qa6e92nAVKB9lLTxEd2DyQ0RmYWf03LwyR71SMSLH++JTt5OEkdk4qorgPO71E8+nU8EIKrXO3oBEU8C/aYArgGShkjUGCY3RGTyzl8vxuvfngAAvBQdilE9/CSOyESplMDlvcDJb4D0/wGVRXe2hQwBop4F7nsYsLKRLkYiLTC5ISKTdiZXgac+PYSyKiUe6OiB10d0lTok0yKKQM5xIG2Luji4ttsJUD/1FP4Y0HsS4MHZ1Ml0MLkhIpN1NOsWnl13GEXl1ejm54KVEyM5WJ82aqqAzH3AuZ3AuR3ArYw72+zcgO5jgfC/Ax0GcHoEMklMbojIJO27kI8pG1JRVqVE7w5uWDe5H1wdOKR/o4qvq2tozu8ELu4GqkrubLOyB+6LAcIfV8/QzW4nMnFMbojIpFQrVfhP8kV8+Nt5VCtFDO7sif88HQUHG/46q6OsAMg6AGTuV9fR5Byvu93JB+g8AugyEggdBtiyAJvMB38bEJHJOJ2jwKwtJ/DnNQUA4K89/bD0771ga8WxVaDIAbL2q5OZzP1AXnr9ffwjgS6j1EmNXwS7nMhsMbkhIqN35VYZPt97GRsOXEaNSoSrvTXix3TH3yL8IQiC1OG1LZVKXSOTm6YeJbj2z9K8+vt6dgGCHgCCBqqfdnL2bft4iSQgeXKzatUqLFq0CDk5OejevTuWL1+OwYMHN7p/cnIy4uLi8Oeff8Lf3x+zZ89GbGxsG0ZMRG1BFEUcyy7E53sz8MupXChV6nFWRoT54L1He8Db2cynVaguBwoygIKLwM2L6j/zLwC5J4Gq4vr7CzLAp4c6kQl6QF0M7OTV9nETGQFJk5vNmzdjxowZWLVqFQYOHIj//Oc/GD16NNLT09GhQ4d6+2dkZCAmJgZTpkzBxo0bsW/fPkydOhVeXl4YP368BO+AiPSpsKwKf2QUYPeZPOw+m4frikrNtoGdPDBlcCiiu3iZfmuNSgmU3gAU14DiXKD4mrpbqTgHKMoGbl4CFFehGTjvXnJbwCcM8O0J+PUEfHuplznzNhEAQBBFsZF/PYbXv39/9O7dG6tXr9as69atG8aOHYuEhIR6+//zn//Ejz/+iNOnT2vWxcbG4sSJEzhw4IBW11QoFHB1dUVRURFcXFxa/yaIqFmiKKKyRoXSyhqUVSlRWFaNnKJyXFdU4GphBc5dL8bpHAVyiirqHGdvLcfoHr54fnAIuvu7ShT9XVRKoKpU3apSffvPqjKg+q5XVZl6fWURUF4IlN9Sv8oK7vr5JiAqm7+erSvgEQq4d1SPM+PeEfDtoe5ukvPJMLIsLfn/W7KWm6qqKhw5cgRvvPFGnfUjRozA/v37GzzmwIEDGDFiRJ11I0eOxGeffYbq6mpYW9f/x15ZWYnKyjvf/hQKhR6ir6/o5nVkfjJRq30FrfNJ7fNOoYF9G7qMNt93xUbO1/QRzTPM+wZELfZv8H03epiW70frOFv396g5i3j3fi07nzYRaPt+tD2nKKqTGpUoQqWq/7fke/vVC8Bfa7faADZWMjjbWsPZzgqOtlaQFQL4310n1ZqW+4oAVDXqma1VNerJIest3/5ZVLXg+s0QZOonlpz9ABd/dT2Ms5964Dz3UHUy4+ABmHorFZEEJEtu8vPzoVQq4ePjU2e9j48PcnNzGzwmNze3wf1ramqQn58PP7/6Q64nJCQgPj5ef4E3orq6Ej0rjhj8OkQmqSUP5agAlN9+GS0BsHYAbBwAa3vA2vH2n3ets3UG7N0B+3bql0Ptz+7qpMXJmzNoExmI5AXF9/adi6LYZH96Q/s3tL7WnDlzEBcXp1lWKBQIDAzUNdxGObm4I7X3v1twRN14G3vLYjPf0eu+by2/4Qna7C00+Y3x3i3iXfs2eV6tv4XW36/xQ1tyj7QlNHPN2l0a3kGot15oclHbjXXj0fbvW9Bi79oPRQP3vYndmyITBNhZy2FnYwU7KxlsreWwkcsglzV2cMs+v3rdWWal7uaRWd3zs7U6AaldltuoExcrO7aoEBkxyZIbT09PyOXyeq00eXl59Vpnavn6+ja4v5WVFTw8PBo8xtbWFra2tvoJugl2Dk7oM+YfBr8OERERNU2yEZxsbGwQFRWFxMTEOusTExPxwAMPNHjMgAED6u2/a9cu9OnTp8F6GyIiIrI8kg5PGRcXh08//RSff/45Tp8+jZkzZyIrK0szbs2cOXPwzDPPaPaPjY1FZmYm4uLicPr0aXz++ef47LPPMGvWLKneAhERERkZSWtuJkyYgJs3b+Kdd95BTk4OevToge3btyMoKAgAkJOTg6ysLM3+ISEh2L59O2bOnImPP/4Y/v7+WLFiBce4ISIiIg1Jx7mRAse5ISIiMj0t+f+bs6YRERGRWWFyQ0RERGaFyQ0RERGZFSY3REREZFaY3BAREZFZYXJDREREZoXJDREREZkVJjdERERkVpjcEBERkVmRdPoFKdQOyKxQKCSOhIiIiLRV+/+2NhMrWFxyU1xcDAAIDAyUOBIiIiJqqeLiYri6uja5j8XNLaVSqXDt2jU4OztDEAQAQN++fXH48GGtjm9u36a2N7atofX3rrt7WaFQIDAwENnZ2QafH6sl96Y1x2qzb0vuX2Prm1tnifeWn1ndjm/NZ7apbeZ6b/n7oGnGcm+N+TMriiKKi4vh7+8PmazpqhqLa7mRyWQICAios04ul2t9g5vbt6ntjW1raP296xrax8XFxeD/4Fpyb1pzrDb7tuT+NbZe23WWdG/5mdXt+NZ8ZpvaZq73lr8PmmYs99bYP7PNtdjUYkExgGnTpult36a2N7atofX3rmtJjPrUmuvq8742tU9r7qu21zYEY7m3/MzqdnxrPrNNbTPXe8vfB00zlntrLp9Zi+uWMgctmfadWob31jB4Xw2H99ZweG8Noy3uK1tuTJCtrS3efvtt2NraSh2K2eG9NQzeV8PhvTUc3lvDaIv7ypYbIiIiMitsuSEiIiKzwuSGiIiIzAqTGyIiIjIrTG6IiIjIrDC5ISIiIrPC5MYMPfroo2jXrh0ee+wxqUMxG9nZ2Rg6dCjCwsLQs2dPbNmyReqQzEZxcTH69u2LiIgIhIeH45NPPpE6JLNSVlaGoKAgzJo1S+pQzIqVlRUiIiIQERGBF154QepwzEpGRgaGDRuGsLAwhIeHo7S0tMXn4KPgZmj37t0oKSnBf//7X3z77bdSh2MWcnJycP36dURERCAvLw+9e/fG2bNn4ejoKHVoJk+pVKKyshIODg4oKytDjx49cPjwYXh4eEgdmll48803cf78eXTo0AGLFy+WOhyz4enpifz8fKnDMEvR0dF47733MHjwYBQUFMDFxQVWVi2bLYotN2Zo2LBhcHZ2ljoMs+Ln54eIiAgAgLe3N9zd3VFQUCBtUGZCLpfDwcEBAFBRUQGlUgl+59KP8+fP48yZM4iJiZE6FCKt/Pnnn7C2tsbgwYMBAO7u7i1ObAAmN0YnJSUFjzzyCPz9/SEIAr7//vt6+6xatQohISGws7NDVFQU9uzZ0/aBmhh93tfU1FSoVCoEBgYaOGrToI97W1hYiF69eiEgIACzZ8+Gp6dnG0VvvPRxX2fNmoWEhIQ2ith06OPeKhQKREVFYdCgQUhOTm6jyI1fa+/t+fPn4eTkhDFjxqB3795YsGCBTnEwuTEypaWl6NWrFz766KMGt2/evBkzZszAm2++iWPHjmHw4MEYPXo0srKy2jhS06Kv+3rz5k0888wzWLt2bVuEbRL0cW/d3Nxw4sQJZGRk4KuvvsL169fbKnyj1dr7+sMPP6BLly7o0qVLW4ZtEvTxmb18+TKOHDmCNWvW4JlnnoFCoWir8I1aa+9tdXU19uzZg48//hgHDhxAYmIiEhMTWx6ISEYLgPjdd9/VWdevXz8xNja2zrr77rtPfOONN+qs2717tzh+/HhDh2iSdL2vFRUV4uDBg8UNGza0RZgmqTWf2VqxsbHiN998Y6gQTZIu9/WNN94QAwICxKCgINHDw0N0cXER4+Pj2ypkk6GPz+yoUaPEw4cPGypEk6XLvd2/f784cuRIzbaFCxeKCxcubPG12XJjQqqqqnDkyBGMGDGizvoRI0Zg//79EkVl+rS5r6IoYvLkyXjwwQfx9NNPSxGmSdLm3l6/fl3zrVehUCAlJQVdu3Zt81hNiTb3NSEhAdnZ2bh8+TIWL16MKVOmYN68eVKEa1K0ube3bt1CZWUlAODKlStIT09HaGhom8dqarS5t3379sX169dx69YtqFQqpKSkoFu3bi2+VsurdEgy+fn5UCqV8PHxqbPex8cHubm5muWRI0fi6NGjKC0tRUBAAL777jv07du3rcM1Gdrc13379mHz5s3o2bOnpg/5iy++QHh4eFuHa1K0ubdXrlzB888/D1EUIYoipk+fjp49e0oRrsnQ9ncBtZw29/b06dN46aWXIJPJIAgCPvzwQ7i7u0sRrknR5t5aWVlhwYIFGDJkCERRxIgRI/Dwww+3+FpMbkyQIAh1lkVRrLNu586dbR2SWWjqvg4aNAgqlUqKsMxCU/c2KioKx48flyAq09fc74JakydPbqOIzEdT9/aBBx7AyZMnpQjLLDT3uR09ejRGjx7dqmuwW8qEeHp6Qi6X1/tmlpeXVy8TJu3xvhoO761h8L4aDu+t4bTlvWVyY0JsbGwQFRVVr3I8MTERDzzwgERRmT7eV8PhvTUM3lfD4b01nLa8t+yWMjIlJSW4cOGCZjkjIwPHjx+Hu7s7OnTogLi4ODz99NPo06cPBgwYgLVr1yIrKwuxsbESRm38eF8Nh/fWMHhfDYf31nCM5t62+PkqMqjdu3eLAOq9Jk2apNnn448/FoOCgkQbGxuxd+/eYnJysnQBmwjeV8PhvTUM3lfD4b01HGO5t5xbioiIiMwKa26IiIjIrDC5ISIiIrPC5IaIiIjMCpMbIiIiMitMboiIiMisMLkhIiIis8LkhoiIiMwKkxsiIiIyK0xuiIiIyKwwuSEiyc2fPx8RERGSXf+tt97Ciy++qNW+s2bNwiuvvGLgiIioNTj9AhEZlCAITW6fNGkSPvroI1RWVsLDw6ONorrj+vXr6Ny5M9LS0hAcHNzs/nl5eejYsSPS0tIQEhJi+ACJqMWY3BCRQeXm5mp+3rx5M+bNm4ezZ89q1tnb28PV1VWK0AAACxYsQHJyMnbu3Kn1MePHj0enTp3wwQcfGDAyItIVu6WIyKB8fX01L1dXVwiCUG/dvd1SkydPxtixY7FgwQL4+PjAzc0N8fHxqKmpweuvvw53d3cEBATg888/r3Otq1evYsKECWjXrh08PDzwt7/9DZcvX24yvq+//hpjxoyps+7bb79FeHg47O3t4eHhgYceegilpaWa7WPGjMGmTZtafW+IyDCY3BCRUfr9999x7do1pKSkYOnSpZg/fz4efvhhtGvXDn/88QdiY2MRGxuL7OxsAEBZWRmGDRsGJycnpKSkYO/evXBycsKoUaNQVVXV4DVu3bqFU6dOoU+fPpp1OTk5mDhxIp577jmcPn0aSUlJGDduHO5u5O7Xrx+ys7ORmZlp2JtARDphckNERsnd3R0rVqxA165d8dxzz6Fr164oKyvDv/71L3Tu3Blz5syBjY0N9u3bB0DdAiOTyfDpp58iPDwc3bp1w7p165CVlYWkpKQGr5GZmQlRFOHv769Zl5OTg5qaGowbNw7BwcEIDw/H1KlT4eTkpNmnffv2ANBsqxARScNK6gCIiBrSvXt3yGR3vn/5+PigR48emmW5XA4PDw/k5eUBAI4cOYILFy7A2dm5znkqKipw8eLFBq9RXl4OALCzs9Os69WrF4YPH47w8HCMHDkSI0aMwGOPPYZ27dpp9rG3twegbi0iIuPD5IaIjJK1tXWdZUEQGlynUqkAACqVClFRUfjyyy/rncvLy6vBa3h6egJQd0/V7iOXy5GYmIj9+/dj165dWLlyJd5880388ccfmqejCgoKmjwvEUmL3VJEZBZ69+6N8+fPw9vbG506darzauxprI4dO8LFxQXp6el11guCgIEDByI+Ph7Hjh2DjY0NvvvuO832U6dOwdraGt27dzfoeyIi3TC5ISKz8OSTT8LT0xN/+9vfsGfPHmRkZCA5ORmvvvoqrly50uAxMpkMDz30EPbu3atZ98cff2DBggVITU1FVlYWtm3bhhs3bqBbt26affbs2YPBgwdruqeIyLgwuSEis+Dg4ICUlBR06NAB48aNQ7du3fDcc8+hvLwcLi4ujR734osv4uuvv9Z0b7m4uCAlJQUxMTHo0qUL5s6diyVLlmD06NGaYzZt2oQpU6YY/D0RkW44iB8RWTRRFHH//fdjxowZmDhxYrP7//zzz3j99deRlpYGKyuWLRIZI7bcEJFFEwQBa9euRU1NjVb7l5aWYt26dUxsiIwYW26IiIjIrLDlhoiIiMwKkxsiIiIyK0xuiIiIyKwwuSEiIiKzwuSGiIiIzAqTGyIiIjIrTG6IiIjIrDC5ISIiIrPC5IaIiIjMyv8DyHLvIMvgweYAAAAASUVORK5CYII=", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "plt.figure()\n", - "\n", - "plt.plot(permeation_flux_no_barrier.t, permeation_flux_no_barrier.data, label=\"without barrier\")\n", - "plt.plot(permeation_flux.t, permeation_flux.data, label=\"with barrier\")\n", - "\n", - "plt.xscale(\"log\")\n", - "plt.legend()\n", - "plt.xlabel(\"Time (s)\")\n", - "plt.ylabel(\"Permeation flux (H/m2/s)\")\n", - "plt.show()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Clearly, having the coating on both sides reduces the permeation flux!\n", - "\n", - "Moreover, it can be shown that the PRF of this configuration is:\n", - "\n", - "$$\\mathrm{PRF} = 1 + 2 \\alpha \\beta \\gamma$$\n", - "\n", - "With \n", - "\n", - "$$\\alpha = D_\\mathrm{substrate} / D_\\mathrm{barrier} $$\n", - "\n", - "$$\\beta = S_\\mathrm{substrate} / S_\\mathrm{barrier} $$\n", - "\n", - "$$\\gamma = e_\\mathrm{barrier} / e_\\mathrm{substrate} $$\n", - "\n", - "We can compare the computed PRF to the theory." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Theoretical PRF = 6.1113\n", - "Computed PRF = 6.0617\n", - "Error = -0.81%\n" - ] - } - ], - "source": [ - "computed_PRF = permeation_flux_no_barrier.data[-1] / permeation_flux.data[-1]\n", - "\n", - "diff_ratio = tungsten.D_0 / barrier.D_0\n", - "sol_ratio = tungsten.K_S_0 / barrier.K_S_0\n", - "length_ratio = barrier_thick / substrate_thick\n", - "\n", - "theoretical_PRF = 1 + 2 * diff_ratio * sol_ratio * length_ratio\n", - "\n", - "print(f\"Theoretical PRF = {theoretical_PRF:.4f}\")\n", - "print(f\"Computed PRF = {computed_PRF:.4f}\")\n", - "print(f\"Error = {(computed_PRF - theoretical_PRF)/theoretical_PRF:.2%}\")" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Question\n", - "Will adding traps to the simulation change the value of the PRF?\n", - "\n", - "\n", - "Show solution\n", - "\n", - "No. The PRF is a measure of the flux of mobile particles and is computed at steady state.\n", - "\n", - "At steady state, the McNabb & Foster model states that the concentration of mobile particle is independent of the trapped concentration.\n", - "\n", - "Therefore, the steady state PRF is independent of trapping.\n", - "\n", - "" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "festim-workshop", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.13.5" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/book/content/applications/task06.ipynb b/book/content/applications/task06.ipynb deleted file mode 100644 index 77b24695..00000000 --- a/book/content/applications/task06.ipynb +++ /dev/null @@ -1,438 +0,0 @@ -{ - "cells": [ - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Advection-diffusion problem\n", - "\n", - "In this task, we'll simulate advection-diffusion in a fluid domain.\n", - "\n", - "Natively, advection is not taken into account in FESTIM. The idea is therefore to modify the governing equations by adding an advection term." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import festim as F\n", - "\n", - "my_model = F.HydrogenTransportProblem()\n", - "\n", - "H = F.Species(\"H\")\n", - "my_model.species = [H]" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create a mesh with FEniCS:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from dolfinx.mesh import create_unit_square\n", - "from mpi4py import MPI\n", - "\n", - "# creating a mesh with FEniCS\n", - "nx = ny = 20\n", - "mesh_fenics = create_unit_square(MPI.COMM_WORLD, nx, ny)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "tags": [ - "hide-cell" - ] - }, - "outputs": [], - "source": [ - "import pyvista\n", - "\n", - "pyvista.start_xvfb()\n", - "pyvista.set_jupyter_backend('html')" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "0cae32a2a8d5456ea092a74ae0201c4f", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "EmbeddableWidget(value='\\n\\n \\n \\n\\n \\n \n", - "> Note: this velocity field can be obtained from solving the Navier-Stokes equations with FEniCS or with another code (OpenFOAM).\n", - "> " - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "from basix.ufl import element\n", - "\n", - "el = element(\"Lagrange\", mesh_fenics.topology.cell_name(), 2, shape=(mesh_fenics.geometry.dim, ))\n", - "\n", - "\n", - "V = dolfinx.fem.functionspace(my_model.mesh.mesh, el)\n", - "\n", - "velocity = dolfinx.fem.Function(V)\n", - "\n", - "velocity.interpolate(lambda x: (-100*x[1]*(x[1]-1), np.full_like(x[0], 0.0)))" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here's what `velocity` looks like:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "6d65a6f875ca4d46b6386d18b122e745", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "EmbeddableWidget(value='\\n\\n \\n \\n\\n \\n \\n\\n \\n \\n\\n \\n \\n\\n \\n " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "\n", - "# Calculate the total desorption flux\n", - "flux_left = data[0].data\n", - "flux_right = data[1].data\n", - "flux_total = np.array(flux_left) + np.array(flux_right)\n", - "\n", - "# Get temperature\n", - "T = temperature(np.array(data[0].t))\n", - "\n", - "# Add random noise\n", - "noise = np.random.normal(0, 0.05 * max(flux_total), len(flux_total))\n", - "noisy_flux = flux_total + noise\n", - "\n", - "# Save to file\n", - "np.savetxt(\"Noisy_TDS.csv\", np.column_stack([T, noisy_flux]), delimiter=\";\", fmt=\"%f\")\n", - "\n", - "# Visualise\n", - "plt.plot(T, noisy_flux, linewidth=2)\n", - "\n", - "plt.ylabel(r\"Desorption flux (m$^{-2}$ s$^{-1}$)\")\n", - "plt.xlabel(r\"Temperature (K)\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Automated TDS fit" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here we'll define the algorithm to fit the generated TDS spectra using the [`minimize`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html) method from the `scipy.optimize` python library. The initial implementation of the algorithm can be found in [this repository](https://github.com/RemDelaporteMathurin/tds_optimisation/tree/main). We'll try to find the values of the detrapping barrier and the trap concetration so the average absolute error between the reference and the fitted spectras satisfies the required tolerance. To start with, we'll read our reference data and define an auxiliary method to display information on the status of fitting." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "ref = np.genfromtxt(\"Noisy_TDS.csv\", delimiter=\";\")\n", - "\n", - "\n", - "def info(xk):\n", - " \"\"\"\n", - " Print information during the fitting procedure\n", - " \"\"\"\n", - " print(\"-\" * 40)\n", - " print(\"New iteration.\")\n", - " print(f\"Point is: {xk}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Then, we define an error function `error_function` that:\n", - "- runs the TDS model with a given set of parameters\n", - "- calculates the mean absolute error between the reference and the simulated TDS\n", - "- collects intermediate values of parameters and the calculated errors for visualisation purposes" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "from scipy.interpolate import interp1d\n", - "\n", - "prms = []\n", - "errors = []\n", - "\n", - "all_ts = []\n", - "all_fluxes = []\n", - "\n", - "i = 0 # initialise counter\n", - "\n", - "\n", - "def error_function(prm):\n", - " \"\"\"\n", - " Compute average absolute error between simulation and reference\n", - " \"\"\"\n", - " global i\n", - " global prms\n", - " global errors\n", - " global all_ts\n", - " global all_fluxes\n", - "\n", - " i += 1\n", - " prms.append(prm)\n", - "\n", - " # Filter the results if a negative value is found\n", - " if any([e < 0 for e in prm]):\n", - " return 1e30\n", - "\n", - " # Get the simulation result\n", - " n, Ep = prm\n", - " res = TDS(n, Ep)\n", - "\n", - " flux = np.array(res[0].data) + np.array(res[1].data)\n", - " all_fluxes.append(flux)\n", - " all_ts.append(np.array(res[0].t))\n", - "\n", - " T = temperature(np.array(res[0].t))\n", - "\n", - " interp_tds = interp1d(T, flux, fill_value=\"extrapolate\")\n", - "\n", - " # Compute the mean absolute error between sim and ref\n", - " err = np.abs(interp_tds(ref[:, 0]) - ref[:, 1]).mean()\n", - "\n", - " print(f\"Average absolute error is : {err:.2e}\")\n", - " errors.append(err)\n", - " return err" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we'll minimise `error_function` to find the set of trap properties reproducing the reference TDS (within some tolerance). \n", - "\n", - "We'll use the Nelder-Mead minimisation algorithm with the initial guess: $n=0.02~\\text{at.fr.}$ and $E_p=1.1~\\text{eV}$." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "tags": [ - "hide-output" - ] - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "fcfddd3789da45ed9f047431f818b59b", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 1.03e+20\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "eb2c49d836b346698d9400929631d9a7", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 1.10e+20\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "14d41f3d209a4909955cac6f5522b1c7", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 1.28e+20\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "3f5fba266ac441c791702a108a6f6acb", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 9.40e+19\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "ca93f00864df496fa050a748942fc807", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 9.67e+19\n", - "----------------------------------------\n", - "New iteration.\n", - "Point is: [0.021 1.045]\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "632eb843b84b4153b64c165244397337", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 8.66e+19\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a4c47bca44da427ea26fb9cfcc4e9158", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 8.13e+19\n", - "----------------------------------------\n", - "New iteration.\n", - "Point is: [0.0195 1.0175]\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "6fbdc714cfa843749ea8b35dde72c23a", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 8.92e+19\n", - "----------------------------------------\n", - "New iteration.\n", - "Point is: [0.0195 1.0175]\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "4c215a4e62634a6eb2141a4ec3020e0f", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 7.99e+19\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "ed35476603d8414284b77db84a305b2f", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 1.02e+20\n", - "----------------------------------------\n", - "New iteration.\n", - "Point is: [0.019 0.935]\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "b6a0f82dd0e447ddbb04f2b990876f70", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 6.99e+19\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "420bbcf26b0e4eb38e3a6ca408a0cfc1", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 6.03e+19\n", - "----------------------------------------\n", - "New iteration.\n", - "Point is: [0.01675 1.00375]\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "3e663e9d20e841198d0181b2f374a571", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 7.01e+19\n", - "----------------------------------------\n", - "New iteration.\n", - "Point is: [0.01675 1.00375]\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "4e98d7bc2a2648b7830f226d31ebfc6e", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 3.93e+19\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "5cecb4d91d3248c7b9c086a6d6f81791", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 2.38e+19\n", - "----------------------------------------\n", - "New iteration.\n", - "Point is: [0.0115 1.0175]\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "2be393cf2fb14107802202cf950f4f83", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 6.26e+19\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "41ca27f913c540f09aad4ddc7208f180", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 4.58e+19\n", - "----------------------------------------\n", - "New iteration.\n", - "Point is: [0.0115 1.0175]\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "0c21e984b242436992a25df3c89e19a3", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 4.04e+19\n", - "----------------------------------------\n", - "New iteration.\n", - "Point is: [0.0115 1.0175]\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "b6b158f70d0540c49679dfee62906239", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 3.72e+19\n", - "----------------------------------------\n", - "New iteration.\n", - "Point is: [0.0115 1.0175]\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "e76d55c40518481483144cd741cd11f4", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 1.96e+19\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "539fbd06bb7744ffa953644936785780", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 4.43e+19\n", - "----------------------------------------\n", - "New iteration.\n", - "Point is: [0.0099375 0.9796875]\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "42d3be5575b749ad899b78d61d7dc115", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 4.88e+19\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "bcc05f50f2284e0eaac3886daaee8443", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 2.13e+19\n", - "----------------------------------------\n", - "New iteration.\n", - "Point is: [0.0099375 0.9796875]\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "5bdca30dfd454952b295cfd160364efc", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 3.41e+19\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "ac86581d19f6433b9c875418e1743b12", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 1.57e+19\n", - "----------------------------------------\n", - "New iteration.\n", - "Point is: [0.01035547 1.00740234]\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "8f094c51d2f64593adc10ea9aadeeb5f", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 2.65e+19\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "0ea7be707f2f4182b4cd679751a63e42", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 1.62e+19\n", - "----------------------------------------\n", - "New iteration.\n", - "Point is: [0.01035547 1.00740234]\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "4bf1138c07794ac8a929a836765240e8", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 2.49e+19\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "857332d89b7f4905938b71ceab56ae88", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 1.49e+19\n", - "----------------------------------------\n", - "New iteration.\n", - "Point is: [0.00988647 0.99275269]\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "9196456256c740dabb5c6ce304afe779", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 1.69e+19\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "be0cf0eed5c54a089af66c04eabbb879", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Average absolute error is : 1.45e+19\n", - "----------------------------------------\n", - "New iteration.\n", - "Point is: [0.0097182 1.00215546]\n", - "Optimization terminated successfully.\n", - " Current function value: 14490079584528826368.000000\n", - " Iterations: 17\n", - " Function evaluations: 31\n" - ] - } - ], - "source": [ - "from scipy.optimize import minimize\n", - "\n", - "\n", - "# Set the tolerances\n", - "fatol = 3e18\n", - "xatol = 1e-2\n", - "\n", - "initial_guess = [2e-2, 1.1]\n", - "\n", - "# Minimise the error function\n", - "res = minimize(\n", - " error_function,\n", - " np.array(initial_guess),\n", - " method=\"Nelder-Mead\",\n", - " options={\"disp\": True, \"fatol\": fatol, \"xatol\": xatol},\n", - " callback=info,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Visualise results" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "03dcae3af6ba426eb9967fca86370173", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Solving HydrogenTransportProblem: 0%| | 0.00/140 [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAHACAYAAABTSTnVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvXdY2/e5/n9rIxBiiCVALIPZZhiMB95773g7aXrSb9q0yWm6Tnp6mrSnv6YrHWl60jRp3Cbxivee2NjY7L333ogNAu3fH6BPJDSQhByv9+u6dF3WZ74lA7r1jPuhqdVqNQgEAoFAIBCeMuiPewEEAoFAIBAI1kBEDIFAIBAIhKcSImIIBAKBQCA8lRARQyAQCAQC4amEiBgCgUAgEAhPJUTEEAgEAoFAeCohIoZAIBAIBMJTCRExBAKBQCAQnkqIiCEQCAQCgfBUQkQMgUAgEAiEp5LnQsTcv38fmzdvhre3N2g0Gs6fP2/R+ampqdi6dSuEQiEcHBwQGxuLo0eP6h137949zJ07F3Z2dggKCsLf//53G70CAoFAIBAIU3kuRMzo6ChiYmLwwQcfWHV+eno65syZgzNnzqC4uBgvv/wyDh8+jEuXLlHHNDQ0YMOGDVi8eDEKCgrw05/+FK+//jrOnDljq5dBIBAIBAJBC9rzNgCSRqPh3Llz2LZtG7VNJpPhZz/7GY4ePYqBgQFERUXht7/9LZYtW2b0Ohs3boSnpyc+/fRTAMBPfvITXLx4ERUVFdQxr776KoqKipCRkfGoXg6BQCAQCM8tz0UkZjq+8Y1v4OHDhzhx4gSKi4uxe/durFu3DjU1NUbPGRwchKurK/U8IyMDa9as0Tlm7dq1yM3NhVwuf2RrJxAIBALheeW5FzF1dXU4fvw4Tp06hcWLF2PWrFn44Q9/iOTkZBw5csTgOadPn0ZOTg6+8Y1vUNs6Ozvh6empc5ynpycUCgXEYvEjfQ0EAoFAIDyPMB/3Ah43+fn5UKvVmD17ts52qVQKgUCgd3xqaipeeuklfPzxx4iMjNTZR6PRdJ5rMnVTtxMIBAKBQJg5z72IUalUYDAYyMvLA4PB0NnH4/F0nt+7dw+bN2/GH//4Rxw+fFhnn5eXFzo7O3W2dXd3g8lkGhRDBAKBQCAQZsZzL2Li4uKgVCrR3d2NxYsXGz0uNTUVmzZtwm9/+1t861vf0tu/YMECnW4lALh58yYSEhLAYrFsvm4CgUAgEJ53ngsRMzIygtraWup5Q0MDCgsL4erqitmzZ+PAgQM4fPgw3nvvPcTFxUEsFuPOnTuIjo7Ghg0bkJqaio0bN+KNN97Azp07qYgLm82mintfffVVfPDBB3jzzTfxyiuvICMjA//85z9x/Pjxx/KaCQQCgUB41nkuWqxTU1OxfPlyve0vvvgi/vWvf0Eul+NXv/oVPvvsM7S1tUEgEGDBggX4xS9+gejoaLz00kv497//rXf+0qVLkZqaSj2/d+8evv/976OsrAze3t74yU9+gldfffVRvjQCgUAgEJ5bngsRQyAQCAQC4dnjuW+xJhAIBAKB8HRCRAyBQCAQCISnkme6sFelUqG9vR2Ojo7Eq4VAIBAIhKcEtVqN4eFheHt7g043Hm95pkVMe3s7RCLR414GgUAgEAgEK2hpaYGvr6/R/c+0iHF0dAQw8Sbw+fzHvBoCgUAgEAjmMDQ0BJFIRH2OG+OZFjGaFBKfzycihkAgEAiEp4zpSkFIYS+BQCAQCISnEiJiCAQCgUAgPJUQEUMgEAgEAuGp5JmuiSEQCATCk4VKpYJMJnvcyyA8ZlgsFhgMxoyvQ0QMgUAgEL4WZDIZGhoaoFKpHvdSCE8Azs7O8PLympGPGxExBAKBQHjkqNVqdHR0gMFgQCQSmTQwIzzbqNVqSCQSdHd3AwCEQqHV13piRUxAQACampr0tn/nO9/B3/72t8ewIgKBQCBYi0KhgEQigbe3N+zt7R/3cgiPGS6XCwDo7u6Gh4eH1amlJ1bE5OTkQKlUUs9LS0uxevVq7N69+zGuikAgEAjWoPl7zmazH/NKCE8KGjErl8ufPRHj7u6u8/w3v/kNZs2ahaVLlz6mFREIBAJhppA5dgQNtvhZeGJFjDYymQxffPEF3nzzTZMvWiqVQiqVUs+Hhoa+juURCAQCgUB4DDwVlVXnz5/HwMAAXnrpJZPHvfvuu3BycqIeZPgjgUAgEL5uaDQazp8/b/KYl156Cdu2bTP7mo2NjaDRaCgsLJzR2p41ngoR889//hPr16+Ht7e3yePeeustDA4OUo+WlpavaYUEAoFAeBaxVGwAQEdHB9avXw/AuPj4y1/+gn/961+2WeRzzBOfTmpqasLt27dx9uzZaY/lcDjgcDhfw6oIBAKBQDCMl5fXtMc4OTl9DSt59nniIzFHjhyBh4cHNm7c+LiXQiAQnmLUajW6u7tRUFCAiooKdHZ2Ynx8/HEvi/CUsWzZMrz++uv48Y9/DFdXV3h5eeGdd97ROUY7nRQYGAgAiIuLA41Gw7JlywDoR3iuX7+O5ORkODs7QyAQYNOmTairq7NobR0dHdi4cSO4XC4CAwNx7NgxBAQE4M9//jMAw1GhgYEB0Gg0pKamUtvKy8uxYcMG8Hg8eHp64tChQxCLxdT+06dPIzo6GlwuFwKBAKtWrcLo6CgAIDU1FfPmzYODgwOcnZ2xaNEig3YptuKJFjEqlQpHjhzBiy++CCbziQ8aEQiEJ5Curi6cOXMGR48eRUFBAdhsNsbGxlBWVoaLFy/i1KlTlOkWgWAO//73v+Hg4ICsrCz87ne/wy9/+UvcunXL4LHZ2dkAgNu3b6Ojo8NoVmF0dBRvvvkmcnJykJKSAjqdju3bt1vkbnz48GG0t7cjNTUVZ86cwT/+8Q+Lf7Y7OjqwdOlSxMbGIjc3F9evX0dXVxdeeOEFav++ffvw8ssvo6KiAqmpqdixYwfUajUUCgW2bduGpUuXori4GBkZGfjWt771SDvSnmhlcPv2bTQ3N+Pll19+3EshEAhPGVKpFKmpqRgZGcGqVauMhu/7+/tx7949AMDKlSvh6Oj4dS7zuaZh5y4otL7hf10w3dwQeOa01efPmTMHb7/9NgAgJCQEH3zwAVJSUrB69Wq9YzV2IQKBwGSaaefOnTrP//nPf8LDwwPl5eWIioqadk2VlZW4ffs2cnJykJCQAAD45JNPEBISYvbrAoAPP/wQ8fHx+PWvf01t+/TTTyESiVBdXY2RkREoFArs2LED/v7+AIDo6GgAQF9fHwYHB7Fp0ybMmjULABAeHm7R/S3liRYxa9asgVqtftzLIBAITxnNzc24e/cukpOTqT+mxnBxccG2bdvQ2dmJs2fPYsuWLXBxcfmaVvp8oxCLoejqetzLsJg5c+boPBcKhTOO5tXV1eF//ud/kJmZCbFYTEVgmpubzRIxVVVVYDKZiI+Pp7YFBwdb/LOcl5eHu3fvgsfjGVzjmjVrsHLlSkRHR2Pt2rVYs2YNdu3aBRcXF7i6uuKll17C2rVrsXr1aqxatQovvPDCjMYKTMcTLWIIBALBUmpqapCTk4O9e/daVOjv5eWFrVu34sKFC9i4cSPc3Nwe4SoJwERE5Gm8L4vF0nlOo9FmPNRy8+bNEIlE+Pjjj+Ht7Q2VSoWoqCizJ34b+8KvvV0zr0p7m1wu1zlepVJh8+bN+O1vf6t3LaFQCAaDgVu3biE9PR03b97EX//6V/z3f/83srKyEBgYiCNHjuD111/H9evXcfLkSfzsZz/DrVu3MH/+fLNeh6UQEUMgEJ4ZysrKUF5ejt27d+t90JiDs7MzduzYgbNnz2LdunXw9PR8BKskaJhJSudpQTNmQXuMzlR6e3tRUVGBjz76CIsXLwYAPHjwwKL7hIWFQaFQoKCgAHPnzgUA1NbWYmBggDpGk9rq6OhAXFwcAOi1fsfHx+PMmTMICAgwWotKo9GwaNEiLFq0CD//+c/h7++Pc+fO4c033wQwUcQcFxeHt956CwsWLMCxY8eIiCEQCAQNYrEYxcXFGBoagkQigUqlAp1Oh1qtxgsvvGCVgNHg6OiIXbt24dSpU9i7dy/s7OxsuHLC84aHhwe4XC6uX78OX19f2NnZ6dVnubi4QCAQ4B//+AeEQiGam5vxX//1XxbdJywsDKtWrcK3vvUtfPjhh2CxWPjBD34ALpdLFdZyuVzMnz8fv/nNbxAQEACxWIyf/exnOtd57bXX8PHHH2Pfvn340Y9+BDc3N9TW1uLEiRP4+OOPkZubi5SUFKxZswYeHh7IyspCT08PwsPD0dDQgH/84x/YsmULvL29UVVVherqahw+fHhmb6IJnujuJAKBQNCmo6MDZ86cwYMHDxASEoJVq1Zh7969WLZsGaRSKYRCIY4ePYqSkpIZ3cfBwQHLly/HtWvXbLRywvMKk8nE+++/j48++gje3t7YunWr3jF0Oh0nTpxAXl4eoqKi8P3vfx+///3vLb7XZ599Bk9PTyxZsgTbt2/HK6+8AkdHRx0h/umnn0IulyMhIQFvvPEGfvWrX+lcw9vbGw8fPoRSqcTatWsRFRWFN954A05OTqDT6eDz+bh//z42bNiA2bNn42c/+xnee+89rF+/Hvb29qisrMTOnTsxe/ZsfOtb38J3v/td/L//9/8sf+PMhKZ+hitnh4aG4OTkhMHBQfD5/Me9HAKBYCVKpRK3bt2CTCbD4sWLdYoVR0ZGcPr0aezZswdcLhdKpRKpqakYHR3FunXrZjQ1+e7du3B1dUVMTIwtXsZzzfj4OBoaGhAYGEiiW18Tra2tEIlEuH37NlauXPm4l6OHqZ8Jcz+/SSSGQCA80YyPj+PUqVPw9vbW6xxSKBQ4f/48NmzYAC6XCwBgMBhYuXIloqKicPz4cfT29lp97yVLlqCkpAR9fX0zfh0EwqPmzp07uHjxIhoaGpCeno69e/ciICAAS5YsedxLe2QQEUMgEJ5Y+vv7cfLkSSQnJ+u1tQLArVu3MHfuXHh4eOjtCwoKwrZt23Dp0iVIJBKr7s9gMLBx40Zcu3aN2D0Qnnjkcjl++tOfIjIyEtu3b4e7uztSU1NnVCP2pEMKewkEwhPJ6OgoLly4gG3btsHZ2Vlvf2NjI5RKpUkzLScnJ6xZswbnz5/HCy+8YJXzt4uLC3x9fVFVVYWwsDCLzycQvi7Wrl2LtWvXPu5lfK2QSAyBQHjikMvlOHfuHNavX29QwMhkMqSmpmLVqlXTXsvb2xtxcXG4evWq1dGUBQsWICsry2SbLIFA+PohIoZAIDxRqFQqXLx4EfPnzzfq05KSkoLk5GSzC0TDw8Ph6uqKnJwcq9bEZrMRGRmp56lBIBAeL0TEEAiEJ4rU1FQEBAQgODjY4P6mpibI5XKj+42xcOFCVFdXY2hoyKp1xcXFoaSkxGwHVQKB8OghIoZAIDwxNDU1YXh4mHIcnYqmfXrNmjUWX5tOp2PVqlW4ffu2VWtjMBiYN28eMjMzrTqfQCDYHiJiCATCE4FUKsXdu3dNFibm5OQgJibGap8RLy8v2Nvbo76+3qrzw8PD0dTUBKlUatX5BALBthARQyAQpkWlUqG5uRn19fWor6+nOoNsyc2bN7F06VKjAkUikaCmpsZgq7UlLFu2DGlpaVAoFBafS6PREBcXR2pjCIQnBCJiCASCUaRSKTIzM/H555+jvr4e3d3d6O7uRlNTE7744gvk5OToTcG1hurqarDZbAQGBho95t69e1iyZAk1idda7OzsEB8fb3VaKDw8HJWVlTOeWkx4fqisrMT8+fNhZ2eH2NjYx72cZwoiYggEgkEqKipw4sQJ8Hg8HDx4EMuWLcP8+fMxf/58LF26FAcPHgSbzcbRo0fR0NBg9X36+vpw8+ZNDAwM4NixYzh16hSuX7+OsrIySij09PRAIpHA39/fJq8tKioKDQ0NVqWFGAwGgoKCUFtba5O1EJ5sXnrpJdBoNNBoNDCZTPj5+eHb3/42+vv7zb7G22+/DQcHB1RVVSElJeURrvb5g5jdEQgEHdRqNTIyMiAWi3Hw4EEwGAyDxzEYDMTExCA8PBxnzpyBWq1GUFCQ2ffp7+/HzZs3IRaLERYWRrVMS6VSjIyMoLq6Gl988QWSkpJQUFBgUxMvGo2G+Ph45OfnY8GCBRafP3fuXFy4cAGzZ8+22ZoITy7r1q3DkSNHoFAoUF5ejpdffhkDAwM4fvy4WefX1dVh48aNMxLhMplsRnPAnlVIJIZAIFAolUpcuXIFSqUSmzdvNipgtGGz2di1axeys7PNik6o1Wrk5eXhypUrSEhIgLu7O1atWkXVwnA4HAgEAixYsAB79uxBZWUluru7YW9vP+PXp014eDiqq6utqo2xt7cHj8dDd3c3gImaoZGREcjlcjKe4BmEw+HAy8sLvr6+WLNmDfbs2YObN29S+48cOYLw8HDY2dkhLCwM//d//0fto9FoyMvLwy9/+UvQaDS88847AIC2tjbs2bMHLi4uEAgE2Lp1KxobG6nzXnrpJWzbtg3vvvsuvL29KcFs7nl/+MMfIBQKIRAI8Nprr+mkfaVSKX784x9DJBKBw+EgJCQE//znP6n95eXl2LBhA3g8Hjw9PXHo0CGIxWIbv6u2gURiCAQCgAlxcfXqVfj7+1tcPMtisbBz506cPXsWDAbDaG2LXC7H+fPn4e3tjf379+P06dMmp+tyOByMjo5izZo1OHXqFHbt2mWzCch0Oh1RUVEoKSlBXFycxedHR0fj8uXLcHR0hFQqhaOjI2QyGeRyOZRKJby8vDB37ly4urraZL2EJ4P6+npcv36dmkf08ccf4+2338YHH3yAuLg4FBQU4JVXXoGDgwNefPFFdHR0YNWqVVi3bh1++MMfgsfjQSKRYPny5Vi8eDHu378PJpOJX/3qV1i3bh2Ki4upiEtKSgr4fD5u3boFtVpt9nl3796FUCjE3bt3UVtbiz179iA2NhavvPIKAODw4cPIyMjA+++/j5iYGDQ0NFAipaOjA0uXLsUrr7yCP/7xjxgbG8NPfvITvPDCC7hz585jeMdNQ0QMgUAAAOTm5oLP51vd/cNisbB9+3YcO3YM3t7e4HA4OvvlcjlOnz6NpKQkqqZE823SGI2NjXBzc0NYWBgcHBwoIaOZWD1TYmJicPToUcTExJhdMCyXy5GZmYmmpiYoFAqsWrVKZ7I2MCEIW1tbcf/+fYyPj2PVqlVwc3OzyZqfJTb/9QF6hr/+dnV3Rw4ufS/Z7OMvX74MHo8HpVKJ8fFxAMAf//hHAMD//u//4r333sOOHTsAAIGBgSgvL8dHH32EF198EV5eXmAymeDxePDy8gIAfPrpp6DT6fjkk09Ao9EATERznJ2ddXyQHBwc8Mknn1DixNzzXFxc8MEHH4DBYCAsLAwbN25ESkoKXnnlFVRXV+PLL7/ErVu3qLEd2mngDz/8EPHx8fj1r39Nbfv0008hEolQXV39xKVQiYghEAhobGxEU1MT9YfYWthsNpYuXYrbt29j48aN1HaFQoGzZ88iMTERQUFBUCqVePjwIfbu3Wvyeunp6di6dSsAQCQSYeXKlTh9+jT27dtn1TDHqTCZTAQHB6OqqsrkIEkNVVVVyMjIQGJiIpKTk1FaWor6+no9cz4ajQaRSASRSITBwUFcunQJsbGxiIqKmvGanyV6hqXoHBp/3MuYluXLl+PDDz+ERCLBJ598gurqanzve99DT08PWlpa8M1vfpOKcgATP+9OTk5Gr5eXl4fa2lo4OjrqbB8fH0ddXR31PDo6WqcOxtzzIiMjdVLBQqEQJSUlAIDCwkIwGAwsXbrU6Nru3r0LHo+nt6+uro6IGAKB8GQxMDCAe/fuYe/evTNuXwa++iba0NCAwMBAKJVKnDt3DnFxcdSogKKiIkRGRupFa7RpaGiAu7s7HBwcqG3e3t5ISEjA3bt3sXr16hmvFQASEhJw6tQpkyJGrVbjwYMHGBgYwMGDBykBFRoaitOnTxt1GAYmJmnv27cPKSkpaG5uxpo1a2wiwJ4F3B2N//8/Sfd1cHCgfnbff/99LF++HL/4xS/w3e9+F8BESikpKUnnHFP1ZCqVCnPnzsXRo0f11+burnNfa87TpLo00Gg0qtNvuiimSqXC5s2b8dvf/lZvn1AoNHnu44D8JhEIzzEqlQpXrlzBpk2bTAoKS1m1ahVOnDgBHx8fPHjwACEhIdQ3OIVCgZKSEhw8eNDo+Wq1Gunp6di2bZvePk1BblNTk01arjkcDlxdXdHZ2UmF+7WRy+W4fPkyvLy8sGnTJiqMD0xEnuzt7dHf36+XUtKGwWBgzZo1KCsrw8WLF7Ft2zabCManHUtSOk8Sb7/9NtavX49vf/vb8PHxQX19PQ4cOGD2+fHx8Th58iQ8PDzA5/Mf+XnaREdHQ6VS4d69ewanwMfHx+PMmTMICAh4KsQ2+S0iEJ5jCgsLERQUZLIuxRo4HA6Sk5Nx/vx5jIyM6Bh8FRYWYs6cOSa/qTY1NcHT01Pvm6iGtWvXIjU11Wb2/8ZceOVyOU6dOoXIyEgsWLBAR8BomDNnDhWqn47IyEj4+/tbPb+J8GSwbNkyREZG4te//jXeeecdvPvuu/jLX/6C6upqlJSU4MiRI1TNjCEOHDgANzc3bN26FWlpaWhoaMC9e/fwxhtvoLW11ebnaRMQEIAXX3wRL7/8Ms6fP4+Ghgakpqbiyy+/BAC89tpr6Ovrw759+5CdnY36+nrcvHkTL7/8ss1dum0BETEEwnPKyMgIysrK9MLgtsLDwwONjY1YvHgxtU0ul6OsrGza4uGsrCyT67Kzs8PSpUt12lxnglAoRHd3t067tSYNlpSUZLIOICAgAI2NjWa3Vs+dOxcsFgtZWVkzXjfh8fHmm2/i448/xtq1a/HJJ5/gX//6F6Kjo7F06VL861//Muk+bW9vj/v378PPzw87duxAeHg4Xn75ZYyNjZmMsFh73lQ+/PBD7Nq1C9/5zncQFhaGV155BaOjowAmUrYPHz6EUqnE2rVrERUVhTfeeANOTk5PZPSQpn6GTQ2Ghobg5OSEwcFBq0NvBMKzytmzZ7FgwYJHkudWqVQ4ceIEwsPD0dfXR7VRZ2VlgcvlmhQx3d3dyMzMxJYtW6a9z9WrVxEVFQU/P78ZrzkrKwuOjo6IiIiAWq3GxYsXERwcjMjIyGnPvXnzJqKiouDt7W3WvTTXDwsLQ2ho6EyX/lQwPj5O1UnZqk2e8HRj6mfC3M/vJ09WEQiER051dTUcHR0fWaFeVlYWQkNDERsbi46ODoyNjUEul6OysnLaDp2MjAyzXXSXLFmCBw8e2MRgLjo6mkoL3b59G97e3mYJGGAipVRcXGz2vWg0GjZu3IjMzExIJBKr1ksgEIiIIRCeOxQKBdLT0422WM6UwcFB1NfXIy4uDjQaDUlJScjOzkZ+fj7i4+NNhqSHhoYglUp1Oi1MoXEUncnsJg329vZgMpnIycmBWq1GYmKi2ed6eXmhu7vbopoBJpOJVatW4caNG9Ysl0AggIgYAuG5Iz8/HzExMY9sDsutW7ewevVqSqwEBwejqakJ5eXliIiIMHluVlYW5s+fb9H9Fi5ciPT0dJtEYwIDA5GZmWnSRdgYQUFBFospHx8f8Hg8VFZWWnw/AoFARAyB8Fwhk8lQUVGBmJiYR3L96upqODs7w8PDg9pGo9Hg6ekJOzs7kx1J4+Pj6Orqsri+hcvlQiQSoaamxup1AxNFxyUlJbC3t7eqgDE8PNwqMbJs2TJkZWVhbGzM4nMJhOcdImIIhOeIzMxMzJs375F0GchkMmRkZGDJkiU629VqNTo7OyGVSinDLUNo0k3WkJSUhMzMTJPXn47r168jJCQEarUap06dwpUrV3DlyhUUFhYaFRhSqRSdnZ0oLy9HU1MT2tvbLRYjLBYLK1asIG3XBIIVPPlONgQCwSZIJBI0NTXptDzbkvT0dCQlJemlqRoaGuDn5wcWi4W6ujqEhITonatSqVBTU2PSAM8UdnZ2CAoKQnV1NcLCwiw6d2RkBBcvXkRXVxd4PB4SEhLQ2tqKRYsWQa1Wo7m5GRcvXgQwIZZEIhGqqqpQUFAAFosFgUAAV1dX2NnZgclk4tSpUwAmPGFiY2PNmgQuEomQm5uLnp4euLu7Y3h4GE1NTWhqakJ/f7+O6BQIBIiMjISPj49B3xoC4XmCiBgC4TnhwYMHSE5OfiQffCMjI2hrazNYLJyVlYUtW7ZAqVTi1q1bBkVMbW0tZs2aZdYHvjHi4+OptmVzUKlUKCgoQGlpKaRSKb773e+CxWJBrVajuLgYTk5OoNFocHFxQUxMDCQSCU6ePIn+/n7MmzcPO3fu1GsL5fP5qKqqwrJly1BUVIQvvvgCMTExiImJmfZ9X7JkCa5fvw57e3soFAoEBwdj/vz5cHV1pc7VRLXKy8tx584dBAUFYcGCBTN63wiEpxmSTiIQngNGRkYgFotNGnDNhLS0NCxZskTvg7qjowN8Ph8ODg7g8/lQKBQGW4pnkkrSYG9vDy6Xi97e3mmPHRwcxPHjxyGXy+Hi4oK1a9dS82ZoNBrc3d3R3d1NHS+RSHDlyhWEhIRg/fr1qKurw+DgoN51vb290d7eDgaDgfj4eBw4cACjo6M4f/68jpHeVEZHR5GWlobe3l7Mnj0bu3fvRlxcHAQCgc57SqPRIBQKsXLlShw6dAh8Ph9Hjx5FW1ubJW8VgfDMQEQMgfAckJ2dbXHXj7n09/djZGQEIpFIb9/UbiNtLxYNYrEYXC4X9vb2M17L3LlzkZeXZ/KY7u5unDt3DuvXr4enpycYDIbeDKbw8HBUVFQAmEiHffnll1i0aBGSk5MRHh6OnTt34saNG+jp6dE5j06nw9nZGX19fQAm2qgXLVqEqKgonDhxgnJF1aaxsRGnT59GUlISXnrpJbNHGNBoNMyZMwc7d+5ETk4O7ty5Y5MOLQLhaeKJFjFtbW04ePAgBAIB7O3tERsbO+0fKAKBoItUKkVra+sji8Lcu3fPYBppdHQU4+PjOnOZZs+ejerqap3jcnJyLPJkMYWPjw+6urogl8sN7m9ubsaNGzewa9cu8Hg83Lt3z2A7tZ+fH1paWlBRUYGcnBzs379fx42Xx+Nhx44duHr1Kvr7+3XODQsLQ1VVlc62kJAQrFq1CqdOncLAwAAAUEP4CgsLsXfvXgiFQvD5fLi4uKCxsdHs1+zg4IBt27aBx+Ph6tWrMypuJjwe3nnnHZ35YtbQ2NgIGo1mcAaYrXjppZcMDmV9nDyxIqa/vx+LFi0Ci8XCtWvXUF5ejvfeew/Ozs6Pe2kEwlNFfn4+5s6d+0hqYTo7O0Gj0XRaqqfeVxsmkwk3Nzd0dnYCmBBYvb29Ztv1TweNRkNkZCTKysr09tXV1eHhw4d44YUXwOPx8ODBAyxYsMCgBT6dTodarUZBQQF27txp0FOHx+Nh69atuHDhAoaHh6ntgYGBBv1ivLy8qOPHxsZw/vx56hraE8STk5Px8OFDi1/7vHnzIBQKcenSJSJkHgEtLS345je/CW9vb7DZbPj7++ONN94wK32pDY1Gw/nz53W2/fCHP0RKSsqM1icSidDR0TGtI/azxhMrYn77299CJBLhyJEjmDdvHgICArBy5UrMmjXrcS+NQHhqUCqVqK6uRnh4+CO5flpamsEojFKpRH19vcHf17i4OBQUFAAAioqKbO5ZExUVhdLSUp1tnZ2dyMjIwK5du8DhcDAwMIDu7m6jgx0132ZFIpHJollnZ2ds3LhRp+aFyWSCzWYbrP1xcXFBcnIy/v73vyM0NNSguHRwcIBAILCqziU+Ph5BQUG4cOECSS3ZkPr6eiQkJKC6uhrHjx9HbW0t/v73vyMlJQULFiyg0ofWwuPxZjxJnsFgwMvLC0zm89Wv88SKmIsXLyIhIQG7d++Gh4cH4uLi8PHHH5s8RyqVYmhoSOdBIDzPlJSUIDIy8pH4wnR1dYHD4RiMjlZVVWH27NkG7+vl5QWxWAyFQoHKykqbCyw2mw2BQICOjg4AE6MMrl+/ju3bt1PFuykpKVi5cqXB6FRNTQ3q6+uxb98+NDU1TXs/d3d3xMXF4f79+9S2kJAQvbQZMGGol5ubi5CQEL16Gm3mzZuH7Ozsae9tiOjoaPj4+FgVzSEY5rXXXgObzcbNmzexdOlS+Pn5Yf369bh9+zba2trw3//93wAmJpr/7//+L/bv3w8ejwdvb2/89a9/pa4TEBAAANi+fTtoNBr1fGo6SZO2+fWvfw1PT084OzvjF7/4BRQKBX70ox/B1dUVvr6++PTTT6lzpqaT+vv7ceDAAbi7u4PL5SIkJARHjhyhjm9ra8OePXvg4uICgUCArVu36qQxlUol3nzzTTg7O0MgEODHP/7xEymMn1gRU19fjw8//BAhISG4ceMGXn31Vbz++uv47LPPjJ7z7rvvwsnJiXoYKjQkEJ4XVCoViouLH5k7b3p6OhYtWmRwX2Fhockcf0BAAPLy8iAUCh/JN8e5c+ciPz8fMpkM58+fx6ZNm+Dg4AAAaGpqgr29vcH5TD09PcjMzMTmzZvBYrHg4OBgsAtpKlFRUejv76eiJyEhIairq9M5RqVS4fz584iPj8emTZswOjqqVzujwdXVFXK5XCdNZQmJiYno6emxyUyp552+vj7cuHED3/nOd8DlcnX2eXl54cCBAzh58iT1Af/73/8ec+bMQX5+Pt566y18//vfx61btwBM1H8BwJEjR9DR0UE9N8SdO3fQ3t6O+/fv449//CPeeecdbNq0CS4uLsjKysKrr76KV199FS0tLQbP/5//+R+Ul5fj2rVrqKiowIcffgg3NzcAE912y5cvB4/Hw/379/HgwQPweDysW7cOMpkMAPDee+/h008/xT//+U88ePAAfX19OHfu3MzezEfAExt3UqlUSEhIwK9//WsAEyHosrIyfPjhhzh8+LDBc9566y28+eab1POhoSEiZAjPLfX19QgICKCiD7akr68PKpXKYAi8q6sLfD5f7w++NmFhYfjyyy+xd+9em68NADw8PNDb24uLFy9iyZIl1B9vlUqF+/fvY9euXXrnaNqod+7cSb1noaGhqK6uNqvweP369Th16hT2798Pe3t7jI2NQaVSUdGo27dvIzg4mPLJWbt2LY4ePQp/f3+DdTmJiYnIycnBihUrLH79minZx48fh0AgAJ/Pt/gaXwsfLQVGuqc/ztbwPID/d8+sQ2tqaqBWq41GDMPDw9Hf309F1hYtWoT/+q//AjBRyP7w4UP86U9/wurVqynh7OzsDC8vL5P3dXV1xfvvvw86nY7Q0FD87ne/g0QiwU9/+lMAE593v/nNb/Dw4UODv0fNzc2Ii4tDQkICgK+iQABw4sQJ0Ol0fPLJJ1Q08siRI3B2dkZqairWrFmDP//5z3jrrbewc+dOAMDf//73J3JY6RMbiREKhXrD4sLDw9Hc3Gz0HA6HAz6fr/MgEJ5XbOG9YgxTUZicnBzMmzfP5Pk8Hg+jo6NwdXV9FMsDMJFWYrFYOn+8i4qKEBoaqiewlEolzp8/j7Vr18LR0ZHabslQR3t7eyxYsIAq0PTy8qIKmPPy8kCj0RAXF0cdz2QysWTJEty5c8fg9QICAtDa2mq002o62Gw2Nm7ciIsXL1o0XftrZaQbGG7/+h82FE6aCIxGDCxYsEBn/4IFC6h2fUuYmgb29PREdHQ09ZzBYEAgEOj4GWnz7W9/GydOnEBsbCx+/OMfIz09ndqXl5eH2tpaODo6gsfjgcfjwdXVFePj45QHUkdHh85rYTKZlCB6knhiIzGLFi3SC7VWV1fr+TkQCAR9+vv7wWKxwOPxbH7t4eFhjI6OGvwmKZVKMTg4aLBbSZuSkhL4+vqio6PDZp1J2ojFYoyNjel4z8jlchQXFxscbXD//n1ERUVBKBTqbLezs4NcLodSqTTLFXf27NkoKytDZ2cnZs2ahbq6OkilUjQ0NGDHjh16xwcGBqK4uBitra3w9fWdWGd3N0bT0yFraoJPRydSv/c6whgMsEUisP39wI2NhZ2ZdURubm6IiIhATk7OI/MJmhE80z8nT8J9g4ODQaPRUF5ebrC9uLKyEi4uLlS0zxDWdAZOjaDSaDSD24x1oq1fvx5NTU24cuUKbt++jZUrV+K1117DH/7wB6hUKsydOxdHjx7VO89QmvVJ5okVMd///vexcOFC/PrXv8YLL7yA7Oxs/OMf/8A//vGPx700AuGJJzc395F9a8rIyND7tqmhrKxs2hZPtVqNyspKLFmyBJWVlTYXMQqFAlevXsX69etx6dIl5OfnQyKRoLe3F+Hh4XrFxi0tLejv78fy5csNXs/X1xctLS06ER1TLF++HDdu3MDOnTuRlpZGFQkbK65etWoVzpw+ja0iEYbOnMVIaiowGTnxYDDwYHEyfFJSoP0xyI2NhevhQ3BcvRq0adKFsbGxOHbsGCIiIp686LSZKZ3HiUAgwOrVq/F///d/+P73v68Txevs7MTRo0dx+PBhSqhkZmbqnJ+ZmakzCoPFYn1tkTF3d3e89NJLeOmll7B48WL86Ec/wh/+8AfEx8fj5MmT8PDwMPozIRQKkZmZSQ10VSgUyMvLe2TRXWt5YtNJiYmJOHfuHI4fP46oqCj87//+L/785z/jwIEDj3tpBMITjVwuR2dnJ/XN3paMj4+jp6cHfn5+BveXl5frpYGn0tbWBi8vL/j5+aG1tdWm61Or1Th79izGx8eRnp4OLpeL/v5+eHp6orm5GR0dHfjss8+QkZEBhUIBqVSKlJQUrF+/3ug1g4OD9Yp0TeHs7AxnZ2e0tLSgu7sbq1evNugzo4FWWQmvO3dw5y/vYyQlhRIwAMBUKuHS34++KWm3scJCtL35A9SuWYuRabqQ6HQ6Vq1aRaZkz4APPvgAUqkUa9euxf3799HS0oLr169j9erV8PHxwf/3//1/1LEPHz7E7373O1RXV+Nvf/sbTp06hTfeeIPaHxAQgJSUFHR2duoZJdqSn//857hw4QJqa2tRVlaGy5cvU3U9Bw4cgJubG7Zu3Yq0tDQ0NDTg3r17eOONN6jfyTfeeAO/+c1vcO7cOVRWVuI73/kOZdT4JPHERmIAYNOmTdi0adPjXgaB8FRRVlaGyMjIR2JuV1hYqFPXoU1nZydcXV2nLSTOz8/HokWLQKfT4eLigr6+PpvUxtTV1eHOnTtQKpU4fPgw7O3tMTAwgNTUVLS3t2PNmjUIDQ2FSqVCSUkJvvjiC9BoNCxZssRkEbJQKDRat2KMxYsX45NPPoFIJDI4agAAlEND6H7vjxg4eRK+AO4vXYKg+nrYOzvDaft2cONiwfbzgwuLhdysLMSJRJBWV2Pg1GlIa2oAAIqODrR88z8geOU/4P7660ajMl5eXnBwcEBdXR3x2rKCkJAQ5Obm4p133sGePXvQ29sLLy8vbNu2DW+//bbOz+8PfvAD5OXl4Re/+AUcHR3x3nvvYe3atdT+9957D2+++SY+/vhj+Pj4WOTObAlsNhtvvfUWGhsbweVysXjxYpw4cQLARP3W/fv38ZOf/AQ7duzA8PAwfHx8sHLlSioy84Mf/AAdHR146aWXQKfT8fLLL2P79u1mdet9ndDUT2Ljt40YGhqCk5MTBgcHn7wwKoHwiPj888+xZ88ek9/+rUGlUuHzzz/HwYMHDdaHXL16FXPnzoWnp6fRa0ilUpw5cwb79+8HMNH50dPTg4ULF85oXffu3cPw8DD6+/uxc+dOnVqgzz77DDQaDQcPHtQRdmVlZcjMzISXlxfWr19v0kvnzJkzWLt2rdk1Rs3Nzbhy5Qri4uIwODio8yEGAGOlZWh97TUourqobeIFCzC2ZDFWHzoE2pS2888//xz79u0Dk8mEWq2GJCsb4o/+DknGV6kLu5g58P3LX8Ay0vUilUpx4sQJ7N+//5F0rE3H+Pg4GhoaEBgYaLAb61kgICAA//mf/4n//M//fNxLeSow9TNh7uf3E5tOIhAIltPW1gYPDw+bCxhgQnAEBwcbFDAymQx9fX0mBQygn24yZtFvLiMjIzh58iRcXFzg6emJqKgoPaGhVqvh5+enI2CkUilycnJw+PBh+Pj4TDtlWlOkaw5SqRR37tzBgQMHUFVVpdc9MnznDpoOHaIEDM3eHp4//SkWffwPdDGZGDfQjTR79mzUTEZfaDQaHOYnwe+f/4THj38MTAqe8aJiNL34IuRGulU4HA7i4+ORm5tr1usgEJ4GiIghEJ4h8vLy9OYV2QpTLdvl5eWIjIyc9hpTRQyTyYSdnR1GRkYsXs/Q0BBOnz6NFStWICgoCDU1NXqpLolEAhqNpjffJjU1FcnJyWCxWIiNjUVERAROnz5NGX1NxRIRc+fOHSxevBh8Ph+hoaFQKBQYHh6GWq1G32efofW170I9NgYA4MbHY9blS3A9fAh0JhPz589HVlaW3jWjoqL0plvT6HQIXv4GAo4fA8vHBwAgb2pGyze/CYWRWovIyEhUV1cbfZ0EwtMGETEEwjOCTCbD8PCwyVZPa5nOwE5Th2OKvr4+8Hg8vSjRrFmzUF9fb9F6RkZGcPbsWWzevBmenp64efMm1qxZo5cSyszMRHJyMiQSCdWK2tnZidHRUQQHB1PHhYWFITExEZcvXzZore7o6IjR0dFpBys2NzdDLpdTdSdxcXEYHx9HfX09xB9+iK5fvwtMXp+/cSP8jnwKllZ3VnBwMFpbWzE2KXI0aNyGDdXXcKOj4f/F59R1pDW1aPnmf0BpwO2XTqcjISGBRGMeEY2NjSSV9DVDRAyB8IxQVlY2bWeQtWRlZRk1sBOLxeDz+dOmsIyNIggKCrJIxIyOjuLMmTPYsGEDBAIB6uvrwefz9bxpxsbG0N7ejsDAQPj6+qK1tRUqlQq3bt3C6tWr9a47a9YseHh4GP2AFwqFlHmdIeRyOe7evatzbQ6HA19fX+Rfvw7x+1/N0HH7zrfh/Yffg641vRqYSBXNnz8fGRkZetePjo7WG2ypgSUUwu9fR8Cc9PgYLy9H6+uvQ22glTc8PBy1tbUkGkN4JiAihkB4RjA3pWMpEokEEonEqAmWMXGiVqvR2NiI8+fP44svvkBubi4ePnyIzz//HCkpKVSKh8/nU+mW6ZDL5Th79izWrl0LDw8PqFQqPHjwAIsXL9Y7VuMcTKPREBISgpqaGuTn5yM0NFTHlVebhQsXor6+Hu3t7Xr7pksppaWlYd68eXrRqhjJGLr6+qB5dR4/+clEJ5GR7rFZs2ahra1NT2QYGyqpge3nB78jn4Lh4gIAkGRkovfjT/SO00RjTM3teZQ8w70kBAuxxc8CETEEwjOAudEQazA1zFGlUqGtrU3Pk6a4uBifffYZGhoasGTJEsyfPx/z58/H/v37cfDgQWqmzLFjxyAWiyEQCPTqVgxx7do1zJ8/n3ILLi4uNjhGQCqVorGxkZpTJBQK0drairKyMpMmgHQ6HZs3b8bNmzcxPj6us08TzTFEd3c3+vr69ObrDN+5g9Ff/AJMuQK9bgK4fec7EHzjJZOvkUajISYmBsXFxTrbmUymSZt5AOAEB8PnL38GJtNqPX/9KyT5BXrHhYWFUW7CXxeagnASASJokEgkAPTdiS3hifaJIRAI5lFQUGDUv2UmqNVq1NTUGLTqByaGTAYFBVFRhfHxcVy7dg3Ozs46rdh3797FqlWrAEx8SItEIohEIgwNDeHChQvw8fFBfX29yXqevLw8ODk5UcJEJpOhqKjI4Nry8vKQkJBArYtOp2N0dBTJyckmW6mBCQ+NlStX4saNG9i6dSu1ncViQaVS6Y0gUKvVuH37NjZu3KhzHWldHdp/+CNApYJ/YyOqV69G8ve+a/LeGiIiInDs2DHMnTtXJ2ITGRmJ8vJyk2MdHObNg9urr0L8f/8HKJVo/+EPEXj+HBhabaqaaExeXt6M2tstgclkwt7eHj09PWCxWNP+PxCeXdRqNSQSCbq7u+Hs7GzWSA9jEBFDIDzlKJVKdHR0UCLBljQ2NsLf39/oH5mioiKqBqStrQ23bt3C8uXLdWacjY2NQS6Xw8nJSe98Pp+Pffv24dKlS6ioqEBiYqLBNEtbWxtqa2uxe/dualtGRgbmzZuntzaFQoGamhocOnSI2qaZJWVuFEAkEqGwsFBnphEAeHt7o6OjQ2dbeXk5fHx8dF6fcngYra99F6rJb5pzAgNxmceDTCYDZ0odjCGYTCZ8fX3R1NSkM+5AJBLh/v37057v9p1vYzQrC2N5eZC3t6Pj7bfh+6c/UfsVCgU8PDzw8OFDxMXFmTT7sxU0Gg1CoRANDQ1oamp65PcjPPmYM817OoiIIRCecmpqahASEvJIHHrz8/ONiiONOOHz+WhtbcXdu3exZ88evQ/E6UYRMJlMbNu2DX/7299w9+5drFixQu8+t27dwp49e6hv7yMjI2htbaXmumhTXFyM6OhonW/6d+/exbp165CRkWH2TKkVK1bg7NmzOHDgAHUtf39/NDY2UiJGJpMhJydHZxyKWqVC+49/AtmkEysnLAwBv/pf2P/rXygpKTH7/gkJCbh586aOiNG4HPf29kIgEBg9l8Zkwuf3v0P9tu1QDQ2h/+YtdH75JeoxUVfEYDDg5OQEJpOJY8eOUUZjISEhiIqK0hmcaUvYbDZCQkJISokAFos1owiMBiJiCISnnJKSEpOzf6xlZGQESqXSYAQF+GrYY0dHB+7evYvdu3cbdGKtrKzUiaAYgkajITIyEt3d3aioqNCpLbl58yZWrFihI44ePHiAJUuW6Ak3zUgBbVHR2toKNpsNkUiEtLQ0KBQKMJnT/+lzcHBAcHAwSkpKEBMTA2CiLiY7O5s65uHDh5g/f75OTl/8979j5O5dAADDyQm+H/wVdC4Xnp6eKC0tNVvEaFxKh4aGdBxLw8PDUVFRgeTkZJPns7y9wfvxj5By/gLGuFz4XbqMjX99Hw7OztQxY2NjOHfuHPbv3w+5XI7q6mpcunQJTCYTK1asgMtkkbAtodPpz6xjL+HrhyQlCYSnGI3/ibl2+JZgak4SMCFOXFxccOvWLezcudPgB1N/fz8cHBzMKjgOCgqCh4cH8vLyqOLVmpoacDgcnYGTQ0NDGBgYgEgk0rtGTU0NgoKCKJGiVqtx7949LFu2DMBXkRRzmTdvHgoLC6kCWDabDaVSCaVSif7+fnR1dSE0NJQ6XpJfAPEHf5t4QqfD+733wJ6M2gQGBoJOp6Onp8fs+xvydAkICJj2NchkMqSmpuKeTIYoJhNL0tIQkJOD8TNndI7jcrng8/no6uoCi8VCZGQk9uzZg6VLl+LatWvIyMj42iYuEwjWQEQMgfAU86jaqlUqlclhgWKxGA4ODpSAMZZ+KC4uxpw5c8y6p6+vLzo6OrBt2zZcvXoV/f39ePjwoV56KS0tzWBLNfBVQa+Guro6CIVCSuRp2/ebA4PBwMKFC5GWlkZt8/LyQmdnJ+7evYuVK1dS0SDlyCjaf/ITYNIQz+27r4GXvIg6z9/fHxwOB0VFRWbf39/fH62trTojERgMBng8ntGJws3NzTh27Bi8vLywb98+RPz4R8DkGsV/+z+9sQTz5s3TiS4BgJubG/bt2wc7OzscO3bsiZxeTCAARMQQCE81VVVVOpEAW6EZymasg6SoqAj9/f1Yt24d5SY7FY1PjHZNhykYDAYYDAbYbDZWrlyJzz//HCtWrNCJ4gwMDGB0dBQ+kzb72rS1tcHV1ZVKO6nVamRkZGDBggXUMW5ubhCLxWatR0NISAi6u7updtCAgACUlJSAxWLpeOd0vftryFtaAADcuDi4fetbOtdxcXGBTCZDW1vbtM6/Gmg0GmbPno3a2lqd7eHh4aisrNTZplarkZ6ejuzsbOzduxdhYWGg0Wiwi4iA8wsvAABUEgl63vujznkeHh4YGRmhXp/2vePi4rBp0yacP38eXVrDKgmEJwUiYgiEpxSNjf+jmEg8nTeMpk7EVGdBW1sbfHx8LGql9ff3R1NTE+RyOZhMpl7Ni6koTGZmJubPn089r6qqgr+/v04tDY1GoybjWsK8efMoczhfX1+UlpZi6dKl1P6hW7cweOYsAIBubw/v3/1WbxI1jUaDvb09RCKRRQ7FUVFRek69QUFBOsZ7UqkUp0+fBp1ON5jac//PN0CfrG0avHABY6VlOvvj4+ORn59v8P4uLi7YvXs3bty4QbqKCE8cRMQQCE8plqRqLEEikUChUOgUk2qTlZVFTUQ2RVFRkcXr8/f3R0NDA9LS0rB3716kpqZSUYv+/n5IpVIIhUK98/r7+0Gj0eA8WbSqUqmQnZ2NpKQkvWOtmZw9a9YsNDU1QSaTobm5GWw2m0pRKfr60Pnzt6ljPf/7p2AbqNcBAD8/Pzg7O+sZ2ZmCx+NBqVTqzFNisVjU4MyxsTGcOnUKiYmJmD9/vsEuNaaLC9y/+5VHjfjDD3X2h4SEoL6+3qiDqoODA/bs2YP09PQZTR0nEGwNETEEwlOIWq1Gc3Ozjh+LrSgtLUV0dLTBfRKJBOnp6di2bZvJlm6FQoG+vj6TpmyG8PT0RHV1NWJiYuDq6orQ0FAUFEw4zj548MBoR052drbObKfy8nIEBwcb9GQxpzB2KprUSn5+PjIyMjB79mwqvdL9299COTk1mrdqJZx27DB6HX9/f/T09EAqleo5ApsiIiICZWW60ZOwsDAUFxfj1KlTWL58+bRpO+c9L4Dp6QkAGElJwbhWOopOp8PHx8eoIzEwMQdq586dSEtLM8tdmUD4OiAihkB4Cmlra4O3t/cjcT2tqqrC7NmzDe67ceMGnJycDEZDtKmtrdWZEm0umjlNmmLlhIQElJWVobu7G2NjYwbTV1KpFD09PZR3i0qlQl5eHhITE3WOk8lk6OnpQWdnJ9rb29HY2GixkMjNzUVISAiCg4PR2NiI0fR0DF64CACg8/kQvv22SXHn7u4OsVhsMEVkirCwMFRVVels8/DwwIMHD7B27VqDNUJTobPZEHzzm9Rz8Yd/19kfExODwsJCk9dgs9nYtm0bLl++rDdpm0B4HBARQyA8hTyqVFJHRwfc3d0N+qjU1dVhbGzMaJRGG42HjKXcuXMH4eHh6OjoADARIVi6dCnOnTunU6CrTVFREeXjAkxEYWbPnk2NCaitrcWXX36Js2fPoqCgAP39/XB0dER1dTUuX76Mzz77DGlpaWYZsKlUKtjZ2UEkEqG5sREd7/yC2ufxwx9QU6SNQaPRwGQyERQUZHKY41RYLBZ4PB76+voATIx3uHr1Kjw8PEya3k3F+YXdYEyOdhi+eRNSrYJhNzc3DA4OQi6Xm7wGn8/HqlWrcP78edJ+TXjsEBFDIDxlKJVK9Pb2WpyqMQdj3jAymQxpaWmg0+nTihOpVAqpVGp0UrQx2traAEwUsjY3N1Pb3d3dMTQ0ZPDDWqVSoaKignIEVqvVyM/Px9y5c1FRUYHPP/8c7e3t2LBhA/bu3Ys1a9Zg3rx5mDt3LgQCAXbt2oVDhw5BIBDg+PHjyMzM1Gln1qawsBALFixASUkJ2Gw2RuvqIJtcJ3fuXDjv2mXW6/T29qbmB42Ojpr9/syZMwfFxcVQKBQ4c+YMVq5ciZCQEIuKbel2dhC8/PLEE7Ua4r9/pLM/LCxMr+vJED4+PoiOjsadO3fMvjeB8CggIoZAeMrQtD/bGoVCgd7eXnhO1k1ok5qaSg1UNNZSraGqqgphYWEW3VtjSrd8+XL4+PhQggaYqHeZP3++npcJMDGAMjAwkLIvr66uhkgkwtWrV9Ha2ooDBw5gyZIlemaA2qZ3NBoNEREROHToEOzs7HDy5Em9dmOFQoHS0lLEx8dPDKtMTwerqgqjDg4AiwXhL38BmpmpPc00bEMpIlNoOrfOnz+PxMRE+Pr6Ijg42CLfGwBw2bsHjEkn3qGrVyHVKtSNjIzUq70xRlRUFEZHR3UEJ4HwdUNEDIHwlFFWVvZIDO6Mec50dXVhZGQEUqnU5AwkDVPHBphDXV0dvLy84OjoCDabDYVCAZVKBalUipaWFixatAjNzc16KZ/c3FzMnTsXwIQQun//PhoaGhAfH4/Vq1cbHS/g4OAAiUSi041Dp9MRGxuLlStX4ssvv9QpXs3Pz0dMTAwYDAbi4uKQee4c3Lp7IHZzg9srr4BjxBTQEBqRFhISYlFKiU6nQyaTwcXFhapZ8vDwsMgBGJhoAXf9xjcmnqhU6P/8c2ofl8sFm83G0NCQWddau3Yt7t69S2YhER4bRMQQCE8RCoUCw8PDj2SmjbE6Fo0zrTnGehKJBDQazaKpyCqVCunp6Vi4cCG1TSAQoLe3F3l5eZg7dy7odDri4uKoTiVgwjWYy+VSkaEHDx5gbGwMBw4c0BlTYAx3d3eDAsDLywvbt2/H5cuX0draCrlcjoqKCqoGiZWfj9GBQTgNDqDf3w+Cb71i9msFJopj5XI5OBwOaDSa2QWyZWVlcHV11THK07SVa2plzMVl317QJl2WB85fgHJ4mNo3Z84cs12FuVwuFi5cSNJKhMcGETEEwlOEtV0/0zE6OmpQfNTU1MDd3R10Oh0cDmfaGUjTTaw2dk5wcLCOQZufnx8aGxtRU1NDpaYiIiJQWVlJFZPm5ORQbdWlpaXIzs7Giy++aLCt2hCBgYFGW62dnJywZ88epKSkIC0tDfHx8aDT6VBJpej67e/g39QEscANsogI0K0YZujs7IyBgQGEhoaaFY3p7u5GYWEhtm7dio6ODp0IUkhIiJ6j73QwHB3htHULAEAtkWDw/AVqX1BQEBoaGox6xkwlJCQEcrnc4rZ1AsEWEBFDIDxFPKpUkqHrKpVKpKenIzk52ez7VldXG23PNoRSqURubq5eO7Sfnx9KS0sRHh5OtZEzGAyEh4ejrKwMMpkMvb29EAqFKCgoQHFxMSIjI41O3DaEpsbEGHZ2dtiwYQOys7MREhICAOj7178hb2mBT1sbOiMjwRUKrUqlaOpiQkNDp62L0XQibdmyBUwmEx4eHtSATGBCjFniAKzBdf9+6t/9x45RooVOp8Pd3V3nHtOxevVq3Lt3j3QrEb52iIghEJ4SZDKZVV0/5lBdXU19UGsoLCxEZGQkOByOWRGgoaEh2NnZmTWxWkNBQQHmzJmjNzrBwcEB3d3deqMPYmNjUVRUhJKSEkRHR6OmpgYNDQ1gMplGW7CNYWdnB6lUanKOUUNDAxITE3HlyhXIOrsg/miim4cBwDsuFo6OjjpFyOaiETFcLhdKpZKakj0VtVqNy5cvY8WKFdT/e3h4OCoqKqhjOBwOVCrVtK3RU+GEhMB+MpIla2iAJCOD2hcREYHy8nKzr2VnZ4c5c+YgLy/PojUQCDOFiBgC4SnhUQ177O3tBZ/P1xESUqkUpaWliIuLo3xVjBXJaigtLbXIG0bT8aPt8aKhqakJfD5f78OdzWbDzc0N+fn5EAgEyMrKwqJFi8BisSyKwmgwVRirUChQXl6OZcuWQSQS4dbfPoB6smvJZe8ezFu5EkNDQyZdbo2hqfkBTE/WLigogKenp06Nj0gkQsvkoEkN1rgQA4CLVjSm7+gxk/eYjpiYGFRWVhITPMLXChExBMJTgjVdP+ZQUlKiZ5ynGabIYDDMTiXV1dVhlgVdOoWFhVTHz1Sys7MxZ84cg+27QqEQcrkct2/fxvbt25GTk2NxFEaDSCQy2iKsMRRkMBiY4+yMrrY2DPL5oDs6wu1734OHhwfkcrlVIkZjeieXy416s/T29qKiogKLFi3S2U6n0/WKea2piwEAx5UrvhpFcPcu5JNRJTqdDjc3N4tSSnQ6HcnJyUhLS7N4HQSCtRARQyA8BYyPj0OlUsF+sqPEVqjVajQ1Nel80x8fH0dzczNV22KOL41YLIazs7NBQWIIpVKJsrIyg67DYrEYbDYbs2fPNigwamtrMTQ0hPXr10OtVmN4eNjkNG1TGIs4KJVKHVfknj/9GTEFhSiKjYHrK/8B5mR3WFhYGAYHB80ugtVGKBSio6MDDg4OkEqlOvUkSqUSV69excaNGw2OlpiaUnJzc4NYLLZ4DTQWCy5790w8UanQf/JLap8lnjEagoKCMDAwYHG3FIFgLUTEEAhPAY8qldTW1gYfHx+dD8rMzEwkJSWBRqOhp6cHrq6u04oTU0MjDaEpxDV03aysLMyfPx8CgUDvw3BkZATt7e2IiIiAWCzW6VCyBh6Pp2dsB0wUOkdERIDJZEKSm4uRu3dhPzYGn5FRNGmlv8LDwyGTyaz60NbUxQD6YurevXuIi4ujpnJPZWr6iEajgcfjYVirVdpcnHfvBiZThYPnz0M9KaasSSkBwIoVK3D37l2LzyMQrIGIGALhKcAaF1xzmDqDaWxsDC0tLVSRrzl1LpqJ2uZ4swATUYaioiK9ol3N/QcHB+Hl5QU6nQ4ajUZFKEZHR3HhwgU4OTlh1apVKCoqQktLC4KCgsx8tYaZ+uGvUqlQUFCAuLg4qNVqdP/+D9S+hTu2o6K6GiMjI9S5HA4HDVqut+ai7UwcEhJC1cW0tbVhYGDA5PvOZDJhb2+vY0oXGBho1TqYbm7gLVkCAFB0d2M0MxPAVyklS8303NzcwGKxqCnfBMKjhIgYAuEJR5NKssRAzhwMzWDSREFoNBrUajVaWlogEolMXqezsxOenp5mT9QuLS2lohxT0RY3KpUKdDodX3zxBY4ePYrLly+joaEBzs7OOH/+PJqamsBisWbsFjs14lBTU4OgoCCwWCwM37qFsUnjN05IMFy2b8eqVatw69Yt6nhLO3k0aLqjgAmDvc7OTigUCqSkpGDt2rXTnj91bIG1IgYAnLZtpf49eOErz5iIiAiLU0oAsGjRIjx8+NCqtRAIlmATESOXy9HS0oKqqiqSCyUQbEx1dfUjSSVNLcTVRGE0rdTmihNNu7M5qFQqo0MmVSoVqqqqEBISgqKiInz++eews7NDaGgo9u3bh+HhYcTHx2Pr1q3Yu3cvnJ2dwWQy8eWXXyIlJcVom/J0TC3uzcvLQ0JCAtRKJXr+8j613f37b4LGYEAoFILFYqG9vR0AEB8fb1EBrDZ8Ph+Dg4Og0Wjg8/lISUlBXFzctPOpgIn6E21/GCcnJwwNDVlVn8Nbtgz0ye6u4Vu3oRyZGEzp5+dn1WwkzbBO7dENBMKjwGoRMzIygo8++gjLli2Dk5MTAgICEBERAXd3d/j7++OVV15BTk6OLddKIDyXVFZWPhIRM1V8aEdhAPNSSSqVCp2dnRAKhWbds7q6GsHBwXq+MMDEMEdvb2+cPHkS4+Pj2L9/P1asWIGuri7k5eVBqVQiOTkZwIQAi4iIgEQiwYEDB+Dv748TJ06gv7/f3JdPoV0U29bWBldXV3C5XAxduQJZXR0AgBsXB97yZdQ5ixcvxoMHDwCAEhzW1KN4e3tTYsjDwwONjY1mt6lzOBwolUodfxgXFxer3gM6mw2njRsAAOqxMQzfvDmxnU6Hq6urVWKERGMIXwdWiZg//elPCAgIwMcff4wVK1bg7NmzKCwsRFVVFTIyMvD2229DoVBg9erVWLduncVTVgHgnXfeAY1G03lY24FAIDytPKqupPHxcchkMspATSaTobm5mYrCqFQqtLe3w9vb2+R1NLUwGuEzHdoDG6dy//59tLS0YN26dUhKSgKLxQKfz0d/fz/Ky8vh7OwMPp8P4Ktoibe3Nzo7OxEcHIytW7fi4sWLFvul0Ol0MJlMyGQyZGRkYP78+VArFOj529+oY9zfeF3nNTo5OcHBwYGqafH19UVubq5F9wUm6mLa29uhUqlQXV0NHo9n9nsJTBT4arsOa0YGWIPTVq2U0vnz1L9nz55t0aBKDZ6enpBKpRgYGLBqPQSCOVglYtLT03H37l3k5ubi5z//OdatW4fo6GgEBwdj3rx5ePnll3HkyBF0dXVhy5YtuHfvnlWLi4yMREdHB/UoKSmx6joEwtOKpTb+5lJRUaEz40hTyKr5AG1tbYVIJJr2A9USg7vm5mZ4enrqzEjScPv2bQwPD+PgwYNwc3OjtqvVaqpuR5OC6unpgb29PRwcHBAeHk7Vozg7O2Pv3r3IycmxuI7Dx8cHVVVVlAfL4IULkDdNpFHs582Dw/z5eudoR2Oio6MNer1Mh8bePy8vj/r/UCgUZp8fHBys8yUxICDAahFjN2cO2AEBAABJdjblGTOTWpuFCxciPT3dqnMJBHOwSsScOnXKrBw4h8PBd77zHfzHf/yHNbcBk8mEl5cX9XB3d7fqOgTC00plZeUj6UrSvq5SqURlZaWOqDFHnCiVSvT39+uIDlNoWren8uDBAzQ2NmL79u16IwvKysrg5uamEyXKysqirqOJZGjqQDgcDnbs2IGSkhKLxgGIRCJkZWVhwYIFUMtkEP/t/6h97m+8bvAcPp8PPp+P1tZWBAQEYGxszGK3Wk0EqKKiAnPnztWLrEyHu7u7jj+Mvb09Fb2zFBqNBqdt26jngxcvAgBYLBaYTKZVTrw+Pj4YHBzE6OioxecSCObwRHcn1dTUwNvbG4GBgdi7d69VQ84IhKcVzVwfW6eShoaGwOFwqGnP5eXlCAsLozxblEolxGKxTteSIRobGxEw+c19Onp6esDhcKh0kIaHDx9CIpGAzWbrdUFJJBLk5eUhKCgIXC4XdDodEokEw8PD8Jx0maXRaHrDChkMBrZu3Yrbt2/rtCCbwsXFBQMDAxAKhRg4exbyyToVh0WLYG8k/QUAycnJePDgARwcHMDlcq1KuwwPDyMxMRF0Ol2n1docaDQaXFxcdBoqTI1SmA6nLZuByejb4MVLlDicNWsW6ibrgywlISEB+fn5Vp1LIEyHzUSMrQd/JSUl4bPPPsONGzfw8ccfo7OzEwsXLjRZYCaVSjE0NKTzIBCeVmpqavSGMtoC7YJetVpNpZI0mCtOLJmonZ6ejoULF+psy8jIgEQigbu7O6KiovRSV6mpqVi+fDk6OzupQuD8/HzEx8frHBcREaHjXgsAXC4XmzZtwvnz581qwS4sLASfz4dKKoX4o39Q241FYTQ4OjrCyckJ7e3tcHZ2nnYi9VSam5vB4/EoLxx3d3eLBcjUlJK1U60BgOXtDfuEBAATQyGl1RPXtbYuBpgQQPX19WTCNeGRYDMRs337dltdCgCwfv167Ny5E9HR0Vi1ahWuXLkCAPj3v/9t9Jx3330XTk5O1GM6fwsC4UnmUbn01tfXUwZx9fX18PPz00njlJWVmZVKGhwchKur67T3Gx4ehlQq1UkHV1dXo6enB6tWrTJ4v66uLkilUri5uUGlUkGpVEKlUqGurk5P2BlzlhUIBEhOTsa1a9dMrk8ul1OjFxpOnYKiowMAwFu6FFwDYxGmMm/ePOTk5MDPzw+Dg4Nmf1grlUrcvXsXy5cvpzqUNK3WlhTDTq1ZsbYtWoOjlkfN8I0bE9scHSGRSKwSInQ6fUYiiEAwhUUi5oUXXjD42L179yP3h3FwcEB0dLTJUOtbb72FwcFB6mGNZTaB8CSgUCgwPj4OHo9n0+uKxWK4uLhQqaPs7GwkJiZS+80VJw0NDWY75ebk5Ojco6enB9nZ2diwYQPa2trg4eGhI6LUajVSUlKwYsUKFBUVISYmBvb29igtLUVwcLCebw2dToeLi4vBKG1QUBA4HI7JVEhRURHmzJkDX29v1F6/Tm13+/arZr0+gUCA8fFxuLq6ws7OzmwBkZubi+joaIhEIp26Fks7jDgcDtRqNdVqzeFwoFAorKqLAQDH1auplNLQpIgBJsSiNcMuASA2NhaFhYVWnUsgmMIiEXP79m28+OKLeO211/Qe5pgzzQSpVIqKigqTfhSanLv2g0B4GjFn6KI1aKeAuru7wePxdH53zb2vZrbQdGimPGvSU2NjY7hy5Qq2bt0KJpOJ3NxcJEymLzRUVFTA19cXfD6fSql5e3sjOzvb4KgCQH8gojbLly9HWlqajp+KBpVKRUWCnGpr0T3pE2eflASukXsZIj4+Hp2dnQBgVsRBIpGgqqoKsbGxoNPpUKvVlOiwphvI399fp7Xc09PTatt/lqcHuJMpO1ldHaST07FnEk3hcrng8XhW1+oQCMawSMQsW7YMPB4PS5cu1XksW7bMoAPnTPjhD3+Ie/fuoaGhAVlZWdi1axeGhobw4osv2vQ+BMKTyKPqSmpuboa/vz8A3S4fDeXl5dOKE4VCgeHhYbhMTnI2hab+hkajQaVS4eLFi1i1ahUcHR0xOjoKqVSqE/WRy+XIycnBggUL0NLSAh8fHzAYDDg6OkKhUBj9sjR1IKI2HA4HCxYsMGj1oDHfY9DpkP3r35A4TBRRu736/6Z9bdrMmjWLisCYIx7u3buHpUuXUlEl7WGXPB4Po6OjFjnvTi0InmlKia+VUtJEYzSjEawlMTER2dnZVp9PIBjCIhFz9uxZLF261OC+61phWFvQ2tqKffv2ITQ0FDt27ACbzUZmZib1B5hAeFZRqVQYGBgwq97EEnp6eiAQCKgun5GREZ0OJHNTSdo1NaZQq9U6rdo5OTkICAiAr68vAMNFuhkZGUhMTASLxdLZ39zcTHVTGUIjdIzVkoSGhmJgYEBPYGjM90ZSUyGrrgZdqQIrNgb2BnxhTKGp+1AoFODz+Trpoan09PRgdHRU52+Zt7e3Tku4touwObi5uemk06aOUrAUxzWrqX8PX58QMYY6oSzBy8sLAwMDGB8ft3pdBMJUZlTYOxNVPh0nTpxAe3s7ZDIZ2tracObMGbPC1wTC005rayv1QW9LtFNJhgSErbuSGhoaIBKJwGKx0NPTg/r6eqo2RqVSob6+Xmd20+joKJqbmxEeHo6xsTGMj4/DxcUFcrkcYrFYz0NmKiEhIaidTH0YYu3atbh9+zYV4WhpaYG7uzs4HA7Ef/8IAOAy0A/l3n0WueZqiI2NhUQigbOzs8navTt37mDlypU627THDwD6c5Gmg0ajwdHRkerI5HK5kEqlVs1RAgCWlxe4k9F1aU0NpJNrCQ4ONvkeT8ecOXNQWlpq9fkEwlRmJGLWrFljq3UQCIRJHmUqSSQSQalUGuzyMUecyOVySCQSOE0OCzRFTk4OEhISoFAocO3aNWzcuJFKn9TU1OgV6aalpWHx4sWg0WgoLi7GnMnOIE00x8HBASMjI0bvN90Hv6OjI7y9vaki35ycHCQlJUGSmYnx4mIAgCeXi35P0/44xuByuRAIBBgeHjZa01JbWwuBQKCXinN1ddWJcPj7+1tkegdM1NJop9SmXtNSHNd+9fdd06U09R6WEhYWZpWzMYFgjBmJGGtVPoFAMIxarUZnZ6fN54R1d3fD3d0ddDqdGiipLSDMTSVNnXxtjN7eXnA4HDg6OuL+/fuIj4/XKbQvKirSKdIdGBjA4OAg/P39oVarddrLNSLGy8sLHZPtz4aws7ODXC43ads/f/58ZGZmUq3Qzs7OVBQGAEJ270abVkTEUhYtWoSGhgYwmUy9tIlKpcLDhw+pIZba0Ol00Gg0qoVZ81os6TCa6g9jjRDShq/1JXXoxsRASE3nk7WeLywWC87OzqTAl2AzZiRirAm5EggE43R3d8PDw8Pmv1vaUZbCwkK9Lh9zU0nmFP4CE7UmiYmJaG9vx8DAgI4PzNDQEBgMhk6RbmpqKpYtWwYA6OjogJeXFxgMBlpbW+Hh4QEWiwWhUDhtCtvPz8+ktQKXy4VIJMKtW7eQmJgISUEBJFlZAAC2vz88N22yyl5fg6+vL8bGxhAYGKiXdikqKkJ4eLjB2VGA/giB6UTbVPh8PoaHh6kvlzMVMSxvb9jFTETDpJWVkE2+r76+vla3WgMTabeioiKrzycQtHmixw4QCM8blZWVCA8Pt+k11Wo1Wlpa4Ovri87OTri4uOh9kJojTuRyOcbGxqa1LpDJZOju7oZQKERKSope2rmgoEBHRGmKbTWjBLT3a8SQZv90Isacmo25c+eirq4Ofn5+6NVy5xV86xXQGAxwuVyrhYym+FWpVOqsQy6Xo6ioyOgEbwAQCoV6dTGWtlprp5A0XU4zwXHlKurfI3dTAcxsBAGgO7mbQJgpRMQQCE8QmroVW9LV1QUPDw/Q6XSDvixKpRIDAwMQCAQmr2PuGASN70pOTg4iIiJ0DPtUKhUaGxt1vGju3btHRWHkcjn6+/vh4eGB0dFRykQOmEixTDdCwJw24JqaGvj7+6Ps7l2MpKYCAJhCIZw2bwagX2RrKZq6D+2oSFZWFhITEymTQUMIhUKdyIuvr6/Fhp1TPWYcHR0xODho4Sv4Ct6yr7pRR1LvUuucyftDo9EQFBQ0IyFEIGiYkYiZrluAQCCYT39/P5ycnPQcaWeKJpU0Pj6OoaEhvcGOTU1NZlkXVFRUmBUlKi0thb+/P2pqavT8ozTt2ZrX2NbWBgcHBzg7OwOY8G3R1MIUFhbqnc9ms0226E7t0pmKWq1GSUkJNm3ahMw7d6Cp6hO8/DJok3/PfHx8LJqAPZXAwECMjIxM1NuIxZBIJGhoaJg20uXi4oL+/n7qOYvFglqtNlnjM5Wpfjn+/v4zarXmhISA5eMDABjNyYVyZAR0Oh12dnaQSCRWX3fOnDkoniymJhBmwoz+Wubm5tpqHQTCc8+j6EpSq9Voa2uDr6+vTsePNuZ0JclkMkilUjg6Opo8TjNGIDU1FatWrdITZFPrcR48eKBT6Kop4lWpVKitrdWL/Hh5eU1rJmcqpdTc3Axvb2+wenrgXFWNbg8PMAQCOO/epXMPS2pRpuLp6Qk2mw0mk4n6+nqdritTaN4r7TSLr6+vRYLK3t4e4+Pj1DVmWhdDo9HAm4ySQS7H6IOHACxvAZ8Kn8+HQqGYUf0RgQCQdBKB8MTwKEYNdHZ2UrUmhkSSJamk2bNnT3u/nJwceHp6wsHBQa/DamRkBGq1mhJCbW1t1BRoYKLgl8lkgsvlora2FrNmzdITQVMFhlqtRl9fH0pLS3Hjxg1cvHgRLS0tyMrKQmVlpV4UQzPHqe/f/8as2lrUzZoF1xdfBF2rRojNZkMul1vdfclms8HlctHb24va2lr09/ebVTQNTNS0aEdjrBEhnp6e6O7uBgA4OztbNEzSELzly6l/j9ydSCnNtC4GAKKioohnDGHGzFjEjI2N6YQVm5qa8Oc//xk3b96c6aUJhOeG0dFRsNlssFgsm15XE2Vpbm6Gr68vmEymzn5zU0nl5eXTppIkEgnGxsZQVFRk0Nl7uiiMZtgjMFHca2iUiaZDSS6XIzs7G5999hkyMjKgUCgQFxeH5cuXY+7cuWAymejv78fx48dx9epVdHZ2YmBgADQaDQ5KJQbPnQd3fBx0Bh30jRv07uPk5GQ0JWUO9vb2sLOzQ2dnJxYtWmT2eVNF2lQnX3PQbrWm0WgzTv3Yz0sE3X5iHMPI/ftQK5XU+zMTm43Zs2ebNAUkEMxhxiJm69at+OyzzwBMeD0kJSXhvffew9atW/Hhhx/OeIEEwvOAti+KrVCr1Whvb4ePjw9lrz8Vc7qSpFKpyblFGgoKCsDn8xEREaHX/aRWq3U8ZlpbW+Ho6Eh1OqnVamoy9sDAAFgslsH7cblctLa24tixY7Czs8PBgwexceNGxMbGwsPDA46OjvDw8MDs2bPh7e2NQ4cOISEhAZmZmTh16hTi4uLQf/w41FIpACAuMBAFBszXrBEP2nh5ecHZ2RkqlcqiD/qpxb0sFgsqlcoiX5apc5NEItGMXgudzYbDpBBT9vdjrGiilsXS0QhTYbFYsLOzm5FYJBBmLGLy8/OxePFiAMDp06fh6emJpqYmfPbZZ3j//fdnvEAC4XnA3M4fS+jo6IBQKMTo6CiUk9+etVGpVOjv74ebm5vJ61RXV0+bSlKpVKiuroZYLNYbZwBM+ND4+/tT6aGppm+aYY90Oh0FBQUGr9Hb24tjx46BxWJh//79mDNnjtFuH+2aDQ8PD2zYsAFKpRJp9+6h7uKliYMYDIQffhFtbW16aSdNG7C1CIVC1NfXw8HBwaLakaleMYB5dUDasNlsKJVKSvhY0+U0lUeVUoqIiEB5efmMrkF4vpmxiJFIJFSO++bNm9ixYwfodDrmz58/o4IyAuF5QTPjxpgJmrVoUklT3XE1NDU1wc/Pb9rrmNOVVFdXBxqNhoULFxoUFtrpofb2dvB4PB2/GU2qSalU6kza1j7/+vXr2Lx5M4KDg6d1fJ3aJl1SUoL58+djFYeDEpEv2oVC8NeuAUfki8jISJSVlemc7+7uPiNXWQ6HA4lEAh8fH4ts+hkMBpRKpU70xpq6GG3hM9Pp0wDAW7oEmCxM1rRaz7RoGJgowiat1oSZMGMRExwcjPPnz6OlpQU3btygjK26u7unNcUiEAgT83SCg4Ntek21Wk0532qKZKdSXl4+bVeSVCqFUqmE/WRNhDGysrLAZDINRpMkEgnkcjkVCUpPT9epE5HJZBgeHoZAIKDeC00nj1qtxu3bt9Hf3499+/bB2dnZLOdeBoMBBoMBmUwGtVo9IegiIjD++RdYkJ6BhqBADKyfqIWJjo5GSUmJ3vmWpoK0yc7OhpOTEyIiIiCRSCya3Kxx3tUgEoksjqRoCwwGgwG1Wj0jczmmQADuZGebtKYWstZWcDgci0cj6F2XyYSDg8OMi48Jzy8zFjE///nP8cMf/hABAQFISkrCggULAExEZQwV5hEIBF0eRT1Me3s7vL290dLSApFIpBcdUalU6OvrmzaVZM7a+vv70dvbi9WrVxvcr12w29PTQ83P0aAd6dEu/lWpVLhy5QocHR2xYsUKKhVlbgu0SCRCa2srGhsbIRKJMP7wIWQNDWCoVFguk6OkV4za2lqw2Wy4ubnppY/4fL5V9Rrd3d0TBcQODvDx8YFarbYoYjH19XE4HEqMmctU4ePh4UF1LFkLb/ky6t+jaWkAYJagnA5DkTACwVxmLGJ27dqF5uZm5Obm4vr169T2lStX4k9/+tNML08gPNNovDKm81+xFE0qyViXT3Nzs1mpJHO8a9LS0iAQCKhWbm3UarVOvc/Dhw/1unU0EaHBwUHqm7lCocC5c+fg5+eHpKQkneOnmsIZIyAgAA0NDZRLcd+nR6h9Ht/4Bnbu3ImcnBy0tbUZnOcztcjWXO7fv48lS5bAw8MDfX19cHV1tWhys6H7WlpEO1X4WBPNmYpD8mLq3yMPJ/xiNO/xTJip5wzh+cYmPjFeXl6Ii4vT8XSYN2+ezY27CIRnDXMHL1qCZhK2s7MzxsbG4OLiondMWVnZtF1JGtM0U6kkhUKBqqoqrF+/3uB+TcEug8FAf38/FAqFTvSnv78fXC4XHA6HcuhVqVS4dOkSIiIiDJrz0Wg00Gi0adMYQqEQra2toNPpYDY2QZKTAwBgBwaCt2wpWCwWtm7dilu3blHuutpdQNaImI6ODnA4HLi6ulLnx8TEWDQw0dPTU6+Q15r6E+26npkObQQAu4hwMCZ/liQZmVDL5TYRRwwGA87Ozujt7Z3RdQjPJ8TsjkB4jDwKl97W1lb4+PhQM4ymokklubu7m7yO9ggAYzx8+BBubm5GzfLy8/OpSJChKIwm1aSZqRQQEICUlBSIRCKTxcRTTeEMQafTMTw8jDlz5qDvyFdRGNeXXgJt8guXvb09Vq5ciStXruhFBDw8PCzqCgK+isIAX6WFgoODMT4+bvYwRo3ZnjZT26bNQVv42GIYJI1Oh8PChQAA1egoxoqK9DqhrIWklAjWQkQMgfCY0LQ4T+eWaymaVFJFRYVBgWTukElzBFZ2djY2Tw5OnIpUKoVEIoGrqyuGh4cxMjICoVBI7VepVJTZXl1dHYKCgpCTkwMGg6E3pHIqhqIVU1EoFBMeK729GLpxAwDAcHWF09YtOseJRCJ4enpCpVLpFPiyWCyLPpxbWlp0HIg1BbpsNhuOjo4WGbtxuVwdgzoHBweLDeumCh97e/sZCxkHrbZ4TUpppgMzgYm0FOlmJVgDETEEwmOira0NPpPD9WyFSqVCd3c31Go13NzcDDoAm9OVpEklcblco8cUFxeDx+MZLQ7WnsmUnZ2tV9uiETB0Oh2FhYXg8Xjo7OzEci1PEmOYI2IqKysRHh6Oqlu3gEkx4rJ/v86IAQ0LFy5EW1sbhoaGIJ00wgMmxIN2p5ApHjx4QHlmARNpLzqdDqVSSbW6m4uhtmgnJyeLunjs7e0xNjZG1cXYIqWkicQAoOYoBQYGWtRGbgg6nQ4+n0+6lAgWQ0QMgfCY0HzI2pLW1lb4+voaNYxTqVQQi8XTppKqqqqmjcLcvXuXslQwhGZUgVQqRXt7u17tj8a/Znh4GDKZDKWlpdi4ceO0gxIB83xcioqKsDAmBp2TUQIahwOX/fsMHkun07FhwwaMjY3pmK+Z233T1NQEV1dXvQJtTUHu3LlzLeoOMlSPY01djHYRtC3qV1ieHuBMGh+Ol5ZC0d9vEzM9AAgLC0NVVdWMr0N4vrBYxIyNjRm0sCb5TALBfLR9XGxJWVkZQkND0dfXZ7BbqKWlxeyuJFP1MHV1dVCr1QgKCjK4XywWw8nJCWw2G/n5+YiPj9cRJ1KpFGNjY3B2dkZeXh6Gh4exefNmvdlOxjBUN6JNV1cXnJycMH7pEhhSGeRMJpy2bQPT1dXoOXw+H+Hh4cjKyqK2CYVCs1IlGRkZWKgVpdCgiajY2dmBTqeb3bJtyKVX0zJuCdrCx5oaH0NQKSW1GpKMDOr/bKrrsaUEBQUR4zuCxVgkYk6fPo3Zs2djw4YNmDNnjs4v+6FDh2y+OALhWaWnpwfu7u5mRR3MRaVSoaenB729vUYjPOZ0JY2NjQGAyVRSSkqKnjDRRtParVQqUV1drbcezTpUKhXy8vKwYsUKHe8Yc2CxWDqpH21yc3OREB+Pvi+Owr2nBz3u7nB98cVpr5mcnIzh4WEqymOO221rayucnJwMtslrp718fHyQl5c37RqAr1JB2jg7O5vVWq6Nn5+fjukdjUabcRGuw6KvxNrIZErJ19d3RvOZgIn/TxaLNaNhlYTnD4tEzK9+9Svk5+ejqKgIn376KV5++WUcO3YMAGY0zZRAeN4wx8rfUjRRltLSUqNdSWKxGB4eHiavM10qqbm5GePj40hMTDS4X6lUUoMny8rKEB4ermO/AHz1+m/fvg2BQDDtbCZDeHh4GEwpSaVSDAwMwL6kFIqODnh0d2Ng7lxwggKnvSaTyURiYiKuXLkCYPqID2C460qDQCCgWodjY2MtSpfQ6XSd6AaNRgObzTYq3AzB5/MxMjJCPTenlmg67BMSQJusKxp9+BBqtdomfjHAxGTr6urqGV+H8PxgkYiRy+VULj0hIQH379/HRx99hF/+8pc2/UZJIDzraJx0bUlZWRl8fHzg4OAADodj9T2nc+m9d+8evLy8jEZqamtrKXM7bQdeDb29veDz+RgdHUVxcTG2bds27ZoMYewDubi4eKKt+vPPAABOg4MYmTKLyRTJyckQi8WUudzUTiFtOjo64ODgYHTEimZ8AQCEhIRgcHDQ7C98bm5uet4p1gym5PF4VBrLFhETOocD+0kBq+jqgqy2dsYDMzUQEUOwFItEjIeHB4qLi6nnAoEAt27dQkVFhc52AoFgnIGBATg6OhqdwGwNmihLU1OTwYJewLyupLGxMdBoNKPDKFtbWzE+Po558+YZvYZGRNTX10MkEoHNZuvsLywsRExMDC5dugQvLy+L00gaDIkYtVqNiooKBAEYy51I3XBmzQLH3W3aiIoGJpMJHx8f3Lp1C4Bp07sHDx7oTOM2hKa1mcFggMvlmm2g5+npqZfKsqaIVruWxtvbe8YiBpiSUnr4kPpZnmldDJfLhUKhgEwmm9F1CM8PFomYzz//XC8UzWazcfz4cdy7d8+mCyMQnlUehcGdxvulvb0dvr6+evs19TLTpZKmW9vDhw9Bp9P1pkxrGB0dhVqtBo/HQ25url7KSaVSoa2tDW1tbWCz2UZTUuZgqEakubkZPj4+GDx2nNrmevCAxV4mMTExkEgk6O7uhre3t0Hh0dXVBQ6HM60I0xZbAQEByM3NNWsNhop7rfFk8fPzo4SPo6OjTnrJWnha6TNJZha1NmvGNExl1qxZZAwBwWwsEjG+vr463RTa3xKM5YQJBIIu9fX1Rrt6rKWsrAw8Hg8hISEGU7utra1mp5KM1ad0dnZCoVAgNDTUaPpYE4URi8Wws7MDj8fT2V9fXw9PT080NTVhfHx8RtO7NXU22umZ3NxcxM6ahaHLlyeOcXSE09atEIlEFjneBgcHg8lk4sGDB0aLe03VwmijLWJiY2PN9lTRrqfRwGKxoFAoLKpBFAgEOnOXOByORVO1DcEODgZj0qRRkpMDtUJhVQu4IcLCwiyaNUV4vpmRT4wpjwgCgaCPRCKhujBshWaMQGNjo8FZQ8BEKmm6riSJRAI6nW40lZSeng4AejUuGrSHPWZlZemZ2wETqaT29nZERUXB399/xik17UnTw8PDUCqVUF+7BvVk6sh51y7Q7e0trtlgs9ngcrlQKpUYGRnRK6YVi8Wg0WhmuS1rixhfX19IpVKzRIR2PY02hmplTEGn08FgMKh0mi0cdmk0GhySJlKKqtFRjE/WY83UTA+YMPUbHh6edjYWgQDMUMSQjiQCwTKmK5q1hqamJgiFQqjVajg4OOjtt0Uqqa+vD3K5HGw2Wy+6oqG9vR1eXl6QyWQYHBzU88AZGxtDT08PoqOjUV1dbXC6tqV4enpSJnIFBQWIj4lBvyaVRKfD5cABABOiRDOGwFxmz54NoVCIBw8egMlk6tRpmFMLo0F7bhGdTgePxzN7BIGhUQHW1MVop3p8fHxsUhdjnzSf+vdoZpZV77ExbFUoTHj2mZGIIR1JBIJlaCIVtqS0tBR0Oh3R0dEG92vGG0z3+2pKYKWnp4PP5xuNwgBfecPk5eVh7ty5evtzcnJAo9EQHh4OmUxmdUGvNpooh0qlQkNDA9xqaqCYbLvmrVgOtu9XYx0MpWdMMXv2bLS3t0OpVILP51Niqa+vD0qlclrXY2004weACVM3cxshDBUvW+O8q32ONdO5DeEw/6tImyQrE4CuqJwJISEhpEuJYBZk7ACB8DUhk8mgVCpNmshZilKpxMDAANra2oyKI+0ZRsaQSCRgMBgGW7NHRkYwMjKC7u5uzJo1y+D5crkcAwMDcHV1RV1dncG1ZGdnY8uWLSguLkZMTIwZr256NC601dXVCAkJwcDnX1D7XA8d1jnW0knQ9vb2UCqVmDdvHsRiMVUXY0kUhlqLqyv6+voATIij3t5esyLZhkSMk5OT2c6/Gry9valUD4fDsUn3D8vPD8zJgZ6SvHyoZDIdc72ZQCIxBHMhIoZA+Jqora2dUSGrIRobG+Hm5gZXV1eDlv2agZDmpJKMme9lZmbC39+fGtZo6nzN5Oypx2VnZ8PR0RFCoRDV1dVWmdsZgsvlYnx8HIWFhQhjszE2OWSRExoK+3m6nU/WRDCCg4Op+oz6+noUFhZCLBZjfHwcXV1dZhvPTXXuBTDt7CfNeYaKiu3s7CwqzuVwOJDL5ZRw0q4lspaJupiJaIxaKsV4UZFOJ9RMoNPpFg3fJDy/zEjETPV/IBAIxnkU9TBlZWWQy+VG0zxtbW3w9fU1K5VkSFiMj4+js7MT7e3tJlNJpaWliIyMNGhuJ5PJ8ODBA6xfvx7Nzc3w9fW1qUeOUqkEh8PB2MkvqW2uhw7qvWZL24slEgnGx8dx7do1SKVS1NfXIz8/H/7+/mhpaUFJSQnOnz+P48ePIzs726Qo0BYxbDYbHA7HrDZiHo9n0GjPmiJa7WiQzepitFJKo5lZlKi0Rb1kcHCw2bVDhOeXGYkYc/0OCITnHaVSidHRUaPOrtZec3BwEAMDA/D29jZ4jDldSaOjo2AymQZTSfn5+YiKioJcLjdaw9Lf3w87OzuqeHjqddLS0sDlciESiai6GVsyPj6OAHd3DF2/DgBgODmBv2mTwWMdHBymFTJisRhnz57FpUuX4OrqCnd3d3zzm9+kTABXrlyJ5ORkrFq1Cnv27MHOnTvB5/Nx7do13Lx5U2/mEaA/ddvHx8fsmg9D845mWhdjq04iB60OtNHJuhhtsTQTgoODyUBIwrSYNzJ2GsbHx1FcXIzu7m69yvQtW7bY4hYEwlNNY2MjAgICbHrNhoYG8Pl8CAQCg5EWlUqFrq4ug9OstTGWSlIqlaipqUFoaKjR1m0AKCoqQmxsLLKzs7Fy5UqdfQMDA6ivr0dMTAzGx8cxNjYGVxOTpC1FLpdDoVBAkpEJO01b9QsvgG6kTVzzQW7o9UokEty7dw8SiQQrVqyAi4sLgAl/nM7OTjCZTIMt1Ww2G2FhYQgLC0NDQwNOnTqF0NBQzJs3j/p/YTKZOkIkICAALS0tUCqV00alNC3V2ilBLy8vPHjwYJp3R/+1p6WlITY2Vk9UWQtLKATb3x+ypiaMFRVDJZFQdTHmtJ+bgsvlQiaTQaFQmD3dnPD8MeOfjOvXr+Pw4cM6ZkoabDExVcO7776Ln/70p3jjjTfw5z//2SbXJBC+LiorKzF//vzpD7SAsrIyjI2NGRUY5qaSqqursXPnTr3tFRUVCA0NRXV1NQ5MtipPRaVSoampCTExMVCr1XrRmpSUFHC5XMTExKCkpMRoB5U2fX19KC8vR3d3NzUGQQOdTsesWbMQGRkJe3t7lJaWIjw0FO3//gyuAMBgwGX/PqPXFolEKCoqMjhVOy8vD0uXLtVzIw4JCUFFRQU4HM60hcGBgYHw9/dHTk4Ozp49i82bN1Npdw6Hg7GxMSoqRafT0dbWBj8/P5PX1KSitEWMRhSp1Wqzu0SdnJwwODgIYMKDRq1WQ6VSGa1zMhf7+fMha2oC5HJI8gvgHzOHmnI+UzTF2LY2hyQ8O8y4sPe73/0udu/ejY6ODqhUKp2HrQRMTk4O/vGPf5j8NkggPKlozOhm+s1UG4VCgYGBAQAwmqIypytpdHQULBZLr75NrVajoKAAnp6eEAqFRqMFmghTbm6u3jylxsZGqv7DwcHBpA+NSqVCdXU1Tpw4gfv378Pb2xvr1q3DgQMHsH//fuqxc+dO2Nvb49KlSzh16hTy8vIQ3t+PQdbE9zHH1avBmuyYMcTUCIRcLseVK1fQ3t6OAwcOGByn4OPjg4qKCsTFxUGhUEybKqHT6UhKSkJ8fDxOnDhB/T9ptx87OTmBTqebVRdjbNCli4uL3tgFU9BoNB23Xjc3N4NfPi1FY3oHAJLMDJuNNgAmBCSpiyGYYsYipru7G2+++ea0IWtrGRkZwYEDB/Dxxx9T4V0C4Wmivb3daM2KtTQ0NIDL5RqtdzG3K6miosJgaqWlpQVeXl4oKSkx+Y26sLAQERER6Ozs1BlroFKpcP/+fTg5OSE6Ohrt7e3w8PAwmBbo6urC0aNH0dXVhc2bN2Pbtm0ICgqCvb293rEsFguRkZHYs2cPYmNjMT4+jvSUO1DQJ0SW6+FDJl8vnU4HnU6nxMjx48cREhKC1atXGxVqKpUK4+PjiIiIgJ2dndm1gIGBgdi8eTMuXLiA7u5uPTHi4uJiVsu3m5ubwdSPNXUtvr6+1Dm2mGgNAPbadTE5OQDMqz0yB1v5zhCeXWYsYnbt2oXU1FQbLMUwr732GjZu3IhVq1Y9snsQCI8SY0JhJpSVlUEikRiNbGhmJZmTSjLk6ZKVlYXY2FiMjIwYjSCNjY1BKpWioaEBsbGxOvcqLCxEWFgYGhsbERISgvz8fD0xpFAocOfOHdy/fx9bt27F4sWLDToOG6O8vBzb58SAV1ODfoErhuPjwTWjaNjT0xPl5eW4dOkStmzZMm27d1FREUJDQ9HS0gI2m42uri6zpzW7uLhg586duHbtGrhcro6IEYlEkMvl07ZpM5lMgy641ogQ7a4kW4wfAACmQAD2pH/QeFk5VKOjOmJpJtBoNIODPgkEDTOuifnggw+we/dupKWlITo6Wm8mzOuvv271tU+cOIH8/HzkTKr76ZBKpTp/EGbqg0Ag2IKOjg6binCFQoH+/n64uroatTkoKysz6JqrzcjICNhstt41+vr6wGQy0dzcjKioKKPnl5WVISoqCvn5+Th48CC1XSaToaSkBCtXrkR/fz9lyKcdFRoaGsL58+eRkJCAFStWmPOydZBIJBgbG4M69SxEra0QuwmQHx8Pn/Z2yofFGCwWC2lpafjGN75hMNqjjUqlQllZGbZu3Yo7d+7Azs4Onp6eqK6unrbrSwOPx8PWrVtx4cIFne0ikQhVVVVoamqaVkhxuVxIJBKd9VrTBSQUCqkZWM7OzlSqa6bYJyRAVlcHKBSQFBZCNGsWSkpKbDKtfdasWairq0NCQoINVkp41phxJObYsWO4ceMGzpw5g7/+9a/405/+RD1mUoDb0tKCN954A1988YXRgXRTeffdd+Hk5EQ9zJnaSyA8Snp6euDm5mbTER319fVgMplGXW/NnZVUUVFh8IM4MzMTSUlJ00aQNMWuUwc5ZmRkYM6cOUhNTQWTycS5c+dAp9NRVlaGgYEBtLe34+zZs9iwYYPZQmAqhYWFiA4IwPDNWwAAN7kc8UuX4u7duyZTNJWVlWhuboaXl9e0AgaYiPaEhobC2dkZEokEnp6eEAgEKC0ttWi9zs7OWL9+Pbq6uqgWbE9PTyiVSqvrYmg0GpUaMxftKdia821Ru2if+JWxoCQ3Fx4eHjZLAwUGBqKhocEm1yI8e8xYxPzsZz/DL3/5SwwODqKxsRENDQ3Uw5xfTmPk5eWhu7sbc+fOBZPJBJPJxL179/D+++/rtStqeOuttzA4OEg9bOEcSSDMhEeRSiotLYVs0uLdEC0tLWYJ+JqaGj0H4bGxMQwMDIDBYMDV1dXotO2uri64urqiqKiIiviMjY0hLS0NWVlZqKurw+DgIEQiEUZGRpCcnAyZTIbLly/j888/h5+fn9WeOSqVCjU1NRA8TAcm/w6IFiVjaHiYigo3NjbqnVdbW4vi4mLs3bvXLLdbtVqtkwbz9vYGg8GgohdTBzNOh4eHB/z9/XHhwgWo1WowGAyw2WyznXsNFfca224KZ2dnqkvJVq3W9olfRUkkOTmg0+mg0WgWCSxjcLlcSKVSmzWKEJ4tZixiZDIZ9uzZM+M2vamsXLkSJSUlKCwspB4JCQk4cOAACgsLDRbhcTgc8Pl8nQeB8Dhpbm6etoXWEuRyOXp7exEUFGT0d86crqTh4WFwOBy9VJJmeKOhGhZtCgsLERwcDAaDAQcHB+Tk5ODUqVNobGzE7t27ER4ejsTERLi4uMDDwwN+fn6ws7ODnZ0dfvCDH0AoFOL48ePIyMiw+IOuvr4eASIRhk6dmtjAYiFg316IxWJwOBzs3r0b9+/f16mjaGpqQk5ODrZv3w4GgwE7OzuDpnTa1NXVwd/fn3qPQkJCMDQ0hK6uLkRHR1scjdFcg8lkorCwEMBEeodOp09rr29MrFjjvKtdEGyruhiWpydYkz/n40XFUEmlEAqFFgssY5BZSgRjzFh5vPjiizh58qQt1qKDo6MjoqKidB4ODg4QCAQm8/QEwpPC4OAgeDyeTS326+rqQKPRTKaSxGKxVakkhUKBuro6BAUFQSwWw8vLy+C5SqUS3d3dlED74osvQKPRsG7dOnC5XAQGBqK0tBTR0dHIz8/H3LlzUV1djZKSEmzfvh1MJhPh4eE4dOgQuFwuTp48adBa3xj5+fkI7u6GUtNivm4duEIh9U2dzWZj8+bNuHTpEuRyOdra2pCWloYdO3ZQkSVvb+9pP/yzs7ORqJUm8fHxQU9PD0ZHR61u/dWkoyoqKiAWi+Hj4wM7O7tphybyeDyD3T7WihhbF/cCE3UxAKCWyzFWVARfX1+bRcM1dTEEwlRmLGKUSiV+97vfYenSpfje976HN998U+dBIDyvmPJFsZbS0lKwWCyjrrctLS1mRX4MDaMsKytDREQEqqqqTK67uroagYGBqKyspCIvCQkJSEtLw7JlyzA0NAQmkwkWi4Wuri5IJBIUFBRgx44dOoKOTqcjNjYWK1euxJdffmlWDcXAwACYTCakx09Q21wPTRQVs1gsajqzi4sLFixYgPPnz+P27dvYuXOnzjiE6bpnWlpaIBAIdOpm6HQ6OBwOVU/i4uJicSpGk77ZtGkTrl69Ci8vL8jlcoPpL21oNBpoNJpelxKPx7M4raXtD+Pk5GTT4l4Nktxcm3UoAbab9UR49pixiCkpKUFcXBzodDpKS0tRUFBAPTQhU1uRmppK3HoJTw11dXWYNdl6agvkcjl6enpMut6am0qys7PTqXdRq9UoKiqinHVNRTuLiopQWVkJd3d37Ny5E1wul7Lld3Nzo65TVVUFoVCI7Oxs7Nixw6h1vJeXF3bt2oWbN29OW8CZl5eHSK49pFVVAAC7mDngTppgTjVvE4lEaGtrQ1BQELhcrt49DU2H1pCRkYEFCxbobQ8ICACDwUBvby9iYmJQNDk121zYbDbkcjn4fD6SkpKQnZ2tY1xoCmPdSOakxrTR1KsolUrQaDQwGAyb1K5oTw0fy82lhkHaAgaDARaLZbPrEZ4dZtxifffuXVusg0B4ppBIJGCxWEYLY62htrYWAEwa3InFYri7u5u8Tnl5uV6xcWNjI3x9fSGRSGBnZ6f3oa9BLBajtbUVPB4PO3fupLqu7t+/j9WrV0OtVqO+vh6LFi3C0aNHIZfLsW/fvmnfBx6PhxdeeAEnT56Eg4ODwXSYQqFAW1sbZufkQJNYcT10mNqv6Yjx9vaGUqnEhQsXsGPHDqSlpaGtrQ1MJhMMBgPOzs56XTradHd3w87OzmBNXVBQEMrLy9HV1YWoqCikpKRYbN3PZrMhlUoRGhqKkpIS0Gg0sNlsjIyMgMfjGT1PI7zc3Nx0tmtSQpYIZs17JRQK4eHhgZ6eHghNOB2bA8vHB0wvLyg6OyEpKIR6UqwNDg7CyclpRtcGJt77hoYGmxfKE55ubFuNSyAQAEykXKbz/rCUoqIiuLq6GrUcaG5uNmibPxVDqaScnBwkJiaanDI9Pj6O48ePIyIiAkFBQZQwaWtrg4ODA1xcXKjOKLFYjK6uLmzZssWoIJoKm83G9u3bcfXqVYP1HxUVFZgtFGIk5Q4AgOnuDv6a1dR+TapGqVTi9OnTkMlkuHfvHhQKBU6dOoXi4mLk5ubi9OnTOHbsGPr6+lBYWKiXoklPT8fChQsNrtHV1RUKhQJdXV2g0Wjw9/c3y3VXG41oAIDVq1djYGAAPB5v2roYY8W9T4rpHY1Go1qt1WNjGC8rg0gksllKidTFEAxhlYix9JeW5DIJzxu2FjEymQxisdikgZ2mpsUUg4ODsLe314mM9Pf3g8lkwsHBwagQGh8fx+nTp8FmszE+Pq5T8JqWlobFixcDAAoKChATE4NTp05h0aJFelGD6eDxeNiwYQPOnTtH1bdoKC4uhk9+ATApOlz27wNNq7vK0dER1dXV+Pvf/w6JRIK1a9fi4MGDePHFFxETEwMfHx+sW7cOe/fuxf79+5GUlITa2lp8/vnnSEtLo9I6CoXC6LppNBpcXV3R0dEBAIiMjER5eblFr1FbjDg5OSEwMBA9PT3T1sUYGz/g5eVFrcdcHnVxLzAxgsCWxb2WzooiPB9YJWISExPxyiuvIDs72+gxg4OD+PjjjxEVFYWzZ89avUAC4WlDJpNBqVSaHYEwh5qaGqjVaqPTfDVDJqdLJRmqmcnOzsa8efNQX1+PoKAgvfSKTCbD6dOnER4eTlnla+aYNTc3w9nZGXw+H1KpFKOjo6ioqIBKpbJ6areHhwcWLVqEq1evUtu6urrgzONBcuYMAIDGYsH5hRcATDQXZGRk4NSpU9Qk7cOHD8PDw4N6LcnJycjJydGpqZg1axZ4PB4OHz4MV1dXHD16FDdu3DAahdE+TxMpcnd3h1gsNjgWwBhTIyorV65EZ2fntMMYWSyWQa8UNpttcU0Ln8+n2rr5fL7N3M11TO9yciAQCNDb22uTawMTkTBbXo/w9GOViKmoqICTkxPWrVsHT09PbNy4Ea+88gq+973v4eDBg4iPj4eHhwf+9a9/4fe//z2+973v2XrdBMITi60LeoGJglZT3jBNTU1mpZLq6+t11iaVStHd3Q1fX18UFhYiNjZW53iVSoWLFy9i0aJFaGtrA51O14kGPXjwAMnJyQAmam28vLxQU1ODuLi4GbkUBwUFUZOvgYl0V+jAAFSTH7b8TZvAFAjQ09ODo0ePwt7eHnv27MHY2BjWrVun19bOYrGwePFinRo+gUCAvr4+0Gg0REZGYtOmTWhvb0dxcbFJY7XAwEBIpVKqmNbSlMnUjiAOhwNXV1cMDQ1N22nE4XAMFvHyeDyLhYimNsca51+j1wwMAGNy1tZYQSFomCjKlcvlM7428FVdDIGgwSoR4+rqij/84Q9ob2/Hhx9+iNmzZ0MsFlO+CQcOHEBeXh4ePnyI9evX23TBBMKTjq1bq2UyGfr6+nRSOFMxJ5XU29sLJycnnQ/44uJixMTEYHR0FCqVCo6Ojjrn3LlzB0FBQfD29qaM3jTRoPr6enh4eFDFqCUlJWhqaoKdnZ2eGLKGZcuWITMzE/39/RgaGgLty1PUPu4Lu3Ht2jWcOXMGXl5eGB8fx7Fjx+Dl5WVUCAQFBWFsbIxKyUz98C4qKsLWrVvh5+dH1dQYwtHREQwGg+puioiIsCilRKfToVaroVarqW3e3t6g0+nTXsfYVGdvb2+LU0raaSRbTYum0Wiwj5+oqVIND0NaU2vV2owREBAwbdqN8Hwxo+4kOzs77NixAzt27LDVegiEpxqlUonR0VGbukVXVFSAxWIZNbBTKpXo7++ftv5EM7BRg1qtRkVFBfbv34+cnBzMmWxV1lBQUACVSoX4+HgUFBTA1dUVrq6u1Idweno69bsvFovR19eHTZs2oaCgwGSXjbmwWCysXLkSp0+fRpyrK4ZbWtAUEoLO8DBIUlPh6emJqMRFGFWzMdDbCEdHR9DpdFy5cgXu7u4ICwtDeHi4jmhbunQpUlNTsXPnTgBfdekIBAK0tbVh+fLloNFo4HK5+PLLL7Fjxw6DM5bc3NxQX1+PwMBA6hqGupRkMhkaGhrQ3d2N/v5+Kg3V09ODkydPwsPDA4GBgRAKhaDRaHoGe1PRpKKmRt28vb1RXV2N0NBQs99fTV1MYGAgJWi8vb3NPt8Y3Lh4DN+6DQAYK8iHKCnJbP+iaa892bZtaUcY4dllxi3WBALhK8xN61hCbm6uUYdeS+7Z2NhIpX4AoKGhAX5+fmAwGKipqcGBAweofS0tLaipqcGuXbsAgIoQLF++HMBEh5Ovry/1AX/t2jWEhYWho6PDJlEYDb6+vhgaGkJefT0YiQkQtreD5eWFLVu2wM3bD2v/dB+dQ+PYIBzDB9/bCbFYjMLCQixcuBBlZWX44osvsHjxYip6JBAIwGaz0dHRAaFQSH14NzQ0ICEhgUqBBQYGgsPh4NSpU9i5c6eeKAsLC0NeXh6AieiDxhbf19cXcrkcZWVlqKqqgkqlQlBQEPz8/BATEwMejwc6nY7s7Gw4ODjA2dmZmjPX39+P8fFxiMVio4LUy8uLSrFp4+npibS0NIveW29vb+Tk5ACYGH9w7949i843hv3cr8ZVSPLz4b19O3UfW6ARcjNtCSc8GxApSyDYEFsPfBwfH8fAwIDJOUbmGNx1dXXB3d1d59trbm4uEhIS0NbWBqFQSEUsJBIJUlJSsGXLFtDpdIjFYrBYLDg5OYHL5UKtViMjI4Mq3O3p6UFHRwdWr16tV3MzE+RyOS5evAgmgPGRUUSUlqE5NBQb9+3DrFmzkFrVjc6hiULdtD4eRmRKqpCUx+MhKSkJe/bsQW1tLU6dOkUVsi5evJj6wNeMH6itrdWLYnh7e2PdunU4f/68Xr1IeHi4Tl1LREQESkpKkJ6ejmPHjkGlUmHLli3Yt28fkpKS4O/vDz6fT73/Xl5e6Ovrg4+PD5KTk3Ho0CE4OzvDzs4OR44cQWVlpU66SYOjo6PBOUuaobiGzjEGh8OhUmbahb4zxS48HLRJd+Sx/ALqPpaszRSkLoagDRExBIKNUKlU6O3ttbit2BTFxcVwdHQ0mNIAJlJJAwMDEEwWUxqjtLRUJ5XU19cHFosFHo+n4w2jVqtx+fJlrFmzhvKjKSgogFqtptIclZWVCAwMhJ2dHZRKJc6ePYv4+HiqPdsWYf6Ojg4cPXoUYrEYG8bG4N/UhIfJi7AhLAyek9/A02q+6uYZlirxeUYTGAyGTqeQnZ0d1qxZg6VLl+LMmTPo7OyEs7MzeDweWltbwefz0dbWhjlz5hhct6enJxITE3H58mWdD2E7OzuoVCooFAqoVCq0traiqKgIzs7OOHToEOLj4012p3l4eOh0KNFoNHA4HCQlJcHNzQ3V1dU4e/as3kwpTaTIUDeUNV1Gjo6OE/VGk869tijApbHZ4E66SstbWyHv7rZpe7RIJLLY5oPw7EJEDIFgI9ra2uDr62vTa+bl5SEpKcno/sbGRgQEBJi8hlqt1ltbTk4O5s2bB6lUiqGhIUp4ZWRkICAggKqNUCqVaGtrg1KphKenJ9RqNXUuADx8+BB0Oh1JSUkoKCiYcSpJrVYjLy8P9+7dw7p168B3cMDArVto8/GG/bgUrlu3UselVuqODfgkrR6jUgXVdaONh4cHdu/ejZSUFFRXV1PRGLVajZGREZPRs9DQUHh4eODhw4c6252dnZGbm0tFXuLj4+Hk5GSWiLOzs9Nbo1AohL29PVxdXTE+Po758+fjyy+/RHV1tc5xxgSBNX4v2n4xtiruBQCuVuRwLL/ApqZ3bDYbSqXSJt1UhKefGYuY27dvG9330UcfzfTyBMJTg6HJ0DNBIpFgZGTEZKqovLx82ntqCjY13+KlUil6enrg4+OD8vJy6vqtra1ob2/XKSytqakBh8OhxIlm+COHw0FnZyfa2tqobh2ZTAZnZ2erX69CocCFCxcwOjqKF154AeXl5fDu60NORAQWZGQiydUVGSUlAIDS1j6IR3U/xPolchzLaqace6fi4OCAPXv2oLy8HLW1tRAIBEhLS4NQKJzWo2XBggXo6+ujOjBVKhUYDAYyMzOxZcsWJCUlITw8HFWTM53MYerMIh8fH4yOjurMtjpw4ACqqqp0BJQxsSEUCi0WMdpuv9acbwxu/Feuz2MF+RCJRDYzvQOscykmPJvMWMRs3LgRP/jBD3TaEXt6erB582a89dZbM708gfBUoFar0dnZCU9PT5tdMzs7G15eXkYHJ1qbStK0VQNfiSCZTIaUlBRs3LhRx9+lqKgIY2NjCA0NpaIwiYmJUCqVuHnzJnx8fBATE4Pi4mK97iZLkEql+PLLLxEZGYklS5ZApVKhsaEBxTU1mJ+RCe74OKIOHkRfXx8GBwdx5FoWde7+pK+6Xj66Xw8nVzejEQUmk4ktW7agoaEBHh4eyM7Oxty5c6f98KbRaFi/fj3S09PR19eH06dPw9vbG0wmk+pEs3TS8tSBlZpWZCaTiYSEBGRmZoLFYmHTpk2Qy+W4efMm1Gq10fEDmi4pS3B3d6fOsalzr1ZETpJfAGdnZ5u67QYGBpK6GAIAG4iY+/fv49KlS0hMTERZWRmuXLmCqKgojIyMWDzhlUB4Wuns7ISXl9eMDN6mUlRURNn5G6KxsRGBgYEmr6FSqdDV1UWJK7VaTQ2A7OnpAZ/PB5vNRkpKChYtWqRTxzE8PAyJRILg4GAwGAw0NDRAKBTCzs4OmZmZiI6ORlNTE4KDgy1u79VmdHQUJ0+eRHJyMkJCQgBMCK0RsRjxDx6COz4O+/nzYRc6G8uWLcPly5dR1vtVTcjLiwKxPsoLACAekSK9EwYjMRrodDq2bNmCnJwccDgcODo6mvXhzWKxEBsbi08//RQLFy7EypUrqXZfzXUdHR0xODho1uueKjrs7e0xNjYGX19fykxveHgYNBoNy5Ytg4uLCy5dugSBQGBQrFhT3MtgMKBWq6FSqcDn8w3OrLIGhrMz2METBd7jFRVQj48bTPNZi6WCkfDsMmMRo8mFz5kzB3PnzsX27dvxgx/8AHfu3IFIJLLFGgmEJx5bdyUNDw9DJpOZbJ02x+CuubkZfn5+lLiqr69HQEAAmEwmCgoKEB8fj4aGBiiVSr2hkEVFRVStBwBkZWVh/vz56O/vR1NTEzw9PeHu7k61u051yTWGeESK7smuoqGhIZw+fRpr166lfESUSiVSUlKQ2NgE/mTHjOPBg1Cp1HB1dUVTWwcaRib+dPk4czHL3QHfXfHV2q9V9qOvr8/kGphMJuzs7MBms5Gbm2vWh3ddXR1KSkoQFRWFoaEhsNlsMJlMHcE0e/ZsvRoWYxiKqHA4HHh5eaG5uRlJSUk6o10SExMREBCA27dvGzXic3Z2NltEadCOCNnSXdc+brIuRqHAWHGJTYUHg8GgUpiE5xubFPZWVVUhZ3LYF5PJRGVlpV5VPYHwLNPW1gYfHx+bXe/+/fuYNWuW0ciOUqnE4OAgXF1dTV5naiopLy8Pc+fOhVKpRGdnJwQCAe7fv4/Vq1frnKdWq1FZWQkXFxeqk8fFxQX29va4ceMG1q5di8LCQsTFxSE/P9/o5Oup1HYPY9Fv7mDhb+4gr74L586dw6ZNm3QiRWfOnIEnnw/nyREBVWHzsOieHOv/kobT1+7ALXw+ZMqJaMPiEDe0tLRA0lYN98kgUnXnINrbO3D79m0UFBQYdPBtaWmBu7s79u7dS4kOUx+IxcXFyM/P///Ze+/wuA7rTP+9UzEY9N47ARIEWAD2TpGUSIlUl1VsSXYsx9nYWcdy1tn0TZzEyW9ja53NRo4dx1WyikXSktg7QJAA0XsnABK99ymYmfv7Y3gvMZhCkBjalDzv8+CROOXOxRDEPXPOd76P559/nr1791JaWsr09DSBgYG0tbXJj7ubpGVXuUKS90lvby/Jycn09vY6dC9WrVpFWFgYExMTLs/3XkZC8/UlMTExLkdV94KDuPeWLsZb4l6A5OTkOyZ/+/j0s+Qi5p/+6Z/YvHkz+/bto66ujtLSUrkzc/XqVW+cow8fDzTDw8Oyk623aGpqYteuXW7vb29vdxsGKbHQyXf+WrWUsn3u3Dl27tyJ9pavh4QkwpS2kK5cucKWLVvsSdLx8QQHBzMyMkJISAhTU1OLXiv/RfENTBYbFpvIGx8U8sgjjzhoesrKyhgfH2ddz+0L8bENT2CYs9I8MMV3KyzUTuvl+8S+Btrb2wkKCiIjOhgAs00gMCqerKwslEolJ06c4O2336a0tJShyVle/lEJX/hZJZmr8gkJCSE/P5/h4WE5RmAhV65c4ebNmzzzzDOo1WpUKhUPP/wwp0+fJikpyaFokd7HxXQIpPHPfOLi4hgYGMBmsyGKImvXrqWystLhMVu2bEGtVlNcXOx0zKVuKHlT3Os/T9w7W1Hh1WODTxfjw86Sf+t+73vf4+jRo/zf//t/8fPzY+XKlVy7do2nn37a4y9hHz4+LXh7lDQ4OIggCB67LAsjBFzR0dHhUOjMX42uqakhLCwMURRdrmiXl5ejUCiIj49nYGAAnU6HWq2W3XCbm5tZvny5U6fHE1abyLHa2xk6o6pwYmJi5D/fuHGD9vZ2VAoFrXV1lOflcXXbNopn1fJjhk0CH1XbL4QCIn/2e0+ze/dusrKyyIoLlR8nBtjTvFetWsWzzz7LZz7zGdRqNV/+9xMUtg7TNqXkh8X2ouWhhx7CZDK51PAVFRUxOzvLo48+6lCkxsbGotFo8PPzY2pqykGHkpaWxvXr1xf1nmi1WodkbelCL42apI2n+cWOIAhs3ryZxsZGJ7+U+ULdxTI/kNKbOUfqpKTbYZBV1aiUSqxW610lfnviXoTMPj59LLmIqa2tdQp5VKvV/O///b85ffr0Ug/vw8cDT2dnp1ejBi5duuRxrdpsNjM7O0twcLDH49TV1cnHMZvN8lr15OQkCoWCq1evsmfPHqfnmUwm+vv7ycvLQxAEioqK2Lp1KxcuXGDXrl0olUpZG3I3a+UlHSMMTd0ejbQMGZgx2VeMe3p6+OCDD+wF3NAQAWNjZDU3k52UyZTF9a+pWI0JDbdXlFPCbxsCGpR6hwucSqVCFZlK5YSffNv7ZTe5OTqLQqFgw4YN1NXVOSREX7lyhdnZWfbs2eNyrLd7925aW1tlV2OJu9HFLLwQ+/n5YTabSUpK4saNGyiVSpYtW+YwsgJ7sRMfH8/58+cdzlky+7sbca8gCKjVaubm5ggMDPSauNchDHJyEtOttfaFI7R7RaFQoFarvSYW9vHJZMlFjKc28s6dO5d6eB8+HmjGx8dlnxRv0dHRwY4dO9ze39raSmZmpsdjzM3NMT09Lfu2zF+BrqqqQqVSkZ+f79JVtq6uDlEUWblyJSMjIwiCgMlkwmQykZyczMTEBBqNhsnJScLCwlCr1U7HcMXHNY6f8C02kcLGbj766CPefvtt9u7dS1BgIFtOnyGur4+A2Vk6N97W6jyeE0Fs8O0iJDdSzX/+53/KWUIpEbfHTGMWtYPgVhRF/u6jBuZf2y02kX/+qAqw+8AIgsCJEycAu+nf9PQ0e/fudatL0uv1ZGZmYjQaHbQZkrh2MR0HV+JenU5HeHi4PNJbs2YNVVVVDo8JCwtjcnKSvXv3cuzYMYeiJSws7K7XmWNjY+UOjEql8pq4V7d2vuldBQkJCV7VxUjFno/fXZYcAPl3f/d3Hu//67/+66W+hA8fDyxNTU1eHSV1dHSg0+k8WtY3NDTw6KOPejxOa2urvK4srVW/9NJL2Gw2WlpaCAgIcNvtqaioID09HbVaTVFREZs3b+bs2bM8ccstt7q6mtWrV8si4cUwZ7XxcZXzxeu9CxUcShF49NFH0Wq1xNts2G5dTDW7dnGk7gZgLxAjZzp5IdrGe3MB2BDYEGZkuNvAyZMnOXfuHDmbdsnHHZixMWa6fSE/XtvPtU77xlJ8sIZJk40po4XjjaOcKLjGgR0b5JiF06dPY7FYOHDgwB1X5jdt2sTly5flAEkJaSxzJ7F3VFSUU5clPj6e0dFRDAYDoiji7++PRqNhbGyM0FD7yExKEk9ISCA6OlreNJNeu7e3946i74Wv2dPTQ1JSEtHR0fT393tlu3ShLiZh/34KCwsXLQS/EykpKdTV1ck/6z5+91hyEXPkyBGHP8/NzdHR0YFKpSI9Pd1XxPj4VNPe3s5nPvMZrx2voKDAY9ijwWDAarWi1+vdPgbsmhmp0Ons7CQxMRGVSsX169cxGAw888wzLi/QQ0NDGAwGNm7cyMTEBCaTib6+PjIyMggMDEQURTo7O9m4cSNXr15dtLnfhyXNTJrsnYk18QFU9dhHFsNCCGr1LCtXruS9994j98JFAMZCQihOTqJl1AooUSkE/sfvPYufWsnX5h33ypUrhIaGYjabOXvuNAqWYUOgc2SWHVH27oRxzso/Hm+Un/N3T66ipnuC751rxYbALyqHCVFfJSMjg8HBQdrb2/n617++KM8flUolh0iKoig/Rxop3amICQkJcQiSBHsRcv36dUJDQxkfHyc0NJT8/HwqKiocxn96vZ7p6Wm2bt3KO++8Q1JSEhEREcTFxVFVVbVorZL0mpKAWCrAvFHE+GVnI2i1iCYThopK4oKD73oF3BPR0dGcO3fOa8fz8cljyeOkyspKh6+6ujr6+vrYs2cPX//6171xjj58PJBMT0/L9vDewGaz0d/f7zEraTGdH4PBgM1mkwud+R2TixcvkpWVJX+iX0hJSQnBwcGEhIRw5coV1q1bR01NjRxFcOPGDRITE2loaFj0RXJ2dpafX2qQ/5yjHiQhxN71aBiYZddDexkbG0OYnsZSWUnpunVc3LuHtTv3MmbVALAqIRg/9byR3WQf3CghT9OB6cK/sNp0ja8+lMBOTRMhTNE+MInJZMZgMPBWyQ16xu26kXUJeh5aHsXvbUsl0M/+Ga54AJp7RjEajfT19bFr1y7Ky8sX9b2BPVvJbDY7CGLj4+MXtYkjFT3zx0ExMTH09/c7jEoSExPp6elxiCmQRlEKhYLHHnuMEydOYLPZnJyAF4NOp5O1Jd507hU0Gvxy7T8nc93dWIaGUKvVXvN38elifNyXAMigoCD+7u/+jr/6q7+6H4f34eOBoKmpieXLl3vteLW1tYSEhLiNGVjsa87PUxofH0cQBIKCgpiYmGB4eJiHHnrI5fOsVivt7e1s27aN6elpxsfHaWlpYceOHbLmRwp5rK+v9yg+lrDZbBw++iGtBrvo1k8Jf/GFJ9mYZt9asYgCDQOzlJWVEdDWxtl9exkPCeYL2dkUt9/WtKxPCYHucjj7v+D/roPvLof/ehi/j/+QNYO/guN/gvboa/xY8S3KtX/Az9V/T8rYRc4f/TkXm28LZ//2qbUIgkCwTs0Xt9ndjq02kSZbNB0dHfj7+xMUFERLS4tLfxlXxMTEEBkZSUFBgXybQqHAz89vUX5ZgYGBTN0y9QP7YoTFYnHIGxIEgeXLlztkM83X0wQHB5OVlUVFRYU8arrbLSDpfAMCArwm7oV5pnfYwyAXW+AtlqSkJK/mMvn4ZHHfUqzHx8e92jb04eNBo62tzcnldikUFxezadMmt/dPT0+jVqudPF0W0tTUJEcAlJWVyV2UDz/8kLy8PLdFUmNjIwqFgrS0NEpKSlixYgWTk5NytIHBYMBgMGA0GgkPD19UB+ry5cuM6+KYMdsvqI+ujkenVRNuu61XudzST01VFTdGRgiamODhsnLELVtoHDKjwMZBxVX+qOkV+M+H4PIbMNLq8TWVgsgmRSO7J4/waPM3Odj5bSIZJ1SnJDsuSH7cF7amolLYOyGna3v54he/yNzcHMXFxezatYsLt8z27kR0dDRarZaenh6Hdem0tLRFGd+5EvcGBgaiUCgcRk2rVq1yWANfuNm0bt06GhsbmZ6eJiws7I6uxQuZv17tzW7JwjDI+Ph4r4p7U1JS6Ozs9NrxfHyyWLIm5l//9V8d/iyKIn19ffz85z9n//79Sz28Dx8PJAaDAYVCcceCYrGYTCYmJibIzc11+5jFdD/Gx8fR6/VoNBrm5ubk0a5k5vbiiy+6fe7Vq1fJy8uTxyojIyPs3btXvr+2tpZVq1ZRXl4u+8144vr16wwNDXGuVQDs79OhVXYztxDzEGAfd314pZ5X1GYEk4kNJdcI/eIXOV1QQNZcN3+l+QXLFD0wefu4IgJC4kaIXQXBCYiBcRQVXGDLqnRaWptRdxWQrrBfjAVEnlde4DHFVU4HfgbBsgvU9lFWsE5NfnIoJR2jjM4pmbRp5e6H9P4NDQ0RGRnp8fv08/NDFEUCAgK4du2avFmWnp7O+fPnPf6dgr0Y6e3tdRCnSgWFlDek1Wrx8/MjICCA4eFhIiIiCAgIcOgWKRQK9uzZw9mzZ0lNTaWvr2/RJoTSa3Z1dZGeni4793pF3Lt2vri3krjXX6e0tHTJx5Xw6WJ+t1lyEfPGG284/FmhUBAZGcmrr77qS7H28alFcrz1FlevXiUuLs6j629rayvPP/+8x+PU1tbKF03JiE4QBD7++GOWLVvmtgszNTXFxMQE69ato6SkhMTERMxms7zhIsUQPPvss1RVVREVFeXxPGZmZrh06RKCoOCGOQawoFMr2ZASwgfvvcPnnnySH3VeZWTWQo/ZD7H/JhtLrqFQKOjPTeFA638QMVvi2CtO2AB5LyNkHoCA24WFAAhTcbRFRjIU+wov/6iEZUIPf5FUx8aBd9FhIkAw8vTkz7D+ZyXKl96B4AQAYrndrShoHSI5Lo6QkBA++OADPvOZz1BQUMDTTz/t8XsFuz9LWFgY7e3tbNy4Ea1WS1BQkGyE50kkLG0XzScuLo7GxkZ5a0gyLVy7di3V1dWywFcQBGw2m/xzExcXh1arlfVVdyqg5hMbG0tJSYn8/94S9ypDQtCkp2Nub8fY2IjaZsNsNt/xfVks83Ux3vpQ4eOTw5LHSR0dHQ5f7e3tFBcX84//+I8EBgZ64xx9+HjgaG5u9moRc6fE6rGxMQIDAz2OcERRpKOjg9TUVERRlIuY1tZWTCYTmzdvdvvcgoIC4uPjEQSBjo4OOjs7Hbxqent7iYmJobGx8Y6CXlEU+fDDD7FaraSs2cLIrF2MuiktjOKiQvLz82ltbSXRzz56mRMVhNVcRyHaiDiYyvKSrxAxXCIfr1O/Cl4+Cl88DXmvOBQwEqtXr6a6upqUcD0g0Com8Lb+Vb6o/Cd+btmLRbT/qlMO1GL8100Uvf2/+elPf0qc4vbI+1LzELGxsYSGhsqr6AqFwmMitkRkZCQhISEkJSVRVlYm3+5qVLQQKb16PtKoaKGvipRzJOldXI2Ndu/eTU1NzaLOez5S9wm8Gz8A81atb4VBBgcHMzk56flJd8F8/ZCP3y3umybGh49PK0ajEZvNhr+//50fvAiGh4exWCxyirMrFmPv39/fT3R0NAqFgps3bxIbG4tCoaCoqAidTud2HVrqsuzdu5fy8nJCQkLIyclx+FRbXl5OXl6eg2jYHSUlJQwPD3PgwAGaJ27/ilkVqWZycpLh4WFGRkbYk3vb5fi7655n5EAYkboCtDb7BX1IDObL5j+meu8vIX03ePjUHhAQgCAIBCjm0Cjtr9lwc4ia2VD+yvJ7PDX395gD7N0XP+sUW1q/zbLpEg5tW0uwfQGKwpYBLKL9fZSCHJctW0ZhYaHH7xfsxYparUYURdra2uRiYLGBkIIgOEQLqFQqbDabUzEhCALJycmyBsRVkSTFv0xNTd21uFev1zM1NUVgYOCihc2LwcH0rtL7pnc+XczvLvc0Tnr99dcX/djvfve79/ISPnw8sLS0tMjCWW9QWFjoMbEa7F4vW7Zs8Xic+a68paWl7Nmzh/LyckJDQz2OBZqamtBqtYSGhtLU1IRCoeDQoUPy/SaTienpacxmM1FRUR67QQMDAxQVFfHUU08RHx9PwYnbIYW23noCUqMRRZH8/Hyq3v8YiCCSMb4X+u/kKW6bvh22buPv5l5mnED+JjXc6XUkDdHk5CRTU1Oo1WpiY2O5cP4cIWo1g1YFvdM2bKK9QpnVJzL6zK+IKfyfcP0igmhly9BbYN7Jvtzl/Kq8G7NN4GRZK5aeFnbu3IkgCJSVlREUFMTg4KDHEVp0dDTd3d2Mjo6Sm5tLXV0da9euJSkpiZKSErZu3er2uWBPtB4dHXXQ34SEhDAzM4PFYnEYvaxevZqLFy+SlpZGdHQ0TU1NTlqptWvXUlhYSH9/P3FxcR5fez7SenVWVpbs3OsNC4GFpnfxTz9NZWXlojbcFkNMTAznz5/3yrF8fLK4pyJm4fzWHd6Yd/rw8aDR1NTkcJFfCjabjevXr/Pqq6+6fczg4CDh4eEeow1sNhsDAwPExMQwOTmJzWZDq9XS1NSEIAgeuziXLl1i27ZtVFdX4+fnR35+voM2R+oClZeXexxJWSwWfvGLX7Bjxw7S0tKYNVso7bBvIUX4QWKIFrVazYYNG3jvvffIy0jgf14/xbPad4hQ2EcLBlHDn879Ph/a7AXbw9nRxIXY3YuHh4dpbm6ms7MTlUpFWFgYQUFBBAYGMj4+Tm1tLSMjI4SqVjCIFtu8iIG9q1M5XVjKi8+/w/U3XyRr3L55JB79b3xmw/f4FXbtjyEklRTGGR4epqmpiZ07dzI6OkphYSHPPPOM2+99/lgnOzub9957jzVr1qBWq1EoFJjNZjQajdvnS+Oj+UWMZKIn5Q1JIt2QkBBmZ2cxmUxERka67BQplUpWrFhBUVERzz33nNvXXUh8fLxcpEtdnoSEhEU/3x3q5GSUYWFYR0cxVFWTEB5+1142npB0MXd6n318+rinIuZ73/seK1eu9GpejA8fnwSkUZKnWIC74fr166jVao9bJPPFuu6QtDBS92DdunVcunSJ3Nxcenp63P5in5qaYnJykpycHH7605/i5+fnZOHe0NDAU089RV1dncfz/PnPf05aWpq80l1yfRSz1T7OSFBNER0dy7Zt23j33XfZt28fVYf/jS+pf4hSaa82ptXhlG39D56IXsWr/mrC9FqSw3R0dHRQXFxMYGAgK1asYOPGjbJA2WazUVJSQmdnJ8899xzXrl1jZjqS5nLHEcumjEgiLXn8/K1fkr/rfyF2pyGU/QhBtLK+7HW2Kf6Ey7YcLrUMsWVNHJmZmZhMJsrLy1GpVAQGBnrcVFIqlYiiSGxsLCMjI8THx9PV1UVKSoo86vCkoXLVUYmPj6eqqkoevcx/71esWEFTUxOrV692MMCbz7p16/j5z3/O7Ozsokef0dHRclEkjbK8UcQIgoAuby3TZ89hm5zE3N6OQqHAarV67Toi6WLS09O9cjwfnwzuSROzdu1a+VNHWlqa11JJffh40GlubvbqKOny5cseCxRRFOnp6bnjhUQqdCwWC93d3bKBWn9/v0Omz0LOnj1LVlYWDQ12R93du3c7dFD7+/uJiIigsbHR43kWFhYyPT3NU089Jd92qWWeWV1iIDt37uTkyZOsWbOGucaT7B/5AUq1vYDpF+LRfuUyu3btY8+KaPKTw1DOjvD2229z/fp1Hn/8cQ4ePEh6erpcwAwPD/P222+jVqt58cUXCQ8PJzc3F+XMwt9HIs1FpxgZGWFqaoqo6GiER/+FuWz71pFgNfND7RukCb20DEyjCoqkr6+P7du3ExcXh7+/P4ODgxQXF+MJvV5PZGQkN2/eZP369fIacUZGhlM+0kIiIyOdhLiS864r0Wp2drb8dyatYS8kLCyMgIAALl++7PG156NSqbBarYii6OAb4w0cTO+qqhYler4bfLqY303uqYgJCQnh+vXrgH1Wf7fiMR8+Pql406XXaDQyMjIidy5c0dPTQ1xcnMfRrNlsZmZmhpCQEFl4e+nSJbZv387w8DAxMTEunyeKIq2trezZs4eSkhJCQkKc9BPl5eWsXbuWxsZGt3EH3d3dXL161WkkVnCriBEQ+cpzeyktLUWv15Ot6CDx8v9Aib2D0D8dzsjD30cdEie/Lx9//DHV1dU888wz7NmzxykrqrGxkZMnT3Lo0CHWrVsnvz/x8fEoDY5FTIyfjReeeYLy8nJSUlI4c+YMoiCgfuYHzCTuAkAnGvh/6u/hh4m2aTV9fX1ERkYyPj7Oc889h1arpbW11aPYVRL33rx5k6CgIJRKJWNjY/I4yBOSS+98JOfdwMBAp00eyTdmYmLCyfRu/vP1ej0jIyN3tQkUfCvfKDAw0KvOvbq1803vqrwu7o2JifFq0eXjk8E9FTHPPPMMO3fulNvX69atIy0tzeWXDx+fFqQ1WG+Nkqqrq9Hr9QQEBLh9zGJGSfOFxjU1NURERKDVaunv7/conKyqqiIkJITu7m7m5uac4gjMZjNjY2NYLBZiYmJceszMzMzw/vvvs2/fPoKCbrvh3hyd5fqw/YKfnxzK5PCAfW073oL43isosW/ijPXqOeX/Atmb7Ovlra2tvPvuu+Tk5HDo0CGn99pms3Hu3DmuX7/OCy+8QHBwsMP9giDcWrO+TVqgyPHjx3nxxRdJT09ncnLSvgatVKN/+W2m/OzF0wrFTf6X6qcU35iS3cbT0tLo7Ozk1VdfxWq18s477zjkHM0nOjqasbExTCYToijK3Zj5sQ+ecOWSGxERwejoqMtuy6pVq6ipqXFbxEjPz87O5urVqx5fez7zs5OUSqW8abVU/FZmI9wSCRsqK73u3KtQKFCpVF5zGvbxyeCeipgf/OAHHD16lG984xuIosiXvvQlvva1r7n8ulfefPNNVq1aRVBQEEFBQWzevJkTJ07c8/F8+Fgq3h4lVVRUeBz1WK1WhoeH75gULTn59vT0EBERwZUrV9i5c+cd17ILCwt56KGHKCgoICUlxSkUsqGhgZUrVzoESC48v3feeYfo6GjWzvuUDXCyukv+/82pIZw/f57H10YjvPcygs3ecZjo1HHUvI89B59EFEUuXLhAU1MTL730EikpKU6vZzab+dWvfkVYWBiPPfaYW+M+hWkKlXC70EjwMxEaGkpsbCw5OTk888wznDt3zj7K0OhRf/aXzAl2zdALqosENX+A0abEarWSk5NDbW0tGo2Gffv2MTIy4nYLRhqPSJ2MhIQEBgYGMJvNpKam0tHR4fJ5EpGRkU7FiFRQSKZ385HGJ57GMnFxcYiiyMjIyKJXpiVBsfQ9uSuQ7haFVovfrfV8c2cnWrN5UdlSd4MvR+l3j3v2idm/fz9f/epXefXVV90WMEspYhISEvinf/onysrKKCsr46GHHuKJJ56gvr7+no/pw8dS8GYRMzIygtFo9NhlWUw208zMDAqFAp1Ox7Vr14iKiiImJgaDwUBISIhbQe/IyIj8idVgMLB7926nx9TX19u3jGZnCQ93XnM+e/YsJpOJJ554wuF2k8nEewW18p+tPXUcXJeM5v3PIszZL1qTN/2our6MgLAIwnJyeO+99wgODubQoUMuV3pnZ2d57733WL9+vVPBNJ/BwUFCgoMI09z2XIlWTDsIcmNjY9m7dy/vvPMOY2Nj+CWuoS/vT+T7/1b5I0YNRoaGhggODmZ0apZvfVRPvTEEPz8d3d3dVFVVOb22Xq9nZmZGvpAKgkBubq78Pt6piHFVMEgFRUJCgtPFWalUEhoaisViYWxsDFdI4txNmzbJbrx3Yr4+x9umdw4jpaoqdDqdVwuZ+R46Pn43WLLZ3Y9//OP74sx76NAhHn30UTIzM8nMzOQf/uEfCAgIuKO4zoeP+4G3R0mlpaWEhYV5tEmvra29o8Gd1IWRfFzq6urYsmWL2+6JxOnTp1mzZg1nz55lzZo1Tt/X4OAgwcHB1NfXOxQNoijyXtlN/s9Hpdy4cZOtW7c66FVsNhvvfXCETqP9eIEa2J8ZSPiJ30cw2XUZ48ZouovDaMheSf6ePbz33nvs2LGDvLw8XDExMcH777/Pnj175DBKdxQVFbFlyxb2pNt/J2XozXzm4D6ndd78/HyCgoI4fPgwExMTJB78JnV6u5eLv2BiT/8P6b3VjTg9HsmPijr5i6P1kLKB8fFxmpubXRYlCoWCuLg4bty4AdgFuPX19XIytLtRFDgHOoJdnDs2NibHACwkJydHFvi6Orb0/NTUVKeASndIm1Y2m83r4l7dmjXy/xuqqu+LLqa/v99rx/Px4POJcOyV2tYzMzMefSp8+LhfNDc3e03Qa7PZaG1t9RiiaDAYsFgsd/yA0NLSwrJly2RTu6ysLJRKJcPDw8TGxrp9fWn9d3Z21qURW0VFBWvXrqW1tdVhNfhiyxDf/FUN/6dokCZTsGyuJ3Hp0iXqhi3M3bL5Xxc8zaqav0OYsV+cB1VJ9H0k0JmUQqQoUjA0yJNPPunWkG18fJwjR45w8OBBt9+PxNjYGFarlYiICP7syXV8KaqD//jsauLi4pys+QVBYN++fQQHB3PkyBFmZ2eJ+dz36ce+xpwv1jNS+h4l10co6b2tCflB+TgTFhUrV67k8uXLTsVRWFgYoijKnRGNRkNISAiDg4PytpE7XEUICIKAQqGQ15EXLlEkJSVx48YNAgICmJqacjqmIAhyvtL8jak7IZ2LtOXmLRzFvZVyjIK3UCqVKJVKny7md4gHuoipra0lICAArVbLH/zBH3DkyBGPlucmk4nJyUmHLx8+vEFTU5PXRkmdnZ2IoujkxzIfSY/iicHBQUJDQ1EoFHR0dNDb20t+fv4dn1tUVERsbCynT59m27ZtTtoSKb15dnaWtLQ0B+O7s/W3P+XWmR09U5qbmxkYGOCGNQQAFRb+t+6nMNQIgFGfQOPkbuYEDS3LljG5bBnPPfccISEhLs9zYmKCo0eP8sQTT7gcZy3kypUrckHW2dlJoMpGclKS3FlYSEJCAqIosmXLFj788EPCohM4G/VF+f6N/b/g/3zoKIidNlkoEbI4f+EiTzzxBMePH3fYKpJGQvOFuHl5eVRWVpKWliZvdbpC2kZaiKSVcbXlpFAoiIqKQq/Xu9XFSMVTZmYm169fX9QFXtLiCIKAUql060Vzt6ijo1DfKlgNtbVER0R4vXPiy1H63eKBLmKysrKoqqqiuLiY//bf/huvvvqq3Dp1xbe//W2Cg4PlL28ksPrwYTAYEAQBPz8/rxzv2rVrxMfHuxWmwuJWuauqquT1Z8lpV6VSUVdX57GIKS0tZdWqVRiNRpfCYmlEVVFR4TTiOVd3u/XfPDhD5c1xwN4FKSkpYdZgpGlKA4j8veZnRAwWASDqwjge8DnCTlykIj8PpVLJS3/wB06r0xKTk5McOXKExx9/3Elw7IqpqSmmpqaIjY1lfHycmpoa8vPz5ZGPVqt1ClkE2Lp1K62trSxfvpyLFy9y4KWvcsy6CYAgpnl25PsAJAYqiA6wa3XqB01cHdNjMplYt24dFy5ckI833+VWGpPExsYyMDAgG+B5wt/f32mtWSoo3I1eVq5cycTEhEdxb19fHwqFQk7BvhPx8fGyFsbT9tO9II2URIOBubY2bDabV206UlJS7vg++/j08EAXMRqNhoyMDNatW8e3v/1tVq9ezfe+9z23j/+zP/szJiYm5C9fNe7DGzQ1Nbn1SLlbDAYDQ0NDHvUqo6OjBAQEeMyssVqt9Pf3ExsbS0VFBSaTiZUrV8paFndaG0lwevXqVXbt2uXQZZGora0lISEBjUbjUGSU1rXSP+vYKfjF1S4sFgsff/wxMTEx6BJXMjY7x+eUZ3lBcRYAUalhYPd3UQ7N0RcVRV9MDM9kZODnZrV8ZmaGI0eOcOjQIcLCwty+B/O5cuUKW7ZswWazcfz4cQ4cOEB2djaNjfYuUGRkpMtRTlxcHNPT06SnpzM7O8vwQB9no36PCdHucPuMspDNinr+4kAmn02fkzMorxmi+OmRU2RnZ2M0GuUOiySKnd8NEASB5cuX09XVxdzcnEPQ40JciXulgsJdhyEhIYHJyUm3Rcx8ca5kknenoiEsLEzu+txXcW9l1aJ8dO4Gn1/M7xZeKWLOnTvHn//5n/Paa6/xe7/3ew5f3kQURZfOlBJarVZeyZa+fPhYKs3NzR4t4++G2tpaFAqFx8TqmpoaVq9e7fE40uZSf38/BoOB7du3o1Ao7ijoPXPmDFlZWRgMBpdbPr29vURGRlJVVeXQpTEYDLx9rszp8R/X9nH42ClWrFjByMgItaMC64Qm/kb1M/kxwhP/j8J2I/qrxVTm57H92jWiXnrJ5fmZzWYOHz7M/v37FzVCApienmZgYICgoCAuXrxIXFwcISEhhIaGMjExgdVqJSoqyskRV2LLli1cuXKFRx55hJKSEp7etZ5/srwo3//Pge+yf00qIXMjfGmbXVhsFaG014TBYODhhx+moKCA2dlZ2fF2oRA3NzeXmpoatwJdCVddD8ljJjg42OWIXBAEEhISGB8fd3lMSdwLdkfe1NTUOyZrKxQKOVn7/op7vW96J+livOVv4+PBZslFzN/+7d/y8MMPc+7cOYaHhxkbG3P4ulf+/M//nMLCQjo7O6mtreUv/uIvuHjxIp/97GeXeso+fCya2dlZFAqF10ZJ1dXVZGZmuuyAgL1Qv3HjhsciB24nVhcVFaHT6UhLS2Nubs6joNdotK8NX79+nb1797p0AS4rK2PNmjUOwX+iKHLixAnGNbdTnFcl2E3mzBYb14YUtLW18dBDD1FWW8ebmu+hFm51GzZ/lfGkh5nu6qIhPY2Yvj7Sd+1C5WJEZLVaOXLkCNu3b/fojWOz2Whvb+fkyZO8/fbb/OhHP0KpVHLu3DlqamqYmZnh3Xff5a233mJ2dpbLly8TFhbmdiSSmJgom9QdPHiQm7XFVATupdaWAkCSqQ3qfkV8fDxb4293x0y6cM6fP49Wq2Xfvn2cOnUKsH+YslgsDmMSnU6Hn58fkZGRHnUxrjxfBEGQE6W1Wq3LDSNpQ81Vl0cS90r35efnU15e7vYcJKTuVVBQkFf1hX7LsxBu/XuSxL3eLGKA+3JMHw8m9xQAOZ/vf//7/OQnP+Hll1/2xvnIDAwM8PLLL9PX10dwsH0L4uTJk+zbt8+rr+PDhye8OUrq6+tjbm7Oo8/JzZs3iY+Pd1vkgH3cIooiCoWC7u5unn/+eQA5csAdFy5ckK30XXV6DAYD09PT9PX1sXLlSrnIqa2tJTg4mIqKGUCJVqXg/3t2Ffv/jz0osGhAwaPp0ZwqKuOfhP9LpHDLmTZ1B+z9WwqPHWdyaAiNxcKq2jrCv/Utp9cWRZFjx46Rm5vr0ugO7FlJZWVlDA4OkpqaSn5+Pv7+/hw9epQXXniBt99+my984QsOLr4dHR1cuHCBzs5OJiYm2Lx5s5PLL8DmzZu5evUq+/btIzU1la/Fwa+vPE2u+bv2B5z/Fiue+YjqhhZUCgGLTWRKGURjYwWPPPII8fHx+Pn50dHRIRciUldFin1Ys2YNHR0dHoWs0ir2QqQxk2R6tzDkMDY2FpvN5tYcURL3RkdHo9fr8ff39xhoCbe1ONHR0SgUCiwWi0cd12IR1Gp0OTnMlpUx19ODv8l0RzfjuyU5OZm2trY7ruT7+OSz5E6M2Wxmy5Yt3jgXB370ox/R2dmJyWRicHCQs2fP+goYH79xvDlKKisrQ6vVekyCXswoSYoiuHz5MsHBwXLnxVNEgSiK1NXVMT09zcMPP+zyMdXV1axZs8bB6XdycpLq6momLGomLPa04XUpoWRGBZAeYG/X901ZeLdDTVjDT8hT2IMOp/1i4dmfMD41TX11NSlNzUQPDBCxdSsaF0VKQUEBUVFRLouwkZERjhw5QmFhIatXr+bll19m+/btREZGUlJSwqZNmygqKiI3N9epQElNTUWlUvG5z30Of39/jh07RmFhodO2TUpKCgMDAxiNRjZu3MjIzTZ2bNvNDc2tDbLxG8R2H2NooJ/0KLuWp2vUiJ8+wB5hgD08s6CggIiICAYGBpw0LMnJyfKf3Y06pMJxoWZFKijc6WIEQSAyMpKWlhaXx104Etq4ceMdze/mO/d6Xdw7r5A3Vle7jFxYCt4egfl4cFlyEfPaa6/x9ttve+NcfPh4oJidnUWpVHo0pFssc3NzdHd3eyxQLBYL4+PjHoscsHvDpKenU1NTw2OPPQbYtSwRERFuHXpra2vlkEFXBnqiKNLc3ExgYCBRUVFoNBp5jLRlyxYKWm6POLakR1BQUMBza25/4hfaznDQchoAk6jG8PRPmdME8dZbb7G8u5uepEQym1sI//yrTq9dX1/P9PQ0mzZtcrjdaDRy7NgxLl68yLZt23jqqaeIjY2VL/RGo5He3l78/f0ZGBhw+94mJCTQ29tLSEgITz31FKGhofziF79wcnaVVqEVCgWPPPIIvb29XFLPczIu+BdiQ/WkhthHShabSGL2OkpLS7HZbPj5+bF27Vp6enpcFjGSEV5wcLBHb5TQ0FAnfYtUxHjS1OTk5LgtYhaKc6Ojo5mcnHS5sSUREhIin4fXdTELxL3z85q8gVJpL7i9tRru48FlyUWM0Wjku9/9Ljt37uSP/uiPeP311x2+fPj4pCKtGnuDhoYGBEHweLyWlpY7dn36+vqIioqitLSUkJAQoqLsOpWysjKPOUwFBQVYrVa33cyOjg6Sk5MpLy+Xj1N5S69QUVHBbECC/Ng0vYXR0VGe2ZxFdtAcicIA/5/6P+T7fxL0B0Qs28BHH30EBiO2gUHS29rRZ2ejW3COvb291NTUsH//fofbm5qaeOedd+SsI1djj5KSEvLz8zl9+jQHDhxwm/S9YsUKGhsbZY1HTk4OL774IhUVFVy7dk32ZsnKyqKlpQWbzUZUVBSxsbEYgpfRF7kDAMEwyjpzEcHctsk3+9vf/9bWVsAu4B0cHGRkZAS9Xu9kqb9q1SpmZ2c9RhBERUU56WKkRGmVSuV2JXnlypVut3zmi3sl8vLyqKiocHse8z1i7iRIvlt0a24XnPdD3Au4zJvy8eljyUVMTU0Na9asQaFQUFdXR2VlpfzlKl/Eh49PCospKhZLdXU1YWFhHmML7uTvAnZvmDVr1nD16lUef/xxwK5lmZmZcdvB6evrkzOW3I2bKioqWLFiBUajkfDwcMbHx2loaCA8PJyQkBAqeuzhgXqtkt76Yg4cOEDBxQv848Ox/DrkXwkS7J/oG8L3ceDVP6OoqAhBEEjs7WEwKorEmzcJ+8LnHQqNyclJTp8+zZNPPil/cjYajRw5coTu7m4++9nPkpyc7PJ8TSYTN27coLu7mw0bNnhMAo+JiWFgYMAhE0ir1fLUU0/J3R6LxYJSqSQjI0MuSLZu3WrvRhnzEJX2DldI87sEz972IGkbmiExMVGOQ5GcgEdGRrDZbE5OutHR0RgMBo8XV3ehi1JCs7uVZLVajVqtdrlKvlDcC7Bs2TLa2to8RiEsDLX0FqqwMDS3/m6NdXXERkZ6tRMDPr+Y3xWWXMRcuHDB7Ze7tFcfPh50xsbG0Ov1Hr1aFosU9uhJ0CslDLszfwN7a3x4eJje3l4CAgLkLoxU2Ljj9Gn7mGfPnj0u75c2T1pbW1m7dq08Rtq7dy/FxcXErchneNpubZCqt7Jz+zb6+/vx8/NDU/CPhBludRXC0sn+0n9hGOlmZGSEif5+xgeHWFlfjyYujqBHHnH4Xn79619z8OBBubAbGBjgnXfeIS8vj71793p870tLS0lNTWVmZuaOwmtBEAgPD0elUjmsWQuCwI4dO0hPT+f999/HbDY7dCdUKhVbt25lcE7HzDJ7yKVgnuYR6yX5GI39U+Tl5TE7OysXFpGRkeh0OpqamuRYgPmkp6djNBrd6mLc6U+kYsyTI21oaCi1tbUu71sYe6BUKklOTvbYFZrv3CtFH3gL2fRubg5baytms9ljQXW3+Doxvxs80GZ3Pnz8tvAkkr1bpItiWlqa28fMF9O6Q+oMXbhwgYMHDwJ2AainjtHMzAy9vb1oNBqPXZg1a9bQ3t7OsmXLqK6uJikpifr6ejZt2kRx5+1P4MuCRVJTU+0C1olasicvAiAqtfDcTxicNFJaWkpubi7a7m6sSiURIyOEfeELCPM2W06ePMn69evl7lFNTQ3nzp3j2Wefddt9kTCbzbS1tdHe3s4j8wojT2RmZjI4OOiUTQT2cdPGjRs5fPgwarWawMBAuYiQOmPnjLmIgv3X5eqp80Rq7EVdc/8kiYmJKJVKrl27Jh9z9erVXL582WX6dE5ODhaLxe34RKvVuhS5zhf3untuamoqbW1tLu9zpWtZu3YtlZWVLh8//zXhdvyBt3BMtK5264Nzr0ijN28WXj4ePLxSxIyPj/Od73yH1157jS996Ut897vf9frKnA8fvylEUaSzs9Mr65lWq5XOzk6Sk5PlkYkrFjO6qq2tRaVSodVqZQ+X69evk5qa6vbYFy9exGazsWvXLpeaEavVKjvJZmRkMDs7S21tLZmZmQwPD5OSvoz/unz7k/rn92+irKyMlOhgVnW8Kd8u7PtbjKGZHD9+nCeffJJrhYVMDA+TW1uLMjSUkGefkR9bUVGBv78/y5cvRxRFzp8/T19fH88//7zHsZBEWVkZfn5+bNiwYdGp4ikpKdy4ccOtU21aWhpr167l6NGjrFu3Tt7cEQSB1NRUOifAtOwQACrzJJ9X2d2IByZNjM3OsWzZMm7evCkXH8nJyahUKiYmJpxGP8HBwWg0Go+Gc67yiqRtIU++LTExMQiC4NL4zpXzbnBwMFar1eVaN9iN9qRx2P0V91YSHx/vdV2Mb0vp08+Si5iysjLS09N54403GB0dZXh4mDfeeIP09HSPojEfPh5U+vv7iYqK8ujVslhaW1vlzBp3DAwMyOMOd0xNTSEIAoWFhQ4r0q7yjSQsFgu1tbXodDq3mzvNzc1kZWVRWVlJXl4ep06dYu/evZw/f569e/fys6ud9Izb9S4bEgPIiNDR1NhIcs130M2N2w+S/hDiht/no48+Ys+ePRiNRqY7OggdHUM/O0voy59DcavY6OnpobW1lV27dmG1Wvnwww/R6/U88sgjHos8ibm5Oerq6lCr1Xfl36NSqVCr1SiVSpdmcWAX9i5fvpzi4mKmpqZkUW5GRgZ+fn4UiredkF8Qj6PBPg5q6p9k1apVaDQaeZQjjZSuXr2KQqFwGh2tXr3abccE7KOfhQ7D84XCfn5+Lr+P6Oho/Pz8aGpqcrrPlbgX7P41nvSL0vqzt+MHtBnpKG6NT++XuDc5OdlpC83Hp4sl/5b++te/zuOPP05nZyeHDx/myJEjdHR0cPDgQf74j//YC6fow8dvltraWlatWuWVY1VVVaFUKmX9iis8FSISNTU1hIaGIgiCnH49Pj6OSqVy270oLy9nbm6OHTt2uC3IqquriYmJITg4mK6uLoKDg5mamiI8PBylLpB/O2+/0ArA3z69lvPnz5NjrSFltgYAURcKT/w7RVeukpSURGJiIkUXL2IYHWVFYyOCvz9htyIGDAYDZ86c4fHHH2dubo7333+fzMxMNm7c6PF7n09ZWRkWi2XRY6T5ZGRkIAiCS+GrRE5Ojj0DSqejpsb+PcbGxpKQkEBVrxnrMvsWVbg4xtNKu9lfc7/9/VIoFNTW1iKKIlqtFpvNRnp6OiqVyqkbIDnsutPFuBP3SunY7vQewcHBiKLossvjStwrvS/t7e1uu1SxsbH09/cTEhLi1Q67oFSiu1VcWwYHCTGbPf7d3As+595PP17pxPzpn/6pw6dIlUrFN7/5TdkEyoePTwo2m00OVlwqk5OTzM7OeuwYSFEBkqurK0RRpK2tjaamJrZt2yaPhTytVYuiSEFBATqdzm0XaHh4GL1eLwuDS0pK2Lp1K1euXGH79u38+8V2Jo32kcaTa+MIsk0hjnawqucX8jGEQ/9Kx4g9zmDDhg3MzMxwo6GB1LZ21BYLoc89hzIkBFEU+eijj9i3bx+CIPD++++zefPmu+qmzM3Nce3aNbZu3bqosdNCli1bxszMjNsMJYmNGzdis9morq5GFEWioqKYnJwkOjqacv9d8uO+rPwIARtNffZxy/Lly/Hz85M1MGq1mjVr1jAyMuK0JePn54e/v7/bCAJ34l5p1dmV1gaQBbgajcZpvRucxb1g969JSUlxK/CdL+51VQQtBYccpepqrx9fo9FgtVq9mpLt48FiyUVMUFCQk/oe7PbpgYGBSz28Dx+/Ubq6ukhOTnbrOXI3SC16TwLhxcQa3Lx5E7VajSiK8ljIYrHIIk9XtLe3YzAY2LJli9sxTUlJCTk5OZhMJiorK9m5c6ccIDlssPGTK50AaJQCr+/L5MK5M2zq/RFq260Q1rWfYzrpIQoKCnjssccQBIErlwqwjY2R2tEBKhVht8ztrl69SnJyMmFhYbz//vvs3LnzjgLehVy8eBF/f/977pJJhY8n23+wFwKHDh1idnaWlpYWOdTxscce41LbNGKq3TcmVTHALkU1Tf12fcrKlSuxWCzyGD0qKorx8XFyc3NdjndWrFjhduTuqtiA24nWUnfEFcHBwcTHx8ur4vNxpxHJy8tzO1JaKO69UxF4Nyw0vZM2sLxJdHT0Hf/OfXxyWXIR8/zzz/PFL36Rd999l5s3b9Ld3c0777zDa6+9xosvvnjnA/jw8QDhra0km81GW1sbAQEB+Pv7u33cYraSysvLGR0dJTc3V+54SjlJ7oqtjz/+GK1Wy/r1613ebzAYmJiY4MaNG3IhFBYWRldXFzk5Ofy/C22YLfZPr1/YlsrIjVZyx88QZeq0HyA0BdvD/8jHH3/M/v370Wg0zM3NUVNexqqKChSiSPChQ6hjY7lx4wa9vb3k5OTw/vvv89BDD7ktvtxhNBqpqKjgueeeW1KBmZaWtihdh0aj4dChQ7KHTFBQEGq1mqCgINojbmuSvqA8ScvANFabiF6vR6VSMTU1hclkkj1W1q9fz+joqFM3YMOGDW5HHUql0mX3QOrESIWVq8dI+Uiuihh3upbAwEAsFovL7o2/v798u9fFvatvF6T3KwzS5xfz6WbJRcy//Mu/8PTTT/PKK6+QkpJCcnIyn//853n22Wf553/+Z2+cow8fvxHm5uaYmpoiLCxsycfq7OxEo9F47BqMjY3J6cbuMBgM9Pf3o1Qq2bBhg3x7TU2N22Krr6+PyclJ8vPz3XqtVFZWsnr1ajo7O2ltbWXv3r2cO3eOPXv2IAgCxe32LoBGpeD3NiXQWfQBuaPHARAFJTz9Q65W1JGeni4HDl65fBn12BgxA/YxSPhrX8RgMHD+/Hn27dvH4cOH2bt3L/Hx8R7eOdccPnyY7OxsQkJC7vq581m+fLmD+ZwnMjIy8Pf35+LFi3Lx8Oijj/JxsxlCUwDYoawlznKDG6Oz8vFDQkKor6+XixiNRkNYWJhTp0Ov1yMIgttNIz8/P6dYAJ1OJwt6w8PDXa6MR0VFMTExgclkctpwcifuBXvHsK6uzu25GI1Gr4t7lUFBaJdlAGBsaiI2LMzrRYwnXx0fn3yWXMRoNBq+973vMTY2RlVVFZWVlYyOjvLGG294JXPGh4/fFK2trbJodqlUVFQwNzfn8XiVlZUet5akx8zNzREXFycb4fX19REeHu7239fRo0dRqVRs377d5f1Wq5XWW+ZiarWajRs3Mjg4iEajISYmBqtNpGvEbr6XGq6n5uoFdo++jQL7p35hx/+gR2Efa0iaHJvNRsnlItYXFQEQsGcPmrQ0jh07xq5duzh27Bg7d+4kLi7O4/friv7+frq7u3n00Ufv+rkLiY6OZm5uDpPJJN8mrZlfvnyZjz76iLffflv+EkWR0tJSqqqqKC4utpsSKpQMpz0tP//zylM03xopZWVlMT09TUNDAyEhIXLBsHr1akpKSpzM3JKTk90GMbrTxWi1WgwGg1tdjCQKTk5Odhr1e9K1ZGZm3jF7yVWu01LRrbn1b8BqRXH9ustu0FKQfHd8uphPJ14zu/P39yc3N5dVq1Z5bJ/78PGg4q2sJClYLzY21q0exWazcfPmTZKSktweRxRFysrKCAoKcghH9CToHRkZYXh4mOzsbLdFTnNzM8uWLaO8vByNRkNmZiYXL15k92572GFxTTNW0T6yiQ1UEV3/A4Ktt/QZ8fkYN3yVM2fOyDoYgMuFhejHxwiZsF/MI770GhUVFURFRXHt2jU2btzo8Xv19B786le/Yvfu3Ytawb4TgiAQFBRES0sL1dXVvPvuu7zzzjt0dnYSHx/Pzp07eeGFF3jppZd46aWXeO2114iNjZXHN1NTU+h0On5Wa2NOYe+gPaMspP2mvTuh0+lQKBQEBAQwMjKCKIqIokh6ejoKhcJprJGfn09zc7PLc3WVoQS3RzruRi9+fn6YTCYyMzNdHtud3kalUhEWFuaycPqNiXurqtHpdF4vZKKioryq5fHx4ODemMIDr7/+Ot/61rfQ6/V3DHn87ne/e08n5sPHbxKDwYDNZvNo+79YKioqUKlUHrssbW1t8sqvO9rb27FYLGg0GnlkMzs7y/T0tMtARIAjR44gCILHFeTKykrWrVvHzMwMn/nMZ+TcJH9/f+bm5jhxuRwIASBtpJBcw2Xglivvk9/n+Kkz7N69W/6wYrPZuFJYyN7zFwDwX7eO6fh4ms+cQafTkZOTQ3p6utvz8YTUvfAUbnk3SBfvU6dO8dBDD/HEE094HOep1WoiIyMJCgqisrKS9evXk5+fz3e+8x06Q3azbPAE/oKJiJZ34YDdR2b58uWMjo5SWVkpm8WFhYWh1Wq5evUqKSkp8vGTk5MxGo3Mzs46ffiLjo52K87t7u4mNTXV7cqzUqkkNDSU4eFhRFF0+DmTiiDpZ2o+kmfMfC8isHdipG1TKUjT1fPvhYWmdwmff5Xu7m6v5ZbBbb8Yb52zjweHe+rESC1u6f/dffkCIH18UmhoaLirdV93SA69FovF4y/M6upqtwZ0EmfPniUmJsZBnDs/ZXohIyMj9Pf3k5aW5tbJtre3l7CwMC5dusSaNWtQqVQ0NDSQn2+/AF+6dImgeLtGQYuZ3zf+JwL2EYjw0F9S1T1DeHi4w2bR2bNnCRsfR39LvxH82hc5ceIEISEhJCQkkJ2dLT9WFEWmp6e5ceMGlZWVXLlyhWvXrlFeXk5DQwMTExPyyGViYoJr167x8MMPL3lbbGxsjF//+tcUFBSwceNGtFoteXl5HgsYibVr1zI7Oyv/3SoUClasWEGT/21/m62jh6mprkQURbKyshgYGKC/v5+IiAgGBgYQBAGdTkdAQICDMFapVBIYGEh9fb3T67oLXYyJiaGvrw9BEGTfmIVEREQwMjLi0jTPk65F2npa2GmRujvSY7wp7tWkpqAMDgbspnf3I/PIVYaVj08H99SJuXDhgvz/P/3pT0lISHAy0xJF0Sem8vGJobm5mWeffXbJx2lpaSEgIICMjAy3j5Es3j15nYyOjjI5OYlOp5OPZbVauX79Olu3bnX5nF//+tcAcq6SK65du0ZmZib19fVs27aNl753kl5TLGt7p4hU2TeWZtWxwDCvq94nRrw1WkhYz1DGZ2g8d54XXnhBPp7JZKKytJR9Z+w2/NqsLIqNRsLCwtBoNKxfvx6LxUJXVxdNTU2MjIwQFBREWFiYnJBttVrlzZiCggImJibw8/OTQziX8oncYDBw4cIFZmZm2LFjB9HR0VgsFs6cOYPFYvHokiwRGxvL2bNnWb16NWfOnOG1115j27Zt/Nd/tVClyWeNuZwEYYjupnMcbrvOgQMHUCgUJCcnYzabGRgYYNmyZcTFxREUFMS1a9d44okn5ONnZWVRW1vrtEkmFW4LOyl+fn5yvIG0cr0wIkMSFWdlZdHS0uJgtuhJ3CsIAhkZGbS1tZGVleVwn7+/PzMzM8TGxlJSUuIxdPRuEAQB3Zo1TF+6hHVsjHCTiUIvr0TrdDpMJpPTe+njk889FTHzSU1Npa+vz8mRdHR0lNTUVF/4lo8HHumiqdFolnys6upqTCaTQ/fB1WPu1IX5+OOPiY+PZ+XKlfIv3fr6erKzs12670qf/GNjYwkKCnJ5zKmpKcxmMxcuXGDfvn1cqu2kZBDAzH9camejrZ4nn3ySD99vJE9o4TXlrW0kpRbrwe9x4tRpnnzySYfXP3HiBJFjY+hufUqfev4zjIyM4O/vz86dO7l48SI3btwgPT2djRs3yoGP7pCci0tLS+nu7sbPz48rV66wfv36u/r7EUWRuro6Kioq2LVrl0PnSKVS4efnR3d3t8Noxx1SfpJKpUKj0cjePkFBQVxRPMQaczkA6VPFJOx/gffee4/ExEQ0Gg1dXV3yhpgU3Gg0GpmenpaL2IyMDOrq6jAajU6dISknKfhWp0JC0o0kJCTQ1dXlsoipqqpi5cqVXL16lW3btjl8P5KuxZXOaNWqVZw4ccKpiJEKpoyMDLdF0L2iW7uW6Uv2dHBTTa28Pu6N6A8JSQvkbhTr45PJkn9C3EWnT09PL6pV68PHb5u6ujqveMNIQX+RkZFuL7iS+66nTs3U1BR9fX2YzWbZQ0YURY/Fz7FjxxBFkUOHDrk9bllZGdHR0ZjNZlatWsUHl24brV1rHyA7O5vAwEC6B4b53+r/QCncGiPt/jMu1Payfv16hwJpfHyctsZGVp07D4B12TKuzczIW0/Hjh0jMTGRl19+ma1bt96xgJGYnp6mrq6OiIgIvvSlLxEaGsrbb7/tUh/iisnJSd59913Gx8f57Gc/69JULzg42K2g1hW5ubn09vbi5+dHSUkJFouFjRs30mCMZkAMASCs5zwJwWpefPFFRkdHqaqqQhAE+0YTtwMc8/PzKS8vl48dGxuLQqFw+f1JHZWFSEJbd6Od8PBwhoeH5cBQ6Rwk3Il7wd4htNlsTuvdC8W93tz2cRT3VsnjMG+SnJzs84v5FHLPRczrr7/O66+/jiAI/PVf/7X859dff52vfe1rPP/8815rN/rwcb+QcmbS0tKWfKyysjIUCoWsL3GFZC7n6RPm8ePHiYmJISsrSx533Lx5k5iYGJfFUXd3N0NDQwQHB7vNaJqbm+PGjRtUV1eze/du6urqGBNuf7ofnLWRmpWD2WLjuZm3SFfcujDG5dEV/7jL+ITjx48TPjqK3mBABMp275KDKtesWcMLL7xAenr6XbfvT506RWhoKFu3bkWpVJKdnc1LL71ER0cHhw8fdrogz6exsZGjR4+yZ88etm/f7nZclJiYeFcaiZCQEEwmE2azmXXr1lFcXMzy5cuJ9rPxvnUnAErRClVvodVqeeaZZ7BYLFgsFmZmZmSB9tzcHGlpabJuCuy6mKCgIBobG51e153brFRQSMdc+GFSqVTKm1HLli1zKpDuZFqXnZ1NQ0ODw20xMTHyuXgqgu4FXW4O3OoK3S/Tu6SkJF8R8ynknosYSbwriiK1tbUOgt6mpiZWr17NT37yEy+eqg8f3qe3t5eYmJglr+/Ozc0xMDCA2Wz2KOi9kzfM2NgYPT09iKLoEAp57do1B7M7CVEUOXXqlGyL7466ujo0Gg1KpZLly5dTXl7OTYPjBb6ud5Laix/wJeUx+/eEGvOj/4cLlwqdtp1u3rzJUE8PKy9cBKB2+zZ6DAby8vJ45ZVXSEhIcHsunmhsbJQdYuePSDQaDQ8//DCbNm3i/fffd1oDnpub4+OPP+bmzZu89NJLdxwZSH9Hkj5pMWRlZWEymUhLS6Orqwuj0ciqtDiO3CpiAKj4Gdwag+zYsQO1Ws34+Lh8vmFhYYyPjzsVCSkpKUxMTDiZ07nrxEjiXumYrsY7gYGBTE1NuS1iPJnWZWVlOXWq1Gq1vNDhbdM7hV6PNsuufTK1thIbGur1Ikav12MwGNxOD3x8MrnnIubChQtcuHCBV199lRMnTsh/vnDhAqdOneI//uM/vGYc5sPH/UIKP1wq9fX1BAcHe/SZMRqNGAwGQkND3T7m/Pnz6PV64uPj5XHs2NgYCoXCSRcBcP36dSYmJtDpdE66CAlRFKmoqGBiYoINGzZQVFTEirUbuDnmOC6o7ewnrugv5DFScdKXOFV5g507dzqMhm02G2fOnCF4cAj9zAyVa1bTmpDAgQMH2LVr1z3rGAwGAyUlJVitVnbs2OHyMXFxcTz77LOcOnWKtjZ7wvb4+Di//OUvycrK4uGHH16UWDc6OhqtVusy7dkd2dnZmM1m+vv72b17NxcvXmTD+nWYtaEUWm9FR4x1QKc93Vr6/RcQEMDx48cRRVE2qFu9erUcMAn2Ikar1TqFMM4X8c5H6sAAbk3vpM6Jv78/ZrPZoUAKDQ116fY7//g6nc7J2E7S6Hg7fgDAXzK9E0U0HR1eTcyWuNP37eOTx5I1MT/+8Y/lObnUvvTh45PA3NwcY2Njbkcwd0NdXR2Tk5MeixhPUQEAg4ODso5h48bb67ueujAXL17EZDLJRnWu6OzsZGZmBpVKRVJSEsPDw0ypw50eF132L8SK9k/9NbZU6qKfRK1WOxVHdXV1WKenSSotpXD7Nm6mppK3bp1D5+heOH36NOvXr8doNHrs5AQEBPDCCy9QU1PDmTNn+PWvf83Bgwfv6kOTVEjeTRGj0+nw9/ens7OTuLg4TCYTGo2GOD8L71gfuv3Aip8C9m0ei8XChg0bmJ6e5sKFC7IFvuT9I3UbYmNjsVqtLoMi1Wq1y0ImICCAqakpt6OX+eOflJQUOjs75fuktOuFnZ/5uIohkHQ996MY0K1dI/+/sara7fe9FHw5Sp8+vCL9/tGPfkROTg5+fn74+fmRk5PDf/7nf3rj0D583DdaWlqcNjDuhb6+Pvz9/QkNDfUo6G1qamL58uVuj1NQUIDNZiM8PFz+YGAymRgaGnJ5UW9oaMBgMKBSqTxmNJ07d47o6GiysrK4dOkSe/fupermuMNjVgntPGWyr2ibRSV/MvcHjN5sY8+ePQ6PM5vNlJWVYenro2nFclQWC8HBwew/cMDt6y+GtrY2tFotzc3N7Ny5846PV6vVJCYm0tDQwOrVq+8670qhUKBUKpmZmbkrgWpeXp48mtmxYweFhYWsTYngjC2fETEQALHxI5ixi1LT09PR6/WYzWZEUaSxsVHubqxbt04W+CqVSnQ6ncugSHfxA1I3JDQ01OU4af4oylWkgBRP4I7U1FSuX7/ucFtCQgI9PT0oFArvi3vnm95VVd1x5HUv+HQxnz6WXMT81V/9FV/72tc4dOgQ77//Pu+//z6HDh3i61//On/5l3/pjXP04eO+UFtbe8cE6cVQVlaGIAh3FPTGx8e7HXX09PRgNptRKBRs2bJFvt3duMtqtVJcXMz09DQbNmxwO8Lp7u5mfHwcs9lMaGio7M9ypfn2xSErQuOwjfSvlqdpERN55uHtTgGSV65cwTgxgTg2RnprK8MxMbz6la8saRXWZDJx+fJlsrOzUalUd9Sz2Gw2zp49y+TkJF/5yldoa2tzm/njCb1eT3h4uEvhrDuys7PlMUdUVBSiKLJxWSxm1HxgtY/ABKsZat8D7O69bW1taDQasrOzGR0dxWg0YjKZCAsLw2AwyFtACQkJBAYGOhm9ze+ozGf+tpCrroWUGQS3hbjzO+V3KhKUSiVRUVEOrx0ZGSkXPuHh4V7dIFLHx6OMtG+wGaqqSIiP97ouJjAw0KMw3McnjyUXMW+++SY//OEP+fa3v83jjz/O448/zre//W1+8IMf8P3vf98b5+jDh9eZnJxEpVK5dbZdLEajkcnJSaanp4mNjXX7uPLyco9FTkFBARaLBb1eL4+3bDab7EmykKqqKtlHY/PmzW6P++tf/5q1a9cSGRlJWVkZ27dvx2A0UddvF7TGBPnxp9rDZCnsF4s6Wwrftx5Cr4blaY5ZR2NjY1RWVmIYHWVz0RXK16/nyYwMdIGB7t+gRXDu3Dl27NjBlStX7tiFsVgsHD16lJCQEPbs2YNKpeLJJ5+koqLCYVyyGKKioggJCZG1NYtB8oqROhw7duxguKMBjUKUt5QAqP4lYF/lnpqaIiIigvLycg4cOIDRaJQdeiVtDNhHHUql0mmk5K6Imb+55K4gkRx9BUFw6uhIvi+eyM3NpaamRv6ztPVks9m8Lu4VBAH/WwW7bXqacIPB650YsP+deDvE0sdvjyUXMVar1aUNen5+vsd5qw8fv01qamruaDi3GKqrqwkLC/NobjczM8Pc3BwhISEu7+/o6CAgIIDp6WkHN96WlhYyMjKcNqfm5uaoqalhZGSElStXuh1hNTc3Mzc3x8jICGq1mry8PLRaLe+euIjZZv+nfyhqkJ0j79iPe2uMZEFFZoyjiNhisfCzn/2MYK2WNYWXubDnIVbc7Cbzs5+943vkia6uLqxWKwqFgrCwMJfiZQmTycR7771HTk6Ow+8clUrF008/TUFBwV2ZsEnF4t06i6ekpFBaWgrYuxEatYrkICWtYgI1tlv6ob5qGLBvHyUnJxMcHExPTw+CILB3714KCgowGo3yFpAoisTGxsoeQfM7Ju7iB9RqNVarVRYMu+pazB8pLdw4knKdPCGNrOaPjaTspMUUQXeLnGgNWOvr5TGcN/H5xXy6WHIR87nPfY4333zT6fYf/OAHfHaJv+B8+LgfeMsbRuqUjIyMeBxLeVqrFkWRoqIieSQw30G2oqLCpVi2tLQUlUqFSqVi+/btbs/t+PHjbNmyBUEQ6O/vJzc3l76+PhoG7OMLNRa+MPBtlNgvUP9meZIm0d59SY24HYlgNBr52c9+RmhoKLaeHgaio1Barex8eB8KN0nZi2Fubo4LFy6wd+9eLl++7OAqu5DZ2Vnee+89tm3b5jKGQKPRcOjQIT766CN5a+dOSMnGKpUKo9G46PPOzs526Prs2LGDSJX9+dJICYAae3G4fPlyZmZm0Ol09PT0kJ6eTnBwMB999BEKhYKEhARu3LiBUqmUk6Tne7B4MpcLDAyUt4VcFRTzuzhJSUlOBZtKpfIonhUEgeTkZAdPHSnbKCws7L6Kew2VVfI2lDeRwiB9fDrwqrD3tdde47XXXiMnJ4cf/vCHKBQKBxM8Hz4eBG7evElCQsKSvWHa29uJiooiODgYrZuLuc1mo7293a1Db0tLC3FxcXR0dLB582bZGK6vr4/g4GCncZfRaKS1tZXu7m4SExPdRgxcuXIFrVZLb28vFouFPXv2yKvR1pBEAP5A+SFxc/ZPpC0k8+/W23k+qRH2NG+peLDZbIRrNETU1tGZmsZDNbWEPPfcXbxbzly4cIHNmzfT2dlJUlKSU4qzxNTUFO+//z579+4lKSnJ5WPAvnG0efNmTpw4sajXDwwMZHp6mtTUVKfVZk/Ex8cjiqKsBwkNDSU1xP6z9JF1M1Zu/VzVvAc2K5GRkRgMBtRqNfX19ajValmYfPXqVfLy8qiosLsnJyQkEBYW5jRScifelbohkv5lYddifhGjVCrx8/Nz8MZxN6qaz8qVKx0CKuNvaVWkDSdvRsv4rVwJt3RY98v0Thrx+fh0sOQipq6ujry8PCIjI2lvb6e9vZ3IyEjy8vKoq6vzJVr7eOCoqKjwaDi3WMrLy7FarR61LlLHx5Xw1WazUVxcjE6nQxAEh5HU1atXHQS+ElJxotVq3epHJicnqaysZNOmTYyPjxMSEkJMTAwlJSXk5ORQ3z9DpnCTP1IdAUAUlPwk4nXm5kWppUTomZmZ4Ve/+hVpaWmkp6fTU1tL04rlbLhWQtwrr6BYgp6ou7ubmZkZMjIyuHbtGps2bXL7vXzwwQc89thjHjVHEsuWLSMoKEguCjwhFYxpaWl3tWqt1+vx8/NzWD8+tNU+mhwliPPWNfYbp/q4evYwgiAQHx/PzMwMg4OD8gZaeno6N2/exGw2YzKZmJ2dJSUlBaPR6DTucGd6Nz/xOSQkxEnrIRneSSw0vlvMSCgyMpLR0VG5WJk/3oqKinJ5XveKQqtFd8umwNzZSWxgoNeLGLCvp3u7w+Pjt8OSAyDnJ1r78PGgIxnO3e1K7kIGBwfR6XSMjY0RFxfn9nEVFRVuU6Xr6urIzMykoqKCTZs2yYWO1KJfaIo3OTlJX1+fHF0QExPj8rinTp1Cp9PR39+P2Wwmc+0mnv33QgaGR9mZm0bbwDi/Uv8HGsF+URK3/Hd6axwTtWP0Ar/61a/Ys2cPZ8+eJUqjYWZqiqjJKZJMZkJffMHVSy8Ki8XCuXPneO6556ipqSE7O9ulrmdqaorDhw9z6NAhwsOdfW3ArsmbmppiYmICg8GAUqkkMTGRS5cuERMT4/HvBuwXfqVSyejo6F0lHAcGBtLZ2SkXkuuzktApazFYBX5l3c4+pX11eujyjxncdIgVK1bQ1NREamqq3EXr7u7m0Ucf5ciRI+Tn51NdXc2GDRu4dOkSer2eyclJudMWExNDU1OTk/Zq/raQ1LWY/3OzMOwxIyOD48ePy0V8XFycg3DXHZLPjBQjIW1DSUXUnd7nu0GXl4fh1odefWenV+MNJCS/GG9kpvn47bKkTszc3By7d+++p/VGHz5+G9TW1nrlF1dJSQnBwcEe/VlGRkbQarXo9Xqn+6xWKxUVFURGRmI2mx06Q1euXHHZhbl48SJ+fn7odDq3jratra0YDAZWr17N9evXWb9+Pf/vUhdlNya5OaviFyU3+ILiBGsUt/w/IjK5rNzKthWJDsepLDjDgQMHaGlpIS8vj+b6eixqNRuuXSPiy19G4Wb0sxguXbrE+vXrUavVVFdXu9T9TE9Pc/jwYQ4ePOhQwMzMzFBXV8fHH3/ML37xC95//32Kioq4efMmMzMzjI2NMTg4SFxcHG+//Ta/+MUvePfdd6moqGB2dtbpdaROwt2uC8fExKDT6eQCQqkQ+JtHUknSGqhUrGRctBeF+4RS3i9qID4+HqvVSkJCAg0NDbLpXWBgIPn5+fT19dHa2opCoUChUJCRkeEwUoqMjGRoaMjpPOZvC7kbvcwPU/T398dkMslLF/7+/k5Bj65YOFKSgifvh7jXP//2z4OhohJBELy+JOIT9356WFInRq1WU1dXd9cBbz58/LZoamrixRdfXNIxZmZm5Avm/G2ihbhz2gW72HfVqlVcvHiR/Px8WZ8zNTXFzMyMU5dlcHAQi8VCa2srsbGxLrUhc3NzFBUVIYoiY2NjqNVqsnNyOXX4tPyYFKGPb6jeB0BEYGTr/2KwfYLHH97O3xecAyBAZePJg/tRqVQMDQ0x3N6OwWpl1+UitNHRhLzw/N29YfPo7e1lfHycPXv2cPnyZdatW+ekTZqenuaDDz7g0UcfJSIigrm5OZqbm6mvr0epVJKens7WrVsJCQnx+LtHKhDz8vJoaWnh2LFj8jal1FGIjo6ms7OTjIwM2tvbF520HRsbi8lkor6+Xt5yemHHSqaar+Dn50dn3xrWzF5GJ5gZKXsfy741sq5lcHBQFuSCvUBoaWlBr9fT29tLQkICWq2Wuro6+edHrVa7vZBLHjCRkZEuCzFJ9yKdZ1JSEjdu3JCF7VqtFoPB4NFuICwsjImJCbmjI3VgkpOTva4vmW96N1tRTuyG9fT3999zHpcrQkNDfWvWnxKWrIl55ZVX+NGPfuSNc/Hh477S19dHZGTkorJ1PFFeXk5SUhLx8fFOZnASJpOJkZERl232ubk56uvrSUpKYmxszMHnpaSkxKU+5MKFC6hUKvz9/V12acDuNRMXF0dmZia1tbUcPHiQwqY+ZubsYs/92ZEciXsLP8G+vSNu+H2O1Qxz4MABooL8WJNgX2/enhFBVFQU586dIz8/n5abN8loayN0YoLIr34FhZuV7jthsVg4c+YM+/fvZ3p6ms7OTqeYhpmZGT744AMOHDiAXq/nwoUL/PKXv8RoNPL444/z7LPPsnbtWkJDQ+/44SkvL4+uri6mp6fJzc3lueee44knnqC7u5u33nqLtrY2IiIiGBwcJCUl5a7EvbGxsRiNRqdtnx07djAyMkKDcNuZebe5gBN1faxYsYKWlhZ5lKTVauWtqP379zM6OkplZSUpKSmyK+78Lomfn5/LbpJUUAiCgEqlctrOWijezczMdNDFLDYHKT09XXbwnb8NJXnReAtVWBiaWwWWsb6BhOjou0ocXyz+/v53FQDq48FkyUWM2WzmzTffJD8/ny9/+csO20i+jSQfDxLeEPRaLBY6Ojro7e116Y8kUV1d7TZY8tq1a+Tn53P69GlycnLkQshoNNLf3+/UZeno6CAkJISGhgYCAgJcbjoNDQ0xOjpKf38/o6OjREVFER8fz0/OVsqP+UpgAaEjtwSvIclcVO5gw4YN6PV65ubmOBR0g//vsRTe+OwG2tra7GvAH3yA/9QUK+sb0KSkEPzEE06vvVgKCwvJz89Hr9dz6dIldu7c6VCIzM7O8sEHH7Bz504qKys5evQoSUlJvPzyy6xbt+6ujQkFQWD//v2cOHFCXk/W6XTs2rWLZ555hhs3bvDRRx8xMzODVqvFZrMtemwRFBTE9PS0XARJZGZmYrVaGdEmM6m1C5G3KOo5UljB6tWrGRgYIDs7m/r6eofxj06nY+PGjXR0dBAVFUVfX59TsRETE3NHca805plPeHi4g65koemdlId0J+aPlHQ6nVyA3ZcwSGmkZLEQPjp2X8S9vpHSpwOvbScFBQXR0tIibyMtdSPp29/+NuvXrycwMJCoqCiefPJJp2h4Hz4Wi9lsZmxsjOjo6CUdp76+nvT0dERRdGvMZrPZaGxsdOm0azAYaG9vlzdT5mcTlZWVsX79eocLu81mo7CwEKvVSkBAABs2bHDqQIiiyOnTp8nMzCQuLo76+nqeeuopWtvaqB2zj2pSVCNk1/2L/JyBTX/FpMHCihUrsFqtHD16lF1bN/KZ7StRCXbvGrVazcz0NNsLC1GIIpH//Y8Q7rGL1d/fz/DwMCtXrmRwcBCTyURi4m0djsFg4P333ycmJobCwkKWL1/OSy+9JI997pWQkBAyMzOdfhfpdDoeeughdu/ezcDAAJWVlSQmJt7VJ36lUklWVhaNjY3ybYIgkJOTgwi0a+xdJqUgktx/huYhIwqFAn9/f4aGhuRVZYnc3FyUSiVVVVUIgkBaWpqD3tDdOvT8rSRJa7PwPG02m7x+LQgCoaGh8ujJVeHjiuDgYNm4EexbWtPT0w5FlLfQ5d3e+LPV1d4X07uFoZg+PpksuYi5cOGC26/z58/f83EvXbrEV77yFYqLizlz5gwWi4WHH37Yl3vh456oq6tbck6SKIrU1NRgNBo9dmGuX78uW8gvRDJ1O3PmDOnp6fJWztzcHO3t7U5JzHV1daSnp1NTU4NOp3PpDFxdXU1qair19fXyJ32NRsN7Z0uYMAOI/FvAT1Ba7aMJ65pXONE0wyOPPIIoihw/fpzly5eTnp4O2EdaKSkplBQVkd7cQsD0DNrlywncv/+e3jer1crp06fZv38/giBw/vx5Hnroduqz2WzmF7/4BSaTiaioKD772c+SnJx8T6/livz8fGpra10KWKOiolizZo289TW/83EnoqKi0Gq1ToXPrl27mJ6ept3/dtfvkPIqP73SSUhICPX19SQmJmK1Wh2KB0EQePzxx7l8+TIJCQmMjY1hNpvlosFdETN/jOSuoFioAZnf5ZmfsXQn0tPT5XV06bW8HT8AjuLe2fIKtz45S+F+mPX5+M3jFbO78fFxvvOd7/Daa6/xpS99iTfeeMOlTfbdcPLkST7/+c+zcuVKVq9ezY9//GNu3Lghp7768HE31NfXO+kv7pauri5iYmLo6elxcNZdiLucpPHxcUZGRkhOTqaxsZFHH31Uvk8KepzvJzM3N0dlZSUTExMEBQWxdu1aJ7+ZvzhcxR8e7cKsi8Df319e27148SKTQXYL/OeUl8gx2v/diIFxnFPsZNu2beh0Oi5cuEBUVJS8sTU5OUl7ezsNDQ0wO8vqW+u3kV/77wj3GPJYVFTE6tWrCQwMpLW1lcjISDmCYXZ2ljfffBO9Xs8rr7zi9B54A6VSyY4dO7h06ZLL+2NiYoiPj2fDhg1UVVUtWicRGxvLwMAAwcHBDhdDrVZLWFgYvXNBTOrs3aZ1ihbKa6qJiE+hsbGRlStX0tTUhM1mc3DiTUhIQKfTYTab6ezsdDDi0+v1LjUx0rn09/e7Nb1bWGgs1AAFBQUt6nf2ypUr7T8b3F7p9vPz86omBkCdmIjylsjaUFlJYny813UxgiAQEBDgM777hLPk3xZlZWWkp6fzxhtvMDo6yvDwMN/97ndJT09flOHUYpH+gXny9zCZTExOTjp8+fDR09NDVFSUWxHuYiktLSUgIICcnBy3I46hoSF0Oh0BAQFO9128eJHdu3dTUFBAbGys7FBrtVqpr6936hRdu3aNNWvWUFNTg1ardVrnbhmY4q1rPfQaVXznVCMDAwNs3ryZoaEhpqamudZrJoox/lL1C/k5/ev/J2aFHxkZGZSWlmKz2di4caN8/7lz5xAEgamREdZdLUYAdGvWELBr1z29Z4ODg/T19bFq1SqsVitXrlyR4wXa29v593//d1atWsVLL72En5/fPb3GYkhNTZXN5hYiaU2WLVtGQkIC7777rsvHLUQaw6xYscJhpASwbds2pqenadXe/jvbz1UmVKEYjUaCgoIYGhpy0qsA7Nmzh9raWrq7u53yjlylVYOjLsZVh2GhbkWj0aBQKOTiIyEhYVEjocDAQIxGI2az2cGATxoteQtBEPC/tXpvm54m2mq964yrxZCamuobKX3CWXIR8/Wvf53HH3+czs5ODh8+zJEjR+jo6ODgwYP88R//sRdO0d7Gf/3119m2bZvHkcC3v/1tgoOD5a/5M3cfv7uUlZV5HP8shtHRUZRKJa2trR69YYqLi11uF/X19aFQKIiOjqa0tJRDhw7J9zU0NLBixQqH8dPs7CzXr1/nxo0bhIeHk52d7bRVdaX+9ifp1iklE5NTbNmyhbNnz5Ket5WO4Wn+Xv1fBAv2T+/Wlc9y6rrIvn37aG1tddLk3Lhxwz7CMJnQjY4Rf+uiF/nHf3xPuhSr1cqpU6c4cOAAgiBQUVFBTk4OKpWKc+fOcerUKbZt28bu3bvv+tj3wp49ezh37pxTl2J+IZGdnU1ubi4nT568oxOt5FzrKrZgxYoVCIJAX9jtzbPHlVcYsWjw8/Ojra2NxMREdDqd08V52bJlaDQaxsfHCQoKYnx8XO7WuHPunS/OdaWLceUzk5aWJm8b3Y29v+T6K/28Wq3W+6KLmT9SUjU2Lrm774q73Urz8eDhlU7Mn/7pnzr8glWpVHzzm9+krKxsqYcH4Ktf/So1NTX88pe/9Pi4P/uzP2NiYkL+uh+Vu49PFgaDgdnZWbeOr4vl2rVrJCUlkZCQ4LajI/nHSH4c87l48SI7d+6ktLSUkJAQ2VVVFEWXAZGFhYVs2rRJztpZaAhntVq5VHHbDM1oFUhYtYVr166Rk5ND4fVJDiqKefiWc6yoj+S08iF27drF2NgY165d4/HHH5eLE5vNxqlTpxBFkcmBAdYVFQGg37IZ/aaN3AvFxcXk5OQQFBSE0WiksbGRtLQ03nnnHUZHR8nJyXEbN3A/kOIXFi4ISIZxoiiSnp5Ob28vzzzzDCdPnnRpMCchZQcJgiA77M4/Znx8PO1jNgb87OvCKxVdGAbaUCgUtLS0sHLlSsbHx52KB4VCwbJlyzCbzbS3tzsIb92JcOeb1i1G3Av2YkQSDkdERHj8XueTnZ0tj5SkTaf7Le41VlTi5+e3KGO+uyEkJOS+FEc+fnMsuYgJCgpyOauU3CiXyh/90R/x4YcfcuHChTuaHWm1WoKCghy+fPxuU11dzerVq5d0DKPRyMjIiOyA647S0lKX97e1tclBkQUFBQ4xBG1tbSQnJzvY7o+OjjIxMUFtbS0xMTGkpKQ4BUwWFxdj00c63NZl1tPV1cXq1au5XN3E36p/It/Xt/YbKPQRhIWFcfLkSZ566imHDx5Xr17FYDAwZzIReuMGIbd+sUfeYzd1eHiYmzdvymvmhYWFpKen8+GHH5KQkEBgYKDbBO77yZYtWygpKXFKhJa0EUFBQUxNTeHv78/TTz/N8ePHPYo/pYv48uXL3Y6UOnRr5NuS+07at75mZggPD2diYsLl2HvVqlWEhYVRWFjoMFLyJKLV6XTMzs66vTAHBwc7iHtDQkKYnJxEFEW5GFtMmKNer8discgbZjdv3nTbIVoKfiuWI9wauc6Wl9+XMEhwfl98fLJYchHz/PPP88UvfpF3332Xmzdv0t3dzTvvvMNrr722JGdUURT56le/yuHDhzl//jypqalLPVUfv2OIokhzczNZWVlLOk5ZWRmZmZmo1Wq3hfnc3JyDC6qEzWbjypUrbN26lZqaGvz8/GQDPFEUuXbtmlPhc+7cOTZv3izb0C90/R0fH6erq4sxi2NH6GRlJ4888ggNfVO8NPbvhAt2waIl8zHO9PizdetWjh49yqFDhxwSoycnJ7l69SqRkZEIo6PklNo7qAF796DzMDpzh81m4+TJk/I20sjICG1tbQwMDJCXl8fY2BgPP/zwb8XpW6vVkpWVRW1trcPt8z1YpNFLYGAgTz31FB9++KFbvYfUgZAcf+cjbaj1h23Ahv173Wy4SGhoKJGRkXR1dZGUlITNZnMS7EZHR6NQKBgfH8fPz0/ucgQGBrrd0JzfDXHVtXDl5zK/s3M3hYhUWEmFhUqlchIpLxVBpUK32v7zZxkYINbP776Y3vl0MZ9sllzE/Mu//AtPP/00r7zyCikpKSQnJ/P5z3+eZ599ln/+53++5+N+5Stf4Re/+AVvv/02gYGB9Pf309/f7/V2oo9PLx0dHSQlJblcdV4s0urz0NCQgwB2IVIm08ILc01NDVlZWWi1Ws6ePctjjz3mcH4xMTEOBUVHRwdBQUEUFBTI46v590ueMPv27aNtyHGr4qZBhco/kNrzv+QJ5RUATKogTin3sXv3bo4dO8bOnTudRmu//OUvSUhIQGGxENzYhH52FlQqor7xjbt/w7BnP2VnZxMSEoLFYuHnP/85aWlp5OfnU19fz6FDh7y+gXQ3rFu3jsrKSgdju/nry/NTrYOCgnj00Uc5evSoSyM8SYuiVqvRaDQOBYZCoSAuLo7OERN1CruDb5rQR5A4gV6vp7m5mezsbGw2m8tRTEZGhuxaHBwcLK8YK5VKJ1decNS1uOpauOrizB8pLVbcC8iBlvM3pqT4A2/in39byxZ4vcPr3R7w6WI+6Sz5N4lGo+F73/seY2NjVFVVUVlZyejoKG+88YZTC/xuePPNN5mYmGDXrl3ExsbKX+++++5ST9nH7wjeEPTW1NSwYsUKj2nVNpvNZbDk3NwcVVVV5OfnU1dXh1qtllezRVHk6tWrDpEDkrFdbm4uPT09WCwWJ81IY2MjkZGRiNpAZs2On3ptIlypa2dv+z/Jt3Wv+iP8IpKoq6sjOzvbyX/l6tWrGI1G+2ZfayvLb3UoQl98Ee09dD8HBgbo7e1l7dq1GI1GfvzjHxMTE0N+fj6XLl3iqaeeWlJR6Q1UKhWrV6+msvK2m/H8LoSUcCwRFRXFhg0bOHbsmJMoWBo/gb07MT+0EWDjxo2YzWbK1bd/DsMHLzM9Pc3Q0BCRkZFYLBaXHQZpiUEURcLDw+ViIzo62u2WldRVkfKR5rPQqRcci52F5nue0Ol0iKKIwWCQN5NcaXGWiv+8LqXxlsZyMSOvuyEwMJDp6Wmvm+n5+M2w5CJGEk76+/uTm5tLcHAwP/jBDzh9+vSdn+wBSWi38Ovzn//8Uk/Zx+8AY2NjqFSqJemybDYbdXV1GAwGj8VQa2sraWlpTttDJSUlrF+/HqVSyblz53jkkUfk+zo7O4mOjnboslRUVJCdnc2JEydYtmwZ8fHxDvcbDAZKS0vZvn07xQ2d8u0R2tvFjPXknxOJ/RN7nW49RWPR+Pn5ERAQ4FRkTUxMcPHiRSIiIkgODCSiphat2YwiKIiIP/xvd/dmYY9kkLaRJicneeeddxBFkYcffpiPP/6Yp556akkfbLzJqlWraGhokNeV53udaDQapwiCzMxMIiIiuHr1qtOxNBoNZrPZKSYA7J0Om81Gp24Vc6K9eIvvO83oyLBcjKSnp7vsBAQFBck6v87OTnmTyJ24d/5Ix9VoyJW4V6lUotPpmJ6eJiAg4K7MRJcvX05TU5NcCCUkJHi9iNGtXoVwS0g/W1rqUKh5k7CwMK+b6fn4zbDkIuaJJ57gZz/7GWCf1W/cuJHvfOc7PPHEE7z55ptLPkEfPu4FTwnSi6WxsZH09HQ6OzudnHTn40rQOzs7S0dHB9nZ2dTW1sobJxJXrlxx6MIYDAYaGhqIjo5mbGyM6elppy7M2bNn2b17NyqVio8vXZNvfyhZi1opsF1Rw2MWexL1lKjjbNDzLF+xgqGhIScRrc1m4+c//znp6ekkJibSVHKNZdKmyh/8Aapb21N3w6VLl1i3bh0zMzMcOXKEmJgYuYPx6KOPekXo7y2USiXr1q2jtLRUvk2lUslFjauuwpYtWxgcHJSLCQmpqNBqtQiC4DDyVigUhIWFoVYoKLTZi8hA0wCRJvvPVFNTEzk5OUxPT7vUk6xevZquri6ioqIwGo0YDAaP4t6oqCiGhoYc1p/nMz+iQGLZsmW0tbUBt8XBi0HSxUjvlZQn5U0Ufn743dLFzN28SYKbRZKl4mpN3scngyUXMRUVFfIvyF/96ldER0fT1dXFz372M/71X/91ySfow8fdYjKZGBwcvOM2mydEUaSiogK1Ws2qVavcaji6urqIjo52Mmq7cOECO3fuRBRFLly4wJ49e2S9jBTyp9fr5cdfunSJ7du389FHH7FixQqnLkxnZycKhYKkpCQaGhoYMt0+n0NbV7MtQc0/q38g3/Y94bMsS06gubmZxx57zEmrc/bsWcA+8hK7ukiqqUZps6FOTCT0c5+96/fr5s2bTE5O4ufnx9mzZ3nkkUcYHR2lubmZ7du3u1w7/22zYsUK2traZH3J/DHNfF2MhCAIPProoxQUFDh0LOYLajMzMx3yjsBeiAQrzRyz3i5Kl5tr0ev13Lhxg8hI+5aZq0iBnJwcpqam2LhxIwaDgdbWVocR1kLmj4dcxRS4EvdmZGTIRczdrEr7+fmhUCgIDAyU3zd3SdtLYf5IKay7575YZ/hylD65LLmImZ2dlT9hnT59mqeffhqFQsGmTZt8CaE+fivU1NQsea26o6ODuLg4mpqanMYw83FlbjcwMIDJZCIpKYnq6moEQZAzjyQtzJYtW+THDw8PMz09La+tjo6OOhxzbm6OixcvsmfPHjnryKi5HT65LCaYb/JT4gT7KnChNYdG3UYGB/p58sknnXxturq6qKmpQa/Xs2fXLhorKkjutP9bjfrGN1DMW/deDGazmfPnz5OQkEB5eTnPP/88hYWFaDQasrOzPUY0/DZRKBTk5eXJzuLR0dHyRV+y8V+IRqPhkUcecdDHzDeaW+iwC/bsJsPMNGXK1RhF+99F7Pg1+nu75dXu+Ph4p40psG9TBQQE0NvbK7ugS/40roTG8ztIrrpJrro4/v7+mEwmrFbrXYl7wV4INjc3y+vZd/v8xaCfV8TMVVQwNzfn1S0ouO2z4+3j+rj/LLmIycjI4OjRo9y8eZNTp07x8MMPA3a7cZ9Pi4/fNKIo0tDQ4DIo8W4oLi4mPDycjIwMJ62LxMDAAP7+/g5jElEUOXfuHHv27MFqtVJYWMiuXbscujDR0dEOXZhz587J20MrV64kKSnJoQtTUFDApk2b8PPzo6CgwL6tN23/ZavXKInuv8CKgY8AmBR1/Onc77Mm1MwjjzziNMKZmZnh448/JjIykjVr1lDxwQcsq6pGIYro8vIIfOThu36vzp49S1hYGENDQzzzzDN0dnYyMzNDbGysxwLwQUDKMLJYLA6dC4VC4barEBsbS2JiIteu2Ud68/U0/v7+WK1Wh2gAlUqFVqslIjiQcza7qaHaNIap+axc9Kxfv95t+GRubi5lZWXs2LGDgYEBLBaLPDZaiCRSBddFjLvnSUJgdyGT7sjMzKS5uVl+3v0Q9+rWrIFb/wZnS0vdCpuXyv3wuvFx/1lyEfPXf/3X/Mmf/AkpKSls3LhRnvOfPn3ayYXUh4/7zfXr10lOTnZbeCyGrq4uIiIiqKurcxnkKHHlyhWHjgpAU1MTcXFxBAcHU1lZiSAIDlsmC5/T2tpKeHg4ra2tqFQq+vr6HLow/f39jI2NsXz5coxGI8XFxYSGRzJusWseVoVb4aOvyY//luVlFH7BHNiyxmmbymazcfToUcCufUiNiaG7qZlYySfkT795194tbW1t9PT04O/vz4EDB+SogcjISKf35kFEoVCQm5tLdXW1k0ncfFv+hWzatInOzk75oufv7y+PmOaPZySysrIIV5n5yHr7PQnrvUBgVALnazpITExiZmbGZSdg/fr19Pb2otPpiIuLo6ioyK24F26PdKTiaqGQd6G4F26PwVQqFVarddEdCa1Wi0qlIjIy8r6Z3in8/dHd+jdk7uggISTkvnT5Pf19+3hwWXIR8+yzz3Ljxg3Kyso4efKkfPuePXt44403lnp4Hz7uCneuuXfD1atXSUxMdKl1kRgbG8Nms4s9e8sAAKeuSURBVDl4rlgsFkpKStiyZQsWi4WrV6+yfft2WU/T0tIi5+UAciDihg0bZG+VzMxMeYPHZrNx5swZeavpyJEjpKSkUNfZj3jLPO0blh8hTNsvGiPR2+jVr+aP1gW4zBi7fPkyJpMJlUrFY489xqkf/YiVlZUIQNBjj6G7yxHc7OwsH374IRkZGbLm59ixY+h0Oh599NHfipndvbBq1Spqa2vlC7f0X1e6GAlJH3P69Gmn7CBX7r3r1q1DYxjmgm0NU6L97z9xqoon/q2QN1v1/LKkk+DgYCc9DdgLBY1GQ29vLw899BAVFRXExMS4FfcmJibKupjw8HBGRkYc7g8NDXXaxJm/fn23fi8rVqxgenr6vpnegaMuJqK//76Ie12tpft48PGK41RMTAxr1651ED9u2LCB5cuXe+PwPnwsioGBAfR6vcOo5m7p7u4mODiY6upqh+2hhVy+fJmtW7c63FZcXGy/WGk0lJWVIQiCPE6x2WyUlJQ4dFlKS0tZtWoVhYWFBAcHc+PGDYdV7pKSErKzswkMDKSnp4eenh772CIoBoD9imusm7JvI1k1QZxgFwdTlTz36ENO59vZ2UlnZydGo5Hdu3cz0tqKqa2NsLExBI2GqNe/flfvk81m40c/+hErVqyQAxxbW1tpaWnh5Zdf/q2a2d0tKpWK7Oxs6urqHC7w8235XREYGEhOTg7FxcUORYyU9DxfsxIeHk64yowJDadt9u6eVjSwxmzX4xyv6iI7O5vy8nKXr5WRkcGVK1eIi4uTXZDdWeXPF/cmJyc7dS1c+cEIgkBoaCijo6N3fTHPzMyUf7ZEUXQZNrlU/Nff/ndhraxy6jB5A0k75spI0MeDi1d+0xQWFvK5z32OzZs3y/+Qf/7zn3P58mVvHN6Hj0VRXFzssfBYDEVFRaSnpxMcHExAQIDLx4yPj2M0GomJiZFvm5qaoquri5UrV2I2myktLWXLli3yqmtDQwMZGRlyl2VyclLOTWppaSEtLY3c3Fz5F+nY2BgdHR3k5eVhtVo5evQomZmZDA4OEpGaTTgT/IP6R/Lr1yS8zKSo55lnnnEqIKanp7lw4QJTU1MkJCSwbNkyTr/3HjlV1QCEvfoK6vj4Rb9HNpuNn/70p0RERHDgwAH5+zly5AgvvviiQw7UJ4W1a9dSVVXlIO4F152M+axZs4YbN26g0WgcxigLuziCILAsLhyNAoctpYPKYgBuDE+zevVq+vv7XV6cV69eTXd3N6IokpGRQWFhISqVyuUFd76uJSkpyamIcZdBJLn33q2uRaPRoFarCQgIYGxs7P7oYvLy4NbP9Wxp6X1xBwbXOiIfDzZLLmI++OADHnnkEXQ6HZWVlbLAbWpqin/8x39c8gn68LEYJicnMZlMRERE3PMx+vr60Ov1VFVVedRzFBUVOXVhzp8/z+7duxEEgeLiYpRKpbwhZbVaKS8vdxhznT17lr1793Ls2DFiYmLo6uqSwxJFUeTkyZNyvlBhYSE2m4329nYOHDhA16iRv1f/l5yNNBm/i3MDobz00ktOBYTNZuOjjz7C398fpVLJgQMHKP/gA8IaG9EZjagiIwn/8pcX/R5ZrVbeffddjEYjzz//PGAPyHzrrbdYuXIliYmJiz7Wg4RarSY1NRWLxeKgNUlPT3c7UgJ7cbJ//37OnDljX1e/VYBItvzzWbN6FaFKE4W2VUyKduH2PkU5WsyMmOwhlAqFwqVoNS4uDoVCQVdXlzwq1Ol0LnUxUiq3zWYjICDASZwcFhbmMtRS8kq5W9M76fsVBIEbN27cl6BGZUAAfrfE+qbWVhLCw++LLuZOf98+HjyWXMT8/d//Pd///vf54Q9/6LDKuWXLFnl10YeP+821a9c8ZhsthsuXL5OZmYlOpyM4ONjlYyYnJ5mennYQzfb09CAIAnFxcczMzFBbW+vQhamqqmLlypXyv4/29nb0ej0Gg4GRkREiIyNlZ1+wey+lpKQQERHB0NAQjY2Nsq/MypUrie/5mANKu0nbnCaYn42u4cmnniIkJMTpfAsKCoiMjKS3t5enn34am9lMWVERmc127UXUN/8HSjcdp4VYrVY++OADxsfHefHFF1EoFPJtCoXCwZH4k8i6detob293KCIW4x8SGhpKRkYGFovFYRQ1NTXlYDaXnp5OuMrEHCpOWe3jkUDBwE5FNQargub2TqKiohziECSUSiWhoaFUVVWRmJiIQqFgaGjI7TrzfI3LwpRmQRBcdnE0Gg2CIGAymeTV78WybNkyJiYm6OrqctiQ8ibzdTGRA4P3pYjxbSh98lhyEdPc3MyOHTucbg8KCvLFm/v4jWAymejv7ycpKemejyFtf9TW1jp1WeazsAsjmdk99JBdh3Lx4kVUKhWrbqU/m81m6urq5E29ubk5CgsL2bFjBydPniQzM5O+vj55JXx8fJzGxkY2btyIzWbj+PHjqFQqOjo6ePHFFxHHb/Da5P+TX/+c30GW528nIyPD6Vzb29sZGxujvr6eDRs2EBUVxfnvf5/0mlqUNhu6/HyCDh5c1PtjtVo5cuQIANu3byckJARRFPn444+xWq0cOHBgSRthDwL+/v6EhIRgMBjkjopWq8Visdwxr2f9+vUYDAaHT/EL9Sg6nY5Ynf24H9tujz0fU5YAcLWmheXLl7t1jl22bBmDg4PYbDaCg4MJCwtzu5Y9vxviSuPibpVa2tC5W12MRqNBr9fLRZyUp+RN9Jtuf0ixlZcxOzvrdV2MQqFAp9PddSfKx2+PJRcxsbGxTuuEYP9Um5aWttTD+/BxRyoqKli7du2StmEKCwvJycmRbeJdMTU1xcTEhIMTcG1tLampqQQEBDAyMsLNmzfZsmWLrEspKSlhw4YNcpflypUrrF+/nrq6OiwWC6Iosn37dgRBQBRFTpw4wYEDB1AoFLIPydzcHGvXriVQ74/lV18mCPt44LxiCzcD17J3716nc52YmJA1aXq9ni1btjDU2kp3SwvxPT2gUBDzl3+xqPdMKmAiIyPRarXyOOPChQvyeu1SCsgHiU2bNjE7O+uwvbOY8YhCoWDnzp3y3xnYRywLt5T250SjFmyUK3KYFewjpb2KcvwwcX1gXH4fXQlj09LS8PPzo6WlhczMTCIjI936pSQmJspFiCtxr7vvScp/SkpKumttSHZ2NnNzc0xNTbl8zaXiv27dbb+Yq8Uut6y8gS+C4JPFkouYL3/5y3zta1+jpKQEQRDo7e3lrbfe4k/+5E/4wz/8Q2+cow8fbrFYLLS0tLBixYp7PoaU+1JZWcm2bdvcPm7hRpLRaKSyslIeY507dw6VSsXKlSsBu7FcV1eXvKU3OjpKX18faWlpFBcXs2rVKmZmZmRH27KyMlJTUwkPD2d0dJSmpiZMJhNGo5HgjDyKfvbXqLuvANAtRvAf1iddBqJarVY++ugj8vLyaGtr48UXX0QQBI7/+MesrqhAAEJfeAG/RbxnkqhYCincv38/AOXl5ZjNZoaGhuQu1KeBsLAw/Pz8HD6YLVYnkZ2djclkkkc8ERERjIyMOKwbb1m9nK8k9PD+F/NpU2YBoBdM7FZUYdEGY7PZUKlUNDQ0OB1fiieor68nIyOD3t5e1Gq1y47JfC3MQv8bcB8vID02LCzsroWz0kjtxo0b96WIUej16KQOZ2enzy/GB+CFIuab3/wmTz75JLt372Z6epodO3bw2muv8eUvf5mvfvWr3jhHHz7cUlNTQ25u7pJWei9fviwLE6ULxULGx8eZmppyEK6eP3+enTt3olKp5OygzZs3y+dSWFjo0GU5ffo0+/bt48KFC6jVaoaHh+X15LGxMVpaWtiwYYMs7FUqlUxNTaHJ2s63/vNd1nfYA1VtosDr5v/G9s2bnCIFAM6cOcOaNWs4ffo0jz76KHq9nprDh/FrbSNwahplWBiR//2P7vi+WK1Wfv3rX5OVlUV7ezt79+5Fq9XS0tJCV1cXoiiybdu2ByaZ2lts2rTJQZcSFxfn1pNlPoIgEBMTw9mzZ+XCZaENf2xsLDqVwFhfF/0Rt8XjjymLwT+MlpYWgoODXepwBEEgICBAHm+Josjy5cspKChweT7zR/r+/v4O4x2dTofRaHT5PGnUpFar5UWNxaBWqwkJCaG1tdWteHip6OdZFET29t2XjolUyHl7VOXj/uCVFet/+Id/YHh4mGvXrlFcXMzQ0BDf+ta3vHFoHz7cYrVaqa2tlfUn90JnZyfh4eGUl5c7JT3PRypIJHp6ejCbzaSkpGCz2Th//rzsNwL2omRycpLk5GTAnogdExOD1Wqlvb2ddevWodVqiYyMxGazceLECfbv349CoaCiooKQkBBGR0cJDw+nbXSOf1X/GxrBrsv4D+tB5iJzeWWXc7RCfX09giDQ1NREbGysfeV7aoorBQVk3/p0H/2n30TpQgQ8H5vNxocffkhmZiZms5no6Gj5glxWVkZeXh5ms9mlFueTzsqVK5mYmJAv4J4iCBaSnJxMREQEVVVVgPNISaFQyA7NWY98kRnB7mm0R1GJyTJHV1cXSUlJKJVKl6vdKSkphIWF0dDQQHp6urzW7Ep/kpyc7DBSWtixcadbkUZK95KDtHbtWrq7uxEEAa1W65Do7Q30W25riYTyMmZmZu5LsSGJ6n08+CypiLHZbPzXf/0XBw8eZMOGDXzhC1/g7//+7zl8+LCvivVx32loaGD58uX3LCgVRZGioiKWLVuGWq12cN+dz8jICGazmdjYWMD+c3/u3Dn27dsH2HUxoiiyY8cOWWNy7tw5ecxiMpm4du0aW7du5dixY0RERNDU1MSuXbsA+xgpPT2d8PBwJiYmaGhooKOjA4VCwaFDh3joxvdIV9hXaXuVCegzHuLw1x8myM+xCzM8PExlZSUpKSl0dHTwmc98BoCz//ffSK+rQ2W14r9xI0GPP+7xfZEKmPT0dCIjI2lqamLr1q2Mjo5y9uxZHn/8cS5duiTnpH3aUCgU8nhRYrEjpcTERPz9/amtrcVkMsldjfm/DzMzM7FYLASHhtOitI8adYKZuKFC/P39Ze3RQj0N2EcdJpOJ5uZm2TfI39+fkpISp8fOH+ncjS4mISGBmzdv3pODbXp6OkajEYPBcE+6mjuhW7UK4Zbj9czV4vtWbCxbtsyl1tPHg8c9FzGiKPL444/z2muv0dPTQ25uLitXrqSrq4vPf/7zPPXUU948Tx8+HLDZbFRWVpKXl3fPx2htbSU+Pp6ysjKPXZiCggKHDbzS0lJWrlyJXq/HZDJRVlaGRqORhexdXV3o9XrZs+bixYts27aNhoYGZmdnSU1NlcXAo6OjtLa2sn79enmMFBUVhclkIjMzk8D+Yh6fs8d5GEQN5wKf4TMvvOQkyDWbzRw7doyHH36Yo0eP8tJLL6FSqegtL6en4zrx3T0IajUxf/M3HsW8kq9MamoqWVlZnDhxgscffxyDwcCHH37Ik08+KUc7SPEJn0aSkpKoq6uTx0Lp6emLuqjFxsYyMDDA5s2bKSoqkkdM8zeB0tPT5W6ZIe32Wvq6qQtkZWUxNjaGyWRyOVIKDQ1lcnISvV6PKIrMzMyg0WhuuznPY74WxpVpn7tOi1KpxN/fn4CAALf5TO5Qq9UEBwfT3Nx8X3QxgkZjF/gClsFBEvX6+zJSuh/n7uP+cM9FzE9+8hMKCgo4d+4clZWV/PKXv+Sdd96hurqas2fPcv78eX72s59581x9+JCRXG5daUIWg81m4+rVq6SkpKDT6QgNDXX5uMHBQQetzOTkJK2trfLKdFFREVqtVta22Gw2Ll26xM6dOwH76vbMzAzx8fFcuXKFzMxMmpqa5BXq+dtIlZWVREZGUlVVRVBQEDvXrUDx0W3tyg+FZ3nouS875TlJW03bt2/n8OHDrFu3jvj4eGwWCyd++UvW3hLzhn/pS2jTUj2+Jx9//DHJycmsWrWKY8eOsWvXLjQaDYcPH+bAgQMYjUZGRkaWnBL+oJOQkEBQUJDcfQkKCmJ6evqOmUBqtRqr1Up6ejr9/f1MTk46jZT0ej1qtZq2tjZyH/syI2IQAFvFSmKjI2hvb0er1eLv7+/SpiI4OJiUlBRqa2tJSEjAz8+PZcuWufSXkbQwgiA4hFSC3UvGnSeKpIO6lxwkKVDT0/GXwnxdTHhn530pNtRqNQqF4q40QT5+O9xzEfPLX/6SP//zP5d/ec/noYce4n/+z//JW2+9taST8+HDFaIoUlpa6pAzdLfU1NSwfPlyiouLPXZhLl68KBckYBfN7tu3D4VCwdjYGN3d3fj7+8ujpurqarKysvD398discgBjufOnUMQBARBYNOmTahUKq5evUpWVpYsgmxsbOT69etERUWxft06/E5+A5XR/un5jDWf/tRniHcRD1BaWkpoaCidnZ3YbDb27NkDwNUf/ICw1jb0M7Ook5MI//Lvu/0+bTYbx44dIzExkTVr1lBWVkZkZCSJiYkcPXqUbdu2ER4ezqlTpz7xpnaLIS4uDp1O52DYGRMTs6iLsrSVtHv3bi5cuOAyqyghIQFRFBEFBUWCvZuoFeYwN55EFEXi4uIIDQ11uaWUkZHB3NwcHR0dZGZmMjc3h5+fH83NzU5+NvO1MNKYUWK+s6+r12hra3OKYVgM+fn5DAwMoFAoUKlUmM3mu3r+ndBvvl3EWEtLmZubu6OPz73gW7X+ZHDPRUxNTY28bumKAwcOUF1dfa+H9+HDLS0tLSQnJ7tNmL4Tc3NzVFVVER4eTlhYmFt33q6uLoKCguQuTVtbG4GBgURHRwN23YvkDwJ27UtNTY1cXBUWFpKfn8/Y2Bg3b95k/fr1DA0NkZWVRW9vLz09PeTn52O1Wjl+/Djp6elMTk6iVqtZNVsIracBGBKD+dO5L/HIplyX53jjxg3S0tIoLS2VV64n2tupqa8n81Yqcuy3voXCzRaRZKoXHx/P2rVr6e3t5fr162zZsoUTJ06wYsUKUlNTuXTpEvn5+QQGBt7T+/5JIiwsjMnJSfz8/OQxjHRhvxNS/k5sbCyiKDI4OEh4eLiDdmPZsmVotVqamproiton365qPEpaWhpKpRKj0ehy1Tc1NZXOTru7ryAIGI1Genp6WLFiBfX19Q6PnZ+d5OqiPN/Zdz7SxllCQsIdHYsXolarUavVDAwMOCRqewvt8uWyMH2m5BqxMTF3PfZaDBkZGW7NBH08ONxzETM6Oir/MndFdHT0fTEi8vG7jSiKlJSULClioLS0lPz8fK5everWF0YURdlZF+yFz+XLl+WCpa2tTU7slQTBhYWFbN68GaVSSX9/PyMjIyxfvpyTJ08SHBzM9evX2bZzN395pJY//OkVNu3ahyAIFBUVkZWVxaVLl4iKiuLRVZFw9n/J5/Inc3/AKEGsiHMstiYmJrh48SL79+/nnXfe4dChQ/j7+9uddL//fXIrq1CIIiHPP49+wwa33+eJEyeIjY0lLy8Pg8HA6dOnOXToEEVFRYSGhpKbmyuvkEseOJ92FAoFgiCwbt062cBuvoGcJ+aHCErdmOzsbIcspbi4OAwGA21tbUTkPUa/aC+UQ/sKyUqOkX9+9Hq9k8eLTqfDZDKRk5NDbW0t0dHRDA4OsmbNGqqqqhxExFJXCOx6moXHcrW1JJGRkYHJZLprcS/Yi7QrV664DKBcKoJCgf+tf/+2yUniBeG++LqEhYUxNjbmW1J5wLnnIsZqtXrcClEqlQ5R9D58eIOmpibS0tLu2ZtEunAIgkBqair+/v4uH9fQ0EBKSop8f2FhIZs2bZJt6C9fvszMzIxc5AwPDzM6OkpmZiZWq5XTp0/zyCOPcOXKFaxWK9nZ2QQHB3OkcYq3rt2kakLHyz+t4lpDB4ODg9TX1xMbG0tcqI7Qc99AsNn/7fyn9SCXbKsJ02uIDLj9Pc/NzfHhhx9y8OBBPvjgA5KTk2WdSvXPf47Q3U346Ciq6Gii/uQbLr9HqYCJjo4mPz9fjhHYu3cvLS0tzMzMsGXLFsxmM+fOnfPYef00EhERgVqtZnR0FKPRiEqlQq1Wu/VXkZifHRQcHExERAQ2m83hYq5QKAgICECpVBKpV3Hcar8oK8U5gvsuMzU1hVarJS0tzSlIEuwdEqvVSn9/P5mZmRiNRkRRJDEx0eGCLggCGo1GPueFcTCeCjNJF2O1Wu96XJOfn09nZyexsbH3pUsyf6QU0tLq9W6PRFRUlG/V+gFnSdtJn//853n66addfv3e7/2eN8/Thw9sNpu8GXOvXLp0iW3btlFeXu62m2OxWCgrK5PvHxwclLsqYI8OCA8PJzs7G51OhyiKnD17Vl65LioqYvXq1ZjNZpqamsjKyqKqqorcdZt588Lt9nTXyCxfeKsOc0Aso6OjWC0Wdo6/hzBh/xTfrUzmn+bsa9LLYwLlrSKp+Ni4cSMtLS2MjY3J24DTN7u5cq2U3JpaAGL+5m9Quhj/SJtQERER8viruLiYxMREudB75JFHEASB06dPs3379k/1NpIrJFfbNWvWyKPxxeok5ufvbN26latXrxIYGOhQQCxbtszurDvczcfW2xdl6o+QmJhIcHAwSqXS5QgrPT2d69evk5ycLJsp3rx5kw0bNjhEHwAOq84Lz18yvXPVbQgMDGR2dpaYexjXxMTEAMhdIG9/oNXPc842XC5EoVA4BVp6A99I6cHnnouYV199laioKIKDg11+RUVF8corr3jzXH38jtPY2EhGRsY9d2GGh4eZnp5mZGSE3Nxct5tN5eXlrF69Wt40mS9mlfQtIyMj5OfnA/buUExMDKGhoQwODtLf309ubi7Hjx9HoVAgiiLr16/n/11ox2CxXyzUSntBMmNV8NcXR7GEpvBoWCfKVvs69Sw6Dkf8IRbs3c6smNuFSFlZGSEhIQQHB1NUVMQLL7yASqWyd1L+9XusrKlGZbUS9NhjBD7kLLwXRZFTp04RFhb2/7N31uFxnOfevpcFK2bJYrLYKFkyM7Od2IFC2qYpJqXTpj09xdP0QPs1PW3SFNI04NgxM6Nky5YtWbbQYmZmrXZ3vj9WO9Jakily7DhzX5cur3fegXd2d+aZB34P8YNhpvLycqqrq/H29ubq1ausW7cOuVxOXl4eKpWK4ODgBzrnn2a8vb2prq5m4sSJ5OfnYzQa7/mmNjykZGNjI1Y7Da9SCgkJoauri7bqUjIJoVowhSWF4jNEBHjS29tLRUUFVlZWIzpKm1WEY2JiyMnJwcHBgcLCQmxtbbG3t7cwOoaXC49mhN1JXdff3x9ra+v7TnCVyWS4urpy/fr1e+o9db+ofX1RD7br6L2eiY+b27hr0oBUav1p4IGNmH/+85/39CchMR4YjUauXbv2sSqSzpw5I+q1xMXFjTqmp6eHW7duiSrAly9fJjo6Gnt7UxnsqVOnsLe3Z+bMmSgUCnQ6HVeuXGHmzJkYjUaOHz/OsmXLuH79OjqdjoSEBOrq6rDz9OfDa6YLuZVKzl/W+RNibzJo9Mi5WVqO+82h7tTnnbeiDh8yQCYOGjHl5eWUlZUxbdo0duzYwfTp08Wn3ux//Qt9TQ3uDY0o3Fzx/Om/j5ifuf2Bo6Oj6Gky59bMmDGD8+fPs3HjRpRKJe3t7Vy9elWsdvqs4ejoSFtbGwqFgqCgIIqLi8W8krvlSdyeazJjxgwqKiosQj3mCjZrjQo3rRWHB70xMqMe9+YrtLe309TURERExIiQkkKhQK1WY21tTWdnJzExMeK2ExMTSU1NFccOrzAy91Qafvx3ulGbdWsexAiJjIykpKSEwMDAh5KzYjtnsKrQYMCrrf2h7EOlUolJ1hKPJ+PSdkBC4mFz48YNIiIiUKvVD7S++QaUlZXFrFmzxK7St2MuqZbL5WJX6kmTJgEmT5C1tTU9PT2EhoYCQ8m8KpWK1NRUoqKiMBqNZGRk4ObmRm5uLosXL+Yn21MxCCbvy/PxE6jKvca3YmX4avqwp4vfyv4k5sFk2MwlduP3KWkZunBO9LSno6ODc+fOsWrVKnbs2IGjo6OYk9NVWkby1WvE3rgJgNcvfzmitYAgCJw8eRJ7e3tmDGpt6HQ69u/fz9y5czl9+jQbNmxAo9GIJdcrVqx4YEXkTztm6fy+vj6mTJlCeno6MHZFz3Bu7zBtZWVFcHAwOp3OwqsSEBCAq6srjiojBw3DJPWzd+Hm5oZSqcTT03NU74+5UWFYWBgymYze3l70ej3Ozs4YjUYxdCWXyy3yYlxcXCyaO97JiHFzcxObWN5vSMgs6icIwj31nrpftLOHBCitM9LvuxT8XrnXqjSJR4NkxEg89gwMDHDz5k0xfHO/GAwGLl68SHR0NC0tLWOGRurr6+nr68Pf3x+j0cixY8dYtmyZWMZ65coVOjs7xdyX+vp6WlpaCA8Pp6mpSTR4jhw5gkwmw9fXF09PT/JqO0ipNIlmOVqrmNCZR2hoKE31dTwfBr9X/5UJMtNNpVQegDD/J/j4+HCrznSzk8kgwEnDvn37WLVqFWfPnqW7u5vNmzebbhJGI4f+749EZmeh0utx2LgBu9v0m8weGDs7OxITE8X3Dh8+zJQpUzh37hxr167F1tbUy+fixYtMnDhRVB3+rGIOhdja2mJtbU1TUxNhYWHcunXrjuvJ5XLRADITHx9Pb2+vRUgpLCyM7u5urAw9ZAmBlBhNXjWhNJmYAFdkMpnYrXq4UB0MtUKIiori1q1b2NjYiOJ8M2bMsGhFEBAQIJZKBwUFWYSHtFrtiG2bkclkeHl54eDgcN99lBwdHVGpVOTk5DyUPko28dORDcos9FxIRqvV0tHRMa77AO7p85Z4dEhGjMRjz5UrV5g2bdqY3pO7ce3aNaKiokhJSRkzNCIIAqdPnxaXp6WlERYWhuOgN+P06dMEBQXh6ekpPumahewMBoOovHv9+nX0ej3Tp08XNWP+fCQdAZMXZmWgEn9vd/Lz81EqlUxtPcQi+TUAWgQtX9N/l/DYqRiMArfqTUaMv7MNJ44eYvbs2dTU1FBUVMT69evFRNuMN97EWFuLR30DSm8vPF59dcTcjh8/joODg2jAwFCCckZGBitWrBDnWlFRQUNDg6hK/FlmeG5LfHw8V69eveeeQreXF6vVauLi4iwE9FxdXWlpacHNVgHIOGg0dbaWIeDdeoXe3l5KSkqYOHHiiBupua2AjY2NmK9jVu2dMGECTU1NohFl9tqAyfNyu/aLvb39iPJrM5GRkeh0uvvWiwFTKKu2tnbUfX5c5BoNtoMhUX1jI/7W1g/FY2JnZyd6uSQePyQjRuKxpqenh9LS0geWue/q6qKwsBAnJyfs7e3H9Czk5+fj4+ODg4MDjY2NYt4JmG7qAwMDJp2XQV2Z9PR0wsLCsLe35/z580yePBlBEMjMzMTa2pqysjLmz5/P0aNH0du6i/sJVjZTXl6OTCbDu/cWU5r3icu+O/A18nWu/HDXTYobu+gbMCmpOsv7CA4OxsrKigsXLhAfHy8q9zZnZHAlN8dUjSST4f2b36DQasVtmquQnJycxBASmHRu6uvrqaysZP78+bi7m46xu7ubM2fOsHLlyjv2WPqsMLxE2MvLVEU2MDCAtbX1qB2gh2MWpRtOQkICnZ2dosEgk8lwd3cnyMOkAXRgWEhJnr0bDw8PGhsbCQ0NHdUb4ObmRmNjI5GRkdja2lrkrgwPgQ3vnWRlZTVC5fZOISVvb286OzsfKC8mMDBQbLPwUPNiALeS0ntq0vkgBAQESAm+jymSESPxWJOcnMzs2bMf+IZ66tQp5s2bR0pKikUTx+GYk3OTkpIwGAwcO3aMFStWIJPJ0Ov1nD17FmtrazH3paOjg1u3bjFt2jQqKipob28nMjKSw4cPA6YnV5VKRXV1NT4+PlS0m0o/rRVGnG3UuLi44KnpY17zu8gEk6GSbLWQywpTuOxwVi2ff3uoTNZHa0qwPHDgAK6urmJCrqGnh4Nv/5O465koDQZcvvSCRV8Zcym2i4uLRTl5c3Mzly5dEhOPfX19gaHmj0uXLn1gNeQnDbM0v/mGbxaUu5cux2YDYzhKpZKIiAhOnjwpvhcWFoa9wvSUXyz4UILp86Amg9gJpkaPnZ2dKJXKEWGf0NBQCgoKCA8Pp6ysDEEQ6OnpAUzfmaKiIgwGAzKZDDs7OzHcYi4fN3MnI8bcxFKn0913GXNgYCCCIFBWVjZmBdTHQTvsN62/mIJOp3soHhNzhZrE44dkxEg8trS2ttLW1kbAYCnl/VJeXi4aE1FRUWPqnFy4cIGkpCRUKhXJycnExcWJ1Ujnz58nPDyc9vZ2wsPDxdDM4sWLGRgY4MyZMyxfvpzLly8jCALTpk3j6tWrhIeHm6Tg46bS0GnKh/FzUKFUKmhrqGZG2R9RDZjCRSWqcDw3vMb/bZ2CRmn6Sda2D+VSLE2IYc+ePchkMtauXSsadMn/9d9oa2pwbm3FKjISt29/W1zHbMC4urqKZdQAfX19HDx4EJVKxaRJkwgJCRGXpaSkEBISIvaBkjDh4eEh9kwyh3WCg4PvWmptTgy+PRdk0aJFFBcXiwaBn58fho6hJOBzyiTxtU9LKgaDgaKiIqKioka0FTAbH2q1Gjs7O1xdXbl69SpgysuJjIwU1xkeUgoNDbU4/uEdr0cjMjISuVx+32XMtra26PV6+vr60Gq1oza0/DjcXmrt6+HxUEqtzcrHknrv44dkxEg8tpw+fZoFCxY80LoGg4Fz584RHx9v0XX6dhoaGmhtbSUsLIyamhpRQwagurqatrY2iouLWbJkCQA5OTm4urri4eHB0aNHmTdvHm1tbRQWFmJtbU11dTXTpk0jOTmZVatWUdw4FHJwoIf2tjZmNW3DSWeq1miRu1KX9CtCw8JZHOnBtq8k4GRjqV/TXHyT3t5eVq9eLXpIyvft51ZNDRF5ecisrfH+3/9FNli5Ze6F5ObmZmHAGAwG9u3bh1KpJCYmRhTvAygpKbHQvpEYYrhYnLncuqam5p6e+keT9beyssLNzY2LFy8CJu+Mu3boM/9r1yyMg5Vs8uzdeLi7U1BQMMLwMK+r0Wjo6ekhLi4Oa2tri8ThuLg4sRXB8ITe0ZR0zR2vR8PHxwedTvdAOSceHh54e3ujUqkeSkPF4aXWPu0dD02c7mGpD0t8PCQjRuKxpLS0FK1Wi5ub2wOtf+XKFWJjY0lOTmbRokXI5SO/6ubk3CVLltDf38+JEydYvnw5MpmMgYEBTp06hZeXFyEhITg6OtLV1UVGRgazZ88mMzMTBwcHfHx8OH78OAaDgYiICAwGA1lZWSxbtgwrKytSc4dc9GEedsR0nCKgJxOAfpmGK4EvkzhviThmqr8zH7wwFSeVKXzhbiPH0NHAlClTRA9JT1kZR06eYNq1a8gFAY9Xf4QmKFCc05EjR/Dw8LBQNhYEgSNHjog9d6Kjo8VlbW1tpKSkSHkwYzBhwgSLp3tzrsm95EkMrwoaTmJiIllZWWKH58jwUGI9TEZoHS5cFcJNA5sLifJQisaFra3tCG+G2bjx8/Ojt7eXrq4u+vtN3j+1Wo2vr6/4e+rq6kIQBORyOba2thbl3ncKKcnlcnx8fB7IyxEaGoper6etre2h5MUML7W2unbtnjqNPwhSSOnxRDJiJB47DAYDycnJYrPF+6WlpYWysjLs7e2xsbERxeBu58aNGwQFBeHg4MDx48eZM2eO2Cvp3LlzooDY9OnTxQTZxYsX09bWRk5ODnPnzuXMmTNoNBqmT59OWloaVlZWRERE4OnpSVdXF8k3h55cJzafJqZhHwACMk47bGXx1q9bGA56vZ7MC8f58IuT+O5Md57xbsbZyVH0kBh1Og7+7/8SmpePTW8v9itW4Lh5s2nZoLaLl5fXCFHA5ORkGhoaiIqKEnVvwLIH04Nq8Dzp2NjYWJRKm8ut3Qc9JHditLwYMN3Y1Wq1WAYdFhbG016tbAoCBzXsNwzJ6t84t5OWAQVlZWVERUWRnZ1tsS2zirBMJiMoKAilUmlxszV/N28/ntv1T4aHm0YjKiqKgYGBO4adRsPX15e6ujpsbW3p6OjAaDTe1/p3wyZ+OrLB32332bM42Ns/lObDt+cRSTweSEaMxGNHRkbGHXNY7oQ5Z2XRokWkpKQwb968Ucd1d3eTlZVFfHw8OTk52NjYEBQUBEBlZSVdXV0UFxezePFi5HI52dnZuLq64urqypEjR1i9ejVFRUW0tLRga2tLWVkZISEh9PX1MWnSJAwGAwcPHqTVYAr/BMlq2Nz5T2SYYuoXNfOY9+JrFkJyRqOR/fv3M23aNOytlNg35+CsNlp4SNJ++1v0zS341NSg9vfH85e/QCaTiQaMj4/PiJDQjRs3yMvLIzIy0sK4MXtnEhMTcXZ2vu9z/Vni9saJ5jBlU1PTHfMkZDIZVlZWI/JilEol7u7uFBYW0tfXh7W1NQqMfG3hRH4Sp8MuZBY6wSQpMKf/PNsbvdiRnDtC4wVMRlV/fz96vZ7Y2FiUSiWZmZnicq1Wi62tLQ0NDRaGillnxoyTkxNtbW1jzsfX1xdBEO47pKRQKLCysiIsLAxBEMbdUyLXaNDONoWUDG1t+MlkD6XUWi6X4+jo+FASlCUenMfaiLlw4QKrV6/G29sbmUzGvn37HvUhSTxkenp6yMvLe2CNkhs3buDn50dOTg7Tpk0bs8rm2LFjLFq0iM7OTjIyMpg/KA7X39/P6dOnCQgIwMXFBQ8PDzo7O7l+/TqzZ8/mxIkTJCQkIAgCFy9epK+vj8DAQAwGAyUlJWKn59OnT6PVamnol+NAF39X/w6NYHqaz1dMJOQLb1p00DYbX0FBQbi7u3P8+HGMRiPr1q0TezxV7t3L9Zoa4m7cQKZW4/P6H1BotRgMBg4cOICvry9TpkyxmGdpaSnJyclERERYaMSASQvHyclJVB+WGJvheTFgyo9obW3Fycnprl2OxwrTREVF4ezsLHpJQkND6enpoberAz91L7WOJmPUXdbGdCGbvxco+dK76fRpnEfs05x74+TkhEajoaurS6xSApP43eXLly2OxexhGl5qPbwU+3bMIaXc3Nw7znc0QkJCxOqmu3mvHgS7QQFKAOcbNx9aqXVkZOQDzV/i4fFYGzHd3d3ExcXxpz/96VEfisQnxJkzZ5g3b96oOSx3o6uri5s3bxIYGEhTU9OY2jK5ubk4Ojri4eHBoUOHWLFihSikd+zYMeLj48nKymLOnDkYjUYOHTrEsmXLyMnJQa1WExoayqFDh1AqlSTNnMX5y+m0tbWxdu1aVCoVWVlZdHR00NzZQ2+/jr+qf0+QzJQQ2Chzw7j6//C8rQIoJSUFOzs7Jk6cyL59+1CpVCxatEiskurKy+PQyVNMv3oVhdGIx09+gtXEiej1evbs2UNoaKhFmAhMisIHDhwgMjJyRHl5UVER1dXVzJ49G4m74+vrOyJBd9KkSSgUCotE2tEICAgYNaE1KCiIzs5OysvL6evrIzw8nFu3buHr60tfXx8OSV8Ux25QJANw7lYjr12HH+3MwGgc8pgMV5WdMmUKOp3O4rjc3Nzo6+tDp9NhMBjEhGRfX18L/ZfbvTO3ExcXR2tr632XMYeEhFBcXExAQMBDSbzVzp0Dg8Z+/+nTpn8H84LGk7E+S4lHx2NtxCxfvpxf//rXbNiw4VEfisQnQGVlJYIg4Ofnd9/rmj0ZCxYs4NSpU2K7gNvp6enh6tWrYq+gyZMn4+Ji6h6cnZ2Nra0t2dnZLF26FKVSyZUrVwgODkYQBLKzs1mwYAHnz5/HxsYGX/9Anv8gj/8tckHuPxUHBwdqa2u5fv06XV1d+EfH87+qv5AgN+UndMtsyZ/yCyInxVscU0ZGBt3d3cyYMYO9e/dib29PVFSUeB4M7e3sf/11wvNyse3uwWHtWhyf2oxOp2Pnzp1MmjSJqKgoi212dHTwwQcfEB0dPaLCq7GxkdTUVFavXi0l8t4jo3V6njhxIg0NDXdN7nV1dbXoVWRGqVTi5OREREQEly9fRqvV0t/fT2RkJEajkXa3eHrlpjYQK1UZ+KhMyb1GAU5X6NmZPuQZMue6CIJAdHQ0AwMDI5JQ4+PjSUtLs1DPvb3i6W43abOm0L0oFg/HHPKaNGkSPT09I7pyf1wUdnbYJpo0kvR1dfjb2DwUY0mhUODsPNITJvHoeKyNmPulv7+fjo4Oiz+JTwcGg4EzZ848cMfkrKwsXFxcKCsrIzY2Fjs7u1HHHT9+nIULF4oiYOabf3t7OxkZGTg5OeHt7S12/q2oqCA2NpajR4+yZs0aSkpKqK+vp7+/n4IWPQ39ClOSbqmpKuTYsWMYDAZWrVqFcPRHrFZcBqAfNRcmfIvZq5+1OJ5bt25RVlbG4sWLOXz4MA4ODtjZ2YnhNMFo5NzPfoa6qQmv2jqsIiPx/MXP6evr46OPPiIxMXFEOKinp4d//OMfxMTEjDifPT09HD582CJMJXF3ZDIZtra2FiXI5nJrhUIxZgjGvK6Tk9OouRSxsbG0t7dTVVVFb28vISEhYlJqcVkFnf5LTfsy9rMzsYIk+6GE1T1Xyyz2YTZkNBoNTk5OI4wFf39/ampqCAoKEr02np6eFmXD5uafY3la5HI5/v7+YnuD+8HX15fe3l7UavVdvVcPgt2iReJr74LCh1ZJFB0dPUKvR+LR8UQZMa+99hoODg7in/mpQeLxJzU1lUmTJlnkidwrHR0dYpfrqqoq4uLiRh2Xn58vJjlevXpVbORoMBg4dMjUmygvL4+kpCQGBgY4fvw4K1as4NChQyxYsICBgQEuXrxIT08P06dPJ7Vg6OJ/vaKV3Xv2olarmTt3Lu2n/pcFvcdM2xdkbLP5PEu/+EOL46moqCAjI4M1a9Zw9uxZVCoVPT09FoZH9u9/T0lnF5E5uSicnJjwf3+k12Bg586dzJ8/f4QQYF9fH2+99RaRkZHi/Mzo9Xr27t3L0qVLxzTyJMZmtOqdKVOm0N/ff9eb8lidkM3hnISEBC5fvkxERAT5+flERUWZ2mXM+7o41qvuNHGKGjztNQCkV3bQ1T9kbAwvAZ4xYwY9PT0WN1uZTMbkyZMpLy8Xhdvkcjl2dnYWFUfD+0WNRmJi4gNJ8JvVhadOnfpARtDdsFuwwNQtFdCfPo1OpxNL2McTc2hREr57PHiijJhXX32V9vZ28e9hKDdKjD+tra1UVlYSGxt73+uaK2wWL17MiRMnxgwjdXZ2kpaWxqxZszh48CCrVq0SK4POnj1LdHQ0ly5dYvny5cjlco4dO8bMmTPJyMjAz88PLy8vDh48iFqtZvbs2Zw8eZJ6/VD1VEefnk6sCA8PR1t9gcD8v4jLfqp/gaVf+YVFnk99fT3nzp1jw4YNpKamMjAwQFNTE2vXrhXHVe/aRXJxMfFpachlMnz+3+/p0WrZtWsXS5cuFfsnmdHpdLz55ptERkaydOlSi2VGo5EDBw4QHx8vKfI+IKMZMba2tjg7O981WTUwMHDU8mWZTIafn5+oLG1uLRAZGUlPTw86lwg6NN6msRWphLkpiXY23Tz1gowzuUOG9PAwUVRUFH19fSNCKhEREdy6dQs3NzcLFeLhRthYBpcZd3d3BEG47yodT09P6uvriYuLo6Oj475bGNwNpasr1lNNie260lICHB0fSoKvXC63UHGWeLQ8UUaMRqPB3t7e4k/i8casv7JkyZIHys9IT0/H39+f/Px84uLixE7MwzEn5y5dupTjx4+TlJSEk5MTAAUFBfT19dHS0kJ0dDQuLi7cuHFDlEvv7Oxk2rRpHD16FEdHRwICAkhNTUUuV9BotLXYT7PMgQj7HpxOfw/5YCn1n/VrOKRaipfjkIepoaGBY8eOsXHjRm7cuEF7ezt1dXWsX79e1GrpuHqVg6dOM/VaOuqBATx+9EN6goPZu3cvq1evxsPDw2LfOp2ON954g4iIiBEGDJh6SPn7+0uVSB8De3t7Ojs7RzyBJyQk0Nvbe0dJfY1GgyAIo964Y2NjycrKIikpidTUVAIDA2lsbMTGxoa8/HyMsVvEsXMda3HsGspH2XNlyNiQy+U4OzvT1NQkvtbpdBbGhkKhICoqCrVaLYaUgoODLQyse7lBBwYGcvny5TuOuR2ZTIajoyPd3d04OztblIGPFxYhpdKyhxK2AlNI6Xa9HolHwxNlxEh8+jArn5qTa++HxsZGCgoKmDBhAi0tLWN6ctLS0kR9DVdXV7FfUFtbG5cvX2bixIm0t7cTFxdHQ0MDOTk5REREkJ6ezrJly7h69SqCIKDT6ejp6aG9vZ25y9fS2GXpqraRDyD7cAsqTC7+fYYk/lf/FGEedqKB1tjYyNGjR9m4cSOFhYXU1tbS3NzM6tWrxRBPf2Ul+976K2G38rHv7MRxy9N0zp3L0aNH2bRp0whNl/7+fv785z8zceJEscT79vkrlUqppcA44OrqOiKp08vLS6xKuxNjqfe6uLjQ3t4uisIFBASQm5vLtGnTyMjIwGHWlzFi+v44lx/DZaARrcbkRbxS2c2AYUg8bnh/pSlTptDd3T3CWIiLi6OqqkpMzlWpVGJZNpiMoTu1IACYPXv2A+WcmL0+M2fO5Nq1a/e9/t2wWzQUQjWePkVvb+9DaQjp7e1NTU2NFFJ6DHisjZiuri4yMzPFH2FpaSmZmZn3nRkv8XjS2trKrVu3LDos3ysDAwMcOXKEJUuWcPr0aZYvXz7quPr6esrKynB3d6e6upqZM01KqHq9noMHD7Jw4UIuXrzI8uXL0el0HD16lIULF3L8+HHWrl1LeXk5paWltLa2EhkZyY0bN9i8eTNFrQaL/XjRzLMF38ZGMHUZLiSAfxv4KgJyQj20gKl79OHDh9mwYQMVFRWUlJTQ3d3NggULcHV1BUxiXUd+8UvsGxrwqq3DJnEGrRs3kpqaytNPP41Wq7XYb29vL3/+85+Jjo4e1YDJysqirq5O1MGR+Hjc7rUwM2PGDG7evHnHdc3KuqMRFhZGYWEhSUlJ5Obm0tnZSWRkJK2trQh2XrS5DraQaK8g3qmNaBeTUdNrkHE+Z6hEenivpoiICIxGIyUlJRYquSqViqCgIAwGg5j4e3tI6W6l1m5ubqYKqvtU7zWH5MLDwx9KSEk9wQerwWT9/tw8/OztH0qrA5lMJin4PiY81kbMtWvXmDx5slip8d3vfpfJkyfzH//xH4/4yCQ+LkajkaNHj4o5KPeLOSx06dIl5syZM6q6b39/P0ePHmXWrFkkJyeLJcXmPJrp06eTkpLC4sWLUavVHDp0iKSkJE6ePMmyZcvo7+8nJSWFvr4+5syZw6FDh1i7di2enp6k5A3dONzlHbyv/g3eMlMZbYPMjdOxv0eHqfon1N2OlpYWDh48yIYNG6ivryc7Oxuj0ciUKVPEBHRjXx/nfvhDerq7CS8oQB0YSN0Xv0hhSQmbN29Go9FYzK+rq4s333yTuLi4EUm8YAqV3bp1i1WrVkml1OPEnYTr7hZSMndCHg1zeMIcSgoICKCkpARnZ2du3ryJ9ayviWNnqPNx7h36/u1MvSW+NoeRzOEoGxsbFArFiLLp6dOn09vbK4aUQkNDLfJggoOD76p6GxoayoULF+445nYUCgV2dna0tbXh7e193yGpe8FhzWrxtXdB4UMLKcXExHDjxo2Hsm2Je+exNmLmzZuHIAgj/t55551HfWgSH5OrV68SEhLyQHL3ZtG5np4etFqt2C5gOIIgcPjwYRITEzl9+jRr1qwR802uXr2Ko6MjdXV1hIaG4u3tTUpKCt7e3ty8eZMZM2bg4ODAoUOHsLKyIiEhgT179rBgwQJCQkJoaWkRjRh7utmueY1guSnBsgEXqhf8iWbNUPKslw0cOHCA9evX09raytWrV9FoNISGhoqdpAWDgauvvkrZwACTMjORu7pS/OJX6BoYYM2aNaIYn5nm5mbeeust4uLiRi1LLy8vJz09nXXr1j2QkSgxOhqNBr1eb6FyC6abc2hoKOfOnRtzXZlMhrOz86iGjI2NDTKZjK6uLmbOnElbWxvZ2dmitot1zBp6lY6msZUXCDWWo5QPtqKo6rXwtERFRYmqssHBwfT19Y2oBrKysiIwMFAMganVapRKpajya9asuZOnZO7cuaIRdD+YQ17mxPnxxn7lShj8vRgPH6Kzo2PE5zUeuLu709raOu7eJIn7Q7q6SXzi1NfXU1JSMqJJ4b3Q3NxMRkYGMTEx5OTkjNkb6dq1a7i4uJCRkcHChQvFhN+ysjIqKyvFdgJTpkyhoKCA1tZWOjs7CQgIICAggL179+Ls7Iyvry+nTp0iJiaGadOm0dHRwa49e6ntV2FHD9s0vyVIMD2ZVwsu/M3n10yatZT08iE9j8L0ZNatW0drayspKSk4Ojri5eUlloILgkDOr37F9Z4e4q+kIbOxIfvLX8LRx4eFCxeO8KLU1tbyzjvvEB8fP6oBU1VVRXJyMhs2bLDozSQxPkyYMMFC5dbMokWLuHXr1h3zJG4XlxvOpEmTyMzMxN/fn66uLvR6PcHBwbS1tTFgFOiPehoAmWBgoV0pIQ6m9VoHFJy/MeQ18fPzE71FEydOxNbWlpaWlhH9m2bNmkVzc7NYhnx7l+a7hZQcHR1RKBTU1NSMOWY0AgMDKS0tFdt11NXV3df6d0Pp6optUhIA+ppa/DSahyJ8B1IbgscByYiR+ETR6XQcO3aMVatW3beHoL+/n0OHDrF8+XJOnDjB6tWrR91GdXU1xcXFdHZ2Ehsby4QJEwBTd+sLFy4wc+ZM0tLSWL58OU1NTVy5cgV3d3dRR+PAgQO4uLiI3YDd3d1ZunQp3d3d7Nq1i7o+BdZCL++qf0u0zHSRbxLseV73KsWqUM7daiSjog0AZ5We5zauorW1lUuXLuHp6YmtrS3x8SbVXkEQKPrf/+VCfT0Jl6+g12i4+sUvEDVjhjhmOKWlpWzbto2ZM2eO2jKgpqaGs2fPsmnTphHhJ4nxYaybu62tLQ4ODndM8L2TIq55u0ajkTlz5mAwGMjLy8PJyYnr16/jMO8bCIMJvpF9V/EaGCqv3nlxKGQil8vFBGRvb28MBgMGg2GEQJtWq8XNzU0M6dxuYEVERNw1FBMXF8fZs2fvOOZ2FAqF2EgxLCzsvte/FxzWrBFfT8jKumvS9YMyPJFa4tEgGTESnygnTpxg5syZ9y22JggChw4dYs6cOaSkpDB79uxRt9HV1cXJkyfx8PDAwcFBVOTt6enh4MGDLF++nOPHj7N69WrRKAoPD6ehoYGFCxdy+vRpbG1taW9vp2PQDf3000+LCrkGgwGvoIn8S/1bJstNT7892PBl408oEby5XtHKb44MXfhfXRktVkF5enoil8st+hhVvPEGJ0tKSLhyhT4rK9Kf2crSTZvEMNNw0tPT2bdvH/Pnz2fGjBkjltfW1nLq1Ck2bdo0ZuNLiY+PuTJlNObNm3fHPBG1Wo1CobBozmhGLpeLFUze3t5YWVmRnZ3NlClTyMjIQObkT7ubKcFX2VXDfMVQInFll0B3d7f4/6ioKLKzs5HJZHh7e+Pq6jpqSbO5+g4QvzN9faZGpfb29nR3d9+xuichIYGampr7rgAyh7wSEhJoaGgY9Xx8HOwWLUQ+KJw5cOw4RoPB4vyMFxqNBq1We0fFZomHi2TESHxi5ObmolarxRLn+yE1NRVvb2/q6+txdXUdNQ9Gr9ezb98+AgMD6evrY9asWeL7e/fuZdGiRZw5c4b58+dja2vL3r17iYqKory8nJUrV5KWlkZfXx8NDQ1YW1vT0NDACy+8QH9/Px999BE6nY7Vi2cz99rXmTJowHRhQ0bsL3AJNpUvt/YMUNhgKk2N9bEnxnGAtLQ0PD09kclkFlVCNW+/zZGsLKZeS6fN0ZH8TRvZ8tJLeHp6WszLaDRy7NgxLl68yLJly0Z0qgaTB+bkyZNs2rRp1CRnifFDLpdjZWU16k0xPDxc/A6NhVmVdzQmT54s5q/Mnz+fzs5OPD096e/vp7m5Gds5Qwq+CzRZyAb1iHRKrUXei1lV1mg0EhkZKXasvv24PDw8UCqVomfp9iolc+hnLGxtbdFqtfetmWIW5nNzc0Oj0ZCenn5f698NubW12Nna2NlJqFF4aN6Y4Z+ZxCePZMRIfCI0NzeTnp4+ohnhvVBcXExdXR1ubm7U1NSIZdLDMVcceXt709TUxNKlS8VKpEOHDjFt2jSysrKIiIhgwoQJ7N+/n5CQEAoKCli3bh1ZWVlUV1fT1NSEi4sLRUVFfPWrX0Wv17N9+3b6+vpYOS8ezYcbCTOaLvgtgpb0qJ8xa8OLTPF3GnFMz0RakZOTg6enJ4IgWOTv1P7zHfanpRFz4yY1Pt40L1/O89/5zogS6v7+fnbs2EFJSQlr1qwhIiJixH4qKio4ffo0mzdvfqC2DRL3z+35I2ZkMhkRERGcOnVqzHWHd5y+HXt7ewyDXgM3NzdRFM7e3p7Lly+jilxNn8oRAJ/O64QOJpQ39QpiKAosvTo+Pj40Nzdjb29PamrqiH0mJCSIx3t7CCkyMvKuIaUpU6Zw5cqVO465HYVCgZOTE01NTWIvovFOvnVYOxRSck5JeWh5MRMmTKCmpuahJA9L3B3JiJF46JjDNmvWrLnvRNOGhgYuXbrEzJkzuXTp0pidl69cuYJMJqO+vt5Cuv/UqVN4e3vT0dGBRqMhJiaGkydP4uzsTGFhIRs3bqSoqIiCggI6Ojrw8PAgPz+fF198EUEQRANmaVIs2l1P49RvSuhsFOz5vurfmbv5JQAm+zpaHE+8txqb7lpRNXr+/Pnicde8/Tb7L6cSfTOL4tAQtIlJbP7+90ecm/b2dj744APa29tZv379iD5JACUlJSQnJ/PUU09JHphPEHMfoNFISkqioaFhzAa0Go1GbC8wGuYEX4AVK1aQm5tLbGwslZWV9OsNGCZ/AQCZYOSLqhMANHfr8PYLtMjVMW9HLpfj5uYmeh3N4SIzU6ZMoaenh5qaGtRqtZgIDODk5ER7e/sdb9DR0dH09vbedxuC6OhosrKyiImJQS6XP1Cl052wSUhA6e4OQO+FC7hoteOeRAwmw/VOCdsSDxfJiJF4qJg9IXPnzsXBweG+1u3q6uLIkSMsX76cY8eOsXbt2lE7L+fl5VFSUkJ7e7tFRU5KSgpqtRp7e3sqKyuZN28eKSkpDAwMUFVVxaZNm8gtLucfZ3LYWSrnn1Wu/DBFh9v0VSgUCj788EN6e3tZNDkQ533P4DhgkmKvFZx5Wvcf+MYMJdb21xaKrn2FDFb7GVEqlWi1WubNmycaMLV/+xsHrlwhuLCInJhoImNjWfRvPxhhmFVVVbFjxw4xJ2e0fke3bt0iLS1tVA0ZiYeLRqNBoVCMqPgB041fq9WSnJw85vp3qmox9y4SBAFnZ2ecnZ3p6upCoVCQmZmJ7dxvYZCZvuNr5cloMeWTuAeEW5QsOzg4oNPp6O3tJSIigo6ODpRK5YjQh1qtxsvLizNnzgCWRhSMrY1jxtbWFkdHx/v2xpiF+ezs7LCysiI9PX1cFXBlCgUOa9ea/qPXE1hZ+dB0XWJjYx9KGwWJuyMZMRIPlYsXL+Lj4zOqF+FODAwMiB2XT5w4waJFi0Y1gioqKrh8+TJ6vZ6NGzeKN/P09HS6urrw8/MjMzOTNWvWcPXqVZqammhpaWHTpk0Ul1fx+Q8L2FVpzdVWa8q7ZHQaVfz6eDF/emc7/f39LAh3wOfYF7HTmxL3qgVXNuv+gxLBmxlBLhiNRo4fP44w0MuXZwWikgk8G22DvawPDw8PEhMTAZMxV/n6H9l/7RqetXUUhYWyOCqK6d//voUBIwgC6enpHD9+HCsrK5599lmxz9Nw0tPTyc3NZdOmTaL+jcQnS3h4+Jjeg8mTJ1NVVTWmdP+dntzNoSCz0uyaNWtIS0tDq9WSm5uL0dqZ7mCToJuN0MtTivMAtOhkqFQqC8G9mJgYsrOz8fPzo6qqivj4eNLT0y10ZcDkjdHpdJSXl+Pn50dlZaU45l6qlGbMmEFRUdF9dY2WyWSiwRYZGYlSqXyg7th3wmnL0zDolVXu3kNDff1DCfvY2tpiY2Nzx1woiYeDZMRIPDQKCgpoamq677YCBoOBvXv3kpiYSGpqKtOmTRvRsRlMfYhOnDiBTCazSGjNysqiqqqK2NhYUlJS2LBhAzk5OZSUlNDZ2cnGjRupqalh1/nrdOpH/gT69UZONNoxy7OXoAvfxspouhHV4M76/l9QJbjj42jNnBAndu/ejYeHBzNnziSo8ya7tvoRpWwgJCRE7FUkGAwU/+IXHMjPw7qnl047O9bHTSL429+22K9Op2P//v3k5+fj6OjI1q1bR+S4CILA2bNnaW5uZu3atZIOzCPkTrktUVFRKBSKUXNQwOT90Gg0ouz/7UybNk2sGnJzc8Pe3h6NRoO1tTXFxcXYLf43cewXFceQY6SqtZf4+HgLj0h4eDj5+fnI5XKcnJzw9fXFYDCMUOMNDg5GLpeL3qPhCb1ubm60tLTcsQIpNDQUuVx+396IuLg4MjMziYyMxGg0jnm+HhSVjw/aBaZken19Pb4G47iHrcwkJiY+FAViiTsjGTESD4WamhquXr1635L3RqORgwcPEhUVRXFxMQEBAYSFhY0Y197ezt69e5HL5WzatEm82WdnZ1NUVCS2D9i4cSMFBQXcvHmTgYEBNm/eLB5baefQcX19pjeHvzoJrcJ0oZ7el0LE9V+gFExPluUyX37j9ToNmLwiz0/3Ys+unUybNg1/f3+2b9/OlClTuHnjBgkJCWJpt1GnI/8HP+BoYyMgw72hgZVLFuP5tZcs5tPY2Mi2bdvo7u7Gz8+PDRs2jAidmfs9WVlZsWTJEkmJ9xFjbW2NIAgjckzAVK7s6elJVVXVmLkvdwopmat+zN2kFy1aRHl5OTqdjvT0dGQekXR6mHSEfOWNLJFfo6SujQkTJtDc3CyWLCuVSlxdXamrqyMqKor8/HwmTZrE+fPnLfanUChwdXXF2dmZgoIC4uLiLEIvYyUyD18/LCyM69evj/Dy3AmtVotcLkev12NjY4OVldW49yNyfvZZ8bXP2bMPrZLIzc2N3t7eOzbOlBh/pKugxLjT1tbGyZMn71sxVhAETpw4ga+vL62trVhZWY1aTtzZ2cn27dtRKBRs2bJFrOjJzs6msLCQWbNmceTIEdavX09RUREZGRnI5XKeeuopSkpKuHbtGv39/ZR3D0n5Lwi25+zhvaz06uWnyvf4T9XbyDFdjPPk4bRs3sPRQU+3g5UCRUWa2PfpwIEDzJ49m9TUVJYuXSqGzgxtbWR+7esc1+sBGVMzM0n6xtdx/vznLeaTlZXFkSNHkMlkTJ06ldmzZ48w/Lq7u9mxYwdhYWFiiEri0RMWFjZmgu/06dPRaDRjPp2bQyljMWPGDHHdoKAgsdO0Uqk09UZa+ANx7JeUR8gurRH3a/biwFAJsLmsOSEhgfb2dpqamiz2Z+5Rd/nyZezs7MR8GjCFpe5Wojx16lRkMtl9ezomT55MZmYm06dPR6lUcunSpfta/27YzJiBelCSQZ+WhqNc/tAaN06fPp20tLSHsm2J0ZGMGIlxpbe3l/3797NmzZr7rpY5d+4cWq1WvHgOF4Uz09XVxbZt21CpVDzzzDOiB+bmzZuiAXP48GHWr19PaWkp6enpaDQannrqKbKyssjLy6O7u5ue3j5q+kyeDlcbBZdOHcbf05lvdP+RLymPivvbLSzE+ksH2Feow2A0JR3GO/Xy/Nanqaio4MqVKyQkJHDx4kU2bNiA+2A1hK6sjJQXv8ppRwfsOzqZd/ky0b99zUJJVK/Xc+TIEQoKCjAajSxbtmxUkbvGxkZ27tzJwoULR10u8eiYOHHimDdtDw8PBEGgurp6VDE3lUp1R6E0V1dX+vv76ezsFA3c/v5+bGxsSE1NRRG6mB5bfwCmywtwa7vBwMAAISEhotcGwNPTU2wvEBQURGVlJRERERw/ftxifz4+PrS0tBASEsLNmzfF6iEweZasra3vWIHk7OyMjY2NhQF1L5hDV97e3rS1taFSqcY1t0Qmk+H0zDPi/0Pz8u87CfleCQwMpKqq6r5ygyQ+HpIRIzFu9Pf3s3v3bhYtWjRqMupYCILAmTNnkMvlaDQa2tvbWbRo0ajeiPfeew+NRsOzzz4rGklpaWmUlZWJBsyGDRsoKCggLS0NV1dXNm3axOXLl6mpqaG5uZmBgQGaDRp0gunr72xsI9pDxZxbP8ev1yQhPiAo+OHAV/he/5dY/EYG29IqAFDL4defX8zJkydpb2/H39+f3NxctmzZIpZTd19J4+CPf0xqYACxN7OYVVhIyNv/QDt3rjiXuro6PvjgA/R6PUajka1bt+Lh4THi3OTm5nL8+HE2btw4QgRP4tFjY2ODXq8f86Y1efJkXFxcxqxUmjZt2h2F3swNIMGUP2Jvb09+fj46nY7WtjbUC4a8MV8Q9nHz5k1kMtmICqOpU6eSkZEhvr9gwQJqampGlIHHxMSgUqnIzMwkODiYvLw8MTw0ZcqUu4ZiJk2aBEBlZeUdxw1HLpcTFBRESUkJMTExODs7c/HixXte/15wWLdWVPA1HjyIob+f9vb2cd0HmAym20NxEg8XyYiRGBcGBgbYvXs3s2fPHjUJdywEQeD06dPiU2l9fb0oVDecjo4O/vnPf+Lg4MBzzz2HRqNBEATOnTtHe3s706ZNE0NI6enpZGRkEBYWxvLlyzl69ChdXV1UVFQgk8nQaDS4RQwlG2/W3mTOrZ/jMFhC3YuGP9t9lx0GU0LggEFgwGDywmye4s2Jg3sJDg6mq6uL3t5e1q9fj0qlQhAEGt95h3/+61+Uenqy+PgJQq00BOzYgfVgs0eDwUBycjJnz55Fo9Hg4uIyapsAg8HAyZMnKS8vZ8uWLffdpkHik2PixIlj9s8JDw+nqamJtrY2i6ohMz4+PtTX14/ZCdnf35+amhp0Oh1WVlZ4eXmJui8pKSkoJ22lSmYqv4+X51GTuguj0UhUVBR5eXliJU54eDiFhYVit2y9Xk9ISAhHjx612J85b8YcyjILQoJJBbi6uvqO1T0TJ05Er9ffd4LrpEmTyMjIICoqirKyMmQy2bhquii0WhzWrQNA6O0lvLbuoYV9oqOjyc3NlcTvPiEkI0biY6PX69mzZw8JCQn4+/vf83qCIHDy5EmsrKxQKBQ0NDSwYsWKEQZMc3Mzb7/9Nr6+vmzZsgWlUonRaOTo0aOoVCpCQ0M5ffo0Gzdu5Pz58+Tn5xMfH09CQgI7d+5Eo9FQUFCAg4MDNjY2rF69moOpOajQ82PlB3yl688ojabkzDrcyE76M698/9859spsNkQ6oFWankQdNHI823OYNWsW165dIzw8XNSAMfb2cvPffsjf8/Kx6+xgxZGjuE2bhv+2bagn+Ijz+PDDD9HpdPT19TFz5kxmzpw5Yr6dnZ3s2LEDDw8Pli9fLlUgPeZER0ePKbuvUCgICgoiKCiIc+fO3ff65qakZm9NUlISTk5OXLt2jd7eXto6uzjt8UVx/JSO42RnZaFQKIiIiBCNK7lcTmRkJNnZ2WKOzLJlyygvL7eokFIqlUyYMAGNRkN9fT3BwcHivu9F1E2pVOLv78/AwAC1tbVjjrsdOzs7MVzl5eVFeHj4uDeGdH7hizD4W1Jv20bdQwr7KBQKYmJipFYEnxCSESPxsTD3JZo0aRLBwcH3vJ7BYODAgQM4ODgwMDBAX18fy5YtG1FxU1NTw9tvv82kSZNEJd7+/n527tzJhAkTcHZ25vLly6xbt459+/ZRWVnJypUr8fPzY8eOHdjb25OdnY2XlxdarZaEhAS2bdsGfW3sVP+CF5WHxX1lySLQPX+I6Us2o9PpKLp2gaUe3Vx+dSE/miLjR5MFFiVNJTk5mdWrV4tVU31FRex95TscViqYdvUq8Vev4fqVL+P71l9Q2NkhCAJpaWkcO3YMNzc32tra2Lp1K76+viPOS0FBAXv27GHx4sXExsY+4Kci8UmiUqnElhijMWXKFIqLi5HL5aPe2M3NGsciMjKSwsJC+vv7cXR0xMnJCbVajVarJSUlhcaAVRQZvQHw0RVTe+lDDAaDaKyYPQKTJk3ixo0bYidtjUZDVFQUBw4csNifOcS1aNEikpOTcXV1FcNDsbGxdw2VJCQkoNfrR1RA3Y2ZM2dy8eJFpk2bRl5eHm5ubndMfL5f1BMm4Lh+HQBCVxdBTU0W4oDjSVxcHDk5OVJuzCeAZMRIPDA6nY6dO3cyadIkwsPD72u9Xbt2ERwcTHNzM2q1mgULFozwSGRnZ/Pee++xfPlyse9QW1sb27dvZ8aMGXR2dlJYWMiiRYt4//336enp4bnnnqOvr4+DBw8il8spKCjAy8sLDw8P7O3tOXDgACGGAj5U/JRJcpNEuwE5ZzRLCfreKfyCJ1JbW8u2bduIiIhg8uTJ7Nm9iznRAThZySkpKWHr1q04OTkhCAIF777LG2+8QYWVhmVHjuLX1obP66/j/r3vIVMoaGpq4sMPPxQ7Ynt5ebFhw4YR4SO9Xs/x48cpKirimWeewc3N7eN9OBKfKNOmTePatWujLrO1tcXe3p7w8PBRb+xqtRp3d/cxK2bkcjkzZswQNVRmzZqFVquluLiYjo4OnKyUvK7fMHQsHSe4eeMGKpWKuLg40ZOiUqnw8/OjrKxMzEFZunQpVVVVFvkh9vb2yGQm4TxHR0c8PT3FRFhbW1s0Gg2NjY1jngutVoubmxsqlYqysrI7n7hhODs7I5PJMBgMCIJAZGQkFy9evK+S7bvh8tWXYFC6wHn7Dm7l5NDf3z9u2zejUCikSqVPCMmIkXggent7+eijj0hMTCQ0NPSe1+vq6mLHjh1MnjyZ3NxcfHx8Rm3oeOrUKY4ePcrnPvc5oqOjASgvL2f//v2sWLFCfBqMiYnh/fffx83Njc9//vNcv36dmzdv0t7eTm9vLy4uLoSFhVFcXEz+9UusHdjPyo73sZeZSkdrBFfOBP2Y+T/agZW1NefOnSMlJYVNmzZRX1/PmTNnmDNnDteuXSMgIICVK1eiUqnoaWhg549/zP6bN/GprGTp8RM4+vkS8NEO7JcuYWBggDNnznD69Gk8PDxoampi7dq1xMbGjjDWampq+OCDD/D392fFihWjtlaQeLxxdXWlu7t71DYEALNnz+b69eu4urqOGo65kxEEJjE5s+aMs7MzTk5Oor5KS2Uhh40zuGWcAIBLbzGtl01J47GxseTn54taNuYb66RJk0hPT0epVDJ9+nT27t074niuXLnCnDlzuH79OjKZTKxMmjVrFikpKXc8H0lJSeh0OlJSUu6rlYDZGzNnzhyuXLnCxIkTxzVJVj3BB8cNgwZfdzcRzS3jLrBnJiIigtLS0jG/ExLjg2TESNw37e3tfPTRR8yfP/++2gnU1taya9cuZs2axeXLl4mPjyduMOHVjMFg4J133iE/P59vfvObeHl5IQgCly5d4tq1a6xatYoTJ04QGhqKTqdjz549zJw5k2XLlrF37146OjooKSlhwoQJqNVqwsLCOHv2LC4t1/hS/98J6Ru6IO4zJHFq+t9Z/LkfUF9fzwcffICLiwsLFixg//794pNramoq69atE8ubM3fu5G+//S3VPT0kXLlCbFY2Tk8/TcBHH6EZTIT84IMPsLGxQafT4eTkxNNPPz2ibYJer+fMmTNcvnyZTZs2SeXTn3LuVJViZ2eHk5MTgYGBXLx4cUSYwcXFhZ6enlFLscGUjzLceJg1axYqlQpra2tkPS0YkfN7/SZxfELbPm6kX0Eul5OYmChqr9ja2uLk5ERzczNarZaamhrmzZtHQ0ODRajL399fLMueMWMGCoVC3IarqyuCIIxZGg6mvk22traieN694u7uzsDAACqVCplMhp+fHzdu3BhXb4nrV18UvTH227dTWVo6piDhx0Emk4lGmcTDQzJiJO6Lmpoa9u3bx+rVq++rCiknJ4ezZ8+SlJTE+fPnWbly5QgDqLm5mT/84Q/Y29vzjW98A2tra/r6+tizZ4+Y4GhuJnnp0iWys7N57rnncHIyyf/39fVRWFhIREQEgiBgZWXF1XOHWaPbx9quD7AaaAOgXbDhW7pv8srAN1kyczqnTp0iJSWFtWvXikJ9iYmJFBQUoFarxfLp+pIS3vnpT7lw/jz2Tc0sPH0Gj34dPq+/jtcvfk7HYK5OWVkZXl5eVFdXs27dOqZMmTLC+1JeXs4HH3yAh4cHGzZswNbW9uN+NBKPmPDwcAoKCsb0PMycOZMrV66QmJjIhQsXRixPSEi4o9BbQEAAra2ttLe34+rqipOTE52dndgPqkwfN04nUxEDgK2uCcWl19HpdISEhFBXVycm8M6ZM4cLFy4wc+ZMkpOTkcvlLFmyhJ07d1rszzxu4sSJCIJAS0uLKJB3L96YmTNn0tPTw+XLl++rUicpKUn0xly8eJFZs2aJzSnHA5W3N46bNgIg9PQQXV4+6ucxHgQFBdHU1ERra+tD2b6EZMSMG3uvV/HLg7k0d41/fPVxIS8vj3PnzvHUU0/h7Ow8YrlObyS3pkMUhYOhXI/y8nICAwO5ceMGW7ZswcXFxWLdK1eu8Le//Y1FixaxYcMGZDIZ5eXlbN++nalTp6LX67kxKOm/fft2HBwc+NKXvsT169e5du0aDQ0NKBQK3N3dUSqVlJaU4FBygK8O/IPQ/pvifgoJYLnufzhoTMLHXsWx/bvw9fVlxowZ7N+/H61Wi7e3N1euXGHlypVMmzaNrq4u9vzpT+z9/e/paG0lIi+fGWlpOM5MIujgQdRz53DmzBmOHj2Kj48PNTU1BAYGsnHjxhGl0T09PRw8eJCsrCyeeuopsT2BxKcfhUKBr6+v2HPodsy5Imq1mra2thGCbkFBQTQ0NIzZTwlg7ty5YpXTwoUL6erqIn7aFGzlJlXo38i+jBGTEnVMx2muHv8ImUzG3LlzxWofGxsbQkJCxA7SVVVVTJo0CaVSaVEa7ePjQ29vLy0tLSxbtgydTsepU6eAIY/JnW7OLi4uyOVyAgMD7ys3xNvbm56eHoxGI1ZWVqJHs6Ki4p63cTdcX3oJ2aBujNWOj2irrHxohsbixYs5duzYuHbolhhCMmLGgfLmbr6z4wZvXyzlP/aPrhfxacZgMHD69GmKi4t56qmnxlTi/dK/rrLij8n8dL+p0qK1tZUPP/wQDw8P+vr6MBqNIzRR+vv7+cc//sHly5f52te+RlxcHAaDgTNnznD9+nWWL1/OpUuX0Gg0GAwGDh06xOrVq5k+fTo7duygrq6OiooKoqKiOFVvxe8L7Ll25QLP6/7Fct1h1AaTm7gHK45q1lCxbh81gkmIz8/WwJo1a8jPzyczM5OEhARu3ryJk5MTW7ZswcbGhtN79vDhr35Fc8Z1bNramXv+An7t7Xj953/i9ac/ca2kmI8++gitVovRaMRgMPDcc8+N6PdkMBhIS0tj165dxMXFsWrVqvtWNJZ4/ImPjyc1NXXMG1ZSUhKXLl1i8eLFnDhxYkTS6uzZs8cUxgPw8vJCrVZTUlKCs7Mz4eHhXLlyBU97UyfztC43+qd+BQCFoCcg/y80NDTg4+ODXC4XDaz4+HiuX7/OjBkzxHDHM888w7lz5yx6Qc2dO5fz589jbW3NnDlzaG9vF7tr34s3Zv78+VRVVVFaWnpfRsKiRYs4efIks2bNIjk5mSVLlnD27Nkx9XTuF5WHB27f+pbpP4JA+JkznDl9ely2fTsuLi5iWExi/JGMmHHgZtVQZv/hrHvXRvg0YNYscXV1ZdWqVWNqlpQ3d5NcaHI178moIj3zJocOHRL7okydOnWEJkp2djZ/+MMf8Pb25tvf/jYODg5ikqubmxsBAQGcPHmSyMhILly4QH9/Py+++CIlJSWcP39e9L54eXnzbnYv+U19vCr8g5/yBh4DQ4qhWUwkfcabzP/O3/jH+aEmdtHuVhw5coSIiAgGBgYoKiriqaeeIjIykqvJybzzm99Qt3MXA52dhBUWMv3aNVwWLSTg4EFKgwLZtm0bMpkMOzs7amtrWbVqFbNnzx5xjoqLi3n//fdRKpU899xz+Pn5jedHJPEYYWtry4QJE8bMA7G1tcXPz4/y8nJCQ0NHqPX6+vrS1dV1xxv+ggULSE5OZmBggPnz59PX14e3vUZcXjflO+isXAHw6c4if+9/YzQaWbRoEefPn0en06FUKpk2bRq5ubnY29tTWVmJo6MjcXFxfPTRR+K23NzckMvl1NfXExYWhpubGydPnsRoNOLp6UlfX98dWxE4OTnh7e1NcHDwfXkjnJyc8PHxobq6GmdnZyorK4mPjx/XsI/z88+hiYgAwDrzBuqKCvLy8sZt+8OZMWMGN2/e/MSaQxqMArfqOtHpx6+y63FFMmLGAYX83rs0f5ooKipiz549LFq0aEQC7u2cyhtyjfcNGLlYUI+7uzvFxcVs2bLFQgSvu7ubt99+m5MnT/K5z32O5cuXMzAwwMmTJ7l8+TILFy4kJyeH5uZmDAYDp06dYs2aNcTExLBz506KiopoamoiOjqa/n4dR4u7mNOxj/Oa7/CUcqiEtQEXDjh+iQkvH0Pp4MVf399JWr3pR20lNzI/2B5vb2/S09NJSkpiyZIl3ExP5+3/+i9K3/orhtpatN1dzDt3Hh+NBp+/vkXHV77C9hPH6erqwt3dnbKyMhITE1m7du2IxN3q6mo+/PBDSktLefrpp5kyZYrUefozgFntdqzS4KSkJDIzM4mOjqaoqEjsVG1m7ty5d7xZazQaZsyYwfnz51Gr1SxcuJDe5qHy7GslTahW/rf4/4SGbeReNolKzkhM4kfvnOb/ThcSFj6RsrIyJk+eLFYRLVu2jIaGBot+UOZQlCAIrFq1Cp1OJ1b0LFy4kOPHj9/ROJk5cyZ5eXl4e3tz8+bNMceNdp6uXbsmJiYHBgbS2to6bs0bZUolXr/4OQw+WAV9sI0rycljJld/HBQKBYsXLx7Rr+ph8ZsjeSz9wwWe+/vD6RH1OCFdUccBuezJMmL6+/s5dOgQBQUFbN26VWxqeCdO5VpeiC+WtuPn58fatWvF8JHRaOTcuXP86U9/wtvbm5dffhlPT09yc3PZtm0bEyZMwN3dnXPnzuHo6MjVq1dxc3Nj69atpKWlkZqaSmNjIz4+PtjZ2VGSdwOripO8IfySrysPYCUzuZo7BBv+W7+V5s378Z37PPv378fGxoYydSDmB5OlwTYU5mXj4+PD+vXrKcjP593f/Y7aN95AXljIAAIzLl9hYlU1Li+/TOuvf8Xe0lIaGxvx8PCgsrKSyMhItmzZMqKnUV1dHbt27SIzM5NVq1axaNGiEbowEk8uGo2GyMjIMcMHCoWCBQsWcOrUKVavXs2xY8csqpU8PDwwGo13bIIYHh5Oe3s7dXV1REVF4WI1dA06fC4VXehKdEFLTMdj6Mbl/Kt0dbRzsVHFnhIjvztZwNGcehYvXsz58+fx8vIiKysLmUzG1q1b2bdvnxhWcnR0ZMKECWRmZoqJ7ikpKbS3t+Ps7Iyvr+8djROVSiWWXN+4ceOevRFKpZKkpCRSU1OZN28ep06dYsWKFZw8eXLcqomsY2Nx2roFAHl3N9FpVzl+WyuG8cLLywsnJ6f7MuQehJZuHe9dLgcgrayFuva+u6zx6UYyYsaFJydhq6SkhA8//JDIyEhWrFiBWq2+6zpFFTVcKWmyeK8WZ4uS4YKCAv74xz+Sn5/Piy++yLJly2hsbGT79u00NDSIje46Ojqora2lqqpKFK57a9dxXs/TcLjFDTcPT2pKcgmt2cOXu//Ic/KjOMpMF7QBQcEHhsXM6f9/vKFfzfbzWej1euLj47lyPYsjt0xhP6VMYEO0Mxs3bqS6rIxt/+//0fHGGyhzcmhVqYnJymbq9Uwc16ym9j9/zXFrK/SCgIuLCzU1NUycOJFnnnlmRIuF6upqPvroI65evcrChQtZuXKl1PPoM8qUKVO4efPmmDkcZgmAhoYGZs+ePaKH0fz58zlx4sQdq3qWLFnCiRMn0Ov1rJw3Q3xf4+zNv959F/Wmt9BZmx5AvPqLufXPr/OnM0MaNdfLmvHw8MDPzw9ra2syMzPp7OzEx8eH+Ph4/vGPf4gelqSkJHJycmhra8PNzY158+bxz3/+E0EQSExM5MaNG2MaFsWNXXzveANvXe9m+vTp7N+//56rlUJDQ+no6ECpVIr9lJYtW8aBAwfGrTeR2yuvoBxsvmqbkoI8N++hhZXmzp1LTk7OfbVkuF92p1dZhJFuVLU9tH09DkhGzDjQN/Dpjzt2dHSwZ88eCgoK2LJlC0FBQXddp6enh+PHj/P20csYsfRGVbT2UtrUTVVVFX/5y184dOgQixcv5qWXXgJg3759pKamMn36dGpra8nPz6etrY2ioiJWrVqFl5cX+/fv51JeJTvq3Wg02NDa0YZ/2Yd8tft15gmXsBZMIlIGQcYZ4zROTXyN2uiv04bJcMjVu5OXl0d9fT0FRg/6Bq95KyKcaSrOY88f/kDfX95CnpdHvY0NoYVFzLhyBdt5cyn+2X+QGhGByt5e1NOYMmUKW7dutSgNNxqN3Lp1i23btnHz5k2WLl3K6tWr76uLt8STh0KhYOrUqXdshLhgwQIuXLjAhAkTsLOzs/DcODo6Eh0dfUeNETs7O5KSkjhy5AiRfkMd0DXOXhiNRg6fTUW95V2Ewd/m5NbDhPUOeQEu5pRgNBpJSEigpKSE6dOni3kr8+fPR6PRcOjQIcCkGrxs2TKOHj2KIAgkJCTg4uLCRx99hEKhYOHChZw8eXLU4/yvo/lkVbdzrUXF7nMZREdHc+LEiXs7kcCKFSs4deoUSUlJXLhwAWdnZ6Kiosat7Fphb4/PH/6fqB0T/OGHpB49+lCqlRQKBWvXruX48eMPRZvGaBTYlmZZxXVTMmIkbqexs5+3U0opbTJ9CfsGPr3dSgcGBkhJSeHgwYMkJSWxbNmyu4Y+dDodycnJ7N69G5VKxY2mIU/UgolDoaff/usgO3bsIGRiJFaTV3Ory5RIe+rUKcLCwtDr9aSmplJfX095eTmzZs0iMDCQEydOkJWVRYvBiiPdAcSTzVuq33NO/V0WyS6jEkyud70g5yP9XBbofkd13HdpNtgyN8QRJ43pon2tph+5vTslFVWcLDdpacgQiM49gfZf7zJQXEKDvR0R+flMv3qNvlkzufadVyicNQuNszN6vZ7e3l4WLFjAxo0b8fb2FufW3d3N5cuXee+992hsbGT9+vUsX758RF6MxGeXqKgoamtrx+yppNFomDNnjqh9lJ+fb1GeHRcXR319/R2f2kNCQnB2dqauJFd872R2Lf5Jq8nLyyOtXoFx7o8AkCPwlvr3hMlMSe/NA2rOnTuHXC5n5cqVXL16FWdnZ7Fp5PPPP09+fr7Y18nV1ZWgoCBRWfjZZ5+ltraWc+fO4ePjg7W1tUUuDUBTVz9n8ofCYtY+4ZSUlKBUKu+5Wsfa2pqlS5dy7Ngx5syZw/79+4mOjkav15OVlXXX9XV6I7vTq8ioGNsosZk8GY9XTedJYTQSt3sP+7Zvf2C13dKmbn5+IIfU4pGCgDY2NixbtmyER+piURM/2n2TW3Vjl9jfjdSSZvG+ZOZGZfsYo58MJCPmAXjp/XR+eSiXVX80lUL2fgqNGIPBQHp6Otu2bcPJyYlnnnmGzCb44j/TSCsdvdqgv7+f1NRUPvzwQ3p6ejAYDCjVGsp1WgAcrFVsjRoSbasyOvDNb36TbcVK/vt4Ad/bm0ePlSsymYzU1FTKy8tpaWkhPj4eT09Pzp8/T05ODlZWVqiVAjYNlzmi/AHvqX/LUsU1FDKTsaRDyUWmMl/3O/5N/1UEGw8i/D2wtbWlpKiQRQGmEJgA/OGGwG/znWjvN3nLJrcVYWytpc3enkmZmYQVl1C+dCnXX/428lWrsPf0pLu7G09PT5555hkWLVokelWMRiNFRUXs2rWLQ4cO4eDgwHPPPcesWbOkcmmJEchkMlFheizF2aCgIHx8fLh48SLr16/n4sWLotEjk8lYsWIFJ06cuGNp8axZs6irriTR3/Q77DXA17Zl0uy/gBNnL5DvtoJbNlMBcJR18576NXxl9TT3Gmnr7iM7Oxt7e3umT59OV1cX6enptLe3o9FoeP755zl06BDl5aYci+nTp1NcXExVVRVyuZwvfelLXLt2jevXr7Nw4UKuXr1KXV2deGz7rlejH6YbVa8zNcu0s7MjNzf3npN0vby8mDjRlIgcEhLCqVOnWLJkCQUFBeTm5t5x3XdTy/jezhts+evlO+aHOG3disPatQDYNDcTceQoe7Zte6Cw1U/2ZvHOpTK+9kE6A4aRnnpPT0/i4uI4dOgQRqMRo1Hg2x9eZ/vVSn5x8MFlOrZdGamlc7OqDaPxyUl5uB3JiHkA0stNFn23zvTlvt2IeZxFjfR6Penp6bz//vsIgsBzzz0nCq79eG8WZ2818qtDlheF7u5uzp07x/bt22lqakIQBOzt7XnmmWeQe4TT1W/ycvjIWslKPi4mGRa2wXffOsSZQtP5EpDx7sUSiouL0ev1TJkyBY1GQ0pKChUVFThaK4gYuMnCmj/xSud/8T3lRwTIhxKG6wVH/mfgKX5m/1v+5fA1KgWTCz3MpoeGhgZsbGzo7e1lqmMfykGDp6nXyIAwGOoSBJY0ZBBz4yZKKysyN26k7htfR5uYCBoNPT09JCYm8uyzzxITEyOWSre2tnL27Fnee+89amtrWbJkCU8//TQREREoFIqH80FJPBHY2Ngwf/58jhw5MuZ1IT4+XtRf2bhxIydPnhQl/W1tbUlMTLxjebJMJmP16tXM1ZSzIHQojPlhei1/b41gwwelbGr9OplGU4jYQ9bGe6rf4kYbftEJZGVlUVpaSkREBJ6enjg7O7Nv3z56enrw9PTkqaeeYvv27VRWViKXy1m3bh1nzpyhsbEROzs7Nm3axOnTp8nLy2P9+vUcO3aMzs5OBEFgV3qVxbHm1nYwc+ZMqqqqmDp1KqdPn6aqynLM7ZQ2dbPq/5L51y1o6+xBoVAgl8vJzMxk3bp15Obm3jGH5crgQ5lObyStbOxycJlMhucvfo4m0lR27VBYiOfhIxzaseO+rumdfQPiPtt6BihuHD2ROSoqioCAAPbv3091azfN3SYPc3Z1+wPdQxo6+zieYzIgXbVq5oaZmsh29Okpax7/0NXjwuiiHxL3xe05Mf16I1aqsW9uXf16DmTWkFPTTn5dJyqFjN+sjyHITXvXfen0Rn6yN4s+vZHfbojBVnObJkljFxeLmkgubCKnup0lUZ78dFUk/X29ZGRkUFxcTGxsLM8++6yFnkl77wAtgz+iW/WdGI0CtbU1XL16la6uLjHE5Ovry/Lly1EqldTW1vKXQ2mYv0YrJ/nxzOwl5Hx4ldMVAwwYBQ7XWIam8nu1bAzyp7G2ikupl7nZ70SooZ6nFBeI7C1GyaBBOCzFphB/UtWz+WXHEvQoidTL6OgdejKNctDR0dGBymDA0NCAMjubxU12HPWcBoDTQCfh7ZVE6qqRh3hRPX861v7+qNraUGm1TJw4EX9/f9EgEQSBxsZG8vPzKS8vx97enri4OObNmzeifYCExN3w9/enrKyMzMxMJk+ePGK5TCZj+fLl7NixA3t7e9avX8+ePXtYsWIF7u7uhIWF0dLSwunTp1m0aNGo+9BoNDz31Aasdu1myrzJvH6hEvNlqV9Q0o+SL+h+yCnH3+DaV06AvJ4d6l+SkefKxo0b2bNnDwMDAyQkJHDu3DmUSiV79uzh6aefJjAwkKhZy/jHBx/x5eeeZsKECaxfv57du3ezYcMGAgICWLt2LQcPHiQhIYEVK1awb98+omevIP+20EhBXRd6o8Dq1avZuXMniYmJnDt3jjlz5oypn/R/ZwrJru4gu7oDQ6w3suISAgL8KSkpwc7OTjxf5s7XtzPciMit6WBNnPeIMWbkVlb4/e1vVHzxBfoLCvDOzaX4gIr9RiOrt269p4eWyyUtFqrl2dUdTPS0B6BXZ+Dl7dcxCgKvb5lMXFwcSqWS9/afBEwe5I4+Pa09Azjb3r2oYjg7r1WJXq+npvlio1ZwvsDUbfxmVfs93V8+jUhGzDhwe05MV7+egvpObNQKQtxHVqd87f10URjOzJ/OFvH7pybddV/7rlezc/DpJtxDyzcXDHWQfnXPTT5Mq7QY/86lMnILS1jn3c2UyZNISkoaVaukpm3IzarTG/nT2x/gYi1Dr9djb2/P5MmT8ff3p6Ojg5SUFLKzs9HpBshpCwFAKQebjjJOnaoi3F7L7dqXGrmRfqMcg9FIRWEmCxQ38dCX8yrVyJUjnzoqjG7sMc6myiaGpIkBOKnUaNOMtA1AXosRYfCr66HSYVdbiry6BnVFBVpbG5qcnZlubCCyrAKlCmROWmwD3LEJmEaPIKC2s2NiRARBQUHiRcloNFJVVUV+fj41NTW4ubkxceJEZs6cKXlbJD42s2fPZvfu3WL59e0olUrxZjxz5kw2bdrE3r17SUpKIjg4mBkzZnDhwgUuXLjAnDlzRt2HVqvlqac2s3v3bv721Az+damMWzWtYOtMQ6cOrULBtdDvM6fwP7HpqyNIXodH2ufp93qDTZs2sW/fPnQ6HXPnzuXo0aOiR0YRNIPvHqzCTh2J7L3tPLVuJREREaxevZq9e/eyceNGQkNDWbVqFadOnaK5uZkZM2bw050XMN+YbdUKunUGdAYjRQ1dRHjZs3nzZvbs2cPUqVNJTk4mKSmJwMBAizkJgmCRV3LwZi3hS6JQVuUzYcIEsrKy6OjoYP369Rw9epT6+nrmzp0rXuMGDEYqmod0X3Jq7p4fonRxwe9f71Dxwpfoz8sjOPMG1V3dfNjczOaXXkKj0dxx/YtFltf2nJp2Nk01dRjfnVHFiUE5ir3Xq3luhj9RUVEcLugChtYrbeq+LyNGEAS2XzWFkmQy2BrvZ5Ebk1nZxrrJPgwYjPzuRAE6vZGvzQvGze7Oc/k0IBkx48DtRszJ3Hpe3ZOFXAanvjvXwgLW6Y2jJnvl195bMtepvKHwysEbtaIRU9nSM8KAMZPWKCc4MIqt4eGjehK6u7tJybBMkGvRK0kMCyYqKoqenh6ysrI4cuQI/f39ODg4kJCQQHWngdYTprkEaY30d7XTUN1On15AQRQG5CgwMF1RxDrVNbSGZmbJs3CkGwxwW0ETbYKWQkUYf+xfTrIhEjnwXY8Wuru7kct7ibSWcWnAQay2AJhWeR21oZRmGxusXV2QG4zIjAJ6ewec3FwxuLmhsLfH19eX4OBgvL29kcvlCIJAU1MTpaWllJWVodPp8PLyIiIigoULF0oeF4lxRS6Xs2HDBvbv38/AwMCo4pE2NjY89dRT7N27l6ioKLZs2cL+/ftpa2tj6tSpzJ49m9OnT3Pp0iUSExNH/Y7a2NiwefNmdu3axb/Nn0p7ux0XLlzg+W89j0aj4YMPPqDG/kUSe/5JhLwSW3ox7n+B5tKXWL/m5xw6epzW1laWLFlCcnIyTU1NfHAsHVDRqTMStGAZhw4dorS0lGXLlrF8+XJ27drF4sWLCQsLw2g0cv78eeqbWsju9ACMWCnlvDArkP87UwRATk0HEV72aDQa0ViLjo7m+vXrVFZWMmvWLNEIKW/uofa2PJbfnSzgreem0VKRiYuLixjujZ+ziF3nM6j48CM2r1+DjY0NFS09Fjk5uTUdCIJw19+30skJ/3++TcWXv0JfdjY+RUWo29t4t7mZzd/4Bo4eHmOum1zYaPH/nOoO8fXVYeGsvNqh93sUWm43Yqb633uFY1lzD5UtpiTkxCAXfJ1tsLMaur2bK5T+damMv5wvBmDP9Sp+ujKSDVN8PtXXO8mIuU/MIRcz/XoDvTpLI+bVPSaDwCiYEq3+fdXQk1d5c7f4o1ow0Z2Sxi7KmnsobuzCYBTuqP7bN2AgZZiVf6u+k1t1nYS62/LOuaGY8HQ3gRfnBtOvsuflHTcwGAU+TKtApZDx89VRyGRQX19PUVERxcXF9Pf3k9FhCziK27Bx96e0tJRLly5hNBqxt7cnNDQUQRCor68nLy+Py40KcR3H/lo6OjqwpQd/Qzk/V2UQTCVx8mJsZYNJjaM4NPKMfpw3xnHaMJl6TRBJTj0kV5u2GaTpQl9fRYtuAE1XF/H1nVzyWW2xvodND52CFkEup9/dHYWTE1bOzjj5+BAcHExQUBDW1tbo9Xrq6+tJT0+noqKCnp4e3NzcCAwMZM2aNZIYncRDR6FQsG7dOg4fPoxOp2P69OkjxqjVajZt2sThw4dpaWlh3bp1pKSksGvXLpYuXcrChQtJTk5m3759LF++fNTvrZWVFVu2bOHMmTP09/ezcOFC3n//fZKSkvjyl7/MRx/t5JmB/+A15V9ZpriKHAG3m2/SUXCAlZvf5Ga7LTt27GDFihV4enryWn6RuO3KHgUvf/3rvPvuu/z1r39l+brNRM9ezvkLZ4mMmMikSZNwcXHhtfeP06UzxbNCbXoI0g5dI4d7JlQqlZgHpFQqsbKyYvv27axatQp7e3tSS4Ye+ILcbClp7EYQ4Ds7bnDoW7Npry4iJycHnwm+rPr9KRr75SwJ90P46CPi4+OpFCwb1TZ362jo7MfDfuR5O5Vbz4XCRj6XGECIuxaFoyN+77xD3c9/TsehQ7g1NmF19CgftbcTMWkSMz/3OeS3eWlr23spbrTMP8mpacdoFJDLZVwrG6qQGl6FdHvezNlr2ayJcb8nnS7A4sF4Vqip5YSjjZoAFxvKmnvIqemgR6fnb8kl4ri2ngG+t/MG+2/U8MazU9BqPp3mwKfzqB8ht/eieDuljL479Kfo01saOIUNQ1/WSb6OqBQyypp76NcbqWrtwd/F9vZNiFwpbaHnNoPpf3acYY5zJ/tLTFa7TAZ//PJCvBxM1TJGZLyy/TpGAd5NLedGbgEL7WpRyEwXEDc3N3x8fMjL6YamIbfrldxSfAIFvL296e7uRqfTcevWLfG1WuhHqVOxRdFBuKySRG4xoacBLYPbGCMC0y7YkGyM4bwxjguGWJpljtjJ9bQKauiDtuqhczmj8hqeXeV029rSaWcHzhpcjZ00yU0hOmdjF66OGmxdvJgwcSL+4eH4+PigUqlobm6mpqaG06dP09bWhkKhwMPDA29vb5YtW4at7djnWULiYSGXy1m1ahXnzp1j9+7dLFmyZIQgokKhYPXq1WRmZrJt2zYWLVrExIkT2bdvHxEREcyaNYvKykq2b9/O4sWL8fHxGbEfpVLJkiVLKCkpITk5mUWLFpGcnExubi6bN29mW0MaX2t+mVeEPXxbuRcZAvZ91fDeGkL9FhE84xscPHwYrVcQvcah8POFnAp+uDSMF198kYPHT7Hs9RR6BSURnl4soIHcgt1UWIdytMUFMP2W4+x7qc27Bpg61+fWdFgcq0KhYNmyZZSWlnL+/HkmTZrE/v37CQwM5GL5UNXf/2yK458XSzl0s5ZunYE3zhXzP5sn4efnx39/eJLGfpPH+2JJG6//+GnS0tLYcz0XsKwczKlptzBimrv6+Y/9OWLfu7TSFo6+PBuZTIZCa4v3//w3trNmUvfLX2HX2cXMEycpKinlHzdvsnj+fPxXrEA2mF+YcluaAJgKQMpbelAr5VS3DZVs36rvFL1Ct5dFdxit2LZtG7GxsUyaNOmu7UouDzP2ZgS5iK9jJziK95ffHs2nvsP0QOliqxYTiS8UNPLH04X8eEXEHffxuPLYGzFvvPEG//M//0NtbS1RUVH84Q9/YPbs2Y/6sER+d+IW88LHluVv6LAsrSysHzJiQt216PRGjufUi8tuN2IEQaC9vZ2GhgbeP1M+Yvu3+rR8eeYsmnJMolozg12Q93WQVVFEaWkptbW1LHVUc6zVDQEZN9o19OHPVr8uetpbKCkxVQvld/kA9uJ2e3QDdJXnYD3QgrPQhhPtONKO0+CfLb339O1px44qmTd1Mh/KmcBrPQsZQCUun2Yoxb23nSNWkwDowHRxsRX6sXWRUensh3JgAJlRQKlSEqtq44zBdNFfFR/MmhkzaW5uprGxkfT0dK5cuYJCocDFxQVvb29mzpyJo6Pjp9pdKvFkIZPJmD9/PnV1dezbt4/IyEgmT55scaOSyWRMnjyZsLAwTpw4gUajYcWKFRQVFfHee+8RExPDhg0bOH36NHK5nFmzZuHi4jJiX0FBQXh6enLx4kVcXFxQKpX8/e9/x1EWgoCK/6ffhNrBl439u3HXm3Lt7CpOQcUpNjlHcL5vCS5MpBmT/lFRi443//IW8+fNReETQ69wHYC8ui7y6kCtsEZnGAprh7tZEaw1IJeBnUJPp0FJVlWr6UHoNi9DYGAgXl5enD17FqVSiU6n41xuKyDHVq0gdoIDv90Yy/mCRjr79OzLrOb7S8PxcHamQDYBaAOge0Dgjfd2sTA+BrWrNdSNDO8smGgKB53Kreffdt+08LDn13VyqbiZmSGu4mfhuG4d1nFx1P3s5/SkpRFWWIh3TQ3nm5sxHD3KVF9fwtauJaVoaDuzQ13F3Mfs6naMt1UcdfbpqW3vw9lWbWHcADTrFDz/4vNkZGTw3nvvERkZSUxMzLAWLibPDpjuEWYjxlatIMZnSKsqzteRAzdMJfvvpg7dP/7xhek0d/Xz4nvpGIwCp/PqJSPmYbBjxw5eeeUV3njjDWbOnMlbb73F8uXLyc3NfWSdgG+/FxoEgX792DoC5c2WzcQKG4ZciKEeWnTDNAQyimvxU7bT3NxMQ0MDXV1dyGQyHBwccHV1JbvZ9CNQymVM9LAlu7aLytY+vv9BKuYEE9uGLD744BIymQy1Wo1cJiNK3YijtoHMbju09GLf2U1pXhtJVhXYGHtQC73EGeTYq7twow13WRtaWR9YRs7uSpdgQwMu1AuuVAueVBs96BRsQRCQG42o9HoC5M0UKky9hmyFfqLltSitDDgKPbTJbMRtTdJXE6JRonV1RePmjsrTgx6jEW1TG0XFegaMEKQvp6CgAzc3N6Kjo3FxcUGlUo11eBISjxWenp48++yzXL16lffee4+goCAmT56MVjuUQ2dra8v69euprKzk/PnzGAwGkpKS6OjoYO/evRb9xuRyOZMmmTwTw5PRbWxsWLx4Md3d3Vy6dInu7m7smroAk/e2zW8hl9STsCvcS2LvKWwE0zXLqiWPpS15LLWCLGMAycZYbhqDcNL6cPrkCU60ewCW4o46g+kapZBBvLOOFRP6mTElCb1ej3dlPre6oGdA4D9ff4tIP3fmzJmDl5eXuL6VlRXLly+nq6uLvadT6TKYDDtvdS+HDx4gNjaW5xL8ePN8CQMGgbcvlrIi2ouMijaL46juVXLz5k0yiu0wJxebOX+zmE2RWnRqe77+QYZ4DVYr5aKn/e2UUtGIMaMJDMTvX+/QfekSjX94HbKyiE+7So+1NXktLVwqL+eM/WJQWGMjN7LRqY/kwXXN4ZzbuVXfibeDNbdXVJc1dyOXy5k+fTqTJk3i1q1b7N27lz65FX++ZY1CoWTnS0n4udhQ0tRNQ6fpYXlagDMqxZAxHDdhpPhmUrALk3wdxeUZFW0UN3ZT196Hp8OnL6wuEx5jUZOEhASmTJnCm2++Kb4XERHBunXreO211+66fkdHBw4ODrS3t2Nvb3/X8fdCXVMbz/xup8V7kS5W5DaPLqKkkQv8bZYCY3cTA7pe3iscoLnfZHJs9GijQ6/gRLMdcoyE2eqY5zaAQiagwIBBP4BO18uArpfOPj05/fYoMeAo68FZ1kOr0QprWT9W6LCmH2uZDi9ZG2qZHhUDqNCjZmCobHmc6BC01OJMuiGEW4IveqxwlBnoGXTbinaeIIBMhkwAmWBEbjTSYNSyXxaHIJOzuu86MfJWFNZW3FD6cKB/qBfRDyJMXimtVotWq8XR0RFHR0ccHBwkQ0XiicNoNFJSUsL169fR6/X4+Pjg7++Pj4+PhRRCZ2cnGRkZVFVVoVKpcHJyoru7m46ODqysrDAYDHR1deHs7ExISAienp64urpaGDV6vZ6dyVm8etz0hB6raSLRqgY7OzuctFb4tF4mojMFD+PYSsEDMhUVRjeqjS40CI44qqHC6ErNgA3OWmu8lD0IAwMIKmvUGisMRoFcnQvXWq0wIGeecyeeii56+wcwCqC1s8PX1xc/Pz88Pb1QKZUcuFHNHweTged7GoiwagNktPfp2V7vhkGQYaOUE+1jR1q5ZdXRhsk+bI525Ivbcuk1gK1cT78gRy/IcdLAV8N0nKkykNZqumbFedrwvaXhfH93Lg1dJoPgX1+MZ4LT8FDU0BOsgEBPWhqdJ07SffUqDAxQqXXnVzO+AIDvQBOL2rP4p+t8ACJ76ulS21ChtBu2DRmfc+vHy1bFf5WNDBe9O88ZF2slMoUC5HJkcjl/vdnM3hKTkRlp28vT/pDba8uOUpPx9cVoJ56eaDZcZPQZjGzYV85wrbvfzPZkiodpXv/KaeXDvDYAfhDvxkL/UXq9jeXFlskQ7P1RODmhfAhtVu71/v3YGjE6nQ4bGxt27tzJ+vXrxfdffvllMjMzOX/+/Ih1+vv7LZQxOzo68PX1HVcjpjbvJl47Hp9w1njTIVjTKDjSiCNqGfRhTSsOtGJPq+BAO3boBQVXDP7kGU1PUEtlOfgbW1AYDcgNBhQGAwpBQKlQoFQqsVapsbaywsbeDhsHB+o0LqhdXJka7o21tTVWVlYo1Ro2/OUKt+q7WBrlwVvPT3vEZ0JC4tGg1+uprq6mvLycmpoaDAYDMpkMrVaLra0tNjY2WFtbIwgCzc3NtLW10dnZiU6nQ6/XYzQa0el0GI1GDAYDgiAgl8uRy+VoNBo0Gg06hTW/KzKFn0Lt9Gz1Mm2nt7cXg8GA0WjAQ2hAMHQyR55FtLzs0Z4UiceOHkHDX+rWszwmhohvfnPct3+vRsxjG05qamrCYDDgcVspm4eHh4Ws9XBee+01fvGLX3wSh/fYohcUDKBkAKXptaCk36hGZ1TTb1DSa1RzThNDO7ZoBvQktt6ic8Ca33utp1FwoJchd+IPyg4zTVeHp1qDj0aOUqNDad2N0lZLqswRMPUi+mlSLE5uTigcHVA4OqJwcED+ADL8219M5GpZi5hdLyHxWUSpVOLv72/RJd1oNNLV1UVPT4/4p9frcXR0RKvVYjAY0Ov1DAwMoNPp6O/vR6/Xi++Z//R6/eC6nWhkDvQLSmq6jNTX14sqsQqFAoVCQdZAOEf0ofw3W5muKMFVaCBcXkWMrJQIeSWOdGIjG72dgsRnARkdnp5c7eriUWbTPLZGjJnbEzLvVOP/6quv8t3vflf8v9kTM65Y27HLYCk2ZYWBvhHlOAJm92O4oMNfgELsOYTJKEuglURM5XYH8KAQOwwo+AqVOAgGQDGohyKnGyX/ThQ6lLgo4D/9dSBXcKHLhv+qdaBXUOOqUfFhpNFU8ieTATIUahVKlQoblQqZ+U+p5MVDTbT0G3GzVfCDr32f3FY9FR8VmKanktM7KPVp860fkDAzkNvp6tdT+PPjprl52jNh9ejiW/eLk62aJVGe47ItCYknCblcjr29/bh5lAGuvHmJa+WtdAtqvvGd72NvZRmm/dOZQo6cMF0XtmxYzz8vlXK0ugOZDGYGu5JS1Ig93ex8JoBwByPoukHXCf1dQ68H+kAwgGBEMBp4P7UEvd6AVi1n8xQvMBpMy2+jrXeA49mmggdvRytmj/Jgk1LURHWrKYwvl8GqWC+uV7ZR2dKLDIEQdy1Fg9WgU/wdkSETW8aolDIG9CajbXqgE4EuQ3lI6RUtFDeYqoViJjgQ4WmP6Xo+Ot39etLLW6nvMB2LtVrBylgvZMjIqm4boQE23V1Dfms/XXpTU047hUD7YO7PNFUP1wZMuYFB8j4iFD2mXQsCxUYr8gXLwg8FRgyD3YPc6Ge6bKSYX4+gIBs77NAzka6h6NDglNJwpGkwb2guzdjeY/qBgJIX9QPYL1x4T+MfFo+tEWOO497udWloaBjhnTFjdpU+TBTOXnx/4KW7jvvhson817F8AOw0ShKDXdBaKdmTYWp4NmXrZBwG5a9rjuXz7jmTANGiL0xn/kTLaqdzGVWc/8jU8fVLSYE4DOrOLNTp+b8/X6SqvoufrpuE8+SRpZajEZKeSlpZC429Bvq9JtDYM1SeNy3AWcyoL2savd9GZkWbGGOdFjD+sVAJCYmHT6iHHdcGb+pFDV1M8bP8LQ9Plp3i78T1ylayqzsQBAb1qmTIbZwIiY43WRF3QQYcKks19RXSg9Z/CvUdfaiUcjZP9UWtHMoL2XuxlF9kmnq4/XtCBLNnB43YnnV5Kz988xIA6yf7sHnzJLIvFPObI6brrlObila9qT3JtvkJ2GqU/NufL5pWHsyx1SjlXHt2EQwz4Bwauvi33w+mK5SBX4cNc8JcCXTVopCBQi6jX2+ko3eA5m4de3OqLaQvfrkyClliAACVWbX84IMMi+NO/fwCDh7KE0u6ZXpT+qC3gxU7vprI9//7LACLIz342+eGwuo/e/OSaIRFetmTW2tZqv7q8onMnRs84jzZAPNGvDtE7rki/vuYqfv4r9dF89wM/zuMHkIQBF56O42Qdi2Li5pICnk0HvTH1ohRq9VMnTqVkydPWuTEnDx5krWDnUYfBfeaQLQs2lM0Yjr79aLUtJlQjyHLP9R96HVhQ6eFEVPW1M0vhzVkXDhsmY1ayd6vz6SzT39fWeXB7lqxEVpxQ5eFIubMkKGywJIxjJjhqpPTA5xHHSMhIfF4EzbsGnSzss3CiBEEgesVphums61JNG2SrxPvX7bskjwz2PWOAp23E+ltLzZH/Nqwm3ttWx/fXxou/v/SMPG2pODRb45T/Z34f0/HkV3dwcuLTMrlsRMcxeWtPUP91YLdtThYq1DIZRZ9jZZEeWJ3mwcqxF3LoggPUR29oqVnxLxHw8vBit+sj7G4fkd5W3rOfByt8XKwJszDTjRizFmpgW62eDtai1VSwx8iGzr7yBj8PELdtfx4RQTP/eOKxbaH68PcD6bzazJiUoubeW6GP2fy63nzXDFJwa58Y36IhYFpprixm+RCU5++/NrOR2bEPNZdrL/73e/y97//nbfffpu8vDy+853vUFFRwUsv3d0T8qiwVSt470vx+Dhaj/njVshlBLoOuQXDPIYywofryLT3DPDCO1dpG/wxzglzIzHY8otqq1Hed1lcsNvQvosbu6lpH9IoiPZ2wG5QuXF459O+AYNYSn6tfMiImSYZMRISn0pCh/V1+/nBXBb//jz/fSyfypYeSpu6RSNgsq9JZ8lcljuc+81fG0tKf3dGFcZB46KrX8+FwcaFLrZqJnqOUjEzyPrJE/jpqkgxFBbt4zCimEarUeJup8FKpbC49pnWH70Z5O+eiuNHyycyI8gZleLORppMBs8k+HHiO3NGeNH9bpP/nz7ouQ4fZU5BrloUchn+zqZwUnlLj2hwncptEI2dpVGezAxxIWTYw6+dRjnCYLpXYnwcxGO8VNzE2VsNvPhuOlfLWnn9dCEb3rxIySiduM/mN4ivF0wcWyvtYfPYemIAnn76aZqbm/nlL39JbW0t0dHRHDlyxCLh7ZPmTl/nhEBnPvzKDFGEaLjFPxwnGzUa5VAOTbCbFpnMZJGbFX11eiMvvZ8uekNC3bX86ZnJ4yLaFjzsy1/U0EXtsOaPXo5WBLrZcrOqnerWXlP7+tIWXvjXVRQyGQsi3Lk+6Gb2drDCx/H+E3glJCQePZP8HHGyUYnGSmFDF4UNXbx1oYToYTfEyX6OAAS52mJnpaSzb0jvZNZ9Pn2viPbiG/M7KGnsxt/FlkvFTdysaqe2vY/rla1M9XfmVG49/YN6LStivMTr6b2g1SgJdhvKhQFTuwLzdTPK24GCwQdFF1s1s0PdRt2Og7WKl+YG89LcYLoGc17aewcwGgWMgoBSIcfBWoWDtQofR+sxGynKZDKivO25XGJ68DM/9I1mxJgfbANcbSls6EKnN1LT1ouvsw0ncofSKpZEeSCTyfh8UgA/3ZcNwPRAZ5SKB/NJKOQyZgS5cDK3ntaeAb7yr2sW/aayqztY+ccUfrMhmvWTJ4jvnxlmxNxuvH2SPNZGDMDXv/51vv71rz/qw7gnorwdLH5w0wOcuDrYK0OjlIs/TF9nyxu/tVrBBCdrKlt6KWroQhAEfnMkT+wb4mKr5u0vTB+RePeghAxrSFnc2EVbz5CqnbeDNQEuJiPGKJi8Mf9xIFsUgTp8c0g7QvLCSEh8etFqlBx7ZQ57r1dzKree9IpWBMH08HWjaihB1BxmkstN3hhzuNnfxQZfZ5tRtz0WcrmMHyydKP5/d3oV39tpyvc7dLOWqf7OHBxUmAVYHTe6p+ROxE5wsDBigodd76K87dl7vVrctuoebvxajZK5YaMbO/dCfKALl0takMsQBfT8nG2wUsnpGxgSOw0a9BIFDfPSlzV342ij4lKR6V7gaW8lKvJunOLDB5fLKWns5vl7zGMZi6RgkxEDiAbMvHA3Klt6KG7spnfAwPc+ukGklwPhnnZ09A2IaQV+zjYjPFyfJI91OOnTRnygpav0K7ODsFYpWBThzqnvzsXRxmSEPDVtZMWU2bXb1a9nT0Y171wqA0wqkn/93NT7vljcCR9HazSDMc7ixi5qBj0xjjYqrNUKAob9iF4/VUhJ4+i5MQ8ag5WQkHg88LC34qW5wez6WhJpP17EdxaFYT8s/KGUy4gdFkYaHlK6Xy/MaCyK9EA9aEgcyaqltVvHhcEu0J72Vky7j07OZuKG5cWAZfh8dZw3bnYaXGzVvDBK5eXD4CuzA3llUSh/fmaK6G1RyGUWaQSm4zQZW8Ovv6VN3ZzKqxdVhc1eGDDlRB759mwy/mPxx/aE3K5OnBjkwl+em8qhb81mw2DBiFGAD66YWhekFDZZNDJ+lG1dHntPzOPGnT6sqf6WnoklUZ7k/GKp6J059vIc6jr6RpWCDnXXiu45cxdsgB8tmzhiux8XuVxGkJuWvNoOypt7xBCZuWlkoOuQwWROPgN4/0sJCAicyKlHo5SzYcq9VUNJSEg8/rjZaXh5USgvzArg3dRyjufUsWGyj0V348WRHvzfoIrumgfwktyOg7WKOWGunMproL6jn/88ksfAYOuClbH3F0oyE3vb9TVomCfGw96Kiz9cgEIuu6+E5I+DnZWKVxaFjXg/zMOOm4MeL7VSjrej+fo7ZMQculFLds2QV2xJpKUEhVwuG5fu06HuWiZ62pFf10m0jz1//dxUrFSmlIefr43iaHYdvQMG9mRU88NlEx+bUBJIRsy44GKr5oVZgaPGRYf/CD0drMZMwh2epGW2uuMDnflCUsD4HuwgwW625NV2WOTteA8eW6CrdsT4pGAXMYlvrDiyhITEpx87KxXfmB/CN+aHjFgWO8GRg9+chUEQRk30fRBWxnpxKs90U9yVXiW+/yChJIAIL3uUcpnoKRgeTgJGrbR5FAxPWA5wsRGNquFGTNqwStC5YW4kBT8c77dMJuO9LyWQUdHK3DA30YABsLdSsSbOmx3XKunq17M/s4Zzt0yfl7VKQULgo00rkIyY+0QYpcg6+YfzsVF/vFN5u2vRRq3gfzfFPdCTyL0w3Ggy4+U4aMS4jIxvfnfxyCcJCQmJzx4xo3iSPw6LIjwsmi+CKW9wNI/1vWClUhDlbc+NqnbUSjn+LuMXih9Phl/zhxsu7nYabNQKC+2ZBRPdeePZKQ/tfgAmT9zSMcRGn53hx45rpu7kvztxi+bBrt8zQ1wtDJ5HweNhkn7KsR6HDzH4NqPi1eUT8XuIP77bn05gKJzkYKPCyWYoiXhOmJuUxCshIfFQsLNSjUicXRXr/bHyLH60PIKp/k78bHXkI7/JjsVUfyfRe794WJhIJpOJSb4Ay6M9+ctzUx/pPGInOIoJxWYDBh5tabUZyYi5T9ztrDj+iqXM/ngkNWk1SlFae164G88mPNwy8tGMGG/HoVDXcE+N5IWRkJB4mKyK9bL4/+rYj5dvkxjswu6vJT306+jHwVaj5OR35nD05dlsvC2/8FsLQvF1tuaLMwP4v62TH4sQ2LMJfiPemz/x0acWSOGkByDc045dLyWy53o1W6aPX2+mN5+bSm5NB1P9nR6q2xDM2glDapEw5IkB+OaCUH59KJcVMV7jFvuWkJCQGI2FER5YqxT0DhgIcdcS4TW2wN2ThKONGkcb9Yj3l0Z5jhnaeVSsjvPm14fz6Oo36QRFetlb3DMeFZIR84BMC3Ae9xCLVqMk/hNKkrJSDWnTmPEe9oWcG+bG3O/O/USORUJC4rONVqPk90/Fsfd6NS/NC36kJbsSo2OrUbJ+sg/vXTaVWT8OoSSQjJjPNMFuWgsjxsPh4TbPlJCQkBiL5TFeLI/xuvtAiUfGi3OCOJpdBwg8PY5RiI+DZMR8hgl203LulklYylVr2QpBQkJCQkJiOL7ONlx+dQFG4fEpVZeMmM8ww5N7H4fYpoSEhITE482D9mh6WDxeRyPxiTK8AsnrPjthS0hISEhIPGokI+YzTIyPA572JuNlXvjjkaQlISEhISFxr0jhpM8w1moFx16ZTVVrL1He9o/6cCQkJCQkJO4LyYj5jDOWToGEhISEhMTjjhROkpCQkJCQkPhUIhkxEhISEhISEp9KJCNGQkJCQkJC4lOJZMRISEhISEhIfCqRjBgJCQkJCQmJTyWSESMhISEhISHxqUQyYiQkJCQkJCQ+lUhGjISEhISEhMSnEsmIkZCQkJCQkPhUIhkxEhISEhISEp9KJCNGQkJCQkJC4lOJZMRISEhISEhIfCqRjBgJCQkJCQmJTyVPdBdrQRAA6OjoeMRHIiEhISEhIXGvmO/b5vv4WDzRRkxnZycAvr6+j/hIJCQkJCQkJO6Xzs5OHBwcxlwuE+5m5nyKMRqN1NTUYGdnh0wmG7ftdnR04OvrS2VlJfb29uO23U8L0vyl+Uvzl+YvzV+a/8OcvyAIdHZ24u3tjVw+dubLE+2JkcvlTJgw4aFt397e/jP5JTYjzV+avzR/af6fVaT5P/z538kDY0ZK7JWQkJCQkJD4VCIZMRISEhISEhKfSiQj5gHQaDT87Gc/Q6PRPOpDeSRI85fmL81fmr80f2n+jwNPdGKvhISEhISExJOL5ImRkJCQkJCQ+FQiGTESEhISEhISn0okI0ZCQkJCQkLiU4lkxAzy5ptvEhsbK9a+JyYmcvToUXG5IAj8/Oc/x9vbG2tra+bNm0dOTo7FNvr7+/nWt76Fq6srtra2rFmzhqqqqk96KuPCa6+9hkwm45VXXhHfe5LPwc9//nNkMpnFn6enp7j8SZ67merqap577jlcXFywsbFh0qRJpKeni8uf5HMQEBAw4vOXyWR84xvfAJ7suQPo9Xr+/d//ncDAQKytrQkKCuKXv/wlRqNRHPOkn4POzk5eeeUV/P39sba2JikpiatXr4rLn6T5X7hwgdWrV+Pt7Y1MJmPfvn0Wy8drrq2trTz//PM4ODjg4ODA888/T1tb2/hORpAQBEEQDhw4IBw+fFi4deuWcOvWLeHHP/6xoFKphOzsbEEQBOG3v/2tYGdnJ+zevVvIysoSnn76acHLy0vo6OgQt/HSSy8JPj4+wsmTJ4WMjAxh/vz5QlxcnKDX6x/VtB6ItLQ0ISAgQIiNjRVefvll8f0n+Rz87Gc/E6KiooTa2lrxr6GhQVz+JM9dEAShpaVF8Pf3F77whS8IV65cEUpLS4VTp04JRUVF4pgn+Rw0NDRYfPYnT54UAOHs2bOCIDzZcxcEQfj1r38tuLi4CIcOHRJKS0uFnTt3ClqtVvjDH/4gjnnSz8FTTz0lREZGCufPnxcKCwuFn/3sZ4K9vb1QVVUlCMKTNf8jR44IP/nJT4Tdu3cLgLB3716L5eM112XLlgnR0dHCpUuXhEuXLgnR0dHCqlWrxnUukhFzB5ycnIS///3vgtFoFDw9PYXf/va34rK+vj7BwcFB+Mtf/iIIgiC0tbUJKpVK2L59uzimurpakMvlwrFjxz7xY39QOjs7hdDQUOHkyZPC3LlzRSPmST8HP/vZz4S4uLhRlz3pcxcEQfjhD38ozJo1a8zln4VzMJyXX35ZCA4OFoxG42di7itXrhReeOEFi/c2bNggPPfcc4IgPPmff09Pj6BQKIRDhw5ZvB8XFyf85Cc/eaLnf7sRM15zzc3NFQDh8uXL4pjU1FQBEPLz88ft+KVw0igYDAa2b99Od3c3iYmJlJaWUldXx5IlS8QxGo2GuXPncunSJQDS09MZGBiwGOPt7U10dLQ45tPAN77xDVauXMmiRYss3v8snIPCwkK8vb0JDAxky5YtlJSUAJ+NuR84cIBp06axefNm3N3dmTx5Mn/729/E5Z+Fc2BGp9Px/vvv88ILLyCTyT4Tc581axanT5+moKAAgBs3bpCSksKKFSuAJ//z1+v1GAwGrKysLN63trYmJSXliZ//cMZrrqmpqTg4OJCQkCCOmTFjBg4ODuN6PiQjZhhZWVlotVo0Gg0vvfQSe/fuJTIykrq6OgA8PDwsxnt4eIjL6urqUKvVODk5jTnmcWf79u1kZGTw2muvjVj2pJ+DhIQE3n33XY4fP87f/vY36urqSEpKorm5+YmfO0BJSQlvvvkmoaGhHD9+nJdeeolvf/vbvPvuu8CT//kPZ9++fbS1tfGFL3wB+GzM/Yc//CFbt25l4sSJqFQqJk+ezCuvvMLWrVuBJ/8c2NnZkZiYyK9+9StqamowGAy8//77XLlyhdra2id+/sMZr7nW1dXh7u4+Yvvu7u7jej6e6AaQ90t4eDiZmZm0tbWxe/duPv/5z3P+/Hlx+e2dsAVBuGt37HsZ8zhQWVnJyy+/zIkTJ0Y8jQznST0Hy5cvF1/HxMSQmJhIcHAw//rXv5gxYwbw5M4dTB3fp02bxm9+8xsAJk+eTE5ODm+++Saf+9znxHFP8jkw849//IPly5fj7e1t8f6TPPcdO3bw/vvvs23bNqKiosjMzOSVV17B29ubz3/+8+K4J/kcvPfee7zwwgv4+PigUCiYMmUKzzzzDBkZGeKYJ3n+tzMecx1t/HifD8kTMwy1Wk1ISAjTpk3jtddeIy4ujtdff12sUrndemxoaBCtVU9PT3Q6Ha2trWOOeZxJT0+noaGBqVOnolQqUSqVnD9/nj/+8Y8olUpxDk/yORiOra0tMTExFBYWfiY+fy8vLyIjIy3ei4iIoKKiAuAzcQ4AysvLOXXqFF/+8pfF9z4Lc//BD37Aj370I7Zs2UJMTAzPP/883/nOd0Sv7GfhHAQHB3P+/Hm6urqorKwkLS2NgYEBAgMDPxPzNzNec/X09KS+vn7E9hsbG8f1fEhGzB0QBIH+/n7xS3zy5ElxmU6n4/z58yQlJQEwdepUVCqVxZja2lqys7PFMY8zCxcuJCsri8zMTPFv2rRpPPvss2RmZhIUFPTEn4Ph9Pf3k5eXh5eX12fi8585cya3bt2yeK+goAB/f3+Az8Q5APjnP/+Ju7s7K1euFN/7LMy9p6cHudzydqBQKMQS68/COTBja2uLl5cXra2tHD9+nLVr136m5j9ec01MTKS9vZ20tDRxzJUrV2hvbx/f8zFuKcKfcl599VXhwoULQmlpqXDz5k3hxz/+sSCXy4UTJ04IgmAqOXNwcBD27NkjZGVlCVu3bh215GzChAnCqVOnhIyMDGHBggWPZXndvTK8OkkQnuxz8L3vfU84d+6cUFJSIly+fFlYtWqVYGdnJ5SVlQmC8GTPXRBMZfVKpVL4z//8T6GwsFD44IMPBBsbG+H9998Xxzzp58BgMAh+fn7CD3/4wxHLnvS5f/7znxd8fHzEEus9e/YIrq6uwr/927+JY570c3Ds2DHh6NGjQklJiXDixAkhLi5OiI+PF3Q6nSAIT9b8Ozs7hevXrwvXr18XAOH3v/+9cP36daG8vFwQhPGb67Jly4TY2FghNTVVSE1NFWJiYqQS64fFCy+8IPj7+wtqtVpwc3MTFi5cKBowgmAqO/vZz34meHp6ChqNRpgzZ46QlZVlsY3e3l7hm9/8puDs7CxYW1sLq1atEioqKj7pqYwbtxsxT/I5MOsgqFQqwdvbW9iwYYOQk5Pz/9u715CoujUO4P/tlE5jztjF1NKsSUKjidKi5kM1VDi8FRVCUtm9rA+WBgVRaSrRhaJSuoCVOV3QDCJBs6YMq4mki2B0GSyrQbtIVGYXGytnnQ/h5t1pZuU5ndH/Dwbc63nW2mvtD87D3mtm5HhHXnuTgoICMXToUOHl5SXCwsLEgQMHFPGOfg2sVqsAICoqKprFOvra3717JxITE0X//v2FWq0Wer1ebNiwQTQ0NMg5Hf0a5OXlCb1eLzw9PUVAQICIj48Xb9++leMdaf0lJSUCQLPXggULhBDtt9bXr1+L2NhY4ePjI3x8fERsbKyora1t17XwV6yJiIjILXFPDBEREbklFjFERETklljEEBERkVtiEUNERERuiUUMERERuSUWMUREROSWWMQQERGRW2IRQ0RERG6JRQwRUTvLyspCVFTUL/XZu3cvpk2b9l+aEVHHxCKGqIOSJKnV18KFC//2FNudyWTCqlWr/uocGhoasHHjRiQnJ8ttqampGD58uCLPZrPB19cXK1euhBACcXFxuHnzJq5evfo/njGR+2IRQ9RBvXjxQn6lp6dDq9Uq2jIyMv72FNvsy5cvbnO+U6dOoXv37hg7duwPc86cOQOz2YzExETs2bMHkiTBy8sLc+bMwZ49e3773ESdDYsYog4qICBAful0OkiSpGi7cuUKIiMjoVarodfrkZaWhq9fv8r9JUlCZmYmpk6dCo1Gg/DwcJSWlqKyshImkwne3t4wGo149OiR3KfpjkNmZiaCg4Oh0Wgwc+ZMvH37VjG37OxshIeHQ61WIywsDPv375djDocDkiTh5MmTMJlMUKvVOH78OF6/fo3Zs2cjKCgIGo0GBoMBubm5cr+FCxfi8uXLyMjIkO82ORwOWCwW+Pr6Ks6fn58PSZKazfvw4cPQ6/Xw8vKCEAJ1dXVYtmwZ+vTpA61WiwkTJuD27dutXvcTJ060+lgoJycH0dHR2LZtG9LS0hSxadOmIT8/H58+fWr1HET0DYsYok7IarVi7ty5SEhIwP3795GZmQmLxYLNmzcr8jZt2oT58+ejvLwcYWFhmDNnDpYvX45169bh1q1bAIAVK1Yo+lRWVuLkyZMoKCjAuXPnUF5ejvj4eDl+8OBBbNiwAZs3b4bdbseWLVuQnJyMI0eOKMZZu3YtEhISYLfbYTab4XQ6ERkZicLCQty9exfLli3DvHnzcP36dQBARkYGjEYj4uLi5LtNwcHBbb4mTfM+deoUysvLAQBTpkxBTU0NioqKUFZWhoiICEycOBFv3rz54Tg2mw0jR45sMbZv3z4sWrQIWVlZSEhIaBYfOXIkvnz5ghs3brR53kSdWrv+JjYR/V/Kzs4WOp1OPh47dqzYsmWLIufYsWMiMDBQPgYgkpKS5OPS0lIBQGRlZcltubm5Qq1Wy8cpKSlCpVKJ6upque3s2bPCw8NDvHjxQgghRHBwsMjJyVGce9OmTcJoNAohhHjy5IkAINLT03+6rsmTJ4vVq1fLx+PHjxeJiYmtrl0IIU6fPi3+/e8vJSVFdO3aVbx8+VJuu3jxotBqtcLpdCr6Dho0SGRmZrY4n9raWgFAXLlyRdGekpIiPD09m12/lvTo0UNYLJZWc4jomy5/s4Aior+jrKwMN2/eVNx5aWxshNPpRH19PTQaDQBg2LBhctzf3x8AYDAYFG1OpxPv3r2DVqsFAPTv3x9BQUFyjtFohMvlQkVFBVQqFaqrq7FkyRLExcXJOV+/foVOp1PM8fu7GY2Njdi2bRvy8vLw7NkzNDQ0oKGhAd7e3n96OQAAISEh8PPzk4/Lysrw4cMH9OrVS5H36dMnxSO072MAoFarm8WCgoLg6+uL7du3459//kFgYGCLY3Tr1g319fW/uwyiToVFDFEn5HK5kJaWhujo6Gaxf78Bd+3aVf67aQ9JS20ul+uH52rKkSRJzjt48CBGjx6tyFOpVIrj74uTnTt3Yvfu3UhPT4fBYIC3tzdWrVqFz58//3ihADw8PCCEULS1tHH3+/O5XC4EBgbi0qVLzXK/32PTpFevXpAkCbW1tc1iPj4+KC4uRlRUFEwmE0pKStC3b99meW/evFEUU0T0YyxiiDqhiIgIVFRUIDQ0tN3HrqqqwvPnz+U36NLSUnh4eGDw4MHw9/dHv3798PjxY8TGxv7SuDabDdOnT8fcuXMBfCsyHj58iPDwcDnH09MTjY2Nin5+fn54//49Pn78KBcqTXteWhMREYGamhp06dIFAwYMaNMcPT09MWTIENy/f7/F74np0aMHiouLYTab5UKmX79+cvzRo0dwOp0YMWJEm85H1NlxYy9RJ7Rx40YcPXoUqampuHfvHux2O/Ly8pCUlPTHY6vVaixYsAC3b9+GzWZDQkICYmJiEBAQAODbJ4G2bt2KjIwMPHjwAHfu3EF2djZ27drV6rihoaG4cOECrl27BrvdjuXLl6OmpkaRM2DAAFy/fh0OhwOvXr2Cy+XC6NGjodFosH79elRWViInJwcWi+Wn65g0aRKMRiNmzJgBq9UKh8OBa9euISkpSd7U3BKz2dzqd73odDqcP38evXv3hslkwtOnT+WYzWaDXq/HoEGDfjo/ImIRQ9Qpmc1mFBYW4sKFCxg1ahTGjBmDXbt2ISQk5I/HDg0NRXR0NCZPnoyoqCgMHTpU8RHqpUuX4tChQ7BYLDAYDBg/fjwsFgsGDhzY6rjJycmIiIiQ72IEBARgxowZipw1a9ZApVJhyJAh8PPzQ1VVFXr27Injx4+jqKhI/lh2amrqT9chSRKKioowbtw4LF68GIMHD8asWbPgcDjk/UEtiYuLQ1FREerq6n6Yo9VqYbVa4e/vD5PJhOrqagBAbm6uYq8QEbVOEt8/LCYi+k2pqanIz89v0+OajiwmJgYjRozAunXr2tzn7t27mDhxIh48eNBskzMRtYx3YoiI2tmOHTvQvXv3X+rz/PlzHD16lAUM0S/gxl4ionYWEhKClStX/lKfX/3BSCLi4yQiIiJyU3ycRERERG6JRQwRERG5JRYxRERE5JZYxBAREZFbYhFDREREbolFDBEREbklFjFERETklljEEBERkVtiEUNERERu6T+5vVy63vjPIgAAAABJRU5ErkJggg==", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Process the obtained results\n", - "predicted_data = TDS(*res.x)\n", - "\n", - "T = temperature(np.array(predicted_data[0].t))\n", - "\n", - "flux_left = predicted_data[0].data\n", - "flux_right = predicted_data[1].data\n", - "flux_total = np.array(flux_left) + np.array(flux_right)\n", - "\n", - "for i, (t, flux) in enumerate(zip(all_ts, all_fluxes)):\n", - " T = temperature(t)\n", - " if i == 0:\n", - " plt.plot(T, flux, color=\"tab:red\", lw=2, label=\"Initial guess\")\n", - " else:\n", - " plt.plot(T, flux, color=\"tab:grey\", lw=0.5)\n", - "\n", - "plt.plot(ref[:, 0], ref[:, 1], linewidth=2, label=\"Reference\")\n", - "plt.plot(T, flux_total, linewidth=2, label=\"Optimised\")\n", - "\n", - "plt.ylabel(r\"Desorption flux (m$^{-2}$ s$^{-1}$)\")\n", - "plt.xlabel(r\"Temperature (K)\")\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "tags": [ - "hide-input" - ] - }, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " Once\n", - " \n", - " Loop\n", - " \n", - " Reflect\n", - " \n", - " \n", - "\n", - "\n", - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import matplotlib.animation as animation\n", - "from IPython.display import HTML\n", - "\n", - "# Turn off interactive plotting to prevent static display\n", - "plt.ioff()\n", - "\n", - "# Create the figure and axis\n", - "fig, ax = plt.subplots(figsize=(10, 6))\n", - "\n", - "# Set up the plot limits and labels\n", - "ax.set_ylabel(r\"Desorption flux (m$^{-2}$ s$^{-1}$)\")\n", - "ax.set_xlabel(r\"Temperature (K)\")\n", - "\n", - "# Plot experimental data in blue (always visible)\n", - "ax.plot(ref[:, 0], ref[:, 1], linewidth=2, label=\"Experimental data\", color=\"blue\")\n", - "\n", - "# Initialize empty line objects for the animation\n", - "line_current, = ax.plot([], [], color=\"red\", linewidth=2, label=\"Current iteration\", zorder=1000)\n", - "lines_previous = []\n", - "\n", - "def animate(frame):\n", - " # Clear previous iteration lines\n", - " for line in lines_previous:\n", - " line.remove()\n", - " lines_previous.clear()\n", - " \n", - " # Plot all previous iterations in light grey\n", - " for i in range(frame):\n", - " T_iter = temperature(all_ts[i])\n", - " line_prev, = ax.plot(T_iter, all_fluxes[i], color=\"lightgrey\", linewidth=0.8, alpha=0.6)\n", - " lines_previous.append(line_prev)\n", - " \n", - " # Plot current iteration in red\n", - " if frame < len(all_ts):\n", - " T_current = temperature(all_ts[frame])\n", - " line_current.set_data(T_current, all_fluxes[frame])\n", - " \n", - " # Update legend and title\n", - " ax.set_title(f\"TDS Fitting Animation - Iteration {frame + 1}/{len(all_ts)}\")\n", - " ax.legend()\n", - " \n", - " # Set consistent axis limits\n", - " all_temps = [temperature(ts) for ts in all_ts]\n", - " all_temp_vals = np.concatenate(all_temps + [ref[:, 0]])\n", - " all_flux_vals = np.concatenate(all_fluxes + [ref[:, 1]])\n", - " \n", - " ax.set_xlim(all_temp_vals.min() * 0.95, all_temp_vals.max() * 1.05)\n", - " ax.set_ylim(0, all_flux_vals.max() * 1.1)\n", - " \n", - " return [line_current] + lines_previous\n", - "\n", - "# Create animation\n", - "anim = animation.FuncAnimation(\n", - " fig, animate, frames=len(all_ts), interval=100, blit=False, repeat=True\n", - ")\n", - "\n", - "# Close the figure to prevent static display\n", - "plt.close(fig)\n", - "\n", - "# Display only the animation\n", - "HTML(anim.to_jshtml())\n", - "\n", - "# Uncomment to save as gif\n", - "# anim.save('tds_fitting_animation.gif', writer='pillow', fps=10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Additionally, we can visualise how the parameters and the computed error varied during the optimisation process." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAGwCAYAAABb3Do8AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAsz9JREFUeJzs3XdYVFf6wPHvnRl6B+kgglJEULFi71GsiRprTEzyS9kkbsruJjGbbNqm7CaboiYx3SS2aOyJscSCvaCi2GiCKIIgvcPM3N8fxFEEFXSGmYHzeR6ehJk7976DMPPOOe95jyTLsowgCIIgCIJwUwpjByAIgiAIgmDqRMIkCIIgCIJwGyJhEgRBEARBuA2RMAmCIAiCINyGSJgEQRAEQRBuQyRMgiAIgiAItyESJkEQBEEQhNtQGTsAU6TVarl06RIODg5IkmTscARBEARBaARZlikpKcHHxweFQr9jQiJhasClS5fw9/c3dhiCIAiCINyBCxcu4Ofnp9dzioSpAQ4ODkDtD9zR0dHI0QiCIAiC0BjFxcX4+/vr3sf1SSRMDbg6Defo6CgSJkEQBEEwM4YopxFF34IgCIIgCLchEiZBEARBEITbEAmTIAiCIAjCbYiESRAEQRAE4TZEwiQIgiAIgnAbImESBEEQBEG4DZEwCYIgCIIg3IZImARBEARBEG5DJEyCIAiCIAi3ITp9C4IgCIIZkjVXkMuXQMVakItA6YdkOx1sJiJJVsYOr8URI0yCIAjCbUmSxNq1a295zOzZs7n33nsbfc709HQkSSI+Pv6uYmuNZPU55LxxUPYFaDNBLgV1InLx68j5s5C15cYOscURI0yCIAitzOzZsyksLLxtAnS9rKwsXFxcgNpEJzAwkGPHjtG1a1fdMZ9++imyLOs5WuFGsiwjF/4VtIWA9vp7av9TcwK59H9Ijq8ZIbqWS4wwCYIgCLfl5eWFldWtp3mcnJxwdnZunoBas5ojoE4CNDc5QAvlK5G1Zc0ZVYsnEiZBEIRWbvDgwfz1r3/lxRdfxNXVFS8vL9544406x1w/JRcYGAhAVFQUkiQxePBgoP6U3KZNm+jfvz/Ozs64ubkxduxYUlNTmxRbVlYWY8aMwcbGhsDAQJYuXUq7du345JNPgIan9QoLC5EkiZ07d+puO336NKNHj8be3h5PT09mzZrFlStXdPf/8ssvREZGYmNjg5ubG8OHD6esrDbh2LlzJ7169cLOzg5nZ2f69evH+fPnm/Q89KomnhvfvrOuuNxwUCWoU5orolZBJEyCIAgCP/zwA3Z2dhw8eJD//ve/vPXWW2zdurXBYw8dOgTAH3/8QVZWFqtXr27wuLKyMl544QUOHz7Mtm3bUCgU3HfffWi12gaPb8iDDz7IpUuX2LlzJ6tWreKrr74iJyenSc8tKyuLQYMG0bVrV+Li4ti0aROXL19mypQpuvunT5/OI488wpkzZ9i5cycTJ05ElmXUajX33nsvgwYN4sSJE+zfv5/HH38cSZKaFIN+1X/r/nVnbyqrLOreKCmbKZ7WQdQwCYIgCHTu3JnXX38dgODgYBYsWMC2bdsYMWJEvWPd3d0BcHNzw8vL66bnnDRpUp3vv/32Wzw8PDh9+jQRERG3jens2bP88ccfHD58mB49egDwzTffEBwc3OjnBfDFF1/QrVs33n33Xd1t3333Hf7+/iQlJVFaWoparWbixIkEBAQAEBkZCUB+fj5FRUWMHTuW9u3bA9CxY8cmXV/vLPsD79e5yd21kKNn2tO369naGyQnUIU0f2wtmFFHmHbt2sW4cePw8fFp1AqMrKwsZsyYQWhoKAqFgueee67eMYsWLUKSpHpflZWVhnkSgiAILUDnzp3rfO/t7d3kkZwbpaamMmPGDIKCgnB0dNRN5WVkZDTq8YmJiahUKrp166a7rUOHDrri88Y6cuQIO3bswN7eXvcVFhami7FLly4MGzaMyMhI7r//fr7++msKCgoAcHV1Zfbs2YwcOZJx48bx6aefkpWV1aTr65tkEQKWfYBrI0h+nlc4fDIUrbZ25EuyexhJsjRShC2TUROmsrIyunTpwoIFCxp1fFVVFe7u7vzzn/+kS5cuNz3O0dGRrKysOl/W1tb6ClsQBKHFsbCoO50jSVKTps4aMm7cOPLy8vj66685ePAgBw8eBKC6urpRj7/Zirvrb1coFPVuq6mpqXO8Vqtl3LhxxMfH1/lKTk5m4MCBKJVKtm7dyu+//054eDjz588nNDSUtLQ0AL7//nv2799P3759+fnnnwkJCeHAgQON/0EYgOT8Mag6/PmdAj/PK1RWW3DmnD9Yjwe7J4waX0tk1Cm5mJgYYmJiGn18u3bt+PTTT4Ha4dSbkSTplsPEgiAIwp2ztKwdudBobrZKC/Ly8jhz5gxffvklAwYMAGDPnj1Nuk5YWBhqtZpjx47RvXt3AFJSUigsLNQdc3V6MCsri6ioKIB6fZ26devGqlWraNeuHSpVw297kiTRr18/+vXrx7/+9S8CAgJYs2YNL7zwAlBb4B4VFcXcuXPp06cPS5cuJTo6uknPR58khSu4rYLKLcgV6/DwLMDLQ8Hxc/cR0e8pI9dYtUwtsui7tLSUgIAA/Pz8GDt2LMeOHbvl8VVVVRQXF9f5EgRBEBrm4eGBjY2Nrni6qKio3jEuLi64ubnx1VdfkZKSwvbt23XJR2OFhYUxfPhwHn/8cQ4dOsSxY8d4/PHHsbGx0SUENjY2REdH8/7773P69Gl27drFq6++Wuc8Tz/9NPn5+UyfPp1Dhw5x7tw5tmzZwiOPPIJGo+HgwYO8++67xMXFkZGRwerVq8nNzaVjx46kpaUxd+5c9u/fz/nz59myZQtJSUnGr2MCJMkSyWYsCtevUbn/gpVtOG082pOZmWns0FqkFpcwhYWFsWjRItavX8+yZcuwtramX79+JCcn3/Qx7733Hk5OTrovf3//ZoxYEATBvKhUKubNm8eXX36Jj48PEyZMqHeMQqFg+fLlHDlyhIiICJ5//nk++OCDJl/rxx9/xNPTk4EDB3Lffffx2GOP4eDgUKfM4rvvvqOmpoYePXrw7LPP8u9//7vOOXx8fNi7dy8ajYaRI0cSERHBs88+i5OTEwqFAkdHR3bt2sXo0aMJCQnh1Vdf5X//+x8xMTHY2tpy9uxZJk2aREhICI8//jjPPPMMTzxhelNeHh4etGvXTjf1KeiXJJtIW1ZJklizZk2j2+oPHjyYrl276npx3IxWq6Vbt24MHDiQefPmNXhMVVUVVVVVuu+Li4vx9/enqKgIR0fHxj4FQRAEwcAuXryIv78/f/zxB8OGDTN2OCbl7NmzlJaWkp6ezogRI3BycjJ2SM2uuLgYJycng7x/t7gRphspFAp69ux5yxEmKysrHB0d63wJgiAIxrd9+3bWr19PWloa+/btY9q0abRr146BAwcaOzST4+fnx4ULF+jVq5euV5agPy0+YZJlmfj4eLy9vY0diiAIgtBENTU1vPLKK3Tq1In77rsPd3d3du7cWW9VnwD29vaUlZXh7+/P5cuXG70aUWgco66SKy0tJSXlWuv2tLQ04uPjcXV1pW3btsydO5fMzEx+/PFH3TFXVz+UlpaSm5tLfHw8lpaWhIeHA/Dmm28SHR1NcHAwxcXFzJs3j/j4eD777LNmfW6CIAjC3Rs5ciQjR440dhhmw8bGhoqKCrp06UJ8fDy9evUydkgthlETpri4OIYMGaL7/uoKioceeohFixaRlZVVr8HZ1WWjUNuMbOnSpQQEBJCeng7U7iH0+OOPk52djZOTE1FRUezatUv80giCIAgtnq+vL5mZmYSHh7N48WJ69Oih61Ul3B2TKfo2JYYsGhMEQRAMQ6vVtvrkIDMzk6SkJIYMGcKePXvw8PAgJKT1bJEiir4FQRAE4RYSEhJwdHRk2bJlxg7FqDw9PcnOzgZqG3YeOXLEyBG1HCJhEgRBEMxeWFgYkyZNYsaMGbz11ls33ValpVOpVGi1WrRaLba2tjg6OuoSKOHuiIRJEARBMHsWFhYsWrSIf//737z++uvMmjWr1W663qZNG65cuQJA7969RSNLPREJkyAIgtAiSJLEP//5T37++WdWrVrF8OHDyc3NNXZYzc7Pz4+LFy8CtclTZWUlpaWlRo7K/ImESRAEQWhRpkyZws6dO0lOTqZ3796cOXPG2CE1q+sTJoAePXoQFxdnxIhaBpEwCYIgCC3O1akoW1tb+vTpwx9//GHskJqNk5NTnU3kg4KCyMjIQK1WGzEq8ycSJkEQBKFFateuHfv27aNPnz6MGjWKr776ytghNRsrKytdDZckSURERJCQkGDkqMybSJgEQRCEFsvR0ZENGzbw5JNP8sQTT/D3v/8djUZj7LAM7moDy6siIyNJSEhotasH9UEkTIIgCEKLplKpWLBgAfPmzePjjz9m4sSJLb4I+sY6JgsLC/z9/XW7YghNJxImQRAEoVWYM2cOGzZsYPv27QwYMKBOQtHSeHt7k5WVVee2Hj16cPjwYSNFZP5EwiQIgiC0GqNHj2bv3r3k5eXRu3dvjh49auyQDMLCwgK1Wl1nCs7BwQFLS0vy8vKMGJn5EgmTIAiC0Kp07tyZQ4cO4evry4ABA1i7dq2xQzIIV1dX8vPz69wmGlneOZEwCYIgCK2Ol5cXO3fuZPTo0UycOJEPP/ywxRVE+/v715t29Pb2prCwkIqKCiNFZb5EwiQIgiC0Sra2tvz888+8/PLL/OMf/+Dxxx+npqbG2GHpzY2F31d169atxU5FGpJImARBEIRWS6FQ8O677/L999/zww8/EBMTQ0FBgbHD0gtnZ+cGn0tISAgpKSmtor2CPomESRAEQWj1Zs+ezdatWzl27Bh9+/YlNTXV2CHdNUmSsLCwoLq6us7tCoWCsLCwVrdlzN0SCZMgCIIgAIMGDeLAgQNoNBp69+7Nnj17jB3SXfPx8eHSpUv1bu/atSvx8fHNH5AZEwmTIAiCIPwpODiYAwcOEBERwbBhw1i8eLGxQ7orN6tjsrKywt3dvUX3otI3kTAJgiAIwnVcXV3ZsmULM2fOZNasWfzrX/8y2xV0N26Rcj3RYqBpVMYOQBAEQRBMjaWlJd9++y0hISHMnTuXpKQkvv/+e2xsbIwdWpNYWlpSU1ODLMtIklTnPmdnZ2RZpqioCCcnJyNFaD7ECJMgCIIgNECSJF5++WV++eUX1q9fz9ChQ7l8+bKxw2oyZ2dnCgsLG7yvV69eHDp0qHkDMlMiYRIEQRCEW5g0aRKxsbGkp6fTu3dvTp06ZeyQmuRmdUxQ29zy8uXL9VbSCfWJhEkQBEEQbqNnz54cPHgQJycn+vbty+bNm40dUqPdKmGSJIkuXbqIFXONIBImQRAEQWiEtm3bsmfPHgYMGMCYMWP44osvjB1So7i5ud1yw93w8HDOnDmDVqttxqjMj0iYBEEQBKGRHBwcWLduHc888wxPPfUUzz33nMl3zJYkCaVSedNtX5RKJe3btyclJaWZIzMvImESBEEQhCZQKpV88sknfPbZZyxYsIAJEyZQUlJi7LBuycfHh+zs7Jve361bN44cOdKMEZkfkTAJgiAIwh146qmn+O2339i9ezf9+/fnwoULxg7ppvz8/G4Zn62tLY6OjrdMqlo7kTAJgiAIwh0aOXIk+/bto6ioiF69enH48GFjh9SgWzWwvEo0srw1kTAJgiAIwl3o1KkTBw8epF27dgwaNIhVq1YZO6R6rK2tqaqquuUxbdq0obKyktLS0maKyryIhEkQBEEQ7pKnpyfbt29n/PjxTJ48mffff9/ktlNxcHCguLj4lsf06NGDuLi4ZorIvIiESRAEQRD0wMbGhqVLl/Laa68xd+5cHn30UZNqCHmrfkxXBQUFkZGRgVqtbqaozIdImARBEARBTxQKBW+99RY//vgjS5YsYeTIkeTn5xs7LKC2q/ftEiZJkoiIiCAhIaGZojIfImESBEEQBD2bNWsW27ZtIyEhgejoaJKTk40dEm3atCE3N/e2x0VGRpKQkGByU4rGJhImQRAEQTCA/v37c/DgQZRKJdHR0cTGxho1HoVCgSRJt51us7CwwN/fn/T09OYJzEyIhEkQBEEQDKR9+/bs27ePrl27MmLECBYtWmTUeLy8vLh8+fJtj+vRo4fJtkgwFpEwCYIgCIIBubi4sGnTJh566CEefvhhXnnlFaPt29aYwm+oXVFnaWl5yz3oWhuRMAmCIAiCgVlYWPDVV1/xwQcf8P777zN16lTKy8ubPY7GJkwgGlneSCRMgiAIgtAMJEni73//O6tXr2bjxo0MHjy42bcisbW1paKiolHHent7U1hY2OjjWzqRMAmCIAhCM7r33nvZvXs3mZmZ9O7dmxMnTjTr9e3s7Brdzbtbt24cPXrUwBGZB5EwCYIgCEIz69atG4cOHcLNzY1+/fqxcePGZrt2U6blQkJCSElJQaPRGDgq0ycSJkEQBEEwAl9fX3bt2sXQoUMZN24c8+fPb5brNiVhUigUhIWFcfbsWQNHZfpEwiQIgiAIRmJvb8/q1at5/vnn+etf/8ozzzxj8G1JPDw8yMnJafTxXbt25dixYwaMyDyIhEkQBEEQjEipVPLhhx/y5ZdfsnDhQsaNG3fbTXLv9nqyLDd6ms3Kygp3d/dGj0q1VCJhEgRBEAQT8Pjjj7Np0yb2799Pv379OH/+vMGu5eHh0ahtUq4SLQZEwiQ04OzZs0RHR2NtbU3Xrl2NHY4gCEKrMXz4cPbv309ZWRm9evWql6Toa7quMRvxXs/Z2RlZlikqKtLL9c2RSJhamNmzZyNJEpIkoVKpaNu2LX/5y18oKCho9Dlef/117OzsSExMZNu2bQaMVhAEQbhRx44dOXjwIMHBwQwePJgVK1YAcODAAdzc3FizZs1dX8PX15cLFy406TG9evXi0KFDd31tcyUSphZo1KhRZGVlkZ6ezjfffMOGDRt46qmnGv341NRU+vfvT0BAAG5ubncUQ3V19R09ThAEQQB3d3f++OMPJk6cyNSpU/n73//OmDFjKC4u5t13373r8zs4OFBWVtakx/j7+3P58uVW+/ouEqYWyMrKCi8vL/z8/LjnnnuYOnUqW7Zs0d3//fff07FjR6ytrQkLC+Pzzz/X3SdJEkeOHOGtt95CkiTeeOMNADIzM5k6dSouLi64ubkxYcKEOjtZz549m3vvvZf33nsPHx8fQkJCmvS4Dz/8EG9vb9zc3Hj66aepqanRHVNVVcWLL76Iv78/VlZWBAcH8+233+ruP336NKNHj8be3h5PT09mzZrFlStX9PxTFQRBaF7W1tYsXryYuXPn8r///U83UxAXF6eXjXFtbGyatD2LJEl06dKF+Pj4u762ORIJUwt37tw5Nm3ahIWFBQBff/01//znP3nnnXc4c+YM7777Lq+99ho//PADAFlZWXTq1Im//e1vZGVl8fe//53y8nKGDBmCvb09u3btYs+ePdjb2zNq1Kg6nzS2bdvGmTNn2Lp1K7/++mujH7djxw5SU1PZsWMHP/zwA4sWLaqzo/eDDz7I8uXLmTdvHmfOnGHhwoXY29vr4h00aBBdu3YlLi6OTZs2cfnyZaZMmdIMP11BEATD0mg0xMXFoVAokGUZqF3lNm/evLs+t6+vL5mZmU16THh4OGfOnDHa5sFGJQv1FBUVyYBcVFRk7FCa7KGHHpKVSqVsZ2cnW1tby4AMyB999JEsy7Ls7+8vL126tM5j3n77bblPnz6677t06SK//vrruu+//fZbOTQ0VNZqtbrbqqqqZBsbG3nz5s2663p6espVVVVNflxAQICsVqt1x9x///3y1KlTZVmW5cTERBmQt27d2uDzfe211+R77rmnzm0XLlyQATkxMfH2PzChjgv5hfKHW3bLj/zwi/zkkrXy8sPH5bKqamOHJQit1n//+1/d6/j1XyqVSs7KzpITCg/LP6R9In+W/Lb8c8ZX8vmylEaf+8KFC/L27dubHNO22M3yhsNfyOsyXpTXZ7wsH81bIVeoi5t8HkMw5Pu3ykh5mmBAQ4YM4YsvvqC8vJxvvvmGpKQk5syZQ25uLhcuXODRRx/lscce0x2vVqtxcnK66fmOHDlCSkoKDg4OdW6vrKwkNTVV931kZCSWlpZNflynTp1QKpW67729vUlISAAgPj4epVLJoEGDbhrbjh07dCNO10tNTdVNDQq3tyIugTd+rS3y18oykgQ7Es8xf8d+vn9oEsEebYwcoSC0PoMHD2bSpEns2LGD/Px8JElClmXUajX3PjOKPv8MQ0KBjJbU0tPsz9tGX7fhTPJ7BIV060kkLy8vdu/e3aR4zpXs5YzzpxQdDMJxwCkAzpcd4vCVHxjr9x4+tpF3/FxNnVGn5Hbt2sW4cePw8fFBkiTWrl17y+OzsrKYMWMGoaGhKBQKnnvuuQaPW7VqFeHh4VhZWREeHq6XFQXmxM7Ojg4dOtC5c2fmzZtHVVUVb775pm4I9euvvyY+Pl73dfLkSQ4cOHDT82m1Wrp3717nMfHx8SQlJTFjxow6172Tx12dLrxKkiRdrDY2Nrd8rlqtlnHjxtW7RnJyMgMHDmzcD0zgUPpFXt/wB1pZRvvnsP+f/6GgrIJHflhNZY1huw8LglBfz549+eWXX7hy5Qpnzpzhiy++YPLkyagslKTEpwMgU/t6qf3zv/vy/mBn7m+3PbdKpUKr1TZ6ei2/6jybMt9AtqxAYVOFutD2z3tkqrUVbLjwMuXq/CY/R3Nh1BGmsrIyunTpwsMPP8ykSZNue3xVVRXu7u7885//5OOPP27wmP379zN16lTefvtt7rvvPtasWcOUKVPYs2cPvXv31vdTMAuvv/46MTEx/OUvf8HX15dz584xc+bMRj++W7du/Pzzz3h4eODo6Gjwx10vMjISrVZLbGwsw4cPb/Aaq1atol27dqhUYsD0Tn27Jw6FQkKjlevdp5FlckvL2HQqiXu7hhshOkEQJEkiLCyMsLAw7n1oLH5nlbc8fkfOBga5x6CUbv262KZNG65cuYKHh8dtYzhRsIarrxDWIZlUnPXDoVfyn7fIqOVKThdupEebBxrxjMyPUd9hYmJiiImJafTx7dq149NPPwXgu+++a/CYTz75hBEjRjB37lwA5s6dS2xsLJ988gnLli1r8DFVVVVUVVXpvjdkS3pjGDx4MJ06deLdd9/ljTfe4K9//SuOjo7ExMRQVVVFXFwcBQUFvPDCCw0+fubMmXzwwQdMmDCBt956Cz8/PzIyMli9ejX/+Mc/8PPz0+vjrteuXTseeughHnnkEebNm0eXLl04f/48OTk5TJkyhaeffpqvv/6a6dOn849//IM2bdqQkpLC8uXL+frrr+tM9QkNk2WZPanpdZIlC2TUgIwEgEKS2JWcJhImQTABZ4uPIyEhc+1vVplvDbKk+76CGo5ZHcHDyvuW55Jlmf379xMVFXXb657JjKdac20mQVNkh7bSAoV17apmGZm00v0iYTIX+/fv5/nnn69z28iRI/nkk09u+pj33nuPN99808CRGdcLL7zAww8/TEpKCt988w0ffPABL774InZ2dkRGRt50ehPA1taWXbt28dJLLzFx4kRKSkrw9fVl2LBhtxw5utPH3eiLL77glVde4amnniIvL4+2bdvyyiuvAODj48PevXt56aWXGDlyJFVVVQQEBDBq1CgUCrEItDFkGbQ3jCxFUEkFCs5i9ecxMjWaVrgqRhBMkFpWAxJcnzDl2SLdMEB8ScqiwuLWPZM0Gg3Hjh3D1dX1ttetzLOiRnut3tXSN+/6EGrPJ9fQUkmyLNcfgzcCSZJYs2YN9957b6OOHzx4MF27dq2XCFlaWrJo0aI6NTJLly7l4YcfrjOKdL2GRpj8/f0pKiq646kkQTAn932xmMTLuVzNm/pThhI4gA1VKFBIEs8N68vjA3oZNU5BECCl5BSfpb59y2NUkgVvR3yJtdL2lscBLF68mAceuP2o0G8XXyW99CAyDW/aK6Ekwnksg7yeve25DKW4uBgnJyeDvH+3yI/gkiTV+V6W5Xq3Xc/KygpHR8c6X4LQmsyKjuL6QSYJSMCKzlQiAUqFxKSoCGOFJwjCddrbh+Nu5Y3iJm/hEgp6ug5qVLIEte+BlZWVtz2us8t9N02WAGQ0RLiMb9Q1zVGLS5i8vLzIzs6uc1tOTg6enp5GikgQTN+9XcKZ0KUjACoJtEA+KhSShIuk4YNJMbjZN+7FVxAEw5IkidntnsdaaVMvaZKQ8LFpy3ifGTd5dH2+vr5cunTptsf523Wnu9vMP69z7boStbWiAz3n4GYV2OjrmpsWlzD16dOHrVu31rlty5Yt9O3b10gRCYLpUygk3rt3JB9MiiHKw4UKSYWdpQWeYZ140N+VkeHBxg5REITr+Ni05e+h/2Ggewx2SgeUkpI2lp6M85nJnA5vNHp0CcDPz6/RG/H2cX+UMX7v4GvbBaVkiUqyIsC+F/e1/ZjOLvfd6dMxC0Yt+i4tLSUlJUX3fVpaGvHx8bi6utK2bVvmzp1LZmYmP/74o+6Yq3vYlJaWkpubS3x8PJaWloSH167eefbZZxk4cCD/+c9/mDBhAuvWreOPP/5gz549zfrcBMHcKBQS4zqHEWxZ+/fVo0cPAHbv3s3p06fp1KmTkSMUBOF6LpZtmOA7iwm+s+7qPN7e3uzbt6/Rxwfa9yHQvs9dXdMcGXWEKS4ujqioKN1yxhdeeIGoqCj+9a9/AbWNKjMyMuo85urxR44cYenSpURFRTF69Gjd/X379mX58uV8//33dO7cmUWLFvHzzz+32h5MgtBU+fn5uLm56b6Pjo7m8OHDdTZEFgSh5bCwsECtVmMia8BMlsmskjMlhqyyb600Gg25ubl4eXkZOxThNjZs2MCgQYPq/O6fPn2a3Nzcm25RIwiCedu4cSO9e/eu82HJHIlVcoLZW7lyJSEhIRQUFBg7FOE2SkpK6u3/17FjRzIzM1tcU1dBEGr5+flx8eJFY4dh0kTCJDSLwYMHU1lZedMO7YJpubENhyRJDB06lG3bthkpIkEQDMnf318kTLchEiahWXh5eTFlyhQ+++wzNJqb9/EQjKu6urreZshXeXl5oVKpGr2aRhAE8+Hs7CxmAG5DJExCs5kzZw5paWls3LjR2KEIN5Gfn3/LLRKGDh3Kzp07G727uSAI5kGSJCwsLKiuvvVWKq2ZSJiEZtO7d2969uzJ/PnzjR2KcBN5eXm3LPq0s7Ojffv2JCQkNGNUgiA0Bx8fn0Y1sGytRMIkNKs5c+awdetWzp49a+xQhAbk5eXddhPOXr16cezYsZvuzSgIgnkShd+3JhImoVlNmTIFDw8PFixYYOxQhAbcboQJQKVS0bdvX/bu3dtMUQmC0Bx8fHzIzMw0dhgmSyRMQrOysrLi8ccf54cffhBL1E1QeXk5tra331IhODiYnJwcUSQqCC2IlZUVNTU1ooHlTYiESWh2Tz75JJWVlfzwww/GDkVowI0tBW52zNChQ9m+fXszRCQIQnNxdnamsLDQ2GGYJJEwCc3O19eXiRMnsmDBArHayoRUVFRgbW3d6OM9PDywtbUlPT3dcEEJgtCsRB3TzYmESTCKOXPmkJSUxNatW40divCnxtQv3WjQoEHs2rVLJL6C0EKIhOnmRMIkGEW/fv3o2rWraDFgQm7cdLcxbG1tCQsLIz4+3jBBCYLQrNzc3MjLyzN2GCZJJEyCUUiSxJw5c9i4cSOpqanGDkfgzkaYALp3705CQgKVlZUGiEoQhOYkSRJKpZKamhpjh2JyRMIkGM306dNxdXXls88+M3YoAo3rwdQQpVJJ//792bVrlwGiEgShufn4+JCdnW3sMEyOqikHy7JMbGwsu3fvJj09nfLyctzd3YmKimL48OH4+/sbKk6hBbKxseH//u//WLhwIW+99Rb29vbGDqlVq66ublLR9/Xat2/PkSNH7niUShAE0+Hn58eFCxfEe/oNGjXCVFFRwbvvvou/vz8xMTH89ttvFBYWolQqSUlJ4fXXXycwMJDRo0dz4MABQ8cstCB/+ctfKCkpYfHixcYOpVXTR9+VYcOGsW3bNj1EIwiCMfn6+ooGlg1oVMIUEhLC0aNHWbhwIcXFxRw4cIBVq1axePFiNm7cSEZGBqmpqQwYMICpU6fy9ddfGzpuoYUICAhgwoQJLFiwQDRLM6KysjLs7Ozu6hxubm44OzuLmjRBMHPW1tZi66MGNCph+v333/nll18YO3YsFhYWDR4TEBDA3LlzSU5OZvDgwfqMUWjh5syZw6lTp9ixY4exQ2m19DWVNnDgQPbs2YNGo9FDVIIgGIuDg4PYjeEGjUqYIiIiGr1s2NLSkuDg4LuJSWhlBg8eTKdOnUSLASO604LvG1lbWxMREcGRI0f0EJUgCMYi+jHV1+hVct26daN79+588cUXFBUVGTImoZWRJIlnnnmG9evXc/78eWOH0yrps1g7KiqKs2fPUl5erpfzCYLQ/ETCVF+jE6a9e/fSrVs3Xn75Zby9vXnggQfEFIqgNw888AAODg58/vnnxg6lVcrPz9fLCBOAQqFg0KBBxMbG6uV8giA0P3d3d3Jzc40dhklpdMLUp08fvv76a7Kzs/niiy+4ePEiw4cPp3379rzzzjsiExXuir29PY888gjffPMNFRUVxg6n1VGr1TetT7wTAQEBlJeXk5OTo7dzCoLQfBQKBZIkoVarjR2KyWhy40obGxseeughdu7cSVJSEtOnT+fLL7/UtRUQhDv19NNPU1BQwNKlS40dSqui1WqRJEnv5x06dCjbt28Xqx8FwUx5eXlx+fJlY4dhMu6q03f79u15+eWX+ec//4mjoyObN2/WV1xCK9S+fXtGjx7N/PnzxZtsMyouLsbR0VHv53VxccHDw4Pk5GS9n1sQBMMTdUx13XHCFBsby0MPPYSXlxcvvvgiEydOZO/evfqMTWiF5syZw/Hjx9mzZ4+xQ2k17mTT3cbq168f+/fvF8P6gmCGRMJUV5O2Rrlw4QKLFi1i0aJFpKWl0bdvX+bPn8+UKVPuuumdYJpOnb3EyvVxHIk/jyxD10h/7h/fnS4RhmmZP2LECEJCQpg/fz4DBgwwyDWEugy5nYmVlRVdu3bl8OHD9OnTxyDXEATBMGxtbUVN6XUaPcI0YsQIAgMD+fzzz5k8eTJnzpxhz549PPzwwyJZaqHWbjzGU/9Ywq69SRSXVFJSWsm+Qyn8de5yfl5z2CDXVCgUPPPMM6xevVq05m8mht7/LTIykpSUFMrKygx2DUEQDMPOzo7S0lJjh2ESGp0w2djYsGrVKi5evMh//vMfQkNDDRmXYGSp6bl8/MUfAGi01+qJNJra///8u52cTrxkkGs/9NBD2NjYsHDhQoOcX6iroKAAZ2dng51foVAwZMgQ0YZEEMyQmJa7ptEJ0/r165kwYQJKpRKAlJQUNm/erBuuE0W6Lcva346hVN585ZRSoWD1r8cMcm1HR0dmz57NV199JfYzagZarVb3d20ofn5+1NTUkJ2dbdDrCIKgXyJhuqbJRd95eXkMGzaMkJAQRo8eTVZWFgD/93//x9/+9je9BygYx/FTF3WjSQDWllq83GpwcdBga60FNBw/dcFg13/mmWfIyclhxYoVBruGABqNBoXirhbLNtqwYcNEmwFBMDMeHh6in9qfmvxK+fzzz2NhYUFGRga2tra626dOncqmTZv0GpxgPNePLtlYaQkLqEKjlbC11uLtpiakbRUB7rU9k5YuXcratWvZvn07cXFxJCUlkZWVRVlZ2R2/OYaGhnLPPfeI/eUMrLCwEBcXl2a5lqOjI76+vpw5c6ZZricIwt1TKpXIsiw21KaJq+QAtmzZwubNm/Hz86tze3BwsNgHrAWJ7h5EekYeVhYaQttWcTrNimr1tfxaqZAYP7orM2YMR5ZlysvLKS4u1n1dvHiR4uLiOvuJWVlZ4ejoiIODA46Ojrove3v7Bkc55syZw7hx4zh48CC9e/dulufd2uhr093G6tu3L0uWLCE4OFivncUFQTAcDw8PcnNz8fLyMnYoRtXkhKmsrKzOyNJVV65cwcrKSi9BCcY3YXRXft18iCDv+smSBCBJTBzTrfZ7ScLOzg47Ozu8vb1ves7KykpKSkp0SVVqairFxcWUlpbqRqJUKpUuofLz86Nt27b873//Y+nSpahUTf51FW4jLy8PDw+PZruehYUFPXv25MCBA6JthCCYCX9/fy5evCgSpqY+YODAgfz444+8/fbbQO2bpVar5YMPPmDIkCF6D1AwDpWihnv6OfD7Lgm1FqA2oVEoJBQKiddfHEdbv6aNTFhbW2NtbY27u/tNj6mpqamTVI0bN44vv/ySb7/9FgcHhz9jUGBvb68bobp+xEok7U2Tn59Px44dm/Wa4eHhLF26lJKSEt2/qSAIpsvX15c//viDHj16GDsUo2pywvTBBx8wePBg4uLiqK6u5sUXX+TUqVPk5+eLTt8txJUrV/jtt9+Y/dBMpk+X+HXLceLizyPLMlGRbRk3sgueHvrfSgNqRyBcXV1100T//ve/+f7777l8+TJPPPEEUFuoXFpaSnFxMSUlJeTm5upGq6qrq3XnsrOzqzf95+joiI2NjUH2TjNHRUVFBtkW5VYkSdLtMzdhwoRmvbYgCE3n4OAg+qhxBwlTeHg4J06c4IsvvkCpVFJWVsbEiRN5+umnbzkdI5iHq8nSxIkTcXBwwAGYPb0fs6f3M0o8zs7OzJo1i4ULF/Lyyy9jaWmJUqnEyckJJyenmz7uxrqqoqIiLly4QHFxcZ3OtVfrqm78srOza7bVY8ZmjOfp7e2NJElkZmbi6+vb7NcXBKFprK2tKS8vb7Akp7WQZLHGt57i4mKcnJyM8unbmG5MlkzFyZMniYyMZNmyZUybNk1v55VlmaqqqjrF6ldHrW6sq2po+s/BwcGs66pqampYvXo1U6dONcr1S0tLWbt2LTNnzhQjfoJg4g4cOICbmxvBwcHGDuWWDPn+3ahX+4yMDNq2bdvok4pPjebHVJMlgIiICIYMGcL8+fP1mjBJkqSrq7pV4XNNTY0ukSouLtaNVJWUlOiW2t5YV3X9l6Wlpd5i1qf8/PxmXSF3I3t7ewIDA3UJsSAIpsvPz4/k5GSTT5gMqVEJU8+ePRk/fjyPPfYYvXr1avCYoqIiVqxYwaeffsoTTzzBnDlz9BqoYDimnCxdNWfOHCZOnMjRo0fp1q1bs17bwsICNze3W+63dn1dVXFxMZcvXyY5OZni4mJqamp0x9nZ2dVLqBwcHIxSV5Wfn2/QPeQao3fv3ixevJjQ0FCTTSwFQQAvLy92795t7DCMqlEJ05kzZ3j33XcZNWoUFhYW9OjRAx8fH6ytrSkoKOD06dOcOnWKHj168MEHHxATE2PouAU9MYdkCWDcuHG0bduW+fPn8/333xs7nHoaU1el1Wrr1FUVFBSQkZFRr67K2tq6wSlAfddV5eXl4e/vr7fz3QmVSkV0dDT79u1j8ODBRo1FEISbU6lUaLVatFptq6nvvFGTapgqKyvZuHEju3fvJj09nYqKCtq0aUNUVBQjR44kIiLCkLE2m9ZSw2QuydJV//nPf3j99de5cOHCLVsTmDNZluv1q7r6dX3n9Ovrqm5sAtrYuqp169YxdOhQo//by7LM8uXLGT169C0TTkEQjGvz5s1ERUU1a++2pjLk+7co+m5Aa0iYzC1ZgtqY/fz8eP3115k7d66xwzGq6urqBpOq0tLSOnVVN7ZVuPq9paUlS5YsYcaMGSZRcH358mX27t3LxIkTKSwup6JKjZuzLZYW5ltULwgtzalTp6iqqmr2soimEAlTM2vpCZM5JktXPfLII/zxxx+cO3fOrFeoNQeNRlMnqbr+/2tqakhKSiIkJERXrH5jcmVtbd2sydR3Py7naGoZR5ILAbC1tmD8kM48OqkP9raiIakgGFtRURGxsbGMHz/e2KHclNFXyQkthzknS1Bb/P3999+zbt06Jk2aZOxwTJpSqcTZ2RlnZ+d691VWVvLrr78yceJEysrKdMlUQUEB58+fp7i4mMrKSt3x19dVXf9la2url3qG33adYtGWi3T2rgBsAInyyhpWbD7KoYR0vnxjukiaBMHInJycKC4uNnYYRiMSplbE3JMlgKioKPr168f8+fNFwnQXrrYUuDpt5+DggI+PT4PHXq2run7qLysri5KSkjp1VRYWFg1O/zk4OKBUKm8aS1FpBf/5Zis1WoncMhU+jmouFdduzKvVyqRfyueHdQd5evpA/f8gBEFoEisrKyorK7G2tjZ2KM1OJEytREtIlq6aM2cO06ZNIyEhQfTvuUN5eXmNbikgSRI2NjbY2Njg6el50+Oqq6vrTP9dHakqKSlBq9UCtXVVN07/7Ym/gFarBiQuFFrQ3beCyyUqNHLtdKBWK7N22wmeuL8fKtXNEy9BEAzP19eXS5cuERQUZOxQml2TEqaamhoef/xxXnvttVb5wzJXLSlZApg4cSI+Pj4sWLCAL7/80tjhmKW8vDw6dOig13NaWlrSpk0b2rRpc9Nj1Gp1nX5VWVlZnE89S6RXFRK1SZWVhYy/cw3pBdf6MpWWV1FYUkEbF3u9xiwIQtP4+fmRlpbWKnOAJhUfWFhYsGbNGkPFIhhAS0uWoPb38Mknn2Tx4sUUFBQYOxyzZKwu3yqVCmdnZ9q2bUtERAR9+/bFyTuUhMu2HLtU+7U33ZbzBRb1HmtjVf82QRCal7e3N1lZWcYOwyiaXK153333sXbtWgOEIuhbS0yWrnr88cdRq9V89913xg7FLFVUVJjMJppDegWj0Wivu0VC5trqPIVCokdEW+xE0bcgGJ2FhQVqtZrWuMC+yTVMHTp04O2332bfvn10794dOzu7Ovf/9a9/1Vtwwp1ryckSgKenJ1OmTOGzzz7jueeeu2VRsVCXqb3QdergTY9ObTl65gJabd3YJAAZHr4v2iixCYJQn6urq0lsrdTcmjzC9M033+Ds7MyRI0f46quv+Pjjj3Vfn3zySZPOtWvXLsaNG4ePjw+SJDVq5Co2Npbu3btjbW1NUFAQCxcurHP/okWLkCSp3tf1S6RbupaeLF01Z84c0tLS2Lhxo7FDMSvl5eUmM7oEtUXl7z0/np6dajf4ViokVMralyYrKxVvzRlDt47G3cJFEIRr/Pz8uHjxorHDaHZNHmFKS0vT28XLysro0qULDz/8cKOWiKelpTF69Ggee+wxFi9ezN69e3nqqadwd3ev83hHR0cSExPrPLa1LIFsLckSQK9evejVqxfz589n3Lhxxg7HbJjiJ0N7Wys+mTuZs+cus+NQEpVVNQT6tWFE3zDsbMSmvIJgSvz9/dm3bx9dunQxdijN6o7bClRXV5OWlkb79u3vuONyTExMkzbqXbhwIW3bttWNZHXs2JG4uDg+/PDDOgmTJEl4eXk1+rxVVVVUVVXpvjfXxlytKVm6as6cOcyaNYuzZ88SFhZm7HDMQlNaCjS3sCBPwoJu3rpAEATjc3Z2bpULbpo8JVdeXs6jjz6Kra0tnTp1IiMjA6itXXr//ff1HuD19u/fzz333FPntpEjRxIXF0dNTY3uttLSUgICAvDz82Ps2LEcO3bslud97733dDvNOzk5GX0H9zvRGpMlgPvvvx8PDw8WLFhg7FDMRl5enlFWyAmC0DJIkoSFhQXV1dXGDqVZNTlhmjt3LsePH2fnzp11prmGDx/Ozz//rNfgbpSdnV2vcZ6npydqtZorV64AEBYWxqJFi1i/fj3Lli3D2tqafv36kZycfNPzzp07l6KiIt3XhQsXDPo89K21JktQ23X2iSee4IcffjDbkcHmZqyWAoIg6N+l8kK+S97Lx6f/YGX6EUprDF+vq5W1aJ1VfHdkNT+k/c6JwlSTW0xiCE2eS1u7di0///wz0dHRdTbmDA8PJzU1Va/BNeTGzUCv/iNdvT06Opro6Gsravr160e3bt2YP38+8+bNa/CcVlZWWFmZ55Ll1pwsXfXkk0/y3nvvsWjRIrFKsxGqq6vN9vddEIRaaq2GdxN+Z0V6HBISCklCI2t5L+F35kbGcH+77ga5blppFq+f/Jay8kKcLltwqbqaxee30N7el7ciHsXD2sUg1zUFTR5hys3NxcPDo97tZWVlBt/Z3MvLi+zs7Dq35eTkoFKpblqToVAo6Nmz5y1HmMyVSJZq+fj4MGnSJBYsWKDbgkNoWGv4FCgIrcF/T25mRXocMqBFRi1rkYEqrZo3jm9g86VTer9mflUxf4//jMuVBZQ6aLAtVqCRa19z08uy+Fv8Aio0Vbc5i/lqcsLUs2dPfvvtN933V5Okr7/+mj59+ugvsgb06dOHrVu31rlty5Yt9OjRAwuLhrsAy7JMfHw83t7eBo2tuYlkqa45c+aQnJzMli1bjB2KSSspKRG/L4Jg5nIrS1iWfpibffyRgHlntuv9A9KGS3spVZejRYtWBUotXA1CI2vJrsxn++Ujer2mKWnylNx7773HqFGjOH36NGq1mk8//ZRTp06xf/9+YmNjm3Su0tJSUlJSdN+npaURHx+Pq6srbdu2Ze7cuWRmZvLjjz8CtVMvCxYs4IUXXuCxxx5j//79fPvttyxbtkx3jjfffJPo6GiCg4MpLi5m3rx5xMfH89lnnzX1qZoskSzV17dvX6Kiopg/fz6jRo0ydjgmy5RXyAmC0Djbss7WT4ZkuNogXwbSS/NILcmlg2P9GaE7tf3yEbTXpWmV1lqsKiWqbP4sjQG2Xz7KGJ++erumKWnyCFPfvn3Zu3cv5eXltG/fni1btuDp6cn+/fvp3r1pc6ZxcXFERUURFRUFwAsvvEBUVBT/+te/AMjKytKtwgMIDAxk48aN7Ny5k65du/L2228zb968Oi0FCgsLefzxx+nYsSP33HMPmZmZ7Nq1i169ejX1qZokkSw1TJIk5syZw++//14nCRfqEgmTIJi/kppKFNK1t2/rGhhxFpSauseVqvU7PVamqVtQXuKowaH42riLDJSpK/R6TVMiyaKooZ7i4mKcnJwoKirC0dHR2OHoiGTp1ioqKvD392fWrFl8/PHHxg7HJG3ZsoWoqCjc3d2NHYogCHdo66XTPHd4he77iEuglcBSA/F+tbdJwI6Rf8PdWn/vFc8dnceZ4nTdKJNNuQKvTEvSgmsTKSUKBnh04Z/hD+rtmk1lyPfvRo0wXb9cu7i4+JZfgmGIZOn2bGxseOyxx/juu+8oLS01djgmKT8/HxeXlruKRRBag0FeIbhY2iJRW0fkUg6nvUChhTaloJQkBnuF6jVZAhjn26/OlFyFjRbrimtphAYtY71b5nQcNDJhcnFxIScnB6jt8Oni4lLv6+rtgv6JZKnxnnzySUpLS/npp5+MHYpJ0mg0d9yZXxAE02CpUPF21AQkSaJdPpx3BSQ44QsRWeCksOKliJF6v+5g9670cu2IdLVYSgJZAunPqcBRXr3o7Nxe79c1FY165dy+fbuu0d2OHTsMGpBQl0iWmiYgIIAJEyawYMECnnzySYO3ujAnWq0WhaLJZYuCIJigIV6hfNvnQX5ZupyNbWtrlWSVAvtwf57VuOJvp//mtEqFkjciHmHZ+T9Yl7mHYnUZZQ4afKucGBc5hHv9BrTo19xGJUyDBg0CQK1Ws3PnTh555BGz3D7E3Ihk6c7MmTOHoUOHsn37doYNG2bscExGUVERTk5Oxg5DEAQ9cSlUMzaqH//oFUVRdQUeNg44Wtiwbt06MjIyaNu2rd6vaaFQ8WDgKGYEjOBSxRUueWSiKaykn3/LnYq7qkkfN1UqFR9++CEajeb2Bwt3RSRLd27w4MFEREQwf/58Y4diUsQKOUFoWY4cOUL37t1xt3agg6MHjhY2ANxzzz1s3769zh6r+qZSKGlr50nXoHAuZWYa7DqmpMnj88OGDWPnzp0GCEW4SiRLd0eSJJ555hk2bNhAenq6scMxGWLTXUFoOXJycrCzs8POzq7efTY2NkRHRzfLe7W1tTVVVS23u/f1mlz9GRMTw9y5czl58iTdu3ev9481fvx4vQXXGolkST8eeOABXn75ZT7//HP++9//Gjsck5CXl0dwcLCxwxAEQQ8OHjxI7969b3p/WFgYZ86c4eLFi/j5+Rk0FgcHB4qLi02qDY8hNDlh+stf/gLARx99VO8+SZLEdN1dEMmS/tjZ2fHII4/wzTff8MYbb2Bra2vskIxO1DAJQstQVlZGaWlpg/u6Xm/kyJGsXLmSmTNnGnR1rJ+fHxcvXiQ8PNxg1zAFTZ6S02q1N/0SydKdE8mS/j399NMUFhbW2TqnNdNqtSiVSmOHIQjCXTpy5Ag9evS47XG2trb07NmzyduWNdXVhKmla1LCpFarUalUnDx50lDxtEoiWTKMoKAgxowZw/z582+5CWVleRWbVxziizfX8s17G0g4lKr3TSuNTa1Wi2RJEFoAtVpNWloaHTp0aNTx4eHhFBYWcunSJYPF5O7uTm5ursHObyqaNEanUqkICAgQI0l34FJWIb/+Fk9KSjaWlir6RAczdEhHysqKRbJkQHPmzGHkyJHs2bOHAQMG1Lv/8M4zvDdnMRVlVShVtZ8fVn0dS2iXtrzx9cM4t2kZ/yYFBQWisawgtACnTp2iU6dOTep3NHLkSFatWmWwqTmFQoEkSbpBlZaqyXvJff/996xcuZLFixe32BU3+t6LZv2GY3w6fzOSJKHVykgSyDJ4e1kzsL89M2ZMFcmSgWi1WsLDw+ncuTMrVqyoc1/KqUyeu+9TtBotN/4VKJQKAkO9+HTdcyiV5t/s8ezZs5SWljZqGF8QBNMkyzKLFy9m6tSpWFpaNumxCQkJ5OXlMXjwYIPEtn37dkJDQ/H19TXI+RvL6HvJXW/evHns3r0bHx8fQkND6datW50voa6jR9P5ZN5mZBm02tp3ZVkGGxst7m2K2bW7HCsrGyNH2XIpFAqeeeYZVq9eXW+OfeXC7SBTL1kC0Gq0pJ6+xJFdic0UqWHl5+eLHkyCYObOnz+Pj49Pk5MlgIiICHJzc8nOzjZAZK2jjqnJY2f33nuvAcJouX5eeRCFQtIlS1CbLHUIUnM20YLqmnJ27U5k+LBORoyyZXvooYd45ZVXWLhwIf/+97+B2pGnvZsT0Gi0N32cUqlgz+8n6DWkY3OFajB5eXlEREQYOwxBEO7C4cOHGTnyzvaIkySJUaNGsWbNGmbOnKn3mkY/Pz8SEhJu2erA3DU5YXr99dcNEUeLpNXKxB1JqzOCYW1dmywlJllQXSOhUEgcOnxOJEwG5ODgwOzZs/nqq6949dVXsba2RqPWolHXTZaC+lqRdaqGiqLa27VamcryltGQraSkREz7CoIZy8/PR6lU3tU0k4ODA126dGHfvn0N1nTeDVtbWyoqKvR6TlNj/sUZJkyW5XrTPZYWIEng4KAFau+vqRFF9Ib2zDPPkJubq6tjsrBU4e7jrLtfoQLXABWWdtcKKSUJ/Nt7NneoBiHLcoveFFMQWrrbNapsrM6dO3Pp0iVycnL0EFVddnZ2lJaW6v28pqLJCZNGo+HDDz+kV69eeHl54erqWudLuEapVBDYrg3Xv08Vlyg4edoCOzuZ8LAabG01hIZ6Gy/IViIkJISRI0fWaTEwblY/XRLh2lZFcbYGC5tr/1gyMGqq+Q8vV1dXY2FhYewwBEG4Q5WVleTn5+uloFqSJGJiYti8eTNa7c1LEu6En58fmS14X7kmJ0xvvvkmH330EVOmTKGoqIgXXniBiRMnolAoeOONNwwQonmbeF/PeqNMWq1ExgUVqWkWtPXTYmWRTXl5uXECbEXmzJlDXFwcBw8eBGD8Q/0Ji2qLQiHhGqDicmINljYSkqI2aXri1fF1RqHMlSj4FgTzduzYMaKiovR2PkdHRzp16sT+/fv1dk6oTZguXLig13OakiYnTEuWLOHrr7/m73//OyqViunTp/PNN9/wr3/9iwMHDhgiRrMWM6ozw4bWtou/fkpEqZRQqxVMm3Y/3btHsWrVKg4ePCh6XBlQTEwMQUFBzJ8/HwArawve/ekJJv2lPxJKKou1WNhIdIjw419fzmbCbP3O8RuL2HRXEMyXVqslKSmJsLAwvZ43KiqKCxcucOXKFb2d08PDwyBTfaaiyQlTdnY2kZGRANjb21NUVATA2LFj+e233/QbXQugUEjMfWkcc18aS0iIFxYWSmxtLRk6pBNfLJjNgP6htG3blpkzZ2JpacnixYtJTU01dtgtkkKh4Omnn2blypW6pbXWNpaE9HbjqRdn8vmvLzJwfCTz1j5LnxEtZ0VZXl6eGGESBDN19uxZQkJCUCj0W3J8ddXcpk2b9DY1p1QqkWVZ71N9pqLJ/wJ+fn5kZWUB0KFDB7Zs2QLULne0srLSb3QthEIhMWJ4BF8seIjNG//Br+teYO5LY+nQwfO6YxRERUUxdepUzp07x4oVK8jLyzNi1C3TI488goWFBV9++SVQWwx97tw52ndoj09bd5Ba1pYoIBImQTBn+p6Ou56zszNhYWEcOnRIb+dsyaNMTU6Y7rvvPrZt2wbAs88+y2uvvUZwcDAPPvggjzzyiN4DbG2sra0ZMWIEw4YNY9u2bWzdupWqqpaxtN0UODs7M2vWLBYuXEh1dTXZ2dl4enq26H3WysvLsbW1NXYYgiA0UWZmJq6urlhbWxvsGt27d+fcuXPk5+fr5Xz+/v4ttoFlk/swvf/++7r/nzx5Mn5+fuzbt48OHTowfvx4vQbXmrm5uTFlyhRSUlJYvnw5nTt3pkuXLnoflm2NnnnmGb788ktWrVqFi4sLXbt2NXZIBidaCgiC+Tl48KDBtjK56uqquY0bNzJ9+vS7fo/x9fVl27ZtLXIbprt+942OjuaFF14QyZKBdOjQgQceeIDq6mqWLFlCRkaGsUMyexEREQwZMoR58+aRk5ODl5eX7j4LCwuqq6uNGJ1+VVRUGPTTqSAIhlFcXIxGo2mWBRsuLi506NCBuLi4uz6Xg4NDi+3FdEcJU2JiIs888wzDhg1j+PDhPPPMMyQmtow9t0yRUqmkd+/eTJw4kYSEBFavXq0rthfuzJw5czhw4AA1NTV1bre3t29Rf+yifkkQzNOhQ4fo2bNns12vZ8+eJCcnU1BQcNfnsra2bpGtcpqcMP3yyy9ERERw5MgRunTpQufOnTl69CgRERGsXLnSEDEKf7Kzs2PMmDH069eP3377jdjY2Hpv+ELjjBs3jjZt2rB9+/Y6t7e0hEn0YBIE81NdXc2lS5cICAhotmsqFApGjRrF77//rmvue6daagPLJidML774InPnzmX//v189NFHfPTRR+zbt49XXnmFl156yRAxCjfw9PRk+vTpeHh4sGTJEk6dOnXXv+CtjVqtZvjw4axatYrc3Fzd7S0tYRIjTIJgfk6cOEGXLl2avfbQzc2Ndu3acfTo0bs6j5+fX4ss/L6jPkwPPvhgvdsfeOABXW8bwfAkSaJjx47MnDmT/Px8li5dqmv3INze6dOnefLJJ5Ekia+//lp3e0tImBKPZ/CfZ39iatSrrF+8na9e/5Xj+5KNHZYgCA2oVNfwU9IRRm/8hs4rP2Tg2gVsOrgX7w6BRoknOjqaM2fO3FXZh5eXV4vMB5qcMA0ePJjdu3fXu33Pnj163/1YuD0LCwsGDBjAuHHjOHjwIBs2bKCsrMzYYZm8s2fP0qdPH2bMmMEXX3yBWq0GzD9h2rziIM/f+wm7f42nuKAMLVritify8ozPWf7ZVmOHJwjCdUprqpj2x2LeiNtMYmEOpTXVaHMLiZOLGb95EedL7r6eqKkUCgUjR468q6k5lUqFVqttcQ0sG9VWYP369br/Hz9+PC+99BJHjhwhOjoagAMHDrBy5UrefPNNw0Qp3JajoyP33nsvFy9eZM2aNQQFBdGrVy9UqiZ3jmjxCgsLsbW1xdLSkjlz5vDdd9+xdu1aJk+ebNYJ08XUHD59+WdkWUajufZCp9HUvmj98MFGOvUIIrJ3e2OFKAjCdd47tp2TBdlcn5aEFGrY76VCXVXGnD1rWDfq4WafmnN3d8fPz4/4+Pg7bprZpk0b8vLycHd313N0xiPJjUghG9uXQZKkFrEXWnFxMU5OThQVFeHo6GjscJpMq9WSkJBAfHw8ffr0ISQkxNgh6VxMvczGH3dz+vA5VBZKeg2P5J7pfXBu49BsMezatQs/Pz+CgoIAGDBgAAqFgtjYWLRaLT///DPTp09vtnj0ZeGba9jw4x60fyZIKmsJ/27WpO2rAECpVBA9IoJXFz5szDAFQQCKqyvptfpTqrXX3jOdqrR0LNRywPPaB90198ymSxufZo9Po9GwdOlSJkyYcEfvg6dOnaKqqopu3boZILqbM+T7d6MyoatDa7f7agnJUkugUCjo0qUL06ZN4+LFiyxfvrxOYbOxbPxpD4/3f4t13+wk8Wg6pw6msui9dTwS/S9OHWqe/fNkWSY9PZ127drpbpszZw67du3ixIkTKBQKsy2gP3X4nC5ZArB2VKBV1x1pOnX4nDFCEwThBmcLc+okSwBhhVrOOF97W1YgcfSKcYqnlUol99xzD5s2bbqj18SWWPgt2ka3YFZWVgwdOpSRI0cSGxvLpk2bqKioMEospw+nMv/FpbUbM173pi5rZSrLq/nXzM8oKTR8345Lly7h7e1dZ9T0vvvuw9fXl/nz5xv8+oakVNX9cy7P06CulgkbYYtboAWSBAqV+JMXBFOglOr/LdYowPK6sh8ZGaURd3fw9PTE09OThISEJj/WycmJ4uJiA0RlPOLVsxVwcXFh8uTJhIaGsnLlSuLi4pq9GG/Nl9tv+ocva2UqSqv44+f9Bo/j+PHjdO7cuc5tFhYWPPnkkyxZskS3n5I5Fiv2GNQRheJarYNWA5nxVSTtKEdpKRF2jx2RwzzF3oSCYAI6uXhib1F3w/qzzkrCCq/7QAn09zLOarmr+vfvT3x8PCUlJU1+rJWVFZWVlQaIyjhEwtSKBAYG8sADDwCwePFi0tPTm+3aR3ac1hUfA1jYKLC0u/brJ8syR3aeMWgMGo2GvLw8PD096933+OOPo9Fo+O6777C1tTXaSNzdiJnRBwtLVb0CUa0achKrSfyjnOghnVm5ciVbt25tcZ/+BMGcWKsseDi0B9f/tZZbSMiAXY2MUpIY7N2eIEfj9lG7m6k5X19fLl26ZKDImp9ImFoZhUJBjx49uP/++zl79iyrVq3SSyv829Fqr/2hWTkqaT/cEd+edoSOccK3hx127io0fy7tN5SUlBQ6dOjQ4H0eHh5MnTqVzz77DBsbG7NcKefm6cTr3/4fllYqpOtGmhRKCaVSwYufzGLwiP7MnDmTkJAQNm3axLp167h8+bIRoxaE1mtOxABGt+0IXJuiS3RWElaoIczZg4/6msYerV5eXrRp04ZTp0416XEtrY6pUavkWhtzXyXXFLm5uWzbtg0PDw/69++PpaWlQa4z9/5PObEvCQs7BYGDHEjdXkxNmRYksPdQ4drOmqAeXnTs0oHQ0FCCgoKwsLDQawy//PILo0aNwt7evsH7Dx8+TK9evfjvf//LxIkTad/ePJff5+cUs/nnAxzdlYhWKxPRK4jRM/ri6V9/E88rV66wf/9+ysrK6NWrF4GBgc2+hFkQWjNZltl3OZ2Vqcc5X1qAm7UdnZLy+b+ZD+Jga2vs8HTUajVLlixh8uTJ2NnZNeoxNTU1rFq1imnTphk4umsM+f7d5ITpZsP4kiRhZWVlsDfc5tSaEiao/YNNTk5m3759dOvWjcjISL2/aR7YcoL3n/m6brJ0lQQqlZLvD72NwkpLUlIS586dQ6lU0qFDB0JCQnBwuLu2AxUVFaxfv56pU6fe8rjevXujUChYuHAhXbp0uatrmpPS0lIOHTrExYsXiYqKIjw8HKVSaeywBKFVOnXqFCUlJbpeh6bi0qVLHDhwgIkTJzb6MYsXL2bmzJnN9kHM6G0Frufs7IyLi0u9L2dnZ2xsbAgICOD11183y6LZ1kqSJEJCQnjggQcoLS1lyZIlet84Mbi7L71nBpC6vRjNdTWASpUChULBi589TBtvZ1xdXYmOjmbGjBlMmDABKysrtm7dyuLFi4mNjSU7O/uOlriePn2a8PDw2x43Z84cDhw4wMmTJ5t8DXNmb2/P0KFDmTZtGhUVFSxevJj9+/eLAnFBMIKwsDASExNN7n3Ux8cHR0dHzpxpfL2pq6urbjGNuWvyCNOPP/7IP//5T2bPnk2vXr2QZZnDhw/zww8/8Oqrr5Kbm8uHH37IP/7xD1555RVDxW1QrW2E6UalpaXs2LEDrVbL0KFD73p0Jy8vjw0bNjBx4kSSj1xk3Tc7OHMkDZVKSe97Ipnwf4MJDPe75Tk0Gg0XLlwgMTGRy5cv4+bmRmhoKO3atWtUN/MlS5YwZcqU207zVVVV4e/vT+/evdmwYUOTnqcsy5zce5b96+OoLK8mKLItQ6b3w87RdIbVG0ur1XL27FmOHj2Kp6cnvXv3bpV/C4JgLHv37sXNzY2wsDBjh1JHTU0NS5cu5f7778e2EVOGJ06cQJblZhuxN6kpuWHDhvHEE08wZcqUOrevWLGCL7/8km3btvHTTz/xzjvvcPbsWb0G21xae8J0VVZWFtu3bycgIIDo6Og72mbl+mRJnz/LK1eukJSURFpaGpaWlgQHBxMcHNzg3Hp+fj67d+9mwoQJjTr3K6+8wscff0x2djZOTk6NekzRlWL+dd8HnDmQjFKlBAk0ag1WNla8tOhp+t/Xq0nPz1TIskxGRgYHDx7EysqK6OjoBlcZCoKgXxUVFaxZs4YZM2YYO5R6Ll68SFxcHPfee+9tjy0oKGDfvn2MGTPG8IFhYgmTra0tx48fJzg4uM7tycnJdOnShfLyctLS0ujUqRPl5YZvRGgIImG6RpZlTp06RVxcHNHR0YSGhjZ6LtpQydKNysvLSUlJISkpicrKStq1a0dISAju7u5IksTOnTsJCAggMLBx/UwyMzMJCAjgf//7H88+++xtj9dqtTzb/zWSj6bVacoJgFS7MvGjHW8Q3sd0tqi5E6JAXBCa18aNG4mKisLb29vYodSzZcsW3WvtrciyzJIlS3QtbQzNpGqY/Pz8+Pbbb+vd/u233+Lv7w/UvlG6uLjcfXSC0UmSREREBDNmzCA7O5vly5c3ahl6cyVLUJvEd+7cmcmTJzNt2jR8fHw4cuQIP/30E7///juxsbG6383G8PX1pWfPnixYsACNRsP27duZN2/eTY+P33GKxMOp9ZMl4Oqumsv/u66pT8vktGnThnHjxjF27FjS09P56aefSEhIEFsiCYKB9O7dm4MHDxo7jAYNGTKEffv23bZnnSRJWFhYUF1d3UyRGU6T51g+/PBD7r//fn7//Xd69uyJJEkcPnyYs2fP8ssvvwC1y7NvtxpJMC+WlpYMHjyYoqIitm3bhrW1NYMHD25wDrs5k6UbKZVKitLLOfnLeQqyC7gUnIfsDMuXL8fGxkY3dWdjY3PL8wwePJj333+fgIAAXQH87NmzG3w+e9YcQqlSolFflzhI6JIlrUbLwY1Hqa6qwdJKv60SjOFqgXh1dTXx8fH89NNPhIaG0q1bN6ysrG5/AqHFKSyvoKyqBncHWyzvYOpeaJibmxvV1dWUlJTcdS2pvllYWDB06FC2bt3K+PG37hfl4+PDpUuX6uzhaY7uqA9Teno6CxcuJCkpCVmWCQsL44knnjD7H8ZVYkru9s6fP09sbCxhYWF0795dtwTdmMlSZXkVb035mLgtJ1CoFGjVWtrHeHLpUD69h/Xg6QUPci7tHMnJydTU1BAYGEhoaChubtc66ZaWlvLaa6+xcOHCOi39JUlCrVbX2YPuqv/O/ozty/diYa/EPdIRx7a2SAqJpLWZ1JReS6LWXPkOOyfzKwC/HVEg3nrtT8ng8+0HOJJe+6HCxtKCSd078dSwPjjbWhs5upYhLS2NtLQ0hg4dauxQGrRp0yY6dOhw06bAUPscMjMz6d+/v8HjMakaptZAJEyNo9VqiY+PJyEhgf79++Ps7Gy0ZAngf49/ydYfd+m6iktKibDJPpz5ORNJkpjyt7E8+u50oHalR3p6OomJieTn5+No54SXqxeXC7K5d9K99c5tb2/f4F5KFRUV/PDxUs6cPkN1qZrchGKKM8qxdrUgaJQXyesvUVOqwcXTmeUXvmjRNT+iQLx12Xg8kX+s2IiEhPa6txGlJOHv5szSJ6eJpEkPZFnmp59+Yvr06Xpv5qsP1dXVLF26lGnTpmFt3fC/d1VVFevWrau3WMwQDPn+fUdjp4WFhRw6dIicnJx6fSIefPBBvQQmmD6FQkG3bt0IDw9n7dq1nD179qbTVoaWn13I1p9219mCxaW9HQWpZUDti87azzcz45X7sLG3xsLCguDgYEovVLLlvf1knMvANdQBR39bxgwdz8YdG3SPA+o8J41GQ0pKCgkJCajVaroOjGDDe9upqbw2mlSZX8O5TdkEj/chZUMW4/4yokUnS1A7ChcQEEBAQIAoEG/hSiureHX1FpBBS93P3BpZ5kJeIZ9v288r44YYKcKWQ5IkIiMjOXHiBN27dzd2OPVYWloyaNAg/vjjD8aOHdvgMVZWVlRXVyPLslm/DjQ5YdqwYQMzZ86krKwMBweHOk9ekiSRMLVCZWVlVFZWMnv2bA4dOkRycjIDBw5s1nqWY9tP1iu6bhPuwLktObrvq8qrObUvkR731PYD2bv2EG9O/hCJ2r3uyi7XTsFZO9szefQU1m5ZjVqtRpZl7OzsyMzM5Pjx4+Tl5dGhQ4c626w89dHDfPrUNygUki5pq8yvIX1LDp1nBjHy/wY1w0/BdFwtEL/aQXzPnj2ig3gL8tvxRKpq1NxsekIjy6w6coq/jRqAlYWoabpbkZGRLFmyhG7duplkwhEYGMjp06c5d+4cQUFBDR7j7OxMUVERzs7OzRucHjV5ldzf/vY3HnnkEUpKSigsLKSgoED31VK6eQqNd33NUrt27ZgyZQqBgYEsX76cY8eONVunWnVN/Y17y3KqaB/jga3HtcStprr2uOqqGv736OfIslxnVAqgsrAaKdWOx8Y9hbu7O1C7pP7rr78mLymJaHcPevfsWWdPujGPDeffG16iY/S1JbYOrvZMeGw0T7/4JBs3/dbglF5Ld2MH8Z9++kl0EG8B0q7ko7yunk+BTCdlJbZc+3uvqK4ht6TMGOG1OCqVioCAAM6dO2fsUG5q+PDh7Nq166Z/2y1hI94m1zDZ2dmRkJBw0yyyJRA1TI1zqwJvjUZDXFwcSUlJDBo0iLZt2xo0lrSEDJ7o/nK92y0dVPj3d0NSSWTuzeebuP/h7udG7Mr9/HvqRw2eS2mlIGCYJ949XPHx8uWfc1/ER6NhmY8v+a6uXPL1ocDbG9ewMCKGDKF9+/Z19lAsKSiluqIaZw+n2iaW1CZcv/32GxMnTjS51S7NSRSItwzztu7j69hDaP78sOEkaQhXVOnSpSStFQWykj2vPIGrfctb6GAMpaWl/Prrr826kW1TpaamkpiYyOjRo+vdd+XKFQ4fPkxMTIxBYzCpPkwjR44kLi5OLxfftWsX48aNw8fHB0mSWLt27W0fExsbS/fu3bG2tiYoKIiFCxfWO2bVqlWEh4djZWVFeHg4a9as0Uu8wjW3Ww2nVCrp3bs3EydOJCEhgdWrV1NUVGSweAIj2xLeJwSFqu6vdHWJmtTfL3PpQAFR0ztwMH4/JSUlZCZn6ZIZAEkh0etvofT7Vye6PRNMTZmanOOFDNBYEuvpxXIfXyTALT+fyISTDNz6B4HffkfuoUOsXr2a5cuXc/jwYYqKinBwscfNx7XO+du0acOYMWNYvXp1qxxpukqhUBAeHs7MmTMJCQlh06ZNrFu3rlG9vQTTMaJTB12yBOCAlixZxUGNLSc11rRTVDPaQcOVSxdNbj80c2Vvb4+NjQ25ubnGDuWm2rdvj0ajIT09vd59bm5u5OXlNX9QetTkyeUxY8bwj3/8g9OnTxMZGVmvav92/RiuV1ZWRpcuXXj44YeZNGnSbY9PS0tj9OjRPPbYYyxevJi9e/fy1FO10yZXH79//36mTp3K22+/zX333ceaNWuYMmUKe/bsoXfv3k17skKDmtI6wM7OjjFjxnD58mV+++03fH196du3r0FWe7z0/V94bvCbFOUW16lnUigknOydePblOZSrS9mwYQNFylIkFdi5W+MR6YyNuxXZR/KpyKvGyskCe18b3EIdiTu2G9fAQNzy8nAoKUFxdUBWlrErL8fp+0UM2PYH1Wo1qamp7Nixg5KSEvz8/AgNDcXb21tXc3B90tTaR5pEgbh56+jjwaDQQHYnpaOVZRwkDTly7dtJGQriNTY8Pm4M2dnZ7N+/n8jISDp37nxH2ysJ10RHR3Pw4MGbFlebghEjRrB8+XJmzJhRZ+RdkiRUKhVqtdpsfw+aPCXXUB8a3ckk6Y67/kqSxJo1a265N81LL73E+vXr6+yU/OSTT3L8+HH2798PwNSpUykuLub333/XHTNq1ChcXFxYtmxZg+etqqqqM+9aXFyMv7+/mJJrwN30WZJlmbNnz3Lw4EF69uxJeHi43t8YCy4XsWb+72xeFEtRXgmuXs6MfnQoE56+BweX2pqjoqIiVq74hYuZFwA4/u05SjPrdquVJIm+jwYwNm47+W6u5Lm5UezgiISMU1ERrnn5uOXlYVNZSdsffsCu97W94rRaLRcvXiQxMZHs7GycnZ0JDQ0lMDAQCwsL3fTcpEmT6tRBtXZXC8QvXrwoCsTNQFlVNX9fvpHYxDR6qSo4qbWhQguWKhVvTRzOuK4dAVCr1Zw4cUJXytGjR4/bNo4Vbm7ZsmVMmDChURvfGktycjKpqamMGjWqzu2xsbEEBQU1aeeFpmoVfZgakzANHDiQqKgoPv30U91tV0eQysvLsbCwoG3btjz//PM8//zzumM+/vhjPvnkE86fP9/ged944w3efPPNereLhKkufTWlrKmp4cCBA2RkZDB06NBm2SepqqqK06dPc+bMGWxsbOjcuTMbP93Bvu378ezuwpVTxVw+VsD1y37u+1dXhixfXOc8WkmiyMmpNolydaPSxhr7Tp0I6N4dPz8/vL29660OzM/PJzExkbS0NJRKJcHBwbi6uhIbG1svaZJlmeOxp4nbmoBGrSWsZ3v6ju+OhaV5fiK7E1c7iJ8+fVp0EDcDZy7lsHrlCggMp72HG2O6huFgXf/fS6vVkpKSQlxcHC4uLkRHR4sttO5AUlISly9fZsCAAcYO5ZbWrVtHVFRUnfrV1NRUcnJy6NOnj8Gua3J9mIwlOzu7XiM8T09P1Go1V65cwdvb+6bHZGdn3/S8c+fO5YUXXtB9f3WESbhGnx28LSwsGDBgAMXFxWzfvh2lUsnQoUOxs7PTU7S1NBoN586dIyEhgaqqKjp27MikSZN0b75PfdQO+VmZX7/cikdXZyJmtSMrLp/S9Cqemf8oueVnkKnd5eQqhSzjUliIS2Eh7VNrV6x4PTSbQh9vLl68yKFDh6iursbBwQE/Pz98fX1xd3enT58+9OnTh4qKClJSUjh69CgFBQV8+OGHzJo1i6CgIHIv5vOvSf8jLeECSpUSSYLV8zS4eDjx+orn6Nj75p10WxJLS0t69epFjx49OHv2LCtXrhQF4iaso48H7dq4MHP8rTtRKxQKQkJCCAkJITMzk+3btwPQp08ffHx8miPUFqFDhw7s37+fvn37mvQI7D333MPPP//MzJkzdSUYvr6+HDt2zMiR3blGJUzz5s3j8ccfx9ra+pabkAL89a9/1UtgN3PjFM7VAbIb+0HdeMytpn6srKzEJ9hbMNR2J46Ojtx7771cvHiRNWvW0L59e3r27HlX89uyLJOdnc2JEye4fPkyQUFBDBs2DCcnp3rHKlVK/vrZY0x76V5iVx6gKL+IyC4aFM4yHQb4U348H9nPFynzEjQ0ECtJqDw9cY7ujYtSSWBgoO6u4uJiMjMzSUhIIDc3F1mWcXd3x9fXF39/fyIiItBqtRw9epSffvoJD3cPUvZdpLAsH0lJnX3pivKKeXnM+3wZ9y5e7Tzu+Gdjbq4WiHfs2JGMjAw2bdokOoiboIqKipt2eL4ZX19fJk2aREFBAQcOHGDnzp306NGDDh063LLsQ6j9u+jYsaOujthU2djYEB0dzc6dOxkxYgQA1tbWZt1SpFHvTB9//DEzZ87E2tqajz/++KbHSZJk0ITJy8ur3khRTk4OKpVKtx/YzY4RL7B3pjn2hvPz82PGjBkkJCSwZMkS+vbtS3BwcJPOUVxcTEJCAqmpqXh4eNClSxe8vLwaVSPl0dad+/82Tvd9RUUF+/bt40RCAj6zZ+P0zrsgSXWTpj/P6/nKXKQGPuU5Ojri6OhIx461dRxarZYrV65w8eJFdu/eTVFRERYWFnh7exMTE8Pu7XvIOJSLg481nlFeaGq0FKSWU3iuHHWFlurKGtYs2MJfPnygST+XlkAUiJu2vLy8OvsxNoWLiwsxMTGUl5cTFxcnCsQbqWvXrvz8889ERESY9O9/WFgYZ86c4eLFi/j5+QG1q/2Ki4vNcrTYrGqYXnrpJTZs2MDp06d1t/3lL38hPj6+TtF3SUkJGzdu1B0TExODs7PzTYu+byT6MNUyxka6VVVV7NmzhytXrjBs2DDatGlzy2PPnj3L6dOnsbKyIjIykqCgoLseptZqtcRtPs6WLVuosazEWa2hb8JBHDMydMeovLzwfGUujvfcc8fXqa6uJisri8zMTDav+wPJRktBahkFKeVUFtZgaa/COdAGpZWC4oxK1AUSPx7/1KRfIJvL1QLxzMxMunbtKgrEjejEiRO67TvuligQb7ytW7cSGhpq8B53d6u8vJyVK1cyc+ZMVCoVR44cwcbGhvDwcINcz2SLvhuaDmuK0tJSUlJSAIiKiuKjjz5iyJAhuLq60rZtW+bOnUtmZiY//vgjUNtWICIigieeeILHHnuM/fv38+STT7Js2TJdW4F9+/YxcOBA3nnnHSZMmMC6det49dVXm9RWQCRMxkmWrldQUMC2bduwt7dn0KBBuhdNrVZLWloaJ06coKKigo4dO9KxY8cmTwncTElBKf8c+x5n9ifh0dkZrUZL2eUq/Pq5EdLBjUnRnXD188e2R/cGR5YaS6vV6rrlFxYWsvyTtVSrKnDwtaamXENpViUXdudTdrkaSQGObW1oE+ZA9H1d8PDw0L1QtvYkQRSIG9+OHTsICQnB19dXb+cUBeK3V1RUxNatW5k8ebKxQ7mt06dPk5WVxbBhw8jJySE+Pp577uLD5q2YXNH3t99+y8cff0xycjIAwcHBPPfcc/zf//1fk84TFxfHkCHXNme8Wnj90EMPsWjRIrKyssi47lN9YGAgGzdu5Pnnn+ezzz7Dx8eHefPm1enh1LdvX5YvX86rr77Ka6+9Rvv27fn5559FD6YmMHayBLVD9ZMnTyYtLY0VK1bg7u6OQqEgJyeHwMBAhg4d2mBd0t16Z/onJB6qTeKrimuw87Tmyqliktdd4pJnPpKbC2H29vSvrLxlkbpWq6W0tFSXEF39Ki0t1R3j4OCAs7MzLi4utHH2JHbpQRQWEoHD25CyMRd1eW0dk6yF4oxK3J09mTVrFjk5OSQmJrJ3715sbGwICQmhQ4cOrfKTuCgQN767mZK7GVEgfntOTk5IkkRBQYHJJ5Ph4eGcOXOGS5cu4eXlZdLNN2+lySNMr732Gh9//DFz5szRLQ3cv38/CxYs4Nlnn+Xf//63QQJtTq15hMkUkqWrSkpKSEhIIDk5mYyMDCwtLZk6dSrt2rUzyPXSEs7zeJe/6763aWOFRxdnzm+71oXas507b2/7B3v37sXFxYWwsDDKy8t1CVFJSYlukYG9vT0uLi44Ozvrvuzs7Bosak0+ls4zfV+rva6bBe2GtyF5Q44uaQJ4/otHGTV7cJ3HlZaWkpSUREpKCmq1msDAQEJCQvT+BmYuZFkmIyODgwcPNqpAPC+/lDOJWUgSdArzxdnZdHvbmKolS5Ywc+ZMg1/naoF4QUHBbQvEK2tqOJSZSUVNDcFubgS5uho8PmO4ePEip06dYuTIkcYO5bZKS0tZtWoVM2fO5Mfliwm9pzN2FjaEO3XAUqG/RsYmNSXXpk0b5s+fz/Tp0+vcvmzZMubMmcOVK1f0GqAxtNaEyRSSperqal1dkoWFBZGRkbRv3x6lUklFRQWxsbGUlZUxbNgwve96vfz9NXz/2nJdl3CltYLQiX7kxBdi5WyJlbMFlg4qugzuhK2DDZmZmZSVleHr68vw4cNxc3PD3t7+jlf5fPvqz6z4369IEli7WhA4vA1JG3LQVGrpPiyCN1e9gOoWO7/X1NSQlpZGUlIS+fn5eHt7ExISgr+/f6tceXSrAvGS0ko++WwrO3ad1W2+rFQqGDmsE888OQxbG8tbnVr4kyzLLF26tFkSpqvKy8s5cuQI586dq1cgrpVlFh46xJeHD1NaXa17TA8fH967554WmTgtXryY+++/3yymonce2c3WlN3kVRZQ7FFNhaMaW6UNk/1Gcq/vcL3UZ5pUwuTi4sKhQ4fqrWJKSkqiV69eFBYW6jM+o2iNCZMxkyWtVkt6ejonTpygvLycsLAwwsPDb1qXlJuby7Zt2/Dw8KB///512u/fjZ/eXMmSd1bVWdLvE+1GTZmaqqIaKguqqS5V88WR/9Kha6Au9oSEBI4dO0ZUVBSRkZF3nJzIssyWn3az4n+/cjEpC5s2FgTHeBEZGMX0v93XpOaVsiyTlZVFUlISFy5cwN7eXjd1Zw4vrPp0Y4F4+/bBPPviz6Sm5eiSpasUColOHX34+P1pqFStuz6sMUpLS9m2bRsTJkxo9ms3VCD+8aFDfHvkSL1jlZKEvaUl6x54AH8DTOUb06lTpygpKSE6OtrYodxSVkUOf4//D+7xllQ41KBRyuS1rdTdP9H3Hma1u/vfI5NKmObMmYOFhQUffVR3p/e///3vVFRU8Nlnn+k1QGNobQmTsZKlnJwcjh8/TlZWFu3atSMyMrLRc/GyLJOcnMz+/ft1icrdfjrZvyGOf034zy2PsbK1YuXlb7Cxq5vMqdVqjhw5wtmzZ4mOjiYkJOSO45FlmbxLBajVGmRLNVu2bGHy5Ml31dizuLiYpKQkUlNT0Wq1BAUFERoaqvdROlN2tUB8955DHEsoIitHhUbb8L/Rv14ex9BBHZs5QvNz/vx5MjIyjNp1+mqB+O79+9mSmckZS0vKGvjQopQkJnbqxPsGKjY2Fo1Gw+LFi5k1a5ZJjyR/nLSIPblHUFTJBB5zospOQ0bktY3IJSS+6vE2bazurh7L5BKmH3/8EX9/f11Ge+DAAS5cuMCDDz5YZ1PVG5Mqc9GaEqbmTpZKS0tJSEggJSUFNzc3unTpgo+Pzx0nF2q1mkOHDnHu3DmGDBlyVyt1NBoND7R7ivyswgZ3WFcoFYx78h6emf/oTc9RVVWl+3sYMGAAAQEBdxzPVTk5Ofz+++93nTRdVV1dzblz50hMTKS4uBgfHx9CQ0Px8fEx6RdcfXny2R/Iu5KJl7uasnIFF7NVVNdce94KhUS3rgF8+M4UI0ZpHo4ePYq1tbXBlog3xaf79rFs715Cq6qQJYkzlpbk37CK1FKpJP7pp7FqYT2e9u7di5ubG2FhYcYOpUGVmioeOPh3NHLt66rLJSs8z9lxtn++7hgFEtPbjmWy/6ibnaZRTGqV3MmTJ+nWrRtQuy8MgLu7O+7u7pw8eVJ3nOgVY/qaK1mqqanh7NmznDp1CpVKRWRkJDNmzNDLkniVSkXfvn3p3LkzO3bsIC4ujqFDh+Lg4NDkcymVSl5b+TdeHP4W6uoaNOprSZOkkAiM8Ofhd6bf4gy1XeMHDRpEWVkZe/bs4cCBAwwaNAgvL68mx3OVh4cHMTEx/PLLL3pJmiwtLQkLCyMsLAytVsulS5dITExkx44dODo6EhoaSlBQkN6mOk1N7pUy8vJV5OYrcbLXEtyuhrxCJdm5f9bBaGVycoqNHKV5yMvLo3PnzsYOA4DLZWUUWFiwR6nEXqslvKqKcoWCk9dNQVdrNBRXVeHewhKmbt26sWbNGpNNmErUZbpkCaDAuwrbQgvQAn9+VpEkBXnVRcYJsJGa/FuzY8cOQ8QhNDNDJ0tarZbz589z4sQJSktLCQ0NZcKECQZb+m5vb8+4cePIyspi/fr1BAQEEB0d3eRuweHRISw8+l9++d8Gti3dTWVZFe7+box7ciT3zhmFjX3j4rezs2PkyJEUFhaya9cuNBoNgwYNwvUOi049PDwYNWqU3pKmqxQKBX5+frouvIWFhSQmJrJq1SokSaJDhw6EhIS0qJFWNzc78gtKkWWJolIlRckKwjtUU14hUVyqRCFJtHGzv/2JBPLz8+/4d1rf3G1tdb0BSxUKEqys6HzDNhwWCgWOLbCGz8bGBmdnZ7KyspplM/OmslfZokCBlj+TJgkyw0vrHCPLMq6Wpv06c1eNKy9cuIAkSboX25aipU/JGTJZys3N5cSJE1y8eJGAgAA6d+7c7C+osixz6tQp4uLiiI6OJjQ09I5HPLVarV6mqXJzc9m5cye2trYMHDjwjkbAAC5fvsymTZv0mjTdTGVlJampqSQlJVFaWoq/vz8hISF4e3ub9Qjy2l+P8elnW7n+hU+plIkIruJ0ihU1aol//mMMI4Z2MlqM5qK5Wgo0RlpBAcO//173vY1WS+eqKg7++SFNKUmMDwvjw5gYY4VoUHl5eezevfuWu2UY04eJ37L/Svy1pKkBX3Z/Cw/ru2uJYsj37ya/E6jVal577TWcnJxo164dAQEBODk58eqrr1JTU6PX4AT9M0SyVFZWxsGDB/npp584ePAgISEhPPjggwwePNgonz4lSSIiIoIZM2aQnZ3N8uXLuXz58u0f2AB91fS4u7tz//3306VLFzZs2MC2bduorKy8/QNv4OnpqRtpKisr00tsN2NtbU2nTp247777mDlzJoGBgZw6dYrFixfz66+/kpSUZJZ/8yOHdyKgrRsKxbWkT6ORSD5vSVj7akKDPRk8wDSnNkyJVqs1qcQ50MWFGTeZHlRKEjYWFjxt4ivJ7oabmxvV1dWUlJTc/mAjmOo/BguFCgUN/86M8R5818mSoTV5hOnJJ59kzZo1vPXWW3UaV77xxhtMmDCBhQsXGiTQ5tRSR5j0mSzV1NSQlJTEyZMnUSgUREREEBwcbJIbZhYVFbFt2zasra0ZPHgwtrbGbU4oyzKpqans27eP9u3b06tXrzqLJRqjOUeaGpKXl0dSUhJpaWmoVCrd1J29vXlMZRUWlfPfj39n38FU3W2SBIP6etCtcxvGjx9rxOjMQ2FhIXv27GHsWNP5WWm0Wj7et4/vjhxBUVOjG2Hq5OHBf0eOJMzd3dghGlRaWhppaWkMHTrU2KE0KLU0g/nJizlfnqm7zUphyQTfYUz1H41CuvsPqCa1Ss7JyYnly5cTc8Ow5u+//860adMoKjLtoq3GaIkJkz6SJa1Wy4ULFzh+/DglJSWEhITQqVMnoycgjXX+/HliY2MJCwuje/fuRt+HTavVcvr0aeLi4oiMjKRr165NisnYSdNVFRUVpKSkkJSUREVFBW3btiU0NBQPDw+TGoFoSFZ2ISdPZyJJEp0j/PBwd2Tr1q14eHjQpUsXY4dn0s6dO8fly5d1H5xNSUlVFTvOnCH9xAmGjBxJ5C26vbcksizz008/MX369CZ/CGsusiyTUprBxYpsrJVWdHUKw0aln71AwcQSJk9PT3bu3EnHjnV7lJw5c4aBAwea7R4x12tpCdPdJktXrlzhxIkTXLhwgbZt29K5c2ez3XpDq9USHx9PQkIC/fv3p3379sYOCY1Gw7Fjxzh16hQ9e/akY8eOjU40srOz2bx5s9GTpqs0Gg0ZGRkkJiaSk5NDmzZtCA0NJSAgwCRHHxui1Wr5+eefGTx4sEkW0JqKw4cP4+TkREhIiLFDaVBxcTGxsbGMGzfO2KE0q2PHjqHVaunevbuxQzEKk0qY3nrrLc6ePcv333+v6xhcVVXFo48+SnBwMK+//rpeAzSGlpQw3WmyVF5ezsmTJ0lKSsLJyYkuXbrg7+9v8iMGjVVZWcmuXbsoLCxk+PDhJrHSp7q6mkOHDpGWlka/fv0ICgpq1OOys7PZsmULkyZNMomk6SpZlrly5QqJiYmcP38eKysrgoODCQ4ONvlRyfLyclasWMGUKVNMPlZj2bRpEz169KBNmzbGDqVBrTVhUqvVLFmyhAcffLDFvF43hUklTPfddx/btm3DyspKN2R9/PhxqqurGTZsWJ1jV69erb9Im1FLSZiamiyp1WpdXRKgq0sy1aFdfcjLy2Pbtm24uLgwcODAOtuGXL6Qx+8/7CLpWDoWlip63RPJ0PujsbHX3/BxQyoqKti7dy+5ubkMHDiwUc04TW2kqSFlZWUkJyeTnJxMdXU17dq1IyQkhDZt2pjkC3tWVhY7d+5k6tSpraKhZ1MtW7aMKVOmGH1q+2Zaa8IEsHPnTvz9/U1iBL25mVTC9PDDDzf62O+vW+JpTlpCwtTYZEmWZV1dUlFRka4uyVTfdA0lJSWFvXv30rlzZ7p06cLWpfv49LkfQZLQampXA8myjLO7A++teYHAcMO30igpKWHXrl1UVFQwePDg236Sv5o03X///SY/KqJWq0lPTycpKYkrV67g6elJSEgIbdu2Nak34OPHj5Obm8vw4cONHYrJMaWWAg1pzQlTaWkpv/76K9OmTTN2KM3OpBKm1sDcE6bGJEv5+fkcP36cCxcu4OfnR+fOnU12aL25aDQa4uLiOHoonm0LT1CaVV3vGIVSgZObPd8ffRdr2+ZpgJeXl0dsbCwqlYpBgwbhdIvNQ69Oz02ePNnkk6arZFnm8uXLJCUlkZGRga2tLcHBwXTo0MFgjU6b4vfffycgIMAktv8wFRqNhhUrVjB9+q073xtTa06YANatW0ffvn1xb+ErA28kEqZmZg4JU0lxBdu2nOTihXzs7KwYOKQj7YM9b5kslZeXc+rUKZKSknBwcNDVJYnphrreeHA+l0szUFhIXNhfRHVp/UZrz336IKNmNe+Go1lZWcTGxuLq6kr//v1vmhCZ00hTQ0pKSkhOTiYlJQW1Wk1gYCChoaFGqzPTaDQsX76cESNG4OHhYZQYTE1eXh6HDh2qt1ralLT2hOny5cscPnzYpNo+NAeTS5h++eUXVqxYQUZGBtXVdT+FHz16VG/BGYupJ0ybfo1n3v82oVZrUCoVyDJoNFr6DAigXXANkydP0sWtVqtJTk7m5MmTaLVaOnXqRGhoaIuuS7pb47z+Qk21Ghs3Ff59HCm7XMOlIyVc3QpJUkj0GxPFqz/8xSjxpaWlsXfvXtq2bUt0dHSDe76Z40hTQ2pqakhLSyMxMZGCggK8vb0JDQ3Fz8+vWRP9kpISVq1axbRp07C2NmwNmzlISkqisLCQXr16GTuUm2rtCRPU1plNmDDBrF8DmsqkOn3PmzePhx9+GA8PD44dO0avXr1wc3Pj3LlzJv1po6U4sDeZ/73/GzU1GmQZ1GotGo0WaxuZkvJUMlKscXBw4MKFC/z2228sX76coqIiYmJimDp1KhERESJZugVZltFoajOjijw1Sb/mo67U4t3tWkNGWStTU6M2VogEBgYyc+ZMPDw8WLZsGYcOHUKtrhuPl5cX99xzD7/88gvl5eVGivTuWVhYEBISwrhx45g1axadOnUiNTWVJUuWsHbtWk6fPk3VDfuFGYKDgwPDhg1j/fr1aLU339qhtcjLyzPb1iKtSffu3Tly5Iixw2gxmpwwff7553z11VcsWLAAS0tLXnzxRbZu3cpf//rXFtG00tT9+N2ueiuKrG1k2nfUcD5FwfkLyXz91XckJibSq1cvHnjgAaKjo82mA7OxSZJE+87+SNdtm3E5oQwHbyss7Gr/XBQKiZCoQGOFCNTGGRYWxqxZs7C0tGTJkiWcOHGizpu5l5cXI0aMMPuk6SpJkvDx8WHIkCHMmjWLIUOGUFZWxpo1a3SJY2FhocGu7+/vT1BQELt37zbYNcxFfn6+SJjMQIcOHTh37hwajcbYobQITU6YMjIy6Nu3L1C7Q/LVfWtmzZrFsmXL9BudUEduTjHJidlcP4tqbSMT0V2NSiXj6aOltEiBrWUIw4cPb3XFfvpy7xPDkbV1Z6ovHCjGP7p2eFdSKBg1q78xQqtHoVDQtWtXZs6cSXl5OYsXLyYpKUn3O+Lt7d2ikqbrOTk50bNnT6ZNm8bEiRNxcHAgNjaWn376ie3bt3Px4kW9jwZ1796doqIikpOT9Xpec2Oq5QpCXQqFgo4dO3L69Gljh9IiNDlh8vLyIi8vD4CAgAAOHDgA1NZViPpxw6qoqL9qy9ZeJj1ZSUKcipQzKkqLlVRWmt+GqKZk6P29uWdmPwDdBq3lubU/UwdvK15c+ChuXs7GCq9BKpWK6Ohopk6dyqVLl1i6dCkZGRlAy06arrKysqJjx45MmDCBmTNnEhwcTGJiIkuWLGH9+vWcPXu2Xr3lnZAkiZiYGA4cOKB7HWyNZFkWi0XMRNeuXYmPjxfvz3rQ5L0Khg4dyoYNG+jWrRuPPvoozz//PL/88gtxcXFMnDjREDEKf3L3cMTSUkV19bV6lfzcui9aarWWtu1ad3uAuyVJEs/Pe4iowR1Z/9V2Uo5noLRQ4u/ani5PKxl4Xw9jh3hTVlZWDB48mLKyMnbv3s2BAwcYNGhQnaTpaiF4UsJFDu44Q021mqCOPvQd0QlLS/PYvuRWFAoF/v7++Pv7A1BQUEBSUhKrVq1CoVDQvn17QkJC7niExMLCgvHjx7N27VqmT5/eYNF9S1ZTU2M229wIYGlpiZeXl25rK+HONXmVnFarRavV6v5gVqxYwZ49e+jQoQNPPvlki3jxMOVVcp98sJHfN8Sj1Tb8z2Zja8mK9c9hbS0Kuw1h7969ODo6EhkZaexQGqWwsJDY2FhkWWbQoEFUVlay6fdNnI2t4sSBdJRKBZIkoVZrcHSxZe7HM+jap4OxwzaYyspKUlNTSUpKorS0FH9/f0JDQ/Hy8mpyt/G0tDSOHTvGfffdZ5Kdyg0lJyeH48ePM2LECGOHcktildw1RUVFbN26lcmTJxs7FIMzmbYCarWad955h0ceeUT36a0lMuWEqbCgjL8+sYjL2UV1kiaFQkIGXnt7IgMGhRkvwBZOrVazePFiZsyYYVYfDnJycoiNjcXOzo7tKxLRWBeQvLcazXWzVJJCQqVSMG/VHNqFeBkv2Gai0Wi4ePEiiYmJZGdn4+rqSmhoKO3atWv0StL9+/cjy7KurrM1OHPmDBUVFXTr1s3YodySSJjqWrVqFUOHDsXFxcXYoRiUybQVUKlUfPDBB6Li3oicXeyY/9XDjJ/Yvc4oUueoAD6c94BIlgxMpVLRp08f9u7da+xQmsTDw4P7778fS60zNRb5aDUyoYMsUV6XF8haGa1GZuXXscYLtBkplUoCAgK45557ePDBB+nTpw+5ubmsXLmSFStWcOzYMUpLS295jujoaLKzs0lLS2umqI0vLy/PJDarFpqmd+/eHDp0yNhhmLUmT0QPHz6cnTt3Mnv2bAOEIzSGk7MtTz83ksf+MozCgjJsbC1xcDT+FhKtRUhICEePHqWwsBBnZ2djh9MkJ/dfInWvBnt38O+qouNQS85sr0bz5zoBjUbLrt9P8Pf/TmlV00wAbm5u9O3bl759+1JeXk5KSgqbN2+moqKCgIAAQkNDcXd3r/NzkSSJsWPHsmzZMlxcXMzu9+FO5OXl6TZeF8yHn58fO3fupKqqqs4m40LjNTlhiomJYe7cuZw8eZLu3bvX26R1/PjxegtOuDVLKxUeXjffV0wwDEmSGDZsGNu3bze7hQ5lJVVotTJF2TJFm6pxbavA1kVBSc615ffqGg3qGg0WLaAA/E7Z2trSuXNnOnfujEaj4fz58xw9epScnBzc3d0JCQkhICAAlUqFpaUl48aNY8OGDUybNq3FN4YtLS0Vfd3MVFRUFMeOHSM6OtrYoZilJr8i/uUvtdtBfPTRR/XukyRJTNcJrYKHhwfW1tZkZGSY1coT38A2SAqQ//wzzc+o36fIzdOxVSdLN1IqlQQFBREUFIQsy+Tm5pKUlMSBAwewsrIiODiY4OBgoqOj+f333xk3blyLH51r6c+vpQoLC2Px4sX06tVLtIW4A03+iV1dJdfQl0iWhNZk8ODBxMbGmtVWGSMn97jpCkuoLfweO6NPM0ZkXiRJwsPDg/79+zNz5kxiYmKQZZnffvuNQ4cOcfr0aTZv3mzsMA2msrLSrBY7CHUplUo6dOhAUlKSsUMxS01OmH788ccG926qrq7mxx9/1EtQgmAObG1tCQkJ4fjx48YOpdG8/d14+IVRANw4SKBQSLTv6M29D/YzQmTmyc7Ojq5du3L//fczdepUJk2axIEDB3j33XfZvHkz6enpjfogmXg+h9e//p3hcz5n6NOf8dzHqzl46nwzPIOmEVuimL9u3bpx9OhRY4dhlpqcMD388MMN7hlXUlLCww8/rJegBMFc9OjRgxMnTjTLBrD6MuXxwbz44TT8gjx0t9naWXHv7P7896cnsLYVIwh3QqVSERwczMsvv4yPjw/t27fn/PnzLFu2jNWrV3Py5EkqKyvrPe73/Wd48M0lbD5wlqLSSkrKqzhw8jzPfLiKhWtMazWm2HTX/NnY2ODs7ExWVpaxQzE7TS5UkGW5wfnrixcv4uQkCpCF1kWpVNKvXz92797N8OHDjR1Oow0Z15XBY7uQm1VEdVUNHj7OWFq17GLl5mJtbc2YMWPYvHkz06ZNQ6VSUVJSQlJSEuvWrUOj0RAUFERISAgVGiVvfLMJrSzDdTOlmj+nTb9df5Cuwb5ER7QzzpO5QX5+Pu3btzd2GMJd6t27N7t37+bee+81dihmpdEJU1RUFJIk6VYIXd8aX6PRkJaWxqhRowwSpCCYsg4dOnD06FHy8/PNqj+NJEl4+DgbO4wWyd3dnW7durFlyxZGjx6Ng4MD3bt3p3v37lRXV5OWlsaePXtISEwnxKmS7DIlhdVKoO6HUaVCYvnWoyaTMOXl5dGzZ09jhyHcJTc3N6qrqykpKcHBwcHY4ZiNRidMVzPR+Ph4Ro4cWWdZqaWlJe3atWPSpEl6D1AQzMHQoUPZtm0b999/v7FDEUxEeHg4ly5dIj4+nq5du+put7S0JDQ0lNDQUNa/s4yssio8bGoIda6iQqMgpciKcnVttYRGK3M8+ZKRnkF9FRUV2NraGjsMQQ86d+vKT9vWkewvU61RE+bkw0T/nvjams+HvubW6ITp9ddfB6Bdu3ZMnToVa2trgwUlCOamTZs2ODo6kpaWRmBgoLHDEUzE0KFDWbFiBR4eHvj4+NS7X6UAO5UWOwstGlmitEZBzQ2LLpUmsvxb7HbfcpwryeGv6b8QfK6SwxZaNAqZQ3mp/HhuN3MjJjDRX4wiNqTJf4kPPfQQlZWVfPPNN8ydO5f8/HwAjh49SmZmpt4DFARzMXDgQHbv3i3aawg6CoWC8ePHs2XLFsrKygAoKCjgwIEDLF26lCDbIpQKmdP51sTl2nKu2Ioa7bWXZaVCok9kOyNFX1d5ebkYXWoBqjQ1PHX4OwrV5Vxso8XnSu3tWmS0yLxzci1xeeeMG6SJanLR94kTJxg+fDhOTk6kp6fz2GOP4erqypo1azh//rxoLSC0WjY2NoSHh3P06FFR5yHoWFtbExkZyQcffEBgYKBuk9/u3btTWlHDby9+i1pWU6fq+09aWWbGyO7NH3QDREuBlmFLVgK5VSUAXHKDXolKLrhrdOVzSknBT2l76OEWZMQoTVOTR5ief/55Zs+eTXJycp1puZiYGHbt2qXX4ATB3HTr1k23m7vQetXU1JCUlMT69etZsmQJhYWF9O7dG29vb8aNG0dISAgWFha4ONryyQv3YW2pqrP6WKmQUCgkXn90FB3beRrxmVwjNt1tGfZfSUbxZ3akVUCeg0yb4mu/expZy74rSWIKtgFNHmGKi4vjq6++qne7r68v2dnZeglKEMyVQqFgwIABxMbGilWjrUxpaSnJyckkJyej0WgIDAxkwIABuLi46I7ZtGkTp06dolOnTrrbokL8WPPfR1m36yT7T6ajUWvoEuLLxMGd8fNwNsIzaVheXh7h4eHGDkO4SzVaDfKfo5k2VeBaKnHFqW5ypJVlZGQkxBY412tywmRtbU1xcXG92xMTE3F3d9dLUIJgzgIDAzly5Ai5ubnib6IFk2WZK1eukJiYSHp6OjY2NoSEhDBu3DhsbGwafMyIESNYvnw57u7ueHhcaxzq6mjLw2N78fDYXs0VfpOZW9sMoWHhTr7suHwazwJod1nBiXYaKq5bw6VAooODJwrJNBYbmJIm/0QmTJjAW2+9RU1NDVDbyyUjI4OXX35ZtBUQhD8NGzaM7du3GzsMQc80Gg3p6els3ryZn376ibi4OHx8fJg2bRqTJk0iMjLypskS1DY6nTBhAhs3bjS7advq6mqsrKyMHYZwl8Z6dyU8Q4l7kcThkLrJEtQWf09vJ7ZHakiTR5g+/PBDRo8ejYeHBxUVFQwaNIjs7Gz69OnDO++8Y4gYBcHsuLi44ObmRnJyMsHBwcYOR7gLVVVVpKamkpiYSFlZGf7+/nTp0gVPT88Gdz24HXt7e4YPH86GDRuYPHmyWewaf7MdHgTzUlRUxOYNGxjdqQ//K9mDJClAru1joUBCi8wYnyjG+nY1bqAmqskJk6OjI3v27GH79u0cPXoUrVZLt27dzGpbCEFoDgMGDGD58uUEBQWhVCqNHY7QBEVFRSQlJZGamookSbRv355hw4bh6Oiol/P7+fnRvn17du3axeDBg/VyTkMqKSmp06xYMD8pKSns3buXMWPG0KZNG7oURbIkfS+xl89QI2sIdfBmWru+jPLuLJLjm5BkUQpfT3FxMU5OThQVFentBVJoneLj46msrCQ6OtrYoQi3IMsy2dnZJCYmcuHCBRwcHAgNDSUoKMig01AbNmwgNDSUkJAQg11DH9LS0rh06RL9+pnPVE1xcTGxsbGMGzfO2KEYlVarZefOnZSVlTFq1CgsLFr2npGGfP9u0giTVqtl0aJFrF69mvT0dCRJIjAwkMmTJzNr1iyRlQrCDTp37sySJUuIjIzEzs7O2OEI11Gr1aSnp5OYmEh+fj5eXl6EhoYycODAZpsmi4mJYdmyZbi5uZl0j6O8vDyTjk9oWElJCRs2bCA8PJyhQ4caOxyz1+iESZZlxo8fz8aNG+nSpQuRkZHIssyZM2eYPXs2q1evZu3atQYMVRDMj0KhYPDgwezcuZMxY8YYO5xWr7y8nJSUFJKSkqiqqqJdu3b07t2bNm3aGCUelUrF+PHjWbt2LdOmTTPZour8/HwCAgKMHYbQBGlpaezatYuYmJg6KzKFO9fohGnRokXs2rWLbdu2MWTIkDr3bd++nXvvvZcff/yRBx98UO9BCoI58/f3Jy4ujsuXL+PpaRpNCFuT/Px8EhMTSUtLw8LCguDgYGJiYkxmxM/JyYlBgwbx66+/MnHiRJMcqc/Pz6/TT0owXVqtlj179pCfn2/SSbg5anTCtGzZMl555ZV6yRLUbjD58ssvs2TJEpEwCUIDhg4dysaNG5k2bZpJviG2JFqtlszMTBITE7l06ZJuK5IePXqYbP1Gu3btyM7OZt++fSZZJ6TRaFCpmrxGSGhmZWVlbNiwgeDgYAYMGCBea/Ss0X8BJ06c4L///e9N74+JiWHevHl6CUoQWhonJye8vb1JTEwkLCzM2OG0ONXV1Zw7d47ExESKi4vx8/MjPDycYcOGmc2bRu/evVm7di3nzp0jKMh09vHSarVm8zNszTIyMti+fTsjR47E29vb2OG0SI1OmPLz8285neDp6UlBQYFeghKElqhv374sXbqUDh06iE/relBaWkpiYiIpKSlotVqCgoIYNGgQzs7Oxg7tjkiSxJgxY1i+fDmurq4m8zyKiopMJhahPlmW2bdvH9nZ2UybNq3OHq+CfjV6KcjthmSVSiVqtbrJAXz++ecEBgZibW1N9+7d2b179y2P/+yzz+jYsSM2NjaEhoby448/1rl/0aJFSJJU76uysrLJsQmCPllaWtK9e3cOHDhg7FDMkizL5OTksHv3bhYvXsyWLVuwsrJiwoQJTJ8+nd69e5v9G7ulpSVjx45l/fr1ut0UjE2skDNdFRUVrFy5EpVKxcSJE0WyZGBNWiU3e/bsmxaQVVVVNfniP//8M8899xyff/45/fr148svvyQmJobTp0/Ttm3besd/8cUXzJ07l6+//pqePXty6NAhHnvsMVxcXOr02nB0dCQxMbHOY8UvkmAKIiIiWLJkCV27dhWNABtBo9GQkZFBYmIiOTk5eHh4EBoaSt++fVtsM1BXV1f69u3Lxo0bGT9+vNGnw/Ly8sQeciYoMzOTrVu3MmLECHx9fY0dTqvQ6ITpoYceuu0xTS34/uijj3j00Uf5v//7PwA++eQTNm/ezBdffMF7771X7/iffvqJJ554gqlTpwIQFBTEgQMH+M9//lMnYZIkCS8vr0bHUVVVVSfha2hzYUHQB0mSGDp0KNu3b2f8+PHGDsckVVZW6pb+V1RU0LZtW7p164a7u7vRk4fm0qFDB7Kysjh8+DC9ehl3Q968vDyxvY8JkWWZw4cPk56eztSpU2+5d6GgX41OmL7//nu9Xri6upr/b+/e46Is0z6A/2YGGAYEUlFQQcBA0EBEzqKh5Yqrmb2aqZXp7r7vrmmuZgd1zcrazbTX8s01d7U02xItzc1DmeQplRRB0EQdFU+oEAdJIBSYmev9w5x1OCOHZ4Df9/Ph82Ee7ue+r+sZeObiOdxPSkoK5syZY7F86NChSExMrHKd0tLSSkeKdDodkpKSUF5ebr4Dpri4GF5eXjAajejbty/efPNNhISEVBvLwoULsWDBggZmRFQ3Xbt2hYjg2rVr6Nq1q9LhWIWff/4Zer0e58+fh1qthq+vL37zm9/AyclJ6dAUM2DAAGzcuBHu7u5VHnFvLjdu3ICLi4ti49N/3Lp1C9u3b0eXLl0wduzYNvMPhLVQ7KmPeXl5MBqNlS4kd3NzQ3Z2dpXrxMXF4cMPP0RKSgpEBMnJyVi9ejXKy8uRl5cHAAgICMDHH3+MLVu2ID4+Hvb29oiJicHZs2erjWXu3Lm4ceOG+SszM7PxEiWqwkMPPYQ9e/agrT6Z6E7BuGfPHvzrX//Cvn374OLigjFjxmDcuHEIDQ1t08UScPto5MiRI7Fnzx4UFRUpFofJZGq1pz9bkuzsbKxfvx7h4eHo378/iyUFKH6rTsU3vaanYs+fPx/Z2dmIioqCiMDNzQ2TJ0/G4sWLzX/QUVFRFs/tiomJQb9+/bBs2bJqpz3QarWc3IualZOTE7p374709HQEBgYqHU6zMBgMuHDhAvR6PQoKCtClSxf4+/sjNja22R5F0tLY29tjxIgR+OqrrzB+/Phmv7vSYDCwWFKYiODo0aM4c+YMxo4dazUTrrZFihVMrq6u0Gg0lY4m5eTkVDt9gU6nw+rVq/HPf/4TP/30E7p06YKVK1fCycmp2kcbqNVqhIeH13iEiUgJUVFR+Oyzz+Dv72+1Eyo21C+//IKzZ8/i7NmzKC8vh4+PD6Kjo3nXVT24uroiNDQU3377bbM/XqegoIAzfCuorKwMX3/9Ndq3b49x48bxHwuFKVYw3bnFOiEhAf/1X/9lXp6QkIBRo0bVuK6trS08PDwAAOvXr8cjjzxS7S+SiCAtLQ1BQUGNFzxRI7C1tUVkZCQSExMRGxurdDiNJj8/H6dPn8bFixeh1Wrh5+eHESNGwMHBQenQWqxevXrh2rVrSE1NrfF6zMbGKQWUk5OTg2+++QYDBw60qolM2zJFT8nNmjULEydORFhYGKKjo7Fy5UpcvnwZU6ZMAXD72qKrV6+a51o6c+YMkpKSEBkZiYKCArz77rs4ceIE1q5da+5zwYIFiIqKgp+fHwoLC/H+++8jLS0Ny5cvVyRHopoEBAQgNTUVhYWFcHZ2Vjqce2IymXDlyhXo9XpkZ2ebH0USGRnJCTob0eDBg/H555/Dzc2t2W4WuH79OmeNVsCxY8eQnp6O0aNHt/lr+ayJonuzcePGIT8/H2+88QaysrIQGBiIr7/+2vxU7KysLFy+fNnc3mg0YsmSJdDr9bC1tcXgwYORmJgIb29vc5uff/4Zf/zjH5GdnQ0XFxeEhITg+++/V/zWXKKq3JlmYNeuXRZHWq1dWVkZMjIyoNfrUVRUBE9PTwQGBmLIkCG8GLWJqNVqjBo1Chs2bGi2a1ny8/PbzDV21qC8vBw7duyAo6Mjxo0bx+vHrIxK2uptOjUoLCyEi4sLbty40WL/66eWZdu2bQgODoanp6fSoVSrsLAQZ86cwblz5wAA999/P3r27MlbzptZdnY2du/e3SwfqOvWrcOECRNaZBFcWFiIffv2WczRZ83y8/Oxfft2REdHc96rBmjKz28eLyeyAoMHD8aXX36Jp556ymou7BQR/PTTT9Dr9cjMzISjoyN69uyJxx57jDPnK8jd3R1BQUHYtWsXhg4d2qRj1XTXMjWe9PR0pKamYtSoUfwHxIqxYCKyAo6OjvD19cWPP/6I4OBgxeIwGo24dOkS9Ho9cnNz4ebmBn9/fwwYMICnB6xIUFAQrl27hhMnTjTZKbOysrJWe/emtTAYDNi5cydsbGwwYcIE/o1ZORZMRFYiPDwcn332GQICApp1XrCbN2+aH0Vy69YteHl5ISwsDK6urjy6YMWGDBmCDRs2oFOnTtVOxdIQ169f5x1yTaigoADbtm1DeHg4AgIClA6H6oAFE5GVsLGxQXR0NA4cOICHH364SccqKCgwP4rExsYGvr6+iIuL4wOBWxCNRoNHH30UGzdubJJnivGhu03n9OnTSEpKwsiRIznPVQvCgonIivTs2RNHjx5t9AkDTSYTrl27Br1ej2vXrsHFxQX+/v4YO3YsT7u0YO3atcOQIUOwZcsWjB07tlGvf8vPz7e4A5kazmg0YteuXTAYDHjyySc57UYLw3eLyMo8/PDD2LVrFx5//HH8XFiCm6UGdLzPAXa29ftzLS8vNz+K5Oeff0bXrl3h7++PwYMHW82F5dRwHh4e8PPzw759+zB48OBG6zc/Px+hoaGN1l9bUG4yIudmMbRqG7jqLKd9uHHjBrZu3Yq+fftyqoYWigUTkZXp1KkTim8aMX3+R0jR/wwA0NnbYuRDQfj949Fwblf9HWrFxcXmR5EYDAb06NEDMTExPLXSyvXr1w/btm2DXq+Hv79/o/RZUlLC2dnrqKS8DH8/8QM+PXMUhWWlAIDADm54Lqg/hnX3x7lz53Dw4EGMGDGi2sd4kfVjwURkZXZ8fxKrt2ci2PMmAB0AFW7eKsfGHak4nHYR//zrBHPRJCLIy8uDXq/HpUuXYG9vj549e2LkyJGNfk0LWbdhw4YhPj4eHTt2bLQPZV70X7ubhnI8mRCP49ezYbprWsOT13Pw7N4v8Wf77vDVOePJJ5/k6e8WjgUTkRUp+uUWFq1MgMGkQk6hDbrdV46rP9sBAEwmQWZ2AdZsSsSo2B7Q6/X46aef4OrqCn9/f0RFRfGaiDbMxsYGo0aNwubNmzF+/PgG3Wl58+ZNzrVVR2tOJ+N4fjZMsJwDWmswoX9uOba3u4hPJk1nsdQKcO9KZEV27j+FsnIDAOBKgS36db+JnwptIQA6OhrQycmAjPQfcL67CsHBwXBzc+NRADJzdnbGoEGDsHXrVowZM+aefzf40N26ERGsPZ1SqVhyv2lEnwIjklxtUKjV4PNzxzEzeIBCUVJj4ZWfRFbk0rXr0Px6QbZAhQv5dgjzKkFg11uw0wjO5WiRfNEeDwSFwt3dncUSVeLl5QVPT08cPHjwnvvgHEx1U2oy4qebxRbLfAsN8C0yYre7LX62UwMCnLuRr1CE1JhYMBFZEZ29ncX/qtd/scGhCw44dkWHKz/bodSg/rUdD+9T9SIiIpCXl4eMjIx7Wp9HmOrGVqWGRvWfj1GVCHoUm3Cgky0M6tv/zKhUKjjydFyrwIKJyIoMjuoJo9FUYel/jiKp1SqE9PaAczte0E3VU6lUGD58OA4ePIiCgoJ6r89JK+tGo1ZjWPee0Px6pNe72IRLjmrgriO/RjHht905k3drwIKJyIoE9HBDZLA31OrKp9pUuH3NxO8ej27+wKjFsbOzw8iRI7F161aUl5fXa93S0lJe9F1Hzz4QBZVKBZUIfIuMyHD6z/PgNCoVgjq448GuPgpGSI2FBRORlfnrrJGI6OMFANCoVbDRqKECYGdng9emD0dYYHdlA6QWo3379oiJicH27dshIrWvANS5Hd0W2NEdqwaNgZfBBvlaFaDRwObX03R9Xbvi44efgJrXGrYKvEuOyMo46uzw7l/GQH/+J+w5fBY3b5XBu1tHDB0QAEeH5nsoL7UO999/P7KyspCUlITIyMha2//yyy98pmA9De52P3LaecEY1h3BpcXQamzwGw9f9OvUjTdmtCIsmIislH8PN/j3aPyn0FPbExMTg02bNsHd3R1eXl41tuX1S/VXUFAAWxsbjOsTpXQo1IR4So6IqJVTqVQYOXIk9u7di8LCwhrb8g65+ktKSkJERITSYVATY8FERNQGaLVajBgxAlu2bIHBYKi2HQum+iktLUVubi48PDyUDoWaGAsmIqI2wtXVFWFhYfj222+rbXP9+nWekquH1NRUhISEKB0GNQMWTEREbUhAQAAcHBxw9OjRKn9uMBj43LM6MplM0Ov1CAjgPEttAQsmIqI2JjY2FmfPnsXVq1ctlptMJt7VVQ96vR5+fn7QaDS1N6YWjwUTEVEbo1ar8eijjyIhIQHFxcUwiSDl2jVsOX4MpTY2MHEupjpJTU1Fv379lA6DmgmnFSAiaoN0Oh1++9vfYnV8PDapgMyiIrgbDGhvNGLN6o/w2qDBePj++5UO02plZWXhvvvu44zobQiPMBERtVE/Fhfj39evo3NOLgDA2WhCoVqNq4WF+OOWr5CQcU7hCK3X4cOHERXFeZfaEhZMRERtkEkEr+/ZjUt2ty/w9i4rh7PpdsF054Tcgj17eHquCkVFRSgrK+PdhG0MCyYiojboyNUruFZUBAFw1F4Ln/JyuBsMKFbf/lgQANeKipBc4cJwAo4cOYLw8HClw6BmxoKJiKgN+qn4F/P3olIhUWePAo0GUuEuuezi4uYOzaqVl5fj6tWr8Pb2VjoUamYsmIiI2qBOjg4Wr0vVahx00NXarq07fvw4goKCOP1CG8SCiYioDYro5gE3R8ca27i1a4eIbnzkxx0igvT0dAQGBiodCimABRMRURukUavxSuygGtu88mAsNGp+TNxx/vx5eHl5wcaGM/K0RfxLICJqo0b4++P94SPQycHytFsnBwe8P3wERvj7KxSZdUpOTkZoaKjSYZBCWCYTEbVhj/j7Y5ifH37IzEROcTE6t3NEtGd32PDIkoXc3FzodDq0a9dO6VBIISyYiIjaOBu1GgO9vJQOw6odPnwYkZGRSodBCuK/EERERDUoKSlBUVER3NzclA6FFMSCiYiIqAYpKSm8dolYMBEREVXHaDTi/Pnz8PX1VToUUhgLJiIiomqkp6ejd+/eUPMi+DaPvwFERERVEBEcO3YMwcHBSodCVoAFExERURUyMzPRpUsX2NnZKR0KWQEWTERERFVISkpCeHi40mGQlWDBREREVEFBQQHUajVcXFyUDoWsBAsmIiKiCpKSkhAREaF0GGRFWDARERHdpbS0FLm5ufDw8FA6FLIiLJiIiIjukpqaipCQEKXDICvDgomIiOhXJpMJer0eAQEBSodCVoYFExER0a/0ej38/Pyg0WiUDoWsDAsmIiKiX6WmpqJfv35Kh0FWiAUTERERgKysLNx3332wt7dXOhSyQiyYiIiIABw+fBhRUVFKh0FWSvGC6YMPPoCPjw/s7e0RGhqK/fv319h++fLl6NWrF3Q6Hfz9/fHJJ59UarNp0yb07t0bWq0WvXv3xubNm5sqfCIiagWKiopQVlaGDh06KB0KWSlFC6YNGzZg5syZmDdvHlJTUzFw4ED89re/xeXLl6tsv2LFCsydOxevv/460tPTsWDBAkybNg1bt241t/nhhx8wbtw4TJw4EceOHcPEiRPxxBNP4PDhw82VFhERtTBHjhzhY1CoRioREaUGj4yMRL9+/bBixQrzsl69euGxxx7DwoULK7Xv378/YmJi8M4775iXzZw5E8nJyThw4AAAYNy4cSgsLMQ333xjbjNs2DC0b98e8fHxVcZRWlqK0tJS8+vCwkJ4enrixo0bcHZ2bnCeRETUvAoLC7Fv3z6MHDmy1rbl5eWIj4/HxIkToVKpmiE6aiqFhYVwcXFpks9vxY4wlZWVISUlBUOHDrVYPnToUCQmJla5TmlpaaWL8XQ6HZKSklBeXg7g9hGmin3GxcVV2ycALFy4EC4uLuYvT0/Pe0mJiIhaoOPHj6NPnz4slqhGihVMeXl5MBqNcHNzs1ju5uaG7OzsKteJi4vDhx9+iJSUFIgIkpOTsXr1apSXlyMvLw8AkJ2dXa8+AWDu3Lm4ceOG+SszM7OB2RERUUsgIkhPT0dgYKDSoZCVs1E6gIoVvYhUW+XPnz8f2dnZiIqKgojAzc0NkydPxuLFiy0mGatPnwCg1Wqh1WobkAUREbVE58+fh5eXF2xsFP84JCun2BEmV1dXaDSaSkd+cnJyKh0hukOn02H16tUoKSnBxYsXcfnyZXh7e8PJyQmurq4AAHd393r1SUREbVdycjJCQ0OVDoNaAMUKJjs7O4SGhiIhIcFieUJCAvr371/jura2tvDw8IBGo8H69evxyCOPQK2+nUp0dHSlPnfu3Flrn0RE1Lbk5uZCp9OhXbt2SodCLYCixyBnzZqFiRMnIiwsDNHR0Vi5ciUuX76MKVOmALh9bdHVq1fNcy2dOXMGSUlJiIyMREFBAd59912cOHECa9euNfc5Y8YMPPjgg1i0aBFGjRqFr776Ct999535LjoiIiLg9kSVkZGRSodBLYSiBdO4ceOQn5+PN954A1lZWQgMDMTXX38NLy8vALenqb97Tiaj0YglS5ZAr9fD1tYWgwcPRmJiIry9vc1t+vfvj/Xr1+OVV17B/Pnzcf/992PDhg38oyAiIrOSkhIUFRXxcg2qM0XnYbJWTTmPAxERNb3a5mHav38/3Nzc0LNnz2aOjJpSq5yHiYiISAlGoxHnz5+Hr6+v0qFQC8KCiYiI2pT09HT07t3bfLMQUV3wt4WIiNoMEcGxY8cQHBysdCjUwrBgIiKiNiMzMxNdunSBnZ2d0qFQC8OCiYiI2oykpCSEh4crHQa1QCyYiIioTSgoKIBarYaLi4vSoVALxIKJiIjahKSkJERERCgdBrVQLJiIiKjVKy0tRW5uLjw8PJQOhVooFkxERNTqpaamIiQkROkwqAVjwURERK2ayWSCXq9HQECA0qFQC8aCiYiIWjW9Xg8/Pz9oNBqlQ6EWjAUTERG1aqmpqejXr5/SYVALZ6N0AERERI0ltzQHe3J2IuVaEtT5WqT/cBTuOk/YaTlRJTUMCyYiImoVzhXr8f7ZxTCYDIBBhXbSHgUnC5Hptx/lF37BH3ymQa3iiRW6N/zNISKiFq/MVIYV55ai3FQOE0wAAPUtG8CggtHRgJSCJOzJSVA4SmrJWDAREVGLl1JwGL8YiyEQ8zJtjgNuet8wv96dswMiUtXqRLViwURERC3eheJzUMPyLjiDUxnKOt4yv84vy0Oxoai5Q6NWggUTERG1eKoK1yaZtEYURGYBKst2ahWnFqB7w4KJiIhavF7OgTDB+J8FKsBkb7zrpQoeuu5wtHFUIDpqDVgwERFRixfk0hedtJ2hruZjTSCIc3+kmaOi1oQFExERtXgalQbP+b4EZ1sXALePKAEwF1DDuzyG8A7RisVHLR/nYSIiolbBzd4drz+wGEnXE3G0IAm3jLfg4dAdD3Z6CN0dvJUOj1o4FkxERNRq2Gvs8WCnh/Bgp4eUDoVaGZ6SIyIiIqoFCyYiIiKiWrBgIiIiIqoFCyYiIiKiWrBgIiIiIqoFCyYiIiKiWrBgIiIiIqoFCyYiIiKiWrBgIiIiIqoFCyYiIiKiWvDRKFUQEQBAYWGhwpEQERFRXd353L7zOd6YWDBVoaioCADg6empcCRERERUX0VFRXBxcWnUPlXSFGVYC2cymXDt2jU4OTlBpVLVa93CwkJ4enoiMzMTzs7OTRSh9WhL+TLX1om5tk7MtfWqKV8RQVFREbp27Qq1unGvOuIRpiqo1Wp4eHg0qA9nZ+c28Yt7R1vKl7m2Tsy1dWKurVd1+Tb2kaU7eNE3ERERUS1YMBERERHVggVTI9NqtXjttdeg1WqVDqVZtKV8mWvrxFxbJ+baeimVLy/6JiIiIqoFjzARERER1YIFExEREVEtWDARERER1YIFExEREVEtWDBV8MEHH8DHxwf29vYIDQ3F/v37a2y/b98+hIaGwt7eHj169MA//vGPSm02bdqE3r17Q6vVonfv3ti8eXOlNlevXsXTTz+Njh07wsHBAX379kVKSkqj5VUdJfI1GAx45ZVX4OPjA51Ohx49euCNN96AyWRq1Nwqauxc09PTMWbMGHh7e0OlUmHp0qWNMm5jUCLXhQsXIjw8HE5OTujcuTMee+wx6PX6xkyrSkq9r3csXLgQKpUKM2fObGAmtVMqVyX2T0rk2lr2TatWrcLAgQPRvn17tG/fHkOGDEFSUlKDx20MSuTaaPsmIbP169eLra2trFq1Sk6ePCkzZswQR0dHuXTpUpXtz58/Lw4ODjJjxgw5efKkrFq1SmxtbWXjxo3mNomJiaLRaOStt96SU6dOyVtvvSU2NjZy6NAhc5vr16+Ll5eXTJ48WQ4fPiwXLlyQ7777Ts6dO9cq8/3rX/8qHTt2lG3btsmFCxfkiy++kHbt2snSpUtbVK5JSUny4osvSnx8vLi7u8t7773X4HEbg1K5xsXFyZo1a+TEiROSlpYmI0aMkO7du0txcXFTpapYrne39fb2lj59+siMGTMaOTtLSuWqxP5JqVxby77pySeflOXLl0tqaqqcOnVKfve734mLi4tcuXLlnsdtybk21r6JBdNdIiIiZMqUKRbLAgICZM6cOVW2f/nllyUgIMBi2Z/+9CeJiooyv37iiSdk2LBhFm3i4uJk/Pjx5tezZ8+WAQMGNDT8elMq3xEjRsjvf/97izajR4+Wp59++p7yqIumyPVuXl5eVe6A6ztuY1Aq14pycnIEgOzbt69ugd8DJXMtKioSPz8/SUhIkNjY2CYvmJTKVYn9k1K5tsZ9k4iIwWAQJycnWbt27T2P2xiUyrWie9038ZTcr8rKypCSkoKhQ4daLB86dCgSExOrXOeHH36o1D4uLg7JyckoLy+vsc3dfW7ZsgVhYWEYO3YsOnfujJCQEKxataox0qqWkvkOGDAAu3btwpkzZwAAx44dw4EDBzB8+PAG51WVpsq1KcZtKKVyrcqNGzcAAB06dLjnPmqidK7Tpk3DiBEjMGTIkPoFfg+UzLW5909K5tpa900lJSUoLy83/y225n1TxVyrcq/7JhZMv8rLy4PRaISbm5vFcjc3N2RnZ1e5TnZ2dpXtDQYD8vLyamxzd5/nz5/HihUr4Ofnh2+//RZTpkzBn//8Z3zyySeNkVqVlMx39uzZmDBhAgICAmBra4uQkBDMnDkTEyZMaIzUKmmqXJti3IZSKteKRASzZs3CgAEDEBgYeE991EbJXNevX4+jR49i4cKF9Q/8HiiZa3Pvn5TMtbXum+bMmYNu3bqZi/vWvG+qmGtFDdk32dSrdRugUqksXotIpWW1ta+4vLY+TSYTwsLC8NZbbwEAQkJCkJ6ejhUrVuCZZ565t0TqSIl8N2zYgE8//RTr1q3DAw88gLS0NMycORNdu3bFpEmT7jmX2jRFrk0xbmNQKtc7nnvuORw/fhwHDhy4p/Xro7lzzczMxIwZM7Bz507Y29vXM9qGUeJ9VWr/pESurXHftHjxYsTHx2Pv3r2Vfl9b276pplzvaMi+iQXTr1xdXaHRaCpVujk5OZUq3Dvc3d2rbG9jY4OOHTvW2ObuPrt06YLevXtbtOnVqxc2bdp0z/nURsl8X3rpJcyZMwfjx48HAAQFBeHSpUtYuHBhk+yUmirXphi3oZTK9W7Tp0/Hli1b8P3338PDw6Pe69eVUrmmpKQgJycHoaGh5mVGoxHff/89/v73v6O0tBQajaae2dRMyfe1ufdPSuba2vZN//u//4u33noL3333Hfr06dOgcRtKqVzv1tB9E0/J/crOzg6hoaFISEiwWJ6QkID+/ftXuU50dHSl9jt37kRYWBhsbW1rbHN3nzExMZVucTxz5gy8vLzuOZ/aKJlvSUkJ1GrLXz2NRtNkt+42Va5NMW5DKZUrcPs/v+eeew5ffvkldu/eDR8fn/onUA9K5frwww/jxx9/RFpamvkrLCwMTz31FNLS0hq9WAKUfV+be/+kZK6tad/0zjvv4M0338SOHTsQFhbW4HEbSqlcgUbcN9XrEvFW7s4tjx999JGcPHlSZs6cKY6OjnLx4kUREZkzZ45MnDjR3P7OLY/PP/+8nDx5Uj766KNKtzwePHhQNBqNvP3223Lq1Cl5++23K91mn5SUJDY2NvK3v/1Nzp49K5999pk4ODjIp59+2irznTRpknTr1s186+6XX34prq6u8vLLL7eoXEtLSyU1NVVSU1OlS5cu8uKLL0pqaqqcPXu2zuO2plyfffZZcXFxkb1790pWVpb5q6SkpNXlWlFz3CWnVK5K7J+UyrW17JsWLVokdnZ2snHjRou/xaKiojqP25pybax9EwumCpYvXy5eXl5iZ2cn/fr1s7jtcNKkSRIbG2vRfu/evRISEiJ2dnbi7e0tK1asqNTnF198If7+/mJraysBAQGyadOmSm22bt0qgYGBotVqJSAgQFauXNnouVVFiXwLCwtlxowZ0r17d7G3t5cePXrIvHnzpLS0tElyvKOxc71w4YIAqPRVsZ+axm0qSuRa1c8ByJo1a5owU+Xe17s1R8EkolyuSuyflMi1teybvLy8qsz1tddeq/O4TUWJXBtr36T6tTMiIiIiqgavYSIiIiKqBQsmIiIiolqwYCIiIiKqBQsmIiIiolqwYCIiIiKqBQsmIiIiolqwYCIiIiKqBQsmIiIiolqwYCIiagIXL16ESqVCWlpak49VVlYGX19fHDx4sMnHAoCDBw8iKCgItra2eOyxx+q0zrZt2xASEtJkz2UjamosmIiakUqlqvFr8uTJzRZLVlYWnnzySfj7+0OtVmPmzJnNNrbSXn/9dfTt27fR+ps8eXKlwsHT0xNZWVkIDAxstHGqs3LlSnh5eSEmJqbO6zRkG8yaNQt9+/bFhQsX8PHHH9dpnUceeQQqlQrr1q27pzGJlMaCiagZZWVlmb+WLl0KZ2dni2X/93//Z9G+vLy8yWIpLS1Fp06dMG/ePAQHBzfZOC1ZQ7a/RqOBu7s7bGxsGjGiqi1btgz//d//3eTj3JGRkYGHHnoIHh4euO+++yr9XERgMBgqLf/d736HZcuWNUOERE2gXk+eI6JGs2bNGnFxcTG/vvNw0A0bNkhsbKxotVpZvXq15OXlyfjx46Vbt26i0+kkMDBQ1q1bZ9FXbGysTJs2TaZNmyYuLi7SoUMHmTdvnphMpjrFUp+Hx544cUKGDx8uTk5O0q5dOxkwYICcO3dORESMRqMsWLBAunXrJnZ2dhIcHCzffPNNpRw3bdokgwYNEp1OJ3369JHExESLMQ4cOCAPPvig6HQ6ue+++2To0KFy/fp1ERExmUyyaNEi8fHxEXt7e+nTp4988cUX5nX37NkjAOS7776T0NBQ0el0Eh0dLadPnzZvd1TzEE4AsmLFCnn00UfFwcFBXn31VTEYDPL73/9evL29xd7eXnr27ClLly41j/faa69V6m/Pnj3mXFNTU81t9+7dK+Hh4WJnZyfu7u4ye/ZsKS8vt3gfpk+fLi+99JK0b99e3NzcKj0wtaKUlBRRq9Vy48YNi+Uvv/yy+Pn5iU6nEx8fH3nllVekrKys1m1Qk6oeYLtmzRrzNt+xY4eEhoaKra2t7N69u9L6Fy9eFACSkZFR61hE1oYFE5FCqiuYvL29ZdOmTXL+/Hm5evWqXLlyRd555x1JTU2VjIwMef/990Wj0cihQ4fM68bGxkq7du1kxowZcvr0afn000/FwcGhzk+Vr2vBdOXKFenQoYOMHj1ajhw5Inq9XlavXm0uRt59911xdnaW+Ph4OX36tLz88stia2srZ86cscgxICBAtm3bJnq9Xh5//HHx8vIyFw6pqami1Wrl2WeflbS0NDlx4oQsW7ZMcnNzRUTkL3/5iwQEBMiOHTskIyND1qxZI1qtVvbu3Ssi/ymYIiMjZe/evZKeni4DBw6U/v37i4hISUmJvPDCC/LAAw9IVlaWZGVlSUlJiYjcLpg6d+4sH330kWRkZMjFixelrKxMXn31VUlKSpLz58+bt+2GDRtERKSoqEieeOIJGTZsmLm/0tLSSgXTlStXxMHBQaZOnSqnTp2SzZs3i6urq0VBFBsbK87OzvL666/LmTNnZO3ataJSqWTnzp3VvifvvfeeBAQEVFr+5ptvysGDB+XChQuyZcsWcXNzk0WLFtW6DWpiMBgkKytLnJ2dZenSpeb17mzzPn36yM6dO+XcuXOSl5dXZR+dO3eWjz/+uNaxiKwNCyYihVRXMN199KI6w4cPlxdeeMH8OjY2Vnr16mVxRGn27NnSq1evOsVS14Jp7ty54uPjYz5SUVHXrl3lb3/7m8Wy8PBwmTp1qoj8J8cPP/zQ/PP09HQBIKdOnRIRkQkTJkhMTEyV/RcXF4u9vX2lI1J/+MMfZMKECSJieYTpju3btwsAuXnzpojcPioUHBxcqX8AMnPmzJo2gYiITJ06VcaMGWN+PWnSJBk1apRFm4oF01/+8hfx9/e3eI+WL18u7dq1E6PRKCK334cBAwZY9BMeHi6zZ8+uNpYZM2bIQw89VGvMixcvltDQUPPr6rZBXbi4uFgckbqzzf/973/Xum5ISIi8/vrr9zQukZKa/uQ6EdVLWFiYxWuj0Yi3334bGzZswNWrV1FaWorS0lI4OjpatIuKioJKpTK/jo6OxpIlS2A0GqHRaBoltrS0NAwcOBC2traVflZYWIhr165VuvA4JiYGx44ds1jWp08f8/ddunQBAOTk5CAgIABpaWkYO3ZsleOfPHkSt27dwm9+8xuL5WVlZQgJCanTGN27d68xx4rbHwD+8Y9/4MMPP8SlS5dw8+ZNlJWV1fuC6VOnTiE6OtriPYqJiUFxcTGuXLlijuvuuO/EnpOTU22/N2/ehL29faXlGzduxNKlS3Hu3DkUFxfDYDDA2dm5XjHXV1XbriKdToeSkpImjYOoKbBgIrIyFQuhJUuW4L333sPSpUsRFBQER0dHzJw5E2VlZc0em06nq7XN3QUBcPsC4IrL7i647vzszu3mNY1xp8327dvRrVs3i59ptdo6j1GTitv/888/x/PPP48lS5YgOjoaTk5OeOedd3D48OFa+7pbVdtBRCziqxj3nZ/VFLerqyt+/PFHi2WHDh3C+PHjsWDBAsTFxcHFxQXr16/HkiVL6hVzfVXcdlW5fv06OnXq1KRxEDUF3iVHZOX279+PUaNG4emnn0ZwcDB69OiBs2fPVmp36NChSq/9/Pwa7egScPvox/79+6u8e8zZ2Rldu3bFgQMHLJYnJiaiV69e9Rpj165dVf6sd+/e0Gq1uHz5Mnx9fS2+PD096zyGnZ0djEZjndru378f/fv3x9SpUxESEgJfX19kZGTUu7/evXsjMTHRXCQBt7eNk5NTpeKvPkJCQnD69GmLfg8ePAgvLy/MmzcPYWFh8PPzw6VLl+odc2O7desWMjIyKh0NJGoJWDARWTlfX18kJCQgMTERp06dwp/+9CdkZ2dXapeZmYlZs2ZBr9cjPj4ey5Ytw4wZM2rsOy0tDWlpaSguLkZubi7S0tJw8uTJats/99xzKCwsxPjx45GcnIyzZ8/iX//6F/R6PQDgpZdewqJFi7Bhwwbo9XrMmTMHaWlptcZxt7lz5+LIkSOYOnUqjh8/jtOnT2PFihXIy8uDk5MTXnzxRTz//PNYu3YtMjIykJqaiuXLl2Pt2rV1HsPb2xsXLlxAWloa8vLyUFpaWm1bX19fJCcn49tvv8WZM2cwf/58HDlypFJ/x48fh16vR15eXpUF5dSpU5GZmYnp06fj9OnT+Oqrr/Daa69h1qxZUKvvfVc8ePBg/PLLL0hPT7eI+fLly1i/fj0yMjLw/vvvY/PmzXXaBs888wzmzp17z/Hc8fe//x0PP/ywxbJDhw5Bq9UiOjq6wf0TNTcWTERWbv78+ejXrx/i4uIwaNAguLu7Vzm78jPPPIObN28iIiIC06ZNw/Tp0/HHP/6xxr5DQkIQEhKClJQUrFu3DiEhIRg+fHi17Tt27Ijdu3ejuLgYsbGxCA0NxapVq8ynkf785z/jhRdewAsvvICgoCDs2LEDW7ZsgZ+fX53z7dmzJ3bu3Iljx44hIiIC0dHR+Oqrr8zzGb355pt49dVXsXDhQvTq1QtxcXHYunUrfHx86jzGmDFjMGzYMAwePBidOnVCfHx8tW2nTJmC0aNHY9y4cYiMjER+fj6mTp1q0eZ//ud/4O/vj7CwMHTq1KnKGbe7deuGr7/+GklJSQgODsaUKVPwhz/8Aa+88kqd465Kx44dMXr0aHz22WfmZaNGjcLzzz+P5557Dn379kViYiLmz59fp21w+fJlZGVlNSgmAMjLy6t0JC4+Ph5PPfUUHBwcGtw/UXNTyd3HcYmoRRo0aBD69u2LpUuXKh0KKeDHH3/EkCFDcO7cOTg5OSkdTpVyc3MREBCA5OTkehW3RNaCR5iIiFq4oKAgLF68GBcvXlQ6lGpduHABH3zwAYslarF4lxwRUSswadIkpUOoUUREBCIiIpQOg+ie8ZQcERERUS14So6IiIioFiyYiIiIiGrBgomIiIioFiyYiIiIiGrBgomIiIioFiyYiIiIiGrBgomIiIioFiyYiIiIiGrx/+mprAC+aJh9AAAAAElFTkSuQmCC", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.ion()\n", - "plt.scatter(\n", - " np.array(prms)[:, 0], np.array(prms)[:, 1], c=np.array(errors), cmap=\"viridis\"\n", - ")\n", - "plt.plot(np.array(prms)[:, 0], np.array(prms)[:, 1], color=\"tab:grey\", lw=0.5)\n", - "\n", - "plt.scatter(*reference_prms, c=\"tab:red\")\n", - "plt.annotate(\n", - " \"Reference\",\n", - " xy=reference_prms,\n", - " xytext=(reference_prms[0] - 0.003, reference_prms[1] + 0.1),\n", - " arrowprops=dict(facecolor=\"black\", arrowstyle=\"-|>\"),\n", - ")\n", - "plt.annotate(\n", - " \"Initial guess\",\n", - " xy=initial_guess,\n", - " xytext=(initial_guess[0] - 0.004, initial_guess[1] + 0.05),\n", - " arrowprops=dict(facecolor=\"black\", arrowstyle=\"-|>\"),\n", - ")\n", - "\n", - "plt.xlabel(r\"Trap 1 concentration (at. fr.)\")\n", - "plt.ylabel(r\"Detrapping barrier (eV)\")\n", - "plt.show()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "festim-workshop", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.13.7" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/book/content/meshes/mesh_salome.ipynb b/book/content/meshes/mesh_salome.ipynb index 29fe6f6b..0847122f 100644 --- a/book/content/meshes/mesh_salome.ipynb +++ b/book/content/meshes/mesh_salome.ipynb @@ -586,7 +586,7 @@ "source": [ "## Other example\n", "\n", - "The [Monoblock](../applications/task08.ipynb) tutorial is another tutorial using a SALOME mesh." + "The [Monoblock](../applications/general/monoblock.md) tutorial is another tutorial using a SALOME mesh." ] } ], diff --git a/book/content/species_reactions/reactions.ipynb b/book/content/species_reactions/reactions.ipynb index 0d9b9345..b82daabe 100644 --- a/book/content/species_reactions/reactions.ipynb +++ b/book/content/species_reactions/reactions.ipynb @@ -131,7 +131,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "95598731a2e74128b777c5a333ceff0f", + "model_id": "63fc09d77ddc4ff3aa9f92686dd832da", "version_major": 2, "version_minor": 0 }, @@ -175,7 +175,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAg4dJREFUeJzt3Xd8jfffx/HXOSc7MpEIgsSeGdSmRu2tNq3uYdNFt1aHtrSULrfqIFbtVVUtYocMK7bYERKyx8k51/3HKYmfmcjJdc7J5/l4eNy364zr4/zUeef7+Q6NoigKQgghhBBWSqt2AUIIIYQQj0LCjBBCCCGsmoQZIYQQQlg1CTNCCCGEsGoSZoQQQghh1STMCCGEEMKqSZgRQgghhFWzU7sAczMajVy6dAk3Nzc0Go3a5QghhBDiISiKQmpqKuXLl0ervf/Yi82HmUuXLuHv7692GUIIIYQohPPnz1OxYsX7Psfmw4ybmxtg+jDc3d1VrkYIIYQQDyMlJQV/f/9b3+P3Y/Nh5mZryd3dXcKMEEIIYWUeZoqITAAWQgghhFWTMCOEEEIIqyZhRgghhBBWzebnzAghhBDWyGAwoNfr1S7DbOzt7dHpdEXyXhJmhBBCCAuiKArx8fHcuHFD7VLMztPTk3Llyj3yPnASZoQQQggLcjPI+Pj44OLiYpMbviqKQkZGBgkJCQD4+fk90vtJmBFCCCEshMFguBVkSpcurXY5ZuXs7AxAQkICPj4+j9RykgnAQgghhIW4OUfGxcVF5UqKx80/56PODZIwI4QQQlgYW2wt3U1R/TklzAghhBDCqqkaZrZt20aPHj0oX748Go2GlStX3va4oih8+OGHlC9fHmdnZ9q0acPhw4fVKVYIIYQQFknVMJOenk5QUBCzZs266+NffPEF06dPZ9asWURERFCuXDk6dOhAampqMVcqhBBCCEulapjp0qULU6ZMoW/fvnc8pigK33zzDe+88w59+/alXr16/Prrr2RkZBAWFqZCtXfWtzn2CoqiqF2KEEIIYTF27tyJTqejc+fOxXZPi50zc+bMGeLj4+nYseOta46Ojjz++OPs3Lnznq/Lzs4mJSXltl/mMH/3WZ7/dR8v/76f5Azb3aFRCCGEKIiff/6Z0aNHs337ds6dO1cs97TYfWbi4+MB8PX1ve26r68vZ8+evefrPvvsMyZPnmzW2sA0A9tBp+WvI1c4PDOc2UNDCfb3NPt9hRBClCyKopCpN6hyb2d7XYFWHKWnp7NkyRIiIiKIj4/nl19+4f333zdjhSYWG2Zu+t8PUVGU+36wkyZNYsKECbd+n5KSgr+/f5HXNaxpZYIqejIyLJJzSRn0+34nE7vU4vmWASVmSZ0QQgjzy9QbqPP+RlXufeSjTrg4PHxUWLx4MTVr1qRmzZoMGzaM0aNH895775n9e9Fi20zlypUD8kZobkpISLhjtCY/R0dH3N3db/tlLvUrerB2TEu61fcj16gwZV0sL/62nxsZOWa7pxBCCGGp5s6dy7BhwwDo3LkzaWlpbN682ez3tdiRmYCAAMqVK8emTZsICQkBICcnh61btzJ16lSVq8vj7mTPrCEhNN3tzcdrY/k79grdZm7n2yEhhFbyUrs8IYQQVs7ZXseRjzqpdu+HdezYMfbu3cvy5csBsLOzY+DAgfz888888cQT5irRdC+zvvsDpKWlcfLkyVu/P3PmDNHR0Xh7e1OpUiXGjRvHp59+SvXq1alevTqffvopLi4uDBkyRMWq76TRaHiqWRVCKnkxMiySs4kZDPhhF291rsULraTtJIQQovA0Gk2BWj1qmTt3Lrm5uVSoUOHWNUVRsLe35/r163h5me8HfFXbTPv27SMkJOTWyMuECRMICQm5NVnozTffZNy4cYwYMYJGjRpx8eJF/vrrL9zc3NQs+57qVfBg7eiWdG9gajt9sj6WF37dx/V0aTsJIYSwXbm5ufz2229MmzaN6OjoW79iYmKoXLkyCxYsMOv9NYqNb5SSkpKCh4cHycnJZp0/k5+iKCzYc46P1h4hJ9dIeQ8nvh0SSsPK0nYSQghxb1lZWZw5c4aAgACcnJzULuehrVy5koEDB5KQkICHh8dtj73zzjusX7+eqKioO153vz9vQb6/LXYCsDXTaDQMa1qZFSOaE1DGlUvJWQz8cRc/bj2F0WjT2VEIIUQJNHfuXJ544ok7ggzAk08+SXR0NJGRkWa7v4zMmFlqlp63VxxiTcwlANrV8mFa/yC8XB2KvRYhhBCWzVpHZgpLRmashJuTPTMHBfNpn/o42Gn552gCXWeGsy8uSe3ShBBCCJsgYaYYaDQahjSpxMoRLQgs48rl5CwG/rSbH6TtJIQQQjwyCTPFqE55d1aPbknPoPIYjAqfbzjKc79GkCSrnYQQQohCkzBTzEo52jFjUDCf9a2Po52WLceu0nVGOBHSdhJCCCEKRcKMCjQaDYMbV2LlyBYElnUlPiWLQT/t5rstJ6XtJIQQQhSQhBkV1fZzZ82olvQJqYDBqPDFn8d49pcIEtOy1S5NCCGEsBoSZlTm6mjH9AFBfPFkAxzttGw9fpWuM8PZe0baTkIIIcTDkDBjATQaDQMe82fVqBZULevKlZRsBs/Zzex/pe0khBBCPIiEGQtSq5w7q0e1pO9/bacvNx5j+Ly9XJO2kxBCCHFPEmYsjKujHdMGBPFFvwY42WsJP3GNrjPC2X06Ue3ShBBCiHt65pln0Gg0t36VLl2azp07c+DAAbPfW8KMBdJoNAxo5M/qUS2p5lOKhNRshszZzbebT2CQtpMQQggL1blzZy5fvszly5fZvHkzdnZ2dO/e3ez3lTBjwWr4urF6VAv6NayIUYFpm44z/Oe9XE2VtpMQQgjL4+joSLly5ShXrhzBwcG89dZbnD9/nqtXr5r1vnZmfXfxyFwc7PiqfxBNA0vz3spDbD95ja4zw5kxKJjmVcuoXZ4QQghzUxTQZ6hzb3sX0GgK9dK0tDQWLFhAtWrVKF26dBEXdjsJM1aiX8OKBFX0YGRYJMevpDHs//Ywtn0NRrWrhk5buL9oQgghrIA+Az4tr869374EDq4P/fS1a9dSqlQpANLT0/Hz82Pt2rVoteZtBEmbyYpU93Vj1ciWDGhkajt9/fdxnv55j7SdhBBCWIS2bdsSHR1NdHQ0e/bsoWPHjnTp0oWzZ8+a9b4yMmNlnB10fNHP1HZ6Z8UhdpxMNLWdBgbTvJq0nYQQwubYu5hGSNS6dwG4urpSrVq1W79v2LAhHh4ezJkzhylTphR1dbdImLFSfUMr0qCiByMXRHHsSipD5+5hbPvqjG5XXdpOQghhSzSaArV6LIlGo0Gr1ZKZmWnW+0ibyYpV83Fj5cgWDHrMH0WBb/4+wVNz95CQmqV2aUIIIUqg7Oxs4uPjiY+PJzY2ltGjR5OWlkaPHj3Mel8JM1bO2UHH50824OuBQbg46Nh5KpGuM7az4+Q1tUsTQghRwvz555/4+fnh5+dHkyZNiIiIYOnSpbRp08as99UoimLTu7ClpKTg4eFBcnIy7u7uapdjVicT0hgVFsnR+FQ0Ghjdrjpj20vbSQghrEVWVhZnzpwhICAAJycntcsxu/v9eQvy/S0jMzakmk8pVo5sweDGprbTzM0nGPp/u0lIkbaTEEII2yVhxsY42ev4rG8DZgwKxtVBx+7TSXSdGU74CfPuviiEEEKoRcKMjeoVXIE1o1tS28+da2k5PP3zXr7aeIxcg1Ht0oQQQogiJWHGhgWWLcWKEc0Z0qQSigKz/j3JkP/bwxVpOwkhhLAhEmZsnJO9jk/71Gfm4BBKOdqx90wSXWaEs/W4tJ2EEELYBgkzJUTPoPKsGd2SOn7uJKXnMPznvXzx51FpOwkhhLB6EmZKkIAyriwf0ZynmlYG4Lstpxg8ZzeXk827M6MQQghhThJmShgnex0f967HrCGmtlNE3HW6zgjn32MJapcmhBBCFIqEmRKqe4PyrB3dkrrl3bmeoefZeRFMlbaTEEIIKyRhpgSrUsaVZa/mtZ2+33KKQT/t5tINaTsJIYSwHhJmSribbafvhobi5mjHvrPX6TYznH+PSttJCCFEwcXHxzN69GgCAwNxdHTE39+fHj16sHnzZrPdU8KMAKBrfT/WjmlJ/QoeprbTLxF8tiEWvbSdhBBCPKS4uDgaNmzIP//8wxdffMHBgwf5888/adu2LSNHjjTbfe3M9s7C6lQu7cofrzbjs/VH+WVnHD9uPc2+uOvMHBxCBU9ntcsTQghh4UaMGIFGo2Hv3r24urreul63bl2ee+45s91Xwoy4jaOdjg971qVpoDdv/HGA/f+1nab1D6J9bV+1yxNCiBJHURQyc9WZy+hs54xGo3mo5yYlJfHnn3/yySef3BZkbvL09Czi6vJImBF31bmeH3X8PBi1MJIDF5J5/td9vNQ6kDc61cReJ91JIYQoLpm5mTQJa6LKvfcM2YOLvctDPffkyZMoikKtWrXMXNWd5FtJ3FOl0i4sfaUZz7aoAsBP204z4MddXLieoW5hQgghLI6iKAAPPZJTlGRkRtyXo52OD3rUpWlgad5YGkPUuRt0m7mdr/oH0aGOtJ2EEMLcnO2c2TNkj2r3fljVq1dHo9EQGxtL7969zVfUXWiUm1HKRqWkpODh4UFycjLu7u5ql2PVzidlMGphFDHnbwDwfMsA3upcCwc7GeATQoiikJWVxZkzZwgICMDJyUntcgqsS5cuHDx4kGPHjt0xb+bGjRt3zJu535+3IN/f8i0kHpq/twtLX27G8y0DAJi7/Qz9f9zF+SRpOwkhhIDvvvsOg8FA48aNWbZsGSdOnCA2NpaZM2fSrFkzs91XwowoEAc7Le91r8Ocpxvh4WxPzPkbdJsZzsbD8WqXJoQQQmUBAQFERkbStm1bXnvtNerVq0eHDh3YvHkz33//vdnuK20mUWgXrmcwKiyK6P/aTs+2qMKkLrWl7SSEEIVk7W2mgpI2k1BdRS8XlrzcjBdbmdpO83bE0e+HnZxLlLaTEEKI4iNhRjwSBzst73Srw9zhjfB0sefAhWS6fRvOn4cuq12aEEKIEkLCjCgS7Wv7sm5MK0IreZKalcsr8yP5cPVhsnMNapcmhBDCxkmYEUWmgqczi19uxsuPBwLwy844+n2/i7OJ6SpXJoQQwpZJmBFFyl6nZVKX2sx75jG8XOw5eDGZ7jO3s/6gtJ2EEOJh2fjanFuK6s8pYUaYRdtaPqwb04pGlb1Izc5lxIJI3l91iCy9tJ2EEOJe7O3tAcjIKBkLKW7+OW/+uQtLlmYLs9IbjEzfdJzvt5wCoG55d2YPCaVKmTtPVBVCCAGXL1/mxo0b+Pj44OLiospZR+amKAoZGRkkJCTg6emJn5/fHc8pyPe3hBlRLLYcS2DCkhiS0nMo5WjHZ33r0yOovNplCSGExVEUhfj4eG7cuKF2KWbn6elJuXLl7hrYJMzkI2HGcsQnZzFmYRR745IAGNa0Eu92q4OTvU7lyoQQwvIYDAb0er3aZZiNvb09Ot29//2XMJOPhBnLkmsw8vXfx5n9r6ntVMfPndlDQwmQtpMQQoh8ZAdgYbHsdFre6FSLX59rTGlXB45cTqH7zHBWx1xSuzQhhBBWSsKMUMXjNcqyfmwrmgR4k55jYMzCKCYtPyirnYQQQhSYhBmhGl93Jxa80IQx7aqh0cDCvefoPXsHp66mqV2aEEIIKyJhRqjKTqdlQsea/P5cE8qUcuBofCo9vt3OyqiLapcmhBDCSlh0mMnNzeXdd98lICAAZ2dnAgMD+eijjzAajWqXJopYy+plWD+mFc0CS5ORY2Dc4mje+uMAmTnSdhJCCHF/Fh1mpk6dyg8//MCsWbOIjY3liy++4Msvv+Tbb79VuzRhBj7uTsx/oQlj21dHo4HF+87Te/YOTiakql2aEEIIC2bRS7O7d++Or68vc+fOvXXtySefxMXFhd9///2ur8nOziY7O/vW71NSUvD395el2VZm58lrjFkUzbW0bJztdUzpXY8nG1ZUuywhhBDFxGaWZrds2ZLNmzdz/PhxAGJiYti+fTtdu3a952s+++wzPDw8bv3y9/cvrnJFEWperQzrx7akRbXSZOoNvLY0hjeWxkjbSQghxB0semRGURTefvttpk6dik6nw2Aw8MknnzBp0qR7vkZGZmyLwagw+9+TfPP3cYwKVPcpxXdDQ6nu66Z2aUIIIczIZkZmFi9ezPz58wkLCyMyMpJff/2Vr776il9//fWer3F0dMTd3f22X8J66bQaxrSvzoIXmlLWzZETCWn0nLWDpfvOq12aEEIIC2HRIzP+/v5MnDiRkSNH3ro2ZcoU5s+fz9GjRx/qPeQ4A9txNTWbCUuiCT9xDYAnQyvyce+6uDjYqVyZEEKIomYzIzMZGRlotbeXqNPpZGl2CVXWzZFfn23M6x1roNXAssgL9Jy1g2PxstpJCCFKMosOMz169OCTTz5h3bp1xMXFsWLFCqZPn06fPn3ULk2oRKvVMKpddRa+2BRfd0dOJqTRa/Z2Fkecw4IHGYUQQpiRRbeZUlNTee+991ixYgUJCQmUL1+ewYMH8/777+Pg4PBQ7yFtJtuVmJbN+CUxbDt+FYA+IRWY0rsero7SdhJCCGtXkO9viw4zRUHCjG0zGhV+2HaKaX8dx2BUCCzryuwhodT2k/+thRDCmtnMnBkhHkSr1TCiTTUWvdSUcu5OnL6aTu/ZO1i4V9pOQghRUkiYETbhsSrerB/birY1y5Kda2TS8oOMWxxNWnau2qUJIYQwMwkzwmZ4uzowd/hjTOxSC51Ww6roS/T8djuHLyWrXZoQQggzkjAjbIpWq+GVx6uy5OWmlPdw4vS1dPp8t5P5u89K20kIIWyUhBlhkxpW9mbdmFa0r+VDTq6Rd1ceYvTCKFKz9GqXJoQQoohJmBE2y8vVgf8b3oh3utbGTqth7YHL9Ph2O4cuSttJCCFsiYQZYdM0Gg0vtg5kySvNqODpTFxiBn2/28lvu+Kk7SSEEDZCwowoEUIrebFuTEs61PElx2Dk/VWHGRkWSYq0nYQQwupJmBElhqeLAz891ZD3utfBXqdh/cF4us/czoELN9QuTQghxCOQMCNKFI1Gw/MtA1j6SnMqejlzLimDJ7/fybwdZ6TtJIQQVkrCjCiRgv09WTe6FR3r+KI3KExec4RX5u8nOVPaTkIIYW0kzIgSy8PFnh+fasgHPUxtp42Hr9BtZjjR52+oXZoQQogCkDAjSjSNRsOzLQL445Xm+Hs7c+F6Jv1/2Mnc7dJ2EkIIayFhRgggyN+TtaNb0aVeOfQGhY/XHuGl3/eTnCFtJyGEsHQSZoT4j4ezPd8NDeWjXnVx0GnZdOQKXWeGE3XuutqlCSGEuA8JM0Lko9FoeLpZFZaPaE7l0i5cvJFJ/x92MWfbaWk7CSGEhZIwI8Rd1KvgwdrRLenWwI9co8In62N54dd9XE/PUbs0IYQQ/0PCjBD34OZkz6zBIUzpXQ8HOy2bjybQbWY4+88mqV2aEEKIfCTMCHEfGo2GYU0rs2JEcwLKuHIpOYsBP+7mh62nMBql7SSEEJZAwowQD6FueQ/WjG5Jz6DyGIwKn284ynO/RpAkbSchhFCdhBkhHlIpRztmDArms771cbTTsuXYVbrOCCciTtpOQgihJgkzQhSARqNhcONKrBzZgsCyrsSnZDHop93M/vektJ2EEEIlEmaEKITafu6sGdWSPiEVMBgVvtx4jGd+ieBaWrbapQkhRIkjYUaIQnJ1tGP6gCC+eLIBTvZath03tZ12n05UuzQhhChRJMwI8Qg0Gg0DHvNn9aiWVPMpRUJqNkPm7ObbzScwSNtJCCGKhYQZIYpADV83Vo9qwZOhFTEqMG3TcYb/vJerqdJ2EkIIc5MwI0QRcXGwY9qAIL7qH4SzvY7tJ6/RdWY4O09eU7s0IYSwaRJmhChi/RpWZPWoFtTwLcXV1GyGzt3DN38fl7aTEEKYiYQZIcyguq8bq0a2ZGAjfxQFvvn7BE/N3UNCapbapQkhhM2RMCOEmTg76JjarwFfDwzCxUHHzlOJdJ0RzvYT0nYSQoiiJGFGCDPrE1KR1aNaUqucG9fScnjq5z1M++sYuQaj2qUJIYRNkDAjRDGo5lOKlSNbMLixqe307T8nGfJ/e7iSIm0nIYR4VBJmhCgmTvY6PuvbgBmDgnF10LH3TBJdZoSz9fhVtUsTQgirJmFGiGLWK7gCa0a3pLafO0npOQz/eS9T/zwqbSchhCgkCTNCqCCwbClWjGjOsKaVAPh+yykGz9nN5eRMlSsTQgjrI2FGCJU42euY0rs+s4aEUMrRjoi463SdEc6/RxPULk0IIayKhBkhVNa9QXnWjWlJvQruXM/Q8+wvEXy2Pha9tJ2EEOKhSJgRwgJULu3Ksleb80zzKgD8uO00A3/cxcUb0nYSQogHkTAjhIVwtNPxYc+6/DAsFDcnOyLP3aDrjHD+PnJF7dKEEMKiSZgRwsJ0rufH+jGtCKroQXKmnhd+28eUtUfIyZW2kxBC3I2EGSEskL+3C0tfac5zLQIA+L/tZxjw4y7OJ2WoXJkQQlgeCTNCWCgHOy3v96jDT081xN3JjujzN+g2M5yNh+PVLk0IISyKhBkhLFzHuuVYP7YVwf6epGTl8vLv+5m85rC0nYQQ4j8SZoSwAhW9XFjycjNebGVqO83bEUe/H3ZyLlHaTkIIIWFGCCvhYKflnW51mDu8EZ4u9hy4kEy3meGsP3hZ7dKEEEJVEmaEsDLta/uyfkwrGlb2IjU7lxELInlv5SGy9Aa1SxNCCFVImBHCCpX3dGbRS0155fGqAPy++yxPfr+TM9fSVa5MCCGKn0ZRFKUwLzQajZw8eZKEhASMxtsnIrZu3bpIiisKKSkpeHh4kJycjLu7u9rlCFHk/j2WwITF0VzP0FPK0Y5P+9anZ1B5tcsSQohHUpDv70KFmd27dzNkyBDOnj3L/75co9FgMFjOcLeEGVESXE7OZOzCaPbGJQEwpEkl3u9eByd7ncqVCSFE4RTk+7tQbaZXXnmFRo0acejQIZKSkrh+/fqtX0lJSYUqWghReH4ezoS92ISRbaui0UDYnnP0nr2DU1fT1C5NCCHMrlAjM66ursTExFCtWjVz1FSkZGRGlDTbjl9l/OJoEtNzcHHQ8Wmf+vQOqaB2WUIIUSBmH5lp0qQJJ0+eLFRxQgjzal2jLBvGtqJpoDcZOQbGLY7mrT8OkJljOe1fIYQoSnaFedHo0aN57bXXiI+Pp379+tjb29/2eIMGDYqkOCFE4fi4O7HghabM3HyCmf+cYPG+80Sfv8HsoSFU83FTu7z7UhSFzNxMbmTf4Hr2dZKzkknRp5CVm3XrV6YhE6NiRFEUFEyDy1qNFked461fafo0KrtXxsPBA09HTzwcTf/XXmf/gAqEENamUG0mrfbOAR2NRoOiKDIBWAgLs/PkNcYsiuZaWjbO9jqm9K7Hkw0rqlaPoijcyL5BXEoccclxXEi7QHx6PFfSrxCfYfq/WYYss93f28kbHxcffF18SclJoXXF1lRxr0Il90pUcquEk52T2e4thHh4Zl/NdPbs2fs+Xrly5YK+pdlImBECElKzGL84mh0nEwHo17AiH/Wqi4tDoQZnH1qGPoPj149zLOkYx64f4/j145xJPkNKTsoDX2uvtcfL0QsPJw/cHdxxtnPG2c4ZJ50TTnZO6DR5K7U0Gg1GxUi2Idv0KzebdH06EVciqORWiRvZN0jJScGoPNx5Vq0qtKKmd01qetWkhlcNKrtXRqeVlWFCFCezhxlrImFGCBODUWH2vyf55u/jGBWo7lOK2UNDqeFbNG0no2LkTPIZohOiibkaQ8zVGM4kn7nVBvpffq5+VHavTCW3SpRzLXfbr9JOpXG2c0aj0RRJbTfru5F9g6sZV7mScYUrGVe4nHaZzec242LnwtnUs6TmpN71tQ5aB4J8gmhQpgFBZYNoULYBpZ1LF1ltQog7FUuYOXXqFN988w2xsbFoNBpq167N2LFjqVq1aqGKvpeLFy/y1ltvsWHDBjIzM6lRowZz586lYcOGD/V6CTNC3G736UTGLIwiITUbJ3stH/WsR/9GFQscHBRF4dSNU+yJ38Puy7vZf2X/XcNAWeey1PSuSS3vWtT0qkmARwCV3CvhbOdcVH+kInGz/XXw2kEupV0yjSQlHef49eN3bXsFeATQuFxjGpdrzGPlHsPLyUuFqoWwXWYPMxs3bqRnz54EBwfTokULFEVh586dxMTEsGbNGjp06FDo4vO7fv06ISEhtG3blldffRUfHx9OnTpFlSpVHjo0SZgR4k7X0rIZvzia8BPXAOgTUoEpvevh6nj/tlNqTio7Lu5g24Vt7Lq8i2uZ12573EnnRL0y9QgqG0SwTzD1ytSjjHMZs/05ioPBaOB08mkOXD3AgWsHiEmI4VTyqTueV7FURboEdKF1xdbUL1Nf2lJCPCKzh5mQkBA6derE559/ftv1iRMn8tdffxEZGVnQt7yriRMnsmPHDsLDwx/6NdnZ2WRnZ9/6fUpKCv7+/hJmhPgfRqPC91tPMX3TcQxGhcAyrsweGkptv9v/O7mYdpHNZzez9cJWIq9Ekqvk3nrMUedIiE8ITfya0KRcE2qVroW91vZXCyVnJ7P/yn72xu9lb/xeTlw/cdvjbg5uOGgdeKfpO7Ss0NLiRqGEsAZmDzNOTk4cPHiQ6tWr33b9+PHjNGjQgKysolmJUKdOHTp16sSFCxfYunUrFSpUYMSIEbz44ov3fM2HH37I5MmT77guYUaIu4uIS2J0WBTxKVk42Gn5sEddHq+jY9PZTWyM28ihxEO3PT/QI5DH/R+nZfmWBPkE4ahzVKlyy3Et8xob4zYSnRDNjks7bmu3Ods507piazpW7kiriq0k2AjxkMweZvz9/Zk+fTr9+/e/7fqSJUt4/fXXOXfuXEHf8q6cnExLJCdMmED//v3Zu3cv48aN48cff+Tpp5++62tkZEaIgktKz2Hsku3sTvgHe49IdM7nbz2m1Whp5NuItv5tebzi4/i7+6tYqeXLNeYSnRDNkuNL2HBmwx2P9wjsQY+qPWhcrrG0ooS4D7OHmY8++oivv/6aiRMn0rx5czQaDdu3b2fq1Km89tprvPvuu4UuPj8HBwcaNWrEzp07b10bM2YMERER7Nq166HeQ+bMCHFveqOenRd3surUKrac34LeqAdAUTTY66vxdINePN2gu6zcKSRFUTiSeISNZzfyV9xfXEy7eOsxHxcfannXYnzoeKp5Wf7RMEIUt4J8fxdqk4n33nsPNzc3pk2bxqRJkwAoX748H374IWPGjCnMW96Vn58fderUue1a7dq1WbZsWZHdQ4iSKD49nmUnlrHs+DKuZl69db2mV01CvTuwZqcvl5Ps+T5OS2ljKk819S7SZdIlhUajoW6ZutQtU5fxoeOJSohi/Zn1bDizgYSMBBIyEth2YRuNyzWmf83+tPdvLzsUC1EIj7zPTGqqqTfs5lb0W6QPGTKE8+fP3zYBePz48ezZs+e20Zr7kZEZIUwURWHXpV0sPraYrRe2YlBMO3V7O3nTLbAbvar2oqZ3TQBuZOTw+tID/B17BYCu9cvx+ZMNcHeSL9qikGPIYeuFrfx04CeOJh297bEmfk2Y0mIK5VzLqVSdEJbBZjbNi4iIoHnz5kyePJkBAwawd+9eXnzxRX766SeGDh36UO8hYUaUdNmGbNaeWsvvR36/bUlxI99GDKw5kPaV7j4aoCgKc7efYeqfR9EbFPy9nZk1OJQgf89irN723WuUrEuVLjxV5ynql62vYnVCqMcsYSY0NJTNmzfj5eVFSEjIfYeci2ppNsDatWuZNGkSJ06cICAggAkTJtx3NdP/kjAjSqqkrCQWH13MomOLSMpKAsDV3pWeVXsyoMaAh56nEX3+BqPCIrlwPRN7nYZJXWrzbIsq0nYqYnqjnq3ntzJ+y/g7Hvuk5Sd0D+yOVnPnuXhC2CqzhJnJkyfzxhtv4OLiwocffnjff8g++OCDglVsRhJmRElzJf0Kvxz+hT+O/3Fr59pyruUYVnsYfav3xc2h4C3h5Ew9b/4Rw8bDprZTxzq+fNkvCA8XaTuZw9Gko/x+5HfWnV53qx1Y1aMqz9d/ni4BXbDTmvdMLSEsgc20mYqChBlRUlxMu8jPB39mxckVt1Yl1S1dl2fqPsMTlZ945C9ARVH4dWccn64/So7BSAVPZ2YNCSGkkmzjby5XM67ybdS3rDi54ta1CqUq0Na/LeMbjsdB56BidUKYl9nDTGBgIBEREZQufftyzRs3bhAaGsrp06cL+pZmI2FG2Lr49Hh+iPmBlSdX3vopPtQnlJcbvEyz8s2KvB108EIyI8MiOZeUgZ1Ww1uda/FCqwBpO5lRak4qi48t5vcjv99qGXo7eTMudBw9qvaQkRphk8weZrRaLfHx8fj4+Nx2/cqVK/j7+5OTk1PQtzQbCTPCVl3LvMbcg3NZfGzxrZGYZn7NeKnBSzQq18is907J0jNp2UHWHbwMQPtaPnzVPwgvVxkpMKfM3EyWn1jO53vzjpKp7F6ZEUEj6BzQWebUCJtitjCzevVqAHr37s2vv/6Kh4fHrccMBgObN29m06ZNHDt2rJClFz0JM8LWpOvTmXtwLvNj55OZmwmYViaNCR1DiE9IsdWhKAoL9pzjo7VHyMk1Ut7DiW+HhNCwsnex1VBSZeZmsuTYEuYenMv17OsAuDu480XrL2hRoYXK1QlRNMwWZrRaU+rXaDT878vs7e2pUqUK06ZNo3v37oUo2zwkzAhbkWvMZfmJ5cyOnn2r1VCvdD1Gh46mmV/Rt5Me1uFLyYwKi+LMtXR0Wg2vd6zJy60D0Wql7WRu6fp05h+Zz+zo2SiY/k1uXr45ExpOuLVnkBDWyuxtpoCAACIiIihTpkyhiywuEmaEtVMUhfCL4UzbN43Tyab5aFXcqzAudBztKrWziLkqadm5vLPiIKuiLwHweI2yTB8QROlScghlcbiacZXZ0bNZdWoVuUbTqeZ+rn783uV3fF19Va5OiMKR1Uz5SJgR1iwuOY7PIz5nx8UdAHg6evJK0CsMqDkAe61lLYtWFIXFEef5YPVhsnON+Lo7MmNQCE0D5Vyn4nI+9TwzImewMW7jrWsTGk5gWO1hckyCsDrFEmbS09PZunUr586du2PCb1Gez/SoJMwIa5Shz+CnAz/x65FfyTXmYq+1Z1jtYbzQ4AXcHSz77/HR+BRGLojk1NV0tBoY/0QNRrSthk7aTsUm5moMw9YPu/X7Ku5VmNR4Es0rNFexKiEKxuxhJioqiq5du5KRkUF6ejre3t5cu3YNFxcXfHx8ZGm2EIWkKAobz27kq4ivuJJh2qCuZYWWTGw8kcrulVWu7uGlZ+fy3qpDLI80nRLdsloZvh4YTFk3aTsVF6NiZPWp1Xy9/+tbc6wqlKrAL51/kXOfhFUwe5hp06YNNWrU4Pvvv8fT05OYmBjs7e0ZNmwYY8eOpW/fvoUuvqhJmBHW4mLaRabsnsL2i9sB0xfPW4+9RRv/NhYxL6Ywlu47z/urDpOpN1DWzZEZA4NpXs3y59rZktScVL6L/o75sfNvXZvYeCKDag5Cp9WpWJkQ92f2MOPp6cmePXuoWbMmnp6e7Nq1i9q1a7Nnzx6GDx/O0aNHH/wmxUTCjLB0ucZcFsQuYHb0bDJzM7HX2vNC/Rd4rt5zONk5qV3eIztxJZWRYZEcv5KGRgNj2lVnTPvq0nYqZlEJUTy94elbv69Xuh4fNP+AWt61VKxKiHsryPd3oXZYsre3v/WToq+vL+fOnQPAw8Pj1v8vhHiw2MRYhqwbwlf7viIzN5OGvg1Z1nMZI4JH2ESQAaju68aqkS0Z2MgfRYEZm08w7P/2kJCSpXZpJUqITwgxT8fwXtP3cLN341DiIfqv6c/nez8n25CtdnlCPJJChZmQkBD27dsHQNu2bXn//fdZsGAB48aNo359Oa5eiAfRG/TMiprF4HWDiU2Kxc3BjcnNJ/Nzp58J8AhQu7wi5+ygY2q/BnwzMBgXBx27TifSdWY44Seuql1aiaLVaBlQcwCreq+iTcU2ACyIXUD/Nf05cPWAusUJ8QgK1Wbat28fqamptG3blqtXrzJ8+HC2b99OtWrVmDdvHkFBQeaotVCkzSQsTWxiLO/ueJfj148D0KFyB95u8jZlnEvGXJLTV9MYGRZF7OUUNBoY0aYq45+ogZ1OtuIvbr8d/o0fD/xISk4KWo2W4XWHMzJ4JI46magt1GfWOTOKonDu3Dl8fHxwdnZ+pEKLg4QZYSn0Rj1zDsxhzoE55Cq5eDl68XbTt+lcpbPapRW7LL2Bj9ceYcEeU1u6cRVvZgwOxs/D8v9NsTXJ2cl8vvdz1p5ee+vaou6LqFu6ropVCWHmMGM0GnFycuLw4cNUr179kQotDhJmhCWIS45jUvgkDiUeAkyjMe80eYfSziV7Q7m1By4xcdlB0rJz8XKxZ/qAYNrW8nnwC0WR+/fcv7wV/tat877Gho7l2brPyoonoRqzTgDWarVUr16dxMTEQhcoREmhKAp/HP+DAWsHcCjxEG4ObnzR+gumPT6txAcZgO4NyrN2dEvqVXDneoaeZ3+J4LP1segNRrVLK3HaVmrLmt5rCPQIBGBG5Aye2/gcF9MuqlyZEA9WqCb1F198wRtvvMGhQ4eKuh4hbEZSVhJj/x3L5F2TyczNpEm5JizvuZwuAV2sdt8Yc6hSxpVlrzZneDPTpoA/bjvNwB93cfFGpsqVlTy+rr6s7LWST1p+gqu9K5EJkXRe1pn5R+Y/+MVCqKhQE4C9vLzIyMggNzcXBweHO+bOJCUlFVmBj0raTEINEfERvLXtLa5mXsVea8/Y0LE8VecptBqZ5Ho/Gw5e5s1lB0jNysXD2Z6v+gfRoY4clKiGC6kXGL9lPEeTTPuG9azak3eavIOLvYvKlYmSwuyb5v3yyy/3/cly+PDhBX1Ls5EwI4qTwWjgpwM/8cOBHzAqRgI9ApnaeqpsTFYA5xIzGL0wkpgLyQA83zKAtzrXwsFOgmBxyzXmMmrzKHZcMh10GuARwJetv6Smd02VKxMlgZyanY+EGVFcrmZcZWL4RPbG7wWgd7XeTGo8SX6SLYScXCOfbzjKzzvOABDk78mswSH4e8tnqYaI+AgmbptIQmYCDloHnq77NGNCxki7VJiV2XcA1ul0JCQk3HE9MTERnU5mvouSZ8/lPfRb04+98XtxtnPm05af8nGLjyXIFJKDnZb3e9RhztON8HC2J+b8DbrODOfPQ5fVLq1EeqzcYyztuZSWFVqSY8zh/w7+H69tfY0MfYbapQkBFDLM3GswJzs7GwcHh0cqSAhroigKPx/6mZc2vURSVhI1vGqwqPsielTtoXZpNqFDHV/WjWlJSCVPUrNyeWV+JB+sOkR2rkHt0kocbydvZrefzajgUQBsOruJoeuHEpccp25hQlDANtPMmTMBGD9+PB9//DGlSpW69ZjBYGDbtm3ExcURFRVV9JUWkrSZhLmk5aTx7o532XxuM2CaIPle0/ds5kwlS6I3GPnqr2P8uPU0APUquDNrcChVyriqXFnJtC9+H29se4NrmdcoZV+KKS2m0L5ye7XLEjbGbHNmAgJMZ8acPXuWihUr3tZScnBwoEqVKnz00Uc0adKkkKUXPQkzwhxOXj/J+C3jiUuJw15rz8TGE+lfo7/MITCzf48mMGFJNNcz9JRytOPzJ+vTvUF5tcsqka5mXOX1ra8TmRAJmDaC/LL1l7LJXkmjKHA5Gjwrg4t3kb612ScAt23bluXLl+Pl5VXoIouLhBlR1Daf3cyk7ZPIzM2knGs5vm7zNfXK1FO7rBLjcnImYxZGERF3HYChTSrxXvc6ONnLl2hx0xv1TN83nfmxpn1oWlVoxdTWU3FzcFO5MmF2qVfg4BKIDoOEI9D5c2j6apHeQlYz5SNhRhQVo2LkxwM/8l30dwA0KdeELx//Ei8nyw/1tibXYOSbv08we8tJFAVqlXNj9tBQqpYt9eAXiyI3M3Imcw7OAaCKexW+bfctVTyqqFuUKHq52XD8T1OAObEJlP/mrukcocUYaPdukd7O7GHGYDDwyy+/sHnzZhISEjAab996/J9//inoW5qNhBlRFDL0Gby74102nd0EwNDaQ3m90evYae1UrqxkCz9xlfGLo7mWloOLg45P+9Snd0gFtcsqkQ4nHmbsP2O5knEFN3s3vnj8C1pWaKl2WeJRKQpcjjEFmINLIPN63mMVH4PgIVC3Lzh7FvmtzR5mRo0axS+//EK3bt3w8/O7Y57A119/XdC3NBsJM+JRXUq7xOh/RnP8+nHstHa83/R9+lTvo3ZZ4j8JKVmMXRTNrtOm8+IGNvLnw551cXaQtlNxu5Z5jQlbJhCVYFoEMqHhBJ6p+4zMJbNGaQlw4GYb6XDedTc/aDAQgodC2RpmLcHsYaZMmTL89ttvdO3atdBFFhcJM+JRHLh6gNH/jCYpK4nSTqX5pu03BPsEq12W+B8Go8K3/5xgxuYTKArU8C3F7CGhVPeVuRvFLceQw+Rdk1l9ajUA/Wv0Z1KTSdhr7VWuTDxQbg6c2AhRC+DEX7e3kWp1MwWYqm2hmCZ5mz3MlC9fni1btlCjhnlTWVGQMCMK66+4v3h7+9tkG7Kp6VWTWe1nUc61nNplifvYeeoaYxdFczU1G2d7HR/1qkv/Rv5ql1XiKIrCnINzmBU1CwWF5uWb89XjX8nEYEukKBB/wDQCc2AJZOY7W7FCIwgeDPWeBOfinxto9jAzbdo0Tp8+zaxZsyx++FDCjCiomxvhfRP5DQCtK7bmi9Zf4Gove5pYg6up2UxYEk34iWsA9A2twMe96uHqKPObits/5/5hYvhEMnMzCfQIZFb7Wfi7Sbi0CGlX81YjXTmUd71UOQgaCEFDwEfdM+XMHmb69OnDv//+i7e3N3Xr1sXe/vbhw+XLlxf0Lc1GwowoCL1Rz5TdU1h+wvR3eGjtobzR6A3ZO8PKGI0K3289xbS/jmFUoGpZV2YPDaVWOfk3oLgdSTzC6M2jScg0HYGzqNsi6papq3JVJVRujql9FB1maicZc03XdQ55baTAtqCzjOBv9jDz7LPP3vfxefPmFfQtzUbCjHhYGfoMXtv6Gtsvbker0fLmY28ytPZQtcsSj2DvmSTGLIwiPiULRzstH/asy6DH/C1+RNnWxKfH03V5V/RGPU46J75u+7WsdCpO8QdN82AOLoGMxLzr5UNMAabek0W+4V1RkH1m8pEwIx5GYmYiIzeP5HDiYZx0Tnz5+Je08W+jdlmiCCSl5zBhSTRbjl0FoEdQeT7tUw83J5mQWpzSctIYv2U8uy/vRqfR8WHzD+ldrbfaZdmu9GtwcClELzCFmZtK+f63GmkI+NRWr76HUCxhJjc3ly1btnDq1CmGDBmCm5sbly5dwt3d/bYzm9QmYUY8yLmUc7zy9yucTz2Pp6Mns9vPpkHZBmqXJYqQ0ajwU/hpvtx4DINRoUppF2YNCaVeBQ+1SytR9AY97+98n7Wn1wIwKngULzV4SUbKiopBn9dGOv7n7W2kml3+W43U3mLaSA9i9jBz9uxZOnfuzLlz58jOzub48eMEBgYybtw4srKy+OGHHwpdfFGTMCPu5/C1w4zYPIKkrCQqlKrAD0/8IDuX2rD9Z68zZmEUF29k4qDT8l732gxrWlm+TIuRUTEyI3IGPx/6GYBeVXvxUYuP0Gq0KldmxeIP/bcaaTFkXMu7buFtpAcxe5jp3bs3bm5uzJ07l9KlSxMTE0NgYCBbt27lhRde4MSJE4UuvqhJmBH3sufyHsb8M4aM3Axqe9fmuye+o4xzGbXLEmZ2IyOH15ce4O/YKwB0rV+Oz59sgLu0nYrVgtgFfL73cwC6VOnCJy0/wV4n/xs8tPTEfG2kA3nXXX2gwQBTiPGto159RaAg39+FGmvavn07O3bswMHB4bbrlStX5uLFi4V5SyGK1eZzm3lj6xvojXqalGvCjHYzZOl1CeHp4sCcpxsyb0ccn22IZf3BeA5eTGbW4FCC/D3VLq/EGFp7KJ6Onry7/V02xG0gVZ/K9DbTcbZzVrs0y2XQw8m/IWo+HN8IRr3putY+r41UrT2UwFBYqDBjNBoxGAx3XL9w4QJubrIpkrBsK0+u5IOdH2BUjLSv1J6prafiqHNUuyxRjDQaDc+1DKBhZS9GLYzkfFIm/X7YycQutXmuRRVpOxWTboHdcHdwZ8KWCWy/uJ2XN73MrPazcHeQUfTbXDmc10ZKv5p33S/YFGDq97PKNlJRKlSbaeDAgXh4ePDTTz/h5ubGgQMHKFu2LL169aJSpUqyNFtYrN8O/8aX+74EoHe13nzQ7AM5LLKES87UM3HZATYcigfgidq+fNW/AZ4uDg94pSgqUQlRjPx7JKn6VAC2DNhCaefSKlelsowkOPgHRM83HfR4k2tZqD/AtBqpXD316isGZp8zc+nSJdq2bYtOp+PEiRM0atSIEydOUKZMGbZt24aPj0+hiy9qEmYEmHb1/fHAj8yOng3A8DrDea3Ra/ITuABMfz9+332WKWtjyTEYqeDpzMzBITSsXPxbuJdUx5KO0W9NPwB8XXwJ6xaGj4vlfJcUC0OuqY0UvQCObfifNlLn/9pIT5SYNlKxLM3OzMxk0aJF7N+/H6PRSGhoKEOHDsXZ2bL6nRJmhKIozIyayf8d/D9AloOKezt0MZlRYZHEJWag02p4o1NNXmoViFYrf1eKw+HEwwxaOwgAfzd//q/j/1G+VHmVqyoGV46YAsyBJZCekHfdL8h0rED9/uBa8kaqZNO8fCTMlGyKovBFxBfMj50PwOuNXmd43eEqVyUsWWqWnrdXHGJNzCUA2tQsy7T+QZQuJfOqisPFtIs8v/F5LqZdxM/Vj7kd5+LvboPnOWUkwaFlpsm8l6PzrruWNW1qFzTY5ttID2L2MPPZZ5/h6+vLc889d9v1n3/+matXr/LWW28V9C3NRsJMyWVUjEzZPYWlx5cC8G6TdxlYa6DKVQlroCgKiyLO8+Hqw2TnGvF1d+TbwaE0DijZkyyLS3x6PC/+9SJxKXEA/NblN0J8QtQtqigYcuHU5rw2kiHHdF1rBzX+ayNV71Bi2kgPYvYwU6VKFcLCwmjevPlt1/fs2cOgQYM4c+ZMQd/SbCTMlExGxciHOz9kxckVaNAwuflk+lTvo3ZZwsocjU9h5IJITl1NR6uBCR1qMKJNNWk7FYNrmdfos6oPN7JvALCq9yoCPQLVLaqwrhyBmDCIWXx7G6lcfQgeZlqN5Cp7XP0vs4cZJycnYmNjCQgIuO366dOnqVOnDllZWQV9S7ORMFPyGBUjH+z8gJUnV6LVaPm05ad0C+ymdlnCSqVn5/LeqkMsjzTtodWqehmmDwimrJu0ncztetZ1Wi9uDUBpp9L83Pln6wk0N9tI0QvgUlTedZcy/52NNNgUZsQ9FeT7u1D7R/v7+7Njx447ru/YsYPy5UvAZC1hsW6OyNwMMlNbTZUgIx6Jq6Md0wcE82W/Bjjb6wg/cY2uM8PZeerag18sHomXkxfbBm6jhlcNErMSee7P5zidfFrtsu7NkAvH/4IlT8O0mrD+dVOQ0dpBre4wcAFMiIXOn0qQKWKF2mDjhRdeYNy4cej1etq1awfA5s2befPNN3nttdeKtEAhHpZRMTJ512RWnFxxK8h0DuisdlnCRvRv5E+wvycjwyI5fiWNof+3hzHtqjOmfXV00nYyGy8nL/6v4//xwl8vcPz6cZ7f+DxzO821rBGahKP/rUZaDGlX8q6Xa5C3qZ20kcyqUG0mRVGYOHEiM2fOJCfHNIHJycmJt956i/fff7/Ii3wU0mYqGYyKkQ5/dCAhIwGtRsvnrT6nS0AXtcsSNigzx8DkNYdZFHEegKaB3swYFIKvu5PKldm261nXbwUagDW916h7KOytNlIYXIrMu+5SOm81kl8D9eqzAcW2NDstLY3Y2FicnZ2pXr06jo6W10OWMGP7FEXhrfC32HBmAwBTW02la2BXlasStm5V9EXeXn6Q9BwDpV0dmD4wmMdrlFW7LJt2Pes63ZZ3I1WfilajZV2fdVR0q1h8BRhy4dQ//61GWn/7aqTqnSBkKFTrAHaye3RRkH1m8pEwY9sUReGrfV/x25HfABgbOpYX6r+gclWipDh9NY2RYVHEXk4BYESbqkzoUAM7XaGmI4qHkJCRQPcV3cnMzaRCqQr80vkXyrmWM/NN79FG8q1naiM1GCBtJDMwe5hJT0/n888/Z/PmzSQkJGA0Gm97/PRpy5mgJWHGtn0b9S0/HfgJgMnNJ9O3el+VKxIlTZbewJR1R5i/+xwAj1XxYubgEPw8LGs3dFtyNeMqz/z5DOdSz1HFvQrzOs+jjHMRh4nM6/9tarfgzjZS/f6mECNtJLMye5gZPHgwW7du5amnnsLPz++ObeHHjh1b0Lc0GwkztmvOgTnMjJoJwMTGExlae6jKFYmSbN2By0xcdoDU7Fy8XOyZNiCIdrV81S7LZl1Ou8zwP4dzOf0yVdyr8FuX3/ByesSztB7URgoeAtU7ShupmJg9zHh6erJu3TpatGhR6CKLi4QZ2/RlxJe3WkvjG47nuXrPPeAVQpjfucQMRi2M5MCFZABebBXAm51rYS9tJ7M4n3KegWsHkqpPpZR9KTb120Qph1IFf6OEo3mb2qXF5133rWcKMPUHQCmZD1XczL7PjJeXF97esq23UMfKkytvBZnhdYZLkBEWo1JpF5a+0oxnW1QBYE74Gfr/sIvzSRnqFmaj/N39md/VdO5amj6N0f+MJiv3ITdtzbwOEf8Hc9rBd01gxwxTkHH2hiavwsvh8OoOaDZSgowVKFSY+fjjj3n//ffJyCje/0A/++wzNBoN48aNK9b7Csux+dxmPtj5AQANyjbgtUayr5GwLI52Oj7oUZefnmqIu5Md0edv0G1mOBsPxz/4xaLAAj0DWdx9Ma72ruy7so83tr6B3qi/+5MNuXBiEyx9Br6qAeteg4v7TW2kmt1Mm9q9dgy6fC7zYaxModpMISEhnDp1CkVRqFKlCvb2tx+KFRkZeY9XFl5ERAQDBgzA3d2dtm3b8s033zzU66TNZDv2XN7Dq3+/it6op3e13nzU/KM75msJYUkuXM9g9MIoos7dAOCZ5lWY1LUWjnY6dQuzQRHxEbz696tkG7LpEdiDKS2noNX89/P6fdtIQ00TemX0xeIU5Pu7UDsA9+7duzAvK7S0tDSGDh3KnDlzmDJlSrHeW1iGQ9cOMeafMeiNetpXas8HzT6QICMsXkUvF5a83IyvNh7jx22n+WVnHPvPXmfWkBAql3ZVuzyb8li5x/jq8a8Y9+841pxeg16fzhel6qGJWWgafbnJ2du0lFpWI9kUq9hnZvjw4Xh7e/P111/Tpk0bgoOD7zkyk52dTXZ29q3fp6Sk4O/vLyMzVuz0jdP0WtULgCZ+TZjdfjaOOsvboFGI+/n3aAITlkRzPUNPKUc7Pn+yPt0byFl2RcpoYM3uL3n7xAIAXryRzJjryaDRQY1Opl15a3SW1UhWwuwjMzft37+f2NhYNBoNderUISQk5FHe7q4WLVpEZGQkERERD/X8zz77jMmTJxd5HUId1zKv3Qoy3k7ezGg7Q4KMsEpta/mwfmwrxiyMIiLuOqPCoth1KpH3utfByV7aTo/k6jHTsQIHFtMj9TIXPN35zsuTOZ4e+NfsRZ+W70EpH7WrFGZUqJGZhIQEBg0axJYtW/D09ERRFJKTk2nbti2LFi2ibNmi6T2eP3+eRo0a8ddffxEUFAQgIzMlSLo+nWf/fJbYpFgA/un/D2VdpK8trFuuwcg3f59g9paTKArUKufG7KGhVC1biCXFJdnNTe2iw+7aRvrGRcvcuLXoNDpmtptJ64qt1atVFIrZ95kZOHAgp06d4vfff6d27doAHDlyhOHDh1OtWjUWLlxYuMr/x8qVK+nTpw86Xd5PLQaDAY1Gg1arJTs7+7bH7kYmAFsnvVHP6H9Gs+PiDrydvJnfZT7+7v5qlyVEkQk/cZXxi6O5lpaDi4OOT/rUo09IMZ4zZI0MuXD6X9OmdkfXg+G/H1y1dqYzkUKGmja3s3NAURTe3fEuq0+txknnxNxOc2lQVubIWBOzhxkPDw/+/vtvHnvssduu7927l44dO3Ljxo2CvuVdpaamcvbs2duuPfvss9SqVYu33nqLevXqPfA9JMxYH0VR+GDnB6w4uQJnO2d+7vQz9co8+H9rIaxNQkoWYxdFs+t0IgD9G1bko171cHaQttNtCrkaKf8PRaXsSzG/63yqelYtxsLFozD7nBmj0XjHcmwAe3v7O85pehRubm53BBZXV1dKly79UEFGWKcfYn5gxckVaDVavmz9pQQZYbN83J2Y/0ITvv3nBDM2n2Dp/gtEn7/B7KGh1PB1U7s8dd2rjVSAs5HstfZMf3w6z/z5DLFJsfRe1Zt/B/xb9Oc4CdUVatO8du3aMXbsWC5dunTr2sWLFxk/fjzt27cvsuJEybP8xHK+i/kOgHebvsvj/o+rXJEQ5qXTahj3RA0WvNCEsm6OnEhIo+es7SzZdx4rWGxatB5mU7sJR6HL1IdeVu1i78IPHX649fvRm0eTmZtppj+AUEuh2kznz5+nV69eHDp0CH9/fzQaDefOnaN+/fqsWrWKihUtp+8rbSbrEX4hnNH/jMagGHipwUuMDhmtdklCFKtradmMXxxN+IlrAPQJqcCU3vVwdXykhaeWL+GoaR7MgcWQdiXvehFuanc25SzD1g/jRvYN2vm3Y3qb6ei00s6zZGafM3PTpk2bOHr0KIqiUKdOHZ544onCvpXZSJixDocTD/Psn8+SmZtJz6o9mdJiimyKJ0oko1Hhh22nmPbXcQxGhcAyrswaEkqd8jb271dGUl4b6VK+XeNdSpsOdgweUuSb2kUlRPHCxhfIMeYwrPYw3mr8VpG+vyhaZgsz//zzD6NGjWL37t13vHFycjLNmzfnhx9+oFWrVoWr3AwkzFi+C6kXGLZ+GIlZiTTza8bs9rOx1905J0uIkiQiLokxC6O4nJyFg52WD3rUYUjjStYd8g25cOof0yjMsfVgyDFd19qZViEFD4HqHc26qd2fcX/yxtY3AHjrsbcYVmeY2e4lHo3ZwkzPnj1p27Yt48ePv+vjM2fO5N9//2XFihUFq9iMJMxYtmuZ12i7pC0ANb1q8kvnXyjlIPttCAFwPT2H15fGsPloAgDdGvjxWd/6uDtZWdhPiL21qZ252kgF8fOhn/l6/9cAfNn6SzoHdC62e4uHZ7YwU7lyZf78889be8v8r6NHj9KxY0fOnTtXsIrNSMKM5dIb9HRd0ZX4dNNSy839N+PjIrt0CpGfoijM3X6GzzccJdeoUMnbhVlDQmhQ0VPt0u7vVhtpAVyKyrvuUhoaDDQdLaDS2UiKovDa1tfYdHYTAH/0+IOa3jVVqUXcm9mWZl+5cuWuS7JvvZmdHVevXi3IW4oSSlEUPt376a0g81uX3yTICHEXGo2GF1oF0rCyF6PCojiXlMGT3+/k7a61eaZ5FctqOxly4dTm/9pIG25vI9XobAowZm4jPQyNRsPU1lM5ufokZ5LPMOafMSzsvhBvJ29V6xKFV6Cl2RUqVODgwYP3fPzAgQP4+fk9clHC9i08upA/jv+BBg2z2s0ixKfoz/USwpaEVPJi/ZhWdKrri96gMHnNEV7+fT83MnLULg2uHIG/3oXptSFsABxZZQoy5epD58/htWMwaAHU7q56kLnJXmvP711+x9/Nn0vplxj/73j0Br3aZYlCKlCbafTo0WzZsoWIiAicnJxueywzM5PGjRvTtm1bZs6cWeSFFpa0mSzPzks7GfH3CAyKgQkNJ/BsvWfVLkkIq6EoCr/tOssn62LJMRip4OnMt0NCCK3kVbyFZCTBwT9MozCXo/OuW0AbqSBO3zjN0PVDSdOn0bd6Xz5s9qFljXaVYGabM3PlyhVCQ0PR6XSMGjWKmjVrotFoiI2NZfbs2RgMBiIjI/H19X3kP0RRkTBjWc4kn2HouqGk6lNlCbYQj+DghWRGLYzkbGIGdloNb3SqyYutAtFqzfjfkyEXTv6d10Yy/jeScXM1UshQ0xlJFjL68rDCL4Qz6p9RGBWjrHCyIGbdZ+bs2bO8+uqrbNy48dbulBqNhk6dOvHdd99RpUqVQhduDhJmLEdydjLD1g8jLiWOoLJBzO00F0edo9plCWG1UrP0TFp+kLUHLgPQtmZZpg0Ixtu1iMPElcP/rUZaAukJedfLNfhvNVI/cLXuIwJ+O/wbX+77Eq1Gy3ftv6NFhRZql1TiFcumedevX+fkyZMoikL16tXx8irmIc6HJGHGMuQacxnx9wh2Xd5FOddyLOy2UM5HEaIIKIrCwr3nmbzmMNm5Rsq5OzFzcAiNAx5xMmt6Ihy62UaKybvuUgYa/LepXbn6j3YPC5L/gFs3ezfmd5tPoEeg2mWVaMW2A7A1kDBjGT7f+zkLYhfgbOfMb11+o5Z3LbVLEsKmxF5OYWRYJKevpqPVwIQONRjRplrB2k4GvelspOgFcHxjvjaSPdTsbBqFqfYE2OimljmGHF7860UiEyKp5FaJsG5heDh6qF1WiSVhJh8JM+pbenwpH+36CICv23zNE5Ut79gLIWxBenYu7608xPKoiwC0ql6G6QOCKev2gHZu/KG8Te0yruVd9wsyBZh6/cC1tBkrtxyJmYkMXjeYy+mXaeLXhO+f+B57rW2GN0snYSYfCTPqioiP4KW/XiJXyWVU8CheDnpZ7ZKEsHlL953n/VWHydQbKOvmyIyBwTSv9j9t3fRreauR4g/kXXcta1qNFDwEfOsWb+EW4ljSMZ7a8BSZuZkMrjWYt5u8rXZJJZKEmXwkzKjnWNIx+q3pB0CXKl2Y2nqqrFwSopicuJLKyLBIjl9JQ6OB0e2qM7ZNZXQnN0HMQjj+JxhzTU/WOZg2tQseCtXa22wbqSA2n9vMuH/HATA2dCwv1H9B3YJKIAkz+UiYUUdmbiZNw5piVIy42ruyZcAWnOycHvxCIUSRycwxMHnNYQ7sC6efbhv9HHbhbkzOe0L5EAgaYlqN5CK73/6v6funM+/QPADCuoZRv6ztTHi2BmY7zkCIh6EoCh/t+gijYgRgSfclEmSEKG5pV3E+uJTPE8LA8b+d241wFU8ya/WjUrsXwOfu5+wJk/Gh49kXv4+D1w4yYesElnRfgpeTZa7cLekKdJyBEA9j8bHFrD29Fp1Gx8+dfqaSeyW1SxKiZMjNgdg1sHAwTK8FGyfBlYOgcyCtanc+KPUBTbO+pXV0O6ZGatAbjGpXbNE0Gg0/dviRKu5ViE+P581tb2IwGtQuS9yFtJlEkYpOiObZjc+Sa8zl9UavM7zucLVLEsK2KYppH5joMDi4FDKT8h6r0NA0kbduX3DxJktv4JN1sfy++ywADSt7MXNwCBU8nVUq3jqcvH6SIeuHkJmbyYv1X2RM6Bi1SyoRZM5MPhJmis+1zGsMXDOQhMwEOlTuwLTHp8mEXyHMJfUKHFwC0Qsh4XDe9VLlIGigaS6Mz933c1p/8DJv/XGA1OxcPJzt+ap/EB3qWM4xNJZo/en1vBX+FgAz286kbaW2Kldk+yTM5CNhpnjkGnN5adNLRMRHEOARwMJuC3G1d1W7LCFsS262aRVSdJhpczvlv5aHzhFqdTWtRgpsC7oHT4c8l5jB6IWRxFwwTQh+vmUAb3WuhYOdzD64l5ubf5ayL8Xi7oulhW5mEmbykTBTPKbvm868w/NwsXNhYbeFBHrKNuBCFAlFgUtRpgBz6A/IvJ73WMXHTKdT1+sLzgWfmJqTa2Tqn0eZu/0MAEEVPZg1JBR/b5eiqt6m6A16nv/reaISoqjuVZ0FXU27mgvzkDCTj4QZ89t0dhMTtkwA4KvHv6JTlU4qVySEDUiNN+3IG70QrsbmXXcrn9dGKlujSG616cgVXl8aQ3KmHjcnO6Y+2YCu9f2K5L1tTUJGAgPWDCAxK5Hugd35tOWn0k43Ewkz+UiYMa/TyacZsm4I6fp0htcZzuuPva52SUJYL30WHFtvGoU5tRn+294AOyeo3cM0ChPYBrS6Ir/1xRuZjFkYxf6zppGfp5pW5p1utXGyL/p7WbuI+Ahe/OtFDIqBd5q8w6Bag9QuySZJmMlHwoz5ZOgzGLxuMKeTT9PItxFzOs7BTitbFwlRIIoCF/ebjhU4tAyy8m1q598UggdD3T7gZP4DD/UGI9M3Hef7LacAqOPnzuyhoQSUkflv/+vXw7/y1b6vsNPaMa/TPIJ9gtUuyeZImMlHwox5KIrCG9veYGPcRnycfVjcYzFlnMs8+IVCCJOUSxCzyHS0wLXjedfdK0LQINOS6tJVVSlty7EEJiyJISk9B1cHHZ/2rU+v4Aqq1GKpFEXhta2vsensJpx0Tmx4coP8G1jEJMzkI2HGPPJv8/17l9/lpxIhHoY+E46uM43CnN6Sr43kDHV6mgJMldagVX9F0ZWULMYsjGLPGdO+NQMb+fNhz7o4O0jb6aZ0fTpPLH2CNH0afq5+bOi7AZ0ZWoAllYSZfCTMFL3D1w4zaJ2pRywnYQvxAIoC5/eaAszhFZCdkvdYpeamNlKd3uBkef8+GYwKMzaf4Nt/TqAoUMO3FLOHhFLd103t0izGyesn6bO6DwBjQsbwYoMXVa7IdkiYyUfCTNFKzUllwJoBXEi7QJ3SdVjUbZHM5Bfibm6chwOLTKuRkk7lXfesZJrIGzQIvK1jC4OdJ68xdnE0V1OzcbLX8lGvevRvWFH+2//PypMreW/He+g0OuZ1nkeIT4jaJdkECTP5SJgpOoqi8Oa2N/kz7k/Ku5Znac+luDvIZyrELTnpprORosPgzDbgv39e7V2hTi/TKEzllhbRRiqoq6nZTFgSTfiJawD0CanAlN71cHWUSf+KovD29rdZe3ot5VzL8UePP/BwNP+EbVsnYSYfCTNF54/jfzB512TsNHb80uUXgsoGqV2SEOpTFDi7E2LC4PBKyEnLe6xySwgZCrV7gmMp1UosKkajwvdbTzF903EMRoXAMq7MGhJKnfLyb2u6Pp2BawdyNuUs7fzb8U3bb2Tk6hFJmMlHwkzROHH9BIPXDSbbkM34huN5rt5zapckhLqux+WtRroel3fdq4ppQ7ugQeBVWaXizCsiLonRYVHEp2ThYKfl/e51GNqkUon/8j6SeIRh64ehN+qZ1HgSQ2oPUbskqyZhJh8JM48uMzeTwWsHcyr5FC3Kt+C7J75Dq7G+YXIhHll2GhxZZWojnd2ed93BDer2Mp2NVKkZlIAv9aT0HF5fGsM/RxMA6NbAj8/61sfdyV7lytS1IHYBn+/9HHutPWHdwqjlfffDPsWDSZjJR8LMo/tw54csO7GMss5lWdpjKaWdS6tdkhDFx2iEuHDTCMyRVaDP+O8BDQQ+bhqFqd0dHErexnJGo8Lc7WeY+udRco0KlbxdmDUkhAYVPdUuTTWKojDm3zFsOb+FKu5VWNx9MS72ctZVYUiYyUfCzKPZcGYDb257Ew0a5nScQxO/JmqXJETxSDxlCjAxiyD5fN710tXyViN5VFSvPgsSde46o8KiuHgjE3udhre71uaZ5lVKbNvpRtYN+q3px5WMK/Ss2pNPWn6idklWScJMPhJmCu9cyjkGrB1Auj6dlxu8zKiQUWqXJIR5ZSWbJvFGh8H53XnXHT1MJ1MHDzGdVF1Cv6TvJzlDz5vLYth4+AoAHer48mW/Bni6OKhcmToir0Ty7MZnMSpGPmn5CT2r9lS7JKsjYSYfCTOFk2PI4akNT3Ek8QihPqHM7TRXzl0StsloMO3GG7PQtKw6N8t0XaOFqu1MAaZmV7B3VrVMa6AoCr/tOssn62LJMRip4OnMzMEhNKzspXZpqvgx5kdmRc/C2c6Zxd0XE+ARoHZJVkXCTD4SZgpn6t6pzI+dj6ejJ0t7LKWcazm1SxKiaF09blpOHbMYUi/lXS9T0xRgGgwEdz/16rNihy4mMzIskrOJGei0Gt7oVJOXWgWi1ZasES2D0cDLm15mT/weannXYn7X+TjqHNUuy2pImMlHwkzB/Xb4N77c9yUAs9rN4nH/x1WuSIgiknkdDi03tZEu7su77uQJ9fuZQkz5UGkjFYHULD1vrzjEmhhTUGxTsyzT+gdRulTJ+jJPyEigz6o+pOSkEFw2mN+7/q52SVZDwkw+EmYK5mrGVdotbQdAr6q9mNJyisoVCfGIDLlw6h/TKMzR9WDINl3X6KB6B9Nk3ppdwK5kfckWB0VRWBRxng9XHyY714ivuyMzB4XQJLBkrYjcfG4z4/4dB8D3T3xPywot1S3ISkiYyUfCzMNTFIURm0ew/aJp/4x9w/bJkKiwXgmxpsMdDyyBtCt5133q/tdGGgClfNSrrwQ5Gp/CyAWRnLqajlYD45+owYi21dCVoLbTqM2j2HphK2Wcy7Ci5wo8nTzVLsniSZjJR8LMw1t0dBGf7PkEB60Di7svpppXNbVLEqJg0hPh0B+mNtLl6LzrLqWhfn/TKIxfkLSRVJCRk8t7Kw+zLPICAC2qlebrgcH4uDmpXFnxyMrNYuDagZxOPk2Hyh2Y9vi0Ert0/WFJmMlHwszDOZN8hgFrBpBlyOKtx95iWJ1hapckxMMx6OHEX6YAc3wjGPWm61p7qNHJNApTrQPYlcwlwpbmj/0XeG/lITL1BsqUcuCbgSG0rF5G7bKKxZHEIwxdN5RcJVeWaz8ECTP5SJh5ML1Rz1Prn+Jw4mGa+jXlxw4/ynEFwvJdPmAKMAeXQsa1vOt+QaZjBer1A9eSNTfDWpxMSGNUWCRH41PRaGBU22qMbV8dO53t/7vzfwf/jxmRM3C1d2VZz2VUKFVB7ZIsloSZfCTMPNi3Ud/y04GfcHdwZ3nP5fi6+qpdkhB3l5ZgmgMTsxCuHMq77upjmgMTPAR866pXn3hoWXoDk9ccYeHecwA0ruLNjMHB+HnY9n4+BqOBZzc+S1RCFKE+ofzc6Wd0Wp3aZVkkCTP5SJi5v+iEaIb/ORyjYuTLx7+kc5XOapckxO1ys+HYBlOAObEJFIPpus7BtJld8FDT5nY62dTRGq2OucTbyw+Slp2Ll4s90wYE0a6Wbf9AdT71PP1W9yMjN4PxDcfzXL3n1C7JIkmYyUfCzL2l69Ppt7ofF9Iu0D2wO5+1+kztkoQwURS4GGlaTn3wD8i6kfdYhUamEZh6fcG5ZO4sa2virqUzamEkhy6mAPBS60De6FQTextuO604sYL3d76PndaOhd0WyunadyFhJh8JM/f2wc4PWH5iOX6ufizruQw3Bze1SxIlXcolOLAYohfCtWN5193KQ9BA0wnVZWuoV58wm+xcA5+tP8ovO+MACPb35NvBIfh72+aJ04qiMO7fcfxz/h+qeVZjUfdFshXG/5Awk4+Embu7uYmTBg1zO83lsXKPqV2SKKn0mXB0nWlPmNNbQDGarts5Q+3uplGYgMdB5hWUCH8eiufNP2JIycrF3cmOL/oF0bmebR6nkpSVRN9VfUnMSuSpOk/x5mNvql2SRZEwk4+EmTtdy7xG31V9uZ59nWfrPsuERhPULkmUNIoC53ab2kiHV0J2St5jlZqZ9oOp2wec5L/Zkuh8UgajF0YRff4GAMObVebtbrVxtLO9QLvtwjZGbh4JwJyOc2jq11TliiyHhJl8JMzcTlEURm4eSfjFcGp61SSsWxgOOtl/QxSTG+cgZpFpMm/S6bzrHpUgeDAEDQLvQPXqExZDbzDy1cZj/LjN9PekXgV3Zg0OpUoZV5UrK3of7/qYJceX4Oviy7Key/Bw9FC7JIsgYSYfCTO3m7J7CouPLcZB68Ci7ouo7lVd7ZKErctOg9jVpj1h4sLzrtu7Qt3eplGYyi1Aa7uTPUXh/Xs0gQlLormeoaeUox2f9q1Pz6DyapdVpDL0GQxYO4CzKWdxd3Bnx+AdapdkESTM5CNhJs/51PN0Xd4VgHGh43i+/vMqVyRsltEIZ7ebJvIeWQX69LzHAlqbJvLW7gGOpdSrUViNy8mZjF0Yzd64JAAGN/bngx51cbK3nbZTdEI0T214CoCv23zNE5WfULki9UmYyUfCjIlRMfLCXy8QER8BQMzTMbLLryh6iadMLaSYxZB8Lu+6d6ApwAQNBM9K6tUnrFauwciMzSeY9e9JFAVq+roxe2gI1XxsZxXm+H/H8/e5v/F28mZVr1Ul/jBKCTP5SJgxuXmIpLOdM8t6LsPfzV/tkoStyEqGwytMozDnd+ddd3Q3TeINHgr+jeVwR1Ektp+4xrjF0VxLy8bZXsfHvevRr2FFtcsqEjmGHAasGcCp5FN0DejK1NZT1S5JVRJm8pEwAxdSL9B3dV8yczOZ1HgSQ2oPUbskYe2MBjj1r2k10tF1kJtluq7RmnbjDRoMtbqBvW1vTS/UkZCaxfjF0ew4mQhA39AKfNyrHq6O1r8L9MGrBxm2YRhGxciMtjNoV6md2iWpRsJMPiU9zBgVIy/+9SJ74/fS0LchP3f6WdpLovASjpoCTMxiSIvPu162linANBgI7n7q1SdKDINR4bt/T/L138cxKlC1rCuzhoRS28/6/52fvn868w7No4xzGVb2WlliVzcV5Pvbor/VPvvsMx577DHc3Nzw8fGhd+/eHDt27MEvFLf8cfwP9sbvxUnnxMfNP5YgIwouIwn2zoGf2sB3TWDHDFOQcfaCxi/Bi//CiN3QcpwEGVFsdFoNo9tXZ+GLTfF1d+TU1XR6z95B2J5zWPvP6CODRxLgEcC1zGtM3VuyW00Py6JHZjp37sygQYN47LHHyM3N5Z133uHgwYMcOXIEV9eH22ugJI/MXEy7SN9VfcnIzWBi44kMrT1U7ZKEtTDoTYc6xoTBsT/BqDdd19pB9Y6mXXmrdwI72aNIqC8xLZvXlsaw5dhVAHoElefTPvVwc7JXubLCi7kaw9MbnsaoGJnVbhaP+z+udknFzmbbTFevXsXHx4etW7fSunXrh3pNSQ0ziqLw4qYX2XN5D6E+oczrPE9GZcT9KQrEHzBN5D24FDKu5T1Wrr5pIm+9flCqrHo1CnEPRqPCnPDTfLnxGLlGhcqlXZg1OJT6Fa23RfNVxFf8euRXfJx9WN5reYlrNxXk+9uqZkslJycD4O3tfc/nZGdnk52dfev3KSkp93yuLVt6fCl7Lu8xtZdaSHtJ3EdaAhxYYtrULuFw3nVXH2gwwDQXplw99eoT4iFotRpefrwqjap4M2ZhFGcTM3jy+5283bUWw5tXQWOFq+lGhYxi64WtxKXE8WXEl0xpOUXtkiyW1YzMKIpCr169uH79OuHh4fd83ocffsjkyZPvuF6SRmYupV2iz6o+ZORm8NZjbzGszjC1SxKWRp8FxzeYRmFO/g2KwXRd5wA1u5raSFXbg86qft4RAoDkDD1v/BHDX0euANCxji9f9gvCw8X62k5RCVEM3zAcBYXv2n9Hq4qt1C6p2Nhkm2nkyJGsW7eO7du3U7HivfcUuNvIjL+/f4kJM4qi8NKml9h9ebe0l8TtFAUu7jedTn1omWl/mJsqNDIFmHp9TRN7hbByiqLw6844Pl1/lByDkQqeznw7JITQStb393vq3qnMj52Pj4sPK3utxM3BdjYKvB+bCzOjR49m5cqVbNu2jYCAgAK9tqTNmfnj+B9M3jUZR50jy3ouo7J7ZbVLEmpLvggHFplGYRJP5F13r2BaSh00GMrWUK8+Iczo4IVkRi2M5GxiBnZaDW90qsmLrQLRaq2n7ZSZm8mTq5/kfOp5+lbvy+Tmd3YfbJHNhBlFURg9ejQrVqxgy5YtVK9e8EMRS1KYuZx2mT6r+5CuT+eNRm/wdN2n1S5JqCUnHWLXmlYjnd4K/PefuZ2z6Uyk4CGmM5K0tnO2jRD3kpqlZ9Lyg6w9cBmAtjXLMm1AMN6u1rMab1/8Pp7d+CwAPz7xI80rNFe5IvOzmTAzYsQIwsLCWLVqFTVr1rx13cPDA2fnh9tZtKSEGUVRaPBbAwBCfEKY12keOvmiKlmMRji387/DHVdCTlreY5VbmEZg6vQCJ9v970CIe1EUhYV7zzN5zWGyc434ujsyc1AITQJLq13aQ/tsz2eEHQ0DYPeQ3bjaP9wWJdbKZsLMvWafz5s3j2eeeeah3qOkhJlVJ1fx7o53AVjdezUBHgVrxwkrlnQaYhaZft04m3fdq4opwAQNMv3/QghiL6cwKiySU1fT0Wpg3BM1GNm2GjoraDtl6DNoEtYEgCG1hjCpySSVKzIvmwkzRaEkhJmkrCR6rezFjewbDKw5kHebvqt2ScLcslJMhzvGLIRzu/KuO7hB3d6mNlKlZnK4oxB3kZ6dy3urDrE88iIALaqV5uuBwfi4Oalc2YOFXwhnxOYRaNAQ1i2MemVsd9sECTP5lIQw83b426w5vYYaXjVY1H0R9lrrW34oHoLRAKe3mPaDObo273BHNFC1LQQNMR3u6OCiZpVCWI0/9l/gvZWHyNQbKFPKga8HBtOquuVvCjkxfCLrTq+jpldNFnZfaLP/5kuYycfWw8zOSzt5edPLaNCwoOsC6petr3ZJoqhdPWYKMAeWQOqlvOtlakLwzcMdy6tXnxBW7GRCKqPCojgan4pGAyPaVGX8EzWw01nulhaJmYn0WtWL5OxkJjScwLP1nlW7JLOQMJOPLYeZzNxM+q7qy4W0CwytPZSJjSeqXZIoKhlJpr1gosPgUmTedWcv05ECwYOhfKi0kYQoAll6Ax+tPULYnnMAPFbFi5mDQ/DzeLiFJmpYcWIF7+98HyedEyt6raCi2733X7NWEmbyseUwc/OYeF8XX1b1XmXzM9tt3v0Od6zWwTQPpkYnsHNUt04hbNSamEtMWn6QtOxcvFzsmTYgiHa1fNUu664UReH5v54nIj6CFuVb8P0T31vlkQ33I2EmH1sNM0eTjjJo7SAMioFv231LG/82apckCuNBhzsGDYH6/eVwRyGKSdy1dEYvjOLgRdMO2S+2CuCNTrVwsLO8tlNcchxPrn6SHGMOn7f6nG6B3dQuqUhJmMnHFsOMwWhg6PqhHE48TIfKHZjeZrraJYmCSr0CB5eYQsxdD3ccZAozQohil51r4PMNR5m3Iw6AIH9PZg0Owd/b8ibX/xjzI7OiZ+Ht5M3q3qtt6mRtCTP52GKYmX9kPlMjpuJm78aq3qso6yI/tVsFfRYcW29aTn1yc77DHR2hVlfTnjByuKMQFmPj4XjeWBpDSlYubk52fNmvAZ3r+ald1m30Bj391/TnVPIp+lTrw0ctPlK7pCIjYSYfWwszl9Mu02tVLzJzM3mv6XsMqDlA7ZLE/SgKnN9rCjCHl99+uGPFxqaJvHX7yOGOQlioC9czGLMwishzNwAY3qwyk7rWxsnecnZYj0qI4ukNpuNrfu70M4+Ve0zlioqGhJl8bCnMKIrCqH9Gse3CNjkR29LdOAcxi00hJulU3nX3ihD03+GOZQp+1pgQovjpDUa++usYP249DUAdP3dmDw0loIzlLLr4eNfHLDm+hCruVfij5x846qx/oYCEmXxsKcxsjNvI61tfx05rx7Ieywj0DFS7JJFfdhrErjYtp44Lz7tu7wp1epoCTJVWoJUAKoQ1+vdYAq8tiSEpPQdXBx2f9q1Pr+AKapcFQEpOCr1W9uJa5jVeCXqFkcEj1S7pkUmYycdWwkxydjK9VvYiMSuRV4NeZUTwCLVLEmA63DEu3HQu0pFVoE/Pe6xKK9Ny6to9wbGUejUKIYpMfHIWYxdFsedMEgCDHvPngx51cXZQv+30V9xfvLb1Ney0dvzR4w+qelZVu6RHImEmH1sJM4PXDuZQ4iGquFdhWc9lOOis5+h6m5R46r9deRdD8vm8696BpuXUQQPBs5J69QkhzCbXYGTmPyf59p8TKArU8C3F7CGhVPd1U7UuRVEY/c9otl7YCkDM0zFWPRWhIN/fsmzCCkTER3Ao8RAAHzT7QIKMWjKvw6HlplGYC3vzrjt6QL0+phDj31h25RXCxtnptEzoUIMmAd6MWxzN8Stp9Ji1nY961aN/w4qqbV6n0Wh4p8k7t8LMoqOLGFJ7iCq1FDcZmbFwucZcBq4dyPHrx/F28mbrwK1ql1SyGHLh1GbTKMyxDWDINl3XaE3LqIMHQ82uYG+5254LIcznamo2E5ZEE37CtOFln5AKfNy7HqUc1RsreHPbm2w4swEvRy/W9FljtXvPSJspH2sPMzf3lHF3cGdNnzV4O3mrXVLJEH/ItBLpwBJIT8i77lPXFGDqDwA3y9zmXAhRvIxGhe+3nmL6puMYjAqBZVz5dkgIdcurEyL0Rj0D1gzg5I2TDKw5kHebvqtKHY9Kwkw+1hxmrmZcpcfKHqTr02VPmeKQlmA6UiBmIcQfzLvuUsZ0pEDwYCjXQNpIQoi7iohLYszCKC4nZ+Fgp+W97nUY1qSSKm2niPgIntv4HBo0LOy+kLql6xZ7DY9Kwkw+1hxm3tr2FuvPrKde6XrM7zofnVb92fI2Jzfb1D6KWWg65PHWrrwOUKOzaTVStSdAZ69unUIIq3A9PYfXl8aw+ahpRLdr/XJ8/mQD3J2K/9+QieETWXd6HfXL1Gd+1/lWNxlYwkw+1hpmbkvV3RZSt4z1pWqLpShwYZ/pdOpDyyHrRt5jFRqa9oOp9yS4SEtPCFFwiqIwd/sZpv55FL1Bwd/bmVmDQwny9yzWOvKP7n/Q7AP61ehXrPd/VBJm8rHGMKM36um/2nTWhjX3Oy1O8gXTSqSYRZB4Iu+6W/n/duUdAmVrqFefEMKmRJ+/waiwSC5cz8Rep+GtzrV4vmVAsbadfj/yO19EfIGHowdre6/F08mz2O79qCTM5GONYWbeoXlM3z/d6meiW4ScdIhdY1qNdGYb8N9fd3sXqN3DNAoT0BqkhSeEMIPkTD0Tlx1gw6F4AJ6o7cOX/YLwci2eLTZyjbkMWDuAE9dP0K9GPz5o9kGx3LcoSJjJx9rCTHx6PD1X9iQzN5OPmn9En+p91C7J+hiNcHZ73q68OWl5j1VpBUGDoE4vcFR3gyshRMmgKArzd5/l43Wx5OQa8fNw4tvBITSqUjyt7P1X9vPMn8+gQcOCrguoX7Z+sdz3UUmYycfawsyELRPYdHYTwWWD+bXLr1Y3YUtViadME3ljFkPyubzrXgGmibwNBoJXZfXqE0KUaIcvJTMqLIoz19LRaTVM6FCDVx+vilZr/rbTO9vfYfWp1dQpXYewrmFWsaBEwkw+1hRmdl7cyct/v4xWo2VJ9yXU9K6pdkmWL/MGHF4O0Qv/Z1ded6jbxxRi/JvIcmohhEVIy87l3RUHWRl9CYBW1cswfUAwZd3Me8r1tcxr9FjRgzR9mtVs9SFhJh9rCTM5hhz6ru7L2ZSzDK09lImNJ6pdkuW676687UzzYGp1k115hRAWSVEUlu67wPurD5GlN1LWzZEZA4NpXq2MWe+7IHYBn+/93Go2YZUwk4+1hJmfDvzEt1HfUsa5DKt7r8bNQeZz3OGeu/LWMQWYBgPArZx69QkhRAEcv5LKqLBIjl9JQ6OB0e2qM7Z9dXRmajvlGnMZvG4wR5OO0rd6XyY3n2yW+xQVCTP5WEOYuZh2kd4re5NlyOKzVp/RPbC72iVZjpu78kYvhCv5d+UtbdqVN2gw+AVJG0kIYZUycwxMXnOYRRHnAWgS4M3MwSH4ujuZ5X7RCdE8teEpAH7v8jvBPsFmuU9RkDCTjzWEmR4rehCXEsdj5R5jbse5qp24ajEetCtv0GCo3kF25RVC2IxV0Rd5e/lB0nMMeLs6MH1AEG1q+pjlXu/teI+VJ1cCEPVUFHZa9Q7FvB8JM/lYepj5K+4vXtv6GgAreq6gmlc1lStSiezKK4Qo4U5fTWNUWBRHLqcA8MrjVXmtYw3sdUW7qjUxM5E2S9oAMCJ4BK8GvVqk719UJMzkY8lhRm/U02tlL86nnqd+mfqEdQtTu6Tid+M8HLi5K+/JvOvuFUxLqYMGy668QogSI0tv4NP1sfy26ywAoZU8mTk4hIpeLkV6n3e3v8uqU6tws3djw5MbLHJzVgkz+VhymLm5zbS3kzdr+6wtOZN+s9NMu/LGhMGZcG7flbenaVM72ZVXCFGCbTh4mTeXHSA1KxcPZ3u+7NeAjnWLboFD/mNzhtUexluN3yqy9y4qEmbysdQwk5SVRPfl3UnVp/Jhsw95ssaTapdkXkYjxIWb5sEcWQ369LzHqrQyjcDU6Sm78gohxH/OJ2UwamEUMedvAPBsiypM7FILR7ui+UHv5t5mdho7lvVcRqBnYJG8b1EpyPe3bC+rkllRs0jVp1Lbuza9q/VWuxzzuXYCNn8E39SH33qawow+HbwDoe27MO4gPLMWQoZKkBFCiHz8vV1Y+nIzXmwVAMC8HXH0+34XZxPTH/DKh9O8QnPaVGxDrpLLF/u+KJL3VIuMzKjgaNJRBqwZgILCL51/oaFvQ7VLKloZSaZdeWMWwYWIvOuOHlCvr2kUxr+xLKcWQoiHtDn2Cq8tjeFGhp5SjnZ8/mR9ujco/8jvezblLL1X9SbXmMvs9rNpXbF1EVRbNKTNlI+lhRlFUXh247Psv7KfzlU68+XjX6pdUtEw6OHk36ZdeY//CYYc03WNDqo9YZoHU7Mr2Jtn7wQhhLB1l5MzGbMwioi46wAMaVKJ97vXwcn+0dpO0/ZN45fDv1DFvQrLey7H3kK2vZAwk4+lhZmNcRt5fevrOOocWdN7DX6l/NQuqfAUBeIPmDa0O7gUMq7lPeZbH4IHQ71+4OarXo1CCGFDcg1Gvvn7BLO3nERRoFY5N2YNCaWaT6lCv2dqTirdV3QnKSuJNxq9wdN1ny7CigtPwkw+lhRmsnKz6LmyJ5fTL/Nq0KuMCB6haj2FlhpvOlIgZiEkHMm77loW6g8whZhy1nHEvBBCWKPwE1cZvziaa2k5ONvrmNK7Hk82rFjo91t2fBkf7voQN3s31vZdaxHnNkmYyceSwswPMT8wO3o2vi6+rOmzBmc7KzoIUZ8Fx9aZRmFObQbFaLquczC1j4KHQNX2oLPMnSSFEMLWJKRmMX5xNDtOJgLwZGhFPupVF1fHgv87bDAaGLRuEEeTjtK/Rn/eb/Z+UZdbYBJm8rGUMBOfHk+PFT3IMmTxResv6BLQRbVaHpqiwPk9pnkwh1dCdnLeYxUbm+bB1OsLzl6qlSiEECWZwajw/ZaTTN90HKMCVcu6MmtIKLX9Cv59ty9+H89ufBatRsuS7kuo6V3TDBU/PFmabYG+3v81WYYsQn1C6Vyls9rl3N/1s7BlKswMgZ87QeSvpiDj4Q+t34BR++GFTfDY8xJkhBBCRTqthlHtqrPwxab4ujty6mo6vWfvIGzPOQo6VtGoXCM6Vu6IUTEyNWJqgV+vJhmZKQZRCVE8veFpNGhY1H0RdUrXUaWO+8pKgSOrTPNgzu7Iu27vCnV7m0ZhKrcEreRfIYSwRIlp2by2NIYtx64C0L2BH5/1rY+b08OvTrqYdpFeK3uRbchmepvpdKjcwVzlPlBBvr9lgoOZGRUjn+/9HIC+1ftaVpAxGuD0FlOAiV0LuZn/PaAxHScQPARq9wAHVzWrFEII8RBKl3Lk5+GPMSf8NF9uPMbaA5c5eDGZWYNDqV/x4c5eqlCqAsPrDuenAz8xbd80WldsjaPO0cyVPzoZmTGzFSdW8P7O9yllX4o1fdZQxrlMsddwh4SjpnORDiyB1Mt518vUMG1o12AAeBR+VrwQQgh1RZ67zuiwKC7eyMRep+HtrrV5pnkVNA+xWWmGPoMeK3uQkJHAmJAxvNjgxWKo+E4yATgfNcPMjawbtFrcCoDXG73O8LrDi/X+t0lPhEN/mCbzXo7Ou+7sZdoLJmgwVAiVXXmFEMJGJGfoeXNZDBsPXwGgYx1fvujXAE8Xhwe+ds2pNby9/W0A1vdZj7+7v1lrvRsJM/moGWbeDn+bNafXABA5LLL4d1XMzYETG03LqU9sBGOu6brWDqp3Mu0HU70j2Fn+EKIQQoiCUxSF33ad5ZN1seQYjFTwdGbm4BAaVr7/4g2jYiTotyAAGvo25JfOvxRDtbeTOTMW4HLaZTac2QDAxMYTiy/IKApcijQFmEN/QOb1vMf8gk0jMPX7gasFtLuEEEKYlUajYXjzKjSs7MWosEjiEjMY8OMu3uhUk5daBaLV3n00XqvR8l377xixeQT7r+zn+PXj1PCqUczVPzxZmmIm30Z9S66SSyPfRgypNcT8N0y+COHTYXYTmNMOIuaYgkypctBiLIzYDS9vhaavSJARQogSpl4FD9aMbkmPoPIYjAqfbzjKs79EkJiWfc/XtKrY6tZqpun7pxdXqYUibSYzOJJ4hIFrBwKwqNsi6papa54b5aSbViHFhMHprcB//1PaOUPt7qbl1IFtQftoh5AJIYSwDYqisDjiPB+sPkx2rhFfd0dmDAqhaWDpuz7/XMo5eq3qRa4xlx87/Ejz8s2LrVZpM6lIURS+2vcVAN0CuxV9kDEaTfvAxCw07QuTk5b3WOUWpgBTpzc4qX+ophBCCMui0WgY1LgSIZW8GBkWycmENIbM2c3Y9jUY1a4auv9pO1Vyr8SgmoOYHzufafum0aR7E3QW+AOyjMwUsa3ntzLqn1E4aB1Y02cN5UuVL5o3TjxlCjAxiyH5XN51ryoQNMS0nNo7oGjuJYQQwuZl5OTywarDLN1/AYBmgaWZMSgYH3en2553I+sGXZd3JVWfysctPqZ3td7FUp+sZsqnOMNMrjGXvqv7cib5DM/Ve47xDcc/2htmXofDK0yTeS/szbvu6A51+5gm81ZqKsuphRBCFNqKqAu8s+IQGTkGSrs68PXAYFrXKHvbc+Ydmsf0/dPxcfFhbZ+1xXJQsrSZVLL8xHLOJJ/B09GTF+q/ULg3MeSaTqWODoNjG8Dw3+QsjRaqtjMFmFrdwN6KTtwWQghhsfqEVCSooicjw6KIvZzC0z/v5dU2VZnQoQb2OtM6oSG1h7Do6CIupV9i/pH5qm2kdy8yMlNE0nLS6LaiG0lZSUxsPJGhtYcW7A3iD5pGYA4ugfSredd96pr2g6nfH9zKFW3RQgghxH+y9AY+WRfL77vPAtCwshczB4dQwdP0w/Pa02uZFD4JV3tX1vVZR2nnu08aLipyarYKfj70M0lZSVR2r8yAGgMe7kWpV2DnLPi+BfzQEnbPNgUZlzLQ5FV4eRu8ugOaj5YgI4QQwqyc7HV83Lse3w0Nxc3Rjv1nr9N1Rjibjph2EO4a0JU6peuQrk/n+5jvVa72djIyUwTi0+PpvqI72YZsvmnzDe0rt7/3k/WZcGw9xCyCk5tBMZiu6xygZhfTZN5q7aG4dwsWQggh/nMuMYPRCyOJuZAMwPMtA3ircy1iru3nuY3PodPoWNFrBQEe5lt4InNmitm3Ud+Sbcgm1CeUdpXa3fkERYHze0zzYA6vhOzkvMcqPmaaB1O3D7h4F1vNQgghxL1UKu3C0lea88WfR/m/7WeYu/0MEXFJzBocSpuKbdhyYQtf7/+ame1mql0qIGHmkR1NOsqaU6bzl15r9NrtJ5JejzMtpY5ZCNfP5F13r2jaDyZoEJSpXrwFCyGEEA/BwU7Lu93r0DSwNK//EcOBC8l0mxnOhG7DCNeE8+/5f9l/ZT8NfRuqXap1zJn57rvvCAgIwMnJiYYNGxIeHq52SUDeBnkKCl2qdKFB2QaQlQKRv8O8rjAjCLZ8agoy9q6mFtLTq2HcQWj/ngQZIYQQFu+JOr6sH9OKRpW9SM3OZfLya/jbtwHgq4ivMCpGdQvECsLM4sWLGTduHO+88w5RUVG0atWKLl26cO7cuQe/2My2X9zOnst7sNfaM6Z0I1j2AnxVA1aPMu3SiwYCHofeP8Drx6HP9xD4OGgt/mMXQgghbinv6cyil5oyok1VNBo4dKgpGsWRQ4mH2Bi3Ue3yLH8CcJMmTQgNDeX77/NmTteuXZvevXvz2WefPfD15poAnGvMpd+KHpxKu8AzGQZeu3Ix78HS1U3LqRsMBI+KRXZPIYQQQm3bjl9lwpJoUpw24Fh2E572vmweuB4HnUOR3sdmlmbn5OSwf/9+OnbseNv1jh07snPnzru+Jjs7m5SUlNt+mcPKlcM5lXYBD4OBF65eAmcveOxFeOEfGBUBrV6TICOEEMLmtK5RlvVjWhHq0Quj3o0b+is888fXqtZk0WHm2rVrGAwGfH19b7vu6+tLfHz8XV/z2Wef4eHhceuXv7+/WWrL8qyIs9HIyw4V8Oj3G7x2DLp9BRUbyvECQgghbJqPuxMLnm9NG5+nUYx2+Hqqe/ikVaxm0vxPOFAU5Y5rN02aNIkJEybc+n1KSopZAs2w1h/R8cazeHlVlT1hhBBClDg6rYaZ3V8k4sITNK1UTdVaLDrMlClTBp1Od8coTEJCwh2jNTc5Ojri6Oho/uLsHPEpU8v89xFCCCEslE6rUz3IgIW3mRwcHGjYsCGbNm267fqmTZto3ry5SlUJIYQQwpJY9MgMwIQJE3jqqado1KgRzZo146effuLcuXO88sorapcmhBBCCAtg8WFm4MCBJCYm8tFHH3H58mXq1avH+vXrqVy5stqlCSGEEMICWPw+M4+qOA6aFEIIIUTRspl9ZoQQQgghHkTCjBBCCCGsmoQZIYQQQlg1CTNCCCGEsGoSZoQQQghh1STMCCGEEMKqSZgRQgghhFWTMCOEEEIIqyZhRgghhBBWzeKPM3hUNzc4TklJUbkSIYQQQjysm9/bD3NQgc2HmdTUVAD8/f1VrkQIIYQQBZWamoqHh8d9n2PzZzMZjUYuXbqEm5sbGo2mSN87JSUFf39/zp8/L+c+mZF8zsVDPufiIZ9z8ZDPuXiY83NWFIXU1FTKly+PVnv/WTE2PzKj1WqpWLGiWe/h7u4u/7EUA/mci4d8zsVDPufiIZ9z8TDX5/ygEZmbZAKwEEIIIayahBkhhBBCWDUJM4/A0dGRDz74AEdHR7VLsWnyORcP+ZyLh3zOxUM+5+JhKZ+zzU8AFkIIIYRtk5EZIYQQQlg1CTNCCCGEsGoSZoQQQghh1STMCCGEEMKqSZi5j++++46AgACcnJxo2LAh4eHh933+1q1badiwIU5OTgQGBvLDDz8UU6XWryCf9fLly+nQoQNly5bF3d2dZs2asXHjxmKs1noV9O/0TTt27MDOzo7g4GDzFmgjCvo5Z2dn884771C5cmUcHR2pWrUqP//8czFVa70K+jkvWLCAoKAgXFxc8PPz49lnnyUxMbGYqrVO27Zto0ePHpQvXx6NRsPKlSsf+BpVvgsVcVeLFi1S7O3tlTlz5ihHjhxRxo4dq7i6uipnz5696/NPnz6tuLi4KGPHjlWOHDmizJkzR7G3t1f++OOPYq7c+hT0sx47dqwydepUZe/evcrx48eVSZMmKfb29kpkZGQxV25dCvo533Tjxg0lMDBQ6dixoxIUFFQ8xVqxwnzOPXv2VJo0aaJs2rRJOXPmjLJnzx5lx44dxVi19Sno5xweHq5otVplxowZyunTp5Xw8HClbt26Su/evYu5cuuyfv165Z133lGWLVumAMqKFSvu+3y1vgslzNxD48aNlVdeeeW2a7Vq1VImTpx41+e/+eabSq1atW679vLLLytNmzY1W422oqCf9d3UqVNHmTx5clGXZlMK+zkPHDhQeffdd5UPPvhAwsxDKOjnvGHDBsXDw0NJTEwsjvJsRkE/5y+//FIJDAy87drMmTOVihUrmq1GW/MwYUat70JpM91FTk4O+/fvp2PHjrdd79ixIzt37rzra3bt2nXH8zt16sS+ffvQ6/Vmq9XaFeaz/l9Go5HU1FS8vb3NUaJNKOznPG/ePE6dOsUHH3xg7hJtQmE+59WrV9OoUSO++OILKlSoQI0aNXj99dfJzMwsjpKtUmE+5+bNm3PhwgXWr1+PoihcuXKFP/74g27duhVHySWGWt+FNn/QZGFcu3YNg8GAr6/vbdd9fX2Jj4+/62vi4+Pv+vzc3FyuXbuGn5+f2eq1ZoX5rP/XtGnTSE9PZ8CAAeYo0SYU5nM+ceIEEydOJDw8HDs7+afiYRTmcz59+jTbt2/HycmJFStWcO3aNUaMGEFSUpLMm7mHwnzOzZs3Z8GCBQwcOJCsrCxyc3Pp2bMn3377bXGUXGKo9V0oIzP3odFobvu9oih3XHvQ8+92XdypoJ/1TQsXLuTDDz9k8eLF+Pj4mKs8m/Gwn7PBYGDIkCFMnjyZGjVqFFd5NqMgf5+NRiMajYYFCxbQuHFjunbtyvTp0/nll19kdOYBCvI5HzlyhDFjxvD++++zf/9+/vzzT86cOcMrr7xSHKWWKGp8F8qPW3dRpkwZdDrdHQk/ISHhjsR5U7ly5e76fDs7O0qXLm22Wq1dYT7rmxYvXszzzz/P0qVLeeKJJ8xZptUr6OecmprKvn37iIqKYtSoUYDpS1dRFOzs7Pjrr79o165dsdRuTQrz99nPz48KFSrg4eFx61rt2rVRFIULFy5QvXp1s9ZsjQrzOX/22We0aNGCN954A4AGDRrg6upKq1atmDJlioyeFxG1vgtlZOYuHBwcaNiwIZs2bbrt+qZNm2jevPldX9OsWbM7nv/XX3/RqFEj7O3tzVartSvMZw2mEZlnnnmGsLAw6Xk/hIJ+zu7u7hw8eJDo6Ohbv1555RVq1qxJdHQ0TZo0Ka7SrUph/j63aNGCS5cukZaWduva8ePH0Wq1VKxY0az1WqvCfM4ZGRlotbd/5el0OiBv5EA8OtW+C806vdiK3Vz2N3fuXOXIkSPKuHHjFFdXVyUuLk5RFEWZOHGi8tRTT916/s3laOPHj1eOHDmizJ07V5ZmP6SCftZhYWGKnZ2dMnv2bOXy5cu3ft24cUOtP4JVKOjn/L9kNdPDKejnnJqaqlSsWFHp16+fcvjwYWXr1q1K9erVlRdeeEGtP4JVKOjnPG/ePMXOzk757rvvlFOnTinbt29XGjVqpDRu3FitP4JVSE1NVaKiopSoqCgFUKZPn65ERUXdWgJvKd+FEmbuY/bs2UrlypUVBwcHJTQ0VNm6deutx4YPH648/vjjtz1/y5YtSkhIiOLg4KBUqVJF+f7774u5YutVkM/68ccfV4A7fg0fPrz4C7cyBf07nZ+EmYdX0M85NjZWeeKJJxRnZ2elYsWKyoQJE5SMjIxirtr6FPRznjlzplKnTh3F2dlZ8fPzU4YOHapcuHChmKu2Lv/+++99/721lO9CjaLI+JoQQgghrJfMmRFCCCGEVZMwI4QQQgirJmFGCCGEEFZNwowQQgghrJqEGSGEEEJYNQkzQgghhLBqEmaEEEIIYdUkzAghhBDCqkmYEUJYlbi4ODQaDdHR0fd9Xps2bRg3blyx1CSEUJeEGSGEWTzzzDNoNBo0Gg329vYEBgby+uuvk56e/kjv6+/vz+XLl6lXrx4AW7ZsQaPRcOPGjduet3z5cj7++ONHupcQwjrYqV2AEMJ2de7cmXnz5qHX6wkPD+eFF14gPT2d77//vtDvqdPpKFeu3AOf5+3tXeh7CCGsi4zMCCHMxtHRkXLlyuHv78+QIUMYOnQoK1euJDs7mzFjxuDj44OTkxMtW7YkIiLi1uuuX7/O0KFDKVu2LM7OzlSvXp158+YBt7eZ4uLiaNu2LQBeXl5oNBqeeeYZ4M420/Xr13n66afx8vLCxcWFLl26cOLEiVuP//LLL3h6erJx40Zq165NqVKl6Ny5M5cvXzb/ByWEeCQSZoQQxcbZ2Rm9Xs+bb77JsmXL+PXXX4mMjKRatWp06tSJpKQkAN577z2OHDnChg0biI2N5fvvv6dMmTJ3vJ+/vz/Lli0D4NixY1y+fJkZM2bc9d7PPPMM+/btY/Xq1ezatQtFUejatSt6vf7WczIyMvjqq6/4/fff2bZtG+fOneP11183wychhChK0mYSQhSLvXv3EhYWRtu2bfn+++/55Zdf6NKlCwBz5sxh06ZNzJ07lzfeeINz584REhJCo0aNAKhSpcpd31On091qJ/n4+ODp6XnX5504cYLVq1ezY8cOmjdvDsCCBQvw9/dn5cqV9O/fHwC9Xs8PP/xA1apVARg1ahQfffRRUX0EQggzkZEZIYTZrF27llKlSuHk5ESzZs1o3bo1o0ePRq/X06JFi1vPs7e3p3HjxsTGxgLw6quvsmjRIoKDg3nzzTfZuXPnI9URGxuLnZ0dTZo0uXWtdOnS1KxZ89Y9AVxcXG4FGQA/Pz8SEhIe6d5CCPOTMCOEMJu2bdsSHR3NsWPHyMrKYvny5Xh4eACg0Whue66iKLeudenShbNnzzJu3DguXbpE+/btH6ndoyjKPa/nr8Pe3v62xzUazT1fK4SwHBJmhBBm4+rqSrVq1ahcufKtoFCtWjUcHBzYvn37refp9Xr27dtH7dq1b10rW7YszzzzDPPnz+ebb77hp59+uus9HBwcADAYDPeso06dOuTm5rJnz55b1xITEzl+/Pht9xRCWCeZMyOEKFaurq68+uqrvPHGG3h7e1OpUiW++OILMjIyeP755wF4//33adiwIXXr1iU7O5u1a9feM3RUrlwZjUbD2rVr6dq1K87OzpQqVeq251SvXp1evXrx4osv8uOPP+Lm5sbEiROpUKECvXr1MvufWQhhXjIyI4Qodp9//jlPPvkkTz31FKGhoZw8eZKNGzfi5eUFmEZbJk2aRIMGDWjdujU6nY5Fixbd9b0qVKjA5MmTmThxIr6+vowaNequz5s3bx4NGzake/fuNGvWDEVRWL9+/R2tJSGE9dEo0hAWQgghhBWTkRkhhBBCWDUJM0IIIYSwahJmhBBCCGHVJMwIIYQQwqpJmBFCCCGEVZMwI4QQQgirJmFGCCGEEFZNwowQQgghrJqEGSGEEEJYNQkzQgghhLBqEmaEEEIIYdX+H+51mJWubAmxAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAg69JREFUeJzt3Xd4jff/x/HnycmOTCSCICE2kVBbS+09agalrf7a2tVq6dDqoi1aSrX1NdraeyuqRVAESewtYkVIZO9z7t8fp02iRiVycp9z8n5cl+v6us+4385XnVc+78/QKIqiIIQQQghhpqzULkAIIYQQ4mlImBFCCCGEWZMwI4QQQgizJmFGCCGEEGZNwowQQgghzJqEGSGEEEKYNQkzQgghhDBr1moXYGx6vZ6bN2/i7OyMRqNRuxwhhBBCPAFFUUhKSqJs2bJYWT1+7MXiw8zNmzfx8fFRuwwhhBBCFMC1a9coX778Y59j8WHG2dkZMHwYLi4uKlcjhBBCiCeRmJiIj49Pzvf441h8mPmnteTi4iJhRgghhDAzTzJFRCYACyGEEMKsSZgRQgghhFmTMCOEEEIIs2bxc2aEEEIIc6TT6cjKylK7DKOxsbFBq9UWyntJmBFCCCFMiKIoREdHEx8fr3YpRufm5kaZMmWeeh84CTNCCCGECfknyHh6euLo6GiRG74qikJqaioxMTEAeHt7P9X7SZgRQgghTIROp8sJMiVLllS7HKNycHAAICYmBk9Pz6dqOckEYCGEEMJE/DNHxtHRUeVKisY/f86nnRskYUYIIYQwMZbYWnqYwvpzSpgRQgghhFlTNczs3buXrl27UrZsWTQaDevXr7/vcUVR+PjjjylbtiwODg60bNmSU6dOqVOsEEIIIUySqmEmJSWFgIAAZs+e/dDHv/rqK2bMmMHs2bMJDQ2lTJkytG3blqSkpCKuVAghhBCmStUw07FjRz777DN69er1wGOKovDtt9/y/vvv06tXL2rXrs3PP/9MamoqS5cuVaHaB+vbdeY2iqKoXYoQQghhMg4cOIBWq6VDhw5Fdk+TnTNz5coVoqOjadeuXc41Ozs7nnvuOQ4cOPDI12VkZJCYmHjfL2NYfPAqr/x8hNd+PUpCquXu0CiEEELkx4IFCxg1ahT79u0jKiqqSO5psvvMREdHA+Dl5XXfdS8vL65evfrI102ZMoXJkycbtTYwzMC21Vqx4/RtTs0KYc7AIOr5uBn9vkIIIYoXRVFIy9Kpcm8HG22+VhylpKSwcuVKQkNDiY6OZtGiRUyaNMmIFRqYbJj5x78/REVRHvvBTpw4kXHjxuX8PjExER8fn0Kva1DjigSUd2PE0mNExaXSe+4BJnSszivNfYvNkjohhBDGl5alo+ak7arc+/Qn7XG0ffKosGLFCqpVq0a1atUYNGgQo0aN4sMPPzT696LJtpnKlCkD5I7Q/CMmJuaB0Zq87OzscHFxue+XsdQp78rm0c3pXMebbL3CZ1vO8OovR4lPzTTaPYUQQghTNX/+fAYNGgRAhw4dSE5OZteuXUa/r8mOzPj6+lKmTBl27txJYGAgAJmZmezZs4cvv/xS5epyudjbMDs4kMYHPfh08xl+P3ObzrP28V1wIEEV3NUuTwghhJlzsNFy+pP2qt37SZ07d47Dhw+zdu1aAKytrenXrx8LFiygTZs2xirRcC+jvvt/SE5O5uLFizm/v3LlCuHh4Xh4eFChQgXGjh3LF198gb+/P/7+/nzxxRc4OjoSHBysYtUP0mg0DG5SicAK7oxYeoyrsan0/eEv3u1QnWEtpO0khBCi4DQaTb5aPWqZP38+2dnZlCtXLueaoijY2Nhw79493N2N9wO+qm2mI0eOEBgYmDPyMm7cOAIDA3MmC73zzjuMHTuW4cOH06BBA27cuMGOHTtwdnZWs+xHql3Olc2jmtOlrqHt9PnWMwz7+Qj3UqTtJIQQwnJlZ2fzyy+/MH36dMLDw3N+RUREULFiRZYsWWLU+2sUC98oJTExEVdXVxISEow6fyYvRVFYciiKTzafJjNbT1lXe74LDqJ+RWk7CSGEeLT09HSuXLmCr68v9vb2apfzxNavX0+/fv2IiYnB1dX1vsfef/99tm7dSlhY2AOve9yfNz/f3yY7AdicaTQaBjWuyLrhTfEt5cTNhHT6/fgXP+65hF5v0dlRCCFEMTR//nzatGnzQJABeOGFFwgPD+fYsWNGu7+MzBhZUnoW7607yaaImwA8X92T6X0CcHeyLfJahBBCmDZzHZkpKBmZMRPO9jbM6l+PL3rWwdbaij/OxtBpVghHIuPULk0IIYSwCBJmioBGoyG4UQXWD2+GXyknbiWk0++ng/wgbSchhBDiqUmYKUI1y7qwcVRzugWURadXmLrtLC//HEqcrHYSQgghCkzCTBErYWfNzP71mNKrDnbWVuw+d4dOM0MIlbaTEEIIUSASZlSg0WgY0LAC60c0w6+0E9GJ6fT/6SDf774obSchhBAinyTMqKiGtwubRjanZ2A5dHqFr347x0uLQolNzlC7NCGEEMJsSJhRmZOdNTP6BvDVC3Wxs7Ziz/k7dJoVwuEr0nYSQgghnoSEGROg0Wjo+4wPG0Y2o3JpJ24nZjBg3kHm/CltJyGEEOK/SJgxIdXLuLBxZHN6/d12+nr7OYYsPMxdaTsJIYQQjyRhxsQ42VkzvW8AX/Wui72NFSEX7tJpZggHL8eqXZoQQgjxSEOHDkWj0eT8KlmyJB06dOD48eNGv7eEGROk0Wjo28CHjSObU8WzBDFJGQTPO8h3uy6gk7aTEEIIE9WhQwdu3brFrVu32LVrF9bW1nTp0sXo95UwY8KqejmzcWQzetcvj16B6TvPM2TBYe4kSdtJCCGE6bGzs6NMmTKUKVOGevXq8e6773Lt2jXu3Llj1PtaG/XdxVNztLVmWp8AGvuV5MP1J9l38S6dZoUws389mlYupXZ5QgghjE1RICtVnXvbOIJGU6CXJicns2TJEqpUqULJkiULubD7SZgxE73rlyegvCsjlh7j/O1kBv3vEGNaV2Xk81XQWhXsL5oQQggzkJUKX5RV597v3QRbpyd++ubNmylRogQAKSkpeHt7s3nzZqysjNsIkjaTGfH3cmbDiOb0bWBoO33z+3leXHBI2k5CCCFMQqtWrQgPDyc8PJxDhw7Rrl07OnbsyNWrV416XxmZMTMOtlq+6m1oO72/7iT7L8Ya2k796tG0irSdhBDC4tg4GkZI1Lp3Pjg5OVGlSpWc39evXx9XV1fmzZvHZ599VtjV5ZAwY6Z6BZWnbnlXRiwJ49ztJAbOP8SY1v6Met5f2k5CCGFJNJp8tXpMiUajwcrKirS0NKPeR9pMZqyKpzPrRzSj/zM+KAp8+/sFBs8/RExSutqlCSGEKIYyMjKIjo4mOjqaM2fOMGrUKJKTk+natatR7ythxsw52GqZ+kJdvukXgKOtlgOXYuk0cx/7L95VuzQhhBDFzG+//Ya3tzfe3t40atSI0NBQVq1aRcuWLY16X42iKBa9C1tiYiKurq4kJCTg4uKidjlGdTEmmZFLj3E2OgmNBkY978+Y1tJ2EkIIc5Gens6VK1fw9fXF3t5e7XKM7nF/3vx8f8vIjAWp4lmC9SOaMaChoe00a9cFBv7vIDGJ0nYSQghhuSTMWBh7Gy1TetVlZv96ONlqOXg5jk6zQgi5YNzdF4UQQgi1SJixUN3rlWPTqObU8HbhbnImLy44zLTt58jW6dUuTQghhChUEmYsmF/pEqwb3pTgRhVQFJj950WC/3eI29J2EkIIYUEkzFg4exstX/Ssw6wBgZSws+bwlTg6zgxhz3lpOwkhhLAMEmaKiW4BZdk0qjk1vV2IS8lkyILDfPXbWWk7CSGEMHsSZooR31JOrB3elMGNKwLw/e5LDJh3kFsJxt2ZUQghhDAmCTPFjL2Nlk971GZ2sKHtFBp5j04zQ/jzXIzapQkhhBAFImGmmOpStyybRzWnVlkX7qVm8dLCUL6UtpMQQggzJGGmGKtUyok1b+S2nebuvkT/nw5yM17aTkIIIcyHhJli7p+20/cDg3C2s+bI1Xt0nhXCn2el7SSEECL/oqOjGTVqFH5+ftjZ2eHj40PXrl3ZtWuX0e4pYUYA0KmON5tHN6dOOVdD22lRKFO2nSFL2k5CCCGeUGRkJPXr1+ePP/7gq6++4sSJE/z222+0atWKESNGGO2+1kZ7Z2F2KpZ0YvUbTZiy9SyLDkTy457LHIm8x6wBgZRzc1C7PCGEECZu+PDhaDQaDh8+jJOTU871WrVq8fLLLxvtvhJmxH3srLV83K0Wjf08GL/6OEf/bjtN7xNA6xpeapcnhBDFjqIopGWrM5fRwdoBjUbzRM+Ni4vjt99+4/PPP78vyPzDzc2tkKvLJWFGPFSH2t7U9HZl5LJjHL+ewCs/H+H/nvVjfPtq2GilOymEEEUlLTuNRksbqXLvQ8GHcLRxfKLnXrx4EUVRqF69upGrepB8K4lHqlDSkVWvN+GlZpUA+GnvZfr++BfX76WqW5gQQgiToygKwBOP5BQmGZkRj2VnreWjrrVo7FeS8asiCIuKp/OsfUzrE0DbmtJ2EkIIY3OwduBQ8CHV7v2k/P390Wg0nDlzhh49ehivqIfQKP9EKQuVmJiIq6srCQkJuLi4qF2OWbsWl8rIZWFEXIsH4JXmvrzboTq21jLAJ4QQhSE9PZ0rV67g6+uLvb292uXkW8eOHTlx4gTnzp17YN5MfHz8A/NmHvfnzc/3t3wLiSfm4+HIqtea8EpzXwDm77tCnx//4lqctJ2EEELA999/j06no2HDhqxZs4YLFy5w5swZZs2aRZMmTYx2XwkzIl9sra34sEtN5r3YAFcHGyKuxdN5VgjbT0WrXZoQQgiV+fr6cuzYMVq1asVbb71F7dq1adu2Lbt27WLu3LlGu6+0mUSBXb+XysilYYT/3XZ6qVklJnasIW0nIYQoIHNvM+WXtJmE6sq7O7LytSa82sLQdlq4P5LePxwgKlbaTkIIIYqOhBnxVGytrXi/c03mD2mAm6MNx68n0Pm7EH47eUvt0oQQQhQTEmZEoWhdw4sto1sQVMGNpPRsXl98jI83niIjW6d2aUIIISychBlRaMq5ObDitSa89pwfAIsORNJ77l9cjU1RuTIhhBCWTMKMKFQ2WismdqzBwqHP4O5ow4kbCXSZtY+tJ6TtJIQQT8rC1+bkKKw/p4QZYRStqnuyZXQLGlR0Jykjm+FLjjFpw0nSs6TtJIQQj2JjYwNAamrxWEjxz5/znz93QcnSbGFUWTo9M3aeZ+7uSwDUKuvCnOAgKpV68ERVIYQQcOvWLeLj4/H09MTR0VGVs46MTVEUUlNTiYmJwc3NDW9v7week5/vbwkzokjsPhfDuJURxKVkUsLOmim96tA1oKzaZQkhhMlRFIXo6Gji4+PVLsXo3NzcKFOmzEMDm4SZPCTMmI7ohHRGLwvjcGQcAIMaV+CDzjWxt9GqXJkQQpgenU5HVlaW2mUYjY2NDVrto//9lzCTh4QZ05Kt0/PN7+eZ86eh7VTT24U5A4PwlbaTEEKIPGQHYGGyrLVWjG9fnZ9fbkhJJ1tO30qky6wQNkbcVLs0IYQQZkrCjFDFc1VLs3VMCxr5epCSqWP0sjAmrj0hq52EEELkm4QZoRovF3uWDGvE6OeroNHAssNR9Jizn0t3ktUuTQghhBmRMCNUZa21Yly7avz6ciNKlbDlbHQSXb/bx/qwG2qXJoQQwkyYdJjJzs7mgw8+wNfXFwcHB/z8/Pjkk0/Q6/VqlyYKWXP/Umwd3YImfiVJzdQxdkU4764+TlqmtJ2EEEI8nkmHmS+//JIffviB2bNnc+bMGb766iu+/vprvvvuO7VLE0bg6WLP4mGNGNPaH40GVhy5Ro85+7kYk6R2aUIIIUyYSS/N7tKlC15eXsyfPz/n2gsvvICjoyO//vrrQ1+TkZFBRkZGzu8TExPx8fGRpdlm5sDFu4xeHs7d5AwcbLR81qM2L9Qvr3ZZQgghiojFLM1u3rw5u3bt4vz58wBERESwb98+OnXq9MjXTJkyBVdX15xfPj4+RVWuKERNq5Ri65jmNKtSkrQsHW+timD8qghpOwkhhHiASY/MKIrCe++9x5dffolWq0Wn0/H5558zceLER75GRmYsi06vMOfPi3z7+3n0Cvh7luD7gUH4ezmrXZoQQggjspiRmRUrVrB48WKWLl3KsWPH+Pnnn5k2bRo///zzI19jZ2eHi4vLfb+E+dJaaRjd2p8lwxpT2tmOCzHJdJu9n1VHrqldmhBCCBNh0iMzPj4+TJgwgREjRuRc++yzz1i8eDFnz559oveQ4wwsx52kDMatDCfkwl0AXggqz6c9auFoa61yZUIIIQqbxYzMpKamYmV1f4larVaWZhdTpZ3t+PmlhrzdripWGlhz7DrdZu/nXLSsdhJCiOLMpMNM165d+fzzz9myZQuRkZGsW7eOGTNm0LNnT7VLEyqxstIw8nl/lr3aGC8XOy7GJNN9zj5WhEZhwoOMQgghjMik20xJSUl8+OGHrFu3jpiYGMqWLcuAAQOYNGkStra2T/Qe0mayXLHJGby5MoK95+8A0DOwHJ/1qI2TnbSdhBDC3OXn+9ukw0xhkDBj2fR6hR/2XmL6jvPo9Ap+pZ2YExxEDW/5/1oIIcyZxcyZEeK/WFlpGN6yCsv/rzFlXOy5fCeFHnP2s+ywtJ2EEKK4kDAjLMIzlTzYOqYFraqVJiNbz8S1Jxi7IpzkjGy1SxNCCGFkEmaExfBwsmX+kGeY0LE6WisNG8Jv0u27fZy6maB2aUIIIYxIwoywKFZWGl5/rjIrX2tMWVd7Lt9Noef3B1h88Kq0nYQQwkJJmBEWqX5FD7aMbkHr6p5kZuv5YP1JRi0LIyk9S+3ShBBCFDIJM8JiuTvZ8r8hDXi/Uw2srTRsPn6Lrt/t4+QNaTsJIYQlkTAjLJpGo+HVZ/1Y+XoTyrk5EBmbSq/vD/DLX5HSdhJCCAshYUYUC0EV3Nkyujlta3qRqdMzacMpRiw9RqK0nYQQwuxJmBHFhpujLT8Nrs+HXWpio9Ww9UQ0XWbt4/j1eLVLE0II8RQkzIhiRaPR8EpzX1a93pTy7g5ExaXywtwDLNx/RdpOQghhpiTMiGKpno8bW0a1oF1NL7J0CpM3neb1xUdJSJO2kxBCmBsJM6LYcnW04cfB9fmoq6HttP3UbTrPCiH8WrzapQkhhMgHCTOiWNNoNLzUzJfVrzfFx8OB6/fS6PPDAebvk7aTEEKYCwkzQgABPm5sHtWCjrXLkKVT+HTzaf7v16MkpErbSQghTJ2EGSH+5upgw/cDg/ikey1stVbsPH2bTrNCCIu6p3ZpQgghHkPCjBB5aDQaXmxSibXDm1KxpCM34tPo88NfzNt7WdpOQghhoiTMCPEQtcu5snlUczrX9SZbr/D51jMM+/kI91Iy1S5NCCHEv0iYEeIRnO1tmD0gkM961MbW2opdZ2PoPCuEo1fj1C5NCCFEHhJmhHgMjUbDoMYVWTe8Kb6lnLiZkE7fHw/yw55L6PXSdhJCCFMgYUaIJ1CrrCubRjWnW0BZdHqFqdvO8vLPocRJ20kIIVQnYUaIJ1TCzpqZ/esxpVcd7Kyt2H3uDp1mhhAaKW0nIYRQk4QZIfJBo9EwoGEF1o9ohl9pJ6IT0+n/00Hm/HlR2k5CCKESCTNCFEANbxc2jWxOz8By6PQKX28/x9BFodxNzlC7NCGEKHYkzAhRQE521szoG8BXL9TF3saKvecNbaeDl2PVLk0IIYoVCTNCPAWNRkPfZ3zYOLI5VTxLEJOUQfC8g3y36wI6aTsJIUSRkDAjRCGo6uXMxpHNeCGoPHoFpu88z5AFh7mTJG0nIYQwNgkzQhQSR1trpvcNYFqfABxstOy7eJdOs0I4cPGu2qUJIYRFkzAjRCHrXb88G0c2o6pXCe4kZTBw/iG+/f28tJ2EEMJIJMwIYQT+Xs5sGNGcfg18UBT49vcLDJ5/iJikdLVLE0IIiyNhRggjcbDV8mXvunzTLwBHWy0HLsXSaWYI+y5I20kIIQqThBkhjKxnYHk2jmxO9TLO3E3OZPCCQ0zfcY5snV7t0oQQwiJImBGiCFTxLMH6Ec0Y0NDQdvruj4sE/+8QtxOl7SSEEE9LwowQRcTeRsuUXnWZ2b8eTrZaDl+Jo+PMEPacv6N2aUIIYdYkzAhRxLrXK8emUc2p4e1CXEomQxYc5svfzkrbSQghCkjCjBAq8CtdgnXDmzKocQUA5u6+xIB5B7mVkKZyZUIIYX4kzAihEnsbLZ/1qMPs4EBK2FkTGnmPTjND+PNsjNqlCSGEWZEwI4TKutQty5bRzaldzoV7qVm8tCiUKVvPkCVtJyGEeCISZoQwARVLOrHmjaYMbVoJgB/3Xqbfj39xI17aTkII8V8kzAhhIuystXzcrRY/DArC2d6aY1HxdJoZwu+nb6tdmhBCmDQJM0KYmA61vdk6ugUB5V1JSMti2C9H+GzzaTKzpe0khBAPI2FGCBPk4+HIqteb8nIzXwD+t+8KfX/8i2txqSpXJoQQpkfCjBAmytbaiklda/LT4Pq42FsTfi2ezrNC2H4qWu3ShBDCpEiYEcLEtatVhq1jWlDPx43E9Gxe+/UokzedkraTEEL8TcKMEGagvLsjK19rwqstDG2nhfsj6f3DAaJipe0khBASZoQwE7bWVrzfuSbzhzTAzdGG49cT6DwrhK0nbqldmhBCqErCjBBmpnUNL7aObkH9iu4kZWQzfMkxPlx/kvQsndqlCSGEKiTMCGGGyro5sPz/GvP6c5UB+PXgVV6Ye4Ard1NUrkwIIYqeRlEUpSAv1Ov1XLx4kZiYGPT6+yciPvvss4VSXGFITEzE1dWVhIQEXFxc1C5HiEL357kYxq0I515qFiXsrPmiVx26BZRVuywhhHgq+fn+LlCYOXjwIMHBwVy9epV/v1yj0aDTmc5wt4QZURzcSkhjzLJwDkfGARDcqAKTutTE3karcmVCCFEw+fn+LlCb6fXXX6dBgwacPHmSuLg47t27l/MrLi6uQEULIQrO29WBpa82YkSrymg0sPRQFD3m7OfSnWS1SxNCCKMr0MiMk5MTERERVKlSxRg1FSoZmRHFzd7zd3hzRTixKZk42mr5omcdegSWU7ssIYTIF6OPzDRq1IiLFy8WqDghhHE9W7U028a0oLGfB6mZOsauCOfd1cdJyzSd9q8QQhQm64K8aNSoUbz11ltER0dTp04dbGxs7nu8bt26hVKcEKJgPF3sWTKsMbN2XWDWHxdYceQa4dfimTMwkCqezmqX91iKopCWnUZ8RrzhV3o815KuYWdtR3p2OunZ6SRnJXMr5RbeTt4oGAaXb6fcppxzOZysnbC3tsdOa0cJ2xK42rriZueGq50rrnau2GptVf4TCiEKW4HaTFZWDw7oaDQaFEWRCcBCmJgDF+8yenk4d5MzcLDR8lmP2rxQv7xq9SiKQnxGPJGJkUQmRLL/5n7stHbcTrlNdGo0VxOvGvX+7nbueDl54eVo+OVdwptKLpWo4FKBCs4VsLe2N+r9hRBPxuirma5effw/NhUrVszvWxqNhBkhICYpnTdXhLP/YiwAveuX55PutXC0LdDg7BNLzUrl/L3znIs7x7l75wi5EUJ0ypMdlGljZYO7nTsxaTHULV0XF1sXHKwdsLayJjolmmru1XKeez35OqUdSgOQrksnIzuDdJ1hBCchI4GEjAQSMxPRK/99npW3kzdV3KpQzaMa1dyrUdW9KhVdKqK1kpVhQhQlo4cZcyJhRggDnV5hzp8X+fb38+gV8PcswZyBQVT1Kpy2k17RcyXhChF3IgiPCScsJozIxMhHPt/byZukzCTaVWqHj7MPXo5elHEqQymHUng5euFg7YBGoymU2v6pLyEjgZjUGG6n3uZ26m2iU6K5nnSdqMQoriZdJSkz6aGvdbB2oHap2tQtVZeA0gHULV2Xkg4lC602IcSDiiTMXLp0iW+//ZYzZ86g0WioUaMGY8aMoXLlygUq+lFu3LjBu+++y7Zt20hLS6Nq1arMnz+f+vXrP9HrJcwIcb+Dl2MZvSyMmKQM7G2s+KRbbfo0KJ/v4KAoCpcTLnPw1kEO3TrEn9f+fOjzSjmUorpHdfzd/CntWJqGZRpSwaUCDtYOhfHHKTT/tL+uJFwxjCbdO8f5uPNciL9AWnbaA8/3dfWlYZmGNCzTkGfKPIO7vbsKVQthuYweZrZv3063bt2oV68ezZo1Q1EUDhw4QEREBJs2baJt27YFLj6ve/fuERgYSKtWrXjjjTfw9PTk0qVLVKpU6YlDk4QZIR50NzmDN1eEE3LhLgA9A8vxWY/aONk9vu2UmJnIgRsH2B65nd+jfn/gcVsrW+qWNoxe1CpVi7ql6uLl5GWUP0NR0el1OSNOx+8eJyImgksJlx54XnWP6rQo14Jnyz9LnVJ1pC0lxFMyepgJDAykffv2TJ069b7rEyZMYMeOHRw7diy/b/lQEyZMYP/+/YSEhDzxazIyMsjIyMj5fWJiIj4+PhJmhPgXvV5h7p5LzNh5Hp1ewa+UE3MGBlHD+/7/Tq4nXeeHiB+4mXKTsNthZCvZOY/Zae0I9AykkXcj6pSqQ5BXEDZWNv++lcVJyEjgyO0jhEaHcujWIS7G379VhbudO83KNeP5Cs/TvFxzkxuFEsIcGD3M2Nvbc+LECfz9/e+7fv78eerWrUt6enp+3/KhatasSfv27bl+/Tp79uyhXLlyDB8+nFdfffWRr/n444+ZPHnyA9clzAjxcKGRcYxaGkZ0Yjq21lZ83LUWz9a0YufVnWyP3M6p2FP3Pd/P1Y/yzuUZVGMQQV5B2GntVKrcdNxNu8tfN/9i7/W97L+xn6Ss3Lk3DtYOPFv+WdpWbEuLci1wtHFUsVIhzIfRw4yPjw8zZsygT58+911fuXIlb7/9NlFRUfl9y4eytzcskRw3bhx9+vTh8OHDjB07lh9//JEXX3zxoa+RkRkh8i8uJZMxK/dxMOYPbEv9gZX1/RNhy5coz8AaA3mu/HP4uPioVKV5yNJnER4Tzp5re9h5dSc3U27mPOZg7UDrCq3pVrkbDcs0lFaUEI9h9DDzySef8M033zBhwgSaNm2KRqNh3759fPnll7z11lt88MEHBS4+L1tbWxo0aMCBAwdyro0ePZrQ0FD++uuvJ3oPmTMjxKNl6bL449ofbI/czu5ru8nSZ+U8Zp3pz4t1uzO4bmdKOZRSr0gzpigKp2NPs/3qdnZE7uBG8o2cx7wcveji14XuVbrj6+qrYpVCmCajhxlFUfj222+ZPn06N28afuooW7Ys48ePZ/To0YW2nLJixYq0bduW//3vfznX5s6dy2effcaNGzce88pcEmaEeFB0SjRrLqxh9fnV3E27m3O9ukd1ytpX53BYELfibLHVWvFBlxoMblyxUJdJF0eKonDi7gk2XtrItivbSMxMzHmsYZmG9Knah9YVWmOjtfw5R0I8iSLdZyYpyTAc7exc+FukBwcHc+3atfsmAL/55pscOnTovtGax5EwI4SBoiisvbCWP6/9yb4b+9ApuTt1D645mO6Vu1PNw7ARXXxqJm+vOs7vZ24D0KlOGaa+UBcXe/miLQyZukz2XN/DhosbCLkRkrOZn4e9Bz2r9KR/9f6UcSqjcpVCqMtiNs0LDQ2ladOmTJ48mb59+3L48GFeffVVfvrpJwYOHPhE7yFhRhR3GboMNl/azPyT87mWdC3negOvBvSt1pc2Fdo8dDRAURTm77vCl7+dJUun4OPhwOwBQQT4uBVh9Zbvn1GyNefXcCftDgBajZZ2FdsxuOZg6pSuo3KFQqjDKGEmKCiIXbt24e7uTmBg4GOHnAtraTbA5s2bmThxIhcuXMDX15dx48Y9djXTv0mYEcVVdEo080/MZ8fVHcSlx+VcH1B9AP2q9aOy25Pt1RR+LZ6RS49x/V4aNloNEzvW4KVmlaTtVMiy9FnsvbaXpWeXcjj6cM71eqXrMbTWUFpVaIWV5sFz8YSwVEYJM5MnT2b8+PE4Ojry8ccfP/Yfso8++ih/FRuRhBlR3NxOuc2iU4tYdnZZTiupjFMZBtUYRC//Xjjb5r8lnJCWxTurI9h+ytB2alfTi697B+DqKG0nYzgbd5ZfT//K1itbydYb9vWp7FqZV+q8QkffjlhbGfdMLSFMgcW0mQqDhBlRXFxPus6CkwtYf3F9zqqkkvYlmdBwAm0qtnnqL0BFUfj5QCRfbD1Lpk5POTcHZgcHElhBtvE3ljupd1h2dhnLzy7P2bumXIlyvFz7ZXpU6YGt1lblCoUwHqOHGT8/P0JDQylZ8v6D1uLj4wkKCuLy5cv5fUujkTAjLF10SjQ/RPzAmgtrcq4FeQbxWt3XaFK2SaG3g05cT2DE0mNExaVibaXh3Q7VGdbCV9pORpSUmcSKcyv45dQv3Mu4BxgO6nwj4A26Vu4qIzXCIhk9zFhZWREdHY2np+d912/fvo2Pjw+ZmZn5fUujkTAjLNXdtLvMPzGfFedW5IzENPZuzGt1X6NBmQZGvXdiehYT15xgy4lbALSu7sm0PgG4O8lIgTGlZaex5vwaFpxckDNZuKJLRYYHDKeDbweZUyMsitHCzMaNGwHo0aMHP//8M66urjmP6XQ6du3axc6dOzl37lwBSy98EmaEpUnOTGbakWn3jcQ08GrAiHojjB5i8lIUhSWHovhk82kys/WUdbXnu+BA6lf0KLIaiqu07DRWnlvJ/BPzc0Zq/N39eav+WzQr10zl6oQoHEYLM1ZWhtSv0Wj498tsbGyoVKkS06dPp0uXLgUo2zgkzAhLka3PZu2FtcwJn5OzOql2ydqMChpFE+/Cbyc9qVM3Exi5NIwrd1PQWml4u101XnvWDysraTsZW0pWCkvOLGHRyUU5c2qaeDfhrQZv5ewZJIS5MnqbydfXl9DQUEqVMv0tziXMCHOnKAp/RP3BrLBZXE7InY/2YeMP6VO1j0nMVUnOyOb9dSfYEG7YEfy5qqWZ0TeAkiXkEMqikJCRwE/Hf2Lp2aVk67PRoKF7le6MChyFp6Pnf7+BECZIVjPlIWFGmLPIhEimHp7K/pv7AXCzc+P1gNfpW60vNlamtSxaURRWhF7jo42nyMjW4+Vix8z+gTT2K/nfLxaF4lrSNWYem8n2yO0AOFo78nrA6wyqMUiOSRBmp0jCTEpKCnv27CEqKuqBCb+jR48uyFsahYQZYY5Ss1L56fhP/Hz655x9RobWGsqrdV/Fxda0/x6fjU5kxJJjXLqTgpUG3mxTleGtqqCVtlORCY8J5+vQrzl+9zgAlVwqMbHhRJqWa6pyZUI8OaOHmbCwMDp16kRqaiopKSl4eHhw9+5dHB0d8fT0lKXZQhSQoijMOzGP78K+y7nWvFxzJjScQEWXiipWlj8pGdl8uOEka48ZDoRtXqUU3/SrR2lnaTsVFb2iZ+OljXxz9JucOVatK7RmQsMJcu6TMAtGDzMtW7akatWqzJ07Fzc3NyIiIrCxsWHQoEGMGTOGXr16Fbj4wiZhRpiLG8k3+Gj/RxyKPgQYNkd795l3aenT0iTmxRTEqiPXmLThFGlZOko72zGzXz2aVjH9uXaWJDEzkbnhc3N2hHa0dmR00Gj6V+uP1kqrdnlCPJLRw4ybmxuHDh2iWrVquLm58ddff1GjRg0OHTrEkCFDOHv2bIGLL2wSZoSpy9Zns+TMEuaEzyEtOw0wnJ80rv447K3tVa7u6V24ncSIpcc4fzsZjQZGP+/P6Nb+0nYqYufvneeTvz4h4k4EYFgJ91HTj6juUV3lyoR4uPx8fxdohyUbG5ucnxS9vLyIiooCwNXVNed/CyH+24k7Jwj8NZBpR6aRlp1Gfa/6bOyxkfcavWcRQQbA38uZDSOa06+BD4oCM3ddYND/DhGTmK52acVKVfeq/NLxFz5s/CHONs6cjD1J/839mXF0Bhm6DLXLE+KpFCjMBAYGcuTIEQBatWrFpEmTWLJkCWPHjqVOHTmuXoj/kqXLYk74HIK3Budcm9x0MgvaL8DX1VfFyozDwVbLl73r8m2/ejjaavnrciydZoUQcuGO2qUVK1YaK/pW68uGHhtoV7EdOkXHwpML6bOpD8fvHFe7PCEKrEBtpiNHjpCUlESrVq24c+cOQ4YMYd++fVSpUoWFCxcSEBBgjFoLRNpMwtScjTvLB/s+4Nw9w07Zdlo7fnvhN0o5FI+5JJfvJDNiaRhnbiWi0cDwlpV5s01VrLWyFX9R+zPqTz45+Al30+5ipbFiSK0hjKg3AjutTNQW6jPqnBlFUYiKisLT0xMHB4enKrQoSJgRpiJLn8WI30fw162/AMOeMe83fp8OlTqoXFnRS8/S8enm0yw5ZGhLN6zkwcwB9fB2Nf1/UyxNQkYCUw9PZfPlzQD4uvoypfkUapWqpXJlorgzapjR6/XY29tz6tQp/P39n6rQoiBhRpiCq4lXGbFrBFcTrwLQtmJb3m/0PiUdiveGcpuP32TCmhMkZ2Tj7mjDjL71aFVddqxVQ95RGmuNNcPrDefl2i/LiiehGqNOALayssLf35/Y2NgCFyhEcaEoCqvPr6bPpj45QebDxh8y/bnpxT7IAHSpW5bNo5pTu5wL91KzeGlRKFO2niFLp1e7tGKnVYVWrO++nrYV25KtZDMrbBYvbX+J60nX1S5NiP9UoDkzW7ZsYerUqcydO5fatWsbo65CIyMzQi23km8x+s/RnI0zbFXQqEwjPmv+mWxY9hAZ2Tq+2HKGn/8yBL6gCm58FxxEOTdpOxU1RVHYdHkTXxz6gpSsFJxsnHi/0ft0rdxV7dJEMWP0fWbc3d1JTU0lOzsbW1vbB+bOxMXF5fctjUbCjFBDaHQoI3aNyNk35u0GbzO45mCsNDLJ9XG2nbjFO2uOk5SejauDDdP6BNC2ppfaZRVL15Ou896+9wiLCQOge+XuvNfoPRxtHFWuTBQXRg8zixYteuyOpEOGDMnvWxqNhBlRlHR6HT8d/4kfjv+AXjG0SlZ1XSUbk+VDVGwqo5YdI+J6AgCvNPfl3Q7VsbWWIFjUdHodP534iR8iDH+ffV19+frZr6nmUU3t0kQxIKdm5yFhRhSVO6l3mBAygcPRhwHoUaUHExtOlJ9kCyAzW8/UbWdZsP8KAAE+bsweEIiPh3yWagiNDmXC3gnEpMVgp7XjnWfeoU/VPmZ7zIYwD0YPM1qtllu3buHpef+qg9jYWDw9PdHpdPl9S6ORMCOKwqFbhxi2YxgADtYOfNj4Q5ljUAh2nr7N26siSEjLwtnemq9716VDbW+1yyqW4tLjeH/f++y7sQ+Azn6dmdR4koR1YTRGP87gUfknIyMDW1vbgrylEGZJURTmn5ifE2TKlSjH8i7LJcgUkrY1vdgyujmBFdxISs/m9cXH+GjDSTKyTecHpuLCw96DOa3nMK7+OLQaLVsub2Hg1oE5q/SEUFO+RmZmzZoFwJtvvsmnn35KiRIlch7T6XTs3buXyMhIwsLCCr/SApKRGWEsSZlJfLj/Q3ZF7QKgkXcjZraaiZONk8qVWZ4snZ5pO87x457LANQu58LsAUFUKiWftRqORB9h/N7x3E27SwmbEnzW/DNaV2itdlnCwhitzeTrazgz5urVq5QvXx6tNnczJVtbWypVqsQnn3xCo0aNClh64ZMwI4zh8K3DvLLjFQBsrGyY2Ggivf17yxwCI/vzbAzjVoZzLzWLEnbWTH2hDl3qllW7rGLpTuod3t7zNsdijgHwSu1XGBU4SjbZK24UBW6Fg1tFcPQo1Lc2+pyZVq1asXbtWtzd3QtcZFGRMCMK266ruxi7eywApRxK8d3z31G7lGnvt2RJbiWkMXpZGKGR9wAY2KgCH3apib2NfIkWtSx9Ft8c/YZfT/8KQItyLfjy2S9xtnVWuTJhdEm34cRKCF8KMaehw1Ro/Eah3kJWM+UhYUYUFr2i58fjP/J9+PcA2FrZ8nuf33G3N/1Qb2mydXq+/f0Cc3ZfRFGgehln5gwMonLpEv/9YlHotl3ZxqT9k0jXpVPJpRLfPf8dlVwrqV2WKGzZGXD+N0OAubATlL/nrmntoNloeP6DQr2d0cOMTqdj0aJF7Nq1i5iYGPT6+7ce/+OPP/L7lkYjYUYUhtSsVD7Y/wE7r+4EYGCNgbzd4G2sraxVrqx4C7lwhzdXhHM3ORNHWy1f9KxDj8ByapdVLJ2OPc3oP0ZzO/U2zjbOfPXcVzQv11ztssTTUhS4FWEIMCdWQtq93MfKPwP1gqFWL3BwK/RbGz3MjBw5kkWLFtG5c2e8vb0fmCfwzTff5PctjUbCjHhaN5Jv0GGN4WRraytrJjWeRE//nipXJf4Rk5jOmOXh/HXZcF5cvwY+fNytFg620nYqanfT7jJu9zjCYsKw0lgxrv44Xqz5oswlM0fJMXD8nzbSqdzrzt5Qtx/UGwilqxq1BKOHmVKlSvHLL7/QqVOnAhdZVCTMiKdx4s4JgrcG5/z+146/Us+znnoFiYfS6RW+++MCM3ddQFGgqlcJ5gQH4e8lczeKWpYui88Pfc6aC2sA6Fu1LxMbTZRRTHOQnQkXtkPYEriw4/42UvXOhgBTuRUU0SRvo4eZsmXLsnv3bqpWNW4qKwwSZkRB7YjcwXv73iNDlwHA1p5b8XHxUbkq8TgHLt1lzPJw7iRl4GCj5ZPutejTQP4/K2qKovDr6V+ZdmQaCgpNyzZl2nPTZGKwKVIUiD5uGIE5vhLS8pytWK4B1BsAtV8Ah6KfG2j0MDN9+nQuX77M7NmzTX74UMKMyC9FUVhwcgHfHvsWgGfLP8tXz34l+8eYiTtJGYxbGU7IhbsA9Aoqx6fda+NkJyMDRe2PqD+YEDKBtOw0qrhVYXbr2ZQrIXOaTELyndzVSLdP5l4vUQYC+kFAMHiqe6ac0cNMz549+fPPP/Hw8KBWrVrY2Njc9/jatWvz+5ZGI2FG5EeWPovBWwdzKtbQIw6uHsz4Z8bLELmZ0esV5u65xPQd59ArULm0E3MGBlG9jPwbUNROx55m1K5RxKTF4GHvwfetv6dWqVpql1U8ZWca2kfhSw3tJH224brWNreN5NcKtKbx753Rw8xLL7302McXLlyY37c0Ggkz4kmlZqUybs849t/YD8CEhhMYWGOgylWJp3H4Shyjl4URnZiOnbUVH3erRf9nfEx+RNnSRKdEM3LXSM7dO4eDtQMzWs6QlU5FKfqEYR7MiZWQGpt7vWygIcDUfqHQN7wrDLLPTB4SZsSTiE2LZcSuETkjMm/Vf4uhtYeqW5QoFHEpmYxbGc7uc3cA6BpQli961sbZ3uY/XikKU3JmMm/ufpODtw5irbHmo6Yf0aNKD7XLslwpd+HEKghfYggz/yjh9fdqpGDwrKFefU+gSMJMdnY2u3fv5tKlSwQHB+Ps7MzNmzdxcXG578wmtUmYEf8lKjGK139/nWtJ13Czc2NO6znULV1X7bJEIdLrFX4KuczX28+h0ytUKunI7OAgapdzVbu0YiVLl8WkA5PYfHkzAKMCR/FqnVdlpKyw6LJy20jnf7u/jVSt49+rkVqbTBvpvxg9zFy9epUOHToQFRVFRkYG58+fx8/Pj7Fjx5Kens4PP/xQ4OILm4QZ8ThhMWG8uO1FwHDi9Q9tfpCdSy3Y0av3GL0sjBvxadhqrfiwSw0GNa4oX6ZFSK/omXlsJgtOLgCgX7V+vNfoPaw0VipXZsaiT/69GmkFpN7NvW7ibaT/YvQw06NHD5ydnZk/fz4lS5YkIiICPz8/9uzZw7Bhw7hw4UKBiy9sEmbEoxy6dYhhO4YB4GHvwZpuayjlUErlqoSxxadm8vaq4/x+5jYAneqUYeoLdXGRtlORWnpmKVMPT0VBoWOljnze/HNstPL/wRNLic3TRjqee93JE+r2NYQYr5rq1VcI8vP9XaCxpn379rF//35sbW3vu16xYkVu3LhRkLcUokjtitrF+D3jc36/qecmXGwl7BYHbo62zHuxPgv3RzJl2xm2nojmxI0EZg8IIsDHTe3yio3gGsG427vzXsh7bIvcRlJWEjNazsDB2kHt0kyXLgsu/g5hi+H8dtBnGa5b2eS2kaq0hmIYCgsUZvR6PTqd7oHr169fx9lZNkUSpm39xfV8dOAj9Iqe1hVa8+WzX2KntVO7LFGENBoNLzf3pX5Fd0YuO8a1uDR6/3CACR1r8HKzStJ2KiIdfTtSwqYE43aPY9+Nfby28zVmt54tP1j82+1TuW2klDu5173rGQJMnd5m2UYqTAVqM/Xr1w9XV1d++uknnJ2dOX78OKVLl6Z79+5UqFBBlmYLk/XOnnfYFrkNgB5VevBRk49kD5liLiEtiwlrjrPtZDQAbWp4Ma1PXdwcbf/jlaKwhMWEMeL3ESRlJVHNvRo/tv2Rkg4l1S5LXalxcGI1hC82HPT4D6fSUKevYTVSmdrq1VcEjD5n5ubNm7Rq1QqtVsuFCxdo0KABFy5coFSpUuzduxdPT88CF1/YJMwIMOzq+13Yd8w7MQ+AITWH8FaDt+QncAH8vf3+wat8tvkMmTo95dwcmDUgkPoVi34L9+LqXNw5Xtv5GrHpsfi6+vK/dv/D09F0vkuKhC7b0EYKXwLntv2rjdTh7zZSm2LTRiqSpdlpaWksX76co0ePotfrCQoKYuDAgTg4mFa/U8KMUBSFWWGz+N+J/wHQ2a8zU5pPkSAjHnDyRgIjlx4jMjYVrZWG8e2r8X8t/LCykr8rReFq4lWG7RhGdEo0Ps4+/K/d/yhboqzaZRnf7dOGAHN8JaTE5F73DjAcK1CnDzgVv5Eq2TQvDwkzxZuiKHwV+hWLzywG4O0GbzOk1hCVqxKmLCk9i/fWnWRTxE0AWlYrzfQ+AZQsIfOqisKN5Bu8sv0VbiTfwNvJm/nt5lvmAa+pcXByjWEy763w3OtOpQ2b2gUMsPg20n8xepiZMmUKXl5evPzyy/ddX7BgAXfu3OHdd9/N71sajYSZ4kuv6Pns4GesOr8KgPcbvU//6v1VrkqYA0VRWB56jY83niIjW4+Xix3fDQiioW/xnmRZVKJTonl1x6tEJkbi6eDJvPbz8HP1U7usp6fLhku7cttIukzDdStrqPp3G8m/bbFpI/0Xo4eZSpUqsXTpUpo2bXrf9UOHDtG/f3+uXLmS37c0GgkzxZNe0fP2nrfZeXUnAJ80/YSe/j1VrkqYm7PRiYxYcoxLd1Kw0sC4tlUZ3rKKtJ2KwN20u7y641Uuxl+kpH1JFnRYYL6B5vZpiFgKESvubyOVqQP1BhlWIznJHlf/ZvQwY29vz5kzZ/D19b3v+uXLl6lZsybp6en5fUujkTBT/OgVPR8f+Jh1F9cB8EXzL+hauavKVQlzlZKRzYcbTrL2mGEPrRb+pZjRtx6lnaXtZGz30u/x6o5XOXfvnPkFmn/aSOFL4GZY7nXHUn+fjTTAEGbEI+Xn+7tA+0f7+Piwf//+B67v37+fsmWLwWQtYbLyBhkrjRVTWkyRICOeipOdNTP61uPr3nVxsNEScuEunWaFcODS3f9+sXgq7vbuzGs3j6ruVYlNj+WV7a9wOeGy2mU9mi4bzu+AlS/C9Gqw9W1DkLGyhupdoN8SGHcGOnwhQaaQFWiDjWHDhjF27FiysrJ4/vnnAdi1axfvvPMOb731VqEWKMST0it6Jv81OSfITG0xlY6+HdUuS1iIPg18qOfjxoilxzh/O5mB/zvE6Of9Gd3aH620nYzG3d6d/7X7H8N2DOP8vfO8sv0VFrRfgK+r73+/uKjEnP17NdIKSL6de71M3dxN7aSNZFQFajMpisKECROYNWsWmZmGCUz29va8++67TJo0qdCLfBrSZioe9IqeT/76hDUX1hhGZJpPoZNfJ7XLEhYoLVPH5E2nWB56DYDGfh7M7B+Il4u9ypVZtnvp93ICTSmHUixsv1DdQ2Fz2khL4eax3OuOJXNXI3nXVa8+C1BkS7OTk5M5c+YMDg4O+Pv7Y2dnej1kCTOWT1EUPj/0OSvOrcBKY8UXzb+gs19ntcsSFm5D+A3eW3uClEwdJZ1smdGvHs9VLa12WRbtXvo9XtnxChfuXcDL0YtFHRZR3rl80RWgy4ZLf/y9Gmnr/auR/NtD4ECo0hasZffowiD7zOQhYcayKYrCtCPT+OX0L2jQ8Hnzz2WOjCgyl+8kM2JpGGduJQIwvGVlxrWtirW2QNMRxROITYvl5e0vcznhMuVKlGNRh0WUcSpj3Js+qo3kVdvQRqrbV9pIRmD0MJOSksLUqVPZtWsXMTEx6PX6+x6/fNl0JmhJmLFss8Nm8+PxHwGY3HQyvfx7qVyRKG7Ss3R8tuU0iw9GAfBMJXdmDQjE29W0dkO3JDGpMQz9bSjXkq5RyaUSCzsspJRDIYeJtHt/b2q35ME2Up0+hhAjbSSjMnqYGTBgAHv27GHw4MF4e3s/sC38mDFj8vuWRiNhxnL978T/mHlsJgATG04kuEawyhWJ4mzL8VtMWHOcpIxs3B1tmN43gOere6ldlsW6mXyTob8N5VbKLaq4VWFB+wW42z/lWVr/1UaqFwz+7aSNVESMHmbc3NzYsmULzZo1K3CRRUXCjGVafHoxX4Z+CcC4+uN4qfZLKlckBETFpjJy2TGOX08A4NUWvrzToTo20nYyimuJ1xjy2xDupN2hZsmazG83nxK2JfL/RjFncze1S47Ove5V2xBg6vSFEjIfqqgZPcz4+vqydetWatSoUeAii4qEGcuz4eIGPtj/AQDDA4bzRr03VK5IiFwZ2TqmbjvLwv2RANTzceO7AYH4eDiqW5iFuhx/mZe2v0RcehwNvBowt81c7K2fYGXZP22k8KVw42judQePvze1C5Y2ksqMvmnep59+yqRJk0hNTS1QgQU1ZYrhpOOxY8cW6X2F6dgVtYuPDnwEwIs1X+T1gNdVrkiI+9lZa/moay1+GlwfF3trwq/F03lWCNtPRf/3i0W++bn5MbfNXJxsnDhy+wjj94wnS5/18CfrsuHCTlg1FKZVhS1vGYKMlTVU62zY1O6tc9BxqgQZM1OgkZnAwEAuXbqEoihUqlQJG5v7D8U6duzYI15ZcKGhofTt2xcXFxdatWrFt99++0Svk5EZy3Ho1iHe+P0NsvRZ9KzSk8lNJz8wX0sIU3L9XiqjloURFhUPwNCmlZjYqTp21lp1C7NAodGhvPH7G2ToMujq15XPmn+Glebvn9cf20YaaJjQK20kk5Of7+8C7QDco0ePgryswJKTkxk4cCDz5s3js88+K9J7C9Nw8u5JRv8xmix9Fm0qtGFSk0kSZITJK+/uyMrXmjBt+zl+3HuZRQciOXr1HrODA6lY0knt8izKM2WeYdpz0xj751g2Xd6Ei9aWd63LoYlY9pA2Ul9ZjWRhzGKfmSFDhuDh4cE333xDy5YtqVev3iNHZjIyMsjIyMj5fWJiIj4+PjIyY8YuJ1xmyLYhxGfE08i7Ed+3/h5brawmEOblz7MxjFsZzr3ULErYWTP1hTp0qStn2RUqvY5NB7/mvQtLABh5L57X4hNBo4Wq7Q278lbtIKuRzITRR2b+cfToUc6cOYNGo6FmzZoEBgY+zds91PLlyzl27BihoaFP9PwpU6YwefLkQq9DqONu2l3e2PkG8Rnx1ClVh5mtZkqQEWapVXVPto5pwehlYYRG3mPk0jD+uhTLh11qYm8jbaencuecYSLv8RV0TbpFoksJppb0YLa7G57Ve9Cz+YdQwlPtKoURFWhkJiYmhv79+7N7927c3NxQFIWEhARatWrF8uXLKV26cHqP165do0GDBuzYsYOAgAAAGZkpRlKyUnjpt5c4E3eGii4V+bXjr0+/j4QQKsvW6fn29wvM2X0RRYHqZZyZMzCIyqULsKS4OHvsaqS+fOtoxfzIzWg1WmY9P4tnyz+rXq2iQIy+NLtfv35cunSJX3/9NWd59unTpxkyZAhVqlRh2bJlBav8X9avX0/Pnj3RanN/atHpdGg0GqysrMjIyLjvsYeRCcDmKUufxahdo9h/cz8e9h4s7rgYHxcftcsSotCEXLjDmyvCuZuciaOtls971qZnYBGeM2SOdNlw+U/DpnZnt4Lu7x9crawNZyIFDjRsbmdti6IofLD/AzZe2oi91p757edTt7TMkTEnRg8zrq6u/P777zzzzDP3XT98+DDt2rUjPj4+v2/5UElJSVy9evW+ay+99BLVq1fn3XffpXbt2v/5HhJmzI+iKEw6MIn1F9fjYO3AgvYLqF3qv/+/FsLcxCSmM2Z5OH9djgWgT/3yfNK9Ng620na6TwFXI2Xpsxj1xyj239iPm50bv3T8BV9X3yIsXDwNo8+Z0ev1DyzHBrCxsXngnKan4ezs/EBgcXJyomTJkk8UZIR5mhsxl/UX12OlsWLac9MkyAiL5eliz+JhjfjujwvM3HWBVUevE34tnjkDg6jq5ax2eep6VBspH2cj2VjZMOO5Gbyy/RVOxp7kjd/fYHGnxYV/jpNQXYE2zXv++ecZM2YMN2/ezLl248YN3nzzTVq3bl1oxYniZ+2FtcyNmAvAB40/kD63sHhaKw1j21RlybBGlHa240JMMt1m72PlkWuYwWLTwvUkm9qNOwsdv3ziZdWONo7MaTOHCs4VuJF8g1G7RpGaVbQbvgrjK1Cb6dq1a3Tv3p2TJ0/i4+ODRqMhKiqKOnXqsGHDBsqXN52+r7SZzEfI9RBG/TEKnaLj/+r+H6MCR6ldkhBF6m5yBm+uCCfkwl0AegaW47MetXGye6qFp6Yv5qxhHszxFZB8O/d6IW5qdzXxKoO2DiI+I55WPq34puU3aK2knWfKjD5n5h87d+7k7NmzKIpCzZo1adOmTUHfymgkzJiHU7GneOm3l0jLTqNb5W581uwz2RRPFEt6vcIPey8xfcd5dHoFv1JOzA4OomZZC/v3KzUut410M8+u8Y4lDQc7GuFspLCYMIZtH0amPpNBNQbxbsN3C/X9ReEyWpj5448/GDlyJAcPHnzgjRMSEmjatCk//PADLVq0KFjlRiBhxvRdT7rOoK2DiE2PpYl3E+a0noON9sE5WUIUJ6GRcYxeFsathHRsra34qGtNghtWMO+Qr8uGS38YRmHObQVdpuG6lbVhFVK9YPBvZ9RN7X6L/I3xe8YD8O4z7zKo5iCj3Us8HaOFmW7dutGqVSvefPPNhz4+a9Ys/vzzT9atW5e/io1Iwoxpi0+PZ/C2wUQmRlLNvRqLOiyihK3styEEwL2UTN5eFcGuszEAdK7rzZRedXCxN7OwH3MmZ1M7Y7WR8mPByQV8c/QbNGiY2WomrSq0KrJ7iydntDBTsWJFfvvtt5y9Zf7t7NmztGvXjqioqPxVbEQSZkxXli6L/9v5fxy5fYQyTmVY0mkJno6yS6cQeSmKwvx9V5i67SzZeoUKHo7MDg6kbnk3tUt7vJw20hK4GZZ73bEk1O1nOFpApbORFEXh04Ofsur8KhysHfi1469U86imSi3i0Yy2NPv27dsPXZKd82bW1ty5cyc/bymKKUVR+OLwFxy5fQRHa0e+b/29BBkhHkKj0TCshR/1K7ozcmkYUXGpvDD3AO91qsHQppVMq+2ky4ZLu/5uI227v41UtYMhwBi5jfQkNBoNExtNJCoxikPRhxj9x2iWdVmGh72HqnWJgsvX0uxy5cpx4sSJRz5+/PhxvL29n7ooYfmWnV3G6vOr0aDhq2e/wt/dX+2ShDBpgRXc2Tq6Be1reZGlU5i86TSv/XqU+NRMtUuD26dhxwcwowYs7QunNxiCTJk60GEqvHUO+i+BGl1UDzL/sLGyYXrL6fg4+3Az5SZv/vkmWbostcsSBZSvNtOoUaPYvXs3oaGh2Nvb3/dYWloaDRs2pFWrVsyaNavQCy0oaTOZngM3DzD89+HoFB1v1X+LobWHql2SEGZDURR++esqn285Q6ZOTzk3B74LDiSoQhGfW5YaBydWG0ZhboXnXjeBNlJ+XI6/zMCtA0nOSqZnlZ5MbjrZtEa7ijGjzZm5ffs2QUFBaLVaRo4cSbVq1dBoNJw5c4Y5c+ag0+k4duwYXl5eT/2HKCwSZkxLZEIkwVuDScpMkiXYQjyFE9cTGLnsGFdjU7G20jC+fTVebeGHlZUR/3vSZcPF33PbSPq/RzL+WY0UONBwRpKJjL48qZDrIYz8YyR6Rc87z7zD4JqD1S5JYOR9Zq5evcobb7zB9u3bc3an1Gg0tG/fnu+//55KlSoVuHBjkDBjOhIyEhi0dRCRiZEElA5gQfsF2GrN6x89IUxJUnoWE9eeYPPxWwC0qlaa6X3r4eFUyP9d3T7192qklZASk3u9TN2/VyP1BifzPiLgl1O/8PWRr7HSWDGn9Ryal2uudknFXpFsmnfv3j0uXryIoij4+/vj7l7EQ5xPSMKMacjWZzNi1wgO3DxAGacyLOu8TM5HEaIQKIrCssPXmLzpFBnZesq42DNrQCANfZ9yMmtKLJz8p40UkXvdsRTU/XtTuzJ1nu4eJkRRFD468BHrLq6jhE0JlnRegp+rn9plFWtFtgOwOZAwYxqmHp7KkjNLcLB24JeOv1Ddo7raJQlhUc7cSmTE0mNcvpOClQbGta3K8JZV8td20mUZzkYKXwLnt+dpI9lAtQ6GUZgqbcBCN7XM1GXy6o5XORZzjArOFVjaeSmudq5ql1VsSZjJQ8KM+ladX8Unf30CwLctv6V1RTmMVAhjSMnI5sP1J1kbdgOAFv6lmNG3HqWd7R7/wuiTuZvapd7Nve4dYAgwtXuDU0kjVm46YtNiCd4SzM2UmzTybsTcNnOxsbLM8GbqJMzkIWFGXaHRofzfjv8jW8lmVOAo/q/u/6ldkhAWb9WRa0zacIq0LB2lne2Y2a8eTav8q62bcjd3NVL08dzrTqUNq5HqBYNXraIt3EScizvH4G2DSctOY0D1AbzX6D21SyqWJMzkIWFGPdeSrhG8JZj4jHg6VurIl89+KSuXhCgiF24nMWLpMc7fTkajgVHP+zOmZUW0F3dCxDI4/xvosw1P1toaNrWrNxCqtLbYNlJ+/BH1B2P/HIuCwoeNP6Rvtb5ql1TsSJjJQ8KMOtKy0xi0dRDn752ndsnaLOywEHtr+/9+oRCi0KRl6pi86RTHj4TQW7uX3rZ/4aJPyH1C2UAICDasRnKU3W//bd7xecwKm4W1lTU/d/iZuqVNf98cS2K04wyEeBKKovDpX59y/t55POw9+LbVtxJkhChqyXdwOLGKqTFLwe7vndv1cAc30qr3psLzw8Dz4efsCYNhdYZxOvY0v0f9zrjd41jZdaUceWCiJMyIQrfy3Eo2Xd6EVqNl2nPT8HIynU0UhbBo2ZlwYbthMu+FHfe1kZIrtePr2/VZfLcKunAtb7hpGNdWj402X6faFCsajYZPm33KxfiLRCZG8s7ed/ixzY9orbRqlyb+RdpMolBF3Ilg6G9DydZn83aDtxlSa4jaJQlh2RTFsA9M+FI4sQrS4nIfK1ffMJG3Vi9w9CA9S8fnW87w68GrANSv6M6sAYGUc3NQqXjzcPHeRYK3BpOWncawOsMYEzRG7ZKKBZkzk4eEmaITmxZL3819iUmNoW3Ftkx/brpM+BXCWJJuw4mVEL4MYk7lXi9RBgL6GebCeD58P6etJ27x7urjJGVk4+pgw7Q+AbStKSOoj7Ptyjbe2fsOADNbzeT5Cs+rXJHlkzCTh4SZopGtz+a1na9xOPowvq6+LOu8DCcbJ7XLEsKyZGcYViGFLzVsbqfoDNe1dlC9k2E1kl8r0P73DIKo2FRGLTtGxHXDhOBXmvvybofq2FpL2+lRvjz8JYvPLKaETQmWd1lORZeKapdk0STM5CFhpmjMODqDhScX4mjtyLLOy/Bzk23AhSgUigI3wwwB5uRqSLuX+1j5ZwynU9fuBQ75P1ImM1vPl7+dZf6+KwAElHdldnAQPh6OhVW9RcnSZ/HK9lcIiwnD392fxR0X42gjn5WxSJjJQ8KM8e28upNxu8cBMO25abSv1F7lioSwAEnRhh15w5fBnTO5153L5raRSlctlFvtPH2bt1dFkJCWhbO9NV++UJdOdbwL5b0tTUxqDH039SU2PZYufl34ovkX0k43EgkzeUiYMa7LCZcJ3hJMSlYKQ2oO4e1n3la7JCHMV1Y6nNtqGIW5tAsUveG6tT3U6GoYhfFrCUZYTXMjPo3Ry8I4etUw8jO4cUXe71wDextZufNvR6KPMGzHMHSKjvcavceA6gPULskiSZjJQ8KM8aRmpTJgywAuJ1ymgVcD5rWbh7WVrPYXIl8UBW4cNRwrcHINpOfZ1M6nMdQbALV6gr3xDzzM0umZsfM8c3dfAqCmtwtzBgbhW0rmv/3bz6d+ZtqRaVhbWbOowyICSgeoXZLFkTCTh4QZ41AUhfF7x7M9cjueDp6s6LqCUg6l/vuFQgiDxJsQsdxwtMDd87nXXcpDQH/DkuqSlVUpbfe5GMatjCAuJRMnWy1f9KpD93rlVKnFVCmKwlt73mLn1Z14OnqysstKSjoUj8M4i4qEmTwkzBjHr6d/5avQr7DWWLOww0LqedZTuyQhTF9WGpzdYhiFubw7TxvJAWp2MwSYSs+Clforim4npjN6WRiHrhj2renXwIePu9XCwVbaTv9IyUphwJYBXEm4QiPvRrKhXiGTMJOHhJnCd/LuSQZvG0y2PpsJDScwsMZAtUsSwnQpClw7bAgwp9ZBRmLuYxWaGtpINXuAven9+6TTK8zcdYHv/riAokBVrxLMCQ7C38tZ7dJMxuX4y/Tf0p+07DRGB47m1bqvql2SxZAwk4eEmcKVlJlE3019uZ58XTbGE+Jx4q/B8eWG1Uhxl3Kvu1UwTOQN6A8e5rGFwYGLdxmzIpw7SRnY21jxSffa9KlfXv7b/9v6i+v5cP+HaDVaFnZYSKBnoNolWQQJM3lImCk8iqLwzt53+C3yN8o6lWVVt1W42MpnKkSOzBQ4s8mwGunKXuDvf15tnKBmd8MoTMXmJtFGyq87SRmMWxlOyIW7APQMLMdnPWrjZCeT/hVF4b1977H58mbKOJVhddfVuNoZf8K2pZMwk4eEmcKz+vxqJv81GWuNNYs6yux9IQBDG+nqAYhYCqfWQ2Zy7mMVm0PgQKjRDexKqFZiYdHrFebuucSMnefR6RX8SjkxOziImmXl39aUrBT6bupLVFIUz/s8z7etvpWRq6ckYSYPCTOF48K9CwzYMoAMXQZv1n+Tl2u/rHZJQqjrXmTuaqR7kbnX3SsZNrQL6A/ulrndfWhkHKOWhhGdmI6ttRWTutRkYKMKxf7L+3TsaQZtHUSWPouJDScSXCNY7ZLMmoSZPCTMPL207DQGbB7ApYRLNCvbjO/bfI+VxvyGyYV4ahnJcHqDoY10dV/udVtnqNXdcDZShSZQDL7U41IyeXtVBH+cjQGgc11vpvSqg4u9jcqVqWvJmSVMPTwVGysblnZeSnWPhx/2Kf6bhJk8JMw8vY8OfMTaC2sp7VCaVV1XyV4KonjR6yEyxDACc3oDZKX+/YAG/J4zjMLU6AK2xW9jOb1eYf6+K3z521my9QoVPByZHRxI3fJuapemGkVRGP3naHZf200ll0qs6LJCzm8qIAkzeUiYeTpbL2/l3ZB30aBhXrt5NPJupHZJQhSN2EuGABOxHBKu5V4vWSV3NZJrefXqMyFhUfcYuTSMG/Fp2Gg1vNepBkObViq2baf49Hh6b+rN7dTbdKvcjc+bf652SWZJwkweEmYKLioxij6b+pCancprdV9jZOBItUsSwrjSEwyTeMOXwrWDudftXA0nU9cLNpxUXUy/pB8nITWLd9ZEsP3UbQDa1vTi6951cXO0VbkydRy9fZSXt7+MXtHzefPP6Va5m9olmR0JM3lImCmYTF0mg7YO4kzcGYI8g5jffr6cuyQsk15n2I03YplhWXV2uuG6xgoqP28IMNU6gY2DqmWaA0VR+OWvq3y+5QyZOj3l3ByYNSCQ+hXd1S5NFT9G/Mjs8Nk4WDuwossKfF191S7JrEiYyUPCTMF8efhLFp9ZjKudK6u7rqaMUxm1SxKicN05b1hOHbECkm7mXi9VzRBg6vYDF2/16jNjJ28kMGLpMa7GpqK10jC+fTX+r4UfVlbFa0RLp9fxfzv/j8PRh6nuUZ3FnRZjp7VTuyyzIWEmDwkz+bf72m5G/TEKgO+e/46WPi1VrUeIQpN2D06uNbSRbhzJvW7vBnV6G0JM2SBpIxWCpPQs3lt3kk0RhqDYslpppvcJoGSJ4vVlHpMaQ59NfYhLjyO4ejATG01UuySzIWEmDwkz+XMn9Q69NvYiPiOeQTUG8W7Dd9UuSYino8uGS38YRmHObgVdhuG6Rgv+bQ2Teat1BOvi9SVbFBRFYXnoNT7eeIqMbD1eLnbM6h9II7/itSIy5HoIw3cNB2Bum7k0L9dc5YrMg4SZPCTMPDlFURi+azj7buyjukd1lnRagq22eE7eExYg5ozhcMfjKyH5du51z1p/t5H6QglP9eorRs5GJzJiyTEu3UnBSgNvtqnK8FZV0BajttPUw1NZcmYJpRxKsa7bOtzs3dQuyeRJmMlDwsyTW352OZ8f+hxbK1tWdFlBFfcqapckRP6kxMLJ1YY20q3w3OuOJaFOH8MojHeAtJFUkJqZzYfrT7Hm2HUAmlUpyTf96uHpbK9yZUUjPTudfpv7cTnhshzS+4QkzOQhYebJXEm4Qt9NfUnXpfPuM+8yqOYgtUsS4snosuDCDkOAOb8d9FmG61Y2ULW9YRSmSluwllFGU7D66HU+XH+StCwdpUrY8m2/QJr7l1K7rCJxOvY0A7cMJFvJluXaT0DCTB4SZv5blj6LwVsHcyr2FI29G/Nj2x/luAJh+m4dNwSYE6sg9W7ude8Aw7ECtXuDU/Gam2EuLsYkM3LpMc5GJ6HRwMhWVRjT2h9rreX/uzPv+Dxmhc3CycaJNd3WUK5EObVLMlkSZvKQMPPfvgv7jp+O/4SLrQtru63Fy8lL7ZKEeLjkGMMcmIhlcPtk7nUnT8McmHrB4FVLvfrEE0vP0jF502mWHY4CoGElD2YOqIe3q2Xv56PT6xj621DC74QT5BnEgvYL0Fpp1S7LJEmYyUPCzOOFx4Qz5Lch6BU9Xz/3NR0qdVC7JCHul50B57YZAsyFnaDoDNe1tobN7OoNNGxup5VNHc3RxoibvLf2BMkZ2bg72jC9bwDPV7fsH6iuJV2j98bepGan8mb9N3m59stql2SSJMzkIWHm0VKyUui9sTfXk6/Txa8LU1pMUbskIQwUBW4cMyynPrEa0uNzHyvXwDACU7sXOBTPnWUtTeTdFEYuO8bJG4kA/N+zfoxvXw0bC247rbuwjkkHJmFtZc2yzsvkdO2HkDCTh4SZR/vnNGxvJ2/WdFuDs62z2iWJ4i7xJhxfAeHL4O653OvOZSGgn+GE6tJV1atPGE1Gto4pW8+y6EAkAPV83PhuQCA+HpZ54rSiKIz9cyx/XPuDKm5VWN5luewO/C8SZvKQMPNwu6J2MfbPsWjQML/9fJ4p84zaJYniKisNzm4x7AlzeTcoesN1aweo0cUwCuP7HMi8gmLht5PRvLM6gsT0bFzsrfmqdwAdalvmcSpx6XH02tCL2PRYBtcczDvPvKN2SSZFwkweEmYedDftLr029OJexj1eqvUS4xqMU7skUdwoCkQdNLSRTq2HjMTcxyo0MewHU6sn2Mt/s8XRtbhURi0LI/xaPABDmlTkvc41sLO2vEC79/peRuwaAcC8dvNo7N1Y5YpMh4SZPCTM3E9RFEbsGkHIjRCquVdjaeelssuvKDrxURCx3DCZN+5y7nXXClBvAAT0Bw8/9eoTJiNLp2fa9nP8uNfw96R2ORdmDwiiUiknlSsrfJ/89Qmrzq/Cy9GLNd3W4GrnqnZJJkHCTB4SZu638txKPj34KbZWtizvshx/d3+1SxKWLiMZzmw07AkTGZJ73cYJavUwjMJUbAZWljvZUxTcn2djGLcynHupWZSws+aLXnXoFlBW7bIKVWpWKn029SEqKYqOvh356tmv1C7JJEiYyUPCTK5rSdd4YeMLpGWnMb7BeF6s9aLaJQlLpdfD1X2GibynN0BWSu5jvs8aJvLW6Ap2JdSrUZiNWwlpjFkWzuHIOAAGNPTho661sLexnLbT8TvHeXHbi+gUHd+0/IY2FduoXZLqJMzkIWHGQK/oGbZjGKHRoTTwasD89vNll19R+GIvGVpIESsgISr3uoefIcAE9AO3CurVJ8xWtk7PzF0XmP3nRRQFqnk5M2dgIFU8LWcV5sxjM/nfif/hYe/Bhu4biv1hlBJm8pAwY/DPIZIO1g6s6bYGH2cftUsSliI9AU6tM4zCXDuYe93OxTCJt95A8GkohzuKQrHvwl3GrgjnbnIGDjZaPu1Rm971y6tdVqHI1GXSd1NfLiVcorNfZ6a2mKp2SaqSMJOHhBm4nnSdXht7kZadxsSGEwmuEax2ScLc6XVw6U/DaqSzWyA73XBdY2XYjTdgAFTvDDaWvTW9UEdMUjpvrghn/8VYAHoFlePT7rVxsjP/XaBP3DnBoG2D0Ct6ZraayfMVnle7JNVImMmjuIeZvO2l+l71WdB+gbSXRMHFnDUEmIgVkByde710dUOAqdsPXLzVq08UGzq9wvd/XuSb38+jV6ByaSdmBwdRw9v8/52fcXQGC08upJRDKdZ3X19sVzfl5/vbpL/VpkyZwjPPPIOzszOenp706NGDc+fO/fcLRY5V51YRGh2KvdaeT5t+KkFG5F9qHByeBz+1hO8bwf6ZhiDj4A4N/w9e/ROGH4TmYyXIiCKjtdIwqrU/y15tjJeLHZfupNBjzn6WHorC3H9GH1FvBL6uvtxNu8tXobKy6UmY9MhMhw4d6N+/P8888wzZ2dm8//77nDhxgtOnT+Pk9GR7DRTnkZkbyTfouaEnadlpTGg4gYE1BqpdkjAXuizDoY4RS+Hcb6DPMly3sgb/doZdef3bg7XsUSTUF5ucwVurIth97g4AXQPK8kXP2jjb26hcWcFF3IngxW0volf0zH5+Ns/5PKd2SUXOYttMd+7cwdPTkz179vDss88+0WuKa5hRFIVXd7zKoehDBHkGsbDDQhmVEY+nKBB93DCR98QqSL2b+1iZOoaJvLV7Q4nS6tUoxCPo9QrzQi7z9fZzZOsVKpZ0ZPaAIOqUN98WzbTQafx8+mc8HTxZ12MdLrbF5zsM8vf9bVazpRISEgDw8PB45HMyMjLIyMjI+X1iYuIjn2vJVp1fxaHoQ4b2UjNpL4nHSI6B4ysNm9rFnMq97uQJdfsa5sKUqa1efUI8ASsrDa89V5kGlTwYvSyMq7GpvDD3AO91qs6QppXQmOFqupGBI9lzfQ+RiZF8Hfo1nzb7VO2STJbZjMwoikL37t25d+8eISEhj3zexx9/zOTJkx+4XpxGZm4m36Tnhp6kZqfy7jPvMqjmILVLEqYmKx3ObzOMwlz8HRSd4brWFqp1MrSRKrcGrVn9vCMEAAmpWYxfHcGO07cBaFfTi697B+DqaH5tp7CYMIZsG4KCwvetv6dF+RZql1RkLLLNNGLECLZs2cK+ffsoX/7Rewo8bGTGx8en2IQZRVH4v53/x8FbB6W9JO6nKHDjqOF06pNrDPvD/KNcA0OAqd3LMLFXCDOnKAo/H4jki61nydTpKefmwHfBgQRVML+/318e/pLFZxbj6ejJ+u7rcba1nI0CH8fiwsyoUaNYv349e/fuxdfXN1+vLW5zZlafX83kvyZjp7VjTbc1VHSpqHZJQm0JN+D4csMoTOyF3Osu5QxLqQMGQOmq6tUnhBGduJ7AyGXHuBqbirWVhvHtq/FqCz+srMyn7ZSWncYLG1/gWtI1evn3YnLTB7sPlshiwoyiKIwaNYp169axe/du/P3zfyhicQozt5Jv0XNjT1KyUuTspeIuMwXObDasRrq8B/j7P3NrB8OZSPWCDWckWVnO2TZCPEpSehYT155g8/FbALSqVprpfevh4WQ+q/GO3j7KS7+9hILCj21+pGm5pmqXZHQWE2aGDx/O0qVL2bBhA9WqVcu57urqioPDk+0sWlzCjKIovP776xy4eYBAz0AWtl+IVr6oihe9HqIO/H2443rITM59rGIzwwhMze5gb7n/HQjxKIqisOzwNSZvOkVGth4vFztm9Q+kkV9JtUt7YlMOTWHp2aWUcSrD+u7rcbJ5si1KzJXFhJlHzT5fuHAhQ4cOfaL3KC5hZtOlTby37z3stHas7rqaSq6V1C5JFJW4yxCx3PAr/mrudfdKhgAT0N/wv4UQnLmVyMilx7h0JwUrDYxtU5URraqgNYO2U2pWKr029uJG8g0G1RjEuw3fVbsko7KYMFMYikOYiUuPo/v67sRnxDM2aCyv1HlF7ZKEsaUnGg53jFgGUX/lXrd1hlo9DG2kCk3kcEchHiIlI5sPN5xk7bEbADSrUpJv+tXD09le5cr+24EbB3jt99fQoGFJpyXUKV1H7ZKMRsJMHsUhzLwX8h6bLm+iqntVlndZjo2V+S0/FE9Ar4PLuw37wZzdnHu4Ixqo3AoCgg2HO9o6qlmlEGZj9dHrfLj+JGlZOkqVsOWbfvVo4W/6m0JOCJnAlstbqOZejWVdllnsv/kSZvKw9DBz4OYBXttZPFJ6sXXnnCHAHF8JSTdzr5eqBvX+OdyxrHr1CWHGLsYkMXJpGGejk9BoYHjLyrzZpirWWtPd0iI2LZbuG7qTkJHAuPrjeKn2S2qXZBQSZvKw5DCTlp1Grw29uJ58nYE1BjKh4QS1SxKFJTXOsBdM+FK4eSz3uoO74UiBegOgbJC0kYQoBOlZOj7ZfJqlh6IAeKaSO7MGBOLt+mQLTdSw7sI6Jh2YhL3WnnXd11He+dH7r5krCTN5WHKY+eboNyw4uQAvRy829Nhg8TPbLd7jDnes0tYwD6Zqe7C2U7dOISzUpoibTFx7guSMbNwdbZjeN4Dnq3upXdZDKYrCKzteITQ6lGZlmzG3zVyzPLLhcSTM5GGpYeZc3Dn6be6HTtHx3fPf0dKnpdoliYL4r8MdA4KhTh853FGIIhJ5N4VRy8I4ccOwQ/arLXwZ3746ttam13aKTIjkhY0vkKnPZGqLqXT266x2SYVKwkwelhhmdHodg7YO4mTsSdpWbMuMljPULknkV9JtOLHSEGIeerhjf0OYEUIUuYxsHVO3nWXh/kgAAnzcmD0gEB8P05tc/2PEj8wOn42HvQcbe2zE1c58Twn/NwkzeVhimFl8ejFfhn6Js40zG3psoLSj/NRuFrLS4dxWw3Lqi7vyHO5oB9U7GfaEkcMdhTAZ209FM35VBInp2TjbW/N177p0qO2tdln3ydJl0WdTHy4lXKJnlZ580uwTtUsqNBJm8rC0MHMr+RbdN3QnLTuNSU0m0adqH7VLEo+jKHDtsCHAnFp7/+GO5RsaJvLW6imHOwphoq7fS2X0sjCORcUDMKRJRSZ2qoG9jenssB4WE8aL2wzH1yxov4BnyjyjckWFQ8JMHpYUZhRFYeQfI9l7fa+ciG3q4qMgYoUhxMRdyr3uUh4C/j7csVT+zxoTQhS9LJ2eaTvO8eOeywDU9HZhzsAgfEuZzqKLT//6lJXnV1LJpRKru63GTmv+CwUkzORhSWFme+R23t7zNtZW1qzpugY/Nz+1SxJ5ZSTDmY2G5dSRIbnXbZygZjdDgKnUAqwkgAphjv48F8NbKyOIS8nEyVbLF73q0L1eObXLAiAxM5Hu67tzN+0ur9V9jZGBI9Uu6alJmMnDUsJMQkYC3dd3JzY9ljcC3mB4veFqlyTAcLhjZIjhXKTTGyArJfexSi0My6lrdAO7EurVKIQoNNEJ6YxZHsahK3EA9H/Gh4+61sLBVv22047IHby15y2sraxZ3XU1ld0qq13SU5Ewk4elhJnJf01m9fnVVHKpxJpua7DVms/R9RYp9tLfu/KugIRrudc9/AzLqQP6gVsF9eoTQhhNtk7PrD8u8t0fF1AUqOpVgjnBQfh7Oatal6IojP5jNLuv7ybQM5BFHRaZ9VQECTN5WEKYCY8JZ/C2wQAsbL+QBmUaqFxRMZV2D06uNYzCXD+ce93OFWr3NIQYn4ayK68QxcT+i3cZuyKcO0kZ2NtY8Un32vSpX17VzevyLhL5pOkn9PTvqVotT0vCTB7mHmay9dn029yP8/fOW9yyO7Ogy4ZLuwyjMOe2gS7DcF1jZVhGXW8AVOsENqa77bkQwnjuJGUwbmU4IRcMG172DCzHpz1qU8JOvS0Wfj71M9OOTMPdzp1NPTeZ7d4zEmbyMPcws+TMEqYenoqLrQube27G3V6W8BaJ6JOGlUjHV0JKTO51z1qGAFOnLzib5jbnQoiipdcrzN1ziRk7z6PTK/iVcuK74EBqlVUnRGTps+i7qS8X4y/Sr1o/Pmj8gSp1PC0JM3mYc5i5k3qHbuu7kZyVzIeNP6Rvtb5ql2TZkmMMRwpELIPoE7nXHUsZjhSoNwDK1JU2khDioUIj4xi9LIxbCenYWlvxYZeaDGpUQZW2U2h0KC9vfxkNGpZ1XkatUrWKvIanJWEmD3MOMxNCJrDl8hZql6zN4k6L0VqpP1ve4mRnGNpHEcsMhzzm7MprC1U7GFYjVWkDWht16xRCmIV7KZm8vSqCXWcNI7qd6pRh6gt1cbEv+n9D8n6HLOm8xOwmA0uYycNcw4wlpGqTpShw/YjhdOqTayE9PvexcvUN+8HUfgEcPVQrUQhhvhRFYf6+K3z521mydAo+Hg7MHhBEgI9bkdZxJ/UOXdd3JSUrhY+afETvqr2L9P5PS8JMHuYYZrL0WfTZaDhrw5z7nSYn4bphJVLEcoi9kHvduezfu/IGQ+mq6tUnhLAo4dfiGbn0GNfvpWGj1fBuh+q80ty3SNtOv57+la9Cv8LVzpXNPTbjZu9WZPd+WhJm8jDHMLPo5CKmH51u9jPRTUJmCpzZZFiNdGUv8PdfdxtHqNHVMArj+yxIC08IYQQJaVlMWHOcbSejAWhTw5Ovewfg7lQ0e4Vl67Ppu7kvF+5doHfV3nzU5KMiuW9hkDCTh7mFmeiUaLqt72YRewSoRq+Hq/tyd+XNTM59rFILCOgPNbuDnbobXAkhigdFUVh88CqfbjlDZrYeb1d7vhsQSINKRdPKPnr7KEN/G4oGDUs6LaFO6TpFct+nJWEmD3MLM2/tfosdV3dQr3Q9fu74s9lN2FJV7CXDRN6IFZAQlXvd3dcwkbduP3CvqF59Qohi7dTNBEYuDePK3RS0VhrGta3KG89VxsrK+G2n9/e9z8ZLG6lZsiZLOy01iwUlEmbyMKcwc+DGAV77/TWsNFas7LKSah7V1C7J9KXFw6m1EL7sX7vyukCtnoYQ49NIllMLIUxCckY2H6w7wfrwmwC08C/FjL71KO1s3FOu76bdpdu6biRlJZnNVh8SZvIwlzCTqcvkhY0vEJkYyaAag3i34btql2S6Hrsr7/OGeTDVO8uuvEIIk6QoCquOXGfSxpOkZ+kp7WzHzH71aFqllFHvu/TMUqYcnoKLrQubem7Cw960V2xKmMnDXMLMvOPzmBU2i1IOpdjYYyPOtjKf4wGP3JW3piHA1O0LzmXUq08IIfLh/O0kRi49xvnbyWg0MOp5f8a09kdrpLZTtj6bAVsGcDbuLL38ezG56WSj3KewSJjJwxzCzI3kG/RY34N0XTpTWkyhi18XtUsyHf/syhu+DG7n3ZW3pGFX3oAB4B0gbSQhhFlKy9QxedMplodeA6CRrwezBgTi5WJvlPvlPbh4cafFBJQOMMp9CoOEmTzMIcyM/mM0f177k2fKPMP8dvNVPXHVJPzXrrwBA8C/rezKK4SwGBvCb/De2hOkZOrwcLJlRt8AWlbzNMq9Ptz/IesvrqeGRw2WdV5mspOBJczkYephZt+Nfbzx+xtYa6xZ3W01ld0qq12SOmRXXiFEMXf5TjIjl4Zx+lYiAK8/V5m32lXFRlu4q1pj02Lpur4rSZlJfNDoA/pV71eo719YJMzkYcphJkufRa8NvYhMjOTFmi8y/pnxapdU9OKvwfF/duW9mHvdpZxhKXXAANmVVwhRbKRn6fhi6xl++esqAEEV3Jg1IJDy7o6Fep9/JgO72bmxuedmk9ycVcJMHqYcZv7ZZtrD3oPNPTcXn0m/GcmGXXkjlsKVEO7flbebYVM72ZVXCFGMbTtxi3fWHCcpPRtXBxu+7l2XdrUKb4FDtj6b3ht7cynhksmuoJUwk4ephpm49Di6rO1CUlYSHzf5mBeqvqB2Scal10NkiGEezOmNkJWS+1ilFoYRmJrdZFdeIYT427W4VEYuCyPiWjwALzWrxISO1bGzLpwf9A7cPMBrO1/DWmPNmu5r8HP1K5T3LSz5+f6W7WVVMjtsNklZSdTwqEGPKj3ULsd47l6AXZ/At3Xgl26GMJOVAh5+0OoDGHsChm6GwIESZIQQIg8fD0dWvdaEV1v4ArBwfyS95/7F1diU/3jlk2latikty7ckW8nm69CvC+U91SIjMyo4G3eWvpv6oqDwc4efCfIKUrukwpUaZ9iVN2I5XA/NvW7nCrV7GUZhfBrKcmohhHhCu87c5q1VEcSnZlHCzpqpL9ShS92yT/2+VxOv0mNDD7L12cxpPYdnyz9bCNUWDmkz5WFqYUZRFF7e/jJHbh+hY6WOfPXcV2qXVDh0WXDxd8OuvOd/A12m4bpGC1XaGObBVOsENsbZO0EIISzdrYQ0Ri8LIzTyHgDBjSowqUtN7G2eru00/ch0Fp1aRCWXSqztthYbE9n2QsJMHqYWZnZE7uCtPW9hr7VnY4+NeJfwVrukglMUiD5u2NDuxCpIvZv7mFcdqDcAavcGZy/1ahRCCAuSrdPz7e8XmLP7IooC1cs4Mzs4iCqeJQr8nkmZSXRZ14W49DjGNxjPi7VeLMSKC07CTB6mFGbSs9Ppvr47N1NuMjxgOG/Ue0PVegosKdpwpEDEMog5nXvdqTTU6WsIMWXM44h5IYQwRyEX7vDminDuJmfiYKPlsx61eaF++QK/35rza/j4r49xtnFmc6/NJnFuk4SZPEwpzPwY8SOzw2dTxqkMG3tsxMHajA5CzEqHc1sMozCXdoGiN1zX2hraR/WCoXJr0FqrW6cQQhQTMUnpvLkinP0XYwF4Iag8n3SvhZNd/v8d1ul1DNgygDNxZ+hTtQ+Tmkwq7HLzTcJMHqYSZqJToum2vhtp2Wl8/ezXdPDtoFotT0xR4NohwzyYU+shIyH3sfINDfNgavcCB3fVShRCiOJMp1eYu/siM3aeR69A5dJOzA4OooZ3/r/vjt4+ytDfhmKlsWJll5VU86hmhIqfnCzNNkHfHP2GtOw0gjyDaF+pvdrlPN69q7D7S5gVCAvaw7GfDUHG1QeeHQ8jj8KwnfDMKxJkhBBCRVorDSOf92fZq43xcrHj0p0UeszZz9JDUeR3rKK+V33aV2qPXtHzZeiX+X69mmRkpgiExYTx4rYX0aBheZfl1CxZU5U6His9EU5vMMyDubo/97qNE9TqYRiFqdgcrCT/CiGEKYpNzuCtVRHsPncHgC51vZnSqw7O9k++Oulm8k26re9Ghi6Db1p+Q5uKbYxV7n/Kz/e3THAwMr2iZ+rhqQD08u9lWkFGr4PLuw0B5sxmyE77+wGN4TiBesFQoyvYOqlZpRBCiCdQsoQdC4Y8w7yQy3y9/Rybj9/ixI0EZg8Iok75Jzt7qWyJsgytNZQfj//ItCPTaFG+BXZaOyNX/vRkZMbI1l1Yx6QDkyhhU4JNPTdRyqFUkdfwgJizhnORjq+EpFu510tVNWxoV7cvuBZ8VrwQQgh1HYu6x6ilYdyIT8NGq+G9TjUY2rQSmifYrDQ1K5Wu67sSkxrDmKAxDKszrAgqfpBMAM5DzTCTnJlMl3VdiE2P5e0GbzOk1pAivf99UmLh5GrDZN5b4bnXHdwNe8EEDIByQbIrrxBCWIiE1CzeWRPB9lO3AWhX04uvetfFzdH2P1+7+fJmJoZMxMHagc09N+Pp6Gnsch8gE4BNxIKTC4hNj6WiS0WCqwcXfQHZmYbTqZcFw/SqsO0dQ5CxsoZqnaHfYnjrHHSeBuXrS5ARQggL4upoww+D6jO5Wy1stVbsOH2bzrP2cfTqvf98bWffztQtXZe07DRmh80ugmqfjozMGEl0SjRd1nUhQ5fBrFazaFWhVdHcWFHg5jHDfjAnV0Nanr+03vUMIzB1eoOTCbS7hBBCFImTNxIYufQYkbGpaK00jG9fjf9r4YeV1aN/iA2PCWfwtsFo0LCq66oiX6otIzMm4Luw78jQZdDAqwEtfVoa/4YJNyBkBsxpBPOeh9B5hiBTogw0GwPDD8Jre6Dx6xJkhBCimKldzpVNo5rTNaAsOr3C1G1neWlRKLHJGY98TT3PerSt2BYFhW+OflOE1eafjMwYwenY0/Tf3B8FheWdl1OrVC3j3CgzxbAKKWIpXN4D/P1/pbUD1OhiWE7t1wqsnu4QMiGEEJZBURRWhF7jo42nyMjW4+Vix8z+gTT2K/nQ50clRtF9Q3ey9dn82PZHmpZtWmS1ytJsFSmKwvQj01FQ6OzXufCDjF5v2AcmYplhX5jM5NzHKjYzBJiaPcBe/UM1hRBCmBaNRkP/hhUIrODOiKXHuBiTTPC8g4xpXZWRz1dB+6+2UwWXCvSv1p/FZxYz/ch0GnVphNYEf0CWkZlCtvf6XkbsGoGtlS2bem6ibImyhfPGsZcMASZiBSRE5V53rwQBwYbl1B6+hXMvIYQQFi81M5uPNpxi1dHrADTxK8nM/vXwdLG/73nx6fF0WtuJpKwkPm32KT2q9CiS+mRpdh5FGWay9dm8sPEFLidc5uXaL/Nm/Tef7g3T7sGpdYbJvNcP5163c4FaPQ2TeSs0llVIQgghCmxd2HXeX3eS1EwdJZ1s+aZfPZ6tWvq+5yw8uZAZR2fg6ejJ5p6bi+SgZGkzqWTthbVcTriMm51bwTcZ0mUbTqUOXwrntoHu78lZGiuo/LwhwFTvDDZmdOK2EEIIk9UzsDwB5d0YsTSMM7cSeXHBYd5oWZlxbatiozWsEwquEczys8u5mXKTxacX82rdV1Wu+n4yMlNIUrJS6LS2E3HpcUxoOIGBNQbm7w2iTxhGYE6shJQ7udc9a0G9AVCnDziXKdyihRBCiL+lZ+n4fMsZfj14FYD6Fd2ZNSCQcm6GH57/2UjPycaJLT23UNLh4ZOGC4sszVbBgpMLiEuPo6JLRfpW7ftkL0q6DQdmw9xm8ENzODjHEGQcS0GjN+C1vfDGfmg6SoKMEEIIo7K30fJpj9p8PzAIZztrjl69R6eZIew8bdhBuJNvJ2qWrElKVgpzI+aqXO39ZGSmEESnRNN1XVfSdel82/JbWlds/egnZ6XBua0QsRwu7gJFZ7iutYVqHQ2Teau0Bu2Tn3IqhBBCFKao2FRGLTtGxPUEAF5p7su7HaoTcfcoL29/Ga1Gy7ru6/B1Nd7CE5kzU8Rmh80mXZdOkGcQz1d4/sEnKApcO2SYB3NqPWQk5D5W/hnDPJhaPcHRo8hqFkIIIR6lQklHVr3elK9+O8v/9l1h/r4rhEbGMXtAEC3Lt2T39d18c/QbZj0/S+1SAQkzT+1s3Fk2XtoIwFsN3rr/RNJ7kYal1BHL4N6V3Osu5Q37wQT0h1L+RVuwEEII8QRsra34oEtNGvuV5O3VERy/nkDnWSGM6zyIEE0If177k6O3j1Lfq77apZrHnJnvv/8eX19f7O3tqV+/PiEhIWqXBBg2yJt2ZBoKCh0rdaRu6bqQngjHfoWFnWBmAOz+whBkbJwMLaQXN8LYE9D6QwkyQgghTF6bml5sHd2CBhXdScrIZvLau/jYtARgWug09Ipe3QIxgzCzYsUKxo4dy/vvv09YWBgtWrSgY8eOREVF/feLjWzfjX0cunUIGysbRpdsAGuGwbSqsHGkYZdeNOD7HPT4Ad4+Dz3ngt9zYGXyH7sQQgiRo6ybA8v/rzHDW1ZGo4GTJxujUew4GXuS7ZHb1S7P9CcAN2rUiKCgIObOzZ05XaNGDXr06MGUKVP+8/XGmgCcrc+m97quXEq+ztBUHW/dvpH7YEl/w3Lquv3AtXyh3VMIIYRQ297zdxi3MpxE+23Yld6Jm40Xu/ptxVZrW6j3sZil2ZmZmRw9epR27drdd71du3YcOHDgoa/JyMggMTHxvl/GsH79EC4lX8dVp2PYnZvg4A7PvArD/oCRodDiLQkyQgghLM6zVUuzdXQLgly7o89yJj7rNkNXq3uqtkmHmbt376LT6fDy8rrvupeXF9HR0Q99zZQpU3B1dc355ePjY5Ta0t3K46DX85ptOVx7/wJvnYPO06B8fTleQAghhEXzdLFnySvP0tLzRRS9NV5u6h4+aRarmTT/CgeKojxw7R8TJ05k3LhxOb9PTEw0SqAZ9OwntIt/CXf3yrInjBBCiGJHa6VhVpdXCb3ehsYVqqhai0mHmVKlSqHVah8YhYmJiXlgtOYfdnZ22NnZGb84azs8S1U3/n2EEEIIE6W10qoeZMDE20y2trbUr1+fnTt33nd9586dNG3aVKWqhBBCCGFKTHpkBmDcuHEMHjyYBg0a0KRJE3766SeioqJ4/fXX1S5NCCGEECbA5MNMv379iI2N5ZNPPuHWrVvUrl2brVu3UrFiRbVLE0IIIYQJMPl9Zp5WURw0KYQQQojCZTH7zAghhBBC/BcJM0IIIYQwaxJmhBBCCGHWJMwIIYQQwqxJmBFCCCGEWZMwI4QQQgizJmFGCCGEEGZNwowQQgghzJqEGSGEEEKYNZM/zuBp/bPBcWJiosqVCCGEEOJJ/fO9/SQHFVh8mElKSgLAx8dH5UqEEEIIkV9JSUm4uro+9jkWfzaTXq/n5s2bODs7o9FoCvW9ExMT8fHx4dq1a3LukxHJ51w05HMuGvI5Fw35nIuGMT9nRVFISkqibNmyWFk9flaMxY/MWFlZUb58eaPew8XFRf5jKQLyORcN+ZyLhnzORUM+56JhrM/5v0Zk/iETgIUQQghh1iTMCCGEEMKsSZh5CnZ2dnz00UfY2dmpXYpFk8+5aMjnXDTkcy4a8jkXDVP5nC1+ArAQQgghLJuMzAghhBDCrEmYEUIIIYRZkzAjhBBCCLMmYUYIIYQQZk3CzGN8//33+Pr6Ym9vT/369QkJCXns8/fs2UP9+vWxt7fHz8+PH374oYgqNX/5+azXrl1L27ZtKV26NC4uLjRp0oTt27cXYbXmK79/p/+xf/9+rK2tqVevnnELtBD5/ZwzMjJ4//33qVixInZ2dlSuXJkFCxYUUbXmK7+f85IlSwgICMDR0RFvb29eeuklYmNji6ha87R37166du1K2bJl0Wg0rF+//j9fo8p3oSIeavny5YqNjY0yb9485fTp08qYMWMUJycn5erVqw99/uXLlxVHR0dlzJgxyunTp5V58+YpNjY2yurVq4u4cvOT3896zJgxypdffqkcPnxYOX/+vDJx4kTFxsZGOXbsWBFXbl7y+zn/Iz4+XvHz81PatWunBAQEFE2xZqwgn3O3bt2URo0aKTt37lSuXLmiHDp0SNm/f38RVm1+8vs5h4SEKFZWVsrMmTOVy5cvKyEhIUqtWrWUHj16FHHl5mXr1q3K+++/r6xZs0YBlHXr1j32+Wp9F0qYeYSGDRsqr7/++n3XqlevrkyYMOGhz3/nnXeU6tWr33fttddeUxo3bmy0Gi1Ffj/rh6lZs6YyefLkwi7NohT0c+7Xr5/ywQcfKB999JGEmSeQ389527ZtiqurqxIbG1sU5VmM/H7OX3/9teLn53fftVmzZinly5c3Wo2W5knCjFrfhdJmeojMzEyOHj1Ku3bt7rverl07Dhw48NDX/PXXXw88v3379hw5coSsrCyj1WruCvJZ/5terycpKQkPDw9jlGgRCvo5L1y4kEuXLvHRRx8Zu0SLUJDPeePGjTRo0ICvvvqKcuXKUbVqVd5++23S0tKKomSzVJDPuWnTply/fp2tW7eiKAq3b99m9erVdO7cuShKLjbU+i60+IMmC+Lu3bvodDq8vLzuu+7l5UV0dPRDXxMdHf3Q52dnZ3P37l28vb2NVq85K8hn/W/Tp08nJSWFvn37GqNEi1CQz/nChQtMmDCBkJAQrK3ln4onUZDP+fLly+zbtw97e3vWrVvH3bt3GT58OHFxcTJv5hEK8jk3bdqUJUuW0K9fP9LT08nOzqZbt2589913RVFysaHWd6GMzDyGRqO57/eKojxw7b+e/7Dr4kH5/az/sWzZMj7++GNWrFiBp6enscqzGE/6Oet0OoKDg5k8eTJVq1YtqvIsRn7+Puv1ejQaDUuWLKFhw4Z06tSJGTNmsGjRIhmd+Q/5+ZxPnz7N6NGjmTRpEkePHuW3337jypUrvP7660VRarGixneh/Lj1EKVKlUKr1T6Q8GNiYh5InP8oU6bMQ59vbW1NyZIljVaruSvIZ/2PFStW8Morr7Bq1SratGljzDLNXn4/56SkJI4cOUJYWBgjR44EDF+6iqJgbW3Njh07eP7554ukdnNSkL/P3t7elCtXDldX15xrNWrUQFEUrl+/jr+/v1FrNkcF+ZynTJlCs2bNGD9+PAB169bFycmJFi1a8Nlnn8noeSFR67tQRmYewtbWlvr167Nz5877ru/cuZOmTZs+9DVNmjR54Pk7duygQYMG2NjYGK1Wc1eQzxoMIzJDhw5l6dKl0vN+Avn9nF1cXDhx4gTh4eE5v15//XWqVatGeHg4jRo1KqrSzUpB/j43a9aMmzdvkpycnHPt/PnzWFlZUb58eaPWa64K8jmnpqZiZXX/V55WqwVyRw7E01Ptu9Co04vN2D/L/ubPn6+cPn1aGTt2rOLk5KRERkYqiqIoEyZMUAYPHpzz/H+Wo7355pvK6dOnlfnz58vS7CeU38966dKlirW1tTJnzhzl1q1bOb/i4+PV+iOYhfx+zv8mq5meTH4/56SkJKV8+fJK7969lVOnTil79uxR/P39lWHDhqn1RzAL+f2cFy5cqFhbWyvff/+9cunSJWXfvn1KgwYNlIYNG6r1RzALSUlJSlhYmBIWFqYAyowZM5SwsLCcJfCm8l0oYeYx5syZo1SsWFGxtbVVgoKClD179uQ8NmTIEOW555677/m7d+9WAgMDFVtbW6VSpUrK3Llzi7hi85Wfz/q5555TgAd+DRkypOgLNzP5/Tudl4SZJ5ffz/nMmTNKmzZtFAcHB6V8+fLKuHHjlNTU1CKu2vzk93OeNWuWUrNmTcXBwUHx9vZWBg4cqFy/fr2IqzYvf/7552P/vTWV70KNosj4mhBCCCHMl8yZEUIIIYRZkzAjhBBCCLMmYUYIIYQQZk3CjBBCCCHMmoQZIYQQQpg1CTNCCCGEMGsSZoQQQghh1iTMCCGEEMKsSZgRQpiVyMhINBoN4eHhj31ey5YtGTt2bJHUJIRQl4QZIYRRDB06FI1Gg0ajwcbGBj8/P95++21SUlKe6n19fHy4desWtWvXBmD37t1oNBri4+Pve97atWv59NNPn+peQgjzYK12AUIIy9WhQwcWLlxIVlYWISEhDBs2jJSUFObOnVvg99RqtZQpU+Y/n+fh4VHgewghzIuMzAghjMbOzo4yZcrg4+NDcHAwAwcOZP369WRkZDB69Gg8PT2xt7enefPmhIaG5rzu3r17DBw4kNKlS+Pg4IC/vz8LFy4E7m8zRUZG0qpVKwDc3d3RaDQMHToUeLDNdO/ePV588UXc3d1xdHSkY8eOXLhwIefxRYsW4ebmxvbt26lRowYlSpSgQ4cO3Lp1y/gflBDiqUiYEUIUGQcHB7KysnjnnXdYs2YNP//8M8eOHaNKlSq0b9+euLg4AD788ENOnz7Ntm3bOHPmDHPnzqVUqVIPvJ+Pjw9r1qwB4Ny5c9y6dYuZM2c+9N5Dhw7lyJEjbNy4kb/++gtFUejUqRNZWVk5z0lNTWXatGn8+uuv7N27l6ioKN5++20jfBJCiMIkbSYhRJE4fPgwS5cupVWrVsydO5dFixbRsWNHAObNm8fOnTuZP38+48ePJyoqisDAQBo0aABApUqVHvqeWq02p53k6emJm5vbQ5934cIFNm7cyP79+2natCkAS5YswcfHh/Xr19OnTx8AsrKy+OGHH6hcuTIAI0eO5JNPPimsj0AIYSQyMiOEMJrNmzdTokQJ7O3tadKkCc8++yyjRo0iKyuLZs2a5TzPxsaGhg0bcubMGQDeeOMNli9fTr169XjnnXc4cODAU9Vx5swZrK2tadSoUc61kiVLUq1atZx7Ajg6OuYEGQBvb29iYmKe6t5CCOOTMCOEMJpWrVoRHh7OuXPnSE9PZ+3atbi6ugKg0Wjue66iKDnXOnbsyNWrVxk7diw3b96kdevWT9XuURTlkdfz1mFjY3Pf4xqN5pGvFUKYDgkzQgijcXJyokqVKlSsWDEnKFSpUgVbW1v27duX87ysrCyOHDlCjRo1cq6VLl2aoUOHsnjxYr799lt++umnh97D1tYWAJ1O98g6atasSXZ2NocOHcq5Fhsby/nz5++7pxDCPMmcGSFEkXJycuKNN95g/PjxeHh4UKFCBb766itSU1N55ZVXAJg0aRL169enVq1aZGRksHnz5keGjooVK6LRaNi8eTOdOnXCwcGBEiVK3Pccf39/unfvzquvvsqPP/6Is7MzEyZMoFy5cnTv3t3of2YhhHHJyIwQoshNnTqVF154gcGDBxMUFMTFixfZvn077u7ugGG0ZeLEidStW5dnn30WrVbL8uXLH/pe5cqVY/LkyUyYMAEvLy9Gjhz50OctXLiQ+vXr06VLF5o0aYKiKGzduvWB1pIQwvxoFGkICyGEEMKMyciMEEIIIcyahBkhhBBCmDUJM0IIIYQwaxJmhBBCCGHWJMwIIYQQwqxJmBFCCCGEWZMwI4QQQgizJmFGCCGEEGZNwowQQgghzJqEGSGEEEKYNQkzQgghhDBr/w/byxAHv3MDPgAAAABJRU5ErkJggg==", "text/plain": [ "" ] @@ -246,7 +246,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d4822066fa8e4cd7955980708a2a30b8", + "model_id": "7606bb0525874cf4becb29a3a440c0f0", "version_major": 2, "version_minor": 0 }, @@ -321,7 +321,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbMpJREFUeJzt3Xd4VGXexvHvZNJDOiQEEiB0QkkCCNJULIiIgpWiru6ru2uhWHZdWdfu6qqrq1hX17YrzYKogCKLhdBrQgk9dAKB9F5mzvvHkRQBJSGTKbk/15WL8JyZOb8cZebO047FMAwDERERETfl5ewCRERERM6FwoyIiIi4NYUZERERcWsKMyIiIuLWFGZERETErSnMiIiIiFtTmBERERG35u3sAhzNbrdz5MgRgoODsVgszi5HREREzoJhGBQWFtKmTRu8vH6578Xjw8yRI0eIi4tzdhkiIiLSAAcPHiQ2NvYXH+PxYSY4OBgwL0ZISIiTqxEREZGzUVBQQFxcXPXn+C/x+DBzcmgpJCREYUZERMTNnM0UEU0AFhEREbemMCMiIiJuTWFGRERE3JrHz5kRERFxRzabjcrKSmeX4TA+Pj5YrdZGeS2FGRERERdiGAZHjx4lLy/P2aU4XFhYGK1btz7nfeAUZkRERFzIySATFRVFYGCgR274ahgGJSUlZGVlARATE3NOr6cwIyIi4iJsNlt1kImMjHR2OQ4VEBAAQFZWFlFRUec05KQJwCIiIi7i5ByZwMBAJ1fSNE7+nOc6N0hhRkRExMV44tDS6TTWz6kwIyIiIm7NqWFm6dKlXHXVVbRp0waLxcK8efPqHDcMg8cff5w2bdoQEBDARRddxNatW51TrIiIiLgkp4aZ4uJiEhMTee211057/Pnnn+ell17itddeY+3atbRu3ZrLLruMwsLCJq5UREREXJVTw8wVV1zB008/zbXXXnvKMcMwePnll3n44Ye59tpr6dWrFx9++CElJSXMnDnTCdWeWt+SbccwDMPZpYiIiLiMFStWYLVaGTlyZJOd02XnzOzdu5ejR48yYsSI6jY/Pz8uvPBCVqxYccbnlZeXU1BQUOfLET5afYDbP1zHH/67nvwSz92hUUREpD7ee+89Jk+ezLJlyzhw4ECTnNNl95k5evQoANHR0XXao6Oj2b9//xmf9+yzz/LEE084tDYAC+Br9eLb9GNsnZ7CqxOT6dsu3OHnFRGR5sUwDEorbU45d4CPtV4rjoqLi/n4449Zu3YtR48e5YMPPuDRRx91YIUmlw0zJ/38IhqG8YsXdtq0adx///3Vfy8oKCAuLq7R67r5/PYkxoYxadYG9meXcONbK3lwZDfuGNoRL6/msaROREQcr7TSRsKji5xy7vQnLyfQ9+yjwpw5c+jWrRvdunXj5ptvZvLkyTzyyCMOX2russNMrVu3Bmp6aE7Kyso6pbemNj8/P0JCQup8OUrv2FC+mjyUK/vEUGU3eGbhdu74zzpyiiscdk4RERFX9e6773LzzTcDMHLkSIqKiliyZInDz+uyPTPx8fG0bt2axYsXk5ycDEBFRQU//vgjzz33nJOrqxHi78NrE5IZ1DGSJ+en8932LK6cnsL0Ccmc1yHC2eWJiIibC/Cxkv7k5U4799nasWMHa9asYe7cuQB4e3szbtw43nvvPS699FJHlWiey6Gv/iuKiorYvXt39d/37t1LamoqERERtGvXjnvvvZdnnnmGLl260KVLF5555hkCAwOZOHGiE6s+lcVi4ebz29O3XTiTZm4g40Qx499exf2XdeWuCztp2ElERBrMYrHUa6jHWd59912qqqpo27ZtdZthGPj4+JCbm0t4uOPmlTp1mGndunUkJydX97zcf//9JCcnV08WevDBB7n33nu5++676d+/P4cPH+bbb78lODjYmWWfUUKbEL6cPJSxSW2w2Q1eWLSDW99fw4micmeXJiIi4jBVVVX85z//4cUXXyQ1NbX6Ky0tjfbt2zNjxgyHnt9iePhGKQUFBYSGhpKfn+/Q+TO1GYbBx+sO8tiXWymrtBMV7Mf0Ccmc39Gz74AqIiLnpqysjL179xIfH4+/v7+zyzlr8+bNY9y4cWRlZREaGlrn2MMPP8zChQvZuHHjKc/7pZ+3Pp/fLjsB2J1ZLBbGndeOL+4ZSueoFmQVljPxnVW88r9d2OwenR1FRKQZevfdd7n00ktPCTIA1113HampqWzYsMFh51fPjIOVVFTx6Bdb+XT9IQCGdI7kn+OSiAp2n8QtIiJNw117ZhpKPTNuItDXm3/ckMiLNyQS4GNl+e5sRr2yjGW7Tji7NBEREY+gMNNErusXy1eTh9AtOpgTReXc8t5qXvp2B1U2u7NLExERcWsKM02oc1QwX0wawoQBcRgGTP9uNxP/vZpjBWXOLk1ERMRtKcw0MX8fK89e24dXxicR5Gtlzd4crnglhR92ZDm7NBEREbekMOMkY5La8tXkoSTEhJBTXMFt76/luW+2a9hJRESknhRmnKhjqxbMvXswt5zfHoA3f9jD+LdXcSSv1MmViYiIuA+FGSfz97Hy1NhevHFTX4L9vFm3P5dR01NYsu2Ys0sTERFxCwozLmJU7xgWTBlGn9hQ8koquf3DdTw9P52KKg07iYiI/BKFGRfSLjKQT+4cxG+HdADg38v2cuO/VnIwp8S5hYmIiLgwhRkX4+dt5bGrevKvW/oR4u9N6sE8rpyewqKtR51dmoiIyBnddtttWCyW6q/IyEhGjhzJpk2bHH5uhRkXdXnP1iycOoykuDAKyqr4w3/X8/iXWymvsjm7NBERkdMaOXIkmZmZZGZmsmTJEry9vRk9erTDz6sw48Jiw81hp99f0BGAD1bs4/o3V7I/u9jJlYmIiJzKz8+P1q1b07p1a5KSkvjzn//MwYMHOX78uEPP6+3QV5dz5mP14i+jenB+xwju/ziNzYfzGT19GX+/rg9X9olxdnkiIuJohgGVTpo76RMIFkuDnlpUVMSMGTPo3LkzkZGRjVxYXQozbuLi7tEsnDKMKbM2sm5/LvfM3MDKjHb89coE/H2szi5PREQcpbIEnmnjnHP/5Qj4Bp31w+fPn0+LFi0AKC4uJiYmhvnz5+Pl5diBIA0zuZE2YQHM/v353H1RJwA+WnWAa95YQcbxIidXJiIiAsOHDyc1NZXU1FRWr17NiBEjuOKKK9i/f79Dz6ueGTfjbfXiwZHdGdgxkvvnpLIts4DRry7jmWt6Mza5rbPLExGRxuYTaPaQOOvc9RAUFETnzp2r/96vXz9CQ0N55513ePrppxu7umoKM27qwq6tWDjVHHZavTeHe+eksnJPNo9f3ZMAXw07iYh4DIulXkM9rsRiseDl5UVpqWNv06NhJjcWHeLPjDsGMuWSLlgsMGfdQca+vpzdWYXOLk1ERJqh8vJyjh49ytGjR9m2bRuTJ0+mqKiIq666yqHnVZhxc95WL+6/rCsf3T6Qli382HGskKteXc6n6w85uzQREWlmvvnmG2JiYoiJiWHgwIGsXbuWTz75hIsuusih57UYhmE49AxOVlBQQGhoKPn5+YSEhDi7HIfKKizjvjmpLN+dDcC1fdvy9NheBPpqNFFExB2UlZWxd+9e4uPj8ff3d3Y5DvdLP299Pr/VM+NBooL9+c//DeT+y7riZYG5Gw5z1avL2H60wNmliYiIOIzCjIexelmYckkXZv7ufKJD/NhzvJgxry1n9poDeHgnnIiINFMKMx7q/I6RLJwyjAu6tqK8ys5Dczdz75xUisqrnF2aiIhIo1KY8WCRLfz44LbzeHBkN6xeFr5IPcJVry5j65F8Z5cmIiLSaBRmPJyXl4W7L+rMnN+fT0yoP3tPFHPNGyv476r9GnYSERGPoDDTTPTvEMHCKcO4pHsUFVV2Hpm3hUkzN1JQVuns0kRERM6JwkwzEh7ky79v7c/Do3rg7WVhweZMRk9fxqZDec4uTUREpMEUZpoZi8XC7y7oyMd3DqJtWAAHckq47s0VvL98r4adRETELSnMNFN924WzcMowRiREU2kzeOKrdO78aD35JRp2EhER96Iw04yFBvrwr1v68dhVCfhYLSzaeoxR01PYeCDX2aWJiIicNYWZZs5isfDbIfF8dtdg2kUEcjivlBveWsk7SzM07CQiIvV29OhRJk+eTMeOHfHz8yMuLo6rrrqKJUuWOOycCjMCQJ/YMOZPGcqVvWOoshv8beE27vhwHbnFFc4uTURE3MS+ffvo168f3333Hc8//zybN2/mm2++Yfjw4dxzzz0OO69uNCl1GIbBjNUHeHJ+OhVVdtqE+jN9QjL9O0Q4uzQREY/n7jeaHDVqFJs2bWLHjh0EBQXVOZaXl0dYWFidtsa60aRupyx1WCwWbj6/Pcntwpg0cyN7TxQz7u1VPDCiK3de0AkvL4uzSxQRaVYMw6C0qtQp5w7wDsBiObv3/ZycHL755hv+9re/nRJkgFOCTGNSmJHT6tkmlK8mD+XhzzfzReoRnv9mB6szcnjpxkQiW/g5uzwRkWajtKqUgTMHOuXcqyeuJtAn8Kweu3v3bgzDoHv37g6u6lSaMyNn1MLPm5fHJfHcdb3x8/bix53HGTU9hdUZ2c4uTUREXMzJWStn25PTmNQzI7/IYrEw7rx2JMWFc8/MDezOKmLCO6u479Ku3D28M1YNO4mIOFSAdwCrJ6522rnPVpcuXbBYLGzbto2xY8c6rqjT0ARgOWslFVU8Mm8rn204BMDQzi3557gkWgVr2ElEpDG4+wTgK664gs2bNzf5BGANM8lZC/T15sUbE/nHDYkE+FhZtvsEV7ySwvLdJ5xdmoiIuIA33ngDm83GgAED+Oyzz9i1axfbtm1j+vTpDBo0yGHnVZiReru+XyxfTR5Ct+hgThSVc/O7q3lp8U5sdo/u5BMRkV8RHx/Phg0bGD58OA888AC9evXisssuY8mSJbz55psOO6+GmaTBSitsPPHVVmavPQjAwPgIXhmfTOtQ9+saFRFxBe4+zFRfGmYSpwvwtfL36/rwyvgkgnytrN6bw6jpKfy487izSxMRkWZEYUbO2Ziktnw1eSg9YkLIKa7g1vfW8Nw326my2Z1dmoiINAMKM9IoOrZqwed3D+bm89sB8OYPexj/9iqO5Dln10oREWk+FGak0fj7WHl6bG9em5hMsJ836/bnMmp6Cku2HXN2aSIi4sEUZqTRje7ThvlThtK7bSh5JZXc/uE6/rYgnUoNO4mInBUPX5tTrbF+ToUZcYj2kUF8etcgbhvcAYB3UvZyw1srOZhT4tzCRERcmI+PDwAlJc3jvfLkz3ny524oLc0Wh/tmy1Ee/DSNgrIqQvy9eeGGRC7v2drZZYmIuKTMzEzy8vKIiooiMDDQKfc6cjTDMCgpKSErK4uwsDBiYmJOeUx9Pr8VZqRJHMwpYdKsjaQdzAPgt0M68NAV3fHztjq3MBERF2MYBkePHiUvL8/ZpThcWFgYrVu3Pm1gU5ipRWHGdVRU2Xlh0XbeSdkLQO+2obw+sS/tIs/u9vIiIs2JzWajsrLS2WU4jI+PD1brmX+hVZipRWHG9fwv/Rh//DSNvJJKgv28ee76PozqfWoXo4iINF/aAVhc2qUJ0SycMox+7cMpLK/i7hkb+Ou8zZRV2pxdmoiIuCGFGXGKNmEBzP79+dx5YScAPlp1gGvfWMHeE8VOrkxERNyNwow4jY/Vi4eu6M4Hvz2PiCBf0jMLGD09hS9SDzu7NBERcSMKM+J0F3WLYuGUYQyIj6C4wsbU2alMm7tJw04iInJWXDrMVFVV8de//pX4+HgCAgLo2LEjTz75JHa7dpL1NK1D/Zl5x0AmX9wZiwVmrTnImNeWszuryNmliYiIi3PpMPPcc8/x1ltv8dprr7Ft2zaef/55XnjhBV599VVnlyYO4G314oER3fjv/w2kZQs/dhwr5KpXl/HZ+kPOLk1ERFyYSy/NHj16NNHR0bz77rvVbddddx2BgYH897//Pe1zysvLKS8vr/57QUEBcXFxWprtZrIKy7h3dior9mQDcH2/WJ4c05NAX28nVyYiIk3BY5ZmDx06lCVLlrBz504A0tLSWLZsGaNGjTrjc5599llCQ0Orv+Li4pqqXGlEUcH+/Pf2gdx/WVe8LPDp+kOMeW05O48VOrs0ERFxMS7dM2MYBn/5y1947rnnsFqt2Gw2/va3vzFt2rQzPkc9M55nVUY2U2ZtJKuwHH8fL564uic39o/zyPuViIiIyWN6ZubMmcNHH33EzJkz2bBhAx9++CH/+Mc/+PDDD8/4HD8/P0JCQup8iXs7v2MkC6cO44KurSirtPPnzzZz35xUisqrnF2aiIi4AJfumYmLi+Ohhx7innvuqW57+umn+eijj9i+fftZvYZuZ+A57HaDt5bu4cVvd2KzG3RsGcRrE/uS0Eb/XUVEPI3H9MyUlJTg5VW3RKvVqqXZzZSXl4W7L+rM7N+fT0yoPxknihn7xnJmrN6PC2dyERFxMJcOM1dddRV/+9vfWLBgAfv27ePzzz/npZde4pprrnF2aeJE53WIYOGUYVzcPYqKKjsPf76FSbM2UljmuXeXFRGRM3PpYabCwkIeeeQRPv/8c7KysmjTpg0TJkzg0UcfxdfX96xeQ8NMnstuN3h32V6e+2Y7VXaD9pGBvD6xL73ahjq7NBEROUf1+fx26TDTGBRmPN+GA7lMnrmRw3ml+Fq9+Muo7tw6uINWO4mIuDGPmTMjcjb6tgtn4ZRhjEiIpsJm5/Gv0rnzo/Xkl2jYSUSkOVCYEY8QGujDv27px2NXJeBjtbBo6zGufDWF1IN5zi5NREQcTGFGPIbFYuG3Q+L57K7BtIsI5FBuKde/uYJ/p2RotZOIiAdTmBGP0yc2jPlThjKqd2uq7AZPL9jGHR+uI7e4wtmliYiIAyjMiEcK8ffh9Yl9eWpsL3y9vViyPYsrp6ewfn+Os0sTEZFGpjAjHstisXDL+e35/O7BxLcM4kh+GTf+axVv/rAHu13DTiIinkJhRjxezzahfDV5KFcntsFmN3jum+3834dryS4q//Uni4iIy1OYkWahhZ83r4xP4tlre+Pn7cUPO44zanoKqzOynV2aiIicI4UZaTYsFgsTBrTji0lD6NQqiGMF5Ux4ZxWvLtmFTcNOIiJuS2FGmp3urUP4ctJQru3bFrsBLy7eya3vreF4oYadRETckcKMNEtBft68dGMSL1zfhwAfK8t2n2DU9BRW7D7h7NJERKSeFGakWbuhfxxfThpC1+gWHC8s56Z3V/PS4p0adhIRcSMKM9LsdYkO5ot7hjKufxyGAdOX7OKmf6/iWEGZs0sTEZGzoDAjAgT4Wnnu+j68PC6JQF8rqzJyGPVKCkt3Hnd2aSIi8isUZkRqGZvclq8mD6V762Cyiyu49f01vLBoO1U2u7NLExGRM1CYEfmZTq1aMO+eIdw0sB2GAa9/v4cJ76wiM7/U2aWJiMhpKMyInIa/j5W/XdObVyck08LPm7X7chn1Sgrfb89ydmkiIvIzCjMiv+CqxDbMnzyUXm1DyC2p5LcfrOXZhduo1LCTiIjLUJgR+RUdWgbx2V2DuW1wBwD+tTSDG/+1kkO5Jc4tTEREAIUZkbPi523l8at78tbNfQn292bjgTyunL6Mb7cedXZpIiLNnsKMSD2M7BXDwinDSIwLI7+0kt//dz1PfpVORZWGnUREnEVhRqSe4iIC+eQPg7hjaDwA7y3fyw1vreBgjoadREScQWFGpAF8vb346+gE/v2b/oQG+JB2KJ9R01P4enOms0sTEWl2FGZEzsGlCdEsnDqMfu3DKSyr4q4ZG3j0iy2UVdqcXZqISLOhMCNyjtqGBTD79+dz54WdAPjPyv1c9+YK9p0odnJlIiLNg8KMSCPwsXrx0BXdef+35xER5MvWIwWMfnUZX6YdcXZpIiIeT2FGpBEN7xbFwinDGNAhgqLyKqbM2si0uZs17CQi4kAKMyKNrHWoPzN/N5DJF3fGYoFZaw4w9vXl7M4qcnZpIiIeSWFGxAG8rV48MKIb//m/AbRs4cv2o4Vc/doy5m445OzSREQ8jsKMiAMN69KKhVOGMahjJCUVNu7/OI0/fpJGSUWVs0sTEfEYCjMiDhYV4s9Hdwzkvku74mWBT9cfYsxry9l5rNDZpYmIeASFGZEmYPWyMPXSLsy443xaBfuxK6uIq19bxsdrD2IYhrPLExFxawozIk1oUKdIvp46jGFdWlJWaefBzzZx/8dpFJdr2ElEpKEUZkSaWMsWfnz42wH86fJueFng842HuerVZaQfKXB2aSIibklhRsQJvLws3DO8M7N/P4jWIf5knChm7BvLmbF6v4adRETqSWFGxIkGxEewcOowhndrRUWVnYc/38LkWRspLKt0dmkiIm5DYUbEySKCfHn31vOYdkV3vL0szN+UyehXl7HlcL6zSxMRcQsKMyIuwMvLwh8u7MScPwyibVgA+7NLuPaNFXy4Yp+GnUREfoXCjIgL6dc+nAVThnJpj2gqbHYe+3Ird320gfxSDTuJiJyJwoyIiwkL9OWd3/TjkdEJ+FgtfLP1KFdOTyH1YJ6zSxMRcUkKMyIuyGKxcPvQeD69czBxEQEcyi3lhrdW8O+UDA07iYj8jMKMiAtLjAtj/uRhXNGrNZU2g6cXbON3/1lPXkmFs0sTEXEZCjMiLi40wIc3burLk2N64mv14n/bjjHqlRTW789xdmkiIi5BYUbEDVgsFn4zqANz7x5M+8hAjuSXceO/VvHWj3uw2zXsJCLNm8KMiBvp1TaU+ZOHclViG2x2g79/vZ3/+3AtOcUadhKR5kthRsTNBPv7MH18Es9c0xs/by9+2HGcUa+ksGavhp1EpHlSmBFxQxaLhYkD2zHvniF0bBXE0YIyxr+9kte+26VhJxFpdixGA9d52u12du/eTVZWFna7vc6xCy64oFGKawwFBQWEhoaSn59PSEiIs8sRaXTF5VU8Mm8LczceBmBYl5a8dGMSrYL9nFyZiEjD1efzu0FhZtWqVUycOJH9+0+9w6/FYsFms9X3JR1GYUaai0/WHeSRL7ZQVmmnVbAfr4xPYnCnls4uS0SkQerz+d2gYaY777yT/v37s2XLFnJycsjNza3+ysnRuL2IM9zQP46vJg2la3QLjheWc/O/V/Py/3Zi07CTiHi4BvXMBAUFkZaWRufOnR1RU6NSz4w0N6UVNh77cgsfrzsEwKCOkbwyPomoEH8nVyYicvYc3jMzcOBAdu/e3aDiRMSxAnytPH99Iv8cl0igr5WVGdmMmp5Cyq7jzi5NRMQhvBvypMmTJ/PAAw9w9OhRevfujY+PT53jffr0aZTiRKThrkmOpU9sGPfM2MD2o4X85r013HNRZ+69tAveVi1kFBHP0aBhJi+vU98ILRYLhmFoArCIiymrtPHk/HRmrj4AwHkdwpk+IZmY0AAnVyYicmYOX820f//+Xzzevn37+r6kwyjMiJi+SjvCtLmbKSqvIjzQh5duTGJ49yhnlyUicloODzPuRGFGpMa+E8VMmrWBLYcLAPjDBR354+Xd8NGwk4i4GIdPAAbYs2cPkydP5tJLL+Wyyy5jypQp7Nmzp6Evd0aHDx/m5ptvJjIyksDAQJKSkli/fn2jn0ekOejQMojP7hrMrYPM3tN/Lc1g3L9Wcii3xMmViYg0XIPCzKJFi0hISGDNmjX06dOHXr16sXr1anr27MnixYsbrbjc3FyGDBmCj48PX3/9Nenp6bz44ouEhYU12jlEmhs/bytPjOnFmzf1Jdjfmw0H8rhy+jIWpx9zdmkiIg3SoGGm5ORkLr/8cv7+97/XaX/ooYf49ttv2bBhQ6MU99BDD7F8+XJSUlLO+jnl5eWUl5dX/72goIC4uDgNM4mcxsGcEibN3EDaoXwA/m9IPA9d0R1fbw07iYhzOXyYadu2bdx+++2ntP/f//0f6enpDXnJ0/ryyy/p378/N9xwA1FRUSQnJ/POO+/84nOeffZZQkNDq7/i4uIarR4RTxMXEcgndw7m9qHxALy3fC83vLWCgzkadhIR99GgMNOqVStSU1NPaU9NTSUqqvFWR2RkZPDmm2/SpUsXFi1axJ133smUKVP4z3/+c8bnTJs2jfz8/OqvgwcPNlo9Ip7I19uLR0Yn8M5v+hMa4EPaoXxGTU/hmy2Zzi5NROSsNGjTvN/97nf8/ve/JyMjg8GDB2OxWFi2bBnPPfccDzzwQKMVZ7fb6d+/P8888wxgDm9t3bqVN998k9/85jenfY6fnx9+frpbsEh9XZYQzcKpw5g8cwMbDuRx50cbuHVQe6aN6oG/j9XZ5YmInFGDwswjjzxCcHAwL774ItOmTQOgTZs2PP7440yZMqXRiouJiSEhIaFOW48ePfjss88a7RwiUqNtWABz/jCIf3y7g3/9mMGHK/ezbn8ur0/sS4eWQc4uT0TktBo0zGSxWLjvvvs4dOhQ9XDOoUOHmDp1KhaLpdGKGzJkCDt27KjTtnPnTpfalE/E0/hYvZh2RQ/ev+08wgN92HqkgNGvLuPLtCPOLk1E5LTOeclCcHAwwcHBjVHLKe677z5WrVrFM888w+7du5k5cyZvv/0299xzj0POJyI1hnePYuHUYQzoEEFReRVTZm3kL59vpqzSdW5XIiIC9Via3bdvX5YsWUJ4eDjJycm/2APTWEuzAebPn8+0adPYtWsX8fHx3H///fzud7876+drB2CRc1Nls/Py/3bx+g+7MQzo3jqY12/qS6dWLZxdmoh4sPp8fp/1nJkxY8ZUT6wdM2ZMow4n/ZLRo0czevToJjmXiJzK2+rFHy/vxsCOEdw7O5XtRwu56tVl/O2aXlyTHOvs8kREdG8mETl7WQVlTJ2dysqMbABu7B/LE1f3IsBXq51EpHE5fNO8jh07kp2dfUp7Xl4eHTt2bMhLiogbiArx56M7BjL1ki5YLPDxukNc/doydh0rdHZpItKMNSjM7Nu3D5vt1EmA5eXlHDp06JyLEhHXZfWycN9lXZlx+0BaBfuxK6uIq15bxsfrDuLhHb0i4qLqtc/Ml19+Wf39okWLCA0Nrf67zWZjyZIlxMfHN151IuKyBnduycIpw7j/41RSdp3gwU83sWpPNk+N7UWQX4O2sBIRaZB6zZnx8jI7ciwWyym/gfn4+NChQwdefPFFl5qwqzkzIo5ltxu8+eMeXvx2B3YDOrUK4rWJfekRo39vItJw9fn8btAE4Pj4eNauXUvLli0bXGRTUZgRaRpr9uYwZdZGjhaU4eftxWNX9WTCgLgmW/koIp7F4ROA9+7d6xZBRkSazoD4CBZOHcZF3VpRXmXnL59vZsrsVArLKp1dmoh4uAYvzS4uLubHH3/kwIEDVFRU1DnWmPdnOlfqmRFpWna7wTspGTy/aAc2u0GHyEBem9iXXm1Df/3JIiI/cfgw08aNGxk1ahQlJSUUFxcTERHBiRMnCAwMJCoqioyMjAYX39gUZkScY/3+XKbM2sjhvFJ8rV78dXQPbjm/vYadROSsOHyY6b777uOqq64iJyeHgIAAVq1axf79++nXrx//+Mc/GlS0iHiWfu3DWTBlKJf2iKbCZufRL7Zy94wN5Jdq2ElEGleDwkxqaioPPPAAVqsVq9VKeXk5cXFxPP/88/zlL39p7BpFxE2FBfryzm/68cjoBHysFr7ecpTRr6aQdjDP2aWJiAdpUJjx8fGp7iqOjo7mwIEDAISGhlZ/LyIC5lYOtw+N55M7BxMbHsDBnFKuf2sF7y7bq032RKRRNCjMJCcns27dOgCGDx/Oo48+yowZM7j33nvp3bt3oxYoIp4hKS6MBVOGMbJnayptBk/NT+f3/11PXknFrz9ZROQXNCjMPPPMM8TExADw1FNPERkZyV133UVWVhZvv/12oxYoIp4jNMCHN2/uy5NjeuJr9WJx+jGunL6M9ftznV2aiLixeq9mMgyDAwcOEBUVRUBAgKPqajRazSTimrYczueemRvYn12Ct5eFP13ejd8N64iXl1Y7iYiDVzMZhkGXLl10Q0kROSe92oYyf/JQRveJocpu8OzX27njP+vIKdawk4jUT73DjJeXF126dCE7O9sR9YhIMxLs78OrE5J55pre+Hp78d32LEa9ksLafTnOLk1E3EiD5sw8//zz/OlPf2LLli2NXY+INDMWi4WJA9vxxT1D6NgyiKMFZYx/exWvf78bu12rnUTk1zVoB+Dw8HBKSkqoqqrC19f3lLkzOTmu81uV5syIuI/i8ir+Om8Ln288DMCwLi3557gkWrbwc3JlItLU6vP57d2QE/zzn//UluQi0uiC/Lx56cZEBnWM5NEvt5Cy6wSjXknhlfHJDOoU6ezyRMRFNfhGk+5CPTMi7mnnsULumbGBXVlFeFlg6iVdmXRxZ6xa7STSLDj83kxWq5WsrKxT2rOzs7FarQ15SRGROrpGB/PFpCHc0C8WuwH//N9Obnl3NVmFZc4uTURcTIPCzJk6c8rLy/H19T2ngkRETgr09eaFGxJ56cZEAn2trNiTzahXlrFs1wlnlyYiLqRec2amT58OmKsP/v3vf9OiRYvqYzabjaVLl9K9e/fGrVBEmr1r+8bSJzaMSTM3sP1oIbe8t5pJwzsz9ZIueFsb9DuZiHiQes2ZiY+PB2D//v3ExsbWGVLy9fWlQ4cOPPnkkwwcOLDxK20gzZkR8RxllTae+CqdWWvMG9oOiI9g+vhkWof6O7kykWbKMCAzFcLaQ2BEo750fT6/GzQBePjw4cydO5fw8PAGF9lUFGZEPM+XaUeY9tkmiitsRAT58tKNiVzULcrZZYk0H4VHYdPHkDoTjm+DkX+H8+9q1FM4fGn2999/36DCREQaw9WJbejdNpRJMzew9UgBt72/ljsv7MQDI7rio2EnEceoLIMdCyFtFuz+Hxh2s93qByXOvStAg3pmbDYbH3zwAUuWLCErKwu73V7n+HfffddoBZ4r9cyIeK6yShvPLNzGf1buB6Bf+3BenZBMmzDXvwmuiFswDDi0DlJnwNa5UJZfcyxuICROgJ7XQEBYo5/a4T0zU6dO5YMPPuDKK6+kV69e2kBPRJzC38fKk2N6MahjJA9+ton1+3MZNT2FF29I5JIe0c4uT8R95R+GTbMhdRZk76ppD4mFxPFmiGnZ2Xn1/UyDemZatmzJf/7zH0aNGuWImhqVemZEmocD2SVMnrWBtEPmb453DI3nwZHd8fXWsJPIWakoge3zzXkwGT8AP8UD7wBIGANJE6DDBeDVNP+mHN4z4+vrS+fOrpPIRETaRQbyyZ2D+fvX23lv+V7+vWwv6/bn8uqEZOIiAp1dnohrMgw4sNIMMFvnQUVhzbH2Q8wemIQx4O/anQEN6pl58cUXycjI4LXXXnP5ISb1zIg0P4vTj/HHT9LIL60kxN+b569PZGSv1s4uS8R15O6HtNnmZN7cvTXtYe0haSL0GQcR8c6rjyZYmn3NNdfw/fffExERQc+ePfHx8alzfO7cufV9SYdRmBFpng7lljB51kY2HsgD4LbBHZg2qjt+3rrlijRT5YWQ/qXZC7N/WU27bwvoORYSJ0K7QU02jPRrHD7MFBYWxjXXXNOg4kREmkJseCAf/2EQ/1i0g38tzeCDFftYtz+H1yb0pUPLIGeXJ9I07HbYl2IGmG1fQmXJTwcsEH8BJN0EPUaDr3v/m9Bds0XE4323/RgPfJxGbkklLfy8+ft1vRndp42zyxJxnOw95hBS2mzIP1jTHtHJnMjbZzyExTmvvrPg8GEmgKqqKn744Qf27NnDxIkTCQ4O5siRI4SEhNS5Z5OzKcyICEBmfilTZm1k7b5cAG4a2I5HRifg76NhJ/EQZfmw9XNzOfXBVTXtfqHQ6xpzGCluALj4XNeTHB5m9u/fz8iRIzlw4ADl5eXs3LmTjh07cu+991JWVsZbb73V4OIbm8KMiJxUZbPzz//t5I0f9mAY0L11MK/f1JdOrVznFzCRerHbION7cxhp+wKoKjPbLV7Q6WJzMm+3UeDjfhtJNsmmef379yctLY3IyMjq9muuuYY77rijIS8pIuJw3lYv/nR5dwbGR3LfnFS2Hy3kqleX8cw1vRmb3NbZ5YmcveM7zACzaQ4UZta0t+puLqfuMw5CYpxXXxNrUJhZtmwZy5cvx9fXt057+/btOXz4cKMUJiLiKBd0bcXCqcOYOnsjqzJyuHdOKiv3ZPP41T0J8NWwk7iokhzY8pk5F+bw+pr2gHDodb3ZC9Mm2W2GkRpTg8KM3W7HZrOd0n7o0CGCg4PPuSgREUeLDvFnxh3nM33JLqZ/t4s56w6y8WAur0/sS5dovY+Ji7BVwu4lkDYTdnwNtgqz3WKFLiPMybxdR4K3n3PrdLIGzZkZN24coaGhvP322wQHB7Np0yZatWrFmDFjaNeuHe+//74jam0QzZkRkV+zYvcJps5J5XhhOQE+Vp4a24vr+8U6uyxpzo5uMXtgNn0MxVk17dG9zQDT+wZoEeW8+pqAwycAHzlyhOHDh2O1Wtm1axf9+/dn165dtGzZkqVLlxIV5ToXWGFGRM7G8cJy7puTyrLdJwC4tm9bnhrTiyC/BnVgi9Rf8QnY/Ik5F+boppr2wJbQ50ZzLkxMH+fV18SaZGl2aWkps2fPZv369djtdvr27ctNN91EQIBrzZhWmBGRs2W3G7zxw25eWrwTuwGdWgXx+k196d5a7x3iIFUVsGuRuZx61yKwV5ntXj7QbaS5nLrLZWD1+eXX8UBNEmbchcKMiNTX6oxspszeyLGCcvy8vXj86p6MPy/O5e9FJ27CMCAzzeyB2fwJlObUHItJMnfl7X09BEY4rURX4PAw8+yzzxIdHc3//d//1Wl/7733OH78OH/+85/r+5IOozAjIg2RXVTO/R+n8ePO4wBcndiGZ67tTQsNO0lDFR6DzR+bISYrvaa9RbS5lDppIkT1cF59LsbhYaZDhw7MnDmTwYMH12lfvXo148ePZ+/evWd4ZtNTmBGRhrLbDf61NIN/fLsDm90gvmUQr01MpmebUGeXJu6isgx2fm0OI+3+Hxg/rQS2+kH3K80A03E4WBWSf87hm+YdPXqUmJhTN+Np1aoVmZmZp3mGiIj78fKycNdFnRgQH87kmRvZe6KYa95YwSOjE7h5YDsNO8npGYa5D0zqTNjyqXmbgZNiB5irkXpeCwFhTivR0zQozMTFxbF8+XLi4+PrtC9fvpw2bXTzNhHxLP3aR7Bw6jD++Eka/9uWxSPztrBqTzbPXtebEP/mNzFTzqDgiHljx9SZkL2rpj2kLSSON1cjtezivPo8WIPCzB133MG9995LZWUlF198MQBLlizhwQcf5IEHHmjUAkVEXEFYoC/v/KY/7y3fx9+/3saCzZlsPpzPaxOT6RMb5uzyxFkqSsx7IqXNhD3fAz/N3PAOgISrzQATfwF4aWdpR2rQnBnDMHjooYeYPn06FRXmboT+/v78+c9/5tFHH230Is+F5syISGNLPZjHpJkbOJRbio/Vwl9G9eC2wR007NRcGAYcWGUGmK3zoLyg5lj7IWaASRgD/vrMORdNtjS7qKiIbdu2ERAQQJcuXfDzc73tlBVmRMQR8ksr+fOnm/hm61EARiRE88L1iYQGatjJY+XuN2/smDoTcmstdAlrbwaYxPEQEX/m50u9aJ+ZWhRmRMRRDMPgPyv387cF26iw2WkbFsBrE5NJbhfu7NKksZQXwbYvzQCzL6Wm3bcFJIw1J/O2GwxeXk4r0VM5PMwUFxfz97//nSVLlpCVlYXdbq9zPCMjo74v6TAKMyLiaFsO53PPzA3szy7B28vCn0d25/ah8Xh5adjJLdntsH+ZGWDSv4TK4p8OWCB+mLkrb8LV4Bvk1DI9ncOXZt9xxx38+OOP3HLLLcTExGicWESatV5tQ5k/eSjT5m5m/qZM/rZwGyszsvnHDYlEBPk6uzw5WzkZ5n4wabMh/0BNe0Qnswemz3gIi3NefXJGDeqZCQsLY8GCBQwZMsQRNTUq9cyISFMxDIOZaw7wxFfpVFTZiQn1Z/qEZM7r0Ly3pXdpZfnmJN60WXBgZU27Xwj0utbshYkbAPqlvck5vGcmPDyciAj94xQRqc1isXDTwPYkx4UzaeYGMk4UM/7tVdx/WVfuurCThp1chd0GGT+YAWbbV1BVZrZbvMzdeJMmmrvz+rjWjZPlzBo0Y+mpp57i0UcfpaSkpLHr+UXPPvssFouFe++9t0nPKyJSHwltQvhq8lCuSW6LzW7wwqId3PbBWk4UlTu7tObt+E743+Pwz17w0bXmTR6ryqBlN7j0cbhvK9wy17zJo4KMW2nQMFNycjJ79uzBMAw6dOiAj0/dpYgbNmxotAJPWrt2LTfeeCMhISEMHz6cl19++ayep2EmEXEWwzD4ZN0hHv1yC2WVdqKC/XhlfDKDOkU6u7TmozQXtnxmzoU5vK6m3T/MDC1JE6FNXw0juSCHDzONHTu2IU9rsKKiIm666Sbeeecdnn766SY9t4hIQ1ksFm48L46kdmHcPWMDu7OKuOnfq5h6SVcmXdwZq4adHMNWBXuWmKuRdiwEm7m5KxYrdLnMDDBdR4K36+2NJg3jFvvM3HrrrURERPDPf/6Tiy66iKSkpDP2zJSXl1NeXtOVW1BQQFxcnHpmRMSpSiqqeOyLrXyy/hAAQzpH8s9xSUQF+zu5Mg9ybKsZYDZ9DMVZNe3RvcxN7XrfAMHRzqtP6sXhPTMnrV+/nm3btmGxWEhISCA5OflcXu60Zs+ezYYNG1i7du1ZPf7ZZ5/liSeeaPQ6RETORaCvNy/ckMigTpE8/PkWlu/OZtQrKbw8LpmhXVo6uzz3VZxt3pk6dQZkptW0B0ZC7xvNXpiYPs6rT5pEg3pmsrKyGD9+PD/88ANhYWEYhkF+fj7Dhw9n9uzZtGrVqlGKO3jwIP379+fbb78lMTERQD0zIuL2dmcVMWnmBrYfLcRigcnDOzPlki54W7WL7FmpqoBd35qrkXYuAnul2e7lA10vh6SbzOEkq24t4c4cvgPwuHHj2LNnD//973/p0aMHAOnp6dx666107tyZWbNmNazyn5k3bx7XXHMNVmvN3UZtNhsWiwUvLy/Ky8vrHDsdTQAWEVdUVmnjia+2MmvNQQAGxEfw6oRkokM07HRahmH2vKTNMlchlWTXHItJMntgel0PQZpc7SkcHmZCQ0P53//+x3nnnVenfc2aNYwYMYK8vLz6vuRpFRYWsn///jptv/3tb+nevTt//vOf6dWr16++hsKMiLiyL1IP85e5mymusBER5MtLNyZyUbcoZ5flOoqyzDkwqTMha2tNe4to6HOjualddILz6hOHcficGbvdfspybAAfH59T7tN0LoKDg08JLEFBQURGRp5VkBERcXVjktrSJzaMe2ZsID2zgNveX8tdF3Xigcu6Nt9hp8oy2Pm1uZx69//AsJntVj/oPsoMMJ0uBus5TfsUD9Kg/xMuvvhipk6dyqxZs2jTpg0Ahw8f5r777uOSSy5p1AJFRDxdfMsg5t49mL8t2MZ/V+3nzR/2sHZvDtMnJNMmrJls3mYYcHiDOZF3y2dQlldzLPY8cxip5zUQoDuSy6kaNMx08OBBxowZw5YtW4iLi8NisXDgwAF69+7NF198QWxsrCNqbRANM4mIO1m4OZM/f7qJwvIqwgJ9ePGGRC7p4cHLiQuOwKY55jDSiZ017SFtIXG8uaS6ZRfn1SdO4/A5MyctXryY7du3YxgGCQkJXHrppQ19KYdRmBERd3Mgu4RJszaw6VA+AL8bFs+fLu+Or7eHDDtVlsL2BWaAyfgejJ+mJ3gHQI+rzF6Y+AvA65cXeIhnc1iY+e6775g0aRKrVq065YXz8/MZPHgwb731FsOGDWtY5Q6gMCMi7qi8ysZzX+/gveV7AUiKC+PVCcnERQQ6ubIGMgw4uNocRto6D8oLao61G2wGmIQx4K/3aTE5LMxcffXVDB8+nPvuu++0x6dPn87333/P559/Xr+KHUhhRkTc2bdbj/LHT9IoKKsixN/ceO/ynq2dXdbZyzsAabPNJdU5GTXtYe3MIaTE8RDR0Xn1ictyWJhp374933zzTfXeMj+3fft2RowYwYEDB+pXsQMpzIiIuzuUW8LkWRvZeCAPgNsGd2DaqO74ebvoMEx5EWz70hxG2pdS0+4TBD3HmiGm/RDw8pBhM3EIhy3NPnbs2GmXZFe/mLc3x48fr89LiojIr4gND+TjPwziH4t28K+lGXywYh/r9+fy2sRk2kcGObs8k90O+5eZy6nTv4DK4ppj8ReYy6l7XAV+LZxXo3iseoWZtm3bsnnzZjp37nza45s2bSImJqZRChMRkRo+Vi+mjerBwI4RPPBxGpsP5zN6+jL+fl0fruzjxPfdnAxzGCl1FuTX6pWP6GgGmMRx5pCSiAPVa5hp8uTJ/PDDD6xduxZ//7pbbpeWljJgwACGDx/O9OnTG73QhtIwk4h4msz8UqbM2sjafbkA3Hx+O/56ZQL+Pk007FRWAFs/N+fBHFhZ0+4XYu4FkzQR4gaCxdI09YhHcticmWPHjtG3b1+sViuTJk2iW7duWCwWtm3bxuuvv47NZmPDhg1ER7vOnggKMyLiiapsdl5avJM3ftgDQI+YEF6bmEynVg4axrHbYO+P5jyYbfOhqtRst3hBx4t+GkYaDT7NZJM/cTiH7jOzf/9+7rrrLhYtWsTJp1osFi6//HLeeOMNOnTo0ODCHUFhRkQ82Y87j3P/nFSyiysI9LXyzDW9GZvctvFOcGKXGWDSZkPhkZr2lt0gaQL0GQchbRrvfCI/aZJN83Jzc9m9ezeGYdClSxfCw11zi2mFGRHxdMcKypg6eyOrMnIAGNc/jsev7kmAbwOHnUpzYctcM8QcXlfT7h8Gva83e2Ha9tUwkjhUk+0A7A4UZkSkObDZDV5ZsotXv9uFYUC36GBevymZzlHBZ/kCVbDnO3NTux1fg63cbLdYofOl5jyYbleAt5/jfgiRWhRmalGYEZHmZMXuE0yZncqJonICfKw8NbYX1/f7hfvlHUuHtJmw6WMoOlbTHtXTDDC9b4Bg15kHKc2HwkwtCjMi0twcLyznvjmpLNt9AoBr+7bl6bG9CPT9aTeO4mzY8qk5jJSZWvPEwEgzvCRNhNZ9NIwkTqUwU4vCjIg0Rza7wRvf7+af/9uJ3YCuLf14b0gusfvnwc5FYK80H+jlA10vNwNM58vA29epdYuc5LAdgEVExD1YvSxMvrgzF4Zkkv71W1xWuJTIRYU1D4hJMgNMr+shKNJpdYo0BoUZERFPU5RlzoFJm0WfY1voA2CB40Yoc21Dye1yHZPGj6GFnz4CxDPo/2QREU9QVW6uQkqbBbsWg2Ez262+0P1K7H0m8NnhDrzwvz3YthksenUZr01MpmebUOfWLdIINGdGRMRdGQYc3mCuRtr8KZTl1Rxr2/+nYaRrIaBmH7B1+3KYPGsjmfll+Hp78cjoBG4e2A6LJvuKi9EE4FoUZkTE4xQcMXfkTZsFJ3bWtAe3gcTxZohp2eWMT88truCPn6SxZHsWAFf2juHZ63oT4u/j6MpFzprCTC0KMyLiESpLYfsCc1O7jB/AsJvt3gHmPZESJ5j3SPI6u11/DcPg3WV7+fvX26myG7SLCOS1icn0iQ1z1E8gUi8KM7UozIiI2zIMOLja3A9m6+dQXlBzrN0gswcmYSz4N/y9LfVgHpNmbuBQbik+Vgt/GdWD2wZ30LCTOJ3CTC0KMyLidvIOQNoccy5MTkZNe2g78+aOieMhomOjnS6/tJIHP01j0VZzB+DLe0bz/HWJhAZq2EmcR2GmFoUZEXELFcWQ/qUZYPYurWn3CYKEMWYvTPsh4OXlkNMbhsGHK/bxzMLtVNjstA0L4LWJySS3c82bCIvnU5ipRWFGRFyW3Q4HVpjDSOlfQEVRzbEOwyDpJuhxFfi1aLKSNh/KZ9KsDezPLsHby8KfR3bnjmHxGnaSJqcwU4vCjIi4nJyMmtVIeQdq2sPjzR6YxPEQ1s5p5RWWVfLQ3M0s2JQJwCXdo/jHDYmEB+lWB9J0FGZqUZgREZdQVgDp8yB1ltkbc5JfCPS8xgwxcQNd5uaOhmEwc80BnvgqnYoqO21C/Zk+IZn+HSKcXZo0EwoztSjMiIjT2G2w90czwGz7CqpKfzpggU7DzWGk7leCT4BTy/wl6UcKmDRzAxknirF6WXhgRFfuvKATXl6uEbrEcynM1KIwIyJN7sQucwgpbTYUHK5pb9nV3A+mzzgIbeu8+uqpqLyKv36+mXmpRwC4oGsrXroxkZYt/JxcmXgyhZlaFGZEpEmU5sKWuWaIObS2pt0/DHpfD4kToW1flxlGqi/DMPhk3SEe/XILZZV2ooL9mD4hmfM76o7b4hgKM7UozIiIw9iqYM935nLq7QvBVm62W6zQ+VJzT5huo8Dbc3owdhwt5J6ZG9idVYSXBe69tCv3DO+MVcNO0sgUZmpRmBGRRncs3Qwwmz6GomM17VE9zYm8vW+A4Gjn1edgJRVVPPrFVj5dfwiAIZ0j+ee4JKKC/Z1cmXgShZlaFGZEpFEUZ8OWT809YTJTa9oDI83wkjgBYhLddhipIT5bf4i/zttCaaWNli38eGV8EkM6t3R2WeIhFGZqUZgRkQazVcKub80As3MR2CvNdi9v6DrSDDBdRoB3891/ZXdWEffM2MCOY4VYLDB5eGemXtpVw05yzhRmalGYEZF6MQw4uslcTr35Eyg5UXMsJtFcTt3regjSxNeTyiptPPHVVmatOQjAwPgIpk9IJjpEw07ScAoztSjMiMhZKcoy58CkzYJjW2rag6Kgz43mXJjons6rzw18kXqYv8zdTHGFjYggX/45LokLu7ZydlniphRmalGYEZEzqiqHnd+Yw0i7FoNhM9utvuYqpKSJ0OkSsHo7t043knG8iHtmbmRbZgEAd13UiQcu64q31TE3yBTPpTBTi8KMiNRhGHBkgxlgtnxm7g9zUtv+5nLqntdCoLbtb6iyShtPL0jno1Xmfaf6tw9n+oRk2oS57k7H4noUZmpRmBERAAqOwKY55lyYEztq2oPbmDd2TJwArbo6rz4PNH/TEaZ9tpnC8irCAn148YZELunhuUvWpXEpzNSiMCPSjFWWwvYFZi9Mxvdg2M127wDoMdocRoq/ELyszq3Tg+3PLmbSzI1sPpwPwO+GxfPgyO74aNhJfoXCTC0KMyLNjGHAwTXmpnZbPofy/Jpj7QaZASZhLPjr/aCplFfZeHbhdj5YsQ+ApLgwXp2QTFxEoHMLE5emMFOLwoxIM5F30LyxY9osyNlT0x7a7qdhpPEQ2cl59QmLth7lT5+kUVBWRYi/Ny/ckMjlPVs7uyxxUQoztSjMiHiwimJI/9LshdmbAvz0duYTBAljzMm87YeCl4Y0XMXBnBImz9pI6sE8AG4b3IFpo7rj562hPqlLYaYWhRkRD2O3w/7lZg9M+hdQUVRzrMMwcxipx9Xg18J5NcovqrTZeWHRDt5emgFA77ahvD6xL+0iNewkNRRmalGYEfEQORk1w0h5B2raw+PNANNnHIS3d159Um9Lth3jgU/SyCupJNjPm+eu78Oo3jHOLktchMJMLQozIm6srMDsfUmdCQdW1LT7hUDPseatBeIGNqubO3qaI3mlTJm1kXX7zf1+bj6/HX+9MgF/Hw07NXcKM7UozIi4GbsN9v5o7gez7SuoKv3pgAU6DYfEidD9SvDVkISnqLTZ+efinbzxgzlxOyEmhNdv6kt8yyAnVybOpDBTi8KMiJs4scvsgdk0BwoO17RHdjEn8vYZD6FtnVefONyPO49z35xUcoorCPK18sy1vRmTpP/mzZXCTC0KMyIurDQPts41Q8yhtTXt/qHmnamTJkLbfhpGakaOFZQxZdZGVu/NAWD8eXE8dlVPAnw17NTcKMzUojAj4mJsVeZuvKkzYPtCsJWb7RYrdL7U7IXpegX4+Du3TnGaKpud6Ut28er3uzEM6BYdzOs3JdM5KtjZpUkTUpipRWFGxEUcSzf3g9n0MRQdq2mPSjB7YHrfCMG6b4/UWL77BFNnp3KiqJwAHytPje3F9f1inV2WNBGFmVoUZkScqCQHNn9q9sJkpta0B0ZC7xvMENO6j4aR5IyyCsu4b04qy3dnA3Bd31ieGtuTQF9vJ1cmjqYwU4vCjEgTs1XCrsVmL8yOb8BeabZ7eUPXkebdqbuMAG9f59YpbsNmN3j9+928/L+d2A3oHNWC1yf2pVtrDTt5MoWZWhRmRJpI5iZzQ7tNH0PJiZr2mERzOXXv6yGopfPqE7e3KiObKbM2klVYjp+3F09c3ZNx58VhUc+eR1KYqUVhRsSBirLM8JI2C45tqWkPioI+N5rDSNE9nVefeJzsonLu+ziNpTuPAzAmqQ1/u6Y3Lfw07ORpFGZqUZgRaWRV5bDzG3M59a7FYNjMdqsvdBtlBphOl4BVHy7iGHa7wVtL9/Ditzux2Q3iWwbx2sRkerYJdXZp0ogUZmpRmBFpBIYBRzaYAWbzp1CWV3OsbX9zOXXPayEwwmklSvOzdl8OU2ZtJDO/DF9vLx4ZncDNA9tp2MlDeEyYefbZZ5k7dy7bt28nICCAwYMH89xzz9GtW7ezfg2FGZFzUJBp7sibNguOb69pD24DiePMuTCtujqvPmn2cosreOCTNL7bngXAlX1iePba3oT4+zi5MjlXHhNmRo4cyfjx4znvvPOoqqri4YcfZvPmzaSnpxMUdHb37FCYEamnylLYvsDshcn4Hgy72e7tDz2uMlcjdbwIvLQjq7gGu93g3WV7ee6b7VTZDdpFBPL6xL70jtWwkzvzmDDzc8ePHycqKooff/yRCy644KyeozAjchYMAw6uMZdTb/kcyvNrjsWd/9Mw0jXmbQZEXNSGA7lMnrmRw3ml+Fgt/GVUD24b3EHDTm6qPp/fbjVDLz/ffIONiDjzuHx5eTnl5eXVfy8oKHB4XSJuK+8gbJpt3qE6Z09Ne2ic2QOTOB4iOzmvPpF66NsunIVThvGnT9P4Nv0YT3yVzqqMbJ6/LpHQQA07eTK36ZkxDIMxY8aQm5tLSkrKGR/3+OOP88QTT5zSrp4ZkZ9UFMO2r8xhpL1LgZ/eAnyCIGGM2QvTfih4eTm1TJGGMgyDD1bs45mF26i0GcSGB/DqhGSS24U7uzSpB48cZrrnnntYsGABy5YtIzb2zPfmOF3PTFxcnMKMNG92OxxYYfbApM+DiqKaYx2Gmcupe1wNfi2cVqJIY9t0KI9JMzdyIKcEby8LD13RnduHxmvYyU14XJiZPHky8+bNY+nSpcTHx9fruZozI81aTgakzTZXI+UdqGkPjzcDTJ9xEN7eefWJOFhBWSXTPtvMgs2ZAFzSPYp/3JBIeJBup+HqPCbMGIbB5MmT+fzzz/nhhx/o0qVLvV9DYUaanbICSP/CHEY6sKKm3TcYeo41Q0y7Qbq5ozQbhmHw0eoDPDU/nYoqO21C/Xl1YjL92mtfJFfmMWHm7rvvZubMmXzxxRd19pYJDQ0lICDgrF5DYUaaBbvNnP+SNgvSv4Sq0p8OWKDTcHM/mO5Xgm+gU8sUcaatR/KZNHMje08UY/Wy8McR3fjDBR3x8lKwd0UeE2bONK75/vvvc9ttt53VayjMiEc7sdtcTp02GwoO17RHdqkZRgpt67z6RFxMUXkVD3++mS9SjwBwYddWvHRjIpEt/Jxcmfycx4SZxqAwIx6nNA+2zjWHkQ6trWn3D4Ve10HSTdC2n4aRRM7AMAzmrD3IY19upbzKTnSIH9PHJzOwY6SzS5NaFGZqUZgRj2CrMnfjTZ1p7s5r+2nFnsUKnS8xe2G6XgE+/s6tU8SN7DhayN0z1rPneDFeFrjv0q7cPbwzVg07uQSFmVoUZsStZW0zA8ymj6HoaE17VIK5qV2fcRAc7bz6RNxcSUUVj8zbymcbDgEwpHMk/xyXRFSwfjFwNoWZWhRmxO2U5Jh3pk6bCUc21rQHRkLvG8wQE5OoYSSRRvTp+kM8Mm8LpZU2Wrbw45XxSQzp3NLZZTVrCjO1KMyIW7BVwq7FkDoDdi4Ce6XZ7uUNXUeaAabLCPDW3hgijrI7q5B7Zmxkx7FCLBaYfHEXpl7SRcNOTqIwU4vCjLi0zE3mMNLmT6DkRE176z7mRN7e10OQfjsUaSqlFTae+Gors9ceBGBgfATTJyQTHaJhp6amMFOLwoy4nKIsM7ykzoRjW2rag6Kgz43mZN7ons6rT0T4IvUwf5m7meIKG5FBvrw0LokLu7ZydlnNisJMLQoz4hKqymHnN+a9kXZ9C4bNbLf6QrcrzF6YTpeA1a1uZC/i0TKOF3HPzI1syywA4K6LOvHAZV3xtuomrE1BYaYWhRlxGsOAIxvMHpgtn0Fpbs2xtv3MHpie10KgtlQXcVVllTaeXpDOR6vMe5v1bx/O9AnJtAk7u13opeEUZmpRmJEmV5AJm+aYIebEjpr24BhzKXXSRGjV7czPFxGXM3/TER76bDNF5VWEBfrw0o2JXNxd2yI4ksJMLQoz0iQqS83N7NJmwZ7vwLCb7d7+0H20GWA6XgReVqeWKSINtz+7mEkzN7L5cD4Av7+gI3+6vBs+GnZyCIWZWhRmxGEMAw6uMfeD2fI5lOfXHGs3yFxO3XOseZsBEfEI5VU2nl24nQ9W7AMgKS6M1yYmExuum7g2NoWZWhRmpNHlHYRNs83JvDl7atpD20HiePMrspPz6hMRh/tmy1Ee/DSNgrIqQvy9eeGGRC7v2drZZXkUhZlaFGakUVQUw7avzHkwe5cCP/2z8QmChDGQNAHaDwUvdTeLNBcHc0qYNGsjaQfzAPjtkA5Mu6IHvt56H2gMCjO1KMxIg9ntcGCF2QOTPg8qimqOdRhmDiMljAG/Fk4rUUScq6LKzguLtvNOyl4A+sSG8tqEvrSL1LDTuVKYqUVhRuotZy+kzTYn8+btr2kPjzcn8vYZB+HtnVefiLicJduO8cAnaeSVVBLs581z1/dhVO8YZ5fl1hRmalGYkbNSXghb55kBZv/ymnbfYOh1DSROhHbn6+aOInJGR/JKmTJrI+v2m3tK3XJ+ex6+sgf+PlrF2BAKM7UozMgZ2W3m/Je0WZD+JVSV/nTAAh0vhKSbofuV4KvuYhE5O5U2Oy8t3smbP5iLAxJiQnj9pr7EtwxycmXuR2GmFoUZOcWJ3eZy6rTZUHC4pj2yizmRt884CI11Xn1uyjAMSqtKKakqobSq1Py+suSUtkpbJZV286vKXlX9faWt7t9rf28/uW9PPXlZvPDx8sHbyxsfL5+631t9TjlmN+xU2atoHdSaQO9AAnwCzD+9A+r83d/bHy+LJnnKmf2wI4v7P04jp7iCIF8rz1zbmzFJbZ1dlltRmKlFYUYAKM2DrXPNybyH1tS0+4dCr+vMeyO17desh5HKbeUUlBdQUPHTV3kB+RX5p7QVVBSQX55PcVUxpZV1g0pzEuAdUP11uOgwvVv2JswvjFC/UEJ8QwjxCzH/9A2paavV7u+tuzB7uqP5ZUyZvZE1e3MAGH9eHI9d1ZMAXw07nQ2FmVoUZpoxWxVkfG8up96+AGzlZrvFCp0vMSfzdr0CfDzzQ6XKXkVuWS7ZZdlkl2bX/Fn7+7Js8sryyK/Ip/zk9WkEtT/oA31qejb8vf3xs/rV6Q35eW+Jt8W7utfk5DGrpWFv/nbDXtPzU7u352e9QLWPHSs+Rm55LmF+YaftXWos3hZvqowquoR3IdI/ksiASCL8I6q/r/1nREAEPl4+jXZuaTpVNjvTl+zi1e93YxjQLTqY129KpnNUsLNLc3kKM7UozDRDWdvMALNpDhQdq2mPSjADTO8bINh9N7eyG3ZyynI4VnyMo8VHOVpy1Py+5Cg5pTnVQSWvPA+D+v3ztmAh2Df4tD0JJ78P9Q0lxC+EIJ+gZjcEYxgGZbay0w6fHSo8hJfF69d7tyoKGjRsFuoXSqR/JHbDToR/BL1b9qZ1UGuig6JpHWj+2TKgpcdee3e3bNcJ7p2TyomicgJ8rDw1thfX99Nw9i9RmKlFYaaZKMmBzZ+ac2GObKxpD4gww0vSRIhJdPlhJMMwyCvPI7M40wwqxUc5VnKszp9ZJVlU2ivP6vW8LF6E+YWd8pt+7T/D/cOrA0oLnxb6MHQwu2GnuLKYgooCckpzyCnLoaCi4JQes5yyHLJLzT9thu2sXtvb4k1UYFR1wPl52IkONAOPxcX/HXiqrMIy7p2dyoo92QBc1zeWp8b2JNDX28mVuSaFmVoUZjyYrRJ2LTYDzI5v4OQHvJc3dLncnMzb5XLw9nVunT9Taa8ksyiTQ4WHOFR0iIOFB+t8X1xZ/KuvYcFCq4BW5gdVUGuiA3/6oApsWSeshPmFYdXNLd2a3bCTX55fJ+xsy9lGYUUhhRWF1T1zx0uPn1WPT4B3ALHBscS1iCM2ONb8PjiO2BaxtGnRBl+ra/178TQ2u8Hr3+/m5f/txG5A56gWvD6xL91aa9jp5xRmalGY8UCZm8zl1Js+hpITNe2t+9QMIwW1dF59QGlVKfsL9rOvYJ8ZVE5+FR0iszjzVz90Wga0PO1v1q2DWtM6sDUtA1tqDoXUUWWv4kTpibpDjz/16J38Pqs06xdfw4KF1kGtzZDTwgw5gT6BJEUlER8ST6CPtiloLCv3ZDN19kayCsvx8/biyTE9ubF/nHrNalGYqUVhxkMUZcHmT8zVSMc217QHtTKXUidOgNa9mrQkwzDILstmb/7eU76OFB/5xef6W/2rPzDq/HYcHEvbFm3xs/o10U8hzUmFrYIjRUfq9AgeLDzIoSIzbP/aBOfWQa2JD4knPrTuV6uAVvoQboATReXcNyeVlF3mL2Vjk9rw9DW9aeGnYSdQmKlDYcaNVZXDzm/MALPrWzg5b8DqC92uMHfl7XwJWB3bQ2Gz2zhYeJCM/IyawFJg/llYUXjG54X6hdIhpANxwXHVQeVkd77mLYirORnOfx5w9uTtYWv21l98bpBPUHXI6RjWkfiQeGKDY+kU1glvL30w/xK73eCtpXt48dud2OwGHVsG8drEviS00eeVwkwtCjNuxjDgyAYzwGz5FEpza4617Wf2wPS6DgIjHHL6nLIcduXuYmfuzuqvPXl7zrhs2YKFti3amm/ioR3r/LYa7h/ukBpFnCG/PP/UXsiCvRwsPHjGYVNvL286h3Wma3hXuoZ3pUt4F7qGd6VlgHOHgV3R2n05TJm1kcz8Mny9vXh0dAI3DWzXrH/pUZipRWHGTRRkmkup02bB8e017cEx5jBS0kRo1a3RTldhq2Bv/t46oWVn7k5OlJ447eP9rf6ndK3Hh8bTPqS9hoSkWauwVXCw8GCdkJORn/GLvTkR/hHVwebkV6ewTs3+31JOcQV//CSN77abc5uu7BPDs9f2JsS/ec6PU5ipRWHGhVWWmpvZpc2CPd/Byd/uvP2h+2gzwHS8CM5xNU5xZTHbsreRnp3O1uyt7Mzdyb78fVQZVad9fFxwXJ032a7hXYkNjtWSZZF6sBt2DhcdrtPTuSt3F/sL9p92/yMvixd2w85FcRfRN6ovPSN70iOyB8G+zWuVj91u8O9lGTz/zQ6q7AbtIwN5bUJfeseGOru0JqcwU4vCjIsxDDi0FlJnwJbPoTy/5ljc+WaA6TnWvM1AA5RUlrA9Zztbs7dWh5d9+ftO++YZ7Bt8SmjpHNZZKzZEHKi0qpSMvIxTekXzyvNO+/j2Ie1JiEigZ8ueJEQm0COiBy18WzRt0U6w4UAuk2du5HBeKb5WL/4yqju3Du7QrIadFGZqUZhxEXkHYdNs8+aO2btr2kPjIHG8ORcmslO9XrK0qpQdOTtqgsuJrWTkZ5w2uEQHRtMz8qc3w8gedA3vSnRgdLN6YxBxVYZhcLz0ODtzd/LN3m8oqSohPTudw0WHT/v4DiEdSIhMqPNvOsjH8+5KnV9SyZ8+TePbdHMn85E9W/Pc9X0IDWgew04KM7UozDhRRTFs+8q8tcDepXAyZPgEQcLVZi9M+6Hg9evDN4ZhcKDwAGnH00jLSiP1eCo7c3ee9rFRgVF13ugSIhM04VDEDeWW5ZKenV7dy5qenU5mceZpH9s5rDOJrRLNr6hEOoR08IihYcMw+GDFPp5ZuI1Km0FseACvTkgmuZ3nLzBQmKlFYaaJ2e1wYIW5Gil9HlQU1RzrMMzsgUm4Gvx+eRy8pLKErdlbq8NL2vE0cstzT3lcy4CW9IzsaX791A2t4CLiuXLKcqp7YtOz09mSvYWsklM3AwzxDaFPqz4ktUoiMSqR3i17u3XvzaZDeUyauZEDOSV4e1l46Iru3D403qN7lxVmalGYaSI5e80hpLSZkHegpj28g7kfTOJ4CG9/2qcahsHhosOkHU8jNSuVtONp7Mzdecr9aHy8fEiITKh+c0qITKBti7YO/KFExB0cLT5KenZ69XvI1uytp2yn4GXxonNY5+r3j8RWibQLdq+lzwVllUz7bDMLNpu9U5f2iOIfNyQSFuiZt6BQmKlFYcaBygth6zxzNdL+5TXtvsHmJN6kidBu0Ck3d7Qbdvbk7WHdsXWsO7qOb/d/e9qXjwqIqn7TSYpKokdED903RkR+VaW9kp05O0k9nlrds3umXbkvbXcp/Vv3p390f7qEd3H5oSnDMPho9QGemp9ORZWdNqH+vDoxmX7tHbP3ljMpzNSiMNPI7DZz/kvaLHM+TGXJTwcs5jLqpInmsmrfmhVBdsPOztydrDu6jnXH1rH+2PpTVi54WbzoGdmzZsy7VSKtg1q71W9NIuK6skqy6sy523pi6ynbM4T4htA3ui/9o/vTv3V/uod3d9kbtW49ks+kmRvZe6IYq5eFP47oxh8u6IiXl+e8ZyrM1KIw00hO7DaHkNLmQMGhmvbILmaA6TMOQs0hnyp7FTtydlT3vKzPWn/Ktv8B3gEktkqkf3R/ekT2YEDrAfh7+zflTyQizViFrYJ1R9eRnpPOuqPr2Ji1kZKqkjqPaeHTguSo5Oqemx6RPVzqBq9F5VU8/Plmvkg1e50u6taKF29IJLKFZ2w+qDBTi8LMOSjNg61zzcm8h9bUtPuHmrcUSJwIsf2xY7AjZwc/HPqBT3d8SnFVMcWVxXVeKtA7kOToZPM3nuj+9IzsiY+D76kkInK2quxVbMveZv4SdmwdG45toKiyqM5jArwDaOHTgrGdxzI8bjgJkQlO77kxDIM5aw/y2JdbKa+yEx3ix/TxyQzsGOnUuhqDwkwtCjP1ZKuCjO/NTe22L4STk+gsXtDpErMXptsoMstzWZm5klVHVrH66GpyynLqvEywT3Dd7tqI7rrhnIi4DZvdxo7cHXWGxwsqCuo8JsQ3hIExAzk/5nwGxQwiLiTOSdXC9qMF3DNjA3uOF+Nlgfsu7crdwztjdeNhJ4WZWhRmzlLWNnM/mE1zoOhYTXtUAiROoLDHlawp2sfKIytZnbmafQX76jw90DsQq8XKHxL/wIDWA+ga3tXpv7GIiDQWu2FnV+4u1h1bx1tpb2Gz2yisrDt83rZFWwa1GcSgmEEMjBlIqF/T3oKguLyKR77YwtwN5maDQzpH8vK4ZFoFu+ewk8JMLQozv6AkBzZ/as6FObKxpj0ggspe17Gpw3msrDjOqsxVbDmxpc5SaavFSq+WvRjUZhDnx5xPn5Z9NGwkIs1Glb2KrdlbWXlkJSuPrGTT8U11JhRbsJAQmVD9HpkcldxkqzE/WXeQR7/YSmmljZYt/HhlfBJDOrvf/lsKM7UozPyMrRJ2LTYDzI5vwF5ptnt5c7TzxaS07U5KVS7fH/rxlKd2COnA+THnc36b8xnQekCzuwGciMiZlFSWsO7Yuupwsyd/zymPGdp2KBfEXsAFsRc4fI+sXccKuWfmBnYeK8JigckXd2HqJV3cathJYaYWhZmfHN380zDSx1ByAoAqYFObBJbGdCHFls/O/Iw6TwnxDWFImyGc38YcD45pEeOEwkVE3E9WSRarMlex8shKlh9efsoO5h1DO3JB7AUMazuM5Khkh/Rsl1bYePzLrcxZdxCAgfERTJ+QTHSIe6wcVZippVmHmaLjsPkTM8Qc2wxAjpcXy8OjSImKZ3lVHgVVNauOLFjo06oPg9oMYkDrAfSL7ufyG0iJiLg6wzBIO57GqsxVrMpcRWpWap1h+yCfIAa3GcywtsMY2nYorQJbNer55208zF8+30xJhY3IIF9eGpfEhV0b9xyOoDBTS7MLM1XlsHORGWB2L8Zur2Kbrw9Lg1qwLDyazUZpnbtKh/qFMqTNEIbFDmNImyGE+3v+zctERJwpvzyflZkrSTmUwrLDy05ZDdojoofZaxM7jF6RvRplMUXG8SLumbmRbZnmiqy7L+rE/Zd1xdvqur+wKszU0izCjGHAkQ3mfjBbPqWiNJfVAf58FxjApyGnzmvpHtGdYW2HcUHsBfRu2VurjkREnMRu2Nl6Yisph1NYemgpW7O3nvKYMZ3GcEm7SxjUZtA5bS5aVmnjqfnpzFht3j/vvA7hvDI+mTZhAQ1+TUdSmKnFo8NMQaa5lDptFoUndpASGMB3gQGkBAZSUmuSl7/VnyFth1R3YUYHRTuxaBEROZMTpSdYdngZKYdSSDmcQmlVafWxAO8ABrcZzMXtLubC2AsbvPR7/qYjPPTZZorKqwgP9OHFGxO5uLvrfS4ozNTicWGmshS2L4C0WWTt+4EfAvxZEhjAmgB/qmrdxygqIIrh7YYzoPUALoq7SDdoFBFxM5X2SlIOpbDm6Bq+O/AdmcWZ1cesFiv9o/szvN1wLo67uN4LNPZnF3PPzA1sOWwOO/3+go786fJu+LjQsJPCTC0eEWYMAw6thdQZZGz/gu+8bXwfGMAm/7obIXUM7cjF7S7m4riL6dmypybvioh4CMMw2J6zne8OfseSA0vYlburzvEeET24pN0lXNzuYjqHdT6rm/SWV9l4duF2PlixD4DkdmG8OiGZ2PDAX35iE1GYqcWtw0zeQYy0WWzfPIvPjFzmnGb+S59Wfbik3SUMjxtOfGi8E4oUEZGmdrDgIN8d/I7vDnzHxqyNdRZ2gDnPZnz38fSM7PmrweabLUd58NM0CsqqCPH35h83JDKiZ2tHln9WFGZqcbswU1GMkf4lO9M+YFHedhYFBXDAp2b/AW+LlYEx53Nxu4sZHje80ZfwiYiIe8kuzebHQz/y3YHvWHlkJRX2iupjbVu0ZUSHEVze4XISIhLOGGwO5pQwedZGUg/mAfDbIR2YdkUPfL2d18OvMFOLW4QZux1j/wp2bfg3i44s41t/b/b51gQYP4s3vt7+PDRwGhfHXUwL3xZOLFZERFxVSWUJSw8t5W+r/0a5rbzOBOLYFrFc3uFyRnQYQY+IHqcEm4oqOy8s2s47KXsB6BMbymsT+tIu0jnDTgoztbh0mMndx+61b7EoYwGLrJXsrRVgfPFiWOuBXN71Gi6MvZBAH9cYwxQREfdQWlXKssPLWLRvEUsPLa0TbOKC47i8w+Vc3uFyuoV3qxNs/pd+jD9+mkZeSSXBft48d30fRvVu+h3gFWZqcbkwU17Ing3vsmjHJyyqzCajVoDxwcLQyD5c3mM8F8ZdpB4YERFpFCWVJaQcTmHRvkWkHEqhzFZWfax9SHtGtDeHorqGd8VisXAkr5TJszayfr95G4Zbzm/Pw1f2wN+n6fYlU5ipxSXCjN3G0e1fsDDtXeYXZbDL17v6kA8wJKQrIxImclH8CN28UUREHOrkUNSifYtIOZxCua28+liHkA5c3elqRnUcRVRADC8t3smbP5g3zUyICeH1m/oS3zKoSepUmKnFmWGmIDON/619mQVZa1nrDUatbrwLAmMZ2X08F3W7VgFGREScoriymB8P/sg3+77h+4Pf1znWN6ovV3a8kqCqvjwydy85xRUE+Vp55trejEly7F2/wQPDzBtvvMELL7xAZmYmPXv25OWXX2bYsGFn9dymDjMVRVmkrHmZBfu/5UfKqKi1E28/7zCu7HQ1lybeTnhAhMNrEREROVsFFQUs2b+EBXsXsCZzTfVyb28vbwZEDWH/ge5sz4gFw4cJA+J47KqeDh128qgwM2fOHG655RbeeOMNhgwZwr/+9S/+/e9/k56eTrt27X71+U0RZuy2Sjamvsf87bP5tjyLglo7KHbCl9FtL2BU/ym0CdM+MCIi4vqOFR/jm33fMD9jPttztle3+1gCKclNoDI/iU7BibxxU386RzlmfqdHhZmBAwfSt29f3nzzzeq2Hj16MHbsWJ599tlffb4jw8yePYuZv/EtFhTsINNa61YCdgujInpzZd+76BY75Kx2YhQREXFFu3N3s2DvAhZkLKhzSwV7ZQgUJXN3/xu5e8iwRv+s85gwU1FRQWBgIJ988gnXXHNNdfvUqVNJTU3lxx9/POU55eXllJfXTGYqKCggLi6u0cPM85+M4b8lGdV/D7IbXBYYy5UJN3NewnisVu9feLaIiIh7sRt2NhzbwIK9C/hm7yKKKgurj3XwHc5XE6Y36vnqE2Zc+hP3xIkT2Gw2oqPr3s0zOjqao0ePnvY5zz77LE888YTDa0uOGcis3XsY6hXC6E6jubDfJPz9XWDpt4iIiAN4Wbzo37o//Vv3Z9qAafx4MIVX18wmo3gtydHJTq3NpcPMST/vujIM44zdWdOmTeP++++v/vvJnpnGduF5U/g+YRxhEZ0a/bVFRERcma/Vl8s6XMJlHS4h7UgmXaPCnFqPS4eZli1bYrVaT+mFycrKOqW35iQ/Pz/8/PxOe6wx+fq1wNdPm9qJiEjzltim6XcH/jnn3UHqLPj6+tKvXz8WL15cp33x4sUMHjzYSVWJiIiIK3HpnhmA+++/n1tuuYX+/fszaNAg3n77bQ4cOMCdd97p7NJERETEBbh8mBk3bhzZ2dk8+eSTZGZm0qtXLxYuXEj79u2dXZqIiIi4AJdemt0YXOLeTCIiIlIv9fn8duk5MyIiIiK/RmFGRERE3JrCjIiIiLg1hRkRERFxawozIiIi4tYUZkRERMStKcyIiIiIW1OYEREREbemMCMiIiJuzeVvZ3CuTm5wXFBQ4ORKRERE5Gyd/Nw+mxsVeHyYKSwsBCAuLs7JlYiIiEh9FRYWEhoa+ouP8fh7M9ntdo4cOUJwcDAWi6VRX7ugoIC4uDgOHjyo+z45kK5z09B1bhq6zk1D17lpOPI6G4ZBYWEhbdq0wcvrl2fFeHzPjJeXF7GxsQ49R0hIiP6xNAFd56ah69w0dJ2bhq5z03DUdf61HpmTNAFYRERE3JrCjIiIiLg1hZlz4Ofnx2OPPYafn5+zS/Fous5NQ9e5aeg6Nw1d56bhKtfZ4ycAi4iIiGdTz4yIiIi4NYUZERERcWsKMyIiIuLWFGZERETErSnM/II33niD+Ph4/P396devHykpKb/4+B9//JF+/frh7+9Px44deeutt5qoUvdXn2s9d+5cLrvsMlq1akVISAiDBg1i0aJFTVit+6rv/9MnLV++HG9vb5KSkhxboIeo73UuLy/n4Ycfpn379vj5+dGpUyfee++9JqrWfdX3Os+YMYPExEQCAwOJiYnht7/9LdnZ2U1UrXtaunQpV111FW3atMFisTBv3rxffY5TPgsNOa3Zs2cbPj4+xjvvvGOkp6cbU6dONYKCgoz9+/ef9vEZGRlGYGCgMXXqVCM9Pd145513DB8fH+PTTz9t4srdT32v9dSpU43nnnvOWLNmjbFz505j2rRpho+Pj7Fhw4Ymrty91Pc6n5SXl2d07NjRGDFihJGYmNg0xbqxhlznq6++2hg4cKCxePFiY+/evcbq1auN5cuXN2HV7qe+1zklJcXw8vIyXnnlFSMjI8NISUkxevbsaYwdO7aJK3cvCxcuNB5++GHjs88+MwDj888//8XHO+uzUGHmDAYMGGDceeedddq6d+9uPPTQQ6d9/IMPPmh07969Ttsf/vAH4/zzz3dYjZ6ivtf6dBISEownnniisUvzKA29zuPGjTP++te/Go899pjCzFmo73X++uuvjdDQUCM7O7spyvMY9b3OL7zwgtGxY8c6bdOnTzdiY2MdVqOnOZsw46zPQg0znUZFRQXr169nxIgRddpHjBjBihUrTvuclStXnvL4yy+/nHXr1lFZWemwWt1dQ671z9ntdgoLC4mIiHBEiR6hodf5/fffZ8+ePTz22GOOLtEjNOQ6f/nll/Tv35/nn3+etm3b0rVrV/74xz9SWlraFCW7pYZc58GDB3Po0CEWLlyIYRgcO3aMTz/9lCuvvLIpSm42nPVZ6PE3mmyIEydOYLPZiI6OrtMeHR3N0aNHT/uco0ePnvbxVVVVnDhxgpiYGIfV684acq1/7sUXX6S4uJgbb7zRESV6hIZc5127dvHQQw+RkpKCt7feKs5GQ65zRkYGy5Ytw9/fn88//5wTJ05w9913k5OTo3kzZ9CQ6zx48GBmzJjBuHHjKCsro6qqiquvvppXX321KUpuNpz1WaiemV9gsVjq/N0wjFPafu3xp2uXU9X3Wp80a9YsHn/8cebMmUNUVJSjyvMYZ3udbTYbEydO5IknnqBr165NVZ7HqM//z3a7HYvFwowZMxgwYACjRo3ipZde4oMPPlDvzK+oz3VOT09nypQpPProo6xfv55vvvmGvXv3cueddzZFqc2KMz4L9evWabRs2RKr1XpKws/KyjolcZ7UunXr0z7e29ubyMhIh9Xq7hpyrU+aM2cOt99+O5988gmXXnqpI8t0e/W9zoWFhaxbt46NGzcyadIkwPzQNQwDb29vvv32Wy6++OImqd2dNOT/55iYGNq2bUtoaGh1W48ePTAMg0OHDtGlSxeH1uyOGnKdn332WYYMGcKf/vQnAPr06UNQUBDDhg3j6aefVu95I3HWZ6F6Zk7D19eXfv36sXjx4jrtixcvZvDgwad9zqBBg055/Lfffkv//v3x8fFxWK3uriHXGswemdtuu42ZM2dqzPss1Pc6h4SEsHnzZlJTU6u/7rzzTrp160ZqaioDBw5sqtLdSkP+fx4yZAhHjhyhqKioum3nzp14eXkRGxvr0HrdVUOuc0lJCV5edT/yrFYrUNNzIOfOaZ+FDp1e7MZOLvt79913jfT0dOPee+81goKCjH379hmGYRgPPfSQccstt1Q//uRytPvuu89IT0833n33XS3NPkv1vdYzZ840vL29jddff93IzMys/srLy3PWj+AW6nudf06rmc5Ofa9zYWGhERsba1x//fXG1q1bjR9//NHo0qWLcccddzjrR3AL9b3O77//vuHt7W288cYbxp49e4xly5YZ/fv3NwYMGOCsH8EtFBYWGhs3bjQ2btxoAMZLL71kbNy4sXoJvKt8FirM/ILXX3/daN++veHr62v07dvX+PHHH6uP3XrrrcaFF15Y5/E//PCDkZycbPj6+hodOnQw3nzzzSau2H3V51pfeOGFBnDK16233tr0hbuZ+v4/XZvCzNmr73Xetm2bcemllxoBAQFGbGyscf/99xslJSVNXLX7qe91nj59upGQkGAEBAQYMTExxk033WQcOnSoiat2L99///0vvt+6ymehxTDUvyYiIiLuS3NmRERExK0pzIiIiIhbU5gRERERt6YwIyIiIm5NYUZERETcmsKMiIiIuDWFGREREXFrCjMiIiLi1hRmRMSt7Nu3D4vFQmpq6i8+7qKLLuLee+9tkppExLkUZkTEIW677TYsFgsWiwUfHx86duzIH//4R4qLi8/pdePi4sjMzKRXr14A/PDDD1gsFvLy8uo8bu7cuTz11FPndC4RcQ/ezi5ARDzXyJEjef/996msrCQlJYU77riD4uJi3nzzzQa/ptVqpXXr1r/6uIiIiAafQ0Tci3pmRMRh/Pz8aN26NXFxcUycOJGbbrqJefPmUV5ezpQpU4iKisLf35+hQ4eydu3a6ufl5uZy00030apVKwICAujSpQvvv/8+UHeYad++fQwfPhyA8PBwLBYLt912G3DqMFNubi6/+c1vCA8PJzAwkCuuuIJdu3ZVH//ggw8ICwtj0aJF9OjRgxYtWjBy5EgyMzMdf6FE5JwozIhIkwkICKCyspIHH3yQzz77jA8//JANGzbQuXNnLr/8cnJycgB45JFHSE9P5+uvv2bbtm28+eabtGzZ8pTXi4uL47PPPgNgx44dZGZm8sorr5z23Lfddhvr1q3jyy+/ZOXKlRiGwahRo6isrKx+TElJCf/4xz/473//y9KlSzlw4AB//OMfHXAlRKQxaZhJRJrEmjVrmDlzJsOHD+fNN9/kgw8+4IorrgDgnXfeYfHixbz77rv86U9/4sCBAyQnJ9O/f38AOnTocNrXtFqt1cNJUVFRhIWFnfZxu3bt4ssvv2T58uUMHjwYgBkzZhAXF8e8efO44YYbAKisrOStt96iU6dOAEyaNIknn3yysS6BiDiIemZExGHmz59PixYt8Pf3Z9CgQVxwwQVMnjyZyspKhgwZUv04Hx8fBgwYwLZt2wC46667mD17NklJSTz44IOsWLHinOrYtm0b3t7eDBw4sLotMjKSbt26VZ8TIDAwsDrIAMTExJCVlXVO5xYRx1OYERGHGT58OKmpqezYsYOysjLmzp1LaGgoABaLpc5jDcOobrviiivYv38/9957L0eOHOGSSy45p+EewzDO2F67Dh8fnzrHLRbLGZ8rIq5DYUZEHCYoKIjOnTvTvn376qDQuXNnfH19WbZsWfXjKisrWbduHT169Khua9WqFbfddhsfffQRL7/8Mm+//fZpz+Hr6wuAzWY7Yx0JCQlUVVWxevXq6rbs7Gx27txZ55wi4p40Z0ZEmlRQUBB33XUXf/rTn4iIiKBdu3Y8//zzlJSUcPvttwPw6KOP0q9fP3r27El5eTnz588/Y+ho3749FouF+fPnM2rUKAICAmjRokWdx3Tp0oUxY8bwu9/9jn/9618EBwfz0EMP0bZtW8aMGePwn1lEHEs9MyLS5P7+979z3XXXccstt9C3b192797NokWLCA8PB8zelmnTptGnTx8uuOACrFYrs2fPPu1rtW3blieeeIKHHnqI6OhoJk2adNrHvf/++/Tr14/Ro0czaNAgDMNg4cKFpwwtiYj7sRgaEBYRERE3pp4ZERERcWsKMyIiIuLWFGZERETErSnMiIiIiFtTmBERERG3pjAjIiIibk1hRkRERNyawoyIiIi4NYUZERERcWsKMyIiIuLWFGZERETErf0/uzoEY1OmFMIAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbOZJREFUeJzt3Xd4VGXexvHvZNJDOiQEEiB0QkkCKF3FhiIKVoq6uu+6uxaKZdeVde2urrq6inV1bbvSLIgKKCIWAkgNCSX00AmENNLbzHn/OJIioCRkMiX357pyEZ4zM+eXo2TuedqxGIZhICIiIuKmvJxdgIiIiMjZUJgRERERt6YwIyIiIm5NYUZERETcmsKMiIiIuDWFGREREXFrCjMiIiLi1rydXYCj2e12Dh8+THBwMBaLxdnliIiIyBkwDIOioiLatWuHl9cv9714fJg5fPgwcXFxzi5DREREGuHAgQPExsb+4mM8PswEBwcD5sUICQlxcjUiIiJyJgoLC4mLi6t5H/8lHh9mTgwthYSEKMyIiIi4mTOZIqIJwCIiIuLWFGZERETErSnMiIiIiFvz+DkzIiIi7shms1FVVeXsMhzGx8cHq9XaJK+lMCMiIuJCDMPgyJEjFBQUOLsUhwsLC6Nt27ZnvQ+cwoyIiIgLORFkoqKiCAwM9MgNXw3DoLS0lOzsbABiYmLO6vUUZkRERFyEzWarCTKRkZHOLsehAgICAMjOziYqKuqshpw0AVhERMRFnJgjExgY6ORKmseJn/Ns5wYpzIiIiLgYTxxaOpWm+jkVZkRERMStOTXMLFu2jCuvvJJ27dphsViYP39+veOGYfDoo4/Srl07AgICuOCCC9iyZYtzihURERGX5NQwU1JSQmJiIq+88sopjz/77LO88MILvPLKK6xdu5a2bdtyySWXUFRU1MyVioiIiKtyapi5/PLLefLJJ7nmmmtOOmYYBi+++CIPPvgg11xzDX369OH999+ntLSUWbNmOaHak+tbuvUohmE4uxQRERGXsXLlSqxWK5dddlmzndNl58zs2bOHI0eOcOmll9a0+fn5cf7557Ny5crTPq+iooLCwsJ6X47wwer9/O79dfzxf+s5Xuq5OzSKiIg0xDvvvMOUKVNYvnw5+/fvb5Zzuuw+M0eOHAEgOjq6Xnt0dDT79u077fOefvppHnvsMYfWBmABfK1efJ1xlC0zUnh5UjL9O4Q7/LwiItKyGIZBWZXNKecO8LE2aMVRSUkJH374IWvXruXIkSO89957PPzwww6s0OSyYeaEn19EwzB+8cJOnz6de++9t+bvhYWFxMXFNXldNw3uSGJsGJNnp7Ivt5Qb3viR+y/rwW3DO+Pl1TKW1ImIiOOVVdlIeHixU86d8fgoAn3PPCrMnTuXHj160KNHD2666SamTJnCQw895PCl5i47zNS2bVugtofmhOzs7JN6a+ry8/MjJCSk3pej9I0N5Yspw7miXwzVdoOnFm3jtv+uI6+k0mHnFBERcVVvv/02N910EwCXXXYZxcXFLF261OHnddmemfj4eNq2bcuSJUtITk4GoLKykh9++IFnnnnGydXVCvH34ZWJyQzpHMnjCzL4dls2V8xIYcbEZM7pFOHs8kRExM0F+FjJeHyU0859prZv386aNWuYN28eAN7e3owfP5533nmHiy++2FElmudy6Kv/iuLiYnbt2lXz9z179pCWlkZERAQdOnTg7rvv5qmnnqJbt25069aNp556isDAQCZNmuTEqk9msVi4aXBH+ncIZ/KsVDJzSpjw5iruvaQ7d5zfRcNOIiLSaBaLpUFDPc7y9ttvU11dTfv27WvaDMPAx8eH/Px8wsMdN6/UqcNM69atIzk5uabn5d577yU5OblmstD999/P3XffzZ133snAgQM5dOgQX3/9NcHBwc4s+7QS2oXw+ZThjEtqh81u8Nzi7dzy7hpyiiucXZqIiIjDVFdX89///pfnn3+etLS0mq/09HQ6duzIzJkzHXp+i+HhG6UUFhYSGhrK8ePHHTp/pi7DMPhw3QEe+XwL5VV2ooL9mDExmcGdPfsOqCIicnbKy8vZs2cP8fHx+Pv7O7ucMzZ//nzGjx9PdnY2oaGh9Y49+OCDLFq0iA0bNpz0vF/6eRvy/u2yE4DdmcViYfw5HfjsruF0jWpFdlEFk95axUvf7MRm9+jsKCIiLdDbb7/NxRdffFKQAbj22mtJS0sjNTXVYedXz4yDlVZW8/BnW/h4/UEAhnWN5F/jk4gKdp/ELSIizcNde2YaSz0zbiLQ15t/Xp/I89cnEuBjZcWuXEa/tJzlO3OcXZqIiIhHUJhpJtcOiOWLKcPoER1MTnEFN7+zmhe+3k61ze7s0kRERNyawkwz6hoVzGeThzHx3DgMA2Z8u4tJ/1nN0cJyZ5cmIiLithRmmpm/j5Wnr+nHSxOSCPK1smZPHpe/lML327OdXZqIiIhbUphxkrFJ7fliynASYkLIK6nk1nfX8sxX2zTsJCIi0kAKM07UuU0r5t05lJsHdwTg9e93M+HNVRwuKHNyZSIiIu5DYcbJ/H2sPDGuD6/d2J9gP2/W7ctn9IwUlm496uzSRERE3ILCjIsY3TeGhVNH0C82lILSKn73/jqeXJBBZbWGnURERH6JwowL6RAZyEe3D+G3wzoB8J/le7jh3z9yIK/UuYWJiIi4MIUZF+PnbeWRK3vz75sHEOLvTdqBAq6YkcLiLUecXZqIiMhp3XrrrVgslpqvyMhILrvsMjZu3OjwcyvMuKhRvduyaNoIkuLCKCyv5o//W8+jn2+hotrm7NJERERO6bLLLiMrK4usrCyWLl2Kt7c3Y8aMcfh5FWZcWGy4Oez0h/M6A/Deyr1c9/qP7MstcXJlIiIiJ/Pz86Nt27a0bduWpKQk/vKXv3DgwAGOHTvm0PN6O/TV5az5WL346+heDO4cwb0fprPp0HHGzFjOP67txxX9YpxdnoiIOJphQJWT5k76BILF0qinFhcXM3PmTLp27UpkZGQTF1afwoybuLBnNIumjmDq7A2s25fPXbNS+TGzA3+7IgF/H6uzyxMREUepKoWn2jnn3H89DL5BZ/zwBQsW0KpVKwBKSkqIiYlhwYIFeHk5diBIw0xupF1YAHP+MJg7L+gCwAer9nP1ayvJPFbs5MpERERg5MiRpKWlkZaWxurVq7n00ku5/PLL2bdvn0PPq54ZN+Nt9eL+y3oyqHMk985NY2tWIWNeXs5TV/dlXHJ7Z5cnIiJNzSfQ7CFx1rkbICgoiK5du9b8fcCAAYSGhvLWW2/x5JNPNnV1NRRm3NT53duwaJo57LR6Tx53z03jx925PHpVbwJ8NewkIuIxLJYGDfW4EovFgpeXF2Vljr1Nj4aZ3Fh0iD8zbxvE1Iu6YbHA3HUHGPfqCnZlFzm7NBERaYEqKio4cuQIR44cYevWrUyZMoXi4mKuvPJKh55XYcbNeVu9uPeS7nzwu0G0buXH9qNFXPnyCj5ef9DZpYmISAvz1VdfERMTQ0xMDIMGDWLt2rV89NFHXHDBBQ49r8UwDMOhZ3CywsJCQkNDOX78OCEhIc4ux6Gyi8q5Z24aK3blAnBN//Y8Oa4Pgb4aTRQRcQfl5eXs2bOH+Ph4/P39nV2Ow/3Sz9uQ92/1zHiQqGB//vt/g7j3ku54WWBe6iGufHk5244UOrs0ERERh1GY8TBWLwtTL+rGrN8PJjrEj93HShj7ygrmrNmPh3fCiYhIC6Uw46EGd45k0dQRnNe9DRXVdh6Yt4m756ZRXFHt7NJERESalMKMB4ts5cd7t57D/Zf1wOpl4bO0w1z58nK2HD7u7NJERESajMKMh/PysnDnBV2Z+4fBxIT6syenhKtfW8n/Vu3TsJOIiHgEhZkWYmCnCBZNHcFFPaOorLbz0PzNTJ61gcLyKmeXJiIiclYUZlqQ8CBf/nPLQB4c3QtvLwsLN2UxZsZyNh4scHZpIiIijaYw08JYLBZ+f15nPrx9CO3DAtifV8q1r6/k3RV7NOwkIiJuSWGmherfIZxFU0dwaUI0VTaDx77I4PYP1nO8VMNOIiLiXhRmWrDQQB/+ffMAHrkyAR+rhcVbjjJ6Rgob9uc7uzQREZEzpjDTwlksFn47LJ5P7hhKh4hADhWUcf0bP/LWskwNO4mISIMdOXKEKVOm0LlzZ/z8/IiLi+PKK69k6dKlDjunwowA0C82jAVTh3NF3xiq7QZ/X7SV295fR35JpbNLExERN7F3714GDBjAt99+y7PPPsumTZv46quvGDlyJHfddZfDzqsbTUo9hmEwc/V+Hl+QQWW1nXah/syYmMzAThHOLk1ExOO5+40mR48ezcaNG9m+fTtBQUH1jhUUFBAWFlavraluNKnbKUs9FouFmwZ3JLlDGJNnbWBPTgnj31zFfZd25/bzuuDlZXF2iSIiLYphGJRVlznl3AHeAVgsZ/Z7Py8vj6+++oq///3vJwUZ4KQg05QUZuSUercL5Yspw3nw0018lnaYZ7/azurMPF64IZHIVn7OLk9EpMUoqy5j0KxBTjn36kmrCfQJPKPH7tq1C8Mw6Nmzp4OrOpnmzMhptfLz5sXxSTxzbV/8vL34YccxRs9IYXVmrrNLExERF3Ni1sqZ9uQ0JfXMyC+yWCyMP6cDSXHh3DUrlV3ZxUx8axX3XNydO0d2xaphJxERhwrwDmD1pNVOO/eZ6tatGxaLha1btzJu3DjHFXUKmgAsZ6y0spqH5m/hk9SDAAzv2pp/jU+iTbCGnUREmoK7TwC+/PLL2bRpU7NPANYwk5yxQF9vnr8hkX9en0iAj5Xlu3K4/KUUVuzKcXZpIiLiAl577TVsNhvnnnsun3zyCTt37mTr1q3MmDGDIUOGOOy8CjPSYNcNiOWLKcPoER1MTnEFN729mheW7MBm9+hOPhER+RXx8fGkpqYycuRI7rvvPvr06cMll1zC0qVLef311x12Xg0zSaOVVdp47IstzFl7AIBB8RG8NCGZtqHu1zUqIuIK3H2YqaE0zCROF+Br5R/X9uOlCUkE+VpZvSeP0TNS+GHHMWeXJiIiLYjCjJy1sUnt+WLKcHrFhJBXUskt76zhma+2UW2zO7s0ERFpARRmpEl0btOKT+8cyk2DOwDw+ve7mfDmKg4XOGfXShERaTkUZqTJ+PtYeXJcX16ZlEywnzfr9uUzekYKS7cedXZpIiLiwRRmpMmN6deOBVOH07d9KAWlVfzu/XX8fWEGVRp2EhE5Ix6+NqdGU/2cCjPiEB0jg/j4jiHcOrQTAG+l7OH6N37kQF6pcwsTEXFhPj4+AJSWtozflSd+zhM/d2NpabY43Febj3D/x+kUllcT4u/Nc9cnMqp3W2eXJSLikrKysigoKCAqKorAwECn3OvI0QzDoLS0lOzsbMLCwoiJiTnpMQ15/1aYkWZxIK+UybM3kH6gAIDfDuvEA5f3xM/b6tzCRERcjGEYHDlyhIKCAmeX4nBhYWG0bdv2lIFNYaYOhRnXUVlt57nF23grZQ8AfduH8uqk/nSIPLPby4uItCQ2m42qqipnl+EwPj4+WK2n/0CrMFOHwozr+SbjKH/6OJ2C0iqC/bx55rp+jO57chejiIi0XNoBWFzaxQnRLJo6ggEdwymqqObOman8bf4myqtszi5NRETckMKMOEW7sADm/GEwt5/fBYAPVu3nmtdWsienxMmViYiIu1GYEafxsXrxwOU9ee+35xAR5EtGViFjZqTwWdohZ5cmIiJuRGFGnO6CHlEsmjqCc+MjKKm0MW1OGtPnbdSwk4iInBGXDjPV1dX87W9/Iz4+noCAADp37szjjz+O3a6dZD1N21B/Zt02iCkXdsVigdlrDjD2lRXsyi52dmkiIuLiXDrMPPPMM7zxxhu88sorbN26lWeffZbnnnuOl19+2dmliQN4W72479Ie/O//BtG6lR/bjxZx5cvL+WT9QWeXJiIiLsyll2aPGTOG6Oho3n777Zq2a6+9lsDAQP73v/+d8jkVFRVUVFTU/L2wsJC4uDgtzXYz2UXl3D0njZW7cwG4bkAsj4/tTaCvt5MrExGR5uAxS7OHDx/O0qVL2bFjBwDp6eksX76c0aNHn/Y5Tz/9NKGhoTVfcXFxzVWuNKGoYH/+97tB3HtJd7ws8PH6g4x9ZQU7jhY5uzQREXExLt0zYxgGf/3rX3nmmWewWq3YbDb+/ve/M3369NM+Rz0znmdVZi5TZ28gu6gCfx8vHruqNzcMjPPI+5WIiIjJY3pm5s6dywcffMCsWbNITU3l/fff55///Cfvv//+aZ/j5+dHSEhIvS9xb4M7R7Jo2gjO696G8io7f/lkE/fMTaO4otrZpYmIiAtw6Z6ZuLg4HnjgAe66666atieffJIPPviAbdu2ndFr6HYGnsNuN3hj2W6e/3oHNrtB59ZBvDKpPwnt9N9VRMTTeEzPTGlpKV5e9Uu0Wq1amt1CeXlZuPOCrsz5w2BiQv3JzClh3GsrmLl6Hy6cyUVExMFcOsxceeWV/P3vf2fhwoXs3buXTz/9lBdeeIGrr77a2aWJE53TKYJFU0dwYc8oKqvtPPjpZibP3kBRuefeXVZERE7PpYeZioqKeOihh/j000/Jzs6mXbt2TJw4kYcffhhfX98zeg0NM3kuu93g7eV7eOarbVTbDTpGBvLqpP70aR/q7NJEROQsNeT926XDTFNQmPF8qfvzmTJrA4cKyvC1evHX0T25ZWgnrXYSEXFjHjNnRuRM9O8QzqKpI7g0IZpKm51Hv8jg9g/Wc7xUw04iIi2Bwox4hNBAH/598wAeuTIBH6uFxVuOcsXLKaQdKHB2aSIi4mAKM+IxLBYLvx0Wzyd3DKVDRCAH88u47vWV/CclU6udREQ8mMKMeJx+sWEsmDqc0X3bUm03eHLhVm57fx35JZXOLk1ERBxAYUY8Uoi/D69O6s8T4/rg6+3F0m3ZXDEjhfX78pxdmoiINDGFGfFYFouFmwd35NM7hxLfOojDx8u54d+reP373djtGnYSEfEUCjPi8Xq3C+WLKcO5KrEdNrvBM19t4//eX0tuccWvP1lERFyewoy0CK38vHlpQhJPX9MXP28vvt9+jNEzUlidmevs0kRE5CwpzEiLYbFYmHhuBz6bPIwubYI4WljBxLdW8fLSndg07CQi4rYUZqTF6dk2hM8nD+ea/u2xG/D8kh3c8s4ajhVp2ElExB0pzEiLFOTnzQs3JPHcdf0I8LGyfFcOo2eksHJXjrNLExGRBlKYkRbt+oFxfD55GN2jW3GsqIIb317NC0t2aNhJRMSNKMxIi9ctOpjP7hrO+IFxGAbMWLqTG/+ziqOF5c4uTUREzoDCjAgQ4Gvlmev68eL4JAJ9razKzGP0Syks23HM2aWJiMivUJgRqWNccnu+mDKcnm2DyS2p5JZ31/Dc4m1U2+zOLk1ERE5DYUbkZ7q0acX8u4Zx46AOGAa8+t1uJr61iqzjZc4uTURETkFhRuQU/H2s/P3qvrw8MZlWft6s3ZvP6JdS+G5btrNLExGRn1GYEfkFVya2Y8GU4fRpH0J+aRW/fW8tTy/aSpWGnUREXIbCjMiv6NQ6iE/uGMqtQzsB8O9lmdzw7x85mF/q3MJERARQmBE5I37eVh69qjdv3NSfYH9vNuwv4IoZy/l6yxFnlyYi0uIpzIg0wGV9Ylg0dQSJcWEcL6viD/9bz+NfZFBZrWEnERFnUZgRaaC4iEA++uMQbhseD8A7K/Zw/RsrOZCnYScREWdQmBFpBF9vL/42JoH//GYgoQE+pB88zugZKXy5KcvZpYmItDgKMyJn4eKEaBZNG8GAjuEUlVdzx8xUHv5sM+VVNmeXJiLSYijMiJyl9mEBzPnDYG4/vwsA//1xH9e+vpK9OSVOrkxEpGVQmBFpAj5WLx64vCfv/vYcIoJ82XK4kDEvL+fz9MPOLk1ExOMpzIg0oZE9olg0dQTndoqguKKaqbM3MH3eJg07iYg4kMKMSBNrG+rPrN8PYsqFXbFYYPaa/Yx7dQW7soudXZqIiEdSmBFxAG+rF/dd2oP//t+5tG7ly7YjRVz1ynLmpR50dmkiIh5HYUbEgUZ0a8OiqSMY0jmS0kob936Yzp8+Sqe0strZpYmIeAyFGREHiwrx54PbBnHPxd3xssDH6w8y9pUV7Dha5OzSREQ8gsKMSDOwelmYdnE3Zt42mDbBfuzMLuaqV5bz4doDGIbh7PJERNyawoxIMxrSJZIvp41gRLfWlFfZuf+Tjdz7YTolFRp2EhFpLIUZkWbWupUf7//2XP48qgdeFvh0wyGufHk5GYcLnV2aiIhbUpgRcQIvLwt3jezKnD8MoW2IP5k5JYx7bQUzV+/TsJOISAMpzIg40bnxESyaNoKRPdpQWW3nwU83M2X2BorKq5xdmoiI21CYEXGyiCBf3r7lHKZf3hNvLwsLNmYx5uXlbD503NmliYi4BYUZERfg5WXhj+d3Ye4fh9A+LIB9uaVc89pK3l+5V8NOIiK/QmFGxIUM6BjOwqnDubhXNJU2O498voU7PkjleJmGnURETkdhRsTFhAX68tZvBvDQmAR8rBa+2nKEK2akkHagwNmliYi4JIUZERdksVj43fB4Pr59KHERARzML+P6N1byn5RMDTuJiPyMwoyIC0uMC2PBlBFc3qctVTaDJxdu5ff/XU9BaaWzSxMRcRkKMyIuLjTAh9du7M/jY3vja/Xim61HGf1SCuv35Tm7NBERl6AwI+IGLBYLvxnSiXl3DqVjZCCHj5dzw79X8cYPu7HbNewkIi2bwoyIG+nTPpQFU4ZzZWI7bHaDf3y5jf97fy15JRp2EpGWS2FGxM0E+/swY0IST13dFz9vL77ffozRL6WwZo+GnUSkZVKYEXFDFouFSYM6MP+uYXRuE8SRwnImvPkjr3y7U8NOItLiWIxGrvO02+3s2rWL7Oxs7HZ7vWPnnXdekxTXFAoLCwkNDeX48eOEhIQ4uxyRJldSUc1D8zczb8MhAEZ0a80LNyTRJtjPyZWJiDReQ96/GxVmVq1axaRJk9i37+Q7/FosFmw2W0Nf0mEUZqSl+GjdAR76bDPlVXbaBPvx0oQkhnZp7eyyREQapSHv340aZrr99tsZOHAgmzdvJi8vj/z8/JqvvDyN24s4w/UD4/hi8nC6R7fiWFEFN/1nNS9+swObhp1ExMM1qmcmKCiI9PR0unbt6oiampR6ZqSlKau08cjnm/lw3UEAhnSO5KUJSUSF+Du5MhGRM+fwnplBgwaxa9euRhUnIo4V4Gvl2esS+df4RAJ9rfyYmcvoGSmk7Dzm7NJERBzCuzFPmjJlCvfddx9Hjhyhb9+++Pj41Dver1+/JilORBrv6uRY+sWGcdfMVLYdKeI376zhrgu6cvfF3fC2aiGjiHiORg0zeXmd/IvQYrFgGIYmAIu4mPIqG48vyGDW6v0AnNMpnBkTk4kJDXByZSIip+fw1Uz79u37xeMdO3Zs6Es6jMKMiOmL9MNMn7eJ4opqwgN9eOGGJEb2jHJ2WSIip+TwMONOFGZEau3NKWHy7FQ2HyoE4I/ndeZPo3rgo2EnEXExDp8ADLB7926mTJnCxRdfzCWXXMLUqVPZvXt3Y1/utA4dOsRNN91EZGQkgYGBJCUlsX79+iY/j0hL0Kl1EJ/cMZRbhpi9p/9elsn4f//IwfxSJ1cmItJ4jQozixcvJiEhgTVr1tCvXz/69OnD6tWr6d27N0uWLGmy4vLz8xk2bBg+Pj58+eWXZGRk8PzzzxMWFtZk5xBpafy8rTw2tg+v39ifYH9vUvcXcMWM5SzJOOrs0kREGqVRw0zJycmMGjWKf/zjH/XaH3jgAb7++mtSU1ObpLgHHniAFStWkJKScsbPqaiooKKioubvhYWFxMXFaZhJ5BQO5JUyeVYq6QePA/B/w+J54PKe+Hpr2ElEnMvhw0xbt27ld7/73Unt//d//0dGRkZjXvKUPv/8cwYOHMj1119PVFQUycnJvPXWW7/4nKeffprQ0NCar7i4uCarR8TTxEUE8tHtQ/nd8HgA3lmxh+vfWMmBPA07iYj7aFSYadOmDWlpaSe1p6WlERXVdKsjMjMzef311+nWrRuLFy/m9ttvZ+rUqfz3v/897XOmT5/O8ePHa74OHDjQZPWIeCJfby8eGpPAW78ZSGiAD+kHjzN6Rgpfbc5ydmkiImekUZvm/f73v+cPf/gDmZmZDB06FIvFwvLly3nmmWe47777mqw4u93OwIEDeeqppwBzeGvLli28/vrr/OY3vznlc/z8/PDz092CRRrqkoRoFk0bwZRZqaTuL+D2D1K5ZUhHpo/uhb+P1dnliYicVqPCzEMPPURwcDDPP/8806dPB6Bdu3Y8+uijTJ06tcmKi4mJISEhoV5br169+OSTT5rsHCJSq31YAHP/OIR/fr2df/+Qyfs/7mPdvnxendSfTq2DnF2eiMgpNWqYyWKxcM8993Dw4MGa4ZyDBw8ybdo0LBZLkxU3bNgwtm/fXq9tx44dLrUpn4in8bF6Mf3yXrx76zmEB/qw5XAhY15ezufph51dmojIKZ31koXg4GCCg4ObopaT3HPPPaxatYqnnnqKXbt2MWvWLN58803uuusuh5xPRGqN7BnFomkjOLdTBMUV1UydvYG/frqJ8irXuV2JiAg0YGl2//79Wbp0KeHh4SQnJ/9iD0xTLc0GWLBgAdOnT2fnzp3Ex8dz77338vvf//6Mn68dgEXOTrXNzovf7OTV73dhGNCzbTCv3tifLm1aObs0EfFgDXn/PuM5M2PHjq2ZWDt27NgmHU76JWPGjGHMmDHNci4ROZm31Ys/jerBoM4R3D0njW1Hirjy5eX8/eo+XJ0c6+zyRER0byYROXPZheVMm5PGj5m5ANwwMJbHrupDgK9WO4lI03L4pnmdO3cmNzf3pPaCggI6d+7cmJcUETcQFeLPB7cNYtpF3bBY4MN1B7nqleXsPFrk7NJEpAVrVJjZu3cvNtvJkwArKio4ePDgWRclIq7L6mXhnku6M/N3g2gT7MfO7GKufGU5H647gId39IqIi2rQPjOff/55zfeLFy8mNDS05u82m42lS5cSHx/fdNWJiMsa2rU1i6aO4N4P00jZmcP9H29k1e5cnhjXhyC/Rm1hJSLSKA2aM+PlZXbkWCyWkz6B+fj40KlTJ55//nmXmrCrOTMijmW3G7z+w26e/3o7dgO6tAnilUn96RWjf28i0ngNef9u1ATg+Ph41q5dS+vWrRtdZHNRmBFpHmv25DF19gaOFJbj5+3FI1f2ZuK5cc228lFEPIvDJwDv2bPHLYKMiDSfc+MjWDRtBBf0aENFtZ2/frqJqXPSKCqvcnZpIuLhGr00u6SkhB9++IH9+/dTWVlZ71hT3p/pbKlnRqR52e0Gb6Vk8uzi7djsBp0iA3llUn/6tA/99SeLiPzE4cNMGzZsYPTo0ZSWllJSUkJERAQ5OTkEBgYSFRVFZmZmo4tvagozIs6xfl8+U2dv4FBBGb5WL/42phc3D+6oYScROSMOH2a65557uPLKK8nLyyMgIIBVq1axb98+BgwYwD//+c9GFS0inmVAx3AWTh3Oxb2iqbTZefizLdw5M5XjZRp2EpGm1agwk5aWxn333YfVasVqtVJRUUFcXBzPPvssf/3rX5u6RhFxU2GBvrz1mwE8NCYBH6uFLzcfYczLKaQfKHB2aSLiQRoVZnx8fGq6iqOjo9m/fz8AoaGhNd+LiIC5lcPvhsfz0e1DiQ0P4EBeGde9sZK3l+/RJnsi0iQaFWaSk5NZt24dACNHjuThhx9m5syZ3H333fTt27dJCxQRz5AUF8bCqSO4rHdbqmwGTyzI4A//W09BaeWvP1lE5Bc0Ksw89dRTxMTEAPDEE08QGRnJHXfcQXZ2Nm+++WaTFiginiM0wIfXb+rP42N742v1YknGUa6YsZz1+/KdXZqIuLEGr2YyDIP9+/cTFRVFQECAo+pqMlrNJOKaNh86zl2zUtmXW4q3l4U/j+rB70d0xstLq51ExMGrmQzDoFu3brqhpIiclT7tQ1kwZThj+sVQbTd4+stt3PbfdeSVaNhJRBqmwWHGy8uLbt26kZub64h6RKQFCfb34eWJyTx1dV98vb34dls2o19KYe3ePGeXJiJupFFzZp599ln+/Oc/s3nz5qauR0RaGIvFwqRBHfjsrmF0bh3EkcJyJry5ile/24XdrtVOIvLrGrUDcHh4OKWlpVRXV+Pr63vS3Jm8PNf5VKU5MyLuo6Simr/N38ynGw4BMKJba/41PonWrfycXJmINLeGvH97N+YE//rXv7QluYg0uSA/b164IZEhnSN5+PPNpOzMYfRLKbw0IZkhXSKdXZ6IuKhG32jSXahnRsQ97ThaxF0zU9mZXYyXBaZd1J3JF3bFqtVOIi2Cw+/NZLVayc7OPqk9NzcXq9XamJcUEamne3Qwn00exvUDYrEb8K9vdnDz26vJLip3dmki4mIaFWZO15lTUVGBr6/vWRUkInJCoK83z12fyAs3JBLoa2Xl7lxGv7Sc5TtznF2aiLiQBs2ZmTFjBmCuPvjPf/5Dq1atao7ZbDaWLVtGz549m7ZCEWnxrukfS7/YMCbPSmXbkSJufmc1k0d2ZdpF3fC2NuozmYh4kAbNmYmPjwdg3759xMbG1htS8vX1pVOnTjz++OMMGjSo6SttJM2ZEfEc5VU2Hvsig9lrzBvanhsfwYwJybQN9XdyZSItlGFAVhqEdYTAiCZ96Ya8fzdqAvDIkSOZN28e4eHhjS6yuSjMiHiez9MPM/2TjZRU2ogI8uWFGxK5oEeUs8sSaTmKjsDGDyFtFhzbCpf9Awbf0aSncPjS7O+++65RhYmINIWrEtvRt30ok2elsuVwIbe+u5bbz+/CfZd2x0fDTiKOUVUO2xdB+mzY9Q0YdrPd6gelzr0rQKN6Zmw2G++99x5Lly4lOzsbu91e7/i3337bZAWeLfXMiHiu8iobTy3ayn9/3AfAgI7hvDwxmXZhrn8TXBG3YBhwcB2kzYQt86D8eO2xuEGQOBF6Xw0BYU1+aof3zEybNo333nuPK664gj59+mgDPRFxCn8fK4+P7cOQzpHc/8lG1u/LZ/SMFJ6/PpGLekU7uzwR93X8EGycA2mzIXdnbXtILCROMENM667Oq+9nGtUz07p1a/773/8yevRoR9TUpNQzI9Iy7M8tZcrsVNIPmp8cbxsez/2X9cTXW8NOImekshS2LTDnwWR+D/wUD7wDIGEsJE2ETueBV/P8m3J4z4yvry9du7pOIhMR6RAZyEe3D+UfX27jnRV7+M/yPazbl8/LE5OJiwh0dnkirskwYP+PZoDZMh8qi2qPdRxm9sAkjAV/1+4MaFTPzPPPP09mZiavvPKKyw8xqWdGpOVZknGUP32UzvGyKkL8vXn2ukQu69PW2WWJuI78fZA+x5zMm7+ntj2sIyRNgn7jISLeefXRDEuzr776ar777jsiIiLo3bs3Pj4+9Y7PmzevoS/pMAozIi3TwfxSpszewIb9BQDcOrQT00f3xM9bt1yRFqqiCDI+N3th9i2vbfdtBb3HQeIk6DCk2YaRfo3Dh5nCwsK4+uqrG1WciEhziA0P5MM/DuGfi7fz72WZvLdyL+v25fHKxP50ah3k7PJEmofdDntTzACz9XOoKv3pgAXiz4OkG6HXGPB1738Tumu2iHi8b7cd5b4P08kvraKVnzf/uLYvY/q1c3ZZIo6Tu9scQkqfA8cP1LZHdDEn8vabAGFxzqvvDDh8mAmgurqa77//nt27dzNp0iSCg4M5fPgwISEh9e7Z5GwKMyICkHW8jKmzN7B2bz4ANw7qwENjEvD30bCTeIjy47DlU3M59YFVte1+odDnanMYKe5ccPG5ric4PMzs27ePyy67jP3791NRUcGOHTvo3Lkzd999N+Xl5bzxxhuNLr6pKcyIyAnVNjv/+mYHr32/G8OAnm2DefXG/nRp4zofwEQaxG6DzO/MYaRtC6G63Gy3eEGXC83JvD1Gg4/7bSTZLJvmDRw4kPT0dCIjI2var776am677bbGvKSIiMN5W73486ieDIqP5J65aWw7UsSVLy/nqav7Mi65vbPLEzlzx7abAWbjXCjKqm1v09NcTt1vPITEOK++ZtaoMLN8+XJWrFiBr69vvfaOHTty6NChJilMRMRRzuvehkXTRjBtzgZWZeZx99w0ftydy6NX9SbAV8NO4qJK82DzJ+ZcmEPra9sDwqHPdWYvTLtktxlGakqNCjN2ux2bzXZS+8GDBwkODj7rokREHC06xJ+Ztw1mxtKdzPh2J3PXHWDDgXxendSfbtH6PSYuwlYFu5ZC+izY/iXYKs12ixW6XWpO5u1+GXj7ObdOJ2vUnJnx48cTGhrKm2++SXBwMBs3bqRNmzaMHTuWDh068O677zqi1kbRnBkR+TUrd+UwbW4ax4oqCPCx8sS4Plw3INbZZUlLdmSz2QOz8UMoya5tj+5rBpi+10OrKOfV1wwcPgH48OHDjBw5EqvVys6dOxk4cCA7d+6kdevWLFu2jKgo17nACjMiciaOFVVwz9w0lu/KAeCa/u15Ymwfgvwa1YEt0nAlObDpI3MuzJGNte2BraHfDeZcmJh+zquvmTXL0uyysjLmzJnD+vXrsdvt9O/fnxtvvJGAANeaMa0wIyJnym43eO37XbywZAd2A7q0CeLVG/vTs61+d4iDVFfCzsXmcuqdi8FebbZ7+UCPy8zl1N0uAavPL7+OB2qWMOMuFGZEpKFWZ+Yydc4GjhZW4OftxaNX9WbCOXEufy86cROGAVnpZg/Mpo+gLK/2WEySuStv3+sgMMJpJboCh4eZp59+mujoaP7v//6vXvs777zDsWPH+Mtf/tLQl3QYhRkRaYzc4gru/TCdH3YcA+CqxHY8dU1fWmnYSRqr6Chs+tAMMdkZte2tos2l1EmTIKqX8+pzMQ4PM506dWLWrFkMHTq0Xvvq1auZMGECe/bsOc0zm5/CjIg0lt1u8O9lmfzz6+3Y7AbxrYN4ZVIyvduFOrs0cRdV5bDjS3MYadc3YPy0EtjqBz2vMANM55FgVUj+OYdvmnfkyBFiYk7ejKdNmzZkZWWd4hkiIu7Hy8vCHRd04dz4cKbM2sCenBKufm0lD41J4KZBHTTsJKdmGOY+MGmzYPPH5m0GTog911yN1PsaCAhzWomeplFhJi4ujhUrVhAfH1+vfcWKFbRrp5u3iYhnGdAxgkXTRvCnj9L5Zms2D83fzKrduTx9bV9C/FvexEw5jcLD5o0d02ZB7s7a9pD2kDjBXI3Uupvz6vNgjQozt912G3fffTdVVVVceOGFACxdupT777+f++67r0kLFBFxBWGBvrz1m4G8s2Iv//hyKws3ZbHp0HFemZRMv9gwZ5cnzlJZat4TKX0W7P4O+GnmhncAJFxlBpj488BLO0s7UqPmzBiGwQMPPMCMGTOorDR3I/T39+cvf/kLDz/8cJMXeTY0Z0ZEmlragQImz0rlYH4ZPlYLfx3di1uHdtKwU0thGLB/lRlgtsyHisLaYx2HmQEmYSz46z3nbDTb0uzi4mK2bt1KQEAA3bp1w8/P9bZTVpgREUc4XlbFXz7eyFdbjgBwaUI0z12XSGighp08Vv4+88aOabMgv85Cl7COZoBJnAAR8ad/vjSI9pmpQ2FGRBzFMAz+++M+/r5wK5U2O+3DAnhlUjLJHcKdXZo0lYpi2Pq5GWD2ptS2+7aChHHmZN4OQ8HLy2kleiqHh5mSkhL+8Y9/sHTpUrKzs7Hb7fWOZ2ZmNvQlHUZhRkQcbfOh49w1K5V9uaV4e1n4y2U9+d3weLy8NOzklux22LfcDDAZn0NVyU8HLBA/wtyVN+Eq8A1yapmezuFLs2+77TZ++OEHbr75ZmJiYjROLCItWp/2oSyYMpzp8zaxYGMWf1+0lR8zc/nn9YlEBPk6uzw5U3mZ5n4w6XPg+P7a9oguZg9MvwkQFue8+uS0GtUzExYWxsKFCxk2bJgjampS6pkRkeZiGAaz1uznsS8yqKy2ExPqz4yJyZzTqWVvS+/Syo+bk3jTZ8P+H2vb/UKgzzVmL0zcuaAP7c3O4T0z4eHhREToH6eISF0Wi4UbB3UkOS6cybNSycwpYcKbq7j3ku7ccX4XDTu5CrsNMr83A8zWL6C63Gy3eJm78SZNMnfn9XGtGyfL6TVqxtITTzzBww8/TGlpaVPX84uefvppLBYLd999d7OeV0SkIRLahfDFlOFcndwem93gucXbufW9teQUVzi7tJbt2A745lH4Vx/44BrzJo/V5dC6B1z8KNyzBW6eZ97kUUHGrTRqmCk5OZndu3djGAadOnXCx6f+UsTU1NQmK/CEtWvXcsMNNxASEsLIkSN58cUXz+h5GmYSEWcxDIOP1h3k4c83U15lJyrYj5cmJDOkS6SzS2s5yvJh8yfmXJhD62rb/cPM0JI0Cdr11zCSC3L4MNO4ceMa87RGKy4u5sYbb+Stt97iySefbNZzi4g0lsVi4YZz4kjqEMadM1PZlV3Mjf9ZxbSLujP5wq5YNezkGLZq2L3UXI20fRHYzM1dsVih2yVmgOl+GXi73t5o0jhusc/MLbfcQkREBP/617+44IILSEpKOm3PTEVFBRUVtV25hYWFxMXFqWdGRJyqtLKaRz7bwkfrDwIwrGsk/xqfRFSwv5Mr8yBHt5gBZuOHUJJd2x7dx9zUru/1EBztvPqkQRzeM3PC+vXr2bp1KxaLhYSEBJKTk8/m5U5pzpw5pKamsnbt2jN6/NNPP81jjz3W5HWIiJyNQF9vnrs+kSFdInnw082s2JXL6JdSeHF8MsO7tXZ2ee6rJNe8M3XaTMhKr20PjIS+N5i9MDH9nFefNItG9cxkZ2czYcIEvv/+e8LCwjAMg+PHjzNy5EjmzJlDmzZtmqS4AwcOMHDgQL7++msSExMB1DMjIm5vV3Yxk2elsu1IERYLTBnZlakXdcPbql1kz0h1Jez82lyNtGMx2KvMdi8f6D4Kkm40h5OsurWEO3P4DsDjx49n9+7d/O9//6NXr14AZGRkcMstt9C1a1dmz57duMp/Zv78+Vx99dVYrbV3G7XZbFgsFry8vKioqKh37FQ0AVhEXFF5lY3HvtjC7DUHADg3PoKXJyYTHaJhp1MyDLPnJX22uQqpNLf2WEyS2QPT5zoI0uRqT+HwMBMaGso333zDOeecU699zZo1XHrppRQUFDT0JU+pqKiIffv21Wv77W9/S8+ePfnLX/5Cnz59fvU1FGZExJV9lnaIv87bREmljYggX164IZELekQ5uyzXUZxtzoFJmwXZW2rbW0VDvxvMTe2iE5xXnziMw+fM2O32k5ZjA/j4+Jx0n6azERwcfFJgCQoKIjIy8oyCjIiIqxub1J5+sWHcNTOVjKxCbn13LXdc0IX7Lunecoedqsphx5fmcupd34BhM9utftBztBlgulwI1rOa9ikepFH/J1x44YVMmzaN2bNn065dOwAOHTrEPffcw0UXXdSkBYqIeLr41kHMu3Mof1+4lf+t2sfr3+9m7Z48ZkxMpl1YC9m8zTDgUKo5kXfzJ1BeUHss9hxzGKn31RCgO5LLyRo1zHTgwAHGjh3L5s2biYuLw2KxsH//fvr27ctnn31GbGysI2ptFA0ziYg7WbQpi798vJGiimrCAn14/vpELurlwcuJCw/DxrnmMFLOjtr2kPaQOMFcUt26m/PqE6dx+JyZE5YsWcK2bdswDIOEhAQuvvjixr6UwyjMiIi72Z9byuTZqWw8eByA34+I58+jeuLr7SHDTlVlsG2hGWAyvwPjp+kJ3gHQ60qzFyb+PPD65QUe4tkcFma+/fZbJk+ezKpVq0564ePHjzN06FDeeOMNRowY0bjKHUBhRkTcUUW1jWe+3M47K/YAkBQXxssTk4mLCHRyZY1kGHBgtTmMtGU+VBTWHusw1AwwCWPBX7+nxeSwMHPVVVcxcuRI7rnnnlMenzFjBt999x2ffvppwyp2IIUZEXFnX285wp8+SqewvJoQf3PjvVG92zq7rDNXsB/S55hLqvMya9vDOphDSIkTIKKz8+oTl+WwMNOxY0e++uqrmr1lfm7btm1ceuml7N+/v2EVO5DCjIi4u4P5pUyZvYEN+wsAuHVoJ6aP7omft4sOw1QUw9bPzWGkvSm17T5B0HucGWI6DgMvDxk2E4dw2NLso0ePnnJJds2LeXtz7NixhrykiIj8itjwQD784xD+uXg7/16WyXsr97J+Xz6vTEqmY2SQs8sz2e2wb7m5nDrjM6gqqT0Wf565nLrXleDXynk1isdqUJhp3749mzZtomvXrqc8vnHjRmJiYpqkMBERqeVj9WL66F4M6hzBfR+ms+nQccbMWM4/ru3HFf2c+Hs3L9McRkqbDcfr9MpHdDYDTOJ4c0hJxIEaNMw0ZcoUvv/+e9auXYu/f/0tt8vKyjj33HMZOXIkM2bMaPJCG0vDTCLiabKOlzF19gbW7s0H4KbBHfjbFQn4+zTTsFN5IWz51JwHs//H2na/EHMvmKRJEDcILJbmqUc8ksPmzBw9epT+/ftjtVqZPHkyPXr0wGKxsHXrVl599VVsNhupqalER7vOnggKMyLiiaptdl5YsoPXvt8NQK+YEF6ZlEyXNg4axrHbYM8P5jyYrQugusxst3hB5wt+GkYaAz4tZJM/cTiH7jOzb98+7rjjDhYvXsyJp1osFkaNGsVrr71Gp06dGl24IyjMiIgn+2HHMe6dm0ZuSSWBvlaeurov45LbN90JcnaaASZ9DhQdrm1v3QOSJkK/8RDSrunOJ/KTZtk0Lz8/n127dmEYBt26dSM83DW3mFaYERFPd7SwnGlzNrAqMw+A8QPjePSq3gT4NnLYqSwfNs8zQ8yhdbXt/mHQ9zqzF6Z9fw0jiUM12w7A7kBhRkRaApvd4KWlO3n5250YBvSIDubVG5PpGhV8hi9QDbu/NTe12/4l2CrMdosVul5szoPpcTl4+znuhxCpQ2GmDoUZEWlJVu7KYeqcNHKKKwjwsfLEuD5cN+AX7pd3NAPSZ8HGD6H4aG17VG8zwPS9HoJdZx6ktBwKM3UozIhIS3OsqIJ75qaxfFcOANf0b8+T4/oQ6PvTbhwlubD5Y3MYKSut9omBkWZ4SZoEbftpGEmcSmGmDoUZEWmJbHaD177bxb++2YHdgO6t/XhnWD6x++bDjsVgrzIf6OUD3UeZAabrJeDt69S6RU5w2A7AIiLiHqxeFqZc2JXzQ7LI+PINLilaRuTiotoHxCSZAabPdRAU6bQ6RZqCwoyIiKcpzjbnwKTPpt/RzfQDsMAxI5R5tuHkd7uWyRPG0spPbwHiGfR/soiIJ6iuMFchpc+GnUvAsJntVl/oeQX2fhP55FAnnvtmN7atBotfXs4rk5Lp3S7UuXWLNAHNmRERcVeGAYdSzdVImz6G8oLaY+0H/jSMdA0E1O4Dtm5vHlNmbyDreDm+3l48NCaBmwZ1wKLJvuJiNAG4DoUZEfE4hYfNHXnTZ0POjtr24HaQOMEMMa27nfbp+SWV/OmjdJZuywbgir4xPH1tX0L8fRxducgZU5ipQ2FGRDxCVRlsW2huapf5PRh2s907wLwnUuJE8x5JXme2669hGLy9fA//+HIb1XaDDhGBvDIpmX6xYY76CUQaRGGmDoUZEXFbhgEHVpv7wWz5FCoKa491GGL2wCSMA//G/25LO1DA5FmpHMwvw8dq4a+je3Hr0E4adhKnU5ipQ2FGRNxOwX5In2vOhcnLrG0P7WDe3DFxAkR0brLTHS+r4v6P01m8xdwBeFTvaJ69NpHQQA07ifMozNShMCMibqGyBDI+NwPMnmW17T5BkDDW7IXpOAy8vBxyesMweH/lXp5atI1Km532YQG8MimZ5A6ueRNh8XwKM3UozIiIy7LbYf9Kcxgp4zOoLK491mkEJN0Iva4Ev1bNVtKmg8eZPDuVfbmleHtZ+MtlPbltRLyGnaTZKczUoTAjIi4nL7N2NVLB/tr28HizByZxAoR1cFp5ReVVPDBvEws3ZgFwUc8o/nl9IuFButWBNB+FmToUZkTEJZQXQsZ8SJtt9sac4BcCva82Q0zcIJe5uaNhGMxas5/HvsigstpOu1B/ZkxMZmCnCGeXJi2EwkwdCjMi4jR2G+z5wQwwW7+A6rKfDligy0hzGKnnFeAT4NQyf0nG4UImz0olM6cEq5eF+y7tzu3ndcHLyzVCl3guhZk6FGZEpNnl7DSHkNLnQOGh2vbW3c39YPqNh9D2zquvgYorqvnbp5uYn3YYgPO6t+GFGxJp3crPyZWJJ1OYqUNhRkSaRVk+bJ5nhpiDa2vb/cOg73WQOAna93eZYaSGMgyDj9Yd5OHPN1NeZScq2I8ZE5MZ3Fl33BbHUJipQ2FGRBzGVg27vzWXU29bBLYKs91iha4Xm3vC9BgN3p7Tg7H9SBF3zUplV3YxXha4++Lu3DWyK1YNO0kTU5ipQ2FGRJrc0QwzwGz8EIqP1rZH9TYn8va9HoKjnVefg5VWVvPwZ1v4eP1BAIZ1jeRf45OICvZ3cmXiSRRm6lCYEZEmUZILmz8294TJSqttD4w0w0viRIhJdNthpMb4ZP1B/jZ/M2VVNlq38uOlCUkM69ra2WWJh1CYqUNhRkQazVYFO782A8yOxWCvMtu9vKH7ZWaA6XYpeLfc/Vd2ZRdz18xUth8twmKBKSO7Mu3i7hp2krOmMFOHwoyINIhhwJGN5nLqTR9BaU7tsZhEczl1n+sgSBNfTyivsvHYF1uYveYAAIPiI5gxMZnoEA07SeMpzNShMCMiZ6Q425wDkz4bjm6ubQ+Kgn43mHNhons7rz438FnaIf46bxMllTYignz51/gkzu/extlliZtSmKlDYUZETqu6AnZ8ZQ4j7VwChs1st/qaq5CSJkGXi8Dq7dw63UjmsWLumrWBrVmFANxxQRfuu6Q73lbH3CBTPJfCTB0KMyJSj2HA4VQzwGz+xNwf5oT2A83l1L2vgUBt299Y5VU2nlyYwQerzPtODewYzoyJybQLc92djsX1KMzUoTAjIgAUHoaNc825MDnba9uD25k3dkycCG26O68+D7Rg42Gmf7KJoopqwgJ9eP76RC7q5blL1qVpKczUoTAj0oJVlcG2hWYvTOZ3YNjNdu8A6DXGHEaKPx+8rM6t04Ptyy1h8qwNbDp0HIDfj4jn/st64qNhJ/kVCjN1KMyItDCGAQfWmJvabf4UKo7XHuswxAwwCePAX78PmktFtY2nF23jvZV7AUiKC+PlicnERQQ6tzBxaQozdSjMiLQQBQfMGzumz4a83bXtoR1+GkaaAJFdnFefsHjLEf78UTqF5dWE+Hvz3PWJjOrd1tlliYtSmKlDYUbEg1WWQMbnZi/MnhTgp19nPkGQMNaczNtxOHhpSMNVHMgrZcrsDaQdKADg1qGdmD66J37eGuqT+hRm6lCYEfEwdjvsW2H2wGR8BpXFtcc6jTCHkXpdBX6tnFej/KIqm53nFm/nzWWZAPRtH8qrk/rTIVLDTlJLYaYOhRkRD5GXWTuMVLC/tj083gww/cZDeEfn1ScNtnTrUe77KJ2C0iqC/bx55rp+jO4b4+yyxEUozNShMCPixsoLzd6XtFmwf2Vtu18I9B5n3logblCLurmjpzlcUMbU2RtYt8/c7+emwR342xUJ+Pto2KmlU5ipQ2FGxM3YbbDnB3M/mK1fQHXZTwcs0GUkJE6CnleAr4YkPEWVzc6/luzgte/NidsJMSG8emN/4lsHObkycSaFmToUZkTcRM5Oswdm41woPFTbHtnNnMjbbwKEtndefeJwP+w4xj1z08grqSTI18pT1/RlbJL+m7dUCjN1KMyIuLCyAtgyzwwxB9fWtvuHmnemTpoE7QdoGKkFOVpYztTZG1i9Jw+ACefE8ciVvQnw1bBTS6MwU4fCjIiLsVWbu/GmzYRti8BWYbZbrND1YrMXpvvl4OPv3DrFaaptdmYs3cnL3+3CMKBHdDCv3phM16hgZ5cmzUhhpg6FGREXcTTD3A9m44dQfLS2PSrB7IHpewME6749UmvFrhymzUkjp7iCAB8rT4zrw3UDYp1dljQThZk6FGZEnKg0DzZ9bPbCZKXVtgdGQt/rzRDTtp+GkeS0sovKuWduGit25QJwbf9YnhjXm0BfbydXJo6mMFOHwoxIM7NVwc4lZi/M9q/AXmW2e3lD98vMu1N3uxS8fZ1bp7gNm93g1e928eI3O7Ab0DWqFa9O6k+Pthp28mQKM3UozIg0k6yN5oZ2Gz+E0pza9phEczl13+sgqLXz6hO3tyozl6mzN5BdVIGftxePXdWb8efEYVHPnkdSmKlDYUbEgYqzzfCSPhuObq5tD4qCfjeYw0jRvZ1Xn3ic3OIK7vkwnWU7jgEwNqkdf7+6L638NOzkaRRm6lCYEWli1RWw4ytzOfXOJWDYzHarL/QYbQaYLheBVW8u4hh2u8Eby3bz/Nc7sNkN4lsH8cqkZHq3C3V2adKEFGbqUJgRaQKGAYdTzQCz6WMoL6g91n6guZy69zUQGOG0EqXlWbs3j6mzN5B1vBxfby8eGpPATYM6aNjJQ3hMmHn66aeZN28e27ZtIyAggKFDh/LMM8/Qo0ePM34NhRmRs1CYZe7Imz4bjm2rbQ9uB4njzbkwbbo7rz5p8fJLKrnvo3S+3ZYNwBX9Ynj6mr6E+Ps4uTI5Wx4TZi677DImTJjAOeecQ3V1NQ8++CCbNm0iIyODoKAzu2eHwoxIA1WVwbaFZi9M5ndg2M12b3/odaW5GqnzBeClHVnFNdjtBm8v38MzX22j2m7QISKQVyf1p2+shp3cmceEmZ87duwYUVFR/PDDD5x33nln9ByFGZEzYBhwYI25nHrzp1BxvPZY3OCfhpGuNm8zIOKiUvfnM2XWBg4VlOFjtfDX0b24dWgnDTu5qYa8f7vVDL3jx81fsBERpx+Xr6iooKKioubvhYWFDq9LxG0VHICNc8w7VOftrm0PjTN7YBInQGQX59Un0gD9O4SzaOoI/vxxOl9nHOWxLzJYlZnLs9cmEhqoYSdP5jY9M4ZhMHbsWPLz80lJSTnt4x599FEee+yxk9rVMyPyk8oS2PqFOYy0Zxnw068AnyBIGGv2wnQcDl5eTi1TpLEMw+C9lXt5atFWqmwGseEBvDwxmeQO4c4uTRrAI4eZ7rrrLhYuXMjy5cuJjT39vTlO1TMTFxenMCMtm90O+1eaPTAZ86GyuPZYpxHmcupeV4FfK6eVKNLUNh4sYPKsDezPK8Xby8IDl/fkd8PjNezkJjwuzEyZMoX58+ezbNky4uPjG/RczZmRFi0vE9LnmKuRCvbXtofHmwGm33gI7+i8+kQcrLC8iumfbGLhpiwALuoZxT+vTyQ8SLfTcHUeE2YMw2DKlCl8+umnfP/993Tr1q3Br6EwIy1OeSFkfGYOI+1fWdvuGwy9x5khpsMQ3dxRWgzDMPhg9X6eWJBBZbWddqH+vDwpmQEdtS+SK/OYMHPnnXcya9YsPvvss3p7y4SGhhIQEHBGr6EwIy2C3WbOf0mfDRmfQ3XZTwcs0GWkuR9MzyvAN9CpZYo405bDx5k8awN7ckqweln406U9+ON5nfHyUrB3RR4TZk43rvnuu+9y6623ntFrKMyIR8vZZS6nTp8DhYdq2yO71Q4jhbZ3Xn0iLqa4opoHP93EZ2mHATi/exteuCGRyFZ+Tq5Mfs5jwkxTUJgRj1NWAFvmmcNIB9fWtvuHQp9rIelGaD9Aw0gip2EYBnPXHuCRz7dQUW0nOsSPGROSGdQ50tmlSR0KM3UozIhHsFWbu/GmzTJ357X9tGLPYoWuF5m9MN0vBx9/59Yp4ka2Hynizpnr2X2sBC8L3HNxd+4c2RWrhp1cgsJMHQoz4tayt5oBZuOHUHyktj0qwdzUrt94CI52Xn0ibq60spqH5m/hk9SDAAzrGsm/xicRFawPBs6mMFOHwoy4ndI8887U6bPg8Iba9sBI6Hu9GWJiEjWMJNKEPl5/kIfmb6asykbrVn68NCGJYV1bO7usFk1hpg6FGXELtirYuQTSZsKOxWCvMtu9vKH7ZWaA6XYpeGtvDBFH2ZVdxF0zN7D9aBEWC0y5sBvTLuqmYScnUZipQ2FGXFrWRnMYadNHUJpT2962nzmRt+91EKRPhyLNpazSxmNfbGHO2gMADIqPYMbEZKJDNOzU3BRm6lCYEZdTnG2Gl7RZcHRzbXtQFPS7wZzMG93befWJCJ+lHeKv8zZRUmkjMsiXF8YncX73Ns4uq0VRmKlDYUZcQnUF7PjKvDfSzq/BsJntVl/ocbnZC9PlIrC61Y3sRTxa5rFi7pq1ga1ZhQDccUEX7rukO95W3YS1OSjM1KEwI05jGHA41eyB2fwJlOXXHms/wOyB6X0NBGpLdRFXVV5l48mFGXywyry32cCO4cyYmEy7sDPbhV4aT2GmDoUZaXaFWbBxrhlicrbXtgfHmEupkyZBmx6nf76IuJwFGw/zwCebKK6oJizQhxduSOTCntoWwZEUZupQmJFmUVVmbmaXPht2fwuG3Wz39oeeY8wA0/kC8LI6tUwRabx9uSVMnrWBTYeOA/CH8zrz51E98NGwk0MozNShMCMOYxhwYI25H8zmT6HieO2xDkPM5dS9x5m3GRARj1BRbePpRdt4b+VeAJLiwnhlUjKx4bqJa1NTmKlDYUaaXMEB2DjHnMybt7u2PbQDJE4wvyK7OK8+EXG4rzYf4f6P0yksrybE35vnrk9kVO+2zi7LoyjM1KEwI02isgS2fmHOg9mzDPjpn41PECSMhaSJ0HE4eKm7WaSlOJBXyuTZG0g/UADAb4d1YvrlvfD11u+BpqAwU4fCjDSa3Q77V5o9MBnzobK49linEeYwUsJY8GvltBJFxLkqq+08t3gbb6XsAaBfbCivTOxPh0gNO50thZk6FGakwfL2QPocczJvwb7a9vB4cyJvv/EQ3tF59YmIy1m69Sj3fZROQWkVwX7ePHNdP0b3jXF2WW5NYaYOhRk5IxVFsGW+GWD2raht9w2GPldD4iToMFg3dxSR0zpcUMbU2RtYt8/cU+rmwR158Ipe+PtoFWNjKMzUoTAjp2W3mfNf0mdDxudQXfbTAQt0Ph+SboKeV4CvuotF5MxU2ey8sGQHr39vLg5IiAnh1Rv7E986yMmVuR+FmToUZuQkObvM5dTpc6DwUG17ZDdzIm+/8RAa67z63JRhGJRVl1FaXUpZdZn5fVVpvbajJUcB8PbypspeRbW9mip7lfllq//3ut9vy9tGl7AuWC1n/gnXMAwyj2eSEJmAt5c3Pl4++Hj51H5v/dnf63wf4B1AoE+g+ad3nT99zD/9vf3xsmiSp5ze99uzuffDdPJKKgnytfLUNX0Zm9Te2WW5FYWZOhRmBICyAtgyz5zMe3BNbbt/KPS51rw3UvsBLXoYqcJWQWFFIYWVP31VFHK88vgp2woqCth4bCOxrWLrhZeWJMA7oOYr0CeQIO8gQvxCCPH96avO96F+oSe1+3vrLsye7sjxcqbO2cCaPXkATDgnjkeu7E2Ar4adzoTCTB0KMy2YrRoyvzOXU29bCLYKs91iha4XmZN5u18OPp75plJtrya/PJ/c8lxyy3Jr/6z7fXkuO/J3YMGCQdP9Kvj5G32AdwBFlUUEeQfRPrh9vd6Qn/eWeFu8a3pNfLx8KKwsJNw/HG9Lw27CeazsGJH+kbU9P3V7e37WC1T3WKWtkvLq8pqQ9vPepabi6+VLqF8oYf5hRPpHEhkQSaR/JBH+ETXf17QFRODj5dNk55bmU22zM2PpTl7+bheGAT2ig3n1xmS6RgU7uzSXpzBTh8JMC5S91QwwG+dC8dHa9qgEM8D0vR6C3XdzK7thJ688j6MlRzlScoQjpUc4WnKUjLwMDhcfxs/qR25ZLgUVBQ0OKF4WL4J9g2t7Eer2KtTpabAZNmKDY1vcEIxhGJTbyk8KOKVVpZRUldT0Xv1i71ZlIfYTt7togFC/0Jqw0zqgNVGBUbQNakvboLZEB0bTNqgtkf6RWHXLDJe0fGcOd89NI6e4ggAfK0+M68N1AzSc/UsUZupQmGkhSvNg08fmXJjDG2rbAyLM8JI0CWISXX4YyTAMM6iUmkHlxJ8nvo6WHiW7NJsqe9UZvZ6XxYswv7CTPumf+DPUL5QwvzBaB7QmxC+EVj6tPDaIuAq7Ya8JPscrjtf0nuWV5Z3ci1aeS355PjbDdkav7W3xpk1gGzPkBLYlOii6Xtg5EXgsLv7vwFNlF5Vz95w0Vu7OBeDa/rE8Ma43gb4N63VsKRRm6lCY8WC2Kti5xAww27+CE2/wXt7QbZQ5mbfbKPD2dW6dP1NlryKrOIuDRQc5UHSAg8UHa74/UHSA0urSX30NCxbaBJhvWtFB0YT6heJv9ad36971wkqYX5g+qbs5u2GnoKKgXtjJKcs5KfAeKzt2Rj0+Ad4BxAbHEtsqlrjgOGKDf/qzVSztWrXD1+pa/148jc1u8Op3u3jxmx3YDega1YpXJ/WnR1sNO/2cwkwdCjMeKGujuZx644dQmlPb3rZf7TBSUGvn1QeUVZexv3A/adlpFFUVcbDIDCwHiw+SVZL1q286kf6RNZ+kf/7Jum1gW1oHttYcCqmn2l5NTllOvaHHE2HnxPfHyo794tCjBQttg9rWCzixwbF0DOlIp5BOBPpom4Km8uPuXKbN2UB2UQV+3l48PrY3NwyMU69ZHQozdSjMeIjibNj0kbka6eim2vagNuZS6sSJ0LZPs5ZkGAa55bnsOb6n9qtwD3uP7+Vw8eFffNPws/rV+2Rc982jfXB7/Kx+zfiTSEtRaavkcPHhk3oET3z/axOc2wa1JT4knvjQ+l9tAtroTbgRcooruGduGik7zQ9l45La8eTVfWnlp2EnUJipR2HGjVVXwI6vzACz82s4MW/A6gs9Ljd35e16EVgd20Nhs9vYW7iX/YX72VNohpbM45nsOb6HosqiX3xu9/DudA/vftInXf3yF1dzIpyf6EGsCTpFB9lbuJe88rzTPjfIJ+iUIadDSAf1IP4Ku93gjWW7ef7rHdjsBp1bB/HKpP4ktNP7lcJMHQozbsYw4HCqGWA2fwxl+bXH2g8we2D6XAuBEQ45fX55Pjvyd7Ajfwc783fW/Flprzzl4y1YaN+q/Um/xOND4wn3C1dgEY9xvOJ4vR7IPQXmnweLDp52grKPlw9dwrrQPbw73cK6meE+orsmIZ/C2r15TJ29gazj5fh6e/HwmARuHNShRV8nhZk6FGbcRGGWuZQ6fTYc21bbHhxjDiMlTYI2PZrsdJW2SvYc33NScDlWduy0z+kV0YtOoZ1qwkrn0M50CO6gzc+kRau0VXKg6ED94dafei9PN5k9wj+CbuHdakNORHe6hHZp8f+W8koq+dNH6Xy7LRuAK/rF8PQ1fQnxb5m9WwozdSjMuLCqMnMzu/TZsPtbODEp1tsfeo4xA0znC+AsV+OUVJWwNXcrGbkZpB9L5+t9X+Nt8abaqD7l4+OC42qGh078wo1tFatVQSINYDfsHC4+fNIHhv1F+085Ad7L4kXHkI70CO9BQmQCCZEJ9IrsRYhvy/q9bbcb/Gd5Js9+tZ1qu0HHyEBemdifvrGhzi6t2SnM1KEw42IMAw6uhbSZsPlTqDheeyxusBlgeo8zbzPQCKVVpWzL20ZGbgZbcreQkZvBnuN7TjkZN9g3+KTQ0i2sm1ZsiDhQWXUZmQWZ9ULO9vztFFQUnPLxHUM6khCRQO/Wvc2AE9GLVr6tmrdoJ0jdn8+UWRs4VFCGr9WLv47uyS1DO7WoYSeFmToUZlxEwQHYOMe8uWPurtr20DhInGDOhYns0qCXLKsuY3ve9prQsiVnC3sK95zyU190YDQJkQm08mnFqE6j6BHRg+jA6Bb1i0HEVRmGQU5ZDtvzt9d8GMnIzeBQ8aFTPr5TSCcSIhPoHdm7pgcnyMfz7kp9vLSKP3+cztcZ5k7ml/VuyzPX9SM0oGUMOynM1KEw40SVJbD1C/PWAnuWwYneEZ8gSLjK7IXpOBy8fn3HWcMwOFB0gPRj6aRlp5F+LJ2dBTtPGVyiAqJIaJ1Q75dd6wDn7jsjIg2XX57P1tyttR9YcreQVZJ10uMsWOgS1oXENonmV1QinUI6ecRu1oZh8N7KvTy1aCtVNoPY8ABenphMcodwZ5fmcAozdSjMNDO7HfavNFcjZcyHyuLaY51GmD0wCVeB3y/vdllWXcbmnM2kH0snPTudjTkbT7k0tHVA65rAcuLPNoFtmviHEhFXkVeeV9MTeyLgHC09etLjQnxD6NemH0ltkkiMSqRv675u3Xuz8WABk2dtYH9eKd5eFh64vCe/Gx7v0b3LCjN1KMw0k7w95hBS+iwo2F/bHt7J3A8mcQKEdzzlUw3D4FDxITO4/PS1PW/7Scs9fbx8SIhMqPn01a9NP9oGue8NI0WkaeSU5bDx2EbSjqWRnp3OltwtVNgq6j3Gy+JF17CuNeEmsU0iHYLda+lzYXkV0z/ZxMJNZu/Uxb2i+Of1iYQFeuYtKBRm6lCYcaCKItgy31yNtG9FbbtvsDmJN2kSdBhy0s0d7YadzIJM1h1dx7qj61h/dD05ZTn8XFRgVE1wSYpKoldEL903RkR+VZW9ih15O2rCTfqxdA6XHD7pceF+4fSP7s/A6IEMbDuQ7uHdXX5oyjAMPli9nycWZFBZbaddqD8vT0pmQEfH7L3lTAozdSjMNDG7zZz/kj7bnA9TdWIfCYu5jDppkrms2rd2RZDdsLMjfwfrjpjhJfVoKvkV+fVe1tviTa/IXvXCi3pdRKSpZJdm1wxbpx9LJyM346TNMIN9gxkQNYCBbQcyMHogPSJ64O3lmrcW2HL4OJNnbWBPTglWLwt/urQHfzyvM15e7tPT9GsUZupQmGkiObvMIaT0uVB4sLY9spsZYPqNh9D2gHnDu+15282elyPrWJ+9/qRt//2t/iRGJZqfiKIH0qd1nxa/YZaINJ9KWyUZuRk1PcQbjm44aZO/IJ8gkqOSa3puEiITXOr2DMUV1Tz46SY+SzN7nS7o0Ybnr08kspVn3NtNYaYOhZmzUFYAW+aZk3kPrqlt9w81bymQOAliB2LHYHvedlZlrWLNkTVsyN5ASVVJvZcK9A40fyn89Imnd2RvfBx8TyURkTNVba9mW962ej3IRVX1P4QFeAeQ1CaJc9qew+CYwSREJjh9M03DMJi79gCPfL6Fimo70SF+zJiQzKDOkU6tqykozNShMNNAtmrI/M7c1G7bIjgxic7iBV0uMntheowmqyKfH7N+5MfDP7I6a/VJw0atfFrVjkVHD6RXZC+X7a4VEfk5m93GjvwdrD2ytmZuX2FlYb3HhPiGMChmEINjBjOk3RDiguOcVC1sO1LIXTNT2X2sBC8L3HNxd+4c2RWrGw87KczUoTBzhrK3mvvBbJwLxXWWOUYlQOJEinpdwZrivTXhZW/h3npPD/QO5Jy253Bu23MZ2HYgPcJ7OP0Ti4hIU7Ebdnbm72Td0XWsyVrDmiNrKK4qrveY9q3aM6TdEIbEDGFQzCBC/Zr3FgQlFdU89Nlm5qWamw0O6xrJi+OTaRPsnsNOCjN1KMz8gtI82PSxORfm8Iba9oAIqvpcy8ZO5/Bj5TFWZa1ic87mekulrRYrfVr3YUi7IQyOGUy/1v00bCQiLUa1vZrNOZtZlbWKHw//yMZjG+vd782ChYTIhJpwkxSV1GyrMT9ad4CHP9tCWZWN1q38eGlCEsO6ut/GoQozdSjM/IytCnYuMQPM9q/AXmW2e3lzpOuFpLTvSUp1PquPrD1pMlynkE4MjhnM4HaDObftuQT7/vLGdyIiLUVJVQnrjqyrCTe7j++ud9zf6s85bc9hROwIzos9j/at2ju0np1Hi7hrVio7jhZjscCUC7sx7aJubjXspDBTh8LMT45s+mkY6UMoNfd0qQY2tktgWUw3UmzH2XE8s95Twv3Ca8aCB8cMJqZVjBMKFxFxP0dLjrIqa1XN18/30uoc2pnzYs9jRPsRJEclO6Rnu6zSxqOfb2HuugMADIqPYMbEZKJD3GPlqMJMHS06zBQfg00fmSHm6CYA8ry8WBEeRUpUPCuqCyisrl115GXxol/rfoyIHcHw9sPpGdHT5TeQEhFxdYZhsCN/B8sPLSflUApp2Wn1hu2DfIIY2m4oI9qbv3ub+pYs8zcc4q+fbqK00kZkkC8vjE/i/O6uf9sXhZk6WlyYqa6AHYvNALNrCXZ7NVt9fUgJakVKeDSbjDIMav+Th/qFMqzdMM6LPY9h7YYR5h/mvNpFRFqA4xXH+THrR1IOprD80PKT7jvXK6KX2WsTO4I+kX2aZDFF5rFi7pq1ga1Z5oqsOy/owr2XdMfb6rofWBVm6mgRYcYw4HCquR/M5o+pLMtndYA/3wYG8H1wKDmW+neW7hnRkxHtzXHbvq37atWRiIiT2A07W3K2kHIohWUHl7Eld0u94+F+4ZwXex4XdriQoe2GntXmouVVNp5YkMHM1eb9887pFM5LE5JpFxZwVj+DoyjM1OHRYaYwy1xKnT6bopztpAQG8G1gACmBgZTWmeQV6B3IkHZDarowo4OinVi0iIicTk5ZjjkcdTCFlYdX1lv+HeAdwNB2Q7mww4WcH3t+o5d+L9h4mAc+2URxRTXhgT48f0MiF/Z0vfcFhZk6PC7MVJXBtoWQPpvsvd/zfYA/SwMDWBPgT3WdGzpGBUQxssNILoy7kIFtB+oGjSIibqbKXkXq0VS+O/Ad3+7/lqySrJpjVouVgdEDa37PN3SBxr7cEu6alcrmQ+aw0x/O68yfR/XAx4WGnRRm6vCIMGMYcHAtpM0kc9tnfOtt47vAADb6198IqXNoZy7scCEXxl1I79a9NXlXRMRDGIbBtrxtfHvgW5buX8rO/J31jveK6MVFHS7iwg4X0jWsKxbLry/Brqi28fSibby3ci8AyR3CeHliMrHhgb/8xGaiMFOHW4eZggMY6bPZtmk2i225LA0MZK9v/eV7/dr048K4C7mww4XEh8Y7qVAREWlOBwoP8O2Bb/l2/7dsyN5Qb2FHXHAcF3W4iEs7Xkqf1n1+Ndh8tfkI93+cTmF5NSH+3vzz+kQu7d3W0T/Cr1KYqcPtwkxlCUbG5+xIf4/FBdtYHBTAfp/aAONtsTIoZhAXdriIkXEjm3wJn4iIuJfcslx+OPgD3+7/lh8P/0ilvbLmWPtW7bm046WM6jSKhMiE0wabA3mlTJm9gbQDBQD8dlgnpl/eC19v5/XwK8zU4RZhxm7H2LeSHalv8fXhFXzt712vB8bP4s2I9sO5JP5yRsSO0M67IiJySqVVpSw/tJxv9n3D9we/p6y6rOZY+1btGdVpFKM6jaJXRK+Tgk1ltZ3nFm/jrZQ9APSLDeWVif3pEOmcYSeFmTpcOszk72Xn2jdYnLmQxdaqegHGFy9GtB3EqO5Xc37s+QT6uMYYpoiIuIey6jKWH1rO4r2LWXZwWb1gExccVxNseoT3qBdsvsk4yp8+TqegtIpgP2+eua4fo/s2/w7wCjN1uFyYqShid+rbLN7+EYurcsmsE2B8sDA8sh+jek3ggg4jCfIJcmKhIiLiKUqrSkk5lMLivYtJOZhCua285ljHkI41Q1Hdw7tjsVg4XFDGlNkbWL8vH4CbB3fkwSt64e/TfPuSKczU4RJhxm7jyLbPWJT+NguKM9np611zyAcYFtqdUQk3ckGnS2nl28o5NYqISItQWlXKsoPLzGBzKIUKW0XNsc6hnbmi8xWMjh9NdGA7Xliyg9e/N2+amRATwqs39ie+dfN80FaYqcOZYaYwK51v1r7Iguy1rPMG46duPG8DhgXFMqrnBC7ocY3mwIiIiFOUVJXww4EfWLx3McsPLa83ebh/VH+u6HwFQVXJPPTpXvJKKgnytfLUNX0Zm+TYu36DB4aZ1157jeeee46srCx69+7Niy++yIgRI87ouc0dZiqLs0lZ8yIL933ND5RTWWcn3gHeYYzpMpZLkn5PqH/jdm4UERFxhKLKIr7Z9w0L9yxkTdaamuXe3l7enBs1jH37e7AtMw4MHyaeG8cjV/Z26LCTR4WZuXPncvPNN/Paa68xbNgw/v3vf/Of//yHjIwMOnTo8KvPb44wY7dVsSHtHRZsm8PXFdkU1tlBsQu+jGl/HqMHTqVdmPaBERER13e05Chf7vmShXsWsi1vW027jyWQ0vwEqo4n0SU4kdduHEjXKMdMj/CoMDNo0CD69+/P66+/XtPWq1cvxo0bx9NPP/2rz3dkmNm9ewkLNrzBwsLtZFnr3ErAbmF0RF+u6H8HPWKHndFOjCIiIq5oV/4uFu5ZyMLMhfVuqWCvCoHiZO4ceAN3DhvR5O91HhNmKisrCQwM5KOPPuLqq6+uaZ82bRppaWn88MMPJz2noqKCiorayUyFhYXExcU1eZh59qOx/K80s+bvQXaDSwJjuSLhJs5JmIDV6v0LzxYREXEvdsNO6tFUFu5ZyFd7FlNcVVRzrJPvSL6YOKNJz9eQMOPS77g5OTnYbDaio+vfzTM6OpojR46c8jlPP/00jz32mMNrS44ZxOxduxnuFcKYLmM4f8Bk/P1dYOm3iIiIA3hZvBjYdiAD2w5k+rnT+eHAMl5eM5fMkrUkRyc7tTaXDjMn/LzryjCM03ZnTZ8+nXvvvbfm7yd6Zpra+edM5buE8YRFdGny1xYREXFlvlZfLul0MZd0upj0w1l0jwpzaj0uHWZat26N1Wo9qRcmOzv7pN6aE/z8/PDz8zvlsabk69cKXz/tCSMiIi1bYrvm3x3455x3B6kz4Ovry4ABA1iyZEm99iVLljB06FAnVSUiIiKuxKV7ZgDuvfdebr75ZgYOHMiQIUN488032b9/P7fffruzSxMREREX4PJhZvz48eTm5vL444+TlZVFnz59WLRoER07dnR2aSIiIuICXHppdlNwiXsziYiISIM05P3bpefMiIiIiPwahRkRERFxawozIiIi4tYUZkRERMStKcyIiIiIW1OYEREREbemMCMiIiJuTWFGRERE3JrCjIiIiLg1l7+dwdk6scFxYWGhkysRERGRM3XifftMblTg8WGmqKgIgLi4OCdXIiIiIg1VVFREaGjoLz7G4+/NZLfbOXz4MMHBwVgsliZ97cLCQuLi4jhw4IDu++RAus7NQ9e5eeg6Nw9d5+bhyOtsGAZFRUW0a9cOL69fnhXj8T0zXl5exMbGOvQcISEh+sfSDHSdm4euc/PQdW4eus7Nw1HX+dd6ZE7QBGARERFxawozIiIi4tYUZs6Cn58fjzzyCH5+fs4uxaPpOjcPXefmoevcPHSdm4erXGePnwAsIiIink09MyIiIuLWFGZERETErSnMiIiIiFtTmBERERG3pjDzC1577TXi4+Px9/dnwIABpKSk/OLjf/jhBwYMGIC/vz+dO3fmjTfeaKZK3V9DrvW8efO45JJLaNOmDSEhIQwZMoTFixc3Y7Xuq6H/T5+wYsUKvL29SUpKcmyBHqKh17miooIHH3yQjh074ufnR5cuXXjnnXeaqVr31dDrPHPmTBITEwkMDCQmJobf/va35ObmNlO17mnZsmVceeWVtGvXDovFwvz583/1OU55LzTklObMmWP4+PgYb731lpGRkWFMmzbNCAoKMvbt23fKx2dmZhqBgYHGtGnTjIyMDOOtt94yfHx8jI8//riZK3c/Db3W06ZNM5555hljzZo1xo4dO4zp06cbPj4+RmpqajNX7l4aep1PKCgoMDp37mxceumlRmJiYvMU68Yac52vuuoqY9CgQcaSJUuMPXv2GKtXrzZWrFjRjFW7n4Ze55SUFMPLy8t46aWXjMzMTCMlJcXo3bu3MW7cuGau3L0sWrTIePDBB41PPvnEAIxPP/30Fx/vrPdChZnTOPfcc43bb7+9XlvPnj2NBx544JSPv//++42ePXvWa/vjH/9oDB482GE1eoqGXutTSUhIMB577LGmLs2jNPY6jx8/3vjb3/5mPPLIIwozZ6Ch1/nLL780QkNDjdzc3OYoz2M09Do/99xzRufOneu1zZgxw4iNjXVYjZ7mTMKMs94LNcx0CpWVlaxfv55LL720Xvull17KypUrT/mcH3/88aTHjxo1inXr1lFVVeWwWt1dY671z9ntdoqKioiIiHBEiR6hsdf53XffZffu3TzyyCOOLtEjNOY6f/755wwcOJBnn32W9u3b0717d/70pz9RVlbWHCW7pcZc56FDh3Lw4EEWLVqEYRgcPXqUjz/+mCuuuKI5Sm4xnPVe6PE3mmyMnJwcbDYb0dHR9dqjo6M5cuTIKZ9z5MiRUz6+urqanJwcYmJiHFavO2vMtf65559/npKSEm644QZHlOgRGnOdd+7cyQMPPEBKSgre3vpVcSYac50zMzNZvnw5/v7+fPrpp+Tk5HDnnXeSl5eneTOn0ZjrPHToUGbOnMn48eMpLy+nurqaq666ipdffrk5Sm4xnPVeqJ6ZX2CxWOr93TCMk9p+7fGnapeTNfRanzB79mweffRR5s6dS1RUlKPK8xhnep1tNhuTJk3iscceo3v37s1VnsdoyP/Pdrsdi8XCzJkzOffccxk9ejQvvPAC7733nnpnfkVDrnNGRgZTp07l4YcfZv369Xz11Vfs2bOH22+/vTlKbVGc8V6oj1un0Lp1a6xW60kJPzs7+6TEeULbtm1P+Xhvb28iIyMdVqu7a8y1PmHu3Ln87ne/46OPPuLiiy92ZJlur6HXuaioiHXr1rFhwwYmT54MmG+6hmHg7e3N119/zYUXXtgstbuTxvz/HBMTQ/v27QkNDa1p69WrF4ZhcPDgQbp16+bQmt1RY67z008/zbBhw/jzn/8MQL9+/QgKCmLEiBE8+eST6j1vIs56L1TPzCn4+voyYMAAlixZUq99yZIlDB069JTPGTJkyEmP//rrrxk4cCA+Pj4Oq9XdNeZag9kjc+uttzJr1iyNeZ+Bhl7nkJAQNm3aRFpaWs3X7bffTo8ePUhLS2PQoEHNVbpbacz/z8OGDePw4cMUFxfXtO3YsQMvLy9iY2MdWq+7asx1Li0txcur/lue1WoFansO5Ow57b3QodOL3diJZX9vv/22kZGRYdx9991GUFCQsXfvXsMwDOOBBx4wbr755prHn1iOds899xgZGRnG22+/raXZZ6ih13rWrFmGt7e38eqrrxpZWVk1XwUFBc76EdxCQ6/zz2k105lp6HUuKioyYmNjjeuuu87YsmWL8cMPPxjdunUzbrvtNmf9CG6hodf53XffNby9vY3XXnvN2L17t7F8+XJj4MCBxrnnnuusH8EtFBUVGRs2bDA2bNhgAMYLL7xgbNiwoWYJvKu8FyrM/IJXX33V6Nixo+Hr62v079/f+OGHH2qO3XLLLcb5559f7/Hff/+9kZycbPj6+hqdOnUyXn/99Wau2H015Fqff/75BnDS1y233NL8hbuZhv4/XZfCzJlr6HXeunWrcfHFFxsBAQFGbGysce+99xqlpaXNXLX7aeh1njFjhpGQkGAEBAQYMTExxo033mgcPHiwmat2L999990v/r51lfdCi2Gof01ERETcl+bMiIiIiFtTmBERERG3pjAjIiIibk1hRkRERNyawoyIiIi4NYUZERERcWsKMyIiIuLWFGZERETErSnMiIhb2bt3LxaLhbS0tF983AUXXMDdd9/dLDWJiHMpzIiIQ9x6661YLBYsFgs+Pj507tyZP/3pT5SUlJzV68bFxZGVlUWfPn0A+P7777FYLBQUFNR73Lx583jiiSfO6lwi4h68nV2AiHiuyy67jHfffZeqqipSUlK47bbbKCkp4fXXX2/0a1qtVtq2bfurj4uIiGj0OUTEvahnRkQcxs/Pj7Zt2xIXF8ekSZO48cYbmT9/PhUVFUydOpWoqCj8/f0ZPnw4a9eurXlefn4+N954I23atCEgIIBu3brx7rvvAvWHmfbu3cvIkSMBCA8Px2KxcOuttwInDzPl5+fzm9/8hvDwcAIDA7n88svZuXNnzfH33nuPsLAwFi9eTK9evWjVqhWXXXYZWVlZjr9QInJWFGZEpNkEBARQVVXF/fffzyeffML7779PamoqXbt2ZdSoUeTl5QHw0EMPkZGRwZdffsnWrVt5/fXXad269UmvFxcXxyeffALA9u3bycrK4qWXXjrluW+99VbWrVvH559/zo8//ohhGIwePZqqqqqax5SWlvLPf/6T//3vfyxbtoz9+/fzpz/9yQFXQkSakoaZRKRZrFmzhlmzZjFy5Ehef/113nvvPS6//HIA3nrrLZYsWcLbb7/Nn//8Z/bv309ycjIDBw4EoFOnTqd8TavVWjOcFBUVRVhY2Ckft3PnTj7//HNWrFjB0KFDAZg5cyZxcXHMnz+f66+/HoCqqireeOMNunTpAsDkyZN5/PHHm+oSiIiDqGdGRBxmwYIFtGrVCn9/f4YMGcJ5553HlClTqKqqYtiwYTWP8/Hx4dxzz2Xr1q0A3HHHHcyZM4ekpCTuv/9+Vq5ceVZ1bN26FW9vbwYNGlTTFhkZSY8ePWrOCRAYGFgTZABiYmLIzs4+q3OLiOMpzIiIw4wcOZK0tDS2b99OeXk58+bNIzQ0FACLxVLvsYZh1LRdfvnl7Nu3j7vvvpvDhw9z0UUXndVwj2EYp22vW4ePj0+94xaL5bTPFRHXoTAjIg4TFBRE165d6dixY01Q6Nq1K76+vixfvrzmcVVVVaxbt45evXrVtLVp04Zbb72VDz74gBdffJE333zzlOfw9fUFwGaznbaOhIQEqqurWb16dU1bbm4uO3bsqHdOEXFPmjMjIs0qKCiIO+64gz//+c9ERETQoUMHnn32WUpLS/nd734HwMMPP8yAAQPo3bs3FRUVLFiw4LSho2PHjlgsFhYsWMDo0aMJCAigVatW9R7TrVs3xo4dy+9//3v+/e9/ExwczAMPPED79u0ZO3asw39mEXEs9cyISLP7xz/+wbXXXsvNN99M//792bVrF4sXLyY8PBwwe1umT59Ov379OO+887BarcyZM+eUr9W+fXsee+wxHnjgAaKjo5k8efIpH/fuu+8yYMAAxowZw5AhQzAMg0WLFp00tCQi7sdiaEBYRERE3Jh6ZkRERMStKcyIiIiIW1OYEREREbemMCMiIiJuTWFGRERE3JrCjIiIiLg1hRkRERFxawozIiIi4tYUZkRERMStKcyIiIiIW1OYEREREbf2/2I+EGV/etOgAAAAAElFTkSuQmCC", "text/plain": [ "" ] @@ -379,7 +379,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5512c52c58364fc7a49efc0c3c5b002f", + "model_id": "3067886cfeef4e87a66b4410fa56bee4", "version_major": 2, "version_minor": 0 }, @@ -464,7 +464,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAag1JREFUeJzt3XdcVfX/B/DXuYPL3luRoSiKCqhpzrJMzZFpuRv2rb6VO1vaXr9sl6NsfCsbouY2M82szL0YDnAjoIAoe17uOL8/jsAlF+C9nHsvr+fjwQP43HHe3Iz74vP+nM8RRFEUQURERGSjFHIXQERERHQzGGaIiIjIpjHMEBERkU1jmCEiIiKbxjBDRERENo1hhoiIiGwawwwRERHZNJXcBVia0WhEVlYW3NzcIAiC3OUQERFRPYiiiJKSEgQHB0OhuP7ci92HmaysLISEhMhdBhERETVCZmYmWrZsed372H2YcXNzAyC9GO7u7jJXQ0RERPVRXFyMkJCQmvfx67H7MFPdWnJ3d2eYISIisjH1WSLCBcBERERk0xhmiIiIyKYxzBAREZFNs/s1M0RERLbGYDBAp9PJXYZFqdVqKJVKszwXwwwREZGVEEUROTk5KCwslLuUJuHp6YnAwMCb3geOYYaIiMhKVAcZf39/ODs72+1mr6Ioory8HLm5uQCAoKCgm3o+hhkiIiIrYDAYaoKMj4+P3OVYnJOTEwAgNzcX/v7+N9Vy4gJgIiIiK1C9RsbZ2VnmSppO9c96s+uDGGaIiIisiL22lq7GXD8rwwwRERHZNFnDzD///IPhw4cjODgYgiBg7dq1dW4XRRGvv/46goOD4eTkhNtvvx1Hjx6Vp1giIiKySrKGmbKyMsTExGDhwoVXvf3999/Hxx9/jIULF2L//v0IDAzEXXfdhZKSkiaulIiIiKyVrGHm7rvvxttvv41Ro0ZdcZsoivj000/x0ksvYdSoUejYsSO+//57lJeXIz4+XoZqr6xva+oFiKIodylERERWYdeuXVAqlRg8eHCTHtdq18ykpaUhJycHAwcOrBnTaDS47bbbsGvXrms+TqvVori4uM6HJfy0Jx2Pfn8AT/x4EEXl9r1LIxERUX18++23mDZtGnbs2IGMjIwmO67V7jOTk5MDAAgICKgzHhAQgPT09Gs+bu7cuXjjjTcsWhsAKBQCHJQK/J5yAUfnb8fCCXGIa+Vl8eMSEVHzIYoiKnQGWY7tpFY26GyjsrIy/Pzzz9i/fz9ycnKwePFivPrqqxassJbVhplq/34hRVG87os7Z84czJo1q+b74uJihISEmL2uiT1C0bmFJ6YuTUB6XjlGf7Ebs++OwqN9wpvVaXVERGQ5FToDOry6WZZjp7w5CM4O9Y8Jy5cvR7t27dCuXTs88MADmDZtGl555ZUmeU+02jZTYGAggNoZmmq5ublXzNaY0mg0cHd3r/NhKZ1aeuCXaX0wtFMQ9EYRb/+aisd/OIDC8iqLHZOIiMgaffPNN3jggQcAAIMHD0ZpaSm2bt3aJMe22pmZ8PBwBAYGYsuWLYiLiwMAVFVVYdu2bXjvvfdkrq6Wu6MaCyfE4da9PnhrQwr+SM3F0Pk7MH98HLqGsu1ERESN56RWIuXNQbIdu76OHz+Offv2YfXq1QAAlUqFsWPH4ttvv8WAAQMsVWINWcNMaWkpTp06VfN9WloakpKS4O3tjVatWmHmzJl45513EBkZicjISLzzzjtwdnbGhAkTZKz6SoIg4MFbQxEX4omp8Qk4m1eOsV/uxnOD2uHxvhFQKNh2IiKihhMEoUGtHrl888030Ov1aNGiRc2YKIpQq9UoKCiAl5dl/7iXtc104MABxMXF1cy8zJo1C3FxcTULhp5//nnMnDkTkydPRrdu3XD+/Hn8/vvvcHNzk7Psa+rYQmo7DY8Jht4oYu5vx/DYDweQX8a2ExER2Se9Xo8ffvgBH330EZKSkmo+kpOTERoaiiVLlli8BkG0841SiouL4eHhgaKiIouunzEliiKW7svE678cRZXeiCAPRywYH4duYd5NcnwiIrI9lZWVSEtLQ3h4OBwdHeUup97Wrl2LsWPHIjc3Fx4eHnVue+mll7Bx40YkJiZe9bHX+5kb8v5ttQuAbZkgCJjQoxXWTemNCF8XZBdVYuxXe/D536dgNNp1diQiombmm2++wYABA64IMgBw3333ISkpCQkJCRatgTMzFlaq1ePlNYexNikLAHBbWz98PCYGPq6aJq+FiIisl63OzNwMzszYCFeNCp+MjcV793WCRqXAthMXMWT+duxLy5e7NCIiIrvAMNMEBEHA2FtaYf3UPmjt54ILxVqM+2o3Fv55km0nIiKim8Qw04TaBbph/dQ+GNWlBYwi8OHvJ/Dwd/twqVQrd2lEREQ2i2GmibloVPh4TCw+uL8zHNUKbD95CXfP247dp/PkLo2IiMgmMczIZHS3EKyf2gdt/F1xsUSLif/bg3l/nISBbSciIqIGYZiRUdsAN6yf2hv3d20Jowh88scJPPTtXlwsYduJiIiovhhmZObsoMKHo2Pw0egYOKmV2HkqD0Pmb8euU5fkLo2IiMgmMMxYifu6tsQv03qjbcDlttM3e/HJlhNsOxEREd0Aw4wVaePvhnVT+mBstxCIIjBv60k88L+9yC2ulLs0IiIiq8UwY2WcHJR47/7O+HRsLJwdlNh9Rmo77TjJthMREVmnSZMmQRCEmg8fHx8MHjwYhw4dapLjM8xYqXvjWuCXaX0QFeiGS6VVePDbvfjo9+PQG4xyl0ZERHSFwYMHIzs7G9nZ2di6dStUKhWGDRvWJMdmmLFirf1csXZKb0zo0QqiCCz48xQm/G8vLrDtREREVkaj0SAwMBCBgYGIjY3FCy+8gMzMTFy8eNHix1ZZ/Ah0UxzVSrwzshNujfDBnFWHsC8tH3fP245PxsbitrZ+cpdHRESWJIqArlyeY6udAUFo1ENLS0uxZMkStGnTBj4+PmYu7EoMMzbinphgdGrhgSlLEpCSXYyHv92Hybe3xqy72kKl5AQbEZFd0pUD7wTLc+wXswAHl3rffcOGDXB1dQUAlJWVISgoCBs2bIBCYfn3KL4L2pBwXxesntwLD94aCgD4/O/TGP/1HmQXVchcGRERNXf9+/dHUlISkpKSsHfvXgwcOBB333030tPTLX5szszYGEe1Em/d2xE9Irwxe9Vh7D9bgCHztuPjMbHoH+Uvd3lERGROamdphkSuYzeAi4sL2rRpU/N9165d4eHhga+//hpvv/22uaurg2HGRg3rfLntFJ+AI+eL8cji/Xjitgg8O7Ad1Gw7ERHZB0FoUKvHmgiCAIVCgYoKy3cP+K5nw0J9XLDqqV6Y1CsMAPDltjMY99UenC9k24mIiJqWVqtFTk4OcnJykJqaimnTpqG0tBTDhw+3+LEZZmycRqXE6/dEY9HELnBzVOFgegGGzt+OP1IuyF0aERE1I5s2bUJQUBCCgoLQo0cP7N+/HytWrMDtt99u8WMLoija9cV/iouL4eHhgaKiIri7u8tdjkVl5JVj6tIEHDpXBAB4rE84nh8cBQcVMysRkbWrrKxEWloawsPD4ejoKHc5TeJ6P3ND3r/5LmdHWvk4Y8WTPfFI7zAAwP92pGHMl7txrkCmPQqIiIiaAMOMndGolHhteDS+fLAr3B1VSMosxJB52/H70Ry5SyMiIrIIhhk7NSg6EL9O74uYEE8UV+rx3x8P4o1fjqJKz2s7ERGRfWGYsWMh3s5Y8URPPNYnHADw3c6zGP3FLmTms+1ERET2g2HGzjmoFHh5WAd8/VA3eDipkXyuCEPmb8emI9lyl0ZERGQWDDPNxF0dAvDr9D6Ia+WJkko9nvwpAa+vPwqt3iB3aURERDeFYaYZaenljJ+f6Ikn+kUAABbvOov7F+1GRh7bTkREZLsYZpoZtVKBOUPa49tJ3eDprMbh80UYOn87Nh5m24mIiGwTw0wzdUdUADZO74tuoV4o0eoxeUkCXll7BJU6tp2IiMi2MMw0Y8GeTlj631vx1O2tAQA/7knHfYt24eylMpkrIyIiqj+GmWZOrVTghcFRWPzILfB2ccDRrGIMW7ADvyTLdMl5IiKyWTk5OZg2bRoiIiKg0WgQEhKC4cOHY+vWrRY9LsMMAQBub+ePjdP7onuYN0q1ekxbmogX1xxm24mIiOrl7Nmz6Nq1K/7880+8//77OHz4MDZt2oT+/ftjypQpFj22yqLPTjYl0MMR8Y/3wKd/nMRnf59C/N4MJGYU4rMJcYjwc5W7PCIismKTJ0+GIAjYt28fXFxcasajo6Pxn//8x6LHZpihOlRKBZ4d1A7dw73x9PIkpGYXY/iCHXhnVCeMiG0hd3lERM2KKIqo0FfIcmwnlRMEQajXffPz87Fp0yb83//9X50gU83T09PM1dXFMENX1a+tHzbO6IsZyxKx50w+ZixLwu7TeXj9nmg4qpVyl0dE1CxU6CvQI76HLMfeO2EvnNXO9brvqVOnIIoioqKiLFzV1XHNDF1TgLsjljx2K6bfGQlBAJbtz8S9n+3EqdxSuUsjIiIrIooiANR7JsfcODND16VUCJh1V1v0CPfGjGVJOJZTgnsW7sDb93bEqC4t5S6PiMiuOamcsHfCXtmOXV+RkZEQBAGpqam49957LVfUNQhidZyyU8XFxfDw8EBRURHc3d3lLsem5ZZUYuayJOw6nQcAGN21Jd4c0RFODmw7ERHdrMrKSqSlpSE8PByOjo5yl9Ngd999Nw4fPozjx49fsW6msLDwqutmrvczN+T9m20mqjd/N0f8+GgPPD2gLRQCsOLgOdyzcAdOXiiRuzQiIpLZ559/DoPBgO7du2PVqlU4efIkUlNTMX/+fPTs2dOix2aYoQZRKgTMGBCJnx7rAT83DU7mluKehTux4kCm3KUREZGMwsPDkZCQgP79++OZZ55Bx44dcdddd2Hr1q1YtGiRRY/NNhM12sUSLWb9nITtJy8BAEZ1aYG37+0IZwcuxSIiaihbbzM1BttMJDs/Nw2+f6Q7nh0otZ1WJ5zH8AU7cDyHbSciImo6DDN0UxQKAVPviMTSx29FgLsGpy+WYcRnO7B8fwbsfNKPiIisBMMMmUWPCB9snN4X/dr6oVJnxAurDuPp5Uko0+rlLo2IiOwcwwyZjY+rBosn3YLnB7eDUiFgbVIWhi/YgdTsYrlLIyIiO8YwQ2alUAiYfHsbLPvvrQjycMSZS2UY8dlOxO9l24mIiCyDYYYs4pYwb/w6vS/uiPJHld6IF9ccxvRlSSip1MldGhER2RmGGbIYbxcH/O+hbnhxSBSUCgG/JEttpyPni+QujYiI7AjDDFmUQiHgv/1a4+cneiLYwxFn88ox6vNd+HH3WbadiIjILBhmqEl0DfXCxhl9MaC9P6oMRryy7iimxCegmG0nIiK6SQwz1GQ8nR3w9UPd8PLQ9lApBGw8nINh83fg8Dm2nYiIqPEYZqhJCYKAx/pGYMWTPdHC0wkZ+eUYtWgnFu9MY9uJiMhGTZo0CYIgQBAEqNVqBAQE4K677sK3334Lo9Fo8eMzzJAs4lp5YeP0vhjYIQA6g4jXf0nBUz8loKiCbSciIls0ePBgZGdn4+zZs/jtt9/Qv39/zJgxA8OGDYNeb9kNVBlmSDYezmp8+WBXvDa8A9RKAZuO5mDo/O1IyiyUuzQiImogjUaDwMBAtGjRAl26dMGLL76IdevW4bfffsPixYstemxe3phkJQgCHukdji6tvDB1aQIy8ysw+otdmH13e/yndxgEQZC7RCIi2YiiCLGiQpZjC05ON/07+I477kBMTAxWr16Nxx57zEyVXcmqw4xer8frr7+OJUuWICcnB0FBQZg0aRJefvllKBScVLInMSGe2DCtL2avOoTfjuTgrQ0p2HMmDx/c3xmezg5yl0dEJAuxogLHu3SV5djtEg5CcHa+6eeJiorCoUOHzFDRtVl1InjvvffwxRdfYOHChUhNTcX777+PDz74AAsWLJC7NLIADyc1Pp/YBW+OiIaDUoEtKRcwdP4OJGQUyF0aERE1kiiKFp9lt+qZmd27d2PEiBEYOnQoACAsLAxLly7FgQMHrvkYrVYLrVZb831xMS9yaEsEQcBDPcPQpZUXpsQnID2vHGO+2I0XBkfhsb7hbDsRUbMiODmhXcJB2Y5tDqmpqQgPDzfLc12LVc/M9OnTB1u3bsWJEycAAMnJydixYweGDBlyzcfMnTsXHh4eNR8hISFNVS6ZUccWHtgwrQ+GdQ6C3iji/zam4rHvD6CgrEru0oiImowgCFA4O8vyYY4/Hv/8808cPnwY9913nxlejWuz6jDzwgsvYPz48YiKioJarUZcXBxmzpyJ8ePHX/Mxc+bMQVFRUc1HZmZmE1ZM5uTmqMaC8XH4v5Ed4aBSYOuxXAydvx0H0/PlLo2IiP5Fq9UiJycH58+fR0JCAt555x2MGDECw4YNw0MPPWTRY1t1m2n58uX46aefEB8fj+joaCQlJWHmzJkIDg7Gww8/fNXHaDQaaDSaJq6ULEUQBEzsEYrYEE9MjU9E2qUyjPlyD54b1A7/7RsBhYJtJyIia7Bp0yYEBQVBpVLBy8sLMTExmD9/Ph5++GGLn7QjiFa87WpISAhmz56NKVOm1Iy9/fbb+Omnn3Ds2LF6PUdxcTE8PDxQVFQEd3d3S5VKTaBUq8dLaw5jXVIWAOD2dn74eEwsvF14thMR2b7KykqkpaUhPDwcjo6OcpfTJK73Mzfk/duq20zl5eVXpDmlUtkkWyOT9XHVqPDp2Fi8O6oTNCoF/j5+EUPmbce+NLadiIiaM6sOM8OHD8f//d//4ddff8XZs2exZs0afPzxxxg5cqTcpZFMBEHAuO6tsG5qb0T4uSCnuBLjv96Dz/46BaPRaicZiYjIgqw6zCxYsAD3338/Jk+ejPbt2+PZZ5/FE088gbfeekvu0khmUYHu+GVqH4yKawGDUcQHm4/j4e/24VKp9sYPJiIiu2LVa2bMgWtm7Jsoilhx8BxeXXcElToj/N00mDcuDj1b+8hdGhFRg3DNjJ2umSG6EUEQMKZbCNZP7YM2/q7ILdFi4v/2YN4fJ2Fg24mIbJCdzzHUYa6flWGG7ELbADesn9ob93dtCaMIfPLHCTz07V7kllTKXRoRUb2o1WoA0skvzUX1z1r9szcW20xkd1YdPIeX1x5Bhc4AX1cN5o2LRe82vnKXRUR0Q9nZ2SgsLIS/vz+czbQLrzUSRRHl5eXIzc2Fp6cngoKCrrhPQ96/GWbILp3KLcGUJYk4fqEEggBMuyMSM+6MhJKb7BGRFRNFETk5OSgsLJS7lCbh6emJwMDAq4Y2hhkTDDPNV0WVAW/8chTL9kuXtLg1whvzxsUhwL15LKwjIttlMBig0+nkLsOi1Go1lErlNW9nmDHBMEPrks7jxdWHUVZlgI+LAz4ZG4t+bf3kLouIiK6DZzMRmRgR2wK/TOuD9kHuyCurwsPf7cMHm49Bb+BO0kRE9oBhhpqFCD9XrJncCxN6tIIoAp/9dRoTvt6LnCKe7UREZOsYZqjZcFQr8c7ITlgwPg6uGhX2nc3HkPnb8ffxXLlLIyKim8AwQ83O8JhgbJjWB9HB7sgvq8Kk7/bj3d+OQce2ExGRTWKYoWYpzNcFq57qhYd6hgIAvth2GuO+2oOswgqZKyMiooZimKFmy1GtxJsjOuLziV3gplHhYHoBhszfjq2pF+QujYiIGoBhhpq9IZ2CsGF6H3Rq4YHCch0e/f4A/u/XFLadiIhsBMMMEYBQHxesfKonJvUKAwB8vT0No7/YjXMFzecaKUREtophhugyjUqJ1++JxhcPdIW7owpJmYUYMm87fj+aI3dpRER0HQwzRP8yuGMgfp3eFzEhniiu1OO/Px7Em7+koErPthMRkTVimCG6ihBvZ6x4oice6xMOAPh2ZxpGf7ELmflsOxERWRuGGaJrcFAp8PKwDvjfQ93g4aRG8rkiDJm/HZuOZMtdGhERmWCYIbqBAR0CsHFGX3Rp5YmSSj2e/CkBr607Aq3eIHdpREQEhhmiemnh6YTlT/TEE7dFAAC+352O+xbtwtlLZTJXRkREDDNE9aRWKjDn7vb4dlI3eDmrceR8MYYt2IENh7LkLo2IqFljmCFqoDuipLZTt1AvlGr1mBqfiJfWHEaljm0nIiI5MMwQNUKQhxOW/fdWTL69NQBgyd4MjPx8F85cLJW5MiKi5odhhqiRVEoFnh8che//0x3eLg5IzS7G8AU7sC7pvNylERE1KwwzRDfptrZ++G1GX/QI90ZZlQEzliVhzupDbDsRETURhhkiMwhwd8SSx3pg+h1tIAjA0n2ZuPeznTiVy7YTEZGlMcwQmYlKqcCsge3w4396wNdVg2M5Jbhn4Q6sTjgnd2lERHaNYYbIzPpE+mLjjD7o1doH5VUGzPo5Gc+tSEZFFdtORESWwDBDZAH+bo748dEeeHpAWygEYMXBc7hn4Q6cvFAid2lERHaHYYbIQpQKATMGRGLJY7fCz02Dk7mlGL5wB1YcyJS7NCIiu8IwQ2RhPVv74LcZfdE30heVOiOeW3kIs35OQplWL3dpRER2gWGGqAn4umrw/SPd8dygdlAIwOqE87hn4Q4cyymWuzQiIpvHMEPURBQKAVP6t8HSx29FgLsGpy+WYcTCnVi6LwOiKMpdHhGRzWKYIWpiPSJ8sHF6X9zW1g9avRFzVh/GjGVJKGXbiYioURhmiGTg46rBd5NuwQuDo6BUCFifnIXhC3bgaFaR3KUREdkchhkimSgUAp66vTV+fuJWBHs4Iu1SGUZ+vgs/7kln24mIqAEYZohk1jXUG79O74sB7f1RpTfilbVHMHVpIoordXKXRkRkExhmiKyAl4sDvn6oG14e2h4qhYBfD2Vj+IIdOHyObSciohthmCGyEoIg4LG+EVjxZE+08HRCel457lu0C9/vOsu2ExHRdTDMEFmZuFZe2Di9LwZ2CECVwYjX1h/FUz8loKiCbScioqthmCGyQh7Oanz5YFe8NrwD1EoBm47mYNiC7UjOLJS7NCIiq8MwQ2SlBEHAI73DseqpXgjxdkJmfgXu/2IXvtmRxrYTEZEJhhkiK9e5pSc2TOuLuzsGQmcQ8daGFDz+w0EUllfJXRoRkVVgmCGyAR5Oanw+sQveHBENB6UCf6RewND5O3AwvUDu0oiIZMcwQ2QjBEHAQz3DsHpyL4T5OON8YQXGfrkbX247DaORbSciar4YZohsTMcWHvhlWh8MjwmG3ihi7m/H8NgPB5BfxrYTETVPDDNENsjNUY3542LxzshOcFAp8OexXAydvx37z+bLXRoRUZMTxEaeFmE0GnHq1Cnk5ubCaDTWua1fv35mKc4ciouL4eHhgaKiIri7u8tdDpHZpWYXY8qSBJy5VAalQsCsu9riqdtaQ6EQ5C6NiKjRGvL+3agws2fPHkyYMAHp6VdeEE8QBBgMhoY+pcUwzFBzUKbV4+W1R7Am8TwAoF9bP3w8Jga+rhqZKyMiapyGvH83qs305JNPolu3bjhy5Ajy8/NRUFBQ85Gfz2luoqbmolHh4zExeP++znBUK/DPiYsYMm87dp/Ok7s0IiKLa9TMjIuLC5KTk9GmTRtL1GRWnJmh5uZ4TgmmxCfgVG4pFAIw4862mHpHGyjZdiIiG2LxmZkePXrg1KlTjSqOiCyrXaAb1k/tjfu6tIRRBD754wQe+nYvcksq5S6NiMgiVI150LRp0/DMM88gJycHnTp1glqtrnN7586dzVIcETWOs4MKH42JQc/WPnhl7RHsPJWHIfN2YN64WPRu4yt3eUREZtWoNpNCceWEjiAIEEWRC4CJrMzJC1Lb6cSFUggCMO2OSMy4M5JtJyKyahY/myk9Pf26t4eGhjb0KS2GYYYIqKgy4I1fjmLZ/kwAwK0R3pg3Lg4B7o4yV0ZEdHUWDzO2hGGGqNa6pPN4cfVhlFUZ4OPigE/GxqJfWz+5yyIiuoLFFwADwOnTpzFt2jQMGDAAd911F6ZPn47Tp0839umu6fz583jggQfg4+MDZ2dnxMbG4uDBg2Y/DlFzMCK2BX6Z1gftg9yRV1aFh7/bhw82H4PeYLzxg4mIrFSjwszmzZvRoUMH7Nu3D507d0bHjh2xd+9eREdHY8uWLWYrrqCgAL1794ZarcZvv/2GlJQUfPTRR/D09DTbMYiamwg/V6yZ3AsTe7SCKAKf/XUaE77ei+yiCrlLIyJqlEa1meLi4jBo0CC8++67dcZnz56N33//HQkJCWYpbvbs2di5cye2b99e78dotVpotdqa74uLixESEsI2E9FVbDiUhdmrDqNUq4eXsxofj4lF/yh/ucsiIrJ8myk1NRWPPvroFeP/+c9/kJKS0pinvKr169ejW7duGD16NPz9/REXF4evv/76uo+ZO3cuPDw8aj5CQkLMVg+RvRnWORgbpvVBxxbuKCjX4ZHF+zF3Yyp0bDsRkQ1pVJjx8/NDUlLSFeNJSUnw9zffX3VnzpzBokWLEBkZic2bN+PJJ5/E9OnT8cMPP1zzMXPmzEFRUVHNR2ZmptnqIbJHYb4uWPVULzzcUzoL8ct/zmDsl7txvpBtJyKyDY3aNO/xxx/Hf//7X5w5cwa9evWCIAjYsWMH3nvvPTzzzDNmK85oNKJbt2545513AEjtraNHj2LRokV46KGHrvoYjUYDjYYX1yNqCI1KiTdGdETP1j54buUhJGQUYsi87fhwdAzu6hAgd3lERNfVqDDzyiuvwM3NDR999BHmzJkDAAgODsbrr7+O6dOnm624oKAgdOjQoc5Y+/btsWrVKrMdg4hqDe4YhOhgD0yNT0DyuSI8/sMBPNonHC8MjoKDqtEnPxIRWVSjfjsJgoCnn34a586dq2nnnDt3DjNmzIAgmG9X0d69e+P48eN1xk6cOGFVm/IR2ZsQb2eseLIXHu0TDgD4ZkcaRn+5G5n55TJXRkR0dTf9p5abmxvc3NzMUcsVnn76aezZswfvvPMOTp06hfj4eHz11VeYMmWKRY5HRBIHlQKvDOuArx/qBg8nNZIzCzFk/nZsOpItd2lERFeo96nZXbp0wdatW+Hl5YW4uLjrzsCY69RsANiwYQPmzJmDkydPIjw8HLNmzcLjjz9e78dzB2Cim3OuoBzTliYiMaMQAPBwz1C8OLQ9NCqlvIURkV1ryPt3vdfMjBgxomZh7YgRI8zaTrqeYcOGYdiwYU1yLCK6UksvZ/z8RE98uPk4vvznDL7fnY6DGQVYOL4Lwnxd5C6PiIjXZiKi+vvz2AU883MyCsp1cNWo8O59nTCsc7DcZRGRHbL4pnkRERHIy8u7YrywsBARERGNeUoisgF3RAVg44y+uCXMC6VaPabGJ+KlNYdRqTPIXRoRNWONCjNnz56FwXDlLy+tVotz587ddFFEZL2CPJyw9PFbMfn21gCAJXszMPLzXThzsVTmyoiouWrQPjPr16+v+Xrz5s3w8PCo+d5gMGDr1q0IDw83X3VEZJVUSgWeHxyFHhE+mLU8CanZxRi+YAfeGdUJI2JbyF0eETUzDVozo1BIEzmCIODfD1Or1QgLC8NHH31kVQt2uWaGyLIuFFdixrJE7DmTDwAYd0sIXhseDScHnu1ERI3XkPfvRi0ADg8Px/79++Hr69voIpsKwwyR5RmMIuZtPYkFf56EKALtAtzw2cQ4tPG3zB5URGT/LL4AOC0tzSaCDBE1DaVCwKy72mLJoz3g66rB8QslGL5gJ1Ye5Bo6IrK8Rp+aXVZWhm3btiEjIwNVVVV1bjPn9ZluFmdmiJrWxRItnl6ehB2nLgEA7uvSEm/dGw1nh0ZdCo6ImimLt5kSExMxZMgQlJeXo6ysDN7e3rh06RKcnZ3h7++PM2fONLp4c2OYIWp6BqOIz/86hU/+OAGjCLT2c8HnE7uiXSDbTkRUPxZvMz399NMYPnw48vPz4eTkhD179iA9PR1du3bFhx9+2Kiiich+KBUCpt0ZifjHb0WAuwanL5bhnoU7sGxfxhUnDxAR3axGhZmkpCQ888wzUCqVUCqV0Gq1CAkJwfvvv48XX3zR3DUSkY26NcIHG6f3Rb+2ftDqjZi9+jBmLk9CqVYvd2lEZEcaFWbUanXNtZkCAgKQkZEBAPDw8Kj5mogIAHxcNVg86RY8P7gdlAoB65KycM+CHTiaVSR3aURkJxoVZuLi4nDgwAEAQP/+/fHqq69iyZIlmDlzJjp16mTWAonI9ikUAibf3gbL/nsrgjwcceZSGUZ+vgs/7kln24mIblqjwsw777yDoKAgAMBbb70FHx8fPPXUU8jNzcVXX31l1gKJyH7cEuaNjdP74o4of1TpjXhl7RFMXZqI4kqd3KURkQ1r8NlMoigiIyMD/v7+cHJyslRdZsOzmYisj9Eo4psdaXhv0zHojSJaeTvjswld0Kmlx40fTETNgkXPZhJFEZGRkbygJBE1mkIh4PF+Efj5yZ5o4emEjPxy3LdoFxbvTGPbiYgarMFhRqFQIDIyEnl5eZaoh4iakS6tvLBxel8M7BCAKoMRr/+Sgid/OoiicradiKj+GrVm5v3338dzzz2HI0eOmLseImpmPJzV+PLBrnhteAeolQI2H72AoQu2IymzUO7SiMhGNGoHYC8vL5SXl0Ov18PBweGKtTP5+flmK/Bmcc0Mke04dK4QU+MTkZFfDpVCwOy7o/Bon/CarSCIqPloyPt3oy6W8sknn/CXCxGZXeeWntgwvQ9mrzqEjYdz8PavqdhzJg8fjo6Bp7OD3OURkZVq9IUmbQVnZohsjyiK+GlvBt7akIIqvRHBHo5YMCEOXUO95S6NiJqIxa/NpFQqkZube8V4Xl4elEplY56SiKiGIAh48NZQrJncC+G+LsgqqsSYL/fgi22nYTTa9d9fRNQIjQoz15rM0Wq1cHDgVDARmUd0sAd+mdYH98QEw2AU8e5vx/Cf7/cjr1Qrd2lEZEUatGZm/vz5AKS/mv73v//B1dW15jaDwYB//vkHUVFR5q2QiJo1V40K88bFomdrH7y+/ij+Pn4RQ+Zvx/xxcegR4SN3eURkBRq0ZiY8PBwAkJ6ejpYtW9ZpKTk4OCAsLAxvvvkmevToYf5KG4lrZojsx7GcYkxZkoDTF8ugEIBZd7XF5NvbQKHgCQlEshBFIDsJ8AwFnM27pq0h79+NWgDcv39/rF69Gl5eXo0usqkwzBDZlzKtHq+sPYLViecBAH0jffHxmFj4uWlkroyoGSm5ABz+GUiKB3JTgEFzgZ6TzXoIi4cZW8IwQ2SfVhzIxKvrjqJCZ4CfmwbzxsaiVxtfucsisl96LXD8NyB5KXByCyAapHGlBug1DbjzFbMezuJhxmAwYPHixdi6dStyc3NhNBrr3P7nn3829CkthmGGyH6dvFCCKfEJOHGhFIIATL8jEtPvjISSbSci8xBFICtRmoE5vAKoLKy9reUtQOwEIHoU4ORp9kNbfNO8GTNmYPHixRg6dCg6duzIDfSISBaRAW5YN6UPXl9/FMsPZGLe1pPYm5aH+ePi4O/uKHd5RLar5AJwaLkUYi6m1o67BQMxY4GYCYBfW/nq+5dGzcz4+vrihx9+wJAhQyxRk1lxZoaoeVibeB4vrjmM8ioDfF0d8MnYWPSN9JO7LCLbUd1GSooHTv1R20ZSOQJRw6RZmIjbAUXT7Cdn8ZkZBwcHtGnTplHFERFZwr1xLdC5pQemxCciNbsYD327D5Nvb42nB7SFStmoLbWI7N/12kghPYCY8UDHUYCjh2wl1kejZmY++ugjnDlzBgsXLrT6FhNnZoial0qdAW9tSMGSvRkAgO5h3pg3PhZBHk43eCRRM1KSAxz6+co2knsLIGac1EbylXfSwuILgEeOHIm//voL3t7eiI6OhlqtrnP76tWrG/qUFsMwQ9Q8bTiUhdmrDqNUq4eXsxofj4lF/yh/ucsiko+uEjhh2ka6fPKOyhFoP1xqI4Xf1mRtpBuxeJvJ09MTI0eObFRxRERNYVjnYHRq4YGp8Yk4fL4Ijyzejyf6ReDZQe2gZtuJmgtRBM4nAElLgCOr/nU2UncgbiIQPdLq20g3wn1miMiuafUGzN14DIt3nQUAxLXyxILxcWjp5SxvYUSWVJxdezbSpeO141bURrqRJtk0T6/X4++//8bp06cxYcIEuLm5ISsrC+7u7nWu2SQ3hhkiAoBNR3Lw/MpkFFfq4eGkxgf3d8bA6EC5yyIyH10lcHyjFGBOb72yjRQzvknPRrpZFg8z6enpGDx4MDIyMqDVanHixAlERERg5syZqKysxBdffNHo4s2NYYaIqmXml2Pq0kQkZxYCAB7pHYY5d7eHg4ptJ7JRddpIK4HKotrbQm69vKndvTbZRmqSTfO6deuG5ORk+PjUXrV25MiReOyxxxrzlEREFhfi7YwVT/TEB5uP4evtafhu51kcTC/AwvFd0MqHbSeyIddsI7W83EYab/VtJHNqVJjZsWMHdu7cCQcHhzrjoaGhOH/+vFkKIyKyBAeVAi8N7YAe4T54dmUyDp0rwtD52/H+/Z1xd6cgucsjujZdJXD8VyBp6b/aSE5Ah3ukWZiwfoCi+c00NirMGI1GGAyGK8bPnTsHNze3my6KiMjSBnQIwK/T+2L60kQcTC/AU0sS8FDPULw4pD0c1baxpoCaAVEEzh0AkuMvn41k0kZq1VMKMB3uBRyb9zKKRq2ZGTt2LDw8PPDVV1/Bzc0Nhw4dgp+fH0aMGIFWrVrhu+++s0StjcI1M0R0PTqDER9vOYFFf58GAEQHu2PhhC4I93WRuTJq1oqzgORl0hWqL52oHa9uI8VOAHxay1dfE7D4AuCsrCz0798fSqUSJ0+eRLdu3XDy5En4+vrin3/+gb+/9WxMxTBDRPXx9/FczPo5GfllVXDVqPDOqE64JyZY7rKoOdFVAMd+ldbBnPmr2beRmuTU7IqKCixbtgwHDx6E0WhEly5dMHHiRDg5WdeW4QwzRFRfOUWVmLEsEXvT8gEA47u3wmvDO7DtRJZT3UZKWgIcWQ1o/9VGihl/eVO75vf+1SRhxlYwzBBRQ+gNRszfehIL/joFUQSiAt2wcEIXtPG3nv2zyA5Ut5GS4oG8k7XjHiFSgIkZZ/dtpBuxeJiZO3cuAgIC8J///KfO+LfffouLFy/ihRdeaOhTWgzDDBE1xo6TlzBzeRIulWrhpFbi7Xs74r6uLeUui2xZTRtpCXD6LwCX337VzkD76jZS32bTRroRi4eZsLAwxMfHo1evXnXG9+7di3HjxiEtLa2hT2kxDDNE1Fi5JZV4enkSdp7KAwDc37Ul3hwRDWeHRp0ISs2RKALn9pu0kYprb2vVS7o2UocRgIZnAv+bxTfNy8nJQVDQlfsx+Pn5ITs7uzFPSURkdfzdHPHDf3rgs79O4dM/TmDlwXNIyizEZxO6oF0g33zoOorO1baR8k/Xjnu0AmIvt5G8I+Srz840KsyEhIRg586dCA8PrzO+c+dOBAdz9T8R2Q+lQsD0OyPRPdwbM5Yl4lRuKe5ZuANvjojGmG4hEARB7hLJWlSV17aRzvyNOm2kDiOktTBsI1lEo8LMY489hpkzZ0Kn0+GOO+4AAGzduhXPP/88nnnmGbMWSERkDW6N8MHG6X0x6+dkbDtxES+sOozdp/Pw9shOcNWw7dRsiSKQuU8KMEfX1G0jhfa+vKkd20iW1qg1M6IoYvbs2Zg/fz6qqqoAAI6OjnjhhRfw6quvmr3Im8E1M0RkTkajiC//OYMPfz8Og1FEhK8LFk7ogg7B/P3SrFyrjeTZCoiZcLmNFH7tx9MNNdmp2aWlpUhNTYWTkxMiIyOh0Wga+1QWwzBDRJZw4Gw+pi1NRHZRJRxUCrw6rAMm9mjFtpM9qyoHjm243Ebahto2kos0+xI7QZqNYRvJLLjPjAmGGSKylIKyKjy7Ihlbj+UCAIZ2DsLcUZ3g7qiWuTIyG1EEMvdePhtpDVBVUntbWF8pwLS/B9BwHyJzs3iYKSsrw7vvvoutW7ciNzcXRqOxzu1nzpxp6FNaDMMMEVmSKIr43/Y0vLfpGPRGEa28nbFwQhw6t/SUuzS6GYWZl6+NFA/km7yneYZKC3ljxwNeYbKV1xxY/NTsxx57DNu2bcODDz6IoKAgTqsSUbMlCAIe7xeBbmFemBqfiIz8cty3aBdeHNIek3qF8fejLakqA1Ivt5HS/kGdNlL0SGkWplVPtpGsUKNmZjw9PfHrr7+id+/elqjJrDgzQ0RNpahch+dXJWPz0QsAgIEdAvDB/THwcGbbyWqJIpCx+/LZSGuBqtLa29hGkpXFZ2a8vLzg7e3dqOKIiOyVh7MaXzzQFT/sTsf//ZqK31Mu4Oj87Vg4IQ5xrbzkLo9MFWbUno1UYLJrvWcoEDtROhvJK1S++qhBGjVX9tZbb+HVV19FeXm5ueu5rrlz50IQBMycObNJj0tEVF+CIODhXmFY9VQvtPJ2xvnCCoz+Yje+/ucMjEa7Pt/C+lWVAUlLgcXDgE87AX/9nxRkHFyBuAeAR34DZiQDt7/AIGNjGtVmiouLw+nTpyGKIsLCwqBW151CTUhIMFuB1fbv348xY8bA3d0d/fv3x6efflqvx7HNRERyKa7UYc7qw/j1kHSZlzui/PHh6Bh4uzjIXFkzYjQCGbukEJOy1qSNJADhfYHYB4D2wwAHFzmrpKuweJvp3nvvbczDGq20tBQTJ07E119/jbfffrtJj01E1FjujmosHB+HXq198MYvKfjzWC6Gzt+O+ePjcEsYW/UWVXC2to1UmF477h1xeVO7sdIGd2QXbGKfmYcffhje3t745JNPcPvttyM2NvaaMzNarRZarbbm++LiYoSEhHBmhohklZJVjKnxCThzqQxKhYBZd7XFU7e1hkLBs53MRlsKpKwDkpcCZ7fXjju4AR1HSiGm1a0AzzCzCRafmal28OBBpKamQhAEdOjQAXFxcTfzdFe1bNkyJCQkYP/+/fW6/9y5c/HGG2+YvQ4iopvRIdgdv0zrg5fXHsGaxPP4YPNx7DmTh0/GxsLX1fp2T7cZRiOQvlOagUlZB+jKLt8gABG3SYt5o4YBDs6ylkmW1aiZmdzcXIwbNw5///03PD09IYoiioqK0L9/fyxbtgx+fn5mKS4zMxPdunXD77//jpiYGADgzAwR2TRRFLHi4Dm8uu4IKnVG+LlpMG9cLHq19pW7NNuSn1a7qV1hRu24d2tpQ7vO4wDPEPnqo5tm8R2Ax44di9OnT+PHH39E+/btAQApKSl4+OGH0aZNGyxdurRxlf/L2rVrMXLkSCiVypoxg8EAQRCgUCig1Wrr3HY1XABMRNboxIUSTFmSgJO5pVAIwPQ7IzHtjkgo2Xa6Nm2JNPuSFC/NxlTTuF/e1G4iENKdbSQ7YfEw4+HhgT/++AO33HJLnfF9+/Zh4MCBKCwsbOhTXlVJSQnS09PrjD3yyCOIiorCCy+8gI4dO97wORhmiMhaVVQZ8Nr6I/j5wDkAQM8IH8wbFwt/d0eZK7MiRqO0/iUpHkhdD+iqtwQRgNb9L7eRhgJqJ1nLJPOz+JoZo9F4xenYAKBWq6+4TtPNcHNzuyKwuLi4wMfHp15BhojImjk5KPH+/THo2doHL605gt1n8nD3vO34dFws+kaap11vs/JOX24jLQWKMmvHfSJr20geLeSrj6xKo8LMHXfcgRkzZmDp0qUIDg4GAJw/fx5PP/007rzzTrMWSERk70bGtUSnFp6YGp+AYzkleOjbfZhyexvMHBAJlbIZXQeosljaCyYpXrrEQDWNB9BxlDQL07Ib20h0hUa1mTIzMzFixAgcOXIEISEhEAQBGRkZ6NSpE9atW4eWLVtaotZGYZuJiGxFpc6ANzekIH6vtKC1e5g35o2PRZCHHbdQjAbpoo5J8UDqL4C+QhoXFEBEf+naSGwjNUsWXzNTbcuWLTh27BhEUUSHDh0wYMCAxj6VxTDMEJGt+SU5C3NWH0apVg8vZzU+HhOL/lH+cpdlXpdOSWciJS8His/Vjvu2lQJM57GAe7B89ZHsLBZm/vzzT0ydOhV79uy54omLiorQq1cvfPHFF+jbt2/jKrcAhhkiskVnL5Vh6tIEHDlfDAB4ol8Enh3UDmpbbjtVFgFHVkvrYDL31o47egAd75dCTIuubCMRAAuGmXvuuQf9+/fH008/fdXb58+fj7/++gtr1qxpWMUWxDBDRLZKqzdg7sZjWLzrLAAgrpUnFoyPQ0svG9oAzmgAzvwlXRvp2AZAXymNCwqg9Z1SgGk3BFDzDC6qy2JhJjQ0FJs2barZW+bfjh07hoEDByIjI+Oqt8uBYYaIbN2mIzl4fmUyiiv1cHdU4YPRMRgUHSh3Wdd38URtG6kkq3bcL0oKMJ3GAO5B8tVHVs9ip2ZfuHDhqqdk1zyZSoWLFy825CmJiOgGBncMRHSwO6YuTURyZiGe+PEgHukdhtl3R0Gjuv7GoU2qoqC2jXTO5BI0jp5Ap9HSKdXBXdhGIrNrUJhp0aIFDh8+jDZt2lz19kOHDiEoiEmbiMjcQrydseKJnvhg8zF8vT0N3+08iwNnC7BwQhxCfVzkK8xoAE7/BSQtAY79ChguX05GUAKRd0mzMG0HAypef4osp0FtpmnTpuHvv//G/v374ehYt79ZUVGB7t27o3///pg/f77ZC20stpmIyN5sTb2AZ1Yko7BcBzeNCu/e1xlDOzfxH5K5x2rbSKU5teP+HWrbSG4BTVsT2RWLrZm5cOECunTpAqVSialTp6Jdu3YQBAGpqan47LPPYDAYkJCQgIAA6/kHzDBDRPYoq7AC05cm4kB6AQDggVtb4eWhHeCotmDbqTwfOLJK2hMmK6F23Mkb6HS/tKldUAzbSGQWFt1nJj09HU899RQ2b96M6ocKgoBBgwbh888/R1hYWKMLtwSGGSKyVzqDEZ9sOYHP/z4NAGgf5I7PJsQhws/VfAcx6IHTf0ptpOMbAUOVNC4ogbaDpFmYyEGAysF8xyRCE22aV1BQgFOnTkEURURGRsLLy6tRxVoawwwR2bttJy5i1vIk5JVVwcVBiXdGdcKI2Ju8btGFFKmNdOhnoPRC7XhAJ2khb6fRgKudbeRHVqXJdgC2BQwzRNQcXCiuxIxlidhzJh8AMLZbCF6/JxpODg1oO5XnA4dXSiEmK7F23NkX6DwGiBkPBHU2c+VEV8cwY4JhhoiaC4NRxLytJ7Hgz5MQRaBtgCs+m9AFkQFu13mQDjj1x+U20ibAqJPGFerLbaSJ0llJymtvy0FkCQwzJhhmiKi52XXqEmYsT8LFEi2c1Eq8OSIao7uF1L1TzhFpIe/hn4Eyk/3BAjsDcQ9Ilxdw8WnawolMMMyYYJghouboYokWTy9Pwo5TlwAAo7q0wFt3BcLl+BppFibncO2dXfykCzvGjAcCO8pUMVFdFtsBmIiIbIOfmwY//Kc7vvgzFcl//YzBhz+CJiUJgEG6g9JB2swudgLQZgDbSGTTGGaIiOyNKALZyVAkL8XkwysAdV7NTYfE1tBGj0W3oY9BYBuJ7ATDDBGRvSjNlU6lTooHco/WjrsGoqLDaLyVGYP4NGcgARhuyMA7I93h5sgZGbJ9DDNERLZMrwVObJICzMktgFjdRtIAUUOks5Ei+sNJqcLbRhGh28/gg83H8UtyFg6dK8RnE7qgYwsPeX8GopvEBcBERLZGFKXLCSQtBY6slK5WXa1FN2kdTMdRgNPVNzM9mF6A6UsTcb6wAg5KBV4a2h4P9QyFwMsQkBXh2UwmGGaIyG6U5ACHlkuzMBeP1Y67BUlnI8VOBPza1uupCsur8NzKQ9iSIu3uOzg6EO/d3xkeTmw7kXVgmDHBMENENk1XKV0TKSkeOL0VEI3SuMoRiBomzcJE3A4oGn6BSVEU8d3Os5j7Wyp0BhEtvZywcEIXxIZ4mvVHIGoMhhkTDDNEZHNEETh3QLqswJFVQGVR7W0ht0rXRooeCTiaZ63LoXOFmBqfiIz8cqgUAmbfHYVH+4Sz7USyYpgxwTBDRDaj6HxtGynvZO24e0spwMSMB3xaW+TQxZU6zFl1GL8ezgYA3Bnljw9Hx8DLhVfDJnkwzJhgmCEiq1ZVDhz7VZqFOf0XgMu/klVOQIcRUhsprC+gUFi8FFEU8dPeDLy1IQVVeiOCPRwxf3wcuoV5W/zYRP/GMGOCYYaIrI4oAhl7pABzdC2gLa69rVUvKcB0GAE4yvM762hWEabFJ+LMpTIoFQKeGdgWT/ZrDYWCbSdqOgwzJhhmiMhqFGYAycuA5KVA/pnacc9WQMwEIGYc4B0uX30mSrV6vLzmMNYmZQEA+rX1w8djYuDrqpG5MmouGGZMMMwQkayqyoCU9dIsTNo/teNqFyD6XmkdTGjvJmkjNZQoilhx4BxeXX8ElToj/N00mDcuDj1b8zIIZHkMMyYYZoioyRmNQMYuaSFvyjqgqrT2tvB+0ixM++GAxlW+GhvgxIUSTFmSgJO5pVAIwPQ7IzHtjkgo2XYiC2KYMcEwQ0RNJj/tchspXmopVfMKl9bBdB4LeIXKV99NKK/S47V1R7Hi4DkAQK/WPvh0bCz83R1lrozsFcOMCYYZIrIobYm0iDd5KZC+s3bcwU1qI8U9AIT0AOxkz5bVCefw8tojKK8ywNfVAZ+MjUXfSD+5yyI7xDBjgmGGiMzOaATStkkBJmU9oK+4fIMAtO4vtZGihgIOzrKWaSmncksxNT4Bx3JKIAjA5Ntb4+kBbaFSWt+6H7JdDDMmGGaIyGzyTkvrYJKXAcXnasd9IqVN7TqPAzxayFdfE6rUGfDmhhTE75XaabeEeWH++DgEeTjJXBnZC4YZEwwzRHRTKouAI6ulWZjMvbXjjh5Ax/ukizu26Go3baSG2nAoC7NXHUapVg8vZzU+GhODO6IC5C6L7ADDjAmGGSJqMKMBOPOXNAtz7FdAXymNCwqg9Z3SLEy7oYCai18BID2vDFPjE3H4vHQNqf/2i8Bzg9pBzbYT3QSGGRMMM0RUbxePSwHm0HKgJLt23C+q9mwkt0D56rNiWr0Bczcew+JdZwEAca08sWB8HFp62ee6IbI8hhkTDDNEdF3l+dKVqZPigayE2nEnL6DTaGlTu+C4ZttGaqhNR3Lw/MpkFFfq4e6owgejYzAomgGQGo5hxgTDDBFdwaAHTv0h7Qdz/DfAUCWNC0ogcqA0C9N2EKDi1v2NkZlfjmlLE5GUWQgAmNQrDHOGREGjUspbGNkUhhkTDDNEVCPniLSQ99DPQFlu7XhAJynAdBoNuHLPFHOo0hvx4e/H8dU/0jWoOrXwwMIJcQj1cZG5MrIVDDMmGGaImrmyS8DhFVIbKedQ7bizr7QGJnY8ENhJvvrs3J/HLuCZn5NRUK6Dq0aFd+/rhGGdg+Uui2wAw4wJS4UZ7enT0B4/brbnu5FG/2dq7H/deh2vHvdpdN03fly9XpN6/RiWq7FR/wEaWU/j/43I/CvAEoc36oHcFCBzH5B7VNrkDgAUSiAgWtqR16+99L3cS2EauRZHMNcanno9TyOPdfm5CyuqsGRPOtIulQMAbm3tgxExwdLZTvU5fn3uUq/nubmf4wZ3suDxG/ewKw9vuX/sDq1bw7FdO7M+Z0Pev1VmPXIzUrL1T1z8+GO5yyCiG/r3L8GMyx/UlEaZfpMIXFopVyVkCT7//a/Zw0xDMMw0kjooCM7du9fvzpY8C6IJk379Un09n9hSf0WZ6a+8+h5baNwL2fDHyPE4Sz2PuekrgaLz0o682pLacZUj4B4MeIQAGremr8tcM17mnDmr12xmw48n1nd6TRRRUFaF1OwSVBmMUAoC2ga4IsDDZL+exvy45vy5LDTjaraZ5Ks/eSMfaL5jqUNaNl0NV8E2ExHZHl0lcOI3aR3Mqa2AaJDGlRrpmkixE4CI/oCSf69Zo9ziSsxYloTdZ/IAAKO7tsQbI6Lh7MD/XlSLa2ZMMMwQ2QlRBM4flALMkZXSZQaqtewuLeSNHgU4ecpWItWfwShi4Z+nMG/rCRhFINLfFZ9N7IK2ATLMopFVYpgxwTBDZOOKzgOHlgFJS4G8k7Xj7i2BmHHSpna+beSrj27K7tN5mLEsEbklWjiqFXjjnmiM6RZi0cWqZBsYZkwwzBDZoKpy4NgGaRbmzN+oWUygcgI63CO1kcL6Smcjkc27VKrFrJ+T8c+JiwCAe2OD8fbITnDVsO3UnDHMmGCYIbIRoghk7JYCzNG1QJXJYt5WvaQA02EE4Mj/j+2R0Sjii39O46PfT8BgFBHh64IFE+IQHewhd2kkE4YZEwwzRFauIB1IXibtzFuQVjvuGSq1kGLGAd7h8tVHTerA2XxMW5qI7KJKOKgUeGVYBzzQoxXbTs0Qw4wJhhkiK6QtBVLXS7MwZ7fXjju4Ah3ulRbztuoFKBSylUjyKSirwrMrkrH1mHTJiaGdgjD3vk5wd1TLXBk1JYYZEwwzRFbCaJSCS/JSIGU9oCu7fIMARNwGxEwA2g8DHHjtHpL2ZflmRxre/e0Y9EYRrbydsXBCHDq39JS7NGoiDDMmGGaIZJZ3WgowycuAoszace/W0jqYzmMBzxD56iOrlpRZiKnxCThXUAG1UsCcu9vjkd5hbDs1AwwzJhhmiGRQWQQcXSOdTp25p3Zc4wF0HCWFmJa3WO+uwmRViip0eGHlIWw6mgMAuKtDAD64vzM8nR1krowsiWHGBMMMURMxGoAzf0nrYI79Kl1mAAAEBdD6TmkdTLuhgNrx+s9DdBWiKOLHPel4e0MqqgxGtPB0wvzxcega6iV3aWQhDDMmGGaILCz3GJAcDxz6GSjJrh33i5LORuo8FnAPkq8+sitHzhdhanwCzuaVQ6kQ8Nygdvhv3wgoFJzlszcMMyYYZogsoDwfOLJKmoXJSqgdd/ICOo2WQkxwHNtIZBEllTq8uOYIfknOAgDc3s4PH42OgY+rRubKyJwYZkwwzBCZiUEHnPoDSFoCHN8EGHXSuEIFRA6UAkzbQYCKbyhkeaIoYvn+TLy2/ii0eiMC3DWYPy4OPSJ85C6NzMRuwszcuXOxevVqHDt2DE5OTujVqxfee+89tGvXrt7PwTBDdJOyD0lnIx36GSi/VDse2FlayNvxfsDVT776qFk7llOMKUsScPpiGRQC8PSAtpjcvw2UbDvZPLsJM4MHD8a4ceNwyy23QK/X46WXXsLhw4eRkpICF5f67UXBMEPUCKW5UnhJXgpcOFI77uIPdB4jzcIEdpSvPiIT5VV6vLL2KFYlnAMA9G7jg0/GxsLfjYvNbZndhJl/u3jxIvz9/bFt2zb069evXo9hmCGqJ70WOP6bFGBObgFEgzSudADa3Q3ETpTOSlLy4n9knVYePIdX1h5Bhc4AX1cHfDo2Dn0ifeUuixqpIe/fNvVbqaioCADg7e19zftotVpotdqa74uLiy1eF5HNEkXgfIJ0NtLhlUBlYe1tLbpJp1NHjwKcr/3/HJG1uL9rS8SGeGBqfCKO5ZTgwW/3Ymr/NphxZyRUSl4aw57ZzMyMKIoYMWIECgoKsH379mve7/XXX8cbb7xxxThnZohMFGcBh5ZLm9pdOl477hYMxIyV2kh+9V+bRmRNKnUGvPFLCpbuywAAdA/3xvxxcQj0YNvJlthlm2nKlCn49ddfsWPHDrRs2fKa97vazExISAjDDFFVOXB8o3Q20pm/AdEojascgfbDpcW84bcBCqWsZRKZy/rkLMxZdQhlVQZ4Oavx8ZhY9I/yl7ssqie7CzPTpk3D2rVr8c8//yA8PLxBj+WaGWrWRBHI2CMFmJR1gNak7dqql9RG6nAv4Mj/N8g+pV0qw9T4BBzNkv7tP9EvAs8Oagc1205Wz27CjCiKmDZtGtasWYO///4bkZGRDX4OhhlqlgrSpQs7Ji8FCtJqxz1bSS2kmHGAd4R89RE1Ia3egHd+TcX3u9MBAHGtPLFgfBxaejnLXBldj92EmcmTJyM+Ph7r1q2rs7eMh4cHnJyc6vUcDDPUbGhLpdmX5KXAWZN1ZQ6u0uxL7HhpNkbBv0ipedp0JBvPrzyE4ko93B1V+GB0DAZFB8pdFl2D3YSZa13i/bvvvsOkSZPq9RwMM2TXjEbg7D/SQt7U9YCu/PINAhDeT1oH03444FC/fZmI7F1mfjmmLk1EcmYhAGBSrzDMGRIFjYprxayN3YQZc2CYIbt06ZR0OnXycqD4XO24d2spwHQeC3iGyFcfkRWr0hvxweZj+Hq71ILt2MIdC8d3QZgvQ781YZgxwTBDdqOiEDi6Wrq447n9teMaD6DjKCnEtLyFF3ckqqc/j13AMz8no6BcB1eNCu/e1wnDOgfLXRZdxjBjgmGGbJpBD5z+U5qFObYRMFzedkBQSLvxxk4A2g0B1Nw/g6gxsosqMH1pIvafLQAATOjRCq8O6wBHNdtOcmOYMcEwQzbpQooUYA79DJReqB337yAFmE5jALcA+eojsiN6gxGf/nESn/19CqIIRAW64bOJXdDaz1Xu0po1hhkTDDNkM8ouSZcUSI4HspNrx519gE6jpVOqg2LYRiKykO0nL+Lp5Um4VFoFZwcl3r63I0Z1ufYmrWRZDDMmGGbIqumrgJObpbORTm4GjHppXKEG2g6SZmHa3AWoHOStk6iZyC2uxIxlSdh9Jg+AdL2nN0dEw9nBpi5laBcYZkwwzJDVEUUgO0layHt4JVCRX3tbUKwUYDreD7j4yFUhUbNmMIpY+OcpzNt6AkYRiPR3xWcTu6BtgJvcpTUrDDMmGGbIapTk1F7c8WJq7bhrgHQqdewEwL+9fPURUR27T+dhxrJE5JZo4ahW4I17ojGmW8g190Aj82KYMcEwQ7LSVQDHfpV25T39Z92LO0YNBWImABG3A0pOYRNZo0ulWsz6ORn/nLgIABgRG4z/G9kJrhr+P2tpDDMmGGaoyYkikLlXaiMdXQtoi2pvC+khLeSNHgk4ecpVIRE1gNEo4st/zuDD34/DYBQR7uuChRPiEB3sIXdpdo1hxgTDDDWZwgxpR97kpUD+6dpxjxDpwo4x4wGf1vLVR0Q35WB6PqbFJyKrqBIOKgVeGdoeD9wayraThTDMmGCYIYvSlkrXREqKr3txR7UL0GGEdHHH0D68uCORnSgoq8JzK5PxR2ouAGBIp0DMHdUZHk5qmSuzPwwzJhhmyOyMRim4JC8FUtYDurLLNwhAeF9pHUz74YCGG24R2SNRFPHNjjS8t+kYdAYRId5OWDi+C2JCPOUuza4wzJhgmCGzyTstzcAcWg4UZdaOe7eWZmA6j+PFHYmakaTMQkxbmoDM/AqolQJeGByFR/uEs+1kJgwzJhhm6KbUXNxxKXBuX+24xgPoOFKahQnpzl15iZqpogodZq86hN+O5AAABrT3xwf3x8DLhRtd3iyGGRMMM9RgN7y443ig3VBe3JGIAEhtp5/2pOOtDamoMhgR7OGI+ePj0C3MW+7SbBrDjAmGGaq3613cMWY80HkM4BYoX31EZNWOZhVhanwi0i6VQakQ8MzAtniyX2soFJy5bQyGGRMMM3RdvLgjEZlRqVaPl9YcxrqkLABA30hffDI2Fr6uGpkrsz0MMyYYZugKvLgjEVmQKIpYceAcXl1/BJU6I/zdNJg3Lg49W/N6aw3BMGOCYYYASLvyZiVKp1Nf9eKOE4GO9/HijkRkNiculGDKkgSczC2FQgCm3xmJaXdEQsm2U70wzJhgmGnmirOkNTDJS4GLx2rHXQOBmLFSG4kXdyQiCymv0uO1dUex4uA5AEDPCB/MGxcLf3eeQHAjDDMmGGaaoeqLOybFA2f+4sUdiUh2axLP4aU1R1BeZYCPiwM+GRuLfm395C7LqjHMmGCYaSZEEcjYIy3kPboW0BbX3taq5+WLO94LOPLCcEQkj9MXSzFlSQKO5ZRAEIDJt7fG0wPaQqXk5U6uhmHGBMOMnStIB5KXSW2kgrTacc9WUoCJGQd4R8hXHxGRiUqdAW9tSMGSvRkAgFvCvDBvXByCPZ1krsz6MMyYYJixQ9oSIGWddDZS+o7acQdXoMO90qZ2rXrx4o5EZLU2HMrC7FWHUarVw9NZjY9Gx+DO9gFyl2VVGGZMMMzYCaMBSPtHmoFJ/QXQlV++QQAibrt8ccdhgIOLrGUSEdVXel4ZpsYn4vD5IgDAY33C8fzgKDio+IcYwDBTB8OMjbt4onZX3uLzteM+bWrbSB4t5auPiOgmaPUGvPfbcXy7U2qTx4R4YuH4OIR4O8tcmfwYZkwwzNig8vzaizueP1A77ugp7QUTOwFo0ZW78hKR3fj9aA6eW3kIRRU6uDmq8MH9nTG4Y5DcZcmKYcYEw4yNMOiAU39Ip1Of2AQYqqRxQQlE3iXNwrS7G1BxS3Aisk/nCsoxfWkiEjIKAQAP9wzFnCHt4ahWyluYTBhmTDDMWLnsQ5d35V0BlF2sHQ/oJC3k7TQacPWXrz4ioiakMxjx4e/H8eW2MwCA6GB3LJzQBeG+zW89IMOMCYYZK1SaW7sr74UjteMufkCnMVKICewkX31ERDL763gunvk5GfllVXBxUOKdUZ0wIraF3GU1KYYZEwwzVkJXCRzfKAWYU1sB0SCNKx2k9lHMBKDNnYBSLW+dRERWIqeoEtOXJWJfmnQtufHdQ/DqsGg4OTSPthPDjAmGGRmJInDugHQ20pFVQGVR7W0tukkzMNGjAGdv+WokIrJieoMR8/88hQV/noQoAu0C3LBwQhwiA9zkLs3iGGZMMMzIoDATOLRM2pk371TtuHsLoPPlizv6tZWvPiIiG7Pz1CXMWJaES6VaOKmVeHNENEZ3C5G7LItimDHBMNNEtKXSZnbJ8UDadgCX/1mpnYH290izMGF9AUXzmB4lIjK3iyVaPL08CTtOXQIAjOrSAm+N6AgXjX1eNJdhxgTDjAUZjcDZ7dI6mJT1gK6s9rawvtIMTId7AI39T4cSETUFo1HE53+fwsdbTsAoAhF+LvhsQhe0D7K/9zeGGRMMMxaQd1raD+bQcqAos3bcO0IKMJ3HAl6h8tVHRGTn9qXlY/rSROQUV8JBpcBrwztgQvdWEOxoM1GGGRMMM2ZSUVi7K++5fbXjGncgeqS0K29ID+7KS0TURPLLqvDMz0n467i0R9ewzkGYO6oT3Bzt46xQhhkTDDM3waAHTv8prYM5thEwaKVxQQG0vkOahYkaCqh56XoiIjkYjSL+t+MM3t90HHqjiFAfZywc3wWdWnrIXdpNY5gxwTDTCBeOSm2kwyuA0gu14/4dLreRxgBugfLVR0REdSRkFGBafCLOF1ZArRTw4pD2mNQrzKbbTgwzJhhm6qn0ohRekuOBnMO1484+0iUFYsYDQTFsIxERWamich2eW5mM31OkP0IHdgjAB/fHwMPZNttODDMmGGauQ6+VLuqYtBQ4tQUw6qVxhRpoO0haB9PmLkDlIG+dRERUL6IoYvGus5i78RiqDEa08HTCgglx6NLKS+7SGoxhxgTDzL+IInD+4OWLO64EKgtrbwvuIgWYjvdxV14iIht2+FwRpsQnICO/HCqFgOcGtcPjfSOgUNjO7DrDjAmGmcuKztfuynvpRO24W7C0BiZmPOAfJV99RERkVsWVOsxZfRi/HsoGAPRv54ePxsTC28U2ZtsZZkw06zBTVQakbpDWwZzZhppdeVVOQPvh0q684bdxV14iIjsliiKW7svE678cRZXeiAB3DeaPi0OPCB+5S7shhhkTzS7MGI1Axi5pHUzKWqCqtPa20N6Xd+UdATg2g9eCbJYoijCIBoiiCCOM+PevKdMzNARc/eu6Xwo1nxWCwqbP8CBqjNTsYkyJT8CZi2VQCMDTA9picv82UFpx24lhxkSzCTP5Z6QWUvJSoDCjdtwzVFoH03ks4B0uX31kcQajAVXGKlQZLn8Yq6A1aKEz6FBlkL6uMlZBZ9Bd+fXl+1c/VmfUwSAaoDfqoTfqoTPqar42Ha+5TdTDYDQZF2vvaxSNV4QTo1j7IYpi7feXb7M0AQKUghIKQVHzoRSUUCikzzW3X/7e9H4FlQUwGA0IcQ+BSqGCWqG+5ud/j/379osVFxHqFgoHpQM0Sg00Sk3N19cbc1A6QCEoLP46kX0p0+rxytojWJ14HgDQu40PPhkbC383R5kruzqGGRN2HWYqi4Cja6QQk7G7dtzBDYi+VwoxrXrydGoroTPoUK4vR5muDOW6cpTppc/l+nJU6iulD0PdzxX6irrj+kpUGCpq72/yvc6ok/tHpCakVqhrgk1+ZT7C3MPgpHKCo8pR+qx0hJPaqfZrlVPNR819VP8aVzrCUeUIV7UrnNXODEx2auXBc3hl7RFU6AzwddXg07Gx6BPpK3dZV2CYMWF3YcZoAE7/dXlX3l8BfaU0LiiAiP61u/I6OMtbpx0QRRFagxalulKUVJWgtKoUJTrpc6muFGW6MimY6MulUKIrr/v95c/VoaUpw4YAARqlBmrl5Tc8hQMclJc/TL++/Je+WqGu87VaqYZKUNXMJqgUKigF5RWzDNVj1eOm36sUKqgEFQThcmvHZDakeqzmA9KYUlDW3gYFFIra20z/u9T574Rrf3/FfU1mhgxGQ+1skNFYM4tk+rl6Runf42W6MggQIEK8Yuaq+uv6jGkNWqTkpSDMPaxm9qx6pqzms7H2+6aYtTLlpHKCi9ql7ofKBc5q55rvndXOcFG51P1e7QIHhQO8nbzh5uAGF5ULlFybZ1VO5ZZgypJEHL9QAkEApvZvgxl3RkKltJ4AyzBjwm7CTG7q5Ys7/gyU5tSO+0XV7srrHixffVZIFEWU68tRrC1GUVURirRFKK4qRklViRROdKVSQDH9WldSJ7joq/feMSMHhUPNL30nlVPNZyel9Jeyo8oRGqWm5i/n6r+WTf9y/vf3TiqnmpZEdRDhuhD7ozfqrxl68ivzIQhCzWxehb6i5qNmls9QiQpdBSoMteOmM4AV+gqU6EosUrur2hWuDq5wc3CDm9pN+nz5w1XtCncHd+nry/dxd3CveYyHgwfUStvc+M2aVVQZ8OaGo1i6T7pgcPdwb8wfF4dAD+toOzHMmLDpMFN2SdoLJjkeyE6uHXfyBjrdL4WY4Di7byPpjXoUagtRrC1GcVVxTSgx/VxUVVQTWqrvV6wthl68+TAiQICL2gWuDq5wVbvW/PKtnoqv/kvUWSV9rv5rtvov1urbq4OLWsFfymS9qmckTduhNbOQl2cf63zor7ytXF+O9OJ0s9blrHKGp8YTHhoPuGvc4eHgUfO9h8YD7g7u8NDUHWMIqp91Sefx4urDKKsywNvFAR+NjkH/KH+5y2KYMWVzYUZfBZzcLJ2NdHKzya68KqDtYCnARA602V15jaIRJVUlKNQWoqCyoOZzgbYAhZWFdT9rC5FfmY+Sqpv7S1GtUNf8YnPXuNeEkZpQ4uAKN3XtX4T/HnNRu3DtAFEj6Qy6mhnPf3+U6kprZkurZ0mLq4prWrvV97kZTioneGo8kV2WjR5BPeCt8YaXoxc8HT1rvvZy9IK3ozc8NZ7w1Hg2y5ZY2qUyTI1PwNGsYgDAE/0i8OygdlDL2HZimDFhE2FGFIGsBCnAHFkJVBTU3hYUe3lX3vsBF+vbF0AURZTpypBXmYe8ijzkV+YjryIPeZXS19Uf1QGlSFsEg2ho8HEECDVTz6Z/hZl+7e7gDneNe+1tl8OLo9KRLRciG2UwGlCqK0WRtgiF2sKamdgirTQLW6gtvOr3xdriK9ZT1YcAAR4aDynkaLxqwo6XRgo8aoUawa7B8Hf2h4+TD7w0XnYTfip1BszdmIrvd0uzanGtPLFgfBxaesmzBpNhxoRVh5niLODQculspIvHasfdgqSLO8ZOAPzbN3lZRtGIQm3hVcNJzdcV+TUBpspY1eBjuKhdan5ReGo8r/yskf5yqv7s4eBhN78wiMjyqmeBqwNOgbYA6cXpEEURBdoCaUb48qxw9ecibVGDj6MQFPDSeMHHyQe+Tr7wcfSp+drb0bvOuK3M+mw6ko3nVh5CSaUe7o4qfDA6BoOiA5u8DoYZE1YXZqrKpbOQkuOBM38D1WcnqByBqGHSrrwR/S2yK6/eqEd+ZT4uVlzEpfJLyK3IxaXyS7hYcbHOWH5FfoPXmjirnOHj5AMfR5+a/4F9nKSvq/+qMQ0rDkrbbJMRkf2qXp9X3QLPr8y/MvRUFmBvzl54aDwaPPujEBTS70dHH5TpytDGqw1ae7SGn7Mf/J394eckffZ18pX9d2RmfjmmLk1EcmYhAGBSrzDMGRIFjarpwhjDjAmrCDOiCKTvkgLM0XWA6RqQVr2AmHHSvjCOHo16eoPRgLzKPOSW5+JC+YU6AeVi+UVcqpC+z6/Mb9CpnZ4aTymcOHnX/LVR/T9izdeXPzupnBpVOxGRrdIb9SioLEBeZR4uVVyqmbk2/TqvQvoo0Bbc+AlNeGm84OfsJwUdJ/+az77OvjXf+zj5WPSEgiq9ER9sPoavt6cBADq18MDCCXEI9XGx2DFNMcyYkDXM5KeZ7MprsrLfM1RayBszFvCOuO5T6Aw65Fbk4kLZhZqwklOWgwvltd9fLL9Y73UoCkEBX0df+Dr7ws/JD75OvjV/Cfg5Sf/j+Dr5Wvx/EiKi5kRn1EnBxyTwJF9MhgIKFGgLcLFc+gM0tzy33ntSVe915KJ2wS0BtyDAJQCBLoEIcK79HOASAI1Sc1O1b029gGdWJKOwXAdXjQrv3tcJwzpbfisQuwszn3/+OT744ANkZ2cjOjoan376Kfr27VuvxzZ5mKksAlLWSYt5M3bVjju4AdEjgJjLu/IqFKgyVOFC2QVkl2UjpzwHueW5NUGlOrzkVebV67BKQVkTTExDyb+Dij0tViMisjeiKKJIW4TcilxcLJfCzaWKS8gtz62Zba9eIlDf5QBeGq864cY08AQ6B8Lfxf+GgSersALTlybiQLo0wzShRyu8OqwDHNWWez+xqzCzfPlyPPjgg/j888/Ru3dvfPnll/jf//6HlJQUtGrV6oaPb5IwYzQAZ/6SAsyxDYC+EiKAYoUS2WG3IiusJ7K9Q5BTmYes0izklOUguywblyou1avfqlaoa/4R1vnsXPu9j6MPQwoRUTNhFI0oqCzAxYqLOF14umaNj+kfxDllOag0VNbr+Tw0HijSFuH2kNsR7BKMYNdgBLkESR+uQfBx9IHBKOLjLSewaNtpiCIQFeiGhRO6oI2/q0V+RrsKMz169ECXLl2waNGimrH27dvj3nvvxdy5c2/4eEuFGZ1Rh9yM3cg+sgzZZ/9Ctq4U2SolslUqZGucka1SoqIeqdlR6Sil48tJ2d/Zv06CDnAOgKfGk6cWExFRg4iiiOKq4pqAk1OWUyfsVI/VJ/BolBoEuQQh0CUQCoM39p40orTMDQ6iD565owce6h5j9qUJdhNmqqqq4OzsjBUrVmDkyJE14zNmzEBSUhK2bdt2xWO0Wi20Wm3N98XFxQgJCTF7mPl05Uh8U3bqhvfzdvRGkEsQgl2DEegSKH3tEoxAV+lrL40XgwoREcnCNPBklmTidOFplOvLkV2ajayyLGSXZeNi+cUbdhEiHO7CuvEfm7W2hoQZlVmPbGaXLl2CwWBAQEBAnfGAgADk5ORc9TFz587FG2+8YfHagnzaQ116EoGCBsHuLRHoG40gtxZSULkcWgJdAuGoso5rXBAREf2bIAg1G5C2826HAaEDrriPzqBDTrk0q5NVmoWsMmm5xPmSLKReTEeR7iIifW687MOSrDrMVPv3zIUoiteczZgzZw5mzZpV8331zIy5jer1IkbfMhMKV/mvX0FERGQpaqUaIW4hCHG7+nvpydxihPnIuz2HVYcZX19fKJXKK2ZhcnNzr5itqabRaKDR3NxpaPWh1rgCGssseiIiIrIVkf7yb0hr1VfPc3BwQNeuXbFly5Y641u2bEGvXr1kqoqIiIisiVXPzADArFmz8OCDD6Jbt27o2bMnvvrqK2RkZODJJ5+UuzQiIiKyAlYfZsaOHYu8vDy8+eabyM7ORseOHbFx40aEhobKXRoRERFZAas+NdscrOLaTERERNQgDXn/tuo1M0REREQ3wjBDRERENo1hhoiIiGwawwwRERHZNIYZIiIismkMM0RERGTTGGaIiIjIpjHMEBERkU1jmCEiIiKbZvWXM7hZ1RscFxcXy1wJERER1Vf1+3Z9LlRg92GmpKQEABASEiJzJURERNRQJSUl8PDwuO597P7aTEajEVlZWXBzc4MgCGZ97uLiYoSEhCAzM5PXfbIgvs5Ng69z0+Dr3DT4OjcNS77OoiiipKQEwcHBUCiuvyrG7mdmFAoFWrZsadFjuLu783+WJsDXuWnwdW4afJ2bBl/npmGp1/lGMzLVuACYiIiIbBrDDBEREdk0hpmboNFo8Nprr0Gj0chdil3j69w0+Do3Db7OTYOvc9OwltfZ7hcAExERkX3jzAwRERHZNIYZIiIismkMM0RERGTTGGaIiIjIpjHMXMfnn3+O8PBwODo6omvXrti+fft1779t2zZ07doVjo6OiIiIwBdffNFEldq+hrzWq1evxl133QU/Pz+4u7ujZ8+e2Lx5cxNWa7sa+m+62s6dO6FSqRAbG2vZAu1EQ19nrVaLl156CaGhodBoNGjdujW+/fbbJqrWdjX0dV6yZAliYmLg7OyMoKAgPPLII8jLy2uiam3TP//8g+HDhyM4OBiCIGDt2rU3fIws74UiXdWyZctEtVotfv3112JKSoo4Y8YM0cXFRUxPT7/q/c+cOSM6OzuLM2bMEFNSUsSvv/5aVKvV4sqVK5u4ctvT0Nd6xowZ4nvvvSfu27dPPHHihDhnzhxRrVaLCQkJTVy5bWno61ytsLBQjIiIEAcOHCjGxMQ0TbE2rDGv8z333CP26NFD3LJli5iWlibu3btX3LlzZxNWbXsa+jpv375dVCgU4rx588QzZ86I27dvF6Ojo8V77723iSu3LRs3bhRfeuklcdWqVSIAcc2aNde9v1zvhQwz19C9e3fxySefrDMWFRUlzp49+6r3f/7558WoqKg6Y0888YR46623WqxGe9HQ1/pqOnToIL7xxhvmLs2uNPZ1Hjt2rPjyyy+Lr732GsNMPTT0df7tt99EDw8PMS8vrynKsxsNfZ0/+OADMSIios7Y/PnzxZYtW1qsRntTnzAj13sh20xXUVVVhYMHD2LgwIF1xgcOHIhdu3Zd9TG7d+++4v6DBg3CgQMHoNPpLFarrWvMa/1vRqMRJSUl8Pb2tkSJdqGxr/N3332H06dP47XXXrN0iXahMa/z+vXr0a1bN7z//vto0aIF2rZti2effRYVFRVNUbJNaszr3KtXL5w7dw4bN26EKIq4cOECVq5ciaFDhzZFyc2GXO+Fdn+hyca4dOkSDAYDAgIC6owHBAQgJyfnqo/Jycm56v31ej0uXbqEoKAgi9VryxrzWv/bRx99hLKyMowZM8YSJdqFxrzOJ0+exOzZs7F9+3aoVPxVUR+NeZ3PnDmDHTt2wNHREWvWrMGlS5cwefJk5Ofnc93MNTTmde7VqxeWLFmCsWPHorKyEnq9Hvfccw8WLFjQFCU3G3K9F3Jm5joEQajzvSiKV4zd6P5XG6crNfS1rrZ06VK8/vrrWL58Ofz9/S1Vnt2o7+tsMBgwYcIEvPHGG2jbtm1TlWc3GvLv2Wg0QhAELFmyBN27d8eQIUPw8ccfY/HixZyduYGGvM4pKSmYPn06Xn31VRw8eBCbNm1CWloannzyyaYotVmR472Qf25dha+vL5RK5RUJPzc394rEWS0wMPCq91epVPDx8bFYrbauMa91teXLl+PRRx/FihUrMGDAAEuWafMa+jqXlJTgwIEDSExMxNSpUwFIb7qiKEKlUuH333/HHXfc0SS125LG/HsOCgpCixYt4OHhUTPWvn17iKKIc+fOITIy0qI126LGvM5z585F79698dxzzwEAOnfuDBcXF/Tt2xdvv/02Z8/NRK73Qs7MXIWDgwO6du2KLVu21BnfsmULevXqddXH9OzZ84r7//777+jWrRvUarXFarV1jXmtAWlGZtKkSYiPj2fPux4a+jq7u7vj8OHDSEpKqvl48skn0a5dOyQlJaFHjx5NVbpNacy/5969eyMrKwulpaU1YydOnIBCoUDLli0tWq+taszrXF5eDoWi7lueUqkEUDtzQDdPtvdCiy4vtmHVp/198803YkpKijhz5kzRxcVFPHv2rCiKojh79mzxwQcfrLl/9eloTz/9tJiSkiJ+8803PDW7nhr6WsfHx4sqlUr87LPPxOzs7JqPwsJCuX4Em9DQ1/nfeDZT/TT0dS4pKRFbtmwp3n///eLRo0fFbdu2iZGRkeJjjz0m149gExr6On/33XeiSqUSP//8c/H06dPijh07xG7duondu3eX60ewCSUlJWJiYqKYmJgoAhA//vhjMTExseYUeGt5L2SYuY7PPvtMDA0NFR0cHMQuXbqI27Ztq7nt4YcfFm+77bY69//777/FuLg40cHBQQwLCxMXLVrUxBXbroa81rfddpsI4IqPhx9+uOkLtzEN/TdtimGm/hr6OqempooDBgwQnZycxJYtW4qzZs0Sy8vLm7hq29PQ13n+/Plihw4dRCcnJzEoKEicOHGieO7cuSau2rb89ddf1/19ay3vhYIocn6NiIiIbBfXzBAREZFNY5ghIiIim8YwQ0RERDaNYYaIiIhsGsMMERER2TSGGSIiIrJpDDNERERk0xhmiIiIyKYxzBCRTTl79iwEQUBSUtJ173f77bdj5syZTVITEcmLYYaILGLSpEkQBAGCIECtViMiIgLPPvssysrKbup5Q0JCkJ2djY4dOwIA/v77bwiCgMLCwjr3W716Nd56662bOhYR2QaV3AUQkf0aPHgwvvvuO+h0Omzfvh2PPfYYysrKsGjRokY/p1KpRGBg4A3v5+3t3ehjEJFt4cwMEVmMRqNBYGAgQkJCMGHCBEycOBFr166FVqvF9OnT4e/vD0dHR/Tp0wf79++veVxBQQEmTpwIPz8/ODk5ITIyEt999x2Aum2ms2fPon///gAALy8vCIKASZMmAbiyzVRQUICHHnoIXl5ecHZ2xt13342TJ0/W3L548WJ4enpi8+bNaN++PVxdXTF48GBkZ2db/oUiopvCMENETcbJyQk6nQ7PP/88Vq1ahe+//x4JCQlo06YNBg0ahPz8fADAK6+8gpSUFPz2229ITU3FokWL4Ovre8XzhYSEYNWqVQCA48ePIzs7G/PmzbvqsSdNmoQDBw5g/fr12L17N0RRxJAhQ6DT6WruU15ejg8//BA//vgj/vnnH2RkZODZZ5+1wCtBRObENhMRNYl9+/YhPj4e/fv3x6JFi7B48WLcfffdAICvv/4aW7ZswTfffIPnnnsOGRkZiIuLQ7du3QAAYWFhV31OpVJZ007y9/eHp6fnVe938uRJrF+/Hjt37kSvXr0AAEuWLEFISAjWrl2L0aNHAwB0Oh2++OILtG7dGgAwdepUvPnmm+Z6CYjIQjgzQ0QWs2HDBri6usLR0RE9e/ZEv379MG3aNOh0OvTu3bvmfmq1Gt27d0dqaioA4KmnnsKyZcsQGxuL559/Hrt27bqpOlJTU6FSqdCjR4+aMR8fH7Rr167mmADg7OxcE2QAICgoCLm5uTd1bCKyPIYZIrKY/v37IykpCcePH0dlZSVWr14NDw8PAIAgCHXuK4pizdjdd9+N9PR0zJw5E1lZWbjzzjtvqt0jiuI1x03rUKvVdW4XBOGajyUi68EwQ0QW4+LigjZt2iA0NLQmKLRp0wYODg7YsWNHzf10Oh0OHDiA9u3b14z5+flh0qRJ+Omnn/Dpp5/iq6++uuoxHBwcAAAGg+GadXTo0AF6vR579+6tGcvLy8OJEyfqHJOIbBPXzBBRk3JxccFTTz2F5557Dt7e3mjVqhXef/99lJeX49FHHwUAvPrqq+jatSuio6Oh1WqxYcOGa4aO0NBQCIKADRs2YMiQIXBycoKrq2ud+0RGRmLEiBF4/PHH8eWXX8LNzQ2zZ89GixYtMGLECIv/zERkWZyZIaIm9+677+K+++7Dgw8+iC5duuDUqVPYvHkzvLy8AEizLXPmzEHnzp3Rr18/KJVKLFu27KrP1aJFC7zxxhuYPXs2AgICMHXq1Kve77vvvkPXrl0xbNgw9OzZE6IoYuPGjVe0lojI9ggiG8JERERkwzgzQ0RERDaNYYaIiIhsGsMMERER2TSGGSIiIrJpDDNERERk0xhmiIiIyKYxzBAREZFNY5ghIiIim8YwQ0RERDaNYYaIiIhsGsMMERER2bT/BwlJrGrjtkeQAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAagFJREFUeJzt3Xd4FFXbBvB7tqb3DgESCAQCJAEEqYoFkCKC0i34qq+FKjawt0/sSrG/KhYCiFQRQURFekuhJPSQBJIQSK+bLfP9MSG7kZaE3czu5v5dV64kZ8s8WTF75zxnzgiiKIogIiIiclAKuQsgIiIiuh4MM0REROTQGGaIiIjIoTHMEBERkUNjmCEiIiKHxjBDREREDo1hhoiIiByaSu4CbM1kMiE7Oxuenp4QBEHucoiIiKgeRFFEaWkpwsLCoFBcfe7F6cNMdnY2wsPD5S6DiIiIGiErKwstW7a86n2cPsx4enoCkF4MLy8vmashIiKi+igpKUF4eHjt+/jVOH2Yudha8vLyYpghIiJyMPVZIsIFwEREROTQGGaIiIjIoTHMEBERkUNz+jUzREREjsZoNEKv18tdhk2p1WoolUqrPBfDDBERkZ0QRRG5ubkoKiqSu5Qm4ePjg5CQkOveB45hhoiIyE5cDDJBQUFwc3Nz2s1eRVFERUUF8vLyAAChoaHX9XwMM0RERHbAaDTWBhl/f3+5y7E5V1dXAEBeXh6CgoKuq+XEBcBERER24OIaGTc3N5kraToXf9brXR/EMENERGRHnLW1dDnW+lkZZoiIiMihyRpm/vnnH4wYMQJhYWEQBAGrV6+uc7soinj11VcRFhYGV1dX3HzzzTh8+LA8xRIREZFdkjXMlJeXIzY2FgsXLrzs7e+++y4+/PBDLFy4EHv37kVISAhuv/12lJaWNnGlREREZK9kDTN33HEH3nzzTYwePfqS20RRxMcff4wXXngBo0ePRufOnfHdd9+hoqICCQkJMlR7aX2b085BFEW5SyEiIrILO3bsgFKpxJAhQ5r0uHa7ZiY9PR25ubkYNGhQ7ZhWq8VNN92EHTt2XPFxOp0OJSUldT5s4cddGXjou3149If9KK5w7l0aiYiI6uObb77BtGnTsG3bNmRmZjbZce12n5nc3FwAQHBwcJ3x4OBgZGRkXPFxc+fOxWuvvWbT2gBAoRCgUSrwe+o5HJ6/FQsnxiO+la/Nj0tERM2HKIqo1BtlObarWtmgs43Ky8vx008/Ye/evcjNzcWiRYvw8ssv27BCM7sNMxf9+4UURfGqL+6cOXMwa9as2u9LSkoQHh5u9bom9WqNri18MHVJIjLyKzDm852YfUc0HuoX0axOqyMiItup1BvR6eWNshw79fXBcNPUPyYsW7YMHTp0QIcOHXDvvfdi2rRpeOmll5rkPdFu20whISEAzDM0F+Xl5V0yW2NJq9XCy8urzoetdGnpjV+m9cOwLqEwmES8+WsaHvl+H4oqqm12TCIiInv09ddf49577wUADBkyBGVlZdi8eXOTHNtuZ2YiIiIQEhKCTZs2IT4+HgBQXV2NLVu24J133pG5OjMvFzUWTozHjbv98ca6VPyRlodh87dh/oR4dG/NthMRETWeq1qJ1NcHy3bs+jp69Cj27NmDlStXAgBUKhXGjRuHb775BrfddputSqwla5gpKyvDiRMnar9PT09HcnIy/Pz80KpVK8ycORNvvfUWoqKiEBUVhbfeegtubm6YOHGijFVfShAE3Hdja8SH+2BqQiJO51dg3Bc78czgDnikfyQUCradiIio4QRBaFCrRy5ff/01DAYDWrRoUTsmiiLUajUKCwvh62vbP+5lbTPt27cP8fHxtTMvs2bNQnx8fO2CoWeffRYzZ87EE088gR49euDs2bP4/fff4enpKWfZV9S5hdR2GhEbBoNJxNzfjuDh7/ehoJxtJyIick4GgwHff/89PvjgAyQnJ9d+pKSkoHXr1li8eLHNaxBEJ98opaSkBN7e3iguLrbp+hlLoihiyZ4svPrLYVQbTAj1dsGCCfHo0cavSY5PRESOp6qqCunp6YiIiICLi4vc5dTb6tWrMW7cOOTl5cHb27vObS+88ALWr1+PpKSkyz72aj9zQ96/7XYBsCMTBAETe7XCmil9ERngjpziKoz7chc+/fsETCanzo5ERNTMfP3117jtttsuCTIAcPfddyM5ORmJiYk2rYEzMzZWpjPgxVUHsTo5GwBwU/tAfDg2Fv4e2iavhYiI7JejzsxcD87MOAgPrQofjYvDO3d3gValwJZj5zF0/lbsSS+QuzQiIiKnwDDTBARBwLgbWmHt1H5oG+iOcyU6jP9yJxb+eZxtJyIiouvEMNOEOoR4Yu3UfhjdrQVMIvD+78fwwLd7cKFMJ3dpREREDothpom5a1X4cGwc3runK1zUCmw9fgF3zNuKnSfz5S6NiIjIITHMyGRMj3CsndoP7YI8cL5Uh0n/24V5fxyHkW0nIiKiBmGYkVH7YE+sndoX93RvCZMIfPTHMdz/zW6cL2XbiYiIqL4YZmTmplHh/TGx+GBMLFzVSmw/kY+h87dix4kLcpdGRETkEBhm7MTd3Vvil2l90T64pu309W58tOkY205ERETXwDBjR9oFeWLNlH4Y1yMcogjM23wc9/5vN/JKquQujYiIyG4xzNgZV40S79zTFR+Pi4ObRomdp6S207bjbDsREZF9mjx5MgRBqP3w9/fHkCFDcODAgSY5PsOMnborvgV+mdYP0SGeuFBWjfu+2Y0Pfj8Kg9Ekd2lERESXGDJkCHJycpCTk4PNmzdDpVJh+PDhTXJshhk71jbQA6un9MXEXq0gisCCP09g4v924xzbTkREZGe0Wi1CQkIQEhKCuLg4PPfcc8jKysL58+dtfmyVzY9A18VFrcRbo7rgxkh/zFlxAHvSC3DHvK34aFwcbmofKHd5RERkS6II6CvkObbaDRCERj20rKwMixcvRrt27eDv72/lwi7FMOMg7owNQ5cW3piyOBGpOSV44Js9eOLmtph1e3uolJxgIyJySvoK4K0weY79fDagca/33detWwcPDw8AQHl5OUJDQ7Fu3TooFLZ/j+K7oAOJCHDHyif64L4bWwMAPv37JCZ8tQs5xZUyV0ZERM3dwIEDkZycjOTkZOzevRuDBg3CHXfcgYyMDJsfmzMzDsZFrcQbd3VGr0g/zF5xEHtPF2LovK34cGwcBkYHyV0eERFZk9pNmiGR69gN4O7ujnbt2tV+3717d3h7e+Orr77Cm2++ae3q6mCYcVDDu9a0nRIScehsCR5ctBeP3hSJpwd1gJptJyIi5yAIDWr12BNBEKBQKFBZafvuAd/1HFhrf3eseLwPJvdpAwD4YsspjP9yF84Wse1ERERNS6fTITc3F7m5uUhLS8O0adNQVlaGESNG2PzYDDMOTqtS4tU7Y/DZpG7wdFFhf0Yhhs3fij9Sz8ldGhERNSMbNmxAaGgoQkND0atXL+zduxfLly/HzTffbPNjC6IoOvXFf0pKSuDt7Y3i4mJ4eXnJXY5NZeZXYOqSRBw4UwwAeLhfBJ4dEg2NipmViMjeVVVVIT09HREREXBxcZG7nCZxtZ+5Ie/ffJdzIq383bD8sd54sG8bAMD/tqVj7Bc7caZQpj0KiIiImgDDjJPRqpR4ZUQMvrivO7xcVEjOKsLQeVvx++FcuUsjIiKyCYYZJzU4JgS/Tu+P2HAflFQZ8N8f9uO1Xw6j2sBrOxERkXNhmHFi4X5uWP5obzzcLwIA8O320xjz+Q5kFbDtREREzoNhxslpVAq8OLwTvrq/B7xd1Ug5U4yh87diw6EcuUsjIiKyCoaZZuL2TsH4dXo/xLfyQWmVAY/9mIhX1x6GzmCUuzQiIqLrwjDTjLT0dcNPj/bGowMiAQCLdpzGPZ/tRGY+205EROS4GGaaGbVSgTlDO+KbyT3g46bGwbPFGDZ/K9YfZNuJiIgcE8NMM3VLdDDWT++PHq19Uaoz4InFiXhp9SFU6dl2IiIix8Iw04yF+bhiyX9vxOM3twUA/LArA3d/tgOnL5TLXBkREVH9Mcw0c2qlAs8NicaiB2+An7sGh7NLMHzBNvySItMl54mIyGHl5uZi2rRpiIyMhFarRXh4OEaMGIHNmzfb9LgMMwQAuLlDENZP74+ebfxQpjNg2pIkPL/qINtORERUL6dPn0b37t3x559/4t1338XBgwexYcMGDBw4EFOmTLHpsVU2fXZyKCHeLkh4pBc+/uM4Pvn7BBJ2ZyIpswifTIxHZKCH3OUREZEde+KJJyAIAvbs2QN3d/fa8ZiYGPznP/+x6bEZZqgOlVKBpwd3QM8IPzy5LBlpOSUYsWAb3hrdBSPjWshdHhFRsyKKIioNlbIc21XlCkEQ6nXfgoICbNiwAf/3f/9XJ8hc5OPjY+Xq6mKYocsa0D4Q62f0x4ylSdh1qgAzliZj58l8vHpnDFzUSrnLIyJqFioNleiV0EuWY++euBtuard63ffEiRMQRRHR0dE2ruryuGaGrijYywWLH74R02+NgiAAS/dm4a5PtuNEXpncpRERkR0RRREA6j2TY22cmaGrUioEzLq9PXpF+GHG0mQcyS3FnQu34c27OmN0t5Zyl0dE5NRcVa7YPXG3bMeur6ioKAiCgLS0NNx11122K+oKBPFinHJSJSUl8Pb2RnFxMby8vOQux6HllVZh5tJk7DiZDwAY070lXh/ZGa4atp2IiK5XVVUV0tPTERERARcXF7nLabA77rgDBw8exNGjRy9ZN1NUVHTZdTNX+5kb8v7NNhPVW5CnC354qBeevK09FAKwfP8Z3LlwG46fK5W7NCIiktmnn34Ko9GInj17YsWKFTh+/DjS0tIwf/589O7d26bHZpihBlEqBMy4LQo/PtwLgZ5aHM8rw50Lt2P5viy5SyMiIhlFREQgMTERAwcOxFNPPYXOnTvj9ttvx+bNm/HZZ5/Z9NhsM1GjnS/VYdZPydh6/AIAYHS3Fnjzrs5w03ApFhFRQzl6m6kx2GYi2QV6avHdgz3x9CCp7bQy8SxGLNiGo7lsOxERUdNhmKHrolAImHpLFJY8ciOCvbQ4eb4cIz/ZhmV7M+Hkk35ERGQnGGbIKnpF+mP99P4Y0D4QVXoTnltxEE8uS0a5ziB3aURE5OQYZshq/D20WDT5Bjw7pAOUCgGrk7MxYsE2pOWUyF0aERE5MYYZsiqFQsATN7fD0v/eiFBvF5y6UI6Rn2xHwm62nYiIyDYYZsgmbmjjh1+n98ct0UGoNpjw/KqDmL40GaVVerlLIyIiJ8MwQzbj567B/+7vgeeHRkOpEPBLitR2OnS2WO7SiIjIiTDMkE0pFAL+O6Atfnq0N8K8XXA6vwKjP92BH3aeZtuJiIisgmGGmkT31r5YP6M/busYhGqjCS+tOYwpCYkoYduJiIiuE8MMNRkfNw2+ur8HXhzWESqFgPUHczF8/jYcPMO2ExERNR7DDDUpQRDwcP9ILH+sN1r4uCKzoAKjP9uORdvT2XYiInJQkydPhiAIEAQBarUawcHBuP322/HNN9/AZDLZ/PgMMySL+Fa+WD+9PwZ1CobeKOLVX1Lx+I+JKK5k24mIyBENGTIEOTk5OH36NH777TcMHDgQM2bMwPDhw2Ew2HYDVYYZko23mxpf3Ncdr4zoBLVSwIbDuRg2fyuSs4rkLo2IiBpIq9UiJCQELVq0QLdu3fD8889jzZo1+O2337Bo0SKbHpuXNyZZCYKAB/tGoFsrX0xdkoisgkqM+XwHZt/REf/p2waCIMhdIhGRbERRhFhZKcuxBVfX6/4dfMsttyA2NhYrV67Eww8/bKXKLmXXYcZgMODVV1/F4sWLkZubi9DQUEyePBkvvvgiFApOKjmT2HAfrJvWH7NXHMBvh3LxxrpU7DqVj/fu6QofN43c5RERyUKsrMTRbt1lOXaHxP0Q3Nyu+3mio6Nx4MABK1R0ZXadCN555x18/vnnWLhwIdLS0vDuu+/ivffew4IFC+QujWzA21WNTyd1w+sjY6BRKrAp9RyGzd+GxMxCuUsjIqJGEkXR5rPsdj0zs3PnTowcORLDhg0DALRp0wZLlizBvn37rvgYnU4HnU5X+31JCS9y6EgEQcD9vdugWytfTElIREZ+BcZ+vhPPDYnGw/0j2HYiomZFcHVFh8T9sh3bGtLS0hAREWGV57oSu56Z6devHzZv3oxjx44BAFJSUrBt2zYMHTr0io+ZO3cuvL29az/Cw8Obqlyyos4tvLFuWj8M7xoKg0nE/61Pw8Pf7UNhebXcpRERNRlBEKBwc5Plwxp/PP755584ePAg7r77biu8Gldm12Hmueeew4QJExAdHQ21Wo34+HjMnDkTEyZMuOJj5syZg+Li4tqPrKysJqyYrMnTRY0FE+Lxf6M6Q6NSYPORPAybvxX7MwrkLo2IiP5Fp9MhNzcXZ8+eRWJiIt566y2MHDkSw4cPx/3332/TY9t1m2nZsmX48ccfkZCQgJiYGCQnJ2PmzJkICwvDAw88cNnHaLVaaLXaJq6UbEUQBEzq1Rpx4T6YmpCE9AvlGPvFLjwzuAP+2z8SCgXbTkRE9mDDhg0IDQ2FSqWCr68vYmNjMX/+fDzwwAM2P2lHEO1429Xw8HDMnj0bU6ZMqR1788038eOPP+LIkSP1eo6SkhJ4e3ujuLgYXl5etiqVmkCZzoAXVh3EmuRsAMDNHQLx4dg4+LnzbCcicnxVVVVIT09HREQEXFxc5C6nSVztZ27I+7ddt5kqKiouSXNKpbJJtkYm++OhVeHjcXF4e3QXaFUK/H30PIbO24o96Ww7ERE1Z3YdZkaMGIH/+7//w6+//orTp09j1apV+PDDDzFq1Ci5SyOZCIKA8T1bYc3UvogMdEduSRUmfLULn/x1AiaT3U4yEhGRDdl1mFmwYAHuuecePPHEE+jYsSOefvppPProo3jjjTfkLo1kFh3ihV+m9sPo+BYwmkS8t/EoHvh2Dy6U6a79YCIicip2vWbGGrhmxrmJoojl+8/g5TWHUKU3IchTi3nj49G7rb/cpRERNQjXzDjpmhmiaxEEAWN7hGPt1H5oF+SBvFIdJv1vF+b9cRxGtp2IyAE5+RxDHdb6WRlmyCm0D/bE2ql9cU/3ljCJwEd/HMP93+xGXmmV3KUREdWLWq0GIJ380lxc/Fkv/uyNxTYTOZ0V+8/gxdWHUKk3IsBDi3nj49C3XYDcZRERXVNOTg6KiooQFBQENyvtwmuPRFFERUUF8vLy4OPjg9DQ0Evu05D3b4YZckon8koxZXESjp4rhSAA026Jwoxbo6DkJntEZMdEUURubi6KiorkLqVJ+Pj4ICQk5LKhjWHGAsNM81VZbcRrvxzG0r3SJS1ujPTDvPHxCPZqHgvriMhxGY1G6PV6ucuwKbVaDaVSecXbGWYsMMzQmuSzeH7lQZRXG+HvrsFH4+IwoH2g3GUREdFV8GwmIgsj41rgl2n90DHUC/nl1Xjg2z14b+MRGIzcSZqIyBkwzFCzEBnogVVP9MHEXq0gisAnf53ExK92I7eYZzsRETk6hhlqNlzUSrw1qgsWTIiHh1aFPacLMHT+Vvx9NE/u0oiI6DowzFCzMyI2DOum9UNMmBcKyqsx+du9ePu3I9Cz7URE5JAYZqhZahPgjhWP98H9vVsDAD7fchLjv9yF7KJKmSsjIqKGYpihZstFrcTrIzvj00nd4KlVYX9GIYbO34rNaefkLo2IiBqAYYaavaFdQrFuej90aeGNogo9HvpuH/7v11S2nYiIHATDDBGA1v7u+Pnx3pjcpw0A4Kut6Rjz+U6cKWw+10ghInJUDDNENbQqJV69Mwaf39sdXi4qJGcVYei8rfj9cK7cpRER0VUwzBD9y5DOIfh1en/EhvugpMqA//6wH6//kopqA9tORET2iGGG6DLC/dyw/NHeeLhfBADgm+3pGPP5DmQVsO1ERGRvGGaIrkCjUuDF4Z3wv/t7wNtVjZQzxRg6fys2HMqRuzQiIrLAMEN0Dbd1Csb6Gf3RrZUPSqsMeOzHRLyy5hB0BqPcpRERERhmiOqlhY8rlj3aG4/eFAkA+G5nBu7+bAdOXyiXuTIiImKYIaontVKBOXd0xDeTe8DXTY1DZ0swfME2rDuQLXdpRETNGsMMUQPdEi21nXq09kWZzoCpCUl4YdVBVOnZdiIikgPDDFEjhHq7Yul/b8QTN7cFACzenYlRn+7AqfNlMldGRNT8MMwQNZJKqcCzQ6Lx3X96ws9dg7ScEoxYsA1rks/KXRoRUbPCMEN0nW5qH4jfZvRHrwg/lFcbMWNpMuasPMC2ExFRE2GYIbKCYC8XLH64F6bf0g6CACzZk4W7PtmOE3lsOxER2RrDDJGVqJQKzBrUAT/8pxcCPLQ4kluKOxduw8rEM3KXRkTk1BhmiKysX1QA1s/ohz5t/VFRbcSsn1LwzPIUVFaz7UREZAsMM0Q2EOTpgh8e6oUnb2sPhQAs338Gdy7chuPnSuUujYjI6TDMENmIUiFgxm1RWPzwjQj01OJ4XhlGLNyG5fuy5C6NiMipMMwQ2Vjvtv74bUZ/9I8KQJXehGd+PoBZPyWjXGeQuzQiIqfAMEPUBAI8tPjuwZ54ZnAHKARgZeJZ3LlwG47klshdGhGRw2OYIWoiCoWAKQPbYckjNyLYS4uT58sxcuF2LNmTCVEU5S6PiMhhMcwQNbFekf5YP70/bmofCJ3BhDkrD2LG0mSUse1ERNQoDDNEMvD30OLbyTfguSHRUCoErE3JxogF23A4u1ju0oiIHA7DDJFMFAoBj9/cFj89eiPCvF2QfqEcoz7dgR92ZbDtRETUAAwzRDLr3toPv07vj9s6BqHaYMJLqw9h6pIklFTp5S6NiMghMMwQ2QFfdw2+ur8HXhzWESqFgF8P5GDEgm04eIZtJyKia2GYIbITgiDg4f6RWP5Yb7TwcUVGfgXu/mwHvttxmm0nIqKrYJghsjPxrXyxfnp/DOoUjGqjCa+sPYzHf0xEcSXbTkREl8MwQ2SHvN3U+OK+7nhlRCeolQI2HM7F8AVbkZJVJHdpRER2h2GGyE4JgoAH+0ZgxeN9EO7niqyCStzz+Q58vS2dbSciIgsMM0R2rmtLH6yb1h93dA6B3ijijXWpeOT7/SiqqJa7NCIiu8AwQ+QAvF3V+HRSN7w+MgYapQJ/pJ3DsPnbsD+jUO7SiIhkxzBD5CAEQcD9vdtg5RN90MbfDWeLKjHui534YstJmExsOxFR88UwQ+RgOrfwxi/T+mFEbBgMJhFzfzuCh7/fh4Jytp2IqHlimCFyQJ4uaswfH4e3RnWBRqXAn0fyMGz+Vuw9XSB3aURETU4QG3lahMlkwokTJ5CXlweTyVTntgEDBlilOGsoKSmBt7c3iouL4eXlJXc5RFaXllOCKYsTcepCOZQKAbNub4/Hb2oLhUKQuzQiokZryPt3o8LMrl27MHHiRGRkXHpBPEEQYDQaG/qUNsMwQ81Buc6AF1cfwqqkswCAAe0D8eHYWAR4aGWujIiocRry/t2oNtNjjz2GHj164NChQygoKEBhYWHtR0EBp7mJmpq7VoUPx8bi3bu7wkWtwD/HzmPovK3YeTJf7tKIiGyuUTMz7u7uSElJQbt27WxRk1VxZoaam6O5pZiSkIgTeWVQCMCMW9tj6i3toGTbiYgciM1nZnr16oUTJ040qjgisq0OIZ5YO7Uv7u7WEiYR+OiPY7j/m93IK62SuzQiIptQNeZB06ZNw1NPPYXc3Fx06dIFarW6zu1du3a1SnFE1DhuGhU+GBuL3m398dLqQ9h+Ih9D523DvPFx6NsuQO7yiIisqlFtJoXi0gkdQRAgiiIXABPZmePnpLbTsXNlEARg2i1RmHFrFNtORGTXbH42U0ZGxlVvb926dUOf0mYYZoiAymojXvvlMJbuzQIA3Bjph3nj4xHs5SJzZUREl2fzMONIGGaIzNYkn8XzKw+ivNoIf3cNPhoXhwHtA+Uui4joEjZfAAwAJ0+exLRp03Dbbbfh9ttvx/Tp03Hy5MnGPt0VnT17Fvfeey/8/f3h5uaGuLg47N+/3+rHIWoORsa1wC/T+qFjqBfyy6vxwLd78N7GIzAYTdd+MBGRnWpUmNm4cSM6deqEPXv2oGvXrujcuTN2796NmJgYbNq0yWrFFRYWom/fvlCr1fjtt9+QmpqKDz74AD4+PlY7BlFzExnogVVP9MGkXq0gisAnf53ExK92I6e4Uu7SiIgapVFtpvj4eAwePBhvv/12nfHZs2fj999/R2JiolWKmz17NrZv346tW7fW+zE6nQ46na72+5KSEoSHh7PNRHQZ6w5kY/aKgyjTGeDrpsaHY+MwMDpI7rKIiGzfZkpLS8NDDz10yfh//vMfpKamNuYpL2vt2rXo0aMHxowZg6CgIMTHx+Orr7666mPmzp0Lb2/v2o/w8HCr1UPkbIZ3DcO6af3QuYUXCiv0eHDRXsxdnwY9205E5EAaFWYCAwORnJx8yXhycjKCgqz3V92pU6fw2WefISoqChs3bsRjjz2G6dOn4/vvv7/iY+bMmYPi4uLaj6ysLKvVQ+SM2gS4Y8XjffBAb+ksxC/+OYVxX+zE2SK2nYjIMTRq07xHHnkE//3vf3Hq1Cn06dMHgiBg27ZteOedd/DUU09ZrTiTyYQePXrgrbfeAiC1tw4fPozPPvsM999//2Ufo9VqodXy4npEDaFVKfHayM7o3dYfz/x8AImZRRg6byveHxOL2zsFy10eEdFVNSrMvPTSS/D09MQHH3yAOXPmAADCwsLw6quvYvr06VYrLjQ0FJ06daoz1rFjR6xYscJqxyAisyGdQxET5o2pCYlIOVOMR77fh4f6ReC5IdHQqBp98iMRkU016reTIAh48skncebMmdp2zpkzZzBjxgwIgvV2Fe3bty+OHj1aZ+zYsWN2tSkfkbMJ93PD8sf64KF+EQCAr7elY8wXO5FVUCFzZUREl3fdf2p5enrC09PTGrVc4sknn8SuXbvw1ltv4cSJE0hISMCXX36JKVOm2OR4RCTRqBR4aXgnfHV/D3i7qpGSVYSh87diw6EcuUsjIrpEvU/N7tatGzZv3gxfX1/Ex8dfdQbGWqdmA8C6deswZ84cHD9+HBEREZg1axYeeeSRej+eOwATXZ8zhRWYtiQJSZlFAIAHerfG88M6QqtSylsYETm1hrx/13vNzMiRI2sX1o4cOdKq7aSrGT58OIYPH94kxyKiS7X0dcNPj/bG+xuP4ot/TuG7nRnYn1mIhRO6oU2Au9zlERHx2kxEVH9/HjmHp35KQWGFHh5aFd6+uwuGdw2TuywickI23zQvMjIS+fn5l4wXFRUhMjKyMU9JRA7gluhgrJ/RHze08UWZzoCpCUl4YdVBVOmNcpdGRM1Yo8LM6dOnYTRe+stLp9PhzJkz110UEdmvUG9XLHnkRjxxc1sAwOLdmRj16Q6cOl8mc2VE1Fw1aJ+ZtWvX1n69ceNGeHt7135vNBqxefNmREREWK86IrJLKqUCzw6JRq9If8xaloy0nBKMWLANb43ugpFxLeQuj4iamQatmVEopIkcQRDw74ep1Wq0adMGH3zwgV0t2OWaGSLbOldShRlLk7DrVAEAYPwN4XhlRAxcNTzbiYgaryHv341aABwREYG9e/ciICCg0UU2FYYZItszmkTM23wcC/48DlEEOgR74pNJ8WgXZJs9qIjI+dl8AXB6erpDBBkiahpKhYBZt7fH4od6IcBDi6PnSjFiwXb8vJ9r6IjI9hp9anZ5eTm2bNmCzMxMVFdX17nNmtdnul6cmSFqWudLdXhyWTK2nbgAALi7W0u8cVcM3DSNuhQcETVTNm8zJSUlYejQoaioqEB5eTn8/Pxw4cIFuLm5ISgoCKdOnWp08dbGMEPU9IwmEZ/+dQIf/XEMJhFoG+iOTyd1R4cQtp2IqH5s3mZ68sknMWLECBQUFMDV1RW7du1CRkYGunfvjvfff79RRROR81AqBEy7NQoJj9yIYC8tTp4vx50Lt2HpnsxLTh4gIrpejQozycnJeOqpp6BUKqFUKqHT6RAeHo53330Xzz//vLVrJCIHdWOkP9ZP748B7QOhM5gwe+VBzFyWjDKdQe7SiMiJNCrMqNXq2mszBQcHIzMzEwDg7e1d+zUREQD4e2ixaPINeHZIBygVAtYkZ+POBdtwOLtY7tKIyEk0KszEx8dj3759AICBAwfi5ZdfxuLFizFz5kx06dLFqgUSkeNTKAQ8cXM7LP3vjQj1dsGpC+UY9ekO/LArg20nIrpujQozb731FkJDQwEAb7zxBvz9/fH4448jLy8PX375pVULJCLncUMbP6yf3h+3RAeh2mDCS6sPYeqSJJRU6eUujYgcWIPPZhJFEZmZmQgKCoKrq6ut6rIans1EZH9MJhFfb0vHOxuOwGAS0crPDZ9M7IYuLb2v/WAiahZsejaTKIqIioriBSWJqNEUCgGPDIjET4/1RgsfV2QWVODuz3Zg0fZ0tp2IqMEaHGYUCgWioqKQn59vi3qIqBnp1soX66f3x6BOwag2mvDqL6l47Mf9KK5g24mI6q9Ra2beffddPPPMMzh06JC16yGiZsbbTY0v7uuOV0Z0glopYOPhcxi2YCuSs4rkLo2IHESjdgD29fVFRUUFDAYDNBrNJWtnCgoKrFbg9eKaGSLHceBMEaYmJCGzoAIqhYDZd0TjoX4RtVtBEFHz0ZD370ZdLOWjjz7iLxcisrquLX2wbno/zF5xAOsP5uLNX9Ow61Q+3h8TCx83jdzlEZGdavSFJh0FZ2aIHI8oivhxdybeWJeKaoMJYd4uWDAxHt1b+8ldGhE1EZtfm0mpVCIvL++S8fz8fCiVysY8JRFRLUEQcN+NrbHqiT6ICHBHdnEVxn6xC59vOQmTyan//iKiRmhUmLnSZI5Op4NGw6lgIrKOmDBv/DKtH+6MDYPRJOLt347gP9/tRX6ZTu7SiMiONGjNzPz58wFIfzX973//g4eHR+1tRqMR//zzD6Kjo61bIRE1ax5aFeaNj0Pvtv54de1h/H30PIbO34r54+PRK9Jf7vKIyA40aM1MREQEACAjIwMtW7as01LSaDRo06YNXn/9dfTq1cv6lTYS18wQOY8juSWYsjgRJ8+XQyEAs25vjydubgeFgickEMlCFIGcZMCnNeBm3TVtDXn/btQC4IEDB2LlypXw9fVtdJFNhWGGyLmU6wx4afUhrEw6CwDoHxWAD8fGIdBTK3NlRM1I6Tng4E9AcgKQlwoMngv0fsKqh7B5mHEkDDNEzmn5viy8vOYwKvVGBHpqMW9cHPq0C5C7LCLnZdABR38DUpYAxzcBolEaV2qBPtOAW1+y6uFsHmaMRiMWLVqEzZs3Iy8vDyaTqc7tf/75Z0Of0mYYZoic1/FzpZiSkIhj58ogCMD0W6Iw/dYoKNl2IrIOUQSyk6QZmIPLgaoi820tbwDiJgIxowFXH6sf2uab5s2YMQOLFi3CsGHD0LlzZ26gR0SyiAr2xJop/fDq2sNYti8L8zYfx+70fMwfH48gLxe5yyNyXKXngAPLpBBzPs087hkGxI4DYicCge3lq+9fGjUzExAQgO+//x5Dhw61RU1WxZkZouZhddJZPL/qICqqjQjw0OCjcXHoHxUod1lEjuNiGyk5ATjxh7mNpHIBoodLszCRNwOKptlPzuYzMxqNBu3atWtUcUREtnBXfAt0bemNKQlJSMspwf3f7METN7fFk7e1h0rZqC21iJzf1dpI4b2A2AlA59GAi7dsJdZHo2ZmPvjgA5w6dQoLFy60+xYTZ2aImpcqvRFvrEvF4t2ZAICebfwwb0IcQr1dr/FIomakNBc48NOlbSSvFkDseKmNFCDvpIXNFwCPGjUKf/31F/z8/BATEwO1Wl3n9pUrVzb0KW2GYYaoeVp3IBuzVxxEmc4AXzc1Phwbh4HRQXKXRSQffRVwzLKNVHPyjsoF6DhCaiNF3NRkbaRrsXmbycfHB6NGjWpUcURETWF41zB0aeGNqQlJOHi2GA8u2otHB0Ti6cEdoGbbiZoLUQTOJgLJi4FDK/51NlJPIH4SEDPK7ttI18J9ZojIqekMRsxdfwSLdpwGAMS38sGCCfFo6esmb2FEtlSSYz4b6cJR87gdtZGupUk2zTMYDPj7779x8uRJTJw4EZ6ensjOzoaXl1edazbJjWGGiABgw6FcPPtzCkqqDPB2VeO9e7piUEyI3GURWY++Cji6XgowJzdf2kaKndCkZyNdL5uHmYyMDAwZMgSZmZnQ6XQ4duwYIiMjMXPmTFRVVeHzzz9vdPHWxjBDRBdlFVRg6pIkpGQVAQAe7NsGc+7oCI2KbSdyUHXaSD8DVcXm28JvrNnU7i6HbCM1yaZ5PXr0QEpKCvz9zVetHTVqFB5++OHGPCURkc2F+7lh+aO98d7GI/hqazq+3X4a+zMKsXBCN7TyZ9uJHMgV20gta9pIE+y+jWRNjQoz27Ztw/bt26HRaOqMt27dGmfPnrVKYUREtqBRKfDCsE7oFeGPp39OwYEzxRg2fyvevacr7ugSKnd5RFemrwKO/gokL/lXG8kV6HSnNAvTZgCgaH4zjY0KMyaTCUaj8ZLxM2fOwNPT87qLIiKytds6BePX6f0xfUkS9mcU4vHFibi/d2s8P7QjXNSOsaaAmgFRBM7sA1ISas5GsmgjteotBZhOdwEuzXsZRaPWzIwbNw7e3t748ssv4enpiQMHDiAwMBAjR45Eq1at8O2339qi1kbhmhkiuhq90YQPNx3DZ3+fBADEhHlh4cRuiAhwl7kyatZKsoGUpdIVqi8cM49fbCPFTQT828pXXxOw+QLg7OxsDBw4EEqlEsePH0ePHj1w/PhxBAQE4J9//kFQkP1sTMUwQ0T18ffRPMz6KQUF5dXw0Krw1uguuDM2TO6yqDnRVwJHfpXWwZz6q9m3kZrk1OzKykosXboU+/fvh8lkQrdu3TBp0iS4utrXluEMM0RUX7nFVZixNAm70wsAABN6tsIrIzqx7US2c7GNlLwYOLQS0P2rjRQ7oWZTu+b3/tUkYcZRMMwQUUMYjCbM33wcC/46AVEEokM8sXBiN7QLsp/9s8gJXGwjJScA+cfN497hUoCJHe/0baRrsXmYmTt3LoKDg/Gf//ynzvg333yD8+fP47nnnmvoU9oMwwwRNca24xcwc1kyLpTp4KpW4s27OuPu7i3lLoscWW0baTFw8i8ANW+/ajeg48U2Uv9m00a6FpuHmTZt2iAhIQF9+vSpM757926MHz8e6enpDX1Km2GYIaLGyiutwpPLkrH9RD4A4J7uLfH6yBi4aRp1Iig1R6IInNlr0UYqMd/Wqo90baROIwEtzwT+N5tvmpebm4vQ0Ev3YwgMDEROTk5jnpKIyO4Eebrg+//0wid/ncDHfxzDz/vPIDmrCJ9M7IYOIXzzoasoPmNuIxWcNI97twLiatpIfpHy1edkGhVmwsPDsX37dkRERNQZ3759O8LCuPqfiJyHUiFg+q1R6BnhhxlLk3Airwx3LtyG10fGYGyPcAiCIHeJZC+qK8xtpFN/o04bqdNIaS0M20g20agw8/DDD2PmzJnQ6/W45ZZbAACbN2/Gs88+i6eeesqqBRIR2YMbI/2xfnp/zPopBVuOncdzKw5i58l8vDmqCzy0bDs1W6IIZO2RAszhVXXbSK371mxqxzaSrTVqzYwoipg9ezbmz5+P6upqAICLiwuee+45vPzyy1Yv8npwzQwRWZPJJOKLf07h/d+PwmgSERngjoUTu6FTGH+/NCtXaiP5tAJiJ9a0kSKu/Hi6piY7NbusrAxpaWlwdXVFVFQUtFptY5/KZhhmiMgW9p0uwLQlScgproJGpcDLwzthUq9WbDs5s+oK4Mi6mjbSFpjbSO7S7EvcRGk2hm0kq+A+MxYYZojIVgrLq/H08hRsPpIHABjWNRRzR3eBl4ta5srIakQRyNpdczbSKqC61Hxbm/5SgOl4J6DlPkTWZvMwU15ejrfffhubN29GXl4eTCZTndtPnTrV0Ke0GYYZIrIlURTxv63peGfDERhMIlr5uWHhxHh0bekjd2l0PYqyaq6NlAAUWLyn+bSWFvLGTQB828hWXnNg81OzH374YWzZsgX33XcfQkNDOa1KRM2WIAh4ZEAkerTxxdSEJGQWVODuz3bg+aEdMblPG/5+dCTV5UBaTRsp/R/UaSPFjJJmYVr1ZhvJDjVqZsbHxwe//vor+vbta4uarIozM0TUVIor9Hh2RQo2Hj4HABjUKRjv3RMLbze2neyWKAKZO2vORloNVJeZb2MbSVY2n5nx9fWFn59fo4ojInJW3m5qfH5vd3y/MwP/92safk89h8Pzt2LhxHjEt/KVuzyyVJRpPhup0GLXep/WQNwk6Wwk39by1UcN0qi5sjfeeAMvv/wyKioqrF3PVc2dOxeCIGDmzJlNelwiovoSBAEP9GmDFY/3QSs/N5wtqsSYz3fiq39OwWRy6vMt7F91OZC8BFg0HPi4C/DX/0lBRuMBxN8LPPgbMCMFuPk5BhkH06g2U3x8PE6ePAlRFNGmTRuo1XWnUBMTE61W4EV79+7F2LFj4eXlhYEDB+Ljjz+u1+PYZiIiuZRU6TFn5UH8ekC6zMst0UF4f0ws/Nw1MlfWjJhMQOYOKcSkrrZoIwlARH8g7l6g43BA4y5nlXQZNm8z3XXXXY15WKOVlZVh0qRJ+Oqrr/Dmm2826bGJiBrLy0WNhRPi0aetP177JRV/HsnDsPlbMX9CPG5ow1a9TRWeNreRijLM436RNZvajZM2uCOn4BD7zDzwwAPw8/PDRx99hJtvvhlxcXFXnJnR6XTQ6XS135eUlCA8PJwzM0Qkq9TsEkxNSMSpC+VQKgTMur09Hr+pLRQKnu1kNboyIHUNkLIEOL3VPK7xBDqPkkJMqxsBnmHmEGw+M3PR/v37kZaWBkEQ0KlTJ8THx1/P013W0qVLkZiYiL1799br/nPnzsVrr71m9TqIiK5HpzAv/DKtH15cfQirks7ivY1HsetUPj4aF4cAD/vbPd1hmExAxnZpBiZ1DaAvr7lBACJvkhbzRg8HNG6ylkm21aiZmby8PIwfPx5///03fHx8IIoiiouLMXDgQCxduhSBgYFWKS4rKws9evTA77//jtjYWADgzAwROTRRFLF8/xm8vOYQqvQmBHpqMW98HPq0DZC7NMdSkG7e1K4o0zzu11ba0K7reMAnXL766LrZfAfgcePG4eTJk/jhhx/QsWNHAEBqaioeeOABtGvXDkuWLGlc5f+yevVqjBo1CkqlsnbMaDRCEAQoFArodLo6t10OFwATkT06dq4UUxYn4nheGRQCMP3WKEy7JQpKtp2uTFcqzb4kJ0izMRdpvWo2tZsEhPdkG8lJ2DzMeHt7448//sANN9xQZ3zPnj0YNGgQioqKGvqUl1VaWoqMjIw6Yw8++CCio6Px3HPPoXPnztd8DoYZIrJXldVGvLL2EH7adwYA0DvSH/PGxyHIy0XmyuyIySStf0lOANLWAvqLW4IIQNuBNW2kYYDaVdYyyfpsvmbGZDJdcjo2AKjV6kuu03Q9PD09Lwks7u7u8Pf3r1eQISKyZ64aJd69Jxa92/rjhVWHsPNUPu6YtxUfj49D/yjrtOsdVv7JmjbSEqA4yzzuH2VuI3m3kK8+siuNCjO33HILZsyYgSVLliAsLAwAcPbsWTz55JO49dZbrVogEZGzGxXfEl1a+GBqQiKO5Jbi/m/2YMrN7TDztiiolM3oOkBVJdJeMMkJ0iUGLtJ6A51HS7MwLXuwjUSXaFSbKSsrCyNHjsShQ4cQHh4OQRCQmZmJLl26YM2aNWjZsqUtam0UtpmIyFFU6Y14fV0qEnZLC1p7tvHDvAlxCPV24haKyShd1DE5AUj7BTBUSuOCAogcKF0biW2kZsnma2Yu2rRpE44cOQJRFNGpUyfcdtttjX0qm2GYISJH80tKNuasPIgynQG+bmp8ODYOA6OD5C7Lui6ckM5ESlkGlJwxjwe0lwJM13GAV5h89ZHsbBZm/vzzT0ydOhW7du265ImLi4vRp08ffP755+jfv3/jKrcBhhkickSnL5Rj6pJEHDpbAgB4dEAknh7cAWpHbjtVFQOHVkrrYLJ2m8ddvIHO90ghpkV3tpEIgA3DzJ133omBAwfiySefvOzt8+fPx19//YVVq1Y1rGIbYpghIkelMxgxd/0RLNpxGgAQ38oHCybEo6WvA20AZzICp/6Sro10ZB1gqJLGBQXQ9lYpwHQYCqh5BhfVZbMw07p1a2zYsKF2b5l/O3LkCAYNGoTMzMzL3i4HhhkicnQbDuXi2Z9TUFJlgJeLCu+NicXgmBC5y7q688fMbaTSbPN4YLQUYLqMBbxC5auP7J7NTs0+d+7cZU/Jrn0ylQrnz59vyFMSEdE1DOkcgpgwL0xdkoSUrCI8+sN+PNi3DWbfEQ2t6uobhzapykJzG+mMxSVoXHyALmOkU6rDurGNRFbXoDDTokULHDx4EO3atbvs7QcOHEBoKJM2EZG1hfu5YfmjvfHexiP4ams6vt1+GvtOF2LhxHi09neXrzCTETj5F5C8GDjyK2CsuZyMoASibpdmYdoPAVS8/hTZToPaTNOmTcPff/+NvXv3wsWlbn+zsrISPXv2xMCBAzF//nyrF9pYbDMRkbPZnHYOTy1PQVGFHp5aFd6+uyuGdW3iPyTzjpjbSGW55vGgTuY2kmdw09ZETsVma2bOnTuHbt26QalUYurUqejQoQMEQUBaWho++eQTGI1GJCYmIjjYfv4BM8wQkTPKLqrE9CVJ2JdRCAC498ZWeHFYJ7iobdh2qigADq2Q9oTJTjSPu/oBXe6RNrULjWUbiazCpvvMZGRk4PHHH8fGjRtx8aGCIGDw4MH49NNP0aZNm0YXbgsMM0TkrPRGEz7adAyf/n0SANAx1AufTIxHZKCH9Q5iNAAn/5TaSEfXA8ZqaVxQAu0HS7MwUYMBlcZ6xyRCE22aV1hYiBMnTkAURURFRcHX17dRxdoawwwRObstx85j1rJk5JdXw12jxFuju2Bk3HVet+hcqtRGOvATUHbOPB7cRVrI22UM4OFkG/mRXWmyHYAdAcMMETUH50qqMGNpEnadKgAAjOsRjlfvjIGrpgFtp4oC4ODPUojJTjKPuwUAXccCsROA0K5Wrpzo8hhmLDDMEFFzYTSJmLf5OBb8eRyiCLQP9sAnE7shKtjzKg/SAyf+qGkjbQBMemlcoa5pI02SzkpSXnlbDiJbYJixwDBDRM3NjhMXMGNZMs6X6uCqVuL1kTEY0yO87p1yD0kLeQ/+BJRb7A8W0hWIv1e6vIC7f9MWTmSBYcYCwwwRNUfnS3V4clkytp24AAAY3a0F3rg9BO5HV0mzMLkHzXd2D5Qu7Bg7AQjpLFPFRHXZbAdgIiJyDIGeWnz/n574/M80pPz1E4Yc/ADa1GQARukOSo20mV3cRKDdbWwjkUNjmCEicjaiCOSkQJGyBE8cXA6o82tvOiC2hS5mHHoMexgC20jkJBhmiIicRVmedCp1cgKQd9g87hGCyk5j8EZWLBLS3YBEYIQxE2+N8oKnC2dkyPExzBAROTKDDji2QQowxzcB4sU2khaIHiqdjRQ5EK5KFd40iWi99RTe23gUv6Rk48CZInwysRs6t/CW92cguk5cAExE5GhEUbqcQPIS4NDP0tWqL2rRQ1oH03k04Hr5zUz3ZxRi+pIknC2qhEapwAvDOuL+3q0h8DIEZEd4NpMFhhkichqlucCBZdIszPkj5nHPUOlspLhJQGD7ej1VUUU1nvn5ADalSrv7DokJwTv3dIW3K9tOZB8YZiwwzBCRQ9NXSddESk4ATm4GRJM0rnIBoodLszCRNwOKhl9gUhRFfLv9NOb+lga9UURLX1csnNgNceE+Vv0RiBqDYcYCwwwRORxRBM7sky4rcGgFUFVsvi38RunaSDGjABfrrHU5cKYIUxOSkFlQAZVCwOw7ovFQvwi2nUhWDDMWGGaIyGEUnzW3kfKPm8e9WkoBJnYC4N/WJocuqdJjzoqD+PVgDgDg1uggvD8mFr7uvBo2yYNhxgLDDBHZteoK4Miv0izMyb8A1PxKVrkCnUZKbaQ2/QGFwualiKKIH3dn4o11qag2mBDm7YL5E+LRo42fzY9N9G8MMxYYZojI7ogikLlLCjCHVwO6EvNtrfpIAabTSMBFnt9Zh7OLMS0hCaculEOpEPDUoPZ4bEBbKBRsO1HTYZixwDBDRHajKBNIWQqkLAEKTpnHfVoBsROB2PGAX4R89Vko0xnw4qqDWJ2cDQAY0D4QH46NRYCHVubKqLlgmLHAMENEsqouB1LXSrMw6f+Yx9XuQMxd0jqY1n2bpI3UUKIoYvm+M3h57SFU6U0I8tRi3vh49G7LyyCQ7THMWGCYIaImZzIBmTukhbypa4DqMvNtEQOkWZiOIwCth3w1NsCxc6WYsjgRx/PKoBCA6bdGYdotUVCy7UQ2xDBjgWGGiJpMQXpNGylBaild5BshrYPpOg7wbS1ffdehotqAV9YcxvL9ZwAAfdr64+NxcQjycpG5MnJWDDMWGGaIyKZ0pdIi3pQlQMZ287jGU2ojxd8LhPcCnGTPlpWJZ/Di6kOoqDYiwEODj8bFoX9UoNxlkRNimLHAMENEVmcyAelbpACTuhYwVNbcIABtB0ptpOhhgMZN1jJt5UReGaYmJOJIbikEAXji5rZ48rb2UCntb90POS6GGQsMM0RkNfknpXUwKUuBkjPmcf8oaVO7ruMB7xby1deEqvRGvL4uFQm7pXbaDW18MX9CPEK9XWWujJwFw4wFhhkiui5VxcChldIsTNZu87iLN9D5buniji26O00bqaHWHcjG7BUHUaYzwNdNjQ/GxuKW6GC5yyInwDBjgWGGiBrMZARO/SXNwhz5FTBUSeOCAmh7qzQL02EYoObiVwDIyC/H1IQkHDwrXUPqvwMi8czgDlCz7UTXgWHGAsMMEdXb+aNSgDmwDCjNMY8HRpvPRvIMka8+O6YzGDF3/REs2nEaABDfygcLJsSjpa9zrhsi22OYscAwQ0RXVVEgXZk6OQHITjSPu/oCXcZIm9qFxTfbNlJDbTiUi2d/TkFJlQFeLiq8NyYWg2MYAKnhGGYsMMwQ0SWMBuDEH9J+MEd/A4zV0rigBKIGSbMw7QcDKm7d3xhZBRWYtiQJyVlFAIDJfdpgztBoaFVKeQsjh8IwY4Fhhohq5R6SFvIe+AkozzOPB3eRAkyXMYAH90yxhmqDCe//fhRf/iNdg6pLC28snBiP1v7uMldGjoJhxgLDDFEzV34BOLhcaiPlHjCPuwVIa2DiJgAhXeSrz8n9eeQcnvopBYUVenhoVXj77i4Y3jVM7rLIATDMWLBVmNGdPAnd0aNWe75rafR/psb+163X8epxn0bXfe3H1es1qdePYbsaG/UfoJH1NP7fiMy/AmxxeJMByEsFsvYAeYelTe4AQKEEgmOkHXkDO0rfy70UppFrcQRrreGp1/M08lg1z11UWY3FuzKQfqECAHBjW3+MjA2Tznaqz/Hrc5d6Pc/1/RzXuJMNj9+4h116eNv9Y9e0bQuXDh2s+pwNef9WWfXIzUjp5j9x/sMP5S6DiK7p378EM2s+qCmNtvwmCbjws1yVkC34//e/Vg8zDcEw00jq0FC49exZvzvb8iyIJkz69Uv19XxiW/0VZaW/8up7bKFxL2TDHyPH42z1PNZmqAKKz0o78upKzeMqF8ArDPAOB7SeTV+XtWa8rDlzVq/ZzIYfT6zv9JooorC8Gmk5pag2mqAUBLQP9kCwt8V+PY35ca35c9loxtVqM8mXf/JGPtB6x1KHt2y6Gi6DbSYicjz6KuDYb9I6mBObAdEojSu10jWR4iYCkQMBJf9es0d5JVWYsTQZO0/lAwDGdG+J10bGwE3D/15kxjUzFhhmiJyEKAJn90sB5tDP0mUGLmrZU1rIGzMacPWRrUSqP6NJxMI/T2De5mMwiUBUkAc+mdQN7YNlmEUju8QwY4FhhsjBFZ8FDiwFkpcA+cfN414tgdjx0qZ2Ae3kq4+uy86T+ZixNAl5pTq4qBV47c4YjO0RbtPFquQYGGYsMMwQOaDqCuDIOmkW5tTfqF1MoHIFOt0ptZHa9JfORiKHd6FMh1k/peCfY+cBAHfFheHNUV3goWXbqTljmLHAMEPkIEQRyNwpBZjDq4Fqi8W8rfpIAabTSMCF/x87I5NJxOf/nMQHvx+D0SQiMsAdCybGIybMW+7SSCYMMxYYZojsXGEGkLJU2pm3MN087tNaaiHFjgf8IuSrj5rUvtMFmLYkCTnFVdCoFHhpeCfc26sV207NEMOMBYYZIjukKwPS1kqzMKe3msc1HkCnu6TFvK36AAqFbCWSfArLq/H08hRsPiJdcmJYl1DMvbsLvFzUMldGTYlhxgLDDJGdMJmk4JKyBEhdC+jLa24QgMibgNiJQMfhgIbX7iFpX5avt6Xj7d+OwGAS0crPDQsnxqNrSx+5S6MmwjBjgWGGSGb5J6UAk7IUKM4yj/u1ldbBdB0H+ITLVx/ZteSsIkxNSMSZwkqolQLm3NERD/Ztw7ZTM8AwY4FhhkgGVcXA4VXS6dRZu8zjWm+g82gpxLS8wX53FSa7Ulypx3M/H8CGw7kAgNs7BeO9e7rCx00jc2VkSwwzFhhmiJqIyQic+ktaB3PkV+kyAwAgKIC2t0rrYDoMA9QuV38eossQRRE/7MrAm+vSUG00oYWPK+ZPiEf31r5yl0Y2wjBjgWGGyMbyjgApCcCBn4DSHPN4YLR0NlLXcYBXqHz1kVM5dLYYUxMScTq/AkqFgGcGd8B/+0dCoeAsn7NhmLHAMENkAxUFwKEV0ixMdqJ53NUX6DJGCjFh8WwjkU2UVunx/KpD+CUlGwBwc4dAfDAmFv4eWpkrI2timLHAMENkJUY9cOIPIHkxcHQDYNJL4woVEDVICjDtBwMqvqGQ7YmiiGV7s/DK2sPQGUwI9tJi/vh49Ir0l7s0shKnCTNz587FypUrceTIEbi6uqJPnz5455130KFDh3o/B8MM0XXKOSCdjXTgJ6Dignk8pKu0kLfzPYBHoHz1UbN2JLcEUxYn4uT5cigE4Mnb2uOJge2gZNvJ4TlNmBkyZAjGjx+PG264AQaDAS+88AIOHjyI1NRUuLvXby8KhhmiRijLk8JLyhLg3CHzuHsQ0HWsNAsT0lm++ogsVFQb8NLqw1iReAYA0LedPz4aF4cgTy42d2ROE2b+7fz58wgKCsKWLVswYMCAej2GYYaongw64OhvUoA5vgkQjdK4UgN0uAOImySdlaTkxf/IPv28/wxeWn0IlXojAjw0+HhcPPpFBchdFjVSQ96/Heq3UnFxMQDAz8/vivfR6XTQ6XS135eUlNi8LiKHJYrA2UTpbKSDPwNVRebbWvSQTqeOGQ24Xfn/OSJ7cU/3logL98bUhCQcyS3Ffd/sxtSB7TDj1iiolLw0hjNzmJkZURQxcuRIFBYWYuvWrVe836uvvorXXnvtknHOzBBZKMkGDiyTNrW7cNQ87hkGxI6T2kiB9V+bRmRPqvRGvPZLKpbsyQQA9Izww/zx8QjxZtvJkThlm2nKlCn49ddfsW3bNrRs2fKK97vczEx4eDjDDFF1BXB0vXQ20qm/AdEkjatcgI4jpMW8ETcBCqWsZRJZy9qUbMxZcQDl1Ub4uqnx4dg4DIwOkrssqienCzPTpk3D6tWr8c8//yAiIqJBj+WaGWrWRBHI3CUFmNQ1gM6i7dqqj9RG6nQX4ML/N8g5pV8ox9SERBzOlv7tPzogEk8P7gA12052z2nCjCiKmDZtGlatWoW///4bUVFRDX4OhhlqlgozpAs7piwBCtPN4z6tpBZS7HjAL1K++oiakM5gxFu/puG7nRkAgPhWPlgwIR4tfd1kroyuxmnCzBNPPIGEhASsWbOmzt4y3t7ecHV1rddzMMxQs6Erk2ZfUpYApy3WlWk8pNmXuAnSbIyCf5FS87ThUA6e/fkASqoM8HJR4b0xsRgcEyJ3WXQFThNmrnSJ92+//RaTJ0+u13MwzJBTM5mA0/9IC3nT1gL6ipobBCBigLQOpuMIQFO/fZmInF1WQQWmLklCSlYRAGBynzaYMzQaWhXXitkbpwkz1sAwQ07pwgnpdOqUZUDJGfO4X1spwHQdB/iEy1cfkR2rNpjw3sYj+Gqr1ILt3MILCyd0Q5sAhn57wjBjgWGGnEZlEXB4pXRxxzN7zeNab6DzaCnEtLyBF3ckqqc/j5zDUz+loLBCDw+tCm/f3QXDu4bJXRbVYJixwDBDDs1oAE7+Kc3CHFkPGGu2HRAU0m68cROBDkMBNffPIGqMnOJKTF+ShL2nCwEAE3u1wsvDO8FFzbaT3BhmLDDMkEM6lyoFmAM/AWXnzONBnaQA02Us4BksX31ETsRgNOHjP47jk79PQBSB6BBPfDKpG9oGeshdWrPGMGOBYYYcRvkF6ZICKQlATop53M0f6DJGOqU6NJZtJCIb2Xr8PJ5clowLZdVw0yjx5l2dMbrblTdpJdtimLHAMEN2zVANHN8onY10fCNgMkjjCjXQfrA0C9PudkClkbdOomYir6QKM5YmY+epfADS9Z5eHxkDN41DXcrQKTDMWGCYIbsjikBOsrSQ9+DPQGWB+bbQOCnAdL4HcPeXq0KiZs1oErHwzxOYt/kYTCIQFeSBTyZ1Q/tgT7lLa1YYZiwwzJDdKM01X9zxfJp53CNYOpU6biIQ1FG++oiojp0n8zFjaRLySnVwUSvw2p0xGNsj/Ip7oJF1McxYYJghWekrgSO/Srvynvyz7sUdo4cBsROByJsBJaewiezRhTIdZv2Ugn+OnQcAjIwLw/+N6gIPLf+ftTWGGQsMM9TkRBHI2i21kQ6vBnTF5tvCe0kLeWNGAa4+clVIRA1gMon44p9TeP/3ozCaREQEuGPhxHjEhHnLXZpTY5ixwDBDTaYoU9qRN2UJUHDSPO4dLl3YMXYC4N9WvvqI6LrszyjAtIQkZBdXQaNS4KVhHXHvja3ZdrIRhhkLDDNkU7oy6ZpIyQl1L+6odgc6jZQu7ti6Hy/uSOQkCsur8czPKfgjLQ8AMLRLCOaO7gpvV7XMlTkfhhkLDDNkdSaTFFxSlgCpawF9ec0NAhDRX1oH03EEoOWGW0TOSBRFfL0tHe9sOAK9UUS4nysWTuiG2HAfuUtzKgwzFhhmyGryT0ozMAeWAcVZ5nG/ttIMTNfxvLgjUTOSnFWEaUsSkVVQCbVSwHNDovFQvwi2nayEYcYCwwxdl9qLOy4Bzuwxj2u9gc6jpFmY8J7clZeomSqu1GP2igP47VAuAOC2jkF4755Y+Lpzo8vrxTBjgWGGGuyaF3ecAHQYxos7EhEAqe30464MvLEuDdVGE8K8XTB/Qjx6tPGTuzSHxjBjgWGG6u1qF3eMnQB0HQt4hshXHxHZtcPZxZiakIT0C+VQKgQ8Nag9HhvQFgoFZ24bg2HGAsMMXRUv7khEVlSmM+CFVQexJjkbANA/KgAfjYtDgIdW5socD8OMBYYZugQv7khENiSKIpbvO4OX1x5Cld6EIE8t5o2PR++2vN5aQzDMWGCYIQDSrrzZSdLp1Je9uOMkoPPdvLgjEVnNsXOlmLI4EcfzyqAQgOm3RmHaLVFQsu1ULwwzFhhmmrmSbGkNTMoS4PwR87hHCBA7Tmoj8eKORGQjFdUGvLLmMJbvPwMA6B3pj3nj4xDkxRMIroVhxgLDTDN08eKOyQnAqb94cUcikt2qpDN4YdUhVFQb4e+uwUfj4jCgfaDcZdk1hhkLDDPNhCgCmbukhbyHVwO6EvNtrXrXXNzxLsCFF4YjInmcPF+GKYsTcSS3FIIAPHFzWzx5W3uolLzcyeUwzFhgmHFyhRlAylKpjVSYbh73aSUFmNjxgF+kfPUREVmo0hvxxrpULN6dCQC4oY0v5o2PR5iPq8yV2R+GGQsMM05IVwqkrpHORsrYZh7XeACd7pI2tWvVhxd3JCK7te5ANmavOIgynQE+bmp8MCYWt3YMlrssu8IwY4FhxkmYjED6P9IMTNovgL6i5gYBiLyp5uKOwwGNu6xlEhHVV0Z+OaYmJOHg2WIAwMP9IvDskGhoVPxDDGCYqYNhxsGdP2belbfkrHncv525jeTdUr76iIiug85gxDu/HcU326U2eWy4DxZOiEe4n5vMlcmPYcYCw4wDqigwX9zx7D7zuIuPtBdM3ESgRXfuyktETuP3w7l45ucDKK7Uw9NFhffu6YohnUPlLktWDDMWGGYchFEPnPhDOp362AbAWC2NC0og6nZpFqbDHYCKW4ITkXM6U1iB6UuSkJhZBAB4oHdrzBnaES5qpbyFyYRhxgLDjJ3LOVCzK+9yoPy8eTy4i7SQt8sYwCNIvvqIiJqQ3mjC+78fxRdbTgEAYsK8sHBiN0QENL/1gAwzFhhm7FBZnnlX3nOHzOPugUCXsVKICekiX31ERDL762genvopBQXl1XDXKPHW6C4YGddC7rKaFMOMBYYZO6GvAo6ulwLMic2AaJTGlRqpfRQ7EWh3K6BUy1snEZGdyC2uwvSlSdiTLl1LbkLPcLw8PAaumubRdmKYscAwIyNRBM7sk85GOrQCqCo239aihzQDEzMacPOTr0YiIjtmMJow/88TWPDncYgi0CHYEwsnxiMq2FPu0myOYcYCw4wMirKAA0ulnXnzT5jHvVoAXWsu7hjYXr76iIgczPYTFzBjaTIulOngqlbi9ZExGNMjXO6ybIphxgLDTBPRlUmb2aUkAOlbAdT8s1K7AR3vlGZh2vQHFM1jepSIyNrOl+rw5LJkbDtxAQAwulsLvDGyM9y1znnRXIYZCwwzNmQyAae3SutgUtcC+nLzbW36SzMwne4EtM4/HUpE1BRMJhGf/n0CH246BpMIRAa645OJ3dAx1Pne3xhmLDDM2ED+SWk/mAPLgOIs87hfpBRguo4DfFvLVx8RkZPbk16A6UuSkFtSBY1KgVdGdMLEnq0gONFmogwzFhhmrKSyyLwr75k95nGtFxAzStqVN7wXd+UlImoiBeXVeOqnZPx1VNqja3jXUMwd3QWeLs5xVijDjAWGmetgNAAn/5TWwRxZDxh10rigANreIs3CRA8D1Lx0PRGRHEwmEf/bdgrvbjgKg0lEa383LJzQDV1aestd2nVjmLHAMNMI5w5LbaSDy4Gyc+bxoE41baSxgGeIfPUREVEdiZmFmJaQhLNFlVArBTw/tCMm92nj0G0nhhkLDDP1VHZeCi8pCUDuQfO4m790SYHYCUBoLNtIRER2qrhCj2d+TsHvqdIfoYM6BeO9e2Lh7eaYbSeGGQsMM1dh0EkXdUxeApzYBJgM0rhCDbQfLK2DaXc7oNLIWycREdWLKIpYtOM05q4/gmqjCS18XLFgYjy6tfKVu7QGY5ixwDDzL6IInN1fc3HHn4GqIvNtYd2kANP5bu7KS0TkwA6eKcaUhERkFlRApRDwzOAOeKR/JBQKx5ldZ5ixwDBTo/iseVfeC8fM455h0hqY2AlAULR89RERkVWVVOkxZ+VB/HogBwAwsEMgPhgbBz93x5htZ5ix0KzDTHU5kLZOWgdzagtqd+VVuQIdR0i78kbcxF15iYiclCiKWLInC6/+chjVBhOCvbSYPz4evSL95S7tmhhmLDS7MGMyAZk7pHUwqauB6jLzba371uzKOxJwaQavBTksURRhFI0QRREmmGASTRBgnh63PEOjzrjF13W/FGo/KwSFQ5/hQdQYaTklmJKQiFPny6EQgCdva48nBraD0o7bTgwzFppNmCk4JbWQUpYARZnmcZ/W0jqYruMAvwj56iObM5qMqDZVo9pY82Gqhs6og96oR7VR+rraVA29UX/p1zX3rzZWo0JfgczSTIR5hMFgMsBgMkBv0td+bRSNtV/X3iYaYDRZjIvS57NlZxHkFnTZcHLxQxRF8/c1t9maAAFKQQmFoKj9UApKKBQKKFD3e6WglO6vUJrHBQVUChVUChXUCvUVP/977HL30yg00Cg10Cq10Cq1tV9fbUyj1EAhKGz+OpFzKdcZ8NLqQ1iZdBYA0LedPz4aF4cgTxeZK7s8hhkLTh1mqoqBw6ukEJO50zyu8QRi7pJCTKvePJ3aTuiNelQYKlCuL0eFvgLlBulzbnku1Eo1dAYdqoxVqDJU1X6uNFTW+b7KUIVKY2Xt15bf6016uX9EakJqhfqS0OOqcoWLykX6rHSBq9rV/LXKtfaj9j6qf43X3M9d7Q43tRsDk5P6ef8ZvLT6ECr1RgR4aPHxuDj0iwqQu6xLMMxYcLowYzICJ/+q2ZX3V8BQJY0LCiByoHlXXo2bvHU6AVEUoTPqUKYvQ2l1Kcqqy1Cqlz6X6ctwvPA4vLXeqDBUoEIvfZTry83fG+p+35RhQ4AArVILtbLmDa/mr3+NUlP365o3QrVCDY1SA7VCjezybLT3bQ+VoKqdTVApVFAKyktmGS6OXRy3/N5oMsJd7Q5BqGntWMyGXByr/YA0phSU5tugqJ0pAcytpX//yhJx5e//fV+TaIIIaSbIaDKaZ4NMJhhF6XvLzxdnlP49bjKZYBDNM1aWM1cNGdMb9dCbzLNjOqOuztfVxmroTObvm2LWytLFYFPnQyUFnYvfu6nd4K5yr/u92h0eag94aDzgqfGEu8odSq7Nsysn8koxZXESjp4rhSAAUwe2w4xbo6BS2k+AZZix4DRhJi+t5uKOPwFluebxwGjzrrxeYfLVZ4dEUUSFoQLFumKUVJegWFeMIl0RskqzoFaoUaYvkwJKdan565qwUlpdilJ9KQwX996xIo1CU/tL/2zZWbT3bQ9fF1+4KqW/lF1ULnX+ynZRutT5a/vifSy/d1W5QqPUwEXpArVSDZWg4roQJyOKohSgalqD/w49lYZKVBnNs3mVhsraj9pZPmMVKvWVqDSaxy1nACsNlagwVMAoGq1ev2W48VR7Sp9rPjzUHvDSeElfX+Y+XhovqJWOufGbPausNuL1dYexZI90weCeEX6YPz4eId720XZimLHg0GGm/IK0F0xKApCTYh539QO63COFmLB4p28jGUwGFFYVorS6tDaU/PtzcXUxSnQltZ9LqktQoiuBQbz+MCJAkP7S1HjAQy39os0syUSPkB7wUHvUBhM3lfQXqeU0veVfsa4qV7ip3aBW8Jcy2S9RFFFtqkZZdVltO7RcX25uj+rL634YLr2twlBRO4Opu3hNt+vkrnaHt8Yb3lpveGm94K3xho/WB97amjGNF7y1dce8Nd4MQfWwJvksnl95EOXVRvi5a/DBmFgMjA6SuyyGGUsOF2YM1cDxjdLZSMc3WuzKqwLaD5ECTNQgh92V1ySaUFpdiiJdEQqrCms/F+oKUVRVVPezrggFVQUorS69rmOqFeraX3anS06jX4t+taGk9q9Ftfkvwn+PuavduXaAqJGqjdXSTOfFD32puW1b8weKZSu3pLqkzgxpmb7s2ge5CleVa52A46f1g6+LL3xcfGq/9nXxhZ+LH3y0PvDR+jTLllj6hXJMTUjE4ewSAMCjAyLx9OAOUMvYdmKYseAQYUYUgexEKcAc+hmoLDTfFhpXsyvvPYC7/e0LIIoiyvXlyK/KR35lPgqqCpBfmY/8KunrwxcOo0xfBqWgRKGuEMW64kZPYXtpvGr/+rr42fJrL40XvLSX3sdF6cKWC5GDMpqMKNOXSTOwNa3i4mrp6xJdyRW/L9GVXLKeqj4ECPDWekshR+tbG3Z8tTWBx8UHfi5+8HfxR4BrgFOFnyq9EXPXp+G7nRkAgPhWPlgwIR4tfeVZg8kwY8Guw0xJNnBgmXQ20vkj5nHPUOnijnETgaCOTV6WSTShSFd02XBS+3VlQW2AqTZVN/gYHmoP+Gh9pL+QLvdZK/3ldPGzt8bbaX5hEJHtXZwFtgxBljPBhVWFdb+u+WOroRSCAr5aXwS4BsDf1R/+Lv7wd5WCjp+LX+3X/i7+DhN8NhzKwTM/H0BplQFeLiq8NyYWg2NCmrwOhhkLdhdmqiuks5BSEoBTfwMXz05QuQDRw6VdeSMH2mRXXoPJgIKqApyvPI8LFReQV5mHCxUXcL7yvPRRIX0uqCxo8FoTN5Vb7f/IF/8H1iq18NR4ItInUgolFmFFo3TMNhkROS+DyVCnBV5QVXBp6KkqrP3jrrCqsEGzPwpBUTurczHkBLoGItAtEEFuQQh0lT4HuAbI/jsyq6ACU5ckISWrCAAwuU8bzBkaDa2q6cIYw4wFuwgzoghk7JACzOE1gOUakFZ9gNjx0r4wLt6NenqjyYj8qnycKz+HU8WnUGWoqhNQLlRKgaWgqqBBp3b6aH2kcOJq/p/P8n/Ei6HFz8UPrirXRtVOROSoLp6ckF+VjwuVF2pnri2/zq+UPgp1hdd+Qgu+Wl8EuklBJ9A1sDboBLoFIshV+uzv6m/TEwqqDSa8t/EIvtqaDgDo0sIbCyfGo7W/u82OaYlhxoKsYaYg3WJX3gzzuE9raSFv7DjAL/KqT6E36pFXmYdz5eeQV5GHcxXnkFuei3MV5u/PV5yv9zoUhaBAgEsAAtykvwgCXAPq/M8S6BZYO13Ks26IiKxDb9JLwcci8Fz8yKvIq50Zz6vIq/eeVAIE+Ln4IcgtCMFuwQh2D0aIewiC3cyfg92DoVVqr6v2zWnn8NTyFBRV6OGhVeHtu7tgeFfbbwXidGHm008/xXvvvYecnBzExMTg448/Rv/+/ev12CYPM1XFQOoaaTFv5g7zuMYTiBkJxNbsyqtQoNpYjXPl53C65DSyy7JRqi+tDSoXw0t+VX69DqsUlDCKRnT271yb3gNcA2qnLC8GFV+tr0P0bImImiNRFFGsK0ZepRRw8iryzIGnZrb94hKB+i4H8NX61gk3jQk82UWVmL4kCfsypBmmib1a4eXhneCitt37iVOFmWXLluG+++7Dp59+ir59++KLL77A//73P6SmpqJVq1bXfHyThBmTETj1lxRgjqwDDFUQAZQolMhucyNy2vRGjl84ciovIKc8B7nlucguz8aFygv1enq1Ql37D67OZzfz9/4u/gwpRETNhEk0obCqsHY25+IfwpZ/EOeW56LKWFWv56sNPO7BCHMPQ5hHGELdQ6UPj1D4u/jDaBLx4aZj+GzLSYgiEB3iiYUTu6FdkIdNfkanCjO9evVCt27d8Nlnn9WOdezYEXfddRfmzp17zcfbKszoTXrkZe5EzqGlyDn9F3L0ZchRKZGjUiFH64YclRKV9UjNF2dUbgy98dKgUvO1j9aHpxYTEVGDiKKIkuqSOkHHMuxcHKtP4NEqtQh1D0WIewgURj/sPm5CWbknNKI/nrqlF+7vGWv1pQlOE2aqq6vh5uaG5cuXY9SoUbXjM2bMQHJyMrZs2XLJY3Q6HXQ6846TJSUlCA8Pt3qY+fjnUfi6/MQ17+fn4lcn3f77a1+tL4MKERHJwjLwXPzILs9GTlmO9Lk8B+crzl/zrK1Ize1YM+FDq9bWkDCjsuqRrezChQswGo0IDg6uMx4cHIzc3NzLPmbu3Ll47bXXbF5bqH9HqMuOI0TQIsyrJUICYhDq2QJh7mEIcQ+pTbAuKvu4xgUREdG/CYJQuwFpB78Ol72P3qhHbkVN0CnLRnZ5NnLLc3G2NBtp5zNQrD+PKP9rL/uwJbsOMxf9e+ZCFMUrzmbMmTMHs2bNqv3+4syMtY3u8zzG3DATCg/5r19BRERkK2qlGuGe4Qj3vPx76fG8ErTxl3d7DrsOMwEBAVAqlZfMwuTl5V0yW3ORVquFVnt9p6HVh1rrAWhts+iJiIjIUUQFyb8hrV1fPU+j0aB79+7YtGlTnfFNmzahT58+MlVFRERE9sSuZ2YAYNasWbjvvvvQo0cP9O7dG19++SUyMzPx2GOPyV0aERER2QG7DzPjxo1Dfn4+Xn/9deTk5KBz585Yv349WrduLXdpREREZAfs+tRsa7CLazMRERFRgzTk/duu18wQERERXQvDDBERETk0hhkiIiJyaAwzRERE5NAYZoiIiMihMcwQERGRQ2OYISIiIofGMENEREQOjWGGiIiIHJrdX87gel3c4LikpETmSoiIiKi+Lr5v1+dCBU4fZkpLSwEA4eHhMldCREREDVVaWgpvb++r3sfpr81kMpmQnZ0NT09PCIJg1ecuKSlBeHg4srKyeN0nG+Lr3DT4OjcNvs5Ng69z07Dl6yyKIkpLSxEWFgaF4uqrYpx+ZkahUKBly5Y2PYaXlxf/Z2kCfJ2bBl/npsHXuWnwdW4atnqdrzUjcxEXABMREZFDY5ghIiIih8Ywcx20Wi1eeeUVaLVauUtxanydmwZf56bB17lp8HVuGvbyOjv9AmAiIiJybpyZISIiIofGMENEREQOjWGGiIiIHBrDDBERETk0hpmr+PTTTxEREQEXFxd0794dW7duver9t2zZgu7du8PFxQWRkZH4/PPPm6hSx9eQ13rlypW4/fbbERgYCC8vL/Tu3RsbN25swmodV0P/TV+0fft2qFQqxMXF2bZAJ9HQ11mn0+GFF15A69atodVq0bZtW3zzzTdNVK3jaujrvHjxYsTGxsLNzQ2hoaF48MEHkZ+f30TVOqZ//vkHI0aMQFhYGARBwOrVq6/5GFneC0W6rKVLl4pqtVr86quvxNTUVHHGjBmiu7u7mJGRcdn7nzp1SnRzcxNnzJghpqamil999ZWoVqvFn3/+uYkrdzwNfa1nzJghvvPOO+KePXvEY8eOiXPmzBHVarWYmJjYxJU7loa+zhcVFRWJkZGR4qBBg8TY2NimKdaBNeZ1vvPOO8VevXqJmzZtEtPT08Xdu3eL27dvb8KqHU9DX+etW7eKCoVCnDdvnnjq1Clx69atYkxMjHjXXXc1ceWOZf369eILL7wgrlixQgQgrlq16qr3l+u9kGHmCnr27Ck+9thjdcaio6PF2bNnX/b+zz77rBgdHV1n7NFHHxVvvPFGm9XoLBr6Wl9Op06dxNdee83apTmVxr7O48aNE1988UXxlVdeYZiph4a+zr/99pvo7e0t5ufnN0V5TqOhr/N7770nRkZG1hmbP3++2LJlS5vV6GzqE2bkei9km+kyqqursX//fgwaNKjO+KBBg7Bjx47LPmbnzp2X3H/w4MHYt28f9Hq9zWp1dI15rf/NZDKhtLQUfn5+tijRKTT2df72229x8uRJvPLKK7Yu0Sk05nVeu3YtevTogXfffRctWrRA+/bt8fTTT6OysrIpSnZIjXmd+/TpgzNnzmD9+vUQRRHnzp3Dzz//jGHDhjVFyc2GXO+FTn+hyca4cOECjEYjgoOD64wHBwcjNzf3so/Jzc297P0NBgMuXLiA0NBQm9XryBrzWv/bBx98gPLycowdO9YWJTqFxrzOx48fx+zZs7F161aoVPxVUR+NeZ1PnTqFbdu2wcXFBatWrcKFCxfwxBNPoKCggOtmrqAxr3OfPn2wePFijBs3DlVVVTAYDLjzzjuxYMGCpii52ZDrvZAzM1chCEKd70VRvGTsWve/3DhdqqGv9UVLlizBq6++imXLliEoKMhW5TmN+r7ORqMREydOxGuvvYb27ds3VXlOoyH/nk0mEwRBwOLFi9GzZ08MHToUH374IRYtWsTZmWtoyOucmpqK6dOn4+WXX8b+/fuxYcMGpKen47HHHmuKUpsVOd4L+efWZQQEBECpVF6S8PPy8i5JnBeFhIRc9v4qlQr+/v42q9XRNea1vmjZsmV46KGHsHz5ctx22222LNPhNfR1Li0txb59+5CUlISpU6cCkN50RVGESqXC77//jltuuaVJanckjfn3HBoaihYtWsDb27t2rGPHjhBFEWfOnEFUVJRNa3ZEjXmd586di759++KZZ54BAHTt2hXu7u7o378/3nzzTc6eW4lc74WcmbkMjUaD7t27Y9OmTXXGN23ahD59+lz2Mb17977k/r///jt69OgBtVpts1odXWNea0CakZk8eTISEhLY866Hhr7OXl5eOHjwIJKTk2s/HnvsMXTo0AHJycno1atXU5XuUBrz77lv377Izs5GWVlZ7dixY8egUCjQsmVLm9brqBrzOldUVEChqPuWp1QqAZhnDuj6yfZeaNPlxQ7s4ml/X3/9tZiamirOnDlTdHd3F0+fPi2KoijOnj1bvO+++2rvf/F0tCeffFJMTU0Vv/76a56aXU8Nfa0TEhJElUolfvLJJ2JOTk7tR1FRkVw/gkNo6Ov8bzybqX4a+jqXlpaKLVu2FO+55x7x8OHD4pYtW8SoqCjx4YcflutHcAgNfZ2//fZbUaVSiZ9++ql48uRJcdu2bWKPHj3Enj17yvUjOITS0lIxKSlJTEpKEgGIH374oZiUlFR7Cry9vBcyzFzFJ598IrZu3VrUaDRit27dxC1bttTe9sADD4g33XRTnfv//fffYnx8vKjRaMQ2bdqIn332WRNX7Lga8lrfdNNNIoBLPh544IGmL9zBNPTftCWGmfpr6OuclpYm3nbbbaKrq6vYsmVLcdasWWJFRUUTV+14Gvo6z58/X+zUqZPo6uoqhoaGipMmTRLPnDnTxFU7lr/++uuqv2/t5b1QEEXOrxEREZHj4poZIiIicmgMM0REROTQGGaIiIjIoTHMEBERkUNjmCEiIiKHxjBDREREDo1hhoiIiBwawwwRERE5NIYZInIop0+fhiAISE5Ovur9br75ZsycObNJaiIieTHMEJFNTJ48GYIgQBAEqNVqREZG4umnn0Z5efl1PW94eDhycnLQuXNnAMDff/8NQRBQVFRU534rV67EG2+8cV3HIiLHoJK7ACJyXkOGDMG3334LvV6PrVu34uGHH0Z5eTk+++yzRj+nUqlESEjINe/n5+fX6GMQkWPhzAwR2YxWq0VISAjCw8MxceJETJo0CatXr4ZOp8P06dMRFBQEFxcX9OvXD3v37q19XGFhISZNmoTAwEC4uroiKioK3377LYC6babTp09j4MCBAABfX18IgoDJkycDuLTNVFhYiPvvvx++vr5wc3PDHXfcgePHj9fevmjRIvj4+GDjxo3o2LEjPDw8MGTIEOTk5Nj+hSKi68IwQ0RNxtXVFXq9Hs8++yxWrFiB7777DomJiWjXrh0GDx6MgoICAMBLL72E1NRU/Pbbb0hLS8Nnn32GgICAS54vPDwcK1asAAAcPXoUOTk5mDdv3mWPPXnyZOzbtw9r167Fzp07IYoihg4dCr1eX3ufiooKvP/++/jhhx/wzz//IDMzE08//bQNXgkisia2mYioSezZswcJCQkYOHAgPvvsMyxatAh33HEHAOCrr77Cpk2b8PXXX+OZZ55BZmYm4uPj0aNHDwBAmzZtLvucSqWytp0UFBQEHx+fy97v+PHjWLt2LbZv344+ffoAABYvXozw8HCsXr0aY8aMAQDo9Xp8/vnnaNu2LQBg6tSpeP311631EhCRjXBmhohsZt26dfDw8ICLiwt69+6NAQMGYNq0adDr9ejbt2/t/dRqNXr27Im0tDQAwOOPP46lS5ciLi4Ozz77LHbs2HFddaSlpUGlUqFXr161Y/7+/ujQoUPtMQHAzc2tNsgAQGhoKPLy8q7r2ERkewwzRGQzAwcORHJyMo4ePYqqqiqsXLkS3t7eAABBEOrcVxTF2rE77rgDGRkZmDlzJrKzs3HrrbdeV7tHFMUrjlvWoVar69wuCMIVH0tE9oNhhohsxt3dHe3atUPr1q1rg0K7du2g0Wiwbdu22vvp9Xrs27cPHTt2rB0LDAzE5MmT8eOPP+Ljjz/Gl19+edljaDQaAIDRaLxiHZ06dYLBYMDu3btrx/Lz83Hs2LE6xyQix8Q1M0TUpNzd3fH444/jmWeegZ+fH1q1aoV3330XFRUVeOihhwAAL7/8Mrp3746YmBjodDqsW7fuiqGjdevWEAQB69atw9ChQ+Hq6goPD48694mKisLIkSPxyCOP4IsvvoCnpydmz56NFi1aYOTIkTb/mYnItjgzQ0RN7u2338bdd9+N++67D926dcOJEyewceNG+Pr6ApBmW+bMmYOuXbtiwIABUCqVWLp06WWfq0WLFnjttdcwe/ZsBAcHY+rUqZe937fffovu3btj+PDh6N27N0RRxPr16y9pLRGR4xFENoSJiIjIgXFmhoiIiBwawwwRERE5NIYZIiIicmgMM0REROTQGGaIiIjIoTHMEBERkUNjmCEiIiKHxjBDREREDo1hhoiIiBwawwwRERE5NIYZIiIicmj/D6jyscPBi78aAAAAAElFTkSuQmCC", "text/plain": [ "" ] @@ -524,7 +524,7 @@ "\n", "\n", "```{note}\n", - "The [TDS simulation tutorial](../applications/task02.ipynb) provides a more complete and realistic example including temperature-dependent trapping/detrapping rates.\n", + "The [TDS simulation tutorial](../applications/material_science/tds.md) provides a more complete and realistic example including temperature-dependent trapping/detrapping rates.\n", "```" ] }, @@ -548,13 +548,17 @@ "my_model = F.HydrogenTransportProblem()\n", "my_model.mesh = F.Mesh1D(np.linspace(0, 1, 100))\n", "\n", + "material = F.Material(D_0=1, E_D=0)\n", + "\n", + "vol = F.VolumeSubdomain1D(id=1, borders=[0, 1], material=material)\n", + "\n", "mobile_H = F.Species(\"H\")\n", "trapped_H = F.Species(\"H_trapped\", mobile=False)\n", "empty_traps = F.Species(\"empty_traps\", mobile=False)\n", "\n", "my_model.species = [mobile_H, trapped_H, empty_traps]\n", "\n", - "my_model.initial_conditions = [F.InitialCondition(value=2, species=empty_traps)]" + "my_model.initial_conditions = [F.InitialConcentration(value=2, volume=vol, species=empty_traps)]" ] }, { @@ -576,7 +580,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f5466880e8664621920cb86f393c8a2d", + "model_id": "eaa7169e01a2466f86d4e5e2cfb389c3", "version_major": 2, "version_minor": 0 }, @@ -592,10 +596,6 @@ "left_surf = F.SurfaceSubdomain1D(id=1, x=0)\n", "right_surf = F.SurfaceSubdomain1D(id=2, x=1)\n", "\n", - "material = F.Material(D_0=1, E_D=0)\n", - "\n", - "vol = F.VolumeSubdomain1D(id=1, borders=[0, 1], material=material)\n", - "\n", "my_model.subdomains = [vol, left_surf, right_surf]\n", "\n", "my_model.reactions = [\n", @@ -637,7 +637,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZipJREFUeJzt3Xd8E/X/B/DXZSfdm5YWSqFsKAVkV8CBgiC4EHDhV1CUjQscCOJPFAWhbFEBFQSVIaOKiAIFZLfI3rSFAoXumTTJ/f4ILS0t0Iaml6Sv5+ORR+4+ubu8c7Tk1c/nhiCKoggiIiIiByWTugAiIiKie8EwQ0RERA6NYYaIiIgcGsMMEREROTSGGSIiInJoDDNERETk0BhmiIiIyKEppC7A1sxmM5KTk+Hm5gZBEKQuh4iIiCpAFEVkZ2cjKCgIMtmd+16cPswkJycjJCRE6jKIiIjICklJSQgODr7jMk4fZtzc3ABYdoa7u7vE1RAREVFFZGVlISQkpPh7/E6cPswUDS25u7szzBARETmYihwiwgOAiYiIyKExzBAREZFDY5ghIiIih+b0x8wQEZG0zGYzDAaD1GWQnVEqlZDL5VWyLYYZIiKyGYPBgPPnz8NsNktdCtkhT09P1KpV656vA8cwQ0RENiGKIi5fvgy5XI6QkJC7XviMag5RFJGXl4eUlBQAQGBg4D1tj2GGiIhswmg0Ii8vD0FBQdDpdFKXQ3ZGq9UCAFJSUuDv739PQ06MyUREZBMmkwkAoFKpJK6E7FVRyC0sLLyn7TDMEBGRTfG+eHQ7VfWzwTBDREREDk3SMLN9+3b06dMHQUFBEAQBa9euLfW6KIqYNGkSgoKCoNVq0a1bNxw9elSaYomIiMguSRpmcnNzERERgTlz5pT7+rRp0zBjxgzMmTMH+/btQ61atfDwww8jOzu7mislIiIieyVpmOnZsyc++eQTPPnkk2VeE0URM2fOxPvvv48nn3wSzZs3x9KlS5GXl4fly5dLUG3Z+rYcvwpRFKUuhYiIqtDgwYPRr1+/Mu1bt26FIAjIyMio9prozuz2mJnz58/jypUr6NGjR3GbWq1G165dsWvXrtuup9frkZWVVephCz/uScQrS/fjtR8OIDPv3o7CJiIiIuvZ7XVmrly5AgAICAgo1R4QEICEhITbrjd16lRMnjzZprUBgABAJZfhz2NXcTQ6FrMHRaJ1HS+bvy8RkaMSRRH5hSZJ3lurlPOsKidmt2GmyK0/fKIo3vEHcsKECRg3blzxfFZWFkJCQqq8ruc71EVEsCdG/HQQCal56L/gX7zzaCMM6RIGmYy/MEREt8ovNKHpxE2SvPexjx+BTmX3X3lkJbv9l61VqxYASw9Nycscp6SklOmtKUmtVkOtVtu8PgBoEeyB9SO7YMLqw9j432V8GnMCu8+l4ctnIuDtwotEERE5qg0bNsDV1bVUW9FFAMn+2G2YqVevHmrVqoXNmzcjMjISgOWGZdu2bcPnn38ucXU3uWuUmDMwEh3DfPDxhmP4+0QKHouORfTASNwX6i11eUREdkOrlOPYx49I9t6V0b17d8yfP79U2549e/D8889XZVlURSQNMzk5OThz5kzx/Pnz5xEfHw9vb2/UqVMHY8aMwaefforw8HCEh4fj008/hU6nw6BBgySsuixBEPB8h7poXccLI5YfxLnruRjw9W6Me7ghXu9an8NORESw/F/pKEM9Li4uaNCgQam2ixcvSlQN3Y2kP1X79+9H9+7di+eLjnV56aWXsGTJErzzzjvIz8/HG2+8gfT0dLRv3x5//vkn3NzcpCr5jpoGuWPdyC74YM1hrI1PxhebTmL3uVR89Wwr+LpWz9AXERFRTSPpqdndunWDKIplHkuWLAFgSfGTJk3C5cuXUVBQgG3btqF58+ZSlnxXrmoFvnq2FT5/qgU0ShliT19Hr1mx2H0uVerSiIiInJLdXmfGkQmCgGfvq4PfhndBA39XpGTrMWjRbsz66zRMZl5kj4iIqCoJopNfwjYrKwseHh7IzMyEu7t7tb9/nsGIib8dxa8HLGOtnRv44KtnW8HfTVPttRARVaeCggKcP38e9erVg0bD//OorDv9jFTm+5s9MzamUynw5TMRmP5MBLRKOXaeSUWvWTuw4/R1qUsjIiJyCgwz1eSpNsFYP7ILGtdyw/UcPV74bg9m/HkSRpNZ6tKIiIgcGsNMNWrg74q1wztjYLsQiCIQ/fcZDPpmD65mFUhdGhERkcNimKlmGqUcU59siVkDWsFFJcfe82noOSsWW0+mSF0aERGRQ2KYkUjfVrWxYVQUmga6Iy3XgMGL9+HzP05w2ImIiKiSGGYkVM/XBavf6IQXOtQFAMzfehYDvt6N5Ix8iSsjIiJyHAwzEtMo5ZjSrznmPdcabmoF9ieko1d0LLYcvyp1aURERA6BYcZO9GoRiI2jotAy2AMZeYV4Zel+fLLhGAxGDjsRERHdCcOMHanjo8Mvwzri5c6hAIBvdpxH/4X/IiktT9rCiIiI7BjDjJ1RK+T4qE8zLHyhDdw1CsQnZeCx6Fj8ceSK1KUREVENs3XrVgiCgIyMDKlLuSOGGTv1SLNaiBkdhVYhnsgqMGLYjwcwad1R6I0mqUsjInJqgwcPRr9+/cq0V/SLfcmSJfD09LRJbVQ+hhk7FuxlGXZ69f4wAMCSXRfw9Px/kZCaK3FlRER0rwwGg9QlOA2GGTunlMvwXq8m+G5wW3jqlDh8KROPRe/Ahv+SpS6NiKhyRBEw5ErzqKZ7Km/duhUvv/wyMjMzIQgCBEHApEmTAAChoaH45JNPMHjwYHh4eGDo0KEAgHfffRcNGzaETqdDWFgYPvzwQxQWFhZvc9KkSWjVqhUWLlyIkJAQ6HQ6PPPMM6V6iIp6kyZPngx/f3+4u7vjtddeKxWYRFHEtGnTEBYWBq1Wi4iICPz666+l6o+JiUHDhg2h1WrRvXt3XLhwwWb7qioppC6AKuaBxgGIGRWFUT/FYX9COkYsj8O/Z1PxYe+m0CjlUpdHRHR3hXnAp0HSvPd7yYDKxeZv06lTJ8ycORMTJ07EyZMnAQCurq7Fr3/xxRf48MMP8cEHHxS3ubm5YcmSJQgKCsLhw4cxdOhQuLm54Z133ile5syZM/j555+xfv16ZGVl4ZVXXsHw4cOxbNmy4mW2bNkCjUaDf/75BxcuXMDLL78MX19f/N///R8A4IMPPsDq1asxf/58hIeHY/v27Xj++efh5+eHrl27IikpCU8++SSGDRuG119/Hfv378ebb75p611WJRhmHEiQpxYrXu2AGZtPYd7Ws1i2JxEHEzMwd1Akwvxc774BIiKqkA0bNpQKIQBgMt39mEWVSgUPDw8IgoBatWqVef2BBx7AW2+9VaqtZLAJDQ3Fm2++iZUrV5YKMwUFBVi6dCmCg4MBALNnz8Zjjz2G6dOnF7+PSqXCd999B51Oh2bNmuHjjz/G22+/jSlTpiA/Px8zZszA33//jY4dOwIAwsLCsGPHDixcuBBdu3bF/PnzERYWhq+++gqCIKBRo0Y4fPgwPv/88wruNekwzDgYhVyGdx5tjPZhPhi3Mh7HL2eh9+wd+PSJFugXWVvq8oiIbk+ps/SQSPXeldC9e3fMnz+/VNuePXvw/PPP31MZbdu2LdP266+/YubMmThz5gxycnJgNBrh7u5eapk6deoUBxkA6NixI8xmM06ePFkcZiIiIqDT6Uotk5OTg6SkJKSkpKCgoAAPP/xwqe0aDAZERkYCAI4fP44OHTpAEIRS23AEDDMOqmtDP8SMtgw77TmfhjEr4/Hv2VRMerwZtCoOOxGRHRKEahnqqQouLi5o0KBBqbaLFy9WyXZL2r17NwYMGIDJkyfjkUcegYeHB1asWIHp06ffcTtFgaNk8LjTsmaz5QKsGzduRO3apf/wVavVACzH1DgqhhkHFuCuwbIh7RH99xnM/vs0Vu5PQnxSBuY+F4kG/m5Sl0dEVCOpVKoKDUkBwM6dO1G3bl28//77xW0JCQlllktMTERycjKCgizHHP3777+QyWRo2LBh8TKHDh1Cfn4+tFotAEtQcnV1RXBwMLy8vKBWq5GYmIiuXbuWW0vTpk2xdu3aUm27d++u0OeQGs9mcnAKuQzjHm6IH19pD19XNU5ezUaf2Tvx64F7/wuCiIgqLzQ0FDk5OdiyZQuuX7+OvLzbX8W9QYMGSExMxIoVK3D27FlER0djzZo1ZZbTaDR46aWXcOjQIcTGxmLUqFHo379/qeNyDAYDXnnlFRw7dgy///47PvroI4wYMQIymQxubm546623MHbsWCxduhRnz55FXFwc5s6di6VLlwIAhg0bhrNnz2LcuHE4efIkli9fjiVLllT5/rEFhhkn0bmBL2JGd0HnBj7ILzThrV8OYdzP8cgzGKUujYioRunUqROGDRuGZ599Fn5+fpg2bdptl+3bty/Gjh2LESNGoFWrVti1axc+/PDDMss1aNAATz75JHr16oUePXqgefPmmDdvXqllHnzwQYSHh+P+++9H//790adPn+LTwgFgypQpmDhxIqZOnYomTZrgkUcewfr161GvXj0AluNyVq1ahfXr1yMiIgILFizAp59+WjU7xcYE0ZEHySogKysLHh4eyMzMLHNAlTMymUXM/ecMZv51CmYRqO/ngrnPtUbjWs7/2YnIvhQUFOD8+fOoV68eNBqN1OU4rEmTJmHt2rWIj4+/7TKDBw9GRkZGmWEie3enn5HKfH+zZ8bJyGUCRj0YjuVDOyDAXY2z13LRd85OrNib6NAHdxEREd0Ow4yT6hDmg5hRUeja0A96oxnjVx/GmJXxyNFz2ImI6F707NkTrq6u5T4cZVjG2XCYycmZzSIWbj+HL/88CZNZRD1fF8wZFIlmQR5Sl0ZETs5Zh5kuXbqE/Pz8cl/z9vaGt7d3NVfkuKpqmImnZjs5mUzA693q475QL4z8KQ7nr+fiiXm78GHvpni+fZ0KXaOAiIhuuvU6LSQ9DjPVEG1DvREzKgoPNfGHwWjGh2uPYMTyOGQVFN59ZSIiIjvGMFODeLmosOjFtvjgsSZQyARsPHwZvaN34L+LGVKXRkREZDWGmRpGEAQMiQrDL8M6oranFolpeXhq/i4s3nmeZzsREZFDYpipoSLreCFmVBQeaRaAQpOIyeuPYdiPB5CZx2EnIiJyLAwzNZiHTokFz7fBpD5NoZLLsOnoVfSKjkVcYrrUpREREVUYw0wNJwgCBneuh1Wvd0Idbx0uZeTjmQX/YtH2czCbOexERET2j2GGAAAtgj2wYVQXPNYyEEaziP+LOY4h3+9Heq5B6tKIiGqM0NBQzJw5s8q2d+HCBQiCcMdbITgDhhkq5q5RYs7ASHzSrzlUChn+PpGCXtGx2H8hTerSiIjIhgwGx/7DlWGGShEEAc93qIs1b3RCPV8XXM4swLNf78a8rWc47ERE90QUReQV5knyqOzZmqIoYtq0aQgLC4NWq0VERAR+/fVXAMDWrVshCAI2bdqEyMhIaLVaPPDAA0hJScHvv/+OJk2awN3dHQMHDkReXl7xNrt164YRI0ZgxIgR8PT0hI+PDz744IPi2rp164aEhASMHTsWgiBAEATk5ubC3d29+L2LrF+/Hi4uLsjOzr7j5yi6I3ZkZCQEQUC3bt0AWG5M2a9fP0ydOhVBQUFo2LAhAODHH39E27Zt4ebmhlq1amHQoEFISUkp3l7RZ9+4cSMiIiKg0WjQvn17HD58uHiZhIQE9OnTB15eXnBxcUGzZs0QExNTqf1fWbwCMJWrWZAH1o/sgvfXHMZv8cmY9sdJ7D6Xhhn9I+Drqpa6PCJyQPnGfLRf3l6S994zaA90Sl2Fl//ggw+wevVqzJ8/H+Hh4di+fTuef/55+Pn5FS8zadIkzJkzBzqdDv3790f//v2hVquxfPly5OTk4IknnsDs2bPx7rvvFq+zdOlSvPLKK9izZw/279+PV199FXXr1sXQoUOxevVqRERE4NVXX8XQoUMBAC4uLhgwYAAWL16Mp59+ung7RfNubm53/Bx79+5Fu3bt8Ndff6FZs2ZQqVTFr23ZsgXu7u7YvHlzcaAyGAyYMmUKGjVqhJSUFIwdOxaDBw8uE0befvttzJo1C7Vq1cJ7772Hxx9/HKdOnYJSqcTw4cNhMBiwfft2uLi44NixY3B1da3wvrcGwwzdlqtagZnPtkKn+j6Y+NtRbD91Db1mxSJ6YCQ6hPlIXR4RkU3k5uZixowZ+Pvvv9GxY0cAQFhYGHbs2IGFCxfi1VdfBQB88skn6Ny5MwDglVdewYQJE3D27FmEhYUBAJ5++mn8888/pcJMSEgIvvrqKwiCgEaNGuHw4cP46quvMHToUHh7e0Mulxf3ihQZMmQIOnXqhOTkZAQFBeH69evYsGEDNm/efNfPUhS+fHx8Sm0TsASlb775plTA+d///lc8HRYWhujoaLRr1w45OTmlAslHH32Ehx9+GIAloAUHB2PNmjXo378/EhMT8dRTT6FFixbF27E1hhm6I0EQ8Ox9ddAqxAvDlx/EmZQcDFq0G2Meaojh3RtALuO9nYioYrQKLfYM2iPZe1fUsWPHUFBQUPxlXcRgMCAyMrJ4vmXLlsXTAQEB0Ol0pb64AwICsHfv3lLb6NChQ6l74nXs2BHTp0+HyWSCXC4vt5527dqhWbNm+P777zF+/Hj88MMPqFOnDu6///4Kf6bytGjRolSQAYC4uDhMmjQJ8fHxSEtLg9lsBgAkJiaiadOmpeou4u3tjUaNGuH48eMAgFGjRuH111/Hn3/+iYceeghPPfVUqX1lCzxmhiqkUS03rBvRGU+1DoZZBGZsPoUXv9uDlOwCqUsjIgchCAJ0Sp0kj8rcVLfoC3zjxo2Ij48vfhw7dqzUsStKpbLUZys5X9RWtK17NWTIECxevBiAZYjp5ZdfvucbBbu4uJSaz83NRY8ePeDq6ooff/wR+/btw5o1awBU7ADhonqGDBmCc+fO4YUXXsDhw4fRtm1bzJ49+55qvRuGGaownUqB6f0j8OUzEdAq5dh5JhW9Zu3AzjPXpS6NiKjKNG3aFGq1GomJiWjQoEGpR0hIyD1te/fu3WXmw8PDi3tlVCoVTCZTmfWef/55JCYmIjo6GkePHsVLL71Uofcr6nkpb5u3OnHiBK5fv47PPvsMUVFRaNy4camDf2/3OdLT03Hq1Ck0bty4uC0kJATDhg3D6tWr8eabb2LRokUVqtdaHGaiSnu6TTBahXhg+LI4nLyajee/3YOR3Rtg9EMNOexERA7Pzc0Nb731FsaOHQuz2YwuXbogKysLu3btgqurK+rWrWv1tpOSkjBu3Di89tprOHjwIGbPno3p06cXvx4aGort27djwIABUKvV8PX1BQB4eXnhySefxNtvv40ePXogODi4Qu/n7+8PrVaLP/74A8HBwdBoNPDw8Ch32Tp16kClUmH27NkYNmwYjhw5gilTppS77McffwwfHx8EBATg/fffh6+vL/r16wcAGDNmDHr27ImGDRsiPT0df//9N5o0aVKJvVR57JkhqzTwd8Pa4Z0x4L4QiCIQ/fcZDFq0G1cyOexERI5vypQpmDhxIqZOnYomTZrgkUcewfr164tPdbbWiy++iPz8fLRr1w7Dhw/HyJEjiw8oBiwh4cKFC6hfv36pM6cAy0HGBoOh1EG6d6NQKBAdHY2FCxciKCgIffv2ve2yfn5+WLJkCX755Rc0bdoUn332Gb788styl/3ss88wevRotGnTBpcvX8a6detK9QINHz4cTZo0waOPPopGjRph3rx5Fa7ZGoLo5LdKzsrKgoeHBzIzM+Hu7i51OU7pt/hLeG/1YeQaTPB2UeGrZ1uha0O/u69IRE6toKAA58+fR7169aDRaKQuR3LdunVDq1atrL7C77JlyzB69GgkJyeXOXC3umzduhXdu3dHeno6PD0973l7d/oZqcz3N3tm6J71bVUb60d2QZNAd6TlGvDSd3vx+R8nYDRVzYFvREQ1WV5eHo4ePYqpU6fitddekyzI2DOGGaoSYX6uWPNGJzzfoQ4AYP7Wsxjw9W4kZ+RLXBkRkWObNm0aWrVqhYCAAEyYMKHUa59++ilcXV3LffTs2VOiiqsfh5moym34LxkTVh1Gtt4IT50S05+JwINNAqQui4iqGYeZbC8tLQ1paeXfP0+r1aJ27drVXFHlVNUwE89moirXu2UQWtT2wIjlcTh8KROvLN2PoVH18M6jjaGUszOQiKiqeHt7w9vbW+oyJMdvFrKJuj4u+PX1jhjcKRQAsCj2PJ5Z8C+S0vLuvCIROR0nHwCge1BVFxXkMBPZ3KajV/D2L4eQVWCEu0aBL56JwCPNat19RSJyaCaTCadPn4ZOp4Ofn989X7GWnIcoijAYDLh27RpMJhPCw8Mhk5XuX6nM9zfDDFWLpLQ8jPwpDvFJGQCAlzuHYnzPxlAryr8XCRE5h5ycHFy8eJG9M1QunU6HwMDAcs/QYpgpgWHGfhSazJj2xwksij0PAGhR2wNzB7VGHR+dxJURkS2ZTCYUFhZKXQbZGblcDoVCcdseO4aZEhhm7M+W41fx5i+HkJFXCDe1Ap8/3RK9WgRKXRYREdkRXjSP7NqDTQIQMyoKbet6IVtvxBvLDuKDtYdRUHj3G6ERERHdimGGJBHkqcVPr3bA693qAwB+3J2IJ+ftwvnruRJXRkREjoZhhiSjlMvw7qONsfR/7eDtosKxy1noHR2L3+IvSV0aERE5EIYZklzXhn74fXQU2tfzRq7BhNEr4jF+1X/IN3DYiYiI7s6uw4zRaMQHH3yAevXqQavVIiwsDB9//HGVXWSH7EeAuwbLhrTHqAcaQBCAFfuS0G/uTpxJyZa6NCIisnN2HWY+//xzLFiwAHPmzMHx48cxbdo0fPHFF5g9e7bUpZENKOQyjOvRCD++0h6+rmqcvJqNPrN34tcDF6UujYiI7Jhdn5rdu3dvBAQE4Ntvvy1ue+qpp6DT6fDDDz+Uu45er4dery+ez8rKQkhICE/NdjAp2QUYuzIeO8+kAgCeah2MKf2aQafi7cSIiGoCpzk1u0uXLtiyZQtOnToFADh06BB27NiBXr163XadqVOnwsPDo/gREhJSXeVSFfJ30+D7/7XHuIcbQiYAqw5eRJ/ZO3DyCoediIioNLvumRFFEe+99x4+//xzyOVymEwm/N///R8mTJhw23XYM+N8dp9Lxaif4pCSrYdaIcPkx5vh2ftCeJ8XIiIn5jQ9MytXrsSPP/6I5cuX4+DBg1i6dCm+/PJLLF269LbrqNVquLu7l3qQY+sQ5oOY0VG4v6Ef9EYzxq8+jDEr45GjN0pdGhER2QG77pkJCQnB+PHjMXz48OK2Tz75BD/++CNOnDhRoW3wdgbOw2wWsWD7WUz/8xRMZhH1fF0wZ1AkmgV5SF0aERFVMafpmcnLyytzS3C5XM5Ts2somUzAG90aYMWrHRDoocH567l4Yt4u/LA7gXfkJSKqwew6zPTp0wf/93//h40bN+LChQtYs2YNZsyYgSeeeELq0khC94V6I2ZUFB5o7A+D0YwP1x7BiJ/ikFXAu/ISEdVEdj3MlJ2djQ8//BBr1qxBSkoKgoKCMHDgQEycOBEqlapC2+Awk/Mym0V8u+M8Pv/jBIxmEXW8dZg7qDVaBHPYiYjI0VXm+9uuw0xVYJhxfgcT0zFyeRwuZeRDJZfhvV6N8VKnUJ7tRETkwJzmmBmiimhdxwsxo6LQo2kADCYzJq0/hmE/HkBmHoediIhqAoYZcgoeOiUWvtAGH/VpCqVcwKajV/HY7FjEJaZLXRoREdkYwww5DUEQ8HLnelj1eifU8dbhYno+nlnwL76JPceznYiInBjDDDmdlsGe2DCqCx5rEQijWcQnG49jyNL9SM81SF0aERHZAMMMOSV3jRJzBkXik37NoVLIsOVECh6LjsWBhDSpSyMioirGMENOSxAEPN+hLta80Qn1fF2QnFmA/gt3Y/7WszCbOexEROQsGGbI6TUL8sD6kV3Qt1UQTGYRn/9xAv9bug+pOfq7r0xERHaPYYZqBFe1AjOfbYXPnmwBtUKGrSevoVd0LPacS5W6NCIiukcMM1RjCIKAAe3qYN2ILqjv54KrWXoMXLQbs7echonDTkREDothhmqcRrXcsH5kFzzVOhhmEZi++RRe+m4vrmVz2ImIyBExzFCNpFMpML1/BL58JgJapRw7zlxHz1mx2HnmutSlERFRJTHMUI32dJtgrBvRGY0C3HA9R4/nv92DGZtPcdiJiMiBMMxQjRce4Ia1wztjwH0hEEUgestpDFq0G1ezCqQujYiIKoBhhgiAViXHZ0+1xKwBreCikmPP+TT0mhWLbaeuSV0aERHdBcMMUQl9W9XG+pFd0CTQHam5Brz03V58/scJGE1mqUsjIqLbYJghukWYnyvWvNEJz7WvAwCYv/UsBny9G8kZ+RJXRkRE5WGYISqHRinH/z3RAnMGRcJVrcD+hHT0io7F3yeuSl0aERHdgmGG6A56twzCxlFd0Ly2OzLyCvG/JfvxacxxFHLYiYjIbjDMEN1FXR8XrHq9EwZ3CgUAfL39HJ5Z8C8upudJWxgREQFgmCGqELVCjkmPN8OC51vDTaNAfFIGes2KxaajV6QujYioxmOYIaqER5sHImZUFCJCPJFVYMRrPxzA5PVHYTBy2ImISCoMM0SVFOKtwy+vdcSQLvUAAIt3XsDTC3YhMZXDTkREUmCYIbKCSiHDB72b4psX28JDq8R/FzPxWHQsYg5flro0IqIah2GG6B481DQAMaOj0KauF7L1Rryx7CA+XHsEBYUmqUsjIqoxGGaI7lFtTy1WvNoBw7rWBwD8sDsBT87bhfPXcyWujIioZmCYIaoCSrkM43s2xpKX74O3iwrHLmehd3Qsfou/JHVpREROj2GGqAp1a+SPmFFRaFfPG7kGE0aviMeE1f9x2ImIyIYYZoiqWC0PDZYPaY9RDzSAIAA/7U1Cv7k7cSYlR+rSiIicEsMMkQ0o5DKM69EIP/yvPXxd1ThxJRt9Zu/AqgMXpS6NiMjpMMwQ2VCXcF/EjO6CTvV9kF9owpu/HMJbvxxCnsEodWlERE6DYYbIxvzdNPjhlfYY93BDyATg1wMX0XfOTpy6mi11aUREToFhhqgayGUCRj0YjmVDOsDfTY3TKTl4fM4OrNyXCFEUpS6PiMihMcwQVaOO9X0QMzoKUeG+KCg0491VhzF2ZTxy9Bx2IiKyFsMMUTXzdVVj6cvt8M6jjSCXCVgbn4zHZ+/AseQsqUsjInJIDDNEEpDJBLzRrQFWvNoBgR4anLuei37zduLH3QkcdiIiqiSGGSIJ3RfqjY2jovBAY38YjGZ8sPYIRvwUh+yCQqlLIyJyGAwzRBLzdlHhmxfb4r1ejaGQCdj432X0nr0Dhy9mSl0aEZFDYJghsgMymYBX76+Pn4d1RG1PLRJS8/DU/F1YsvM8h52IiO6CYYbIjrSu44WYUVF4uGkADCYzJq0/htd/PIjMfA47ERHdDsMMkZ3x0Cnx9QttMLF3UyjlAv44egWPRcciPilD6tKIiOwSwwyRHRIEAf/rUg+/DuuEEG8tLqbn4+n5u/BN7DkOOxER3YJhhsiORYR4YuOoKPRqUQtGs4hPNh7H0O/3IyPPIHVpRER2g2GGyM65a5SYO6g1pvRtBpVchr+Op6DXrFgcSEiTujQiIrvAMEPkAARBwAsdQ7H6jU4I9dEhObMA/RfuxoJtZ2E2c9iJiGo2hhkiB9K8tgc2jIpCn4ggmMwiPvv9BP63dB9Sc/RSl0ZEJBmGGSIH46pWIHpAK0x9sgXUChm2nryGXtGx2HMuVerSiIgkwTBD5IAEQcDAdnWwdnhnhPm54GqWHgMX7cacv09z2ImIahxBtPI8T7PZjDNnziAlJQVms7nUa/fff3+VFFcVsrKy4OHhgczMTLi7u0tdDlGVy9Ub8eHaI1gddwkAEBXuixn9W8HPTS1xZURE1qvM97dVYWb37t0YNGgQEhLK3uFXEASYTKbKbtJmGGaopvhlfxIm/nYU+YUm+LmpMevZVujUwFfqsoiIrFKZ72+rhpmGDRuGtm3b4siRI0hLS0N6enrxIy2Np4sSSeGZtiFYN6IzGga44lq2Hs99uwdfbT4FE4ediMjJWdUz4+LigkOHDqFBgwa2qKlKsWeGapp8gwmT1h3Fyv1JAIAOYd6IHhAJf3eNxJUREVWczXtm2rdvjzNnzlhVHBHZllYlx+dPt8TMZ1vBRSXH7nNp6DkrFttPXZO6NCIim1BYs9LIkSPx5ptv4sqVK2jRogWUSmWp11u2bFklxRGR9fpF1kbLYA8MXx6H45ez8NLivXijW32MfaghFHKeyEhEzsOqYSaZrOx/hIIgQBRFHgBMZGcKCk2YsuEYlu1JBADcF+qF6IGRCPTQSlwZEdHt2fxspoSEhDu+Xrdu3cpu0mYYZogsNvyXjPGrDiNHb4SXTokZ/Vuhe2N/qcsiIiqXzcOMI2GYIbrpwvVcjPjpII5cygIAvHZ/GN56pBGUHHYiIjtj8wOAAeDs2bMYOXIkHnroITz88MMYNWoUzp49a+3mbuvSpUt4/vnn4ePjA51Oh1atWuHAgQNV/j5ENUGorwtWvd4JgzuFAgAWbj+H/gv/xcX0PGkLIyK6B1aFmU2bNqFp06bYu3cvWrZsiebNm2PPnj1o1qwZNm/eXGXFpaeno3PnzlAqlfj9999x7NgxTJ8+HZ6enlX2HkQ1jVohx6THm2HB863hplEgLjEDvWbF4s+jV6QujYjIKlYNM0VGRuKRRx7BZ599Vqp9/Pjx+PPPP3Hw4MEqKW78+PHYuXMnYmNjK7yOXq+HXn/zDsJZWVkICQnhMBNROZLS8jDipzgcSsoAALzcORQTejaBSsFhJyKSls2HmY4fP45XXnmlTPv//vc/HDt2zJpNlmvdunVo27YtnnnmGfj7+yMyMhKLFi264zpTp06Fh4dH8SMkJKTK6iFyNiHeOvzyWkcM6VIPALB45wU8vWAXElM57EREjsOqMOPn54f4+Pgy7fHx8fD3r7qzI86dO4f58+cjPDwcmzZtwrBhwzBq1Ch8//33t11nwoQJyMzMLH4kJSVVWT1EzkilkOGD3k3xzYtt4aFV4r+LmXgsOhYxhy9LXRoRUYVYddG8oUOH4tVXX8W5c+fQqVMnCIKAHTt24PPPP8ebb75ZZcWZzWa0bdsWn376KQDL8NbRo0cxf/58vPjii+Wuo1aroVbzbsFElfVQ0wDEjI7CyOUHcTAxA28sO4gXOtTF+481gUYpl7o8IqLbsirMfPjhh3Bzc8P06dMxYcIEAEBQUBAmTZqEUaNGVVlxgYGBaNq0aam2Jk2aYNWqVVX2HkR0U21PLVa+1hFf/nkSC7edww+7E3AwMR1zBrVGPV8XqcsjIiqXVcNMgiBg7NixuHjxYvFwzsWLFzF69GgIglBlxXXu3BknT54s1Xbq1Cm7uigfkbNRymWY0LMJFr98H7xdVDianIXe0bH4Lf6S1KUREZXrnk9ZcHNzg5ubW1XUUsbYsWOxe/dufPrppzhz5gyWL1+Or7/+GsOHD7fJ+xHRTd0b+SNmVBTahXoj12DC6BXxmLD6MAoK7ed2JUREQCVOzW7dujW2bNkCLy8vREZG3rEHpqpOzQaADRs2YMKECTh9+jTq1auHcePGYejQoRVen1cAJro3RpMZs7acxpx/zkAUgca13DBnUGs08HeVujQicmKV+f6u8DEzffv2LT6wtm/fvlU6nHQnvXv3Ru/evavlvYioLIVchjd7NEK7et4YuzIeJ65k4/E5O/BJv+Z4snWw1OUREfHeTERUcSlZBRi9Ih7/nksFADzTJhiT+zaDTmXVuQRERLdl84vmhYWFITU1tUx7RkYGwsLCrNkkETkAf3cNfhzSHmMeCodMAH45cBF95+zEqavZUpdGRDWYVWHmwoULMJnKHgSo1+tx8eLFey6KiOyXXCZgzEMNsWxIB/i7qXE6JQePz9mBn/clwck7eonITlWqb3jdunXF05s2bYKHh0fxvMlkwpYtW1CvXr2qq46I7FbH+j6IGR2FsSvjEXv6Ot5Z9R/+PZeKT/o1h4uaw05EVH0qdcyMTGbpyBEEocxfYEqlEqGhoZg+fbpdHbDLY2aIbMtsFjF/21nM2HwKJrOIMF8XzH2uNZoE8veNiKxXme9vqw4ArlevHvbt2wdfX1+ri6wuDDNE1WPfhTSMXB6HK1kFUClk+KhPUwxqV6faznwkIudi8wOAz58/7xBBhoiqz32h3ogZHYUHGvvDYDTj/TVHMPKnOGQXFEpdGhE5OatPzc7NzcW2bduQmJgIg8FQ6rWqvD/TvWLPDFH1MptFfLPjHKb9cRJGs4hQHx3mDGqN5rU97r4yEdENNh9miouLQ69evZCXl4fc3Fx4e3vj+vXr0Ol08Pf3x7lz56wuvqoxzBBJ42BiOkYuj8OljHyo5DK8/1gTvNixLoediKhCbD7MNHbsWPTp0wdpaWnQarXYvXs3EhIS0KZNG3z55ZdWFU1EzqV1HS9sHNUFDzcNgMFkxkfrjuKNZQeRmc9hJyKqWlaFmfj4eLz55puQy+WQy+XQ6/UICQnBtGnT8N5771V1jUTkoDx1Knz9QhtM7N0USrmA349cQe/ZsTiUlCF1aUTkRKwKM0qlsrirOCAgAImJiQAADw+P4mkiIsByKYf/damHX4d1Qoi3Fklp+Xh6wS58u+M8L7JHRFXCqjATGRmJ/fv3AwC6d++OiRMnYtmyZRgzZgxatGhRpQUSkXOICPHEhpFR6Nm8FgpNIqZsOIah3x9ARp7h7isTEd2BVWHm008/RWBgIABgypQp8PHxweuvv46UlBR8/fXXVVogETkPD60S855rjSl9m0Ell+Gv41fxWPQOHEhIl7o0InJglT6bSRRFJCYmwt/fH1qt1lZ1VRmezURkn45cysSI5QdxITUPCpmAtx9phKFRYZDJeLYTEdn4bCZRFBEeHs4bShLRPWle2wPrR3ZBn4ggGM0ipv5+Aq8s3Ye0XA47EVHlVDrMyGQyhIeHIzU11Rb1EFEN4qZRInpAK0x9sgXUChn+OXkNvWbFYu/5NKlLIyIHYtUxM9OmTcPbb7+NI0eOVHU9RFTDCIKAge3qYO3wzgjzc8GVrAIMXLQbc/85A7OZZzsR0d1ZdQVgLy8v5OXlwWg0QqVSlTl2Ji3Nfv6q4jEzRI4jV2/Eh2uPYHXcJQBAVLgvvnq2FXxd1RJXRkTVrTLf3wpr3uCrr77iJcmJqMq5qBWY3j8CHer7YOJvRxB7+jp6zorFrAGt0Kk+b25LROWz+kaTjoI9M0SO6fTVbLyx7CBOp+RAJgCjHgzHyAfCIefZTkQ1gs3vzSSXy5GSklKmPTU1FXK53JpNEhGVEh7ghnUjuqB/22CYRWDmX6fxwrd7kJJVIHVpRGRnrAozt+vM0ev1UKlU91QQEVERrUqOaU9H4KtnI6BTybHrbCp6Rcci9vQ1qUsjIjtSqWNmoqOjAVjOPvjmm2/g6upa/JrJZML27dvRuHHjqq2QiGq8JyKD0aK2J0YsP4gTV7Lx4nd7MbxbA4x5KBwKuVV/kxGRE6nUMTP16tUDACQkJCA4OLjUkJJKpUJoaCg+/vhjtG/fvuortRKPmSFyHgWFJny84RiW77Hc0LZdqDeiB0ailodG4sqIqKpV5vvbqgOAu3fvjtWrV8PLy8vqIqsLwwyR81l/KBkTVh9Gjt4IbxcVpvePQPdG/lKXRURVyOZhxpEwzBA5pwvXczHip4M4cikLAPBa1zC81aMRlBx2InIKNg8zJpMJS5YswZYtW5CSkgKz2Vzq9b///ruym7QZhhki56U3mjA15gSW7LoAAGhT1wvRAyNR29P+b4JLRHdm84vmjR49GkuWLMFjjz2G5s2b8wJ6RCQJtUKOSY83Q4cwb7z96384kJCOXrNiMf2ZCDzUNEDq8oiomljVM+Pr64vvv/8evXr1skVNVYo9M0Q1Q1JaHkYsP4hDFzMBAEO61MM7jzaGSsFhJyJHZPOL5qlUKjRo0MCq4oiIbCHEW4dfhnXCK10sZ11+s+M8nln4L5LS8iSujIhszaow8+abb2LWrFm3vXgeEZEUVAoZPuzdFItebAsPrRKHkjLQKzoWfxy5LHVpRGRDVg0zPfHEE/jnn3/g7e2NZs2aQalUlnp99erVVVbgveIwE1HNdCkjHyOXH8TBxAwAwEsd6+K9x5pAreAtV4gcgc0PAPb09MQTTzxhVXFERNWhtqcWK1/riC//PImF285h6b8JOJCYjjkDWyPU10Xq8oioCvE6M0Tk9P45kYJxP8cjPa8QrmoFpj7ZAn0igqQui4juwOYHAAOA0WjEX3/9hYULFyI7OxsAkJycjJycHGs3SURkE90b+yNmdBTahXojR2/EyJ/i8N6awygoNEldGhFVAat6ZhISEvDoo48iMTERer0ep06dQlhYGMaMGYOCggIsWLDAFrVahT0zRFTEaDJj5l+nMXfrGYgi0LiWG+Y+1xr1/VzvvjIRVSub98yMHj0abdu2RXp6OrTam1fafOKJJ7BlyxZrNklEZHMKuQxvPdII3/+vHXxdVThxJRt9Zu/AmriLUpdGRPfAqjCzY8cOfPDBB1CpVKXa69ati0uXLlVJYUREthIV7oeYUVHoGOaDPIMJY1cewju/HkK+gcNORI7IqjBjNpthMpX9pb948SLc3NzuuSgiIlvzd9fgxyHtMeahcAgC8PP+i3h8zg6cvpotdWlEVElWhZmHH34YM2fOLJ4XBAE5OTn46KOPHOIWB0REACCXCRjzUEMsG9Iefm5qnE7JQZ85O/Dz/iReFJTIgVh1AHBycjK6d+8OuVyO06dPo23btjh9+jR8fX2xfft2+Pv726JWq/AAYCKqiGvZeoz7OR6xp68DAJ6MrI0p/ZrDRW3V5biI6B5V5vvb6uvM5OfnY8WKFThw4ADMZjNat26N5557rtQBwfaAYYaIKspsFjF/21lM//MkzCJQ388Fcwa1RpNA/t9BVN2qJcw4CoYZIqqsvefTMOqnOFzJKoBaIcNHfZphYLsQCIIgdWlENYbNT82eOnUqvvvuuzLt3333HT7//HNrNklEZDfa1fNGzOgodGvkB73RjPfWHMaoFfHILiiUujQiKodVYWbhwoVo3LhxmfZmzZrZ1QXziIis5e2iwncv3YfxPRtDLhOw/lAy+szegSOXMqUujYhuYVWYuXLlCgIDA8u0+/n54fLly/dcFBGRPZDJBAzrWh8/v9YRQR4aXEjNw5PzduGHfy/wbCciO2JVmAkJCcHOnTvLtO/cuRNBQbx5GxE5lzZ1vRAzOgoPNQmAwWTGh78dxfDlB5HFYSciu2DVOYdDhgzBmDFjUFhYiAceeAAAsGXLFrzzzjt48803q7RAIiJ74KlTYdGLbfDdzgv47PfjiDl8BYcvZWLOwNaICPGUujyiGs2qs5lEUcT48eMRHR0Ng8EAANBoNHj33XcxceLEKi/yXvBsJiKqavFJGRix/CAupudDKRcwoWcTvNw5lGc7EVWhajs1OycnB8ePH4dWq0V4eDjUarW1m7IZhhkisoXM/EK8++t/+OPoFQDAw00D8OXTEfDQKSWujMg58DozJTDMEJGtiKKIH3Yn4JMNx2EwmVHbU4vZgyLRuo6X1KUROTybh5nc3Fx89tln2LJlC1JSUmA2m0u9fu7cucpu0mYYZojI1o5cysSI5QdxITUPCpmAdx5thCFdwiCTcdiJyFqV+f62+gDgbdu24YUXXkBgYCDHiYmoRmte2wPrR3bBe2uOYP2hZHwacwK7z6Xhy2ci4O2ikro8IqdnVc+Mp6cnNm7ciM6dO9uipirFnhkiqi6iKOKnvUmYvP4o9EYzAj00iB4YiftCvaUujcjh2Px2Bl5eXvD25i8nEVFJgiBgUPs6WDu8M8L8XHA5swADvt6Nuf+cgdns1IcnEknKqjAzZcoUTJw4EXl5eVVdzx1NnToVgiBgzJgx1fq+RESV0STQHetHdMGTkbVhMov4YtNJvLR4L67n6KUujcgpWTXMFBkZibNnz0IURYSGhkKpLH0q4sGDB6uswCL79u1D//794e7uju7du2PmzJkVWo/DTEQkFVEU8cuBi5j42xEUFJrh76bGzAGt0Km+r9SlEdk9mx8A3K9fP2tWs1pOTg6ee+45LFq0CJ988km1vjcRkbUEQUD/tiFoFeKJ4csO4nRKDp7/Zg9GPRiOkQ+EQ86znYiqhENcZ+all16Ct7c3vvrqK3Tr1g2tWrW6bc+MXq+HXn+zKzcrKwshISHsmSEiSeUbTPho3RH8vP8iAKBTfR/MHNAK/m4aiSsjsk8275kpcuDAARw/fhyCIKBp06aIjIy8l82Va8WKFTh48CD27dtXoeWnTp2KyZMnV3kdRET3QquSY9rTEegQ5oMP1h7BrrOp6DUrFl892wpR4X5Sl0fk0KzqmUlJScGAAQOwdetWeHp6QhRFZGZmonv37lixYgX8/KrmFzMpKQlt27bFn3/+iYiICABgzwwRObwzKTkYsfwgTlzJhiAAw7s1wJiHwqGQW3VOBpFTsvmp2SNHjkRWVhaOHj2KtLQ0pKen48iRI8jKysKoUaOsKro8Bw4cQEpKCtq0aQOFQgGFQoFt27YhOjoaCoUCJpOpzDpqtRru7u6lHkRE9qSBvyvWDu+Mge3qQBSBOf+cwaBv9uBKZoHUpRE5JKt6Zjw8PPDXX3/hvvvuK9W+d+9e9OjRAxkZGVVSXHZ2NhISEkq1vfzyy2jcuDHeffddNG/e/K7b4NlMRGTP1h1KxoRV/yHXYIK3iwoz+kegWyN/qcsikpzNj5kxm81lTscGAKVSWeY+TffCzc2tTGBxcXGBj49PhYIMEZG9ezwiCC1qe2DE8oM4mpyFwYv34bWuYXirRyMoOexEVCFW/aY88MADGD16NJKTk4vbLl26hLFjx+LBBx+ssuKIiGqCer4uWPV6J7zYsS4AYOG2cxjw9W5cysiXuDIix2DVMFNSUhL69u2LI0eOICQkBIIgIDExES1atMBvv/2G4OBgW9RqFQ4zEZEjiTl8Ge/++h+y9UZ46pT48ukIPNQ0QOqyiKpdZb6/7+k6M5s3b8aJEycgiiKaNm2Khx56yNpN2QzDDBE5msTUPIz46SD+u5gJABjSpR7eebQxVAoOO1HNYbMw8/fff2PEiBHYvXt3mQ1nZmaiU6dOWLBgAaKioqyr3AYYZojIERmMZnz2+wl8t/M8ACAixBNzBkYixFsncWVE1cNmp2bPnDkTQ4cOLXejHh4eeO211zBjxozKVUtERGWoFDJM7NMUX7/QBu4aBQ4lZaBXdCz+OHJF6tKI7E6lwsyhQ4fw6KOP3vb1Hj164MCBA/dcFBERWfRoVgsxo6MQWccT2QVGDPvxACatOwq9sex1tohqqkqFmatXr5Z7SnYRhUKBa9eu3XNRRER0U7CXDj+/1hGvdQ0DACzZdQFPz/8XCam5EldGZB8qFWZq166Nw4cP3/b1//77D4GBgfdcFBERlaaUyzChZxMsHnwfvHRKHL6Uiceid2DDf8l3X5nIyVUqzPTq1QsTJ05EQUHZS27n5+fjo48+Qu/evausOCIiKq17Y3/EjI7CfaFeyNEbMWJ5HN5fcxgFhRx2opqrUmczXb16Fa1bt4ZcLseIESPQqFEjCIKA48ePY+7cuTCZTDh48CACAuznmgg8m4mInJHRZMbMv05j7tYzEEWgSaA75gyKRH0/V6lLI6oSNr3OTEJCAl5//XVs2rQJRasKgoBHHnkE8+bNQ2hoqNWF2wLDDBE5s9jT1zB2ZTyu5xigU8nx6RMt0C+yttRlEd2zarloXnp6Os6cOQNRFBEeHg4vLy+rirU1hhkicnYpWQUYvSIe/55LBQA82zYEkx5vBq1KLnFlRNartisAOwKGGSKqCUxmEdFbTiP679MQRaBRgBvmPheJBv5uUpdGZBWbXTSPiIjsk1wmYOzDDbHslfbwc1Pj5NVs9Jm9E78euCh1aUQ2xzBDROREOjXwRcyoKESF+yK/0IS3fjmEcT/HI1dvlLo0IpthmCEicjJ+bmosfbkd3urREDIBWH3wEh6fswMnrmRJXRqRTTDMEBE5IZlMwIgHwvHT0A4IcFfj7LVc9J2zEz/tTYSTHypJNRDDDBGRE2sf5oOYUVHo1sgPeqMZE1YfxugV8cjhsBM5EYYZIiIn5+Oqxncv3YfxPRtDLhOw7lAyekfH4silTKlLI6oSDDNERDWATCZgWNf6+Pm1Dgjy0OBCah6enL8LP/x7gcNO5PAYZoiIapA2db0RMzoKDzXxh8Foxoe/HcXw5QeRVVAodWlEVmOYISKqYTx1Kix6sS0+eKwJlHIBMYevoHf0Dvx3MUPq0oiswjBDRFQDCYKAIVFh+GVYJwR7aZGYloen5u/CdzvOc9iJHA7DDBFRDdYqxBMbR0Xh0Wa1UGgS8fGGY3jthwPIzOOwEzkOhhkiohrOQ6vE/OdbY/LjzaCSy/DnsavoFR2LuMR0qUsjqhCGGSIigiAIeKlTKFa93gl1fXS4lJGPZxb8i0Xbz8Fs5rAT2TeGGSIiKtYi2AMbRnbBYy0DYTSL+L+Y4xjy/X6k5xqkLo3othhmiIioFDeNEnMGRuL/nmgOlUKGv0+koFd0LPZfSJO6NKJyMcwQEVEZgiDgufZ1sfaNzgjzdcHlzAI8+/VuzNt6hsNOZHcYZoiI6LaaBrlj/cgueCKyNkxmEdP+OInBS/bheo5e6tKIijHMEBHRHbmoFZjRPwLTnmoJjVKG7aeuodesWOw+lyp1aUQAGGaIiKgCBEFA//tCsG5EF4T7uyIlW49Bi3YjestpmDjsRBJjmCEiogprGOCG30Z0xjNtgmEWgRmbT+HF7/YgJbtA6tKoBmOYISKiStGpFPjimQjM6B8BrVKOnWdS0WvWDuw8c13q0qiGYpghIiKrPNk6GOtHdkHjWm64nqPH89/uwYw/T8JoMktdGtUwDDNERGS1Bv6uWDu8Mwa2C4EoAtF/n8Ggb/bgSiaHnaj6MMwQEdE90SjlmPpkS8wa0AouKjn2nk9Dr+hYbD2ZInVpVEMwzBARUZXo26o21o/sgqaB7kjLNWDw4n347PcTKOSwE9kYwwwREVWZMD9XrH6jE17oUBcAsGDbWQz4ejeSM/IlroycGcMMERFVKY1Sjin9mmPuoNZwUytwICEdvaJj8dexq1KXRk6KYYaIiGzisZaB2DCqC1rU9kBGXiGGfL8fn2w4BoORw05UtRhmiIjIZur6uODX1zvi5c6hAIBvdpzHMwv/RVJanrSFkVNhmCEiIptSK+T4qE8zLHyhDdw1ChxKysBj0bH448gVqUsjJ8EwQ0RE1eKRZrWwcVQUWoV4IqvAiGE/HsCkdUehN5qkLo0cHMMMERFVmxBvHX4Z1hGv3h8GAFiy6wKenv8vElJzJa6MHBnDDBERVSulXIb3ejXBty+1hadOicOXMtE7egc2/ndZ6tLIQTHMEBGRJB5sEoCYUVFoW9cL2Xojhi8/iA/WHkZBIYedqHIYZoiISDJBnlr89GoHvNGtPgDgx92JeGLeLpy7liNxZeRIGGaIiEhSSrkM7zzaGEv/1w4+Liocv5yFPrN34Lf4S1KXRg6CYYaIiOxC14Z+iBkdhQ5h3sg1mDB6RTzGr/oP+QYOO9GdMcwQEZHdCHDXYNmQDhj1YDgEAVixLwn95u7EmZRsqUsjO8YwQ0REdkUuEzDu4Yb48ZX28HVV4+TVbPSZvRO/HrgodWlkpxhmiIjILnVu4IvfR0ehSwNf5Bea8NYvh/Dmz4eQZzBKXRrZGYYZIiKyW35uaiz9Xzu8+XBDyARg1cGLeHzOTpy8wmEnuolhhoiI7JpcJmDkg+FYPrQDAtzVOJOSg8fn7MCKvYkQRVHq8sgOMMwQEZFD6BDmg5hRUeja0A96oxnjVx/GmJXxyNFz2KmmY5ghIiKH4eOqxuLB9+HdRxtDLhPwW3wy+szegaPJmVKXRhJimCEiIocikwl4vVt9rHy1AwI9NDh/PRdPzNuFH3YncNiphrLrMDN16lTcd999cHNzg7+/P/r164eTJ09KXRYREdmBtqHeiBkVhQcb+8NgNOPDtUcwYnkcsgoKpS6Nqpldh5lt27Zh+PDh2L17NzZv3gyj0YgePXogN5e3iiciIsDLRYVvXmqLDx5rAoVMwMbDl9E7egf+u5ghdWlUjQTRgfrkrl27Bn9/f2zbtg33339/hdbJysqCh4cHMjMz4e7ubuMKiYhIKnGJ6RixPA6XMvKhlAuY0LMJXu4cCkEQpC7NKeUV5iExOxEXsi4gzCMMDb0aVun2K/P9rajSd7axzEzLAV7e3t63XUav10Ov1xfPZ2Vl2bwuIiKSXmQdL8SMisI7qw5h09Gr+HjDMew+l4ovno6Ah04pdXkOKa8wD0nZSUjMTkRiliW4xJyLgafaEyn5KcXLDYsYVuVhpjIcpmdGFEX07dsX6enpiI2Nve1ykyZNwuTJk8u0s2eGiKhmEEURS3ddwKcxJ2AwmVHbU4s5gyIRWcdL6tLsUqY+E4lZicWhJSk7yTKdlYjUgtQ7ruul9kJd97roU78P+jfqX6V1VaZnxmHCzPDhw7Fx40bs2LEDwcHBt12uvJ6ZkJAQhhkiohrm8MVMDF9+EIlpeVDIBLz7aGMMiapX44adRFHE1byrSM5JvhlWsm4GlyzDnUcwvNReCHEPQYhbCMxmM6KCoxDqHoo67nXgofawWd1OF2ZGjhyJtWvXYvv27ahXr16l1uUxM0RENVdWQSEmrDqMjYcvAwAebOyPL5+JgJeLSuLKqo4oisgyZOFSziXLI/sSLuZcLJ5PzkmG3qS/4zb8tf4IdgtGHfc6qONWpzi8hLiFwF0lzXen04QZURQxcuRIrFmzBlu3bkV4eHilt8EwQ0RUs4miiGV7EvHxhmMwGM0I9NBg9sBItA29/fGX9iavMO9mWCkRWoqmcwpz7rqN2q61LYHFrXRgCXYNhk6pq4ZPUTlOE2beeOMNLF++HL/99hsaNWpU3O7h4QGtVluhbTDMEBERABxNzsSI5XE4fz0XcpmAN3s0xLD760Mmk37YSW/S41LOJSRlJRUPCZUMLmkFaXfdho/GB7XdaltCi2swglyDiqdrudSCUu5YB0E7TZi53bjm4sWLMXjw4Aptg2GGiIiK5OiNeH/NYfwWnwwA6NrQDzP6R8DHVW2z9xRFEakFqbiSewWXcy/jcs5lXM69fHM+93KFwoqbyg3BrsGo7WoJLEXBpbZrbQS5BkGrqNgf+Y7CacJMVWCYISKikkRRxMp9Sfho3VHojWYEuKsxa0AkOoT5WLW9AmNBcSgpGViKpq/kXoHBbKjQtup71C8VUoJdg1HbzRJWpDp2RSoMMyUwzBARUXlOXsnGG8sO4Oy1XMgEYMxDDTG8ewPISww7GUwGpOSl4GreVctz7lXEXoqFm8qtOKhUpFdFgAA/nR8CXQKLH7VcaiHQJRBBrkGo5VIL7ir3Gnem1Z0wzJTAMENEROXJMeQgITMZX/y1FzsunIVMkYlAHwMa1jYh05CKq3lXKxRUAECn0FlCimvZsBLoGgh/nT+UMsc6ZkVqTnsFYCIiorsxi2akFaThWt614h6VK7lXbvau3HjOLbx5nz9tkOU5DcDuK6W3p5KpEOASAH+dP7IN2WhXqx3quNcpFVrYqyIthhkiInIIRrPRElLyr+F63nVcy79meeRdK9WWmp8Ko2is0DbdVG4I0AUgQBcAjcwLe06bcD1DA9HogQGtW2Bs9/vgrfFkULFzDDNERCSpQlMhrudfR0p+SqmQcj3/Oq7lWZ5T8lKQrk+HWTRXeLu+Wl/46/wRoLP0qtRyqVU8XfR86/VV8qNMmLz+KFbsS8KP2wtxOukEogdGIsBdU9Ufm6oQj5khIqIqV3RV2tSCVKTmpyK1IBWHrx2GQqYoDilFgSVDn1Hh7coEGXw0PvDV+sJP5wc/rV/xs6/Wt3jeR+NzT9dV+S3+Et5bfRi5BhN8XFSY8WwrdG3oZ/X2qPJ4AHAJDDNERFXDZDYhQ59RKqCk5qcirSCt1HxqgaXNaK7YUA8AKGQKSxApCiW60uGk6NlL7QW5TG7DT3nTuWs5GLE8DscuW+5d9Hq3+njz4YZQyGXV8v41HcNMCQwzRES3V2guRHpBepkwUl5YqewwDwC4Kd3go/XBpZxL6BbSDf46/5shResHX51l2lNtn8elFBSa8H8bj+OH3QkAgLZ1vRA9MBJBns51gTp7xDBTAsMMEdUkBpMBaQVpSC9IR3pBOtL0N6fT9ek32wvScDn38l1vQHgrAQI81Z7w0frAR+MDb423ZfrGfMlnL40X1HLbXVm3Om387zLGr/oP2XojPHVKTH8mAg82CZC6LKfGMFMCwwwROSpRFJFnzCsdTgrSkKHPKJ4uCihFy+QZ8yr9PnJBDi+NV5kw4qPxgbfWu9S8l8YLClnNPHckITUXI5bH4fClTADA0Kh6eOfRxlBy2MkmGGZKYJghInsgiiJyC3ORoc9Apj4TGfqM4kfJ+SPXj0Bv1EMQBKQXpFf4MvglKQQFPDWe8NJ4wVvtDS+NV/Gj5Lybyg3+On94qj0hE/iFXBF6owlTY05gya4LAIBWIZ6YPTASId72d9dpR8cwUwLDDBFVtUJzITL1maVCSJnpgtLtmYbMSh0QW5JGrrkZSNQlgonGu3jeW1MipCjd7PL4E2ey6egVvP3LIWQVGOGuUWDa0xF4tHktqctyKgwzJTDMENHtGM1GZBuykWXIQpY+C1mGLCRkJaDQXIi8wrzbBpWcwhyr31MtV8ND7QFPtSc81Z6lppVyJdyUbqjjXudmOFF7lbkWCtmHpLQ8jPwpDvFJGQCAwZ1CMaFXY6gV1XO2lbNjmCmBYYbIuZnMJuQU5hSHkUxDZqlwUtyuv9Feou1eQokAAW4qtzKhpFRQ0dycLnpNq+BZMM7EYDTji00nsCj2PACgRW0PzBkUibo+LhJX5vgYZkpgmCGyf0azEbmFuZaLrOWnIt+YX9xjUl4IKdmWY8iBiHv7b8xF6QJ3lTtyCnPgo/FBuFf4bXtPiqbdVe7Vdr0Tsn9bjl/Fm78cQkZeIdzUCnz2VEs81jJQ6rIcGsNMCQwzRLYliiL0Jr2ld8SQhWxDNnIMOcg2ZCO7MNvyfMsjpzCn1Lw1Z+DcSqvQwl3lDne1u+VZ5Q4PtUfxtLvaHR4qj1Kvu6vd4aZy492MqUokZ+Rj1E9x2J+QDgB4vkMdfPBYU2iUDL3WYJgpgWGG6M7Mohm5hbnlho2ino9bg0mOIafUfKG5sEprauDZoFTguG1IudHmofK4p0vXE1WVQpMZMzafwvytZwEATQLdMXdQJML8XCWuzPEwzJTAMEPOymQ2IdeYi1xDLnIKc5BbaHnOKcwp05ZbmIscwy3zN5bLLsyuknpkggyuSle4qdyKH7fOuylLvKayvOaudIeryhWuKlf2kJDT2HoyBeN+PoS0XANcVHJ8+mQL9G1VW+qyHArDTAkMM2RvCk2FN0PHbULG7YJHyfl8Y36V1qWSqUoHjxJhxF3lXhw+XJWucFe5FwcSd5U7XJWu0Cl1vFYJUQlXMgswakUc9p5PAwAMuC8EH/VpBq2Kw04VwTBTAsMM3Suj2Yg8Yx7yCm88jHnILcxFbmFuqfZc4422Esvtu7IPQa5B0Jv0xcHFmoug3YlKpoKryhUuShe4Kl1LTd+pzUXlAheFC3RKHTzUHk5z2Xkie2I0mRG95TRm/3MGogg0CnDD3Oci0cDfTerS7B7DTAkMMzWPwWS4bbgoE0JuF0xKzBeYCmxSp1ahLRMuSs0rXSzDL+W0lZxXyVU2qY+Iqs6O09cxZmU8rufooVXKMaVfczzdJljqsuwaw0wJDDP2q9BUiDxjHvKN+cXP+YX5peeN+cgrLDFdYrkDKQdQ27U2DCZDcfjILcy1+iqrd6MQFNApdXBRukCnuPGs1JWeLjFvMBngr/OHl8arTGjRKXQ19v42RDVVSnYBxqyIx66zqQCAp1oHY0q/ZtCp+H9BeRhmSmCYuTdm0VwcJPIL80uHj8JbQkfRayXCx23DiDHfZqGjiEauuWPYKAolty5TNPRya3BhDwgR3SuTWcTcf85g5l+nYBaBBv6umDuoNRrV4rDTrRhmSnDmMCOKIoxmI/JNlqBRYCpAgbEA+cab0yXn8435ZdoKjAVIL0jHmYwzCHINKhM+bDXEUpJCpoBOoYNWoYVWoYVOWWL6Nu0FxgIEuATAQ+VRKnQUTWsVWvZ8EJHd+vdsKkaviENKth5qhQwf922G/m1DeE+tEhhmSpAqzIiiWDpQmG4GiaL5kuHi1rBRcr643VR6usBYAJNoqpbPI0C4c9hQ3j543Lb9xjRPxyWimuh6jh7jfj6E7aeuAQD6tQrCJ0+0gKuaf4gBDDOl2CrM/B77Mdae24ACQUC+ABQAKIDZ8hBNyK+mkFFELsihVWihUWigkWugUWhKzRdNaxXa4tc1Cg3UcjVyCnNQ163ubcNG0Tr8i4GIqGqZzSIWbD+L6X+egsksIszXBXMGtUbTIOcaSbBGZb6/Gf+slJx+FruQD4jA3W4LozKL0IhmaEQRWlGExizemDZDY77RBgEaQQ6NoIBWpoRGpoRGroJWrr4RRjTQKLTQKHTQKHXQKl2hUblAo3KHVuMOpcoVUOoApbacZy2gdAHkSoCBhIjIbshkAt7o1gDtQr0x8qc4nLuei37zdmJi76Z4rn0d/hFZQeyZsdLps5twInG7JaSYzdCYjNCaTdCYjNAYDdAWGqA1FkBdqIfcWAAU5gGF+TceeTef7/EGeZUiyG8JODrApAcMeUBgS8u8yhVQ6ayb5i8dEZHV0nMNeOuXQ9hyIgUA8FjLQEx9sgXcNTVzKJ7DTCXY9QHAoggYC8oGnJLPhrzbv1amrZzXDblAdQ15KV2sD0J3mlbwLCIiqhlEUcS3O87js99PwGgWUddHhzkDW6NFsIfUpVU7hpkS7DrMVBdToSXglApGJUJP3nVAnw0IMkv4MeTeWP6W6du12ZpMcSMolQhLaeeA2m0ArZcl8Khdb7zuCqjdbk6rXG7Ml5x2ARS82i0R2a+4xHSMWB6HSxn5UMlleK9XY7zUKbRGDTsxzJTAMGNjZjNgzL9DCMoDDDmVmy68sb6pai/7X4pMWU7Qcb0xXTIcud3htRLBicNsRFTFMvMK8favh/DnsasAgEeb1cLnT7eEh7ZmDDsxzJTAMOPATMabwaZkyCmaTj1jCRuGnBuPXECfAxiyS0zfeOhvvF7FN2e8SSgbdNLOAyH3AVpvS+gpfrjfMn9Lm1LLYEREACzDTkt2XcCnMcdRaBIR7KXF7IGRiKzjJXVpNscwUwLDDJViMt4MPqWCTlEYyr75WnlhqLygVNUE+R1Cz10CkaZkKHIBZLyLNZEz+O9iBkYsj0NiWh4UMgHjezbGK13qOfWwE8NMCQwzZFNmc4mhtZzSYciQA1w7ZQkW+uwbj6wS07c+slC1Z7cJdwhDN8JPfjrg2xBw8b0RhjwsgUjjaZlWu/MAbCI7kVVQiAmrDmPj4csAgAcb++PLZyLg5eKcv6MMMyUwzJDDKApGtwac8kLP7cJQ0XNV3vdKoS0RcjxKhJ5b2zxLtxW1q1w4bEZURURRxI97EjFlwzEYjGYEeWgQPTASbUO9pS6tyjHMlMAwQzWOKAJGfcXD0IUdgGeIZbogCyjIvLFMVtXUI8jLBpziMFROm0wOuNcGtJ6WgKR2YxgiusXR5EyMWB6H89dzIZcJeLNHQwy7vz5kMuf5XWGYKYFhhshKZpMl0JQMOAWZNx4lpvXltd2YrooeIkF+M9gUP3tVrI29QuTEcvRGvL/mMH6LTwYAdG3ohxn9I+Dj6hyXnmCYKYFhhkgiomi5jtGtAafko7yAlHkRyE4G5GrLFarvhUxZOuBovW4JQOW0aTwAnQ+g1NzbexNVA1EUsXJfEj5adxR6oxkB7mpED4hE+zAfqUu7ZwwzJTDMEDmwwnzLQcr5GUBBRonnW9ry0295PQMwF97beyt1ltPqdV43nr3v8OxleVZ78AwyksSJK1kYvuwgzl7LhUwAxj7UEG90bwC5Aw87McyUwDBDVAOJouWssjsFoNu15aVa/75FQ2K3Czu3C0O8IjVVgVy9ER/+dgSrD14CAHRu4IOZz0bCz80xf74YZkpgmCGiSjGbLcNf+WlAXvqN57Q7PKdbngtzrX9PpYsl1OReB/wbA971LafL63wBF58bzzfmdT6WcMQeILqNX/YnYeJvR5FfaIKvqxqzBrRC5wa+UpdVaQwzJTDMEFG1KCy40dNzl9BTsj0/HRDNlX8vQWbp1blt4Cn52o0AJK8Zl8Ani9NXszF8+UGcupoDQQBGPhCO0Q+GO9SwE8NMCQwzRGS3zGbL2WAlw07KMctrBRmWnpq81BvP14HcVMvy1tB43BJ4vCxDa3U7AS7+gKvfjWd/S1Biz4/DyzeYMGndUazcnwQAaF/PG9EDIxHg7hgHtzPMlMAwQ0ROxWiw9OoUB5xbAk9eqiX0FL2Wn1b53h9Bbgk9Lv6WZ1d/wMXvxvMtwYe9PnZvbdwlvLfmMPIMJvi4qDDj2Vbo2tBP6rLuimGmBIYZIqrRzCZLD0xeOb08mYnApTjLQcu514CcFEv4qSyt920Cj1/p8OPix1PeJXLuWg6GL4/D8cuWi2G+0a0+xj3cEAq5/fbAMcyUwDBDRFQJpkJL4MlNAXKuWZ6Lgs6tz3nXK9/ro/UCXGsBbgG3PN94uAZYnlUutvl8NVhBoQlTNhzDsj2JAID7Qr0wa0Akgjy1EldWPoaZEhhmiIhsxGyyHOeTe610+Lk1+BRNV+baPyq32wedks8aD17luZI2/JeM8asOI0dvhJdOien9I/BA4wCpyyqDYaYEhhkiIjsgipaDnLOvADlXgOyrZZ+zLwM5Vy03XK0ohbZsL4/KxTLc5d8EcAsC3IMAtavtPpsDSkjNxfDlB3HkkmXY6dX7w/D2I42gtKNhJ4aZEhhmiIgciChabnqac/VG8LnxXBR0ituuVu7MLrW7JdS4BVpuZOoeBLjfmC5q03nXqF4evdGEqTEnsGTXBQBAZB1PzB4YiWAvnbSF3cAwUwLDDBGRkzLklQg4t/TyXIi13A7DZKj4HeDlakvAKerNuTXsuAdZhrbkCtt+rmr2x5EreOfXQ8gqMMJdo8CXz0SgR7NaUpfFMFMSwwwRUQ2nzwayLgNZlyw9PFmXbswnW25qmpVsOa6nonS+gHc9wCP4xiOk9LTWy+F6eJLS8jDypzjEJ2UAAF7uHIoJPZtApZBu2IlhpgSGGSIiuiujwRJ0bhd2spItr5mNd9+WUlci3BSFnRKBx702oFDZ/jNVksFoxhebTmBR7HkAQMtgD8wZ2Bp1fKQZdmKYKYFhhoiIqoTZbOnBST9vOTsr8+KNR9LN5wr18AiW4apbA4/aDajVHPCsa7n2j0T+OnYVb/16CBl5hXBTK/D50y3Rq0VgtdfBMFMCwwwREVWbwnxLL05xwLl4y/RFwFhw9+1oPCyhxquu5bnUdB1AZdvekuSMfIz8KQ4HEtIBAC90qIv3H2sCjVJu0/ctiWGmBIYZIiKyG6JouRLzrQEnMwlIvwBcPlSx7bj43wg3dUoHHa+6ll6eKrjFRKHJjBmbT2H+1rMAgKaB7pj7XGvU862eCxoyzJTAMENERA5FnwNkJN54JADpCaWf73Z2liCzHJdTMujIVZabinrVs1yDpxIHKG89mYJxPx9CWq4BLio5Pn2yBfq2qn2PH/LunC7MzJs3D1988QUuX76MZs2aYebMmYiKiqrQugwzRETkNETRckf1WwNOesLN8HO3YSylC+AdZjkjy7vejekwS9Bxr13uHdOvZBZg1Io47D1vuXfXwHYh+KhPM5sOOzlVmFm5ciVeeOEFzJs3D507d8bChQvxzTff4NixY6hTp85d12eYISKiGkMULQcnFwecC5bnq0eA5DgAAoA7fO3L1YBXaImwc/PZ6Fobs7ZewJx/zkAUgUYBbpj7XGs08LfN1ZWdKsy0b98erVu3xvz584vbmjRpgn79+mHq1Kl3XZ9hhoiI6Aaj3tKDk3buxuP8zemMhDufei7IAdGE9MAobLrihuMGP1ySBeGpHt3Qs/N9gKxqe2kq8/1t15cxNBgMOHDgAMaPH1+qvUePHti1a1e56+j1euj1+uL5rKwKXvmRiIjI2SnUgG+45XErkxHIunhLyDlvORU97Vzx8JXX5VgMAICiY4y3TMW++L64b+T31fUpyrDrMHP9+nWYTCYEBJS+m2dAQACuXLlS7jpTp07F5MmTq6M8IiIi5yFXWIaYvEKB+re8ZjZbbhVx/ZRluCo/HeL1M0hLOg7X3CRoazWUoOCb7DrMFBFuOepaFMUybUUmTJiAcePGFc9nZWUhJCTEpvURERE5NZnsxv2qgoCwbgAsR9/4ADibkoXmXtJe0diuw4yvry/kcnmZXpiUlJQyvTVF1Go11Gp1dZRHRERU49X3l/54VOnuIFUBKpUKbdq0webNm0u1b968GZ06dZKoKiIiIrIndt0zAwDjxo3DCy+8gLZt26Jjx474+uuvkZiYiGHDhkldGhEREdkBuw8zzz77LFJTU/Hxxx/j8uXLaN68OWJiYlC3bl2pSyMiIiI7YPfXmblXvM4MERGR46nM97ddHzNDREREdDcMM0REROTQGGaIiIjIoTHMEBERkUNjmCEiIiKHxjBDREREDo1hhoiIiBwawwwRERE5NIYZIiIicmh2fzuDe1V0geOsrCyJKyEiIqKKKvrersiNCpw+zGRnZwMAQkJCJK6EiIiIKis7OxseHh53XMbp781kNpuRnJwMNzc3CIJQpdvOyspCSEgIkpKSeN8nG+J+rh7cz9WD+7l6cD9XD1vuZ1EUkZ2djaCgIMhkdz4qxul7ZmQyGYKDg236Hu7u7vxlqQbcz9WD+7l6cD9XD+7n6mGr/Xy3HpkiPACYiIiIHBrDDBERETk0hpl7oFar8dFHH0GtVktdilPjfq4e3M/Vg/u5enA/Vw972c9OfwAwEREROTf2zBAREZFDY5ghIiIih8YwQ0RERA6NYYaIiIgcGsPMHcybNw/16tWDRqNBmzZtEBsbe8flt23bhjZt2kCj0SAsLAwLFiyopkodX2X29erVq/Hwww/Dz88P7u7u6NixIzZt2lSN1Tquyv5MF9m5cycUCgVatWpl2wKdRGX3s16vx/vvv4+6detCrVajfv36+O6776qpWsdV2f28bNkyREREQKfTITAwEC+//DJSU1OrqVrHtH37dvTp0wdBQUEQBAFr16696zqSfBeKVK4VK1aISqVSXLRokXjs2DFx9OjRoouLi5iQkFDu8ufOnRN1Op04evRo8dixY+KiRYtEpVIp/vrrr9VcueOp7L4ePXq0+Pnnn4t79+4VT506JU6YMEFUKpXiwYMHq7lyx1LZ/VwkIyNDDAsLE3v06CFGRERUT7EOzJr9/Pjjj4vt27cXN2/eLJ4/f17cs2ePuHPnzmqs2vFUdj/HxsaKMplMnDVrlnju3DkxNjZWbNasmdivX79qrtyxxMTEiO+//764atUqEYC4Zs2aOy4v1Xchw8xttGvXThw2bFiptsaNG4vjx48vd/l33nlHbNy4cam21157TezQoYPNanQWld3X5WnatKk4efLkqi7NqVi7n5999lnxgw8+ED/66COGmQqo7H7+/fffRQ8PDzE1NbU6ynMald3PX3zxhRgWFlaqLTo6WgwODrZZjc6mImFGqu9CDjOVw2Aw4MCBA+jRo0ep9h49emDXrl3lrvPvv/+WWf6RRx7B/v37UVhYaLNaHZ01+/pWZrMZ2dnZ8Pb2tkWJTsHa/bx48WKcPXsWH330ka1LdArW7Od169ahbdu2mDZtGmrXro2GDRvirbfeQn5+fnWU7JCs2c+dOnXCxYsXERMTA1EUcfXqVfz666947LHHqqPkGkOq70Knv9GkNa5fvw6TyYSAgIBS7QEBAbhy5Uq561y5cqXc5Y1GI65fv47AwECb1evIrNnXt5o+fTpyc3PRv39/W5ToFKzZz6dPn8b48eMRGxsLhYL/VVSENfv53Llz2LFjBzQaDdasWYPr16/jjTfeQFpaGo+buQ1r9nOnTp2wbNkyPPvssygoKIDRaMTjjz+O2bNnV0fJNYZU34XsmbkDQRBKzYuiWKbtbsuX105lVXZfF/npp58wadIkrFy5Ev7+/rYqz2lUdD+bTCYMGjQIkydPRsOGDaurPKdRmZ9ns9kMQRCwbNkytGvXDr169cKMGTOwZMkS9s7cRWX287FjxzBq1ChMnDgRBw4cwB9//IHz589j2LBh1VFqjSLFdyH/3CqHr68v5HJ5mYSfkpJSJnEWqVWrVrnLKxQK+Pj42KxWR2fNvi6ycuVKvPLKK/jll1/w0EMP2bJMh1fZ/ZydnY39+/cjLi4OI0aMAGD50hVFEQqFAn/++SceeOCBaqndkVjz8xwYGIjatWvDw8OjuK1JkyYQRREXL15EeHi4TWt2RNbs56lTp6Jz5854++23AQAtW7aEi4sLoqKi8Mknn7D3vIpI9V3InplyqFQqtGnTBps3by7VvnnzZnTq1KncdTp27Fhm+T///BNt27aFUqm0Wa2Ozpp9DVh6ZAYPHozly5dzzLsCKruf3d3dcfjwYcTHxxc/hg0bhkaNGiE+Ph7t27evrtIdijU/z507d0ZycjJycnKK206dOgWZTIbg4GCb1uuorNnPeXl5kMlKf+XJ5XIAN3sO6N5J9l1o08OLHVjRaX/ffvuteOzYMXHMmDGii4uLeOHCBVEURXH8+PHiCy+8ULx80eloY8eOFY8dOyZ+++23PDW7giq7r5cvXy4qFApx7ty54uXLl4sfGRkZUn0Eh1DZ/Xwrns1UMZXdz9nZ2WJwcLD49NNPi0ePHhW3bdsmhoeHi0OGDJHqIziEyu7nxYsXiwqFQpw3b5549uxZcceOHWLbtm3Fdu3aSfURHEJ2drYYFxcnxsXFiQDEGTNmiHFxccWnwNvLdyHDzB3MnTtXrFu3rqhSqcTWrVuL27ZtK37tpZdeErt27Vpq+a1bt4qRkZGiSqUSQ0NDxfnz51dzxY6rMvu6a9euIoAyj5deeqn6C3cwlf2ZLolhpuIqu5+PHz8uPvTQQ6JWqxWDg4PFcePGiXl5edVcteOp7H6Ojo4WmzZtKmq1WjEwMFB87rnnxIsXL1Zz1Y7ln3/+ueP/t/byXSiIIvvXiIiIyHHxmBkiIiJyaAwzRERE5NAYZoiIiMihMcwQERGRQ2OYISIiIofGMENEREQOjWGGiIiIHBrDDBERETk0hhkicigXLlyAIAiIj4+/43LdunXDmDFjqqUmIpIWwwwR2cTgwYMhCAIEQYBSqURYWBjeeust5Obm3tN2Q0JCcPnyZTRv3hwAsHXrVgiCgIyMjFLLrV69GlOmTLmn9yIix6CQugAicl6PPvooFi9ejMLCQsTGxmLIkCHIzc3F/Pnzrd6mXC5HrVq17rqct7e31e9BRI6FPTNEZDNqtRq1atVCSEgIBg0ahOeeew5r166FXq/HqFGj4O/vD41Ggy5dumDfvn3F66Wnp+O5556Dn58ftFotwsPDsXjxYgClh5kuXLiA7t27AwC8vLwgCAIGDx4MoOwwU3p6Ol588UV4eXlBp9OhZ8+eOH36dPHrS5YsgaenJzZt2oQmTZrA1dUVjz76KC5fvmz7HUVE94RhhoiqjVarRWFhId555x2sWrUKS5cuxcGDB9GgQQM88sgjSEtLAwB8+OGHOHbsGH7//XccP34c8+fPh6+vb5nthYSEYNWqVQCAkydP4vLly5g1a1a57z148GDs378f69atw7///gtRFNGrVy8UFhYWL5OXl4cvv/wSP/zwA7Zv347ExES89dZbNtgTRFSVOMxERNVi7969WL58Obp374758+djyZIl6NmzJwBg0aJF2Lx5M7799lu8/fbbSExMRGRkJNq2bQsACA0NLXebcrm8eDjJ398fnp6e5S53+vRprFu3Djt37kSnTp0AAMuWLUNISAjWrl2LZ555BgBQWFiIBQsWoH79+gCAESNG4OOPP66qXUBENsKeGSKymQ0bNsDV1RUajQYdO3bE/fffj5EjR6KwsBCdO3cuXk6pVKJdu3Y4fvw4AOD111/HihUr0KpVK7zzzjvYtWvXPdVx/PhxKBQKtG/fvrjNx8cHjRo1Kn5PANDpdMVBBgACAwORkpJyT+9NRLbHMENENtO9e3fEx8fj5MmTKCgowOrVq+Hh4QEAEASh1LKiKBa39ezZEwkJCRgzZgySk5Px4IMP3tNwjyiKt20vWYdSqSz1uiAIt12XiOwHwwwR2YyLiwsaNGiAunXrFgeFBg0aQKVSYceOHcXLFRYWYv/+/WjSpElxm5+fHwYPHowff/wRM2fOxNdff13ue6hUKgCAyWS6bR1NmzaF0WjEnj17ittSU1Nx6tSpUu9JRI6Jx8wQUbVycXHB66+/jrfffhve3t6oU6cOpk2bhry8PLzyyisAgIkTJ6JNmzZo1qwZ9Ho9NmzYcNvQUbduXQiCgA0bNqBXr17QarVwdXUttUx4eDj69u2LoUOHYuHChXBzc8P48eNRu3Zt9O3b1+afmYhsiz0zRFTtPvvsMzz11FN44YUX0Lp1a5w5cwabNm2Cl5cXAEtvy4QJE9CyZUvcf//9kMvlWLFiRbnbql27NiZPnozx48cjICAAI0aMKHe5xYsXo02bNujduzc6duwIURQRExNTZmiJiByPIHJAmIiIiBwYe2aIiIjIoTHMEBERkUNjmCEiIiKHxjBDREREDo1hhoiIiBwawwwRERE5NIYZIiIicmgMM0REROTQGGaIiIjIoTHMEBERkUNjmCEiIiKH9v9V9fLTCLIQEwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZXFJREFUeJzt3XlcFPX/B/DX7L3cN4KggOKtiJo3qWWWV9qhqVnZNy1LxaNLO0yzX5alKd5ZqZWmlUcelJmlouYN5n0LKCpy3wu7O78/EARBhYVldpfX8/GYx+x8dmb2zYTti89nDkEURRFEREREVkomdQFEREREVcEwQ0RERFaNYYaIiIisGsMMERERWTWGGSIiIrJqDDNERERk1RhmiIiIyKoppC7A3IxGIxISEuDo6AhBEKQuh4iIiCpAFEVkZmbC19cXMtn9+15sPswkJCTA399f6jKIiIjIBPHx8fDz87vvOjYfZhwdHQEUHgwnJyeJqyEiIqKKyMjIgL+/f/H3+P3YfJgpGlpycnJimCEiIrIyFTlFhCcAExERkVVjmCEiIiKrxjBDREREVs3mz5khIiJpGY1G5OfnS10GWRilUgm5XF4t+2KYISIis8nPz8fly5dhNBqlLoUskIuLC+rUqVPl+8AxzBARkVmIoojr169DLpfD39//gTc+o9pDFEXk5OQgMTERAODj41Ol/THMEBGRWej1euTk5MDX1xd2dnZSl0MWRqvVAgASExPh5eVVpSEnxmQiIjILg8EAAFCpVBJXQpaqKOQWFBRUaT8MM0REZFZ8Lh7dS3X9bjDMEBERkVWTNMzs3r0b/fv3h6+vLwRBwMaNG0u9L4oipk2bBl9fX2i1WnTv3h0nT56UplgiIiKySJKGmezsbISEhGDBggXlvj9r1izMmTMHCxYswKFDh1CnTh089thjyMzMrOFKiYiIyFJJGmZ69+6NTz75BE8//XSZ90RRxNy5c/H+++/j6aefRosWLbBy5Urk5ORg9erVElRbtr4dp29CFEWpSyEiomo0YsQIDBw4sEz7zp07IQgC0tLSarwmuj+LPWfm8uXLuHHjBnr16lXcplar0a1bN+zbt++e2+l0OmRkZJSazOHHA3F4ZeVhvPbDEaTnVO0sbCIiIjKdxd5n5saNGwAAb2/vUu3e3t6IjY2953YzZ87E9OnTzVobAAgAVHIZ/jx1EycjojB/WCja1HM1++cSEVkrURSRW2CQ5LO1SjmvqrJhFhtmitz9yyeK4n1/IadMmYJJkyYVL2dkZMDf37/a6xresT5C/Fww9qejiE3OweAl/+KdJxpjZNcgyGT8B0NEdLfcAgOaTd0myWef+vhx2Kks/iuPTGSx/2Xr1KkDoLCHpuRtjhMTE8v01pSkVquhVqvNXh8AtPRzxuZxXTFl/XFs/e86Po08g/2XUvDloBC42fMmUURE1mrLli1wcHAo1VZ0E0CyPBYbZgIDA1GnTh1s374doaGhAAofWLZr1y58/vnnEld3h5NGiQVDQ9EpyB0fbzmFv88kom9EFCKGhuKhADepyyMishhapRynPn5css+ujB49emDx4sWl2g4cOIDhw4dXZ1lUTSQNM1lZWbhw4ULx8uXLlxETEwM3NzfUq1cPEyZMwKefforg4GAEBwfj008/hZ2dHYYNGyZh1WUJgoDhHeujTT1XjF19FJeSsjHk6/2Y9FgjvN6tAYediIhQ+P9Kaxnqsbe3R8OGDUu1Xb16VaJq6EEk/a06fPgwevToUbxcdK7LSy+9hBUrVuCdd95Bbm4u3njjDaSmpqJDhw74888/4ejoKFXJ99XM1wmbxnXFBxuOY2NMAr7Ydhb7LyXjq+daw8OhZoa+iIiIahtJL83u3r07RFEsM61YsQJAYYqfNm0arl+/jry8POzatQstWrSQsuQHclAr8NVzrfH5My2hUcoQdT4JfeZFYf+lZKlLIyIiskkWe58ZayYIAp57qB5+G9MVDb0ckJipw7Bl+zHvr/MwGHmTPSIiouokiDZ+C9uMjAw4OzsjPT0dTk5ONf75Ofl6TP3tJH49UjjW2qWhO756rjW8HDU1XgsRUU3Ky8vD5cuXERgYCI2G/8+jsu73O1KZ72/2zJiZnUqBLweFYPagEGiVcuy9kIw+8/Zgz/kkqUsjIiKyCQwzNeSZtn7YPK4rmtRxRFKWDi98dwBz/jwLvcEodWlERERWjWGmBjX0csDGMV0wtL0/RBGI+PsChn1zADcz8qQujYiIyGoxzNQwjVKOmU+3wrwhrWGvkuPg5RT0nheFnWcTpS6NiIjIKjHMSGRA67rYEh6GZj5OSMnOx4jlh/D5H2c47ERERFRJDDMSCvSwx/o3OuOFjvUBAIt3XsSQr/cjIS1X4sqIiIisB8OMxDRKOWYMbIFFz7eBo1qBw7Gp6BMRhR2nb0pdGhERkVVgmLEQfVr6YGt4GFr5OSMtpwCvrDyMT7acQr6ew05ERET3wzBjQeq52+GX0Z3wcpcAAMA3ey5j8NJ/EZ+SI21hREREFoxhxsKoFXJ81L85lr7QFk4aBWLi09A3Igp/nLghdWlERFTL7Ny5E4IgIC0tTepS7othxkI93rwOIseHobW/CzLy9Bj94xFM23QSOr1B6tKIiGzaiBEjMHDgwDLtFf1iX7FiBVxcXMxSG5WPYcaC+bkWDju9+nAQAGDFvit4dvG/iE3OlrgyIiKqqvz8fKlLsBkMMxZOKZfhvT5N8d2IdnCxU+L4tXT0jdiDLf8lSF0aEVHliCKQny3NVEPPVN65cydefvllpKenQxAECIKAadOmAQACAgLwySefYMSIEXB2dsaoUaMAAO+++y4aNWoEOzs7BAUF4cMPP0RBQUHxPqdNm4bWrVtj6dKl8Pf3h52dHQYNGlSqh6ioN2n69Onw8vKCk5MTXnvttVKBSRRFzJo1C0FBQdBqtQgJCcGvv/5aqv7IyEg0atQIWq0WPXr0wJUrV8x2rKqTQuoCqGIeaeKNyPAwhP8UjcOxqRi7Ohr/XkzGh/2aQaOUS10eEdGDFeQAn/pK89nvJQAqe7N/TOfOnTF37lxMnToVZ8+eBQA4ODgUv//FF1/gww8/xAcffFDc5ujoiBUrVsDX1xfHjx/HqFGj4OjoiHfeead4nQsXLuDnn3/G5s2bkZGRgVdeeQVjxozBqlWritfZsWMHNBoN/vnnH1y5cgUvv/wyPDw88H//938AgA8++ADr16/H4sWLERwcjN27d2P48OHw9PREt27dEB8fj6effhqjR4/G66+/jsOHD+PNN9809yGrFgwzVsTXRYs1r3bEnO3nsGjnRaw6EIejcWlYOCwUQZ4OD94BERFVyJYtW0qFEAAwGB58zqJKpYKzszMEQUCdOnXKvP/II4/grbfeKtVWMtgEBATgzTffxNq1a0uFmby8PKxcuRJ+fn4AgPnz56Nv376YPXt28eeoVCp89913sLOzQ/PmzfHxxx/j7bffxowZM5Cbm4s5c+bg77//RqdOnQAAQUFB2LNnD5YuXYpu3bph8eLFCAoKwldffQVBENC4cWMcP34cn3/+eQWPmnQYZqyMQi7DO080QYcgd0xaG4PT1zPQb/4efPpUSwwMrSt1eURE96a0K+whkeqzK6FHjx5YvHhxqbYDBw5g+PDhVSqjXbt2Zdp+/fVXzJ07FxcuXEBWVhb0ej2cnJxKrVOvXr3iIAMAnTp1gtFoxNmzZ4vDTEhICOzs7Eqtk5WVhfj4eCQmJiIvLw+PPfZYqf3m5+cjNDQUAHD69Gl07NgRgiCU2oc1YJixUt0aeSJyfOGw04HLKZiwNgb/XkzGtCebQ6visBMRWSBBqJGhnupgb2+Phg0blmq7evVqtey3pP3792PIkCGYPn06Hn/8cTg7O2PNmjWYPXv2ffdTFDhKBo/7rWs0Ft6AdevWrahbt/Qfvmq1GkDhOTXWimHGink7abBqZAdE/H0B8/8+j7WH4xETn4aFz4eioZej1OUREdVKKpWqQkNSALB3717Ur18f77//fnFbbGxsmfXi4uKQkJAAX9/Cc47+/fdfyGQyNGrUqHidY8eOITc3F1qtFkBhUHJwcICfnx9cXV2hVqsRFxeHbt26lVtLs2bNsHHjxlJt+/fvr9DPITVezWTlFHIZJj3WCD++0gEeDmqcvZmJ/vP34tcjVf8LgoiIKi8gIABZWVnYsWMHkpKSkJNz77u4N2zYEHFxcVizZg0uXryIiIgIbNiwocx6Go0GL730Eo4dO4aoqCiEh4dj8ODBpc7Lyc/PxyuvvIJTp07h999/x0cffYSxY8dCJpPB0dERb731FiZOnIiVK1fi4sWLiI6OxsKFC7Fy5UoAwOjRo3Hx4kVMmjQJZ8+exerVq7FixYpqPz7mwDBjI7o09EDk+K7o0tAduQUGvPXLMUz6OQY5+XqpSyMiqlU6d+6M0aNH47nnnoOnpydmzZp1z3UHDBiAiRMnYuzYsWjdujX27duHDz/8sMx6DRs2xNNPP40+ffqgV69eaNGiBRYtWlRqnUcffRTBwcF4+OGHMXjwYPTv37/4snAAmDFjBqZOnYqZM2eiadOmePzxx7F582YEBgYCKDwvZ926ddi8eTNCQkKwZMkSfPrpp9VzUMxMEK15kKwCMjIy4OzsjPT09DInVNkig1HEwn8uYO5f52AUgQae9lj4fBs0qWP7PzsRWZa8vDxcvnwZgYGB0Gg0UpdjtaZNm4aNGzciJibmnuuMGDECaWlpZYaJLN39fkcq8/3NnhkbI5cJCH80GKtHdYS3kxoXb2VjwIK9WHMwzqpP7iIiIroXhhkb1THIHZHhYejWyBM6vRGT1x/HhLUxyNJx2ImIqCp69+4NBweHcidrGZaxNRxmsnFGo4iluy/hyz/PwmAUEehhjwXDQtHc11nq0ojIxtnqMNO1a9eQm5tb7ntubm5wc3Or4YqsV3UNM/HSbBsnkwl4vXsDPBTginE/ReNyUjaeWrQPH/ZrhuEd6lXoHgVERHTH3fdpIelxmKmWaBfghsjwMPRs6oV8vREfbjyBsaujkZFX8OCNiYiILBjDTC3iaq/Cshfb4YO+TaGQCdh6/Dr6RezBf1fTpC6NiIjIZAwztYwgCBgZFoRfRndCXRct4lJy8MzifVi+9zKvdiIiIqvEMFNLhdZzRWR4GB5v7o0Cg4jpm09h9I9HkJ7DYSciIrIuDDO1mLOdEkuGt8W0/s2gksuw7eRN9ImIQnRcqtSlERERVRjDTC0nCAJGdAnEutc7o56bHa6l5WLQkn+xbPclGI0cdiIiIsvHMEMAgJZ+ztgS3hV9W/lAbxTxf5GnMfL7w0jNzpe6NCKiWiMgIABz586ttv1duXIFgiDc91EItoBhhoo5aZRYMDQUnwxsAZVChr/PJKJPRBQOX0mRujQiIjKj/Hzr/sOVYYZKEQQBwzvWx4Y3OiPQwx7X0/Pw3Nf7sWjnBQ47EVGViKKInIIcSabKXq0piiJmzZqFoKAgaLVahISE4NdffwUA7Ny5E4IgYNu2bQgNDYVWq8UjjzyCxMRE/P7772jatCmcnJwwdOhQ5OTkFO+ze/fuGDt2LMaOHQsXFxe4u7vjgw8+KK6te/fuiI2NxcSJEyEIAgRBQHZ2NpycnIo/u8jmzZthb2+PzMzM+/4cRU/EDg0NhSAI6N69O4DCB1MOHDgQM2fOhK+vLxo1agQA+PHHH9GuXTs4OjqiTp06GDZsGBITE4v3V/Szb926FSEhIdBoNOjQoQOOHz9evE5sbCz69+8PV1dX2Nvbo3nz5oiMjKzU8a8s3gGYytXc1xmbx3XF+xuO47eYBMz64yz2X0rBnMEh8HBQS10eEVmhXH0uOqzuIMlnHxh2AHZKuwqv/8EHH2D9+vVYvHgxgoODsXv3bgwfPhyenp7F60ybNg0LFiyAnZ0dBg8ejMGDB0OtVmP16tXIysrCU089hfnz5+Pdd98t3mblypV45ZVXcODAARw+fBivvvoq6tevj1GjRmH9+vUICQnBq6++ilGjRgEA7O3tMWTIECxfvhzPPvts8X6Klh0dHe/7cxw8eBDt27fHX3/9hebNm0OlUhW/t2PHDjg5OWH79u3FgSo/Px8zZsxA48aNkZiYiIkTJ2LEiBFlwsjbb7+NefPmoU6dOnjvvffw5JNP4ty5c1AqlRgzZgzy8/Oxe/du2Nvb49SpU3BwcKjwsTcFwwzdk4NagbnPtUbnBu6Y+ttJ7D53C33mRSFiaCg6BrlLXR4RkVlkZ2djzpw5+Pvvv9GpUycAQFBQEPbs2YOlS5fi1VdfBQB88skn6NKlCwDglVdewZQpU3Dx4kUEBQUBAJ599ln8888/pcKMv78/vvrqKwiCgMaNG+P48eP46quvMGrUKLi5uUEulxf3ihQZOXIkOnfujISEBPj6+iIpKQlbtmzB9u3bH/izFIUvd3f3UvsECoPSN998Uyrg/O9//yt+HRQUhIiICLRv3x5ZWVmlAslHH32Exx57DEBhQPPz88OGDRswePBgxMXF4ZlnnkHLli2L92NuDDN0X4Ig4LmH6qG1vyvGrD6KC4lZGLZsPyb0bIQxPRpCLuOznYioYrQKLQ4MOyDZZ1fUqVOnkJeXV/xlXSQ/Px+hoaHFy61atSp+7e3tDTs7u1Jf3N7e3jh48GCpfXTs2LHUM/E6deqE2bNnw2AwQC6Xl1tP+/bt0bx5c3z//feYPHkyfvjhB9SrVw8PP/xwhX+m8rRs2bJUkAGA6OhoTJs2DTExMUhJSYHRaAQAxMXFoVmzZqXqLuLm5obGjRvj9OnTAIDw8HC8/vrr+PPPP9GzZ08888wzpY6VOfCcGaqQxnUcsWlsFzzTxg9GEZiz/Rxe/O4AEjPzpC6NiKyEIAiwU9pJMlXmobpFX+Bbt25FTExM8XTq1KlS564olcpSP1vJ5aK2on1V1ciRI7F8+XIAhUNML7/8cpUfFGxvb19qOTs7G7169YKDgwN+/PFHHDp0CBs2bABQsROEi+oZOXIkLl26hBdeeAHHjx9Hu3btMH/+/CrV+iAMM1RhdioFZg8OwZeDQqBVyrH3QjL6zNuDvReSpC6NiKjaNGvWDGq1GnFxcWjYsGGpyd/fv0r73r9/f5nl4ODg4l4ZlUoFg8FQZrvhw4cjLi4OEREROHnyJF566aUKfV5Rz0t5+7zbmTNnkJSUhM8++wxhYWFo0qRJqZN/7/VzpKam4ty5c2jSpElxm7+/P0aPHo3169fjzTffxLJlyypUr6k4zESV9mxbP7T2d8aYVdE4ezMTw789gHE9GmJ8z0YcdiIiq+fo6Ii33noLEydOhNFoRNeuXZGRkYF9+/bBwcEB9evXN3nf8fHxmDRpEl577TUcPXoU8+fPx+zZs4vfDwgIwO7duzFkyBCo1Wp4eHgAAFxdXfH000/j7bffRq9eveDn51ehz/Py8oJWq8Uff/wBPz8/aDQaODs7l7tuvXr1oFKpMH/+fIwePRonTpzAjBkzyl33448/hru7O7y9vfH+++/Dw8MDAwcOBABMmDABvXv3RqNGjZCamoq///4bTZs2rcRRqjz2zJBJGno5YuOYLhjykD9EEYj4+wKGLduPG+kcdiIi6zdjxgxMnToVM2fORNOmTfH4449j8+bNxZc6m+rFF19Ebm4u2rdvjzFjxmDcuHHFJxQDhSHhypUraNCgQakrp4DCk4zz8/NLnaT7IAqFAhEREVi6dCl8fX0xYMCAe67r6emJFStW4JdffkGzZs3w2Wef4csvvyx33c8++wzjx49H27Ztcf36dWzatKlUL9CYMWPQtGlTPPHEE2jcuDEWLVpU4ZpNIYg2/qjkjIwMODs7Iz09HU5OTlKXY5N+i7mG99YfR3a+AW72Knz1XGt0a+T54A2JyKbl5eXh8uXLCAwMhEajkbocyXXv3h2tW7c2+Q6/q1atwvjx45GQkFDmxN2asnPnTvTo0QOpqalwcXGp8v7u9ztSme9v9sxQlQ1oXRebx3VFUx8npGTn46XvDuLzP85Ab6ieE9+IiGqznJwcnDx5EjNnzsRrr70mWZCxZAwzVC2CPB2w4Y3OGN6xHgBg8c6LGPL1fiSk5UpcGRGRdZs1axZat24Nb29vTJkypdR7n376KRwcHMqdevfuLVHFNY/DTFTttvyXgCnrjiNTp4eLnRKzB4Xg0abeUpdFRDWMw0zml5KSgpSU8p+fp9VqUbdu3RquqHKqa5iJVzNRtevXyhct6zpj7OpoHL+WjldWHsaosEC880QTKOXsDCQiqi5ubm5wc3OTugzJ8ZuFzKK+uz1+fb0TRnQOAAAsi7qMQUv+RXxKzv03JCKbY+MDAFQF1XVTQQ4zkdltO3kDb/9yDBl5ejhpFPhiUAgeb17nwRsSkVUzGAw4f/487Ozs4OnpWeU71pLtEEUR+fn5uHXrFgwGA4KDgyGTle5fqcz3N8MM1Yj4lByM+ykaMfFpAICXuwRgcu8mUCvKfxYJEdmGrKwsXL16lb0zVC47Ozv4+PiUe4UWw0wJDDOWo8BgxKw/zmBZ1GUAQMu6zlg4rA3qudtJXBkRmZPBYEBBQYHUZZCFkcvlUCgU9+yxY5gpgWHG8uw4fRNv/nIMaTkFcFQr8PmzrdCnpY/UZRERkQXhTfPIoj3a1BuR4WFoV98VmTo93lh1FB9sPI68ggc/CI2IiOhuDDMkCV8XLX56tSNe794AAPDj/jg8vWgfLidlS1wZERFZG4YZkoxSLsO7TzTByv+1h5u9CqeuZ6BfRBR+i7kmdWlERGRFGGZIct0aeeL38WHoEOiG7HwDxq+JweR1/yE3n8NORET0YBYdZvR6PT744AMEBgZCq9UiKCgIH3/8cbXdZIcsh7eTBqtGdkD4Iw0hCMCaQ/EYuHAvLiRmSl0aERFZOIsOM59//jmWLFmCBQsW4PTp05g1axa++OILzJ8/X+rSyAwUchkm9WqMH1/pAA8HNc7ezET/+Xvx65GrUpdGREQWzKIvze7Xrx+8vb3x7bffFrc988wzsLOzww8//FDuNjqdDjqdrng5IyMD/v7+vDTbyiRm5mHi2hjsvZAMAHimjR9mDGwOOxUfJ0ZEVBvYzKXZXbt2xY4dO3Du3DkAwLFjx7Bnzx706dPnntvMnDkTzs7OxZO/v39NlUvVyMtRg+//1wGTHmsEmQCsO3oV/efvwdkbHHYiIqLSLLpnRhRFvPfee/j8888hl8thMBjwf//3f5gyZco9t2HPjO3ZfykZ4T9FIzFTB7VChulPNsdzD/nzOS9ERDbMZnpm1q5dix9//BGrV6/G0aNHsXLlSnz55ZdYuXLlPbdRq9VwcnIqNZF16xjkjsjxYXi4kSd0eiMmrz+OCWtjkKXTS10aERFZAIvumfH398fkyZMxZsyY4rZPPvkEP/74I86cOVOhffBxBrbDaBSxZPdFzP7zHAxGEYEe9lgwLBTNfZ2lLo2IiKqZzfTM5OTklHkkuFwu56XZtZRMJuCN7g2x5tWO8HHW4HJSNp5atA8/7I/lE3mJiGoxiw4z/fv3x//93/9h69atuHLlCjZs2IA5c+bgqaeekro0ktBDAW6IDA/DI028kK834sONJzD2p2hk5PGpvEREtZFFDzNlZmbiww8/xIYNG5CYmAhfX18MHToUU6dOhUqlqtA+OMxku4xGEd/uuYzP/zgDvVFEPTc7LBzWBi39OOxERGTtKvP9bdFhpjowzNi+o3GpGLc6GtfScqGSy/BenyZ4qXMAr3YiIrJiNnPODFFFtKnnisjwMPRq5o18gxHTNp/C6B+PID2Hw05ERLUBwwzZBGc7JZa+0BYf9W8GpVzAtpM30Xd+FKLjUqUujYiIzIxhhmyGIAh4uUsg1r3eGfXc7HA1NReDlvyLb6Iu8WonIiIbxjBDNqeVnwu2hHdF35Y+0BtFfLL1NEauPIzU7HypSyMiIjNgmCGb5KRRYsGwUHwysAVUChl2nElE34goHIlNkbo0IiKqZgwzZLMEQcDwjvWx4Y3OCPSwR0J6HgYv3Y/FOy/CaOSwExGRrWCYIZvX3NcZm8d1xYDWvjAYRXz+xxn8b+UhJGfpHrwxERFZPIYZqhUc1ArMfa41Pnu6JdQKGXaevYU+EVE4cClZ6tKIiKiKGGao1hAEAUPa18OmsV3RwNMeNzN0GLpsP+bvOA8Dh52IiKwWwwzVOo3rOGLzuK54po0fjCIwe/s5vPTdQdzK5LATEZE1YpihWslOpcDswSH4clAItEo59lxIQu95Udh7IUnq0oiIqJIYZqhWe7atHzaN7YLG3o5IytJh+LcHMGf7OQ47ERFZEYYZqvWCvR2xcUwXDHnIH6IIROw4j2HL9uNmRp7UpRERUQUwzBAB0Krk+OyZVpg3pDXsVXIcuJyCPvOisOvcLalLIyKiB2CYISphQOu62DyuK5r6OCE5Ox8vfXcQn/9xBnqDUerSiIjoHhhmiO4S5OmADW90xvMd6gEAFu+8iCFf70dCWq7ElRERUXkYZojKoVHK8X9PtcSCYaFwUCtwODYVfSKi8PeZm1KXRkREd2GYIbqPfq18sTW8K1rUdUJaTgH+t+IwPo08jQIOOxERWQyGGaIHqO9uj3Wvd8aIzgEAgK93X8KgJf/iamqOtIUREREAhhmiClEr5Jj2ZHMsGd4GjhoFYuLT0GdeFLadvCF1aUREtR7DDFElPNHCB5HhYQjxd0FGnh6v/XAE0zefRL6ew05ERFJhmCGqJH83O/zyWieM7BoIAFi+9wqeXbIPcckcdiIikgLDDJEJVAoZPujXDN+82A7OWiX+u5qOvhFRiDx+XerSiIhqHYYZoiro2cwbkePD0La+KzJ1eryx6ig+3HgCeQUGqUsjIqo1GGaIqqiuixZrXu2I0d0aAAB+2B+Lpxftw+WkbIkrIyKqHRhmiKqBUi7D5N5NsOLlh+Bmr8Kp6xnoFxGF32KuSV0aEZHNY5ghqkbdG3shMjwM7QPdkJ1vwPg1MZiy/j8OOxERmRHDDFE1q+OsweqRHRD+SEMIAvDTwXgMXLgXFxKzpC6NiMgmMcwQmYFCLsOkXo3xw/86wMNBjTM3MtF//h6sO3JV6tKIiGwOwwyRGXUN9kDk+K7o3MAduQUGvPnLMbz1yzHk5OulLo2IyGYwzBCZmZejBj+80gGTHmsEmQD8euQqBizYi3M3M6UujYjIJjDMENUAuUxA+KPBWDWyI7wc1TifmIUnF+zB2kNxEEVR6vKIiKwawwxRDerUwB2R48MQFuyBvAIj3l13HBPXxiBLx2EnIiJTMcwQ1TAPBzVWvtwe7zzRGHKZgI0xCXhy/h6cSsiQujQiIqvEMEMkAZlMwBvdG2LNqx3h46zBpaRsDFy0Fz/uj+WwExFRJTHMEEnooQA3bA0PwyNNvJCvN+KDjScw9qdoZOYVSF0aEZHVYJghkpibvQrfvNgO7/VpAoVMwNb/rqPf/D04fjVd6tKIiKwCwwyRBZDJBLz6cAP8PLoT6rpoEZucg2cW78OKvZc57ERE9AAMM0QWpE09V0SGh+GxZt7INxgxbfMpvP7jUaTnctiJiOheGGaILIyznRJfv9AWU/s1g1Iu4I+TN9A3Igox8WlSl0ZEZJEYZogskCAI+F/XQPw6ujP83bS4mpqLZxfvwzdRlzjsRER0F4YZIgsW4u+CreFh6NOyDvRGEZ9sPY1R3x9GWk6+1KUREVkMhhkiC+ekUWLhsDaYMaA5VHIZ/jqdiD7zonAkNkXq0oiILALDDJEVEAQBL3QKwPo3OiPA3Q4J6XkYvHQ/luy6CKORw05EVLsxzBBZkRZ1nbElPAz9Q3xhMIr47Pcz+N/KQ0jO0kldGhGRZBhmiKyMg1qBiCGtMfPpllArZNh59hb6REThwKVkqUsjIpIEwwyRFRIEAUPb18PGMV0Q5GmPmxk6DF22Hwv+Ps9hJyKqdQTRxOs8jUYjLly4gMTERBiNxlLvPfzww9VSXHXIyMiAs7Mz0tPT4eTkJHU5RNUuW6fHhxtPYH30NQBAWLAH5gxuDU9HtcSVERGZrjLf3yaFmf3792PYsGGIjS37hF9BEGAwGCq7S7NhmKHa4pfD8Zj620nkFhjg6ajGvOdao3NDD6nLIiIySWW+v00aZho9ejTatWuHEydOICUlBampqcVTSgovFyWSwqB2/tg0tgsaeTvgVqYOz397AF9tPwcDh52IyMaZ1DNjb2+PY8eOoWHDhuaoqVqxZ4Zqm9x8A6ZtOom1h+MBAB2D3BAxJBReThqJKyMiqjiz98x06NABFy5cMKk4IjIvrUqOz59thbnPtYa9So79l1LQe14Udp+7JXVpRERmoTBlo3HjxuHNN9/EjRs30LJlSyiVylLvt2rVqlqKIyLTDQyti1Z+zhizOhqnr2fgpeUH8Ub3BpjYsxEUcl7ISES2w6RhJpms7P8IBUGAKIo8AZjIwuQVGDBjyymsOhAHAHgowBURQ0Ph46yVuDIionsz+9VMsbGx932/fv36ld2l2TDMEBXa8l8CJq87jiydHq52SswZ3Bo9mnhJXRYRUbnMHmasCcMM0R1XkrIx9qejOHEtAwDw2sNBeOvxxlBy2ImILIzZTwAGgIsXL2LcuHHo2bMnHnvsMYSHh+PixYum7u6erl27huHDh8Pd3R12dnZo3bo1jhw5Uu2fQ1QbBHjYY93rnTGicwAAYOnuSxi89F9cTc2RtjAioiowKcxs27YNzZo1w8GDB9GqVSu0aNECBw4cQPPmzbF9+/ZqKy41NRVdunSBUqnE77//jlOnTmH27NlwcXGpts8gqm3UCjmmPdkcS4a3gaNGgei4NPSZF4U/T96QujQiIpOYNMwUGhqKxx9/HJ999lmp9smTJ+PPP//E0aNHq6W4yZMnY+/evYiKiqrwNjqdDjrdnScIZ2RkwN/fn8NMROWIT8nB2J+icSw+DQDwcpcATOndFCoFh52ISFpmH2Y6ffo0XnnllTLt//vf/3Dq1ClTdlmuTZs2oV27dhg0aBC8vLwQGhqKZcuW3XebmTNnwtnZuXjy9/evtnqIbI2/mx1+ea0TRnYNBAAs33sFzy7Zh7hkDjsRkfUwKcx4enoiJiamTHtMTAy8vKrv6ohLly5h8eLFCA4OxrZt2zB69GiEh4fj+++/v+c2U6ZMQXp6evEUHx9fbfUQ2SKVQoYP+jXDNy+2g7NWif+upqNvRBQij1+XujQiogox6aZ5o0aNwquvvopLly6hc+fOEAQBe/bsweeff44333yz2oozGo1o164dPv30UwCFw1snT57E4sWL8eKLL5a7jVqthlrNpwUTVVbPZt6IHB+GcauP4mhcGt5YdRQvdKyP9/s2hUYpl7o8IqJ7MinMfPjhh3B0dMTs2bMxZcoUAICvry+mTZuG8PDwaivOx8cHzZo1K9XWtGlTrFu3rto+g4juqOuixdrXOuHLP89i6a5L+GF/LI7GpWLBsDYI9LCXujwionKZNMwkCAImTpyIq1evFg/nXL16FePHj4cgCNVWXJcuXXD27NlSbefOnbOom/IR2RqlXIYpvZti+csPwc1ehZMJGegXEYXfYq5JXRoRUbmqfMmCo6MjHB0dq6OWMiZOnIj9+/fj008/xYULF7B69Wp8/fXXGDNmjFk+j4ju6NHYC5HhYWgf4IbsfAPGr4nBlPXHkVdgOY8rISICKnFpdps2bbBjxw64uroiNDT0vj0w1XVpNgBs2bIFU6ZMwfnz5xEYGIhJkyZh1KhRFd6edwAmqhq9wYh5O85jwT8XIIpAkzqOWDCsDRp6OUhdGhHZsMp8f1f4nJkBAwYUn1g7YMCAah1Oup9+/fqhX79+NfJZRFSWQi7Dm70ao32gGyaujcGZG5l4csEefDKwBZ5u4yd1eUREfDYTEVVcYkYexq+Jwb+XkgEAg9r6YfqA5rBTmXQtARHRPZn9pnlBQUFITk4u056WloagoCBTdklEVsDLSYMfR3bAhJ7BkAnAL0euYsCCvTh3M1Pq0oioFjMpzFy5cgUGQ9mTAHU6Ha5evVrloojIcsllAib0bIRVIzvCy1GN84lZeHLBHvx8KB423tFLRBaqUn3DmzZtKn69bds2ODs7Fy8bDAbs2LEDgYGB1VcdEVmsTg3cETk+DBPXxiDqfBLeWfcf/r2UjE8GtoC9msNORFRzKnXOjExW2JEjCEKZv8CUSiUCAgIwe/Zsizphl+fMEJmX0Shi8a6LmLP9HAxGEUEe9lj4fBs09eG/NyIyXWW+v006ATgwMBCHDh2Ch4eHyUXWFIYZoppx6EoKxq2Oxo2MPKgUMnzUvxmGta9XY1c+EpFtMfsJwJcvX7aKIENENeehADdEjg/DI028kK834v0NJzDup2hk5hVIXRoR2TiTL83Ozs7Grl27EBcXh/z8/FLvVefzmaqKPTNENctoFPHNnkuY9cdZ6I0iAtztsGBYG7So6/zgjYmIbjP7MFN0dDT69OmDnJwcZGdnw83NDUlJSbCzs4OXlxcuXbpkcvHVjWGGSBpH41IxbnU0rqXlQiWX4f2+TfFip/ocdiKiCjH7MNPEiRPRv39/pKSkQKvVYv/+/YiNjUXbtm3x5ZdfmlQ0EdmWNvVcsTW8Kx5r5o18gxEfbTqJN1YdRXouh52IqHqZFGZiYmLw5ptvQi6XQy6XQ6fTwd/fH7NmzcJ7771X3TUSkZVysVPh6xfaYmq/ZlDKBfx+4gb6zY/Csfg0qUsjIhtiUphRKpXFXcXe3t6Ii4sDADg7Oxe/JiICCm/l8L+ugfh1dGf4u2kRn5KLZ5fsw7d7LvMme0RULUwKM6GhoTh8+DAAoEePHpg6dSpWrVqFCRMmoGXLltVaIBHZhhB/F2wZF4beLeqgwCBixpZTGPX9EaTl5D94YyKi+zApzHz66afw8fEBAMyYMQPu7u54/fXXkZiYiK+//rpaCyQi2+GsVWLR820wY0BzqOQy/HX6JvpG7MGR2FSpSyMiK1bpq5lEUURcXBy8vLyg1WrNVVe14dVMRJbpxLV0jF19FFeSc6CQCXj78cYYFRYEmYxXOxGRma9mEkURwcHBfKAkEVVJi7rO2DyuK/qH+EJvFDHz9zN4ZeUhpGRz2ImIKqfSYUYmkyE4OBjJycnmqIeIahFHjRIRQ1pj5tMtoVbI8M/ZW+gzLwoHL6dIXRoRWRGTzpmZNWsW3n77bZw4caK66yGiWkYQBAxtXw8bx3RBkKc9bmTkYeiy/Vj4zwUYjbzaiYgezKQ7ALu6uiInJwd6vR4qlarMuTMpKZbzVxXPmSGyHtk6PT7ceALro68BAMKCPfDVc63h4aCWuDIiqmmV+f5WmPIBX331FW9JTkTVzl6twOzBIejYwB1TfzuBqPNJ6D0vCvOGtEbnBny4LRGVz+QHTVoL9swQWafzNzPxxqqjOJ+YBZkAhD8ajHGPBEPOq52IagWzP5tJLpcjMTGxTHtycjLkcrkpuyQiKiXY2xGbxnbF4HZ+MIrA3L/O44VvDyAxI0/q0ojIwpgUZu7VmaPT6aBSqapUEBFREa1KjlnPhuCr50Jgp5Jj38Vk9ImIQtT5W1KXRkQWpFLnzERERAAovPrgm2++gYODQ/F7BoMBu3fvRpMmTaq3QiKq9Z4K9UPLui4Yu/ooztzIxIvfHcSY7g0xoWcwFHKT/iYjIhtSqXNmAgMDAQCxsbHw8/MrNaSkUqkQEBCAjz/+GB06dKj+Sk3Ec2aIbEdegQEfbzmF1QcKH2jbPsANEUNDUcdZI3FlRFTdKvP9bdIJwD169MD69evh6upqcpE1hWGGyPZsPpaAKeuPI0unh5u9CrMHh6BHYy+pyyKiamT2MGNNGGaIbNOVpGyM/ekoTlzLAAC81i0Ib/VqDCWHnYhsgtnDjMFgwIoVK7Bjxw4kJibCaDSWev/vv/+u7C7NhmGGyHbp9AbMjDyDFfuuAADa1ndFxNBQ1HWx/IfgEtH9mf2meePHj8eKFSvQt29ftGjRgjfQIyJJqBVyTHuyOToGueHtX//DkdhU9JkXhdmDQtCzmbfU5RFRDTGpZ8bDwwPff/89+vTpY46aqhV7Zohqh/iUHIxdfRTHrqYDAEZ2DcQ7TzSBSsFhJyJrZPab5qlUKjRs2NCk4oiIzMHfzQ6/jO6MV7oWXnX5zZ7LGLT0X8Sn5EhcGRGZm0lh5s0338S8efPuefM8IiIpqBQyfNivGZa92A7OWiWOxaehT0QU/jhxXerSiMiMTBpmeuqpp/DPP//Azc0NzZs3h1KpLPX++vXrq63AquIwE1HtdC0tF+NWH8XRuDQAwEud6uO9vk2hVvCRK0TWwOwnALu4uOCpp54yqTgioppQ10WLta91wpd/nsXSXZew8t9YHIlLxYKhbRDgYS91eURUjXifGSKyef+cScSkn2OQmlMAB7UCM59uif4hvlKXRUT3YfYTgAFAr9fjr7/+wtKlS5GZmQkASEhIQFZWlqm7JCIyix5NvBA5PgztA9yQpdNj3E/ReG/DceQVGKQujYiqgUk9M7GxsXjiiScQFxcHnU6Hc+fOISgoCBMmTEBeXh6WLFlijlpNwp4ZIiqiNxgx96/zWLjzAkQRaFLHEQufb4MGng4P3piIapTZe2bGjx+Pdu3aITU1FVrtnTttPvXUU9ixY4cpuyQiMjuFXIa3Hm+M7//XHh4OKpy5kYn+8/dgQ/RVqUsjoiowKczs2bMHH3zwAVQqVan2+vXr49q1a9VSGBGRuYQFeyIyPAydgtyRk2/AxLXH8M6vx5Cbz2EnImtkUpgxGo0wGMr+o7969SocHR2rXBQRkbl5OWnw48gOmNAzGIIA/Hz4Kp5csAfnb2ZKXRoRVZJJYeaxxx7D3Llzi5cFQUBWVhY++ugjq3jEARERAMhlAib0bIRVIzvA01GN84lZ6L9gD34+HM+bghJZEZNOAE5ISECPHj0gl8tx/vx5tGvXDufPn4eHhwd2794NLy8vc9RqEp4ATEQVcStTh0k/xyDqfBIA4OnQupgxsAXs1SbdjouIqqgy398m32cmNzcXa9aswZEjR2A0GtGmTRs8//zzpU4ItgQMM0RUUUajiMW7LmL2n2dhFIEGnvZYMKwNmvrw/x1ENa1Gwoy1YJghoso6eDkF4T9F40ZGHtQKGT7q3xxD2/tDEASpSyOqNcx+afbMmTPx3XfflWn/7rvv8Pnnn5uySyIii9E+0A2R48PQvbEndHoj3ttwHOFrYpCZVyB1aURUDpPCzNKlS9GkSZMy7c2bN7eoG+YREZnKzV6F7156CJN7N4FcJmDzsQT0n78HJ66lS10aEd3FpDBz48YN+Pj4lGn39PTE9evXq1wUEZElkMkEjO7WAD+/1gm+zhpcSc7B04v24Yd/r/BqJyILYlKY8ff3x969e8u07927F76+fHgbEdmWtvVdETk+DD2beiPfYMSHv53EmNVHkcFhJyKLYNI1hyNHjsSECRNQUFCARx55BACwY8cOvPPOO3jzzTertUAiIkvgYqfCshfb4ru9V/DZ76cRefwGjl9Lx4KhbRDi7yJ1eUS1mklXM4miiMmTJyMiIgL5+fkAAI1Gg3fffRdTp06t9iKrglczEVF1i4lPw9jVR3E1NRdKuYApvZvi5S4BvNqJqBrV2KXZWVlZOH36NLRaLYKDg6FWq03dldkwzBCROaTnFuDdX//DHydvAAAea+aNL58NgbOdUuLKiGwD7zNTAsMMEZmLKIr4YX8sPtlyGvkGI+q6aDF/WCja1HOVujQiq2f2MJOdnY3PPvsMO3bsQGJiIoxGY6n3L126VNldmg3DDBGZ24lr6Ri7+iiuJOdAIRPwzhONMbJrEGQyDjsRmaoy398mnwC8a9cuvPDCC/Dx8eE4MRHVai3qOmPzuK54b8MJbD6WgE8jz2D/pRR8OSgEbvYqqcsjsnkm9cy4uLhg69at6NKlizlqqlbsmSGimiKKIn46GI/pm09CpzfCx1mDiKGheCjATerSiKyO2R9n4OrqCjc3/uMkIipJEAQM61APG8d0QZCnPa6n52HI1/ux8J8LMBpt+vREIkmZFGZmzJiBqVOnIicnp7rrua+ZM2dCEARMmDChRj+XiKgymvo4YfPYrng6tC4MRhFfbDuLl5YfRFKWTurSiGySScNMoaGhuHjxIkRRREBAAJTK0pciHj16tNoKLHLo0CEMHjwYTk5O6NGjB+bOnVuh7TjMRERSEUURvxy5iqm/nUBegRFejmrMHdIanRt4SF0akcUz+wnAAwcONGUzk2VlZeH555/HsmXL8Mknn9ToZxMRmUoQBAxu54/W/i4Ys+oozidmYfg3BxD+aDDGPRIMOa92IqoWVnGfmZdeeglubm746quv0L17d7Ru3fqePTM6nQ463Z2u3IyMDPj7+7NnhogklZtvwEebTuDnw1cBAJ0buGPukNbwctRIXBmRZTJ7z0yRI0eO4PTp0xAEAc2aNUNoaGhVdleuNWvW4OjRozh06FCF1p85cyamT59e7XUQEVWFViXHrGdD0DHIHR9sPIF9F5PRZ14UvnquNcKCPaUuj8iqmdQzk5iYiCFDhmDnzp1wcXGBKIpIT09Hjx49sGbNGnh6Vs8/zPj4eLRr1w5//vknQkJCAIA9M0Rk9S4kZmHs6qM4cyMTggCM6d4QE3oGQyE36ZoMIptk9kuzx40bh4yMDJw8eRIpKSlITU3FiRMnkJGRgfDwcJOKLs+RI0eQmJiItm3bQqFQQKFQYNeuXYiIiIBCoYDBYCizjVqthpOTU6mJiMiSNPRywMYxXTC0fT2IIrDgnwsY9s0B3EjPk7o0IqtkUs+Ms7Mz/vrrLzz00EOl2g8ePIhevXohLS2tWorLzMxEbGxsqbaXX34ZTZo0wbvvvosWLVo8cB+8momILNmmYwmYsu4/ZOcb4GavwpzBIeje2EvqsogkZ/ZzZoxGY5nLsQFAqVSWeU5TVTg6OpYJLPb29nB3d69QkCEisnRPhviiZV1njF19FCcTMjBi+SG81i0Ib/VqDCWHnYgqxKR/KY888gjGjx+PhISE4rZr165h4sSJePTRR6utOCKi2iDQwx7rXu+MFzvVBwAs3XUJQ77ej2tpuRJXRmQdTBpmio+Px4ABA3DixAn4+/tDEATExcWhZcuW+O233+Dn52eOWk3CYSYisiaRx6/j3V//Q6ZODxc7Jb58NgQ9m3lLXRZRjavM93eV7jOzfft2nDlzBqIoolmzZujZs6epuzIbhhkisjZxyTkY+9NR/Hc1HQAwsmsg3nmiCVQKDjtR7WG2MPP3339j7Nix2L9/f5kdp6eno3PnzliyZAnCwsJMq9wMGGaIyBrl64347Pcz+G7vZQBAiL8LFgwNhb+bncSVEdUMs12aPXfuXIwaNarcnTo7O+O1117DnDlzKlctERGVoVLIMLV/M3z9Qls4aRQ4Fp+GPhFR+OPEDalLI7I4lQozx44dwxNPPHHP93v16oUjR45UuSgiIirUq3kdRI4PQ2g9F2Tm6TH6xyOYtukkdPqy99kiqq0qFWZu3rxZ7iXZRRQKBW7dulXlooiI6A4/Vzv8/FonvNYtCACwYt8VPLv4X8QmZ0tcGZFlqFSYqVu3Lo4fP37P9//77z/4+PhUuSgiIipNKZdhSu+mWD7iIbjaKXH8Wjr6RuzBlv8SHrwxkY2rVJjp06cPpk6diry8srfczs3NxUcffYR+/fpVW3FERFRajyZeiBwfhocCXJGl02Ps6mi8v+E48go47ES1V6WuZrp58ybatGkDuVyOsWPHonHjxhAEAadPn8bChQthMBhw9OhReHtbzj0ReDUTEdkivcGIuX+dx8KdFyCKQFMfJywYFooGng5Sl0ZULcx6n5nY2Fi8/vrr2LZtG4o2FQQBjz/+OBYtWoSAgACTCzcHhhkismVR529h4toYJGXlw04lx6dPtcTA0LpSl0VUZTVy07zU1FRcuHABoigiODgYrq6uJhVrbgwzRGTrEjPyMH5NDP69lAwAeK6dP6Y92RxalVziyohMV2N3ALYGDDNEVBsYjCIidpxHxN/nIYpAY29HLHw+FA29HKUujcgkZrtpHhERWSa5TMDExxph1Ssd4Omoxtmbmeg/fy9+PXJV6tKIzI5hhojIhnRu6IHI8DCEBXsgt8CAt345hkk/xyBbp5e6NCKzYZghIrIxno5qrHy5Pd7q1QgyAVh/9BqeXLAHZ25kSF0akVkwzBAR2SCZTMDYR4Lx06iO8HZS4+KtbAxYsBc/HYyDjZ8qSbUQwwwRkQ3rEOSOyPAwdG/sCZ3eiCnrj2P8mhhkcdiJbAjDDBGRjXN3UOO7lx7C5N5NIJcJ2HQsAf0ionDiWrrUpRFVC4YZIqJaQCYTMLpbA/z8Wkf4OmtwJTkHTy/ehx/+vcJhJ7J6DDNERLVI2/puiBwfhp5NvZCvN+LD305izOqjyMgrkLo0IpMxzBAR1TIudiose7EdPujbFEq5gMjjN9AvYg/+u5omdWlEJmGYISKqhQRBwMiwIPwyujP8XLWIS8nBM4v34bs9lznsRFaHYYaIqBZr7e+CreFheKJ5HRQYRHy85RRe++EI0nM47ETWg2GGiKiWc9YqsXh4G0x/sjlUchn+PHUTfSKiEB2XKnVpRBXCMENERBAEAS91DsC61zujvrsdrqXlYtCSf7Fs9yUYjRx2IsvGMENERMVa+jljy7iu6NvKB3qjiP+LPI2R3x9Gana+1KUR3RPDDBERleKoUWLB0FD831MtoFLI8PeZRPSJiMLhKylSl0ZULoYZIiIqQxAEPN+hPja+0QVBHva4np6H577ej0U7L3DYiSwOwwwREd1TM18nbB7XFU+F1oXBKGLWH2cxYsUhJGXppC6NqBjDDBER3Ze9WoE5g0Mw65lW0Chl2H3uFvrMi8L+S8lSl0YEgGGGiIgqQBAEDH7IH5vGdkWwlwMSM3UYtmw/Inach4HDTiQxhhkiIqqwRt6O+G1sFwxq6wejCMzZfg4vfncAiZl5UpdGtRjDDBERVYqdSoEvBoVgzuAQaJVy7L2QjD7z9mDvhSSpS6NaimGGiIhM8nQbP2we1xVN6jgiKUuH4d8ewJw/z0JvMEpdGtUyDDNERGSyhl4O2DimC4a294coAhF/X8Cwbw7gRjqHnajmMMwQEVGVaJRyzHy6FeYNaQ17lRwHL6egT0QUdp5NlLo0qiUYZoiIqFoMaF0Xm8d1RTMfJ6Rk52PE8kP47PczKOCwE5kZwwwREVWbIE8HrH+jM17oWB8AsGTXRQz5ej8S0nIlroxsGcMMERFVK41SjhkDW2DhsDZwVCtwJDYVfSKi8Nepm1KXRjaKYYaIiMyibysfbAnvipZ1nZGWU4CR3x/GJ1tOIV/PYSeqXgwzRERkNvXd7fHr653wcpcAAMA3ey5j0NJ/EZ+SI21hZFMYZoiIyKzUCjk+6t8cS19oCyeNAsfi09A3Igp/nLghdWlkIxhmiIioRjzevA62hoehtb8LMvL0GP3jEUzbdBI6vUHq0sjKMcwQEVGN8Xezwy+jO+HVh4MAACv2XcGzi/9FbHK2xJWRNWOYISKiGqWUy/Ben6b49qV2cLFT4vi1dPSL2IOt/12XujSyUgwzREQkiUebeiMyPAzt6rsiU6fHmNVH8cHG48gr4LATVQ7DDBERScbXRYufXu2IN7o3AAD8uD8OTy3ah0u3siSujKwJwwwREUlKKZfhnSeaYOX/2sPdXoXT1zPQf/4e/BZzTerSyEowzBARkUXo1sgTkePD0DHIDdn5BoxfE4PJ6/5Dbj6Hnej+GGaIiMhieDtpsGpkR4Q/GgxBANYcisfAhXtxITFT6tLIgjHMEBGRRZHLBEx6rBF+fKUDPBzUOHszE/3n78WvR65KXRpZKIYZIiKySF0aeuD38WHo2tADuQUGvPXLMbz58zHk5OulLo0sDMMMERFZLE9HNVb+rz3efKwRZAKw7uhVPLlgL87e4LAT3cEwQ0REFk0uEzDu0WCsHtUR3k5qXEjMwpML9mDNwTiIoih1eWQBGGaIiMgqdAxyR2R4GLo18oROb8Tk9ccxYW0MsnQcdqrtGGaIiMhquDuosXzEQ3j3iSaQywT8FpOA/vP34GRCutSlkYQYZoiIyKrIZAJe794Aa1/tCB9nDS4nZeOpRfvww/5YDjvVUhYdZmbOnImHHnoIjo6O8PLywsCBA3H27FmpyyIiIgvQLsANkeFheLSJF/L1Rny48QTGro5GRl6B1KVRDbPoMLNr1y6MGTMG+/fvx/bt26HX69GrVy9kZ/NR8UREBLjaq/DNS+3wQd+mUMgEbD1+Hf0i9uC/q2lSl0Y1SBCtqE/u1q1b8PLywq5du/Dwww9XaJuMjAw4OzsjPT0dTk5OZq6QiIikEh2XirGro3EtLRdKuYApvZvi5S4BEARB6tJsUk5BDuIy4xCbEYtA50A0cm1UrfuvzPe3olo/2czS0wtP8HJzc7vnOjqdDjqdrng5IyPD7HUREZH0Quu5IjI8DO+sO4ZtJ2/i4y2nsP9SMr54NgTOdkqpy7NK2QXZiM+MR3xmPOIy4hCfGY/YjFjEZcQhMTexeL3RIaOrPcxUhtX0zIiiiAEDBiA1NRVRUVH3XG/atGmYPn16mXb2zBAR1Q6iKGLlviv4NPIM8g1G1HXRYsGwUITWc5W6NIuUrksvDipxmXGlgktyXvJ9t3VVu6K+U330b9AfgxsPrta6KtMzYzVhZsyYMdi6dSv27NkDPz+/e65XXs+Mv78/wwwRUS1z/Go6xqw+iriUHChkAt59oglGhgXWumEnURSRlJtUKqzEZ9x5nZF//xEMV7Ur/B394e/kj3qO9eDv6I8ApwDUc6oHZ7Wz2eq2uTAzbtw4bNy4Ebt370ZgYGCltuU5M0REtVdGXgGmrDuOrcevAwAebeKFLweFwNVeJXFl1UcURWTkZ+Bq1lUkZCXgWuY1XM26imtZ13At6xoSshKgM+juuw8vrRf8HP1Qz6leYWBx8i8MMI7+cFJJ891pM2FGFEWMGzcOGzZswM6dOxEcHFzpfTDMEBHVbqIoYtWBOHy85RTy9Ub4OGswf2go2gXc+/xLS5NTkFMcToqnzDuvswqy7ru9TJDBx96nMLA4lg4sfg5+sFPa1dBPUnE2E2beeOMNrF69Gr/99hsaN25c3O7s7AytVluhfTDMEBERAJxMSMfY1dG4nJQNuUzAm70aYfTDDSCTST/spDPocCP7RnGvSkJWQqngkpKX8sB9uGvcUdexLuo6lJ78HPxQx74OlHLrOgnaZsLMvcY1ly9fjhEjRlRoHwwzRERUJEunx/sbjuO3mAQAQLdGnpgzOATuDmqzfaYoikjOS8aN7Bu4nn0d17Ou43r29TvL2dcrFFYcVY7wc/C7E1RKBBdfB19oFRX7I99a2EyYqQ4MM0REVJIoilh7KB4fbToJnd4Ibyc15g0JRccgd5P2l6fPKxVMigJLUduN7BvIN+Y/cD9ahRa+9r6lQoqfgx/qOhaGFanOXZEKw0wJDDNERFSeszcy8caqI7h4KxsyAZjQsxHG9GgIeYlhp3xDPhJzEnEz52bhPPsmbubcLA4tN7JvVKhXRYAATztP+Nj7FE917OsUvnYoXHZSOdW6K63uh2GmBIYZIiIqT1Z+FmLTE/DFXwex58pFyBTp8HHPR6O6BqTnJ+Nmzs0KBRUAsFPYwdfB905AuSuseNl5QSmzrnNWpGazdwAmIiJ6EKNoRGpeaqkelRvZN4qXi9qyC+4850/rWzhPAbD/Run9qWQqeNt7w8vOC9523vC28y7uTSkKLexVkRbDDBERWQW9UY+UvBTcyr2FpJwk3Mq9hVs5twrnJdqSc5OhF/UV2qejyrE4oGhkrjhw3oCkNA1EvTOGtGmJiT0egpvGhUHFwjHMEBGRpAoMBUjKTUJibuKdkJJ7C0m5SXfCSs4tpOpSYRSNFdqnAAHuWvdSvSne9oXzojYvO68y91fJDTNg+uaTWHMoHj/uLsD5+DOIGBoKbyeNOX50qiY8Z4aIiKpd0V1pk3OTkZx3e8pNRmJOYqmQkpSbhDRdWoX3KxfkcNe4w8POA55aT3hoPeBp5wlP7e3JrrDNXetepXNUfou5hvfWH0d2vgHu9irMea41ujXyNHl/VHk8AbgEhhkiouphMBqQpksrDiZF85S8lFLLyXmFbXpjxYZ6AEAhUxQHklIB5XY4KXrtqnaFXCY34095x6VbWRi7Ohqnrhc+u+j17g3w5mONoJDLauTzazuGmRIYZoiI7q3AWIDUvNQyYaS8sFKZYZ4ijkpHuGvd4aZxKx72KQ4ntwOKp9YTzmpnizwvJa/AgP/beho/7I8FALSr74qIoaHwdbGtG9RZIoaZEhhmiKg2yTfkIyUvBal5qUjNS0WK7s7rVF3qnfa8FKTqUpGuS6/U/gUIcFG7wF3rDnfNnZBStFxy7qpxhVpuvjvr1qSt/13H5HX/IVOnh4udErMHheDRpt5Sl2XTGGZKYJghImsliiJy9Dmlw0leCtJ0aaUCSfHrvFTk6HMq/TlyQQ5XjWuZMOKucYeb1q3UsqvGFQpZ7bx2JDY5G2NXR+P4tcIAOCosEO880QRKDjuZBcNMCQwzRGQJRFFEdkE20nRpSNelI02XVjyVWs4rnBeFk4rcBv9uCkEBF40LXDWucFO7wVXjWjyVWla7wl3rDme1M2QCv5ArQqc3YGbkGazYdwUA0NrfBfOHhsLfzfKeOm3tGGZKYJghoupWYCxAui69VAgp8zqvdHt6fnqlTogtSSPXlAogxcFE41a87Ka5E1IclY4Wef6JLdl28gbe/uUYMvL0cNIoMOvZEDzRoo7UZdkUhpkSGGaI6F70Rj0y8zORkZ+BDF0G0vPTkaHLKD+clHidVZBl8meq5Wo4q53honaBi9ql3Nelwonatcy9UMgyxKfkYNxP0YiJTwMAjOgcgCl9mkCtqJmrrWwdw0wJDDNEts1gNCCrIAsZugxk5N8OJLfDScl5uu52e4m2qoQSAQIcVY5lgkipcKK587roPa2CV8HYkny9EV9sO4NlUZcBAC3rOmPBsFDUd7eXuDLrxzBTAsMMkeXTG/XILshGRn5GqZ6Se4WQkm1Z+VkQUbX/jdkr7eGkciqc1E737DEp+dpJ5VRj9zshy7fj9E28+csxpOUUwFGtwGfPtELfVj5Sl2XVGGZKYJghMi9RFKEz6Ap7R26Hkaz8rOJQklVQ+LrkdHebKVfg3E2r0BaHkaJg4qx2LhVSnFXOpd53UjvBUeXIpxlTtUhIy0X4T9E4HJsKABjesR4+6NsMGiVDrykYZkpgmCG6P6NoRHZBdrlho6jno6itVFgpuLN+gbGgWmrRKrRwUDqUCSH3DCm325xVzlDKGUhIegUGI+ZsP4fFOy8CAJr6OGHhsFAEeTpIXJn1YZgpgWGGbJXBaEC2PhvZ+dnIKshCdkHhPKsgq0xbdkE2svLvWi6xXlWHaQBAJsjgoHSAo8qxeLp72VFZ4j1V4XtOSic4qBzgoHJgDwnZjJ1nEzHp52NIyc6HvUqOT59uiQGt60pdllVhmCmBYYYsTYGh4E7ouEfIuF/wKFrO1edWa10qmap08CgRRpxUTsXhw0HpACeVU3EgcVI5wUHpADulHe9VQlTCjfQ8hK+JxsHLKQCAIQ/546P+zaFVcdipIhhmSmCYoarSG/XI0ecgp+D2pM9BdkE2sguyS7Vn62+3lbNeyeBiyk3Q7kclU8FB5QB7pT0clA6lXt+vzV51Z9lR5Wgzt50nsiR6gxERO85j/j8XIIpAY29HLHw+FA29HKUuzeIxzJTAMFP75BvyHxguikPIvYJJieU8Q55Z6iw6P6S8cFE8VzmU21ZyWSVXmaU+Iqo+e84nYcLaGCRl6aBVyjFjYAs829ZP6rIsGsNMCQwzlqvAUIAcfQ5y9bnF89yC3NLL+lzkFJR4XWK9uwNJ0dzUu6w+iEJQwE5pB3ulPewUhXOtUgt7hX1hm9KucLr9XtF6ZQKJqrC9tj7fhqi2SszMw4Q1Mdh3MRkA8EwbP8wY2Bx2Kv6/oDwMMyUwzFSNUTQWB4miAFEcKgruCh1F75UIH/cMI/pcs4WOIhq5plS4uFfYuHsde8WddUsGF/aAEFFVGYwiFv5zAXP/OgejCDT0csDCYW3QuA6Hne7GMFOCLYcZURSLz+fI0+chz5CHPH0ecvW5xa9LLufqc8u0Fb2+V/gw1xBLSQqZAnYKO2gVWmgVWtgp77zWKrR33lNqy6xXFDxKBhN7pT20Ci17PojIYv17MRnj10QjMVMHtUKGjwc0x+B2/nymVgkMMyVIFWZEUSwdKAx3gkTRcslwcXfYKFq+5zq3920QDTXy8wgQyg0b9wsaZda5u/32a16OS0S1UVKWDpN+Pobd524BAAa29sUnT7WEg5p/iAEMM6WYK8z8HvUxNl7agjxBQK4A5AHIg7FwEg3IraGQUUQuyKFVaKFRaKCRa6BRaMpd1iq0xcvF68g19w0bRevwLwYiouplNIpYsvsiZv95DgajiCAPeywY1gbNfG1rJMEUlfn+ZvwzUULqRexDLiACD7rfmMooQiMaoRFFaEURGqN4+7URGuPtNgjQCHJoBAW0MiU0MiU0chW0cvXtsKGBRqGFRmEHjdIOWqUDNCp7aFRO0GqcoFQ5AEo7QKktZ377tVwFMJAQEVkMmUzAG90bon2AG8b9FI1LSdkYuGgvpvZrhuc71OMfkRXEnhkTnb+4DWfidheGFKMRGoMeWqMBGoMeGn0+tAX50OrzoC7QQa7PAwpygILc21POnXk13Hm1wgR52YBTNFfZ3Z47mPZaoQVkvGEaEZGpUrPz8dYvx7DjTCIAoG8rH8x8uiWcNLVzKJ7DTCVY9AnAogjo88oGnJLz/Jx7v1f8+j7v52cDNTXkpbSveigq77WCVxERUe0giiK+3XMZn/1+BnqjiPrudlgwtA1a+jlLXVqNY5gpwaLDTE0xFBSGmnKDUC5QkH0nNOVn3163nNf3ajM3meJOUFLZ3w459rcnh8JJ7XBnWe1Y4j3728slX9sDCt7tlogsV3RcKsaujsa1tFyo5DK816cJXuocUKuGnRhmSmCYMTOjEdDn3icE5QD5Waa9NlTvbf9LkSlvByCHEkHHoZxw5Hif90osK+14PhIRVav0nAK8/esx/HnqJgDgieZ18PmzreCsrR3DTgwzJTDMWDGD/navUVHPUTmvdVmF4Sc/q8RyZonX2YXLRa+r+eGMdwj36CG6PS81Od2/TallMCIiAIXDTiv2XcGnkadRYBDh56rF/KGhCK3nKnVpZscwUwLDDJVi0N8JPkUhSFcyDGXeea9kUCoZjO4OUdVNkN8n9DwgEGlKhiJ7npRNZCP+u5qGsaujEZeSA4VMwOTeTfBK10CbHnZimCmBYYbMymgsMbSWVToMFS3riuaZgC6jxOu7pwxU79Vtwn3C0F2BSON8Oww5FwYijcudNp6ATWQRMvIKMGXdcWw9fh0A8GgTL3w5KASu9rb5b5RhpgSGGbIaRcHo7oBTXui5Vxgqmlfnc68U2hIhp2ToubvNpXRbUbvKnsNmRNVEFEX8eCAOM7acQr7eCF9nDSKGhqJdgJvUpVU7hpkSGGao1hFFQK+reBjKSy9sy8sofF20rMuonnoEedmAUxyG7m4rmrsAWpfCudqRYYjoLicT0jF2dTQuJ2VDLhPwZq9GGP1wA8hktvNvhWGmBIYZIhMZDaVDjq5E2CkVfMpru/26OnqIBPmdYFNyrnW9q8217HrsFSIblqXT4/0Nx/FbTAIAoFsjT8wZHAJ3B9u49QTDTAkMM0QSEcXC+xjdHXBKTvcKSHlpQG4aYNBVrQaZspwg5FqBUOQKKDVV+2yiGiCKItYeisdHm05CpzfC20mNiCGh6BDkLnVpVcYwUwLDDJEVK8gFclMLg01RwMlLK9uWm3rX+2mAsaBqn620A7RugJ3r7bnbfeauhXO1M68gI0mcuZGBMauO4uKtbMgEYGLPRnijR0PIrXjYiWGmBIYZolpIFAuvKrtfALpnKEo3/REgRUNi9wo79wpDvCM1VYNsnR4f/nYC649eAwB0aeiOuc+FwtPROn+/GGZKYJghokoxGguHv3JTgJzU2/OU+8xTC+cF2aZ/ptK+ROhxL5zsPQA7D8De/fb89rKde+F67AGie/jlcDym/nYSuQUGeDioMW9Ia3Rp6CF1WZXGMFMCwwwR1YiCvNs9PQ8IPSXbc1MB0Vj5zxJkhb069ww8Jd+7HYDkteMW+FTo/M1MjFl9FOduZkEQgHGPBGP8o8FWNezEMFMCwwwRWSyjsfBqsJJhJyf59pQEZCcVvs5Our2cXLi+KTTO5Qceey/A3hNw8Cx87eBVGJTY82P1cvMNmLbpJNYejgcAdAh0Q8TQUHg7WcfJ7QwzJTDMEJFN0ecX9uoUB5y7Ak9OcmHoKXovN6XyvT+C/E7QcfAsDDv2noVBp7jtdvBhr4/F2xh9De9tOI6cfAPc7VWY81xrdGvkKXVZD8QwUwLDDBHVakZD4cnNOeX08uQkAVmJQPatwikrsTD8VJbW7XbQuTvweJYNPzzZWRKXbmVhzOponL5eeDPMN7o3wKTHGkEht9weOIaZEhhmiIgqwVBQGHiyE4GsW4XzoqBz9zwnqfK9PlpXwKEO4Oh9e357cvAuPVfZm+fnq8XyCgyYseUUVh2IAwA8FOCKeUNC4euilbiy8jHMlMAwQ0RkJkZD4Xk+2bdKh59SwSexMBxlJVbu3j9qp7IBx8EbcPQpEYS8C9fjXZ4rZct/CZi87jiydHq42ikxe3AIHmniLXVZZTDMlMAwQ0RkAUSx8CTnzBtA1g0g82bZeeZ1IOtm4QNXK0qhLQw1jj5lQ4+TD+DoCzj5AmoH8/1sVig2ORtjVh/FiWuFw06vPhyEtx9vDKUFDTsxzJTAMENEZEVEsfABqFk3bwef2yGn+HXR/GblruxSOxWGGiffOwHHyQdwqns7+NQtvMKrFvXy6PQGzIw8gxX7rgAAQuu5YP7QUPi52klb2G0MMyUwzBAR2aj8nPv38mReBzISKv4EeLm6dG/O3WHHyadweEuuMO/PVcP+OHED7/x6DBl5ejhpFPhyUAh6Na8jdVkMMyUxzBAR1XK6TCDjOpBx7XbAuXZ7OQHITCicZ9+q2L4EWeEwlrNficm/9FzranU9PPEpORj3UzRi4tMAAC93CcCU3k2hUkg37MQwUwLDDBERPZBeVziEVRx2Eu4KQAmFc6P+wftS2t8j7NyenOoCCpX5f6ZKytcb8cW2M1gWdRkA0MrPGQuGtkE9d2mGnRhmSmCYISKiamE0FvbgZFwF0q8B6VdvT/F35hXq4RHK791x8b89r1f4wFKJ/HXqJt769RjScgrgqFbg82dboU9Lnxqvg2GmBIYZIiKqMQW5hb04xQHn6l2vrwL6vAfvR+MMuNQHXOvfngcUhhyX+oVzlXl7SxLScjHup2gciU0FALzQsT7e79sUGqXcrJ9bEsNMCQwzRERkMUSx8E7Mdwec9HggLR5Iiyu8GeGD2HvdDjr17go99Qt7d6rhERMFBiPmbD+HxTsvAgCa+Thh4fNtEOhRMzc0ZJgpgWGGiIisii6rMNykxgJpsWXnD7o6S5AVXpFVMuC41AfcAgHXwMLHSlTiBOWdZxMx6edjSMnOh71Kjk+fbokBretW8Yd8MJsLM4sWLcIXX3yB69evo3nz5pg7dy7CwsIqtC3DDBER2Yyimw+mxZUfdNLiHjyMpbQH3IIKw41b4O3XQYVBx6luuU9Mv5Geh/A10Th4ufDZXUPb++Oj/s3NOuxkU2Fm7dq1eOGFF7Bo0SJ06dIFS5cuxTfffINTp06hXr16D9yeYYaIiGoNUSx8dERxwLlyJ+ikXCns8cF9vvbl6sLzc4rDTlBxj47e0Q/zdl7Bgn8uQBSBxt6OWPh8GzT0Ms/dlW0qzHTo0AFt2rTB4sWLi9uaNm2KgQMHYubMmQ/cnmGGiIjoNr2usPcm5dLt6fKd12mx97/0XJADLvWQqvHDthuOOJ3viWsyXzzTqzt6d3kIkFVvL01lvr8t+jaG+fn5OHLkCCZPnlyqvVevXti3b1+52+h0Ouh0uuLljIwK3vmRiIjI1inUgEdw4XQ3g77wsvNSQed22Em9XDh8lXoZrriMIQBQdI7xjpk4FDMAD437vgZ/kNIsOswkJSXBYDDA27v00zy9vb1x48aNcreZOXMmpk+fXhPlERER2Q65onCIyTUAaPBI6feMxsJHRaRcApIvAikXISZdQEr8aThkx0Nbp5EUFRez6DBTRLjrrGtRFMu0FZkyZQomTZpUvJyRkQF/f3+z1kdERGTTZLI7D+oM6AoAEAC4A7iYmIEWrtLe0diiw4yHhwfkcnmZXpjExMQyvTVF1Go11Gp1TZRHRERU6zXwkv58VOmeIFUBKpUKbdu2xfbt20u1b9++HZ07d5aoKiIiIrIkFt0zAwCTJk3CCy+8gHbt2qFTp074+uuvERcXh9GjR0tdGhEREVkAiw8zzz33HJKTk/Hxxx/j+vXraNGiBSIjI1G/fn2pSyMiIiILYPH3makq3meGiIjI+lTm+9uiz5khIiIiehCGGSIiIrJqDDNERERk1RhmiIiIyKoxzBAREZFVY5ghIiIiq8YwQ0RERFaNYYaIiIisGsMMERERWTWLf5xBVRXd4DgjI0PiSoiIiKiiir63K/KgApsPM5mZmQAAf39/iSshIiKiysrMzISzs/N917H5ZzMZjUYkJCTA0dERgiBU674zMjLg7++P+Ph4PvfJjHicawaPc83gca4ZPM41w5zHWRRFZGZmwtfXFzLZ/c+KsfmeGZlMBj8/P7N+hpOTE/+x1AAe55rB41wzeJxrBo9zzTDXcX5Qj0wRngBMREREVo1hhoiIiKwaw0wVqNVqfPTRR1Cr1VKXYtN4nGsGj3PN4HGuGTzONcNSjrPNnwBMREREto09M0RERGTVGGaIiIjIqjHMEBERkVVjmCEiIiKrxjBzH4sWLUJgYCA0Gg3atm2LqKio+66/a9cutG3bFhqNBkFBQViyZEkNVWr9KnOs169fj8ceewyenp5wcnJCp06dsG3bthqs1npV9ne6yN69e6FQKNC6dWvzFmgjKnucdTod3n//fdSvXx9qtRoNGjTAd999V0PVWq/KHudVq1YhJCQEdnZ28PHxwcsvv4zk5OQaqtY67d69G/3794evry8EQcDGjRsfuI0k34UilWvNmjWiUqkUly1bJp46dUocP368aG9vL8bGxpa7/qVLl0Q7Oztx/Pjx4qlTp8Rly5aJSqVS/PXXX2u4cutT2WM9fvx48fPPPxcPHjwonjt3TpwyZYqoVCrFo0eP1nDl1qWyx7lIWlqaGBQUJPbq1UsMCQmpmWKtmCnH+cknnxQ7dOggbt++Xbx8+bJ44MABce/evTVYtfWp7HGOiooSZTKZOG/ePPHSpUtiVFSU2Lx5c3HgwIE1XLl1iYyMFN9//31x3bp1IgBxw4YN911fqu9Chpl7aN++vTh69OhSbU2aNBEnT55c7vrvvPOO2KRJk1Jtr732mtixY0ez1WgrKnusy9OsWTNx+vTp1V2aTTH1OD/33HPiBx98IH700UcMMxVQ2eP8+++/i87OzmJycnJNlGczKnucv/jiCzEoKKhUW0REhOjn52e2Gm1NRcKMVN+FHGYqR35+Po4cOYJevXqVau/Vqxf27dtX7jb//vtvmfUff/xxHD58GAUFBWar1dqZcqzvZjQakZmZCTc3N3OUaBNMPc7Lly/HxYsX8dFHH5m7RJtgynHetGkT2rVrh1mzZqFu3bpo1KgR3nrrLeTm5tZEyVbJlOPcuXNnXL16FZGRkRBFETdv3sSvv/6Kvn371kTJtYZU34U2/6BJUyQlJcFgMMDb27tUu7e3N27cuFHuNjdu3Ch3fb1ej6SkJPj4+JitXmtmyrG+2+zZs5GdnY3Bgwebo0SbYMpxPn/+PCZPnoyoqCgoFPxfRUWYcpwvXbqEPXv2QKPRYMOGDUhKSsIbb7yBlJQUnjdzD6Yc586dO2PVqlV47rnnkJeXB71ejyeffBLz58+viZJrDam+C9kzcx+CIJRaFkWxTNuD1i+vncqq7LEu8tNPP2HatGlYu3YtvLy8zFWezajocTYYDBg2bBimT5+ORo0a1VR5NqMyv89GoxGCIGDVqlVo3749+vTpgzlz5mDFihXsnXmAyhznU6dOITw8HFOnTsWRI0fwxx9/4PLlyxg9enRNlFqrSPFdyD+3yuHh4QG5XF4m4ScmJpZJnEXq1KlT7voKhQLu7u5mq9XamXKsi6xduxavvPIKfvnlF/Ts2dOcZVq9yh7nzMxMHD58GNHR0Rg7diyAwi9dURShUCjw559/4pFHHqmR2q2JKb/PPj4+qFu3LpydnYvbmjZtClEUcfXqVQQHB5u1ZmtkynGeOXMmunTpgrfffhsA0KpVK9jb2yMsLAyffPIJe8+riVTfheyZKYdKpULbtm2xffv2Uu3bt29H586dy92mU6dOZdb/888/0a5dOyiVSrPVau1MOdZAYY/MiBEjsHr1ao55V0Blj7OTkxOOHz+OmJiY4mn06NFo3LgxYmJi0KFDh5oq3aqY8vvcpUsXJCQkICsrq7jt3LlzkMlk8PPzM2u91sqU45yTkwOZrPRXnlwuB3Cn54CqTrLvQrOeXmzFii77+/bbb8VTp06JEyZMEO3t7cUrV66IoiiKkydPFl944YXi9YsuR5s4caJ46tQp8dtvv+Wl2RVU2WO9evVqUaFQiAsXLhSvX79ePKWlpUn1I1iFyh7nu/Fqpoqp7HHOzMwU/fz8xGeffVY8efKkuGvXLjE4OFgcOXKkVD+CVajscV6+fLmoUCjERYsWiRcvXhT37NkjtmvXTmzfvr1UP4JVyMzMFKOjo8Xo6GgRgDhnzhwxOjq6+BJ4S/kuZJi5j4ULF4r169cXVSqV2KZNG3HXrl3F77300ktit27dSq2/c+dOMTQ0VFSpVGJAQIC4ePHiGq7YelXmWHfr1k0EUGZ66aWXar5wK1PZ3+mSGGYqrrLH+fTp02LPnj1FrVYr+vn5iZMmTRJzcnJquGrrU9njHBERITZr1kzUarWij4+P+Pzzz4tXr16t4aqtyz///HPf/99aynehIIrsXyMiIiLrxXNmiIiIyKoxzBAREZFVY5ghIiIiq8YwQ0RERFaNYYaIiIisGsMMERERWTWGGSIiIrJqDDNERERk1RhmiMiqXLlyBYIgICYm5r7rde/eHRMmTKiRmohIWgwzRGQWI0aMgCAIEAQBSqUSQUFBeOutt5CdnV2l/fr7++P69eto0aIFAGDnzp0QBAFpaWml1lu/fj1mzJhRpc8iIuugkLoAIrJdTzzxBJYvX46CggJERUVh5MiRyM7OxuLFi03ep1wuR506dR64npubm8mfQUTWhT0zRGQ2arUaderUgb+/P4YNG4bnn38eGzduhE6nQ3h4OLy8vKDRaNC1a1ccOnSoeLvU1FQ8//zz8PT0hFarRXBwMJYvXw6g9DDTlStX0KNHDwCAq6srBEHAiBEjAJQdZkpNTcWLL74IV1dX2NnZoXfv3jh//nzx+ytWrICLiwu2bduGpk2bwsHBAU888QSuX79u/gNFRFXCMENENUar1aKgoADvvPMO1q1bh5UrV+Lo0aNo2LAhHn/8caSkpAAAPvzwQ5w6dQq///47Tp8+jcWLF8PDw6PM/vz9/bFu3ToAwNmzZ3H9+nXMmzev3M8eMWIEDh8+jE2bNuHff/+FKIro06cPCgoKitfJycnBl19+iR9++AG7d+9GXFwc3nrrLTMcCSKqThxmIqIacfDgQaxevRo9evTA4sWLsWLFCvTu3RsAsGzZMmzfvh3ffvst3n77bcTFxSE0NBTt2rUDAAQEBJS7T7lcXjyc5OXlBRcXl3LXO3/+PDZt2oS9e/eic+fOAIBVq1bB398fGzduxKBBgwAABQUFWLJkCRo0aAAAGDt2LD7++OPqOgREZCbsmSEis9myZQscHByg0WjQqVMnPPzwwxg3bhwKCgrQpUuX4vWUSiXat2+P06dPAwBef/11rFmzBq1bt8Y777yDffv2VamO06dPQ6FQoEOHDsVt7u7uaNy4cfFnAoCdnV1xkAEAHx8fJCYmVumzicj8GGaIyGx69OiBmJgYnD17Fnl5eVi/fj2cnZ0BAIIglFpXFMXitt69eyM2NhYTJkxAQkICHn300SoN94iieM/2knUolcpS7wuCcM9tichyMMwQkdnY29ujYcOGqF+/fnFQaNiwIVQqFfbs2VO8XkFBAQ4fPoymTZsWt3l6emLEiBH48ccfMXfuXHz99dflfoZKpQIAGAyGe9bRrFkz6PV6HDhwoLgtOTkZ586dK/WZRGSdeM4MEdUoe3t7vP7663j77bfh5uaGevXqYdasWcjJycErr7wCAJg6dSratm2L5s2bQ6fTYcuWLfcMHfXr14cgCNiyZQv69OkDrVYLBweHUusEBwdjwIABGDVqFJYuXQpHR0dMnjwZdevWxYABA8z+MxORebFnhohq3GeffYZnnnkGL7zwAtq0aYMLFy5g27ZtcHV1BVDY2zJlyhS0atUKDz/8MORyOdasWVPuvurWrYvp06dj8uTJ8Pb2xtixY8tdb/ny5Wjbti369euHTp06QRRFREZGlhlaIiLrI4gcECYiIiIrxp4ZIiIismoMM0RERGTVGGaIiIjIqjHMEBERkVVjmCEiIiKrxjBDREREVo1hhoiIiKwawwwRERFZNYYZIiIismoMM0RERGTVGGaIiIjIqv0/1pX6EuPBXhkAAAAASUVORK5CYII=", "text/plain": [ "" ] @@ -679,7 +679,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "270956f59c804118a98b792ad6a864ae", + "model_id": "f38185fcb3dd4a6b9fe655d4e0b5b34b", "version_major": 2, "version_minor": 0 }, @@ -749,7 +749,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWA1JREFUeJzt3XdclPUDB/DPc5O9ZAiCAopbEbcoqQ1N1LThLNPKfmkqjpZWmrZMS1PcWamVpOXKQZlZGqiYiph7IkNElD0PuHt+f6AEggonx3N3fN6v173ueO65uw9P2n38fp8hiKIogoiIiMhEyaQOQERERPQwWGaIiIjIpLHMEBERkUljmSEiIiKTxjJDREREJo1lhoiIiEwaywwRERGZNIXUAQxNp9MhKSkJtra2EARB6jhERERUBaIoIjs7Gx4eHpDJ7j/2YvZlJikpCV5eXlLHICIiIj0kJCTA09PzvuuYfZmxtbUFULIx7OzsJE5DREREVZGVlQUvL6/S7/H7Mfsyc2dqyc7OjmWGiIjIxFRlFxHuAExEREQmjWWGiIiITBrLDBEREZk0s99nhoiITJdOp0NhYaHUMcgAlEol5HJ5jbwXywwRERmlwsJCxMbGQqfTSR2FDMTBwQH169d/6PPAscwQEZHREUUR169fh1wuh5eX1wNPmkamRRRF5OXlISUlBQDg7u7+UO/HMkNEREanuLgYeXl58PDwgJWVldRxyAAsLS0BACkpKXB1dX2oKSdWXSIiMjparRYAoFKpJE5ChnSnqBYVFT3U+7DMEBGR0eI19cxbTf33ZZkhIiIikyZpmfn7778xcOBAeHh4QBAEbNu2rdzzoihi9uzZ8PDwgKWlJXr16oXTp09LE5aIiIiMkqRlJjc3F/7+/li6dGmlz8+fPx8LFy7E0qVLceTIEdSvXx9PPPEEsrOzazkpERERGStJy0y/fv3w8ccf45lnnqnwnCiKWLRoEd577z0888wzaN26NdatW4e8vDyEhYVJkLZivr1nb0AURamjEBGRERkzZgwGDx5cYfm+ffsgCAIyMjJqPZO5M9p9ZmJjY5GcnIw+ffqULlOr1ejZsycOHjx4z9dpNBpkZWWVuxnCD4fj8cq6o3jt+2PIzHu4vbCJiIhIf0Z7npnk5GQAgJubW7nlbm5uiIuLu+fr5s6dizlz5hg0GwAIAFRyGX4/cwOnQyOwZGQA2jd0NPjnEhHVRaIoIr9IK8lnWyrlPKrKyBltmbnj7j9Aoije9w/VjBkzMG3atNKfs7Ky4OXlVeO5XujaCP6eDpj4YzTiUvMwdOUhvP1kM4zt4QuZjH/oiYhqUn6RFi1n7Zbks8982BdWKqP/uqzTjPa/Tv369QGUjNCUPc1xSkpKhdGastRqNdRqtcHzAUAbT3vsmNQDM7acxK5/r+PT8HOIupKGL4b4w8maJ3oiIqqrdu7cCRsbm3LL7pwIkGqe0ZYZHx8f1K9fH3v27EFAQACAkouO7d+/H/PmzZM43X/sLJRYOiIA3Xzr4cOdZ/DnuRT0D41A6IgAdPJ2kjoeEZFZsFTKcebDvpJ9dnX17t0bK1asKLfs8OHDeOGFF2oqFpUhaZnJycnBpUuXSn+OjY1FTEwMnJyc0LBhQ0yZMgWffvop/Pz84Ofnh08//RRWVlYYOXKkhKkrEgQBL3RthPYNHTExLBpXbuVi+FdRmPZEU4zv2ZjTTkRED0kQBJOa6rG2tkaTJk3KLUtMTJQojfmT9E/G0aNH0bt379Kf7+zrMnr0aKxduxZvv/028vPz8frrryM9PR1dunTB77//DltbW6ki31dLDztsn9QD7289iW0xSfh893lEXUnFl8Pawdmmdqa+iIiI6hpJD83u1asXRFGscFu7di2AkiY+e/ZsXL9+HQUFBdi/fz9at24tZeQHslEr8OWwdpj3bBtYKGWIuHgLwYsjEHUlVepoREREZslozzNjygRBwLBODfHLhB5o4mqDlGwNRq6OwuI/LkKr40n2iIiIapIgmvkpbLOysmBvb4/MzEzY2dnV+ufnFRZj1i+nselYyVxp9yb18OWwdnC1taj1LEREpqKgoACxsbHw8fGBhQX/f2mu7vffuTrf3xyZMTArlQJfDPHHgiH+sFTKceBSKoIXRyLy4i2poxEREZkFlpla8mwHT+yY1APN69viVo4Go749jIW/n0exVid1NCIiIpPGMlOLmrjaYNuE7hjR2QuiCIT+eQkjvz6MG1kFUkcjIiIyWSwztcxCKcfcZ9pi8fB2sFbJ8U9sGvotjsC+8ylSRyMiIjJJLDMSGdSuAXaGBKGlux3ScgsxZs0RzPvtHKediIiIqollRkI+ztbY8nogRnVtBABYse8yhn8VhaSMfImTERERmQ6WGYlZKOX4aHBrLH++PWzVChyNS0dwaAT2nr0hdTQiIiKTwDJjJILbuGNXSBDaetojI68Ir6w7io93nkFhMaediIiI7odlxog0rGeFn8d1w0vdvQEAX0fGYuiqQ0hIy5M2GBERkRFjmTEyaoUcHwxshVWjOsDOQoGYhAz0D43Ab6eSpY5GRERULfv27YMgCMjIyDDo57DMGKm+reojfHIQ2nk5IKugGON+OIbZ209DU6yVOhoREd3HmDFjMHjw4ArLq/rFvnbtWjg4OBgkm7limTFino4l007/e8QXALD24FU8t+IQ4lJzJU5GRERSKywslDqC0WCZMXJKuQzvBrfAt2M6wsFKiZPXMtE/NBI7/02SOhoRUe0RRaAwV5pbLV6Ped++fXjppZeQmZkJQRAgCAJmz54NAPD29sbHH3+MMWPGwN7eHq+++ioA4J133kHTpk1hZWUFX19fzJw5E0VFRaXvOXv2bLRr1w6rVq2Cl5cXrKysMGTIkHIjRHdGk+bMmQNXV1fY2dnhtddeK1eYRFHE/Pnz4evrC0tLS/j7+2PTpk3l8oeHh6Np06awtLRE7969cfXqVYNtq7IUtfIp9NAebe6G8JAghPx4HEfj0jEx7DgOXU7FzAEtYaGUSx2PiMiwivKATz2k+ex3kwCVda18VGBgIBYtWoRZs2bh/PnzAAAbG5vS5z///HPMnDkT77//fukyW1tbrF27Fh4eHjh58iReffVV2Nra4u233y5d59KlS/jpp5+wY8cOZGVl4ZVXXsGECROwfv360nX27t0LCwsL/PXXX7h69SpeeuklODs745NPPgEAvP/++9iyZQtWrFgBPz8//P3333jhhRfg4uKCnj17IiEhAc888wzGjRuH8ePH4+jRo3jjjTcMvckAsMyYFA8HS2z4X1cs3HMBy/ddxvrD8YiOz8CykQHwdbF58BsQEVGt2LlzZ7kSAgBa7YP3eVSpVLC3t4cgCKhfv36F5x999FG8+eab5ZaVLTbe3t544403sHHjxnJlpqCgAOvWrYOnpycAYMmSJejfvz8WLFhQ+jkqlQrffvstrKys0KpVK3z44Yd466238NFHHyE/Px8LFy7En3/+iW7dugEAfH19ERkZiVWrVqFnz55YsWIFfH198eWXX0IQBDRr1gwnT57EvHnzqrjV9McyY2IUchnefrI5uvjWw7SNMTh7PQsDlkTi06fbYHBAA6njEREZhtKqZIREqs+upt69e2PFihXllh0+fBgvvPDCQ0Xp2LFjhWWbNm3CokWLcOnSJeTk5KC4uBh2dnbl1mnYsGFpkQGAbt26QafT4fz586Vlxt/fH1ZWVuXWycnJQUJCAlJSUlBQUIAnnnii3PsWFhYiICAAAHD27Fl07doVgiCUe4/awDJjono2dUH45JJpp8OxaZiyMQaHLqdi9lOtYKnitBMRmRlBqLWpnppgbW2NJk2alFuWmJhYI+9bVlRUFIYPH445c+agb9++sLe3x4YNG7BgwYL7vs+dwlG2eNxvXZ2u5ASuu3btQoMG5f/hrFarAZTsUyMVlhkT5mZngfVjuyD0z0tY8udFbDyagJiEDCx7PgBNXG2ljkdERHpQqVRVmpICgAMHDqBRo0Z47733SpfFxcVVWC8+Ph5JSUnw8CjZ7+jQoUOQyWRo2rRp6TonTpxAfn4+LC0tAZQUJRsbG3h6esLR0RFqtRrx8fHo2bNnpVlatmyJbdu2lVsWFRVVpd/jYfFoJhOnkMsw7Ymm+OGVLnC2UeP8jWwMXHIAm449/L8AiIio9nl7eyMnJwd79+7FrVu3kJd377PAN2nSBPHx8diwYQMuX76M0NBQbN26tcJ6FhYWGD16NE6cOIGIiAiEhIRg6NCh5fbLKSwsxCuvvIIzZ87g119/xQcffICJEydCJpPB1tYWb775JqZOnYp169bh8uXLOH78OJYtW4Z169YBAMaNG4fLly9j2rRpOH/+PMLCwrB27doa3z6VYZkxE92bOCN8cg90b1IP+UVavPnzCUz7KQZ5hcVSRyMiomoIDAzEuHHjMGzYMLi4uGD+/Pn3XHfQoEGYOnUqJk6ciHbt2uHgwYOYOXNmhfWaNGmCZ555BsHBwejTpw9at26N5cuXl1vnscceg5+fHx555BEMHToUAwcOLD0sHAA++ugjzJo1C3PnzkWLFi3Qt29f7NixAz4+PgBK9svZvHkzduzYAX9/f6xcuRKffvppzWyUBxBEKSe5akFWVhbs7e2RmZlZYYcoc6TViVj21yUs+uMCdCLQ2MUay55vj+b1zf93JyLzUVBQgNjYWPj4+MDCwkLqOCZt9uzZ2LZtG2JiYu65zpgxY5CRkVFhmsjQ7vffuTrf3xyZMTNymYCQx/wQ9mpXuNmpcflmLgYtPYAN/8RLunMWERGRobDMmKmuvvUQHhKEnk1doCnWYfqWk5iyMQY5Gk47ERFJqV+/frCxsan0VlvTMuaG00xmTqcTservK/ji9/PQ6kT4OFtj6cgAtPKwlzoaEdE9mfM007Vr15Cfn1/pc05OTnBycqrlRNKpqWkmHppt5mQyAeN7NUYnb0dM+vE4Ym/l4unlBzFzQEu80KVhlc4xQEQkFXP89/bd52mpy2rqvy+nmeqIjt5OCA8JwuMtXFFYrMPMbacwMew4sgqKHvxiIqJaJpeXnPyTV4Y2b3cOO1cqlQ/1PhyZqUMcrVVY/WJHfBMZi89+PYddJ6/j5LVMLB0ZgLaeDlLHIyIqpVAoYGVlhZs3b0KpVEIm47+9zYkoisjLy0NKSgocHBxKy6u+uM9MHXU8vuTK29cy8qGUC3g3uAXGBHpz2omIjEZhYSFiY2NLT6VP5sfBwQH169ev9LunOt/fLDN1WGZeEd7efAK7T98AAPRt5Yb5z/rD3urhhvuIiGqKTqfjVJOZUiqV9x2RYZkpg2Xm/kRRxLqDV/Fp+DkUanVo4GCJpSMDENDQUepoRERUh/GkeVRlgiBgTHcfbB4fiIZOVriWkY8hKw9h9d9XoNOZdc8lIiIzwTJDAIA2nvbYGdID/du6o1gn4pPwsxj73VGk53J4l4iIjBvLDJWys1Bi6YgAfDy4NVQKGf48l4Lg0AgcvZomdTQiIqJ7YpmhcgRBwAtdG2Hr64HwcbbG9cwCDPsqCsv3XeK0ExERGSWWGapUKw977JjUA4PaeUCrEzH/t/MYs/YIbuVopI5GRERUDssM3ZONWoFFw9ph3rNtoFbI8PeFmwheHIGoK6lSRyMiIirFMkP3JQgChnVqiO0Te6CJqw1SsjUYuToKoXsvQstpJyIiMgIsM1QlzerbYvvE7ni2vSd0IrBwzwW8+O1hpGQXSB2NiIjqOJYZqjIrlQILhvrjiyH+sFTKceBSKoIXR+LApVtSRyMiojqMZYaq7bkOntgxqTuaudniVo4GL3xzGAt/P89pJyIikgTLDOmliasttk3ojuGdvCCKQOiflzBydRSSMzntREREtYtlhvRmqZLjs2fbYvHwdrBWyXE4Ng3BoRHYf+Gm1NGIiKgOYZmhhzaoXQPsmNQDLdztkJZbiNHf/oN5v51DsVYndTQiIqoDWGaoRvi62GDr64F4oWtDAMCKfZcx/KsoJGXkS5yMiIjMHcsM1RgLpRwfD26DpSMDYKtW4GhcOoJDI7D37A2poxERkRljmaEaN6CtB3aG9ECbBvbIyCvCK+uO4pNdZ1DEaSciIjIAlhkyiEb1rLFpfDeMCfQGAKyOiMWQlYeQkJYnbTAiIjI7LDNkMGqFHLOfaoVVozrAzkKBmIQM9A+NwO7TyVJHIyIiM8IyQwbXt1V97AoJQjsvB2QVFOO1749hzo7T0BRrpY5GRERmgGWGaoWXkxV+HtcNrwb5AADWHLiK51YcQnwqp52IiOjhsMxQrVHKZXivf0t8M7ojHKyUOHktE/1DIxB+8rrU0YiIyISxzFCte6yFG8JDgtCxkSOyNcV4fX003t92EgVFnHYiIqLqY5khSXg4WOLH/3XF+F6NAQA/RMXjmeUHEXsrV+JkRERkalhmSDJKuQzvPNkc617uDCdrFc5cz8KA0Aj8EnNN6mhERGRCWGZIcj2buuDXyUHo4uOE3EItJm+IwfTN/yK/kNNORET0YEZdZoqLi/H+++/Dx8cHlpaW8PX1xYcffgidjmeSNTdudhZYP7YLQh5tAkEANhxJwOBlB3ApJVvqaEREZOSMuszMmzcPK1euxNKlS3H27FnMnz8fn3/+OZYsWSJ1NDIAhVyGaX2a4YdXusDZRo3zN7IxcMkBbDqWKHU0IiIyYoIoiqLUIe5lwIABcHNzwzfffFO67Nlnn4WVlRW+//77Sl+j0Wig0WhKf87KyoKXlxcyMzNhZ2dn8MxUM1KyCzB1YwwOXEoFADzb3hMfDW4FK5VC4mRERFQbsrKyYG9vX6Xvb6MemenRowf27t2LCxcuAABOnDiByMhIBAcH3/M1c+fOhb29fenNy8urtuJSDXK1tcB3L3fBtCeaQiYAm6MTMXBJJM4nc9qJiIjKM+qRGVEU8e6772LevHmQy+XQarX45JNPMGPGjHu+hiMz5ifqSipCfjyOlGwN1AoZ5jzVCsM6eUEQBKmjERGRgZjNyMzGjRvxww8/ICwsDNHR0Vi3bh2++OILrFu37p6vUavVsLOzK3cj09bVtx7CJwfhkaYu0BTrMH3LSUzZGIMcTbHU0YiIyAgY9ciMl5cXpk+fjgkTJpQu+/jjj/HDDz/g3LlzVXqP6jQ7Mm46nYiVf1/Ggt8vQKsT4eNsjaUjA9DKw17qaEREVMPMZmQmLy8PMln5iHK5nIdm11EymYDXezXBhv91hbu9BWJv5eLp5QfxfVQcjLiTExGRgRl1mRk4cCA++eQT7Nq1C1evXsXWrVuxcOFCPP3001JHIwl18nZCeEgQHm3uisJiHWZuO4WJPx5HVkGR1NGIiEgCRj3NlJ2djZkzZ2Lr1q1ISUmBh4cHRowYgVmzZkGlUlXpPTjNZL50OhHfRMZi3m/nUKwT0dDJCstGtkcbT047ERGZuup8fxt1makJLDPmLzo+HZPCjuNaRj5UchneDW6O0YHePNqJiMiEmc0+M0RV0b6hI8JDgtCnpRsKtTrM3nEG4344hsw8TjsREdUFLDNkFuytlFg1qgM+GNgSSrmA3advoP+SCByPT5c6GhERGRjLDJkNQRDwUncfbB4fiIZOVkhMz8eQlYfwdcQVHu1ERGTGWGbI7LT1dMDOkB7o38YdxToRH+86i7HrjiI9t1DqaEREZAAsM2SW7CyUWDoyAB8Pbg2VQoa951LQPzQCx+LSpI5GREQ1jGWGzJYgCHihayNsfT0QPs7WSMoswNBVUVix7zJ0Ok47ERGZC5YZMnutPOyxY1IPDGrnAa1OxLzfzuHldUeQmqN58IuJiMjoscxQnWCjVmDRsHb47Jk2UCtk2Hf+JoJDI3D4SqrU0YiI6CGxzFCdIQgChnduiO0Te6CxizVuZGkwYnUUluy9CC2nnYiITBbLDNU5zerbYsekHni2vSd0IrBgzwWM/vYf3MzmtBMRkSlimaE6yUqlwIKh/vhiiD8slXJEXrqFfosjcODSLamjERFRNbHMUJ32XAdPbJ/YHc3cbHErR4MXvjmMhXsucNqJiMiEsMxQnefnZottE7pjeCcviCIQuvciRq6Owo2sAqmjERFRFbDMEAGwVMnx2bNtsXh4O1ir5Dgcm4bgxRHYf+Gm1NGIiOgBWGaIyhjUrgF2TOqBFu52SM0txOhv/8G8386hWKuTOhoREd0DywzRXXxdbLD19UA836UhAGDFvssY/lUUkjLyJU5GRESVYZkhqoSFUo5Pnm6DpSMDYKNW4GhcOoJDI/DnuRtSRyMioruwzBDdx4C2HtgV0gOtG9ghI68IL689ik/Dz6KI005EREaDZYboARrVs8bm8YEYE+gNAPjq7ysYsvIQEtPzpA1GREQAWGaIqkStkGP2U62w8oX2sLVQICYhA8GLI7D7dLLU0YiI6jyWGaJqeLK1O8JDguDv5YCsgmK89v0xzNlxGoXFnHYiIpIKywxRNXk5WeHn17phbA8fAMCaA1fx3MqDiE/ltBMRkRRYZoj0oFLI8P6Alvj6xY6wt1Ti38RM9A+NQPjJ61JHIyKqc1hmiB7C4y3dED45CB0aOSJbU4zX10dj5rZTKCjSSh2NiKjOYJkhekgNHCyx4X9dMa5nYwDA91FxeGb5QcTeypU4GRFR3cAyQ1QDlHIZpvdrjrUvdYKTtQpnrmdhQGgEfom5JnU0IiKzxzJDVIN6NXNFeEgQOvs4IbdQi8kbYjBjy7+cdiIiMiCWGaIaVt/eAmFjuyDk0SYQBODHfxIweNkBXErJkToaEZFZYpkhMgCFXIZpfZrh+5e7wNlGjXPJ2Ri4JBKbjyVKHY2IyOywzBAZUA8/Z4RP7oHAxvWQX6TFGz+fwJs/n0BeYbHU0YiIzAbLDJGBudpa4PtXumDaE00hE4BNxxIxaOkBXLiRLXU0IiKzwDJDVAvkMgEhj/lh/diucLVV42JKDp5aGomNR+IhiqLU8YiITBrLDFEt6ta4HsInByHIzxkFRTq8s/kkpm6MQY6G005ERPpimSGqZc42aqx7qTPefrIZ5DIB22KS8NSSSJxJypI6GhGRSWKZIZKATCbg9V5NsOF/XeFub4Ert3IxePkB/BAVx2knIqJqYpkhklAnbyfsCgnCo81dUVisw/vbTmHij8eRXVAkdTQiIpPBMkMkMSdrFb5+sSPeDW4OhUzArn+vY8CSSJxMzJQ6GhGRSWCZITICMpmA/z3SGD+N64YGDpaIS83DsysOYu2BWE47ERE9AMsMkRFp39AR4SFBeKKlGwq1OszecQbjf4hGZj6nnYiI7oVlhsjI2Fsp8dWoDpg1oCWUcgG/nU5G/9AIxCRkSB2NiMgoscwQGSFBEPByDx9sGhcILydLJKbn47kVB/F1xBVOOxER3YVlhsiI+Xs5YFdIEILb1EexTsTHu87i1e+OIiOvUOpoRERGg2WGyMjZWSixbGR7fDSoFVRyGf44m4LgxRE4FpcmdTQiIqPAMkNkAgRBwKhu3tjyeiC861khKbMAQ1dFYeX+y9DpOO1ERHUbywyRCWndwB47Q4Iw0N8DWp2Iz349h5fXHUFqjkbqaEREkmGZITIxNmoFQoe3w9xn2kCtkGHf+ZsIDo3A4SupUkcjIpIEywyRCRIEASM6N8S2Cd3h62KNG1kajFgdhaV/XuS0ExHVOYKo53GeOp0Oly5dQkpKCnQ6XbnnHnnkkRoJVxOysrJgb2+PzMxM2NnZSR2HqMblaooxc9spbDl+DQAQ5OeMhUPbwcVWLXEyIiL9Vef7W68yExUVhZEjRyIuruIVfgVBgFarre5bGgzLDNUVPx9NwKxfTiO/SAsXWzUWD2uHwCbOUsciItJLdb6/9ZpmGjduHDp27IhTp04hLS0N6enppbe0NB4uSiSFIR29sH1idzR1s8HNbA2e/+YwvtxzAVpOOxGRmdNrZMba2honTpxAkyZNDJGpRnFkhuqa/EItZm8/jY1HEwAAXX2dEDo8AK52FhInIyKqOoOPzHTp0gWXLl3SKxwRGZalSo55z7XFomHtYK2SI+pKGvotjsDfF25KHY2IyCAU+rxo0qRJeOONN5CcnIw2bdpAqVSWe75t27Y1Eo6I9Dc4oAHaetpjQthxnL2ehdFr/sHrvRpj6uNNoZDzQEYiMh96TTPJZBX/RygIAkRR5A7AREamoEiLj3aewfrD8QCATt6OCB0RAHd7S4mTERHdm8GPZoqLi7vv840aNaruWxoMywxRiZ3/JmH65pPI0RTD0UqJhUPboXdzV6ljERFVyuBlxpSwzBD95+qtXEz8MRqnrmUBAF57xBdv9m0GJaediMjIGHwHYAC4fPkyJk2ahMcffxxPPPEEQkJCcPnyZX3f7p6uXbuGF154AfXq1YOVlRXatWuHY8eO1fjnENUF3s7W2Dw+EGMCvQEAq/6+gqGrDiExPU/aYERED0GvMrN79260bNkS//zzD9q2bYvWrVvj8OHDaNWqFfbs2VNj4dLT09G9e3colUr8+uuvOHPmDBYsWAAHB4ca+wyiukatkGP2U62w8oX2sLVQ4Hh8BoIXR+D308lSRyMi0ote00wBAQHo27cvPvvss3LLp0+fjt9//x3R0dE1Em769Ok4cOAAIiIiqvwajUYDjea/KwhnZWXBy8uL00xElUhIy8PEH4/jREIGAOCl7t6Y0a8FVApOOxGRtAw+zXT27Fm88sorFZa//PLLOHPmjD5vWant27ejY8eOGDJkCFxdXREQEIDVq1ff9zVz586Fvb196c3Ly6vG8hCZGy8nK/z8WjeM7eEDAFhz4CqeW3kQ8amcdiIi06FXmXFxcUFMTEyF5TExMXB1rbmjI65cuYIVK1bAz88Pu3fvxrhx4xASEoLvvvvunq+ZMWMGMjMzS28JCQk1lofIHKkUMrw/oCW+frEj7C2V+DcxE/1DIxB+8rrU0YiIqkSvk+a9+uqr+N///ocrV64gMDAQgiAgMjIS8+bNwxtvvFFj4XQ6HTp27IhPP/0UQMn01unTp7FixQq8+OKLlb5GrVZDrebVgomq6/GWbgifHIRJYdGIjs/A6+ujMaprI7zXvwUslHKp4xER3ZNeZWbmzJmwtbXFggULMGPGDACAh4cHZs+ejZCQkBoL5+7ujpYtW5Zb1qJFC2zevLnGPoOI/tPAwRIbX+uGL34/j1X7r+D7qDhEx6dj6cj28HG2ljoeEVGl9JpmEgQBU6dORWJiYul0TmJiIiZPngxBEGosXPfu3XH+/Plyyy5cuGBUJ+UjMjdKuQwz+rXAmpc6wclahdNJWRgQGoFfYq5JHY2IqFIPfciCra0tbG1tayJLBVOnTkVUVBQ+/fRTXLp0CWFhYfjqq68wYcIEg3weEf2ndzNXhIcEobO3E3ILtZi8IQYztpxEQZHxXK6EiAioxqHZ7du3x969e+Ho6IiAgID7jsDU1KHZALBz507MmDEDFy9ehI+PD6ZNm4ZXX321yq/nGYCJHk6xVofFey9i6V+XIIpA8/q2WDqyPZq42kgdjYjMWHW+v6u8z8ygQYNKd6wdNGhQjU4n3c+AAQMwYMCAWvksIqpIIZfhjT7N0NnHCVM3xuBccjaeWhqJjwe3xjPtPaWOR0TEazMRUdWlZBVg8oYYHLqSCgAY0sETcwa1gpVKr2MJiIjuyeAnzfP19UVqamqF5RkZGfD19dXnLYnIBLjaWeCHsV0w5XE/yATg52OJGLT0AC7cyJY6GhHVYXqVmatXr0KrrbgToEajQWJi4kOHIiLjJZcJmPJ4U6wf2xWutmpcTMnBU0sj8dORBJj5QC8RGalqjQ1v37699PHu3bthb29f+rNWq8XevXvh4+NTc+mIyGh1a1wP4ZODMHVjDCIu3sLbm//FoSup+Hhwa1irOe1ERLWnWvvMyGQlAzmCIFT4F5hSqYS3tzcWLFhgVDvscp8ZIsPS6USs2H8ZC/dcgFYnwtfZGsueb48W7vz7RkT6q873t147APv4+ODIkSNwdnbWO2RtYZkhqh1HrqZhUthxJGcVQKWQ4YOBLTGyc8NaO/KRiMyLwXcAjo2NNYkiQ0S1p5O3E8InB+HR5q4oLNbhva2nMOnH48guKJI6GhGZOb0Pzc7NzcX+/fsRHx+PwsLCcs/V5PWZHhZHZohql04n4uvIK5j/23kU60R417PC0pHt0bqB/YNfTER0m8GnmY4fP47g4GDk5eUhNzcXTk5OuHXrFqysrODq6oorV67oHb6mscwQSSM6Ph2Two7jWkY+VHIZ3uvfAi92a8RpJyKqEoNPM02dOhUDBw5EWloaLC0tERUVhbi4OHTo0AFffPGFXqGJyLy0b+iIXSE98ERLNxRqdfhg+2m8vj4amfmcdiKimqVXmYmJicEbb7wBuVwOuVwOjUYDLy8vzJ8/H++++25NZyQiE+VgpcJXozpg1oCWUMoF/HoqGQOWROBEQobU0YjIjOhVZpRKZelQsZubG+Lj4wEA9vb2pY+JiICSUzm83MMHm8YFwsvJEglp+Xhu5UF8ExnLk+wRUY3Qq8wEBATg6NGjAIDevXtj1qxZWL9+PaZMmYI2bdrUaEAiMg/+Xg7YOSkI/VrXR5FWxEc7z+DV744hI6/wwS8mIroPvcrMp59+Cnd3dwDARx99hHr16mH8+PFISUnBV199VaMBich82Fsqsfz59vhoUCuo5DL8cfYG+odG4lhcutTRiMiEVftoJlEUER8fD1dXV1haWhoqV43h0UxExunUtUxMDIvG1dQ8KGQC3urbDK8G+UIm49FORGTgo5lEUYSfnx8vKElED6V1A3vsmNQDA/09UKwTMffXc3hl3RGk5XLaiYiqp9plRiaTwc/PD6mpqYbIQ0R1iK2FEqHD22HuM22gVsjw1/mbCF4cgX9i06SORkQmRK99ZubPn4+33noLp06dquk8RFTHCIKAEZ0bYtuE7vB1sUZyVgFGrI7Csr8uQafj0U5E9GB6nQHY0dEReXl5KC4uhkqlqrDvTFqa8fyrivvMEJmOXE0xZm47hS3HrwEAgvyc8eWwdnC2UUucjIhqW3W+vxX6fMCXX37JU5ITUY2zViuwYKg/ujauh1m/nELExVvotzgCi4e3Q2BjXtyWiCqn94UmTQVHZohM08Ub2Xh9fTQupuRAJgAhj/lh0qN+kPNoJ6I6weDXZpLL5UhJSamwPDU1FXK5XJ+3JCIqx8/NFtsn9sDQjp7QicCiPy5i1DeHkZJVIHU0IjIyepWZew3maDQaqFSqhwpERHSHpUqO+c/548th/rBSyXHwciqCQyMQcfGm1NGIyIhUa5+Z0NBQACVHH3z99dewsbEpfU6r1eLvv/9G8+bNazYhEdV5Twd4ok0DB0wMi8a55Gy8+O0/mNCrCaY87geFXK9/kxGRGanWPjM+Pj4AgLi4OHh6epabUlKpVPD29saHH36ILl261HxSPXGfGSLzUVCkxYc7zyDscMkFbTt7OyF0RADq21tInIyIalp1vr/12gG4d+/e2LJlCxwdHfUOWVtYZojMz44TSZix5SRyNMVwslZhwVB/9G7mKnUsIqpBBi8zpoRlhsg8Xb2Vi4k/RuPUtSwAwGs9ffFmn2ZQctqJyCwYvMxotVqsXbsWe/fuRUpKCnQ6Xbnn//zzz+q+pcGwzBCZL02xFnPDz2HtwasAgA6NHBE6IgANHIz/IrhEdH8GP2ne5MmTsXbtWvTv3x+tW7fmCfSISBJqhRyzn2qFrr5OeGvTvzgWl47gxRFYMMQfj7d0kzoeEdUSvUZmnJ2d8d133yE4ONgQmWoUR2aI6oaEtDxMDIvGicRMAMDYHj54+8nmUCk47URkigx+0jyVSoUmTZroFY6IyBC8nKzw87hAvNKj5KjLryNjMWTVISSk5UmcjIgMTa8y88Ybb2Dx4sX3PHkeEZEUVAoZZg5oidUvdoS9pRInEjIQHBqB305dlzoaERmQXtNMTz/9NP766y84OTmhVatWUCqV5Z7fsmVLjQV8WJxmIqqbrmXkY1JYNKLjMwAAo7s1wrv9W0Ct4CVXiEyBwXcAdnBwwNNPP61XOCKi2tDAwRIbX+uGL34/j1X7r2DdoTgci0/H0hHt4e1sLXU8IqpBPM8MEZm9v86lYNpPMUjPK4KNWoG5z7TBQH8PqWMR0X0YfAdgACguLsYff/yBVatWITs7GwCQlJSEnJwcfd+SiMggejd3RfjkIHT2dkKOphiTfjyOd7eeREGRVupoRFQD9BqZiYuLw5NPPon4+HhoNBpcuHABvr6+mDJlCgoKCrBy5UpDZNULR2aI6I5irQ6L/riIZfsuQRSB5vVtsez59mjsYvPgFxNRrTL4yMzkyZPRsWNHpKenw9LyvzNtPv3009i7d68+b0lEZHAKuQxv9m2G717uDGcbFc4lZ2PgkkhsPZ4odTQiegh6lZnIyEi8//77UKlU5ZY3atQI165dq5FgRESGEuTngvCQIHTzrYe8Qi2mbjyBtzedQH4hp52ITJFeZUan00GrrfiXPjExEba2tg8diojI0FztLPDD2C6Y8rgfBAH46WginloaiYs3sqWORkTVpFeZeeKJJ7Bo0aLSnwVBQE5ODj744AOTuMQBEREAyGUCpjzeFOvHdoGLrRoXU3IwcGkkfjqawJOCEpkQvXYATkpKQu/evSGXy3Hx4kV07NgRFy9ehLOzM/7++2+4uroaIqteuAMwEVXFzWwNpv0Ug4iLtwAAzwQ0wEeDW8NardfpuIjoIVXn+1vv88zk5+djw4YNOHbsGHQ6Hdq3b4/nn3++3A7BxoBlhoiqSqcTsWL/ZSz4/Tx0ItDYxRpLR7ZHC3f+v4OottVKmTEVLDNEVF3/xKYh5MfjSM4qgFohwwcDW2FEZy8IgiB1NKI6w+CHZs+dOxfffvttheXffvst5s2bp89bEhEZjc4+TgifHIRezVygKdbh3a0nEbIhBtkFRVJHI6JK6FVmVq1ahebNm1dY3qpVK6M6YR4Rkb6crFX4dnQnTO/XHHKZgB0nkjBwSSROXcuUOhoR3UWvMpOcnAx3d/cKy11cXHD9+vWHDkVEZAxkMgHjejbGT691g4e9Ba6m5uGZ5Qfx/aGrPNqJyIjoVWa8vLxw4MCBCssPHDgADw9evI2IzEuHRo4InxyEx1u4oVCrw8xfTmNCWDSyOO1EZBT0OuZw7NixmDJlCoqKivDoo48CAPbu3Yu3334bb7zxRo0GJCIyBg5WKqx+sQO+PXAVn/16FuEnk3HyWiaWjmgPfy8HqeMR1Wl6Hc0kiiKmT5+O0NBQFBYWAgAsLCzwzjvvYNasWTUe8mHwaCYiqmkxCRmYGBaNxPR8KOUCZvRrgZe6e/NoJ6IaVGuHZufk5ODs2bOwtLSEn58f1Gq1vm9lMCwzRGQImflFeGfTv/jtdDIA4ImWbvjiOX/YWyklTkZkHniemTJYZojIUERRxPdRcfh451kUanVo4GCJJSMD0L6ho9TRiEyewctMbm4uPvvsM+zduxcpKSnQ6XTlnr9y5Up139JgWGaIyNBOXcvExLBoXE3Ng0Im4O0nm2FsD1/IZJx2ItJXdb6/9d4BeP/+/Rg1ahTc3d05T0xEdVrrBvbYMakH3t16CjtOJOHT8HOIupKGL4b4w8laJXU8IrOn18iMg4MDdu3ahe7duxsiU43iyAwR1RZRFPHjPwmYs+M0NMU6uNtbIHREADp5O0kdjcjkGPxyBo6OjnBy4l9OIqKyBEHAyC4NsW1Cd/i6WON6ZgGGfxWFZX9dgk5n1rsnEklKrzLz0UcfYdasWcjLy6vpPPc1d+5cCIKAKVOm1OrnEhFVRwt3O+yY2APPBDSAVifi893nMXrNP7iVo5E6GpFZ0muaKSAgAJcvX4YoivD29oZSWf5QxOjo6BoLeMeRI0cwdOhQ2NnZoXfv3li0aFGVXsdpJiKSiiiK+PlYImb9cgoFRTq42qqxaHg7BDZ2ljoakdEz+A7AgwcP1udlesvJycHzzz+P1atX4+OPP67VzyYi0pcgCBja0QvtvBwwYX00Lqbk4IWvDyPkMT9MetQPch7tRFQjTOI8M6NHj4aTkxO+/PJL9OrVC+3atbvnyIxGo4FG899QblZWFry8vDgyQ0SSyi/U4oPtp/DT0UQAQGDjelg0vB1cbS0kTkZknAw+MnPHsWPHcPbsWQiCgJYtWyIgIOBh3q5SGzZsQHR0NI4cOVKl9efOnYs5c+bUeA4ioodhqZJj/nP+6OpbD+9vO4WDl1MRvDgCXw5rhyA/F6njEZk0vUZmUlJSMHz4cOzbtw8ODg4QRRGZmZno3bs3NmzYABeXmvmLmZCQgI4dO+L333+Hv78/AHBkhohM3qWUHEwMi8a55GwIAjChVxNMedwPCrlex2QQmSWDH5o9adIkZGVl4fTp00hLS0N6ejpOnTqFrKwshISE6BW6MseOHUNKSgo6dOgAhUIBhUKB/fv3IzQ0FAqFAlqttsJr1Go17Ozsyt2IiIxJE1cbbJvQHSM6N4QoAkv/uoSRXx9GcmaB1NGITJJeIzP29vb4448/0KlTp3LL//nnH/Tp0wcZGRk1Ei47OxtxcXHllr300kto3rw53nnnHbRu3fqB78GjmYjImG0/kYQZm/9FbqEWTtYqLBzqj17NXKWORSQ5g+8zo9PpKhyODQBKpbLCdZoehq2tbYXCYm1tjXr16lWpyBARGbun/D3QpoE9JoZF43RSFsasOYLXevrizT7NoOS0E1GV6PU35dFHH8XkyZORlJRUuuzatWuYOnUqHnvssRoLR0RUF/g4W2Pz+EC82K0RAGDV/isY/lUUrmXkS5yMyDToNc2UkJCAQYMG4dSpU/Dy8oIgCIiPj0ebNm3wyy+/wNPT0xBZ9cJpJiIyJeEnr+OdTf8iW1MMByslvnjOH4+3dJM6FlGtq87390OdZ2bPnj04d+4cRFFEy5Yt8fjjj+v7VgbDMkNEpiY+NQ8Tf4zGv4mZAICxPXzw9pPNoVJw2onqDoOVmT///BMTJ05EVFRUhTfOzMxEYGAgVq5ciaCgIP2SGwDLDBGZosJiHT779Ry+PRALAPD3csDSEQHwcrKSOBlR7TDYodmLFi3Cq6++Wumb2tvb47XXXsPChQurl5aIiCpQKWSYNbAlvhrVAXYWCpxIyEBwaAR+O5UsdTQio1OtMnPixAk8+eST93y+T58+OHbs2EOHIiKiEn1a1Uf45CAENHRAdkExxv1wDLO3n4amuOJ5tojqqmqVmRs3blR6SPYdCoUCN2/efOhQRET0H09HK/z0Wje81tMXALD24FU8t+IQ4lJzJU5GZByqVWYaNGiAkydP3vP5f//9F+7u7g8dioiIylPKZZjRrwXWjOkERyslTl7LRP/QSOz8N+nBLyYyc9UqM8HBwZg1axYKCiqecjs/Px8ffPABBgwYUGPhiIiovN7NXRE+OQidvB2RoynGxLDjeG/rSRQUcdqJ6q5qHc1048YNtG/fHnK5HBMnTkSzZs0gCALOnj2LZcuWQavVIjo6Gm5uxnNOBB7NRETmqFirw6I/LmLZvksQRaCFux2WjgxAYxcbqaMR1QiDnmcmLi4O48ePx+7du3HnpYIgoG/fvli+fDm8vb31Dm4ILDNEZM4iLt7E1I0xuJVTCCuVHJ8+3QaDAxpIHYvoodXKSfPS09Nx6dIliKIIPz8/ODo66hXW0FhmiMjcpWQVYPKGGBy6kgoAGNbRC7OfagVLlVziZET6q7UzAJsClhkiqgu0OhGhey8i9M+LEEWgmZstlj0fgCautlJHI9KLwU6aR0RExkkuEzD1iaZY/0oXuNiqcf5GNgYuOYBNxxKljkZkcCwzRERmJLCJM8JDghDk54z8Ii3e/PkEpv0Ug1xNsdTRiAyGZYaIyMy42Kqx7qXOeLNPU8gEYEv0NTy1NBLnkrOkjkZkECwzRERmSCYTMPFRP/z4ale42alx+WYuBi09gB//iYeZ7ypJdRDLDBGRGeviWw/hIUHo1cwFmmIdZmw5ickbYpDDaScyIywzRERmrp6NGt+O7oTp/ZpDLhOw/UQSBoRG4NS1TKmjEdUIlhkiojpAJhMwrmdj/PRaV3jYW+Bqah6eWXEQ3x+6ymknMnksM0REdUiHRk4InxyEx1u4orBYh5m/nMaEsGhkFRRJHY1IbywzRER1jIOVCqtf7Ij3+7eAUi4g/GQyBoRG4t/EDKmjEemFZYaIqA4SBAFjg3zx87hAeDpaIj4tD8+uOIhvI2M57UQmh2WGiKgOa+flgF0hQXiyVX0UaUV8uPMMXvv+GDLzOO1EpoNlhoiojrO3VGLFC+0x56lWUMll+P3MDQSHRuB4fLrU0YiqhGWGiIggCAJGB3pj8/hANKpnhWsZ+Riy8hBW/30FOh2nnci4scwQEVGpNp722DmpB/q3dUexTsQn4Wcx9rujSM8tlDoa0T2xzBARUTm2FkosHRGAT55uDZVChj/PpSA4NAJHr6ZJHY2oUiwzRERUgSAIeL5LI2x7vTt8na1xPbMAw76KwvJ9lzjtREaHZYaIiO6ppYcddkzqgacDGkCrEzH/t/MYs/YIbuVopI5GVIplhoiI7starcDCof6Y/2xbWChl+PvCTQQvjkDUlVSpoxEBYJkhIqIqEAQBQzt5YfvEHvBztUFKtgYjV0chdO9FaDntRBJjmSEioipr6maLXyZ2x5AOntCJwMI9F/Dit4eRkl0gdTSqw1hmiIioWqxUCnw+xB8Lh/rDUinHgUupCF4ciQOXbkkdjeoolhkiItLLM+09sWNSDzSvb4tbORq88M1hLPz9PIq1OqmjUR3DMkNERHpr4mqDbRO6Y0RnL4giEPrnJYz8+jCSMzntRLWHZYaIiB6KhVKOuc+0xeLh7WCtkuOf2DQEh0Zg3/kUqaNRHcEyQ0RENWJQuwbYMakHWrrbIS23EGPWHMFnv55DEaedyMBYZoiIqMb4uthgy+uBGNW1EQBg5f7LGP5VFJIy8iVORuaMZYaIiGqUhVKOjwa3xrKR7WGrVuBYXDqCQyPwx5kbUkcjM8UyQ0REBtG/rTt2hvRAmwb2yMgrwtjvjuLjnWdQWMxpJ6pZLDNERGQwjepZY9P4bnipuzcA4OvIWAxZdQgJaXnSBiOzwjJDREQGpVbI8cHAVlg1qgPsLBQ4kZCB/qER+O1UstTRyEywzBARUa3o26o+doUEoZ2XA7IKijHuh2OYvf00NMVaqaORiWOZISKiWuPlZIWfx3XD/x7xBQCsPXgVz604hLjUXImTkSljmSEiolqllMvwbnALfDO6IxyslDh5LRMDQiOx69/rUkcjE8UyQ0REknishRvCQ4LQsZEjsjXFmBAWjfe3nURBEaedqHpYZoiISDIeDpb48X9d8XqvxgCAH6Li8fTyg7hyM0fiZGRKWGaIiEhSSrkMbz/ZHOte7ox61iqcvZ6FgUsi8UvMNamjkYlgmSEiIqPQs6kLwicHoauvE3ILtZi8IQbTN/+L/EJOO9H9scwQEZHRcLOzwPqxXRHymB8EAdhwJAGDlx3ApZRsqaOREWOZISIioyKXCZj2RFP88EoXONuocf5GNgYuOYBNxxKljkZGimWGiIiMUvcmzvh1chB6NHFGfpEWb/58Am/8dAJ5hcVSRyMjwzJDRERGy8VWjXUvd8YbTzSFTAA2RyfiqaUHcD6Z0070H5YZIiIyanKZgEmP+SHs1a5ws1PjUkoOnloaiQ3/xEMURanjkRFgmSEiIpPQ1bcewkOC0LOpCzTFOkzfchJTNsYgR8Npp7qOZYaIiExGPRs11ozphHeebA65TMAvMUkYuCQSp5MypY5GEmKZISIikyKTCRjfqzE2/q8r3O0tEHsrF08vP4jvo+I47VRHGXWZmTt3Ljp16gRbW1u4urpi8ODBOH/+vNSxiIjICHT0dkJ4SBAea+6KwmIdZm47hYlhx5FVUCR1NKplRl1m9u/fjwkTJiAqKgp79uxBcXEx+vTpg9xcXiqeiIgAR2sVvh7dEe/3bwGFTMCuk9cxIDQS/yZmSB2NapEgmtCY3M2bN+Hq6or9+/fjkUceqdJrsrKyYG9vj8zMTNjZ2Rk4IRERSeV4fDomhh3HtYx8KOUCZvRrgZe6e0MQBKmjkR6q8/1t1CMzd8vMLNnBy8nJ6Z7raDQaZGVllbsREZH5C2joiPCQIPRt5YYirYgPd57Ba98fQ2Yep53MncmUGVEUMW3aNPTo0QOtW7e+53pz586Fvb196c3Ly6sWUxIRkZTsrZRY+UIHzB7YEiq5DL+fuYHg0Agcj0+XOhoZkMlMM02YMAG7du1CZGQkPD0977meRqOBRqMp/TkrKwteXl6cZiIiqmNOJmZiQlg04tPyoJAJeOfJ5hgb5MNpJxNhdtNMkyZNwvbt2/HXX3/dt8gAgFqthp2dXbkbERHVPW087bEzpAf6t3FHsU7EJ+FnMXbdUaTnFkodjWqYUZcZURQxceJEbNmyBX/++Sd8fHykjkRERCbEzkKJpSMD8PHg1lApZNh7LgXBoRE4ejVN6mhUg4y6zEyYMAE//PADwsLCYGtri+TkZCQnJyM/P1/qaEREZCIEQcALXRth6+uB8HG2xvXMAgz7KgrL912CTmcSe1rQAxj1PjP3mtdcs2YNxowZU6X34KHZRER0R46mGO9tPYlfYpIAAD2bumDhUH/Us1FLnIzuVp3vb6MuMzWBZYaIiMoSRREbjyTgg+2noSnWwc1OjcXDA9DVt57U0agMs9sBmIiIqKYIgoDhnRti+8QeaOxijRtZGoxcHYXQvReh5bSTSWKZISKiOqlZfVvsmNQDz7b3hE4EFu65gBe/PYyU7AKpo1E1scwQEVGdZaVSYMFQf3wxxB+WSjkOXEpF8OJIHLh0S+poVA0sM0REVOc918ETOyZ1RzM3W9zK0eCFbw5j4Z4LnHYyESwzREREAJq42mLbhO4Y3skLogiE7r2IkaujcCOL007GjmWGiIjoNkuVHJ892xaLh7eDtUqOw7FpCF4cgf0Xbkodje6DZYaIiOgug9o1wI5JPdDS3Q6puYUY/e0/mPfbORRrdVJHo0qwzBAREVXC18UGW14PxKiujQAAK/ZdxvCvopCUwbPQGxuWGSIionuwUMrx0eDWWDayPWzVChyNS0dwaAT2nr0hdTQqg2WGiIjoAfq3dcfOkB5o08AeGXlFeGXdUXyy6wyKOO1kFFhmiIiIqqBRPWtsGt8NYwK9AQCrI2IxZOUhJKTlSRuMWGaIiIiqSq2QY/ZTrbBqVAfYWSgQk5CB/qER+O1UstTR6jSWGSIiomrq26o+doUEoZ2XA7IKijHuh2OYvf00NMVaqaPVSSwzREREevByssJPr3XDq0E+AIC1B6/iuRWHEJeaK3GyuodlhoiISE8qhQzv9W+Jb0Z3hIOVEievZWJAaCR2/Xtd6mh1CssMERHRQ3qshRvCQ4LQsZEjsjXFmBAWjfe3nURBEaedagPLDBERUQ3wcLDEj//rivG9GgMAfoiKx9PLD+LKzRyJk5k/lhkiIqIaopTL8M6TzbH2pU5wslbh7PUsDFwSiV9irkkdzayxzBAREdWwXs1cER4ShM4+Tsgt1GLyhhhM3/wv8gs57WQILDNEREQGUN/eAmFjuyDk0SYQBGDDkQQMXnYAl1KypY5mdlhmiIiIDEQhl2Fan2b4/uUucLZR4/yNbAxccgCbjiVKHc2ssMwQEREZWA8/Z4RP7oHAxvWQX6TFmz+fwBs/nUBeYbHU0cwCywwREVEtcLW1wPevdMG0J5pCJgCboxPx1NIDOJ/MaaeHxTJDRERUS+QyASGP+WH92K5wtVXjUkoOnloaiY1H4iGKotTxTBbLDBERUS3r1rgewicH4ZGmLtAU6/DO5pOYujEGORpOO+lDEM28CmZlZcHe3h6ZmZmws7OruTc+vRWI/g5QWgFKy9s3qzL3VpUssyy/vsq65F5hCcgVNZeNiIhMgk4nYuXfl7Hg9wvQ6kT4Oltj6cj2aOlRg99XJqo639/8BtVX6mXg8p81935y1X3KTyVFqOwyVRWKk9IakCsBQai5zERE9FBkMgGv92qCzt5OmPTjcVy5lYvByw9g1oCWeL5LQwj8f3aVcGRGXylngesngKI8oCi/zP3tx4V5FZdVeJwHoBY3vyCvWIi0mpKs7m1vFyOb2+VIj8f8S0dEpLf03EK8+fMJ7D2XAgDo39Ydc59pAzsLpcTJpFGd72+WGSmJIlBcULHglL0vV4ruUZxK7yt5vjAXEGvpjJNKa/2L0P0eK1S1k5+ISGKiKOKbyFh89us5FOtENKpnhaUj2qONp73U0Wody0wZRl1maou26P6jRXm3AE02IMhKyk9h7u3173p8r2WGJlPcLkplylLaFaBBB8DSsaTwqG1uP28DqG3/e6yyvv1z2cfWgEJt+NxERHo6Hp+OiWHHcS0jHyq5DO8GN8foQO86Ne3EMlMGy4yB6XRAcf59SlAeUJhTvcdFt1+vLTRcbpmykqJjc/tx2XJke5/nyhQnTrMRUQ3LzCvCW5tO4PczNwAAT7aqj3nPtYW9Zd2YdmKZKYNlxoRpi/8rNmVLzp3HqZdKykZhzu1bLqDJAQqzyzy+fdPcfr4430BhhYpFJy0W8OoEWDqVlJ7Sm91dP9+1TGnJYkREAEqmndYevIpPw8+iSCvC09ESS0YEIKCho9TRDI5lpgyWGSpHW/xf8SlXdO6Uoez/nqusDFVWlGqaIL9P6XlAIbIoW4qsARlPJUVkDv5NzMDEsOOIT8uDQiZger/meKWHj1lPO7HMlMEyQwal05WZWsspX4YKc4CbF0qKhSb79i2rzOO7b1mo2aPbhPuUodvlJz8dcG4KWDvfLkP2JYXIwqHksdqOO2ATGYmsgiLM2HwSu05eBwA81twVXwzxh6O1ef4dZZkpg2WGTMadYnR3wams9NyrDN2519XgWUQVlmVKjn2Z0nP3Mofyy+4sV1lz2oyohoiiiB8Ox+OjnWdQWKyDh70FQkcEoKO3k9TRahzLTBksM1TniCJQrKl6GboaCTh4lTwuyAIKMm+vk1UzeQR5xYJTWoYqWSaTA3YNAEuHkoKktmUZIrrL6aRMTAw7jthbuZDLBLzRpynGPdIYMpn5/F1hmSmDZYZITzptSaEpW3AKMm/fyjzWVLbs9uOaGCES5P8Vm9J7x6ot46gQmbEcTTHe23oSv8QkAQB6NnXBwqH+qGdjHqeeYJkpg2WGSCKiWHIeo7sLTtlbZQUpMxHITgLk6pIzVD8MmbJ8wbF0vKsAVbLMwh6wqgcoLR7us4lqgSiK2HgkAR9sPw1NsQ5udmqEDg9AF996Ukd7aCwzZbDMEJmwovySnZTzM4CCjDL3dy3LT7/r+QxAV/Rwn620Kjms3srx9r3Tfe4dS+7V9jyCjCRxLjkLE9ZH4/LNXMgEYOrjTfF67yaQm/C0E8tMGSwzRHWQKJYcVXa/AnSvZXmp+n/unSmxe5Wde5UhnpGaakCuphgzfzmFLdHXAADdm9TDomEBcLE1zT9fLDNlsMwQUbXodCXTX/lpQF767fu0+9ynl9wX5er/mUrrklKTewtwbQ44NS45XN7KGbCud/v+9s9W9UrKEUeA6B5+PpqAWb+cRn6RFs42aiwe3g7dmzhLHavaWGbKYJkholpRVHB7pOcBpafs8vx0QNRV/7MEWcmozj0LT9nnbhcged04BT6VuHgjGxPConHhRg4EAZj0qB8mP+ZnUtNOLDNlsMwQkdHS6UqOBitbdlLOlDxXkFEyUpOXevv+FpCbWrK+Pizs7yo8jiVTa40CAWtXwMbl9r1rSVHiyI/Jyy/UYvb209h4NAEA0MXHCaEjAuBmZxo7t7PMlMEyQ0RmpbiwZFSntODcVXjyUktKz53n8tOqP/ojyEtKj7Vryb2NK2Dtcvv+ruLDUR+jt+34Nby79STyCrWoZ63CwmHt0LOpi9SxHohlpgyWGSKq03TakhGYvEpGeTLjgWvHS3Zazr0J5KSUlJ/qsnS6R+FxKV9+rF14yLtErtzMwYSw4zh7veRkmK/3aoxpTzSFQm68I3AsM2WwzBARVYO2qKTw5KYAOTdL7u8Unbvv825Vf9TH0hGwqQ/Yut11f/tm41Zyr7I2zO9XhxUUafHRzjNYfzgeANDJ2xGLhwfAw8FS4mSVY5kpg2WGiMhAdNqS/Xxyb5YvP3cXnzuPq3PuH5XtvYtO2XsLe57luZp2/puE6ZtPIkdTDEcrJRYM9cejzd2kjlUBy0wZLDNEREZAFEt2cs5OBnKSgewbFe+zrwM5N0ouuFpVCsuKozwq65LpLtcWgK0HYOcBqG0M97uZoLjUXEwIi8apayXTTv97xBdv9W0GpRFNO7HMlMEyQ0RkQkSx5KKnOTduF5/b93eKTumyG9U7skttV1JqbN1LLmRq5wHY3X58Z5mVU50a5dEUazE3/BzWHrwKAAho6IAlIwLg6WglbbDbWGbKYJkhIjJThXllCs5dozxXI0ouh6EtrPoV4OXqkoJzZzTn7rJj51EytSVXGPb3qmW/nUrG25tOIKugGHYWCnwxxB99WtWXOhbLTFksM0REdZwmG8i6DmRdKxnhybp2++ekkouaZiWV7NdTVVbOgJMPYO95++ZV/rGlo8mN8CSk5WHSj8cRk5ABAHipuzdm9GsBlUK6aSeWmTJYZoiI6IGKC0uKzr3KTlZSyXO64ge/l9KqTLm5U3bKFB67BoBCZfjfqZoKi3X4fPc5rI6IBQC09bTH0hHt0bCeNNNOLDNlsMwQEVGN0OlKRnDSY0uOzspMvH1L+O++SiM8Qsl01d2FR20L1G8NODQqOfePRP44cwNvbjqBjLwi2KoVmPdcWwS3ca/1HCwzZbDMEBFRrSnKLxnFKS04iXc9TgSKCx78Phb2JaXGsVHJfbnHDQGVYUdLkjLyMenH4zgWlw4AGNW1Ed7r3wIWSrlBP7cslpkyWGaIiMhoiGLJmZjvLjiZCUD6VeD6iaq9j7Xr7XLTsHzRcWxUMspTA5eYKNLqsHDPBazYdxkA0NLdDsuebw8f59o5oSHLTBksM0REZFI0OUBG/O1bHJAeV/7+QUdnCbKS/XLKFh25quSioo4+JefgqcYOyvvOp2DaTyeQllsIa5Ucnz7TBoPaNXjIX/LBzK7MLF++HJ9//jmuX7+OVq1aYdGiRQgKCqrSa1lmiIjIbIhiyRXV7y446XH/lZ8HTWMprQEn35Ijspx8bj/2LSk6dg0qvWJ6cmYBQjYcxz+xJdfuGtHZCx8MbGXQaSezKjMbN27EqFGjsHz5cnTv3h2rVq3C119/jTNnzqBhw4YPfD3LDBER1RmiWLJzcmnBuVpyf+MUkHQcgADgPl/7cjXg6F2m7Px3X2zTAIv3XcXSvy5BFIFmbrZY9nx7NHE1zNmVzarMdOnSBe3bt8eKFStKl7Vo0QKDBw/G3LlzH/h6lhkiIqLbijUlIzhpV27fYv97nBF3/0PPBTkgapHuHoTdybY4W+iCazIPPNunF/p17wTIanaUpjrf30Z9GsPCwkIcO3YM06dPL7e8T58+OHjwYKWv0Wg00Gg0pT9nZVXxzI9ERETmTqEGnP1KbnfTFgNZiXeVnNiSQ9HTrpROXzlej8BwALizj/HeuTgSMwidJn1XW79FBUZdZm7dugWtVgs3t/JX83Rzc0NycnKlr5k7dy7mzJlTG/GIiIjMh1xRMsXk6A00vus5na7kUhG3LpRMV+WnQ7x1CWkJZ2GTmwDL+k0lCPwfoy4zdwh37XUtimKFZXfMmDED06ZNK/05KysLXl5eBs1HRERk1mSy29er8gB8ewEo2fumHoDLKVlo7SjtGY2Nusw4OztDLpdXGIVJSUmpMFpzh1qthlqtro14REREdV5jV+n3R5XuClJVoFKp0KFDB+zZs6fc8j179iAwMFCiVERERGRMjHpkBgCmTZuGUaNGoWPHjujWrRu++uorxMfHY9y4cVJHIyIiIiNg9GVm2LBhSE1NxYcffojr16+jdevWCA8PR6NGjaSORkREREbA6M8z87B4nhkiIiLTU53vb6PeZ4aIiIjoQVhmiIiIyKSxzBAREZFJY5khIiIik8YyQ0RERCaNZYaIiIhMGssMERERmTSWGSIiIjJpLDNERERk0oz+cgYP684JjrOysiROQkRERFV153u7KhcqMPsyk52dDQDw8vKSOAkRERFVV3Z2Nuzt7e+7jtlfm0mn0yEpKQm2trYQBKFG3zsrKwteXl5ISEjgdZ8MiNu5dnA71w5u59rB7Vw7DLmdRVFEdnY2PDw8IJPdf68Ysx+Zkclk8PT0NOhn2NnZ8S9LLeB2rh3czrWD27l2cDvXDkNt5weNyNzBHYCJiIjIpLHMEBERkUljmXkIarUaH3zwAdRqtdRRzBq3c+3gdq4d3M61g9u5dhjLdjb7HYCJiIjIvHFkhoiIiEwaywwRERGZNJYZIiIiMmksM0RERGTSWGbuY/ny5fDx8YGFhQU6dOiAiIiI+66/f/9+dOjQARYWFvD19cXKlStrKanpq8623rJlC5544gm4uLjAzs4O3bp1w+7du2sxremq7p/pOw4cOACFQoF27doZNqCZqO521mg0eO+999CoUSOo1Wo0btwY3377bS2lNV3V3c7r16+Hv78/rKys4O7ujpdeegmpqam1lNY0/f333xg4cCA8PDwgCAK2bdv2wNdI8l0oUqU2bNggKpVKcfXq1eKZM2fEyZMni9bW1mJcXFyl61+5ckW0srISJ0+eLJ45c0ZcvXq1qFQqxU2bNtVyctNT3W09efJkcd68eeI///wjXrhwQZwxY4aoVCrF6OjoWk5uWqq7ne/IyMgQfX19xT59+oj+/v61E9aE6bOdn3rqKbFLly7inj17xNjYWPHw4cPigQMHajG16anudo6IiBBlMpm4ePFi8cqVK2JERITYqlUrcfDgwbWc3LSEh4eL7733nrh582YRgLh169b7ri/VdyHLzD107txZHDduXLllzZs3F6dPn17p+m+//bbYvHnzcstee+01sWvXrgbLaC6qu60r07JlS3HOnDk1Hc2s6Ludhw0bJr7//vviBx98wDJTBdXdzr/++qtob28vpqam1kY8s1Hd7fz555+Lvr6+5ZaFhoaKnp6eBstobqpSZqT6LuQ0UyUKCwtx7Ngx9OnTp9zyPn364ODBg5W+5tChQxXW79u3L44ePYqioiKDZTV1+mzru+l0OmRnZ8PJyckQEc2Cvtt5zZo1uHz5Mj744ANDRzQL+mzn7du3o2PHjpg/fz4aNGiApk2b4s0330R+fn5tRDZJ+mznwMBAJCYmIjw8HKIo4saNG9i0aRP69+9fG5HrDKm+C83+QpP6uHXrFrRaLdzc3Motd3NzQ3JycqWvSU5OrnT94uJi3Lp1C+7u7gbLa8r02dZ3W7BgAXJzczF06FBDRDQL+mznixcvYvr06YiIiIBCwf9VVIU+2/nKlSuIjIyEhYUFtm7dilu3buH1119HWloa95u5B322c2BgINavX49hw4ahoKAAxcXFeOqpp7BkyZLaiFxnSPVdyJGZ+xAEodzPoihWWPag9StbThVVd1vf8eOPP2L27NnYuHEjXF1dDRXPbFR1O2u1WowcORJz5sxB06ZNayue2ajOn2edTgdBELB+/Xp07twZwcHBWLhwIdauXcvRmQeoznY+c+YMQkJCMGvWLBw7dgy//fYbYmNjMW7cuNqIWqdI8V3If25VwtnZGXK5vELDT0lJqdA476hfv36l6ysUCtSrV89gWU2dPtv6jo0bN+KVV17Bzz//jMcff9yQMU1edbdzdnY2jh49iuPHj2PixIkASr50RVGEQqHA77//jkcffbRWspsSff48u7u7o0GDBrC3ty9d1qJFC4iiiMTERPj5+Rk0synSZzvPnTsX3bt3x1tvvQUAaNu2LaytrREUFISPP/6Yo+c1RKrvQo7MVEKlUqFDhw7Ys2dPueV79uxBYGBgpa/p1q1bhfV///13dOzYEUql0mBZTZ0+2xooGZEZM2YMwsLCOOddBdXdznZ2djh58iRiYmJKb+PGjUOzZs0QExODLl261FZ0k6LPn+fu3bsjKSkJOTk5pcsuXLgAmUwGT09Pg+Y1Vfps57y8PMhk5b/y5HI5gP9GDujhSfZdaNDdi03YncP+vvnmG/HMmTPilClTRGtra/Hq1auiKIri9OnTxVGjRpWuf+dwtKlTp4pnzpwRv/nmGx6aXUXV3dZhYWGiQqEQly1bJl6/fr30lpGRIdWvYBKqu53vxqOZqqa62zk7O1v09PQUn3vuOfH06dPi/v37RT8/P3Hs2LFS/Qomobrbec2aNaJCoRCXL18uXr58WYyMjBQ7duwodu7cWapfwSRkZ2eLx48fF48fPy4CEBcuXCgeP3689BB4Y/kuZJm5j2XLlomNGjUSVSqV2L59e3H//v2lz40ePVrs2bNnufX37dsnBgQEiCqVSvT29hZXrFhRy4lNV3W2dc+ePUUAFW6jR4+u/eAmprp/pstimam66m7ns2fPio8//rhoaWkpenp6itOmTRPz8vJqObXpqe52Dg0NFVu2bClaWlqK7u7u4vPPPy8mJibWcmrT8tdff933/7fG8l0oiCLH14iIiMh0cZ8ZIiIiMmksM0RERGTSWGaIiIjIpLHMEBERkUljmSEiIiKTxjJDREREJo1lhoiIiEwaywwRERGZNJYZIjIpV69ehSAIiImJue96vXr1wpQpU2olExFJi2WGiAxizJgxEAQBgiBAqVTC19cXb775JnJzcx/qfb28vHD9+nW0bt0aALBv3z4IgoCMjIxy623ZsgUfffTRQ30WEZkGhdQBiMh8Pfnkk1izZg2KiooQERGBsWPHIjc3FytWrND7PeVyOerXr//A9ZycnPT+DCIyLRyZISKDUavVqF+/Pry8vDBy5Eg8//zz2LZtGzQaDUJCQuDq6goLCwv06NEDR44cKX1deno6nn/+ebi4uMDS0hJ+fn5Ys2YNgPLTTFevXkXv3r0BAI6OjhAEAWPGjAFQcZopPT0dL774IhwdHWFlZYV+/frh4sWLpc+vXbsWDg4O2L17N1q0aAEbGxs8+eSTuH79uuE3FBE9FJYZIqo1lpaWKCoqwttvv43Nmzdj3bp1iI6ORpMmTdC3b1+kpaUBAGbOnIkzZ87g119/xdmzZ7FixQo4OztXeD8vLy9s3rwZAHD+/Hlcv34dixcvrvSzx4wZg6NHj2L79u04dOgQRFFEcHAwioqKStfJy8vDF198ge+//x5///034uPj8eabbxpgSxBRTeI0ExHVin/++QdhYWHo3bs3VqxYgbVr16Jfv34AgNWrV2PPnj345ptv8NZbbyE+Ph4BAQHo2LEjAMDb27vS95TL5aXTSa6urnBwcKh0vYsXL2L79u04cOAAAgMDAQDr16+Hl5cXtm3bhiFDhgAAioqKsHLlSjRu3BgAMHHiRHz44Yc1tQmIyEA4MkNEBrNz507Y2NjAwsIC3bp1wyOPPIJJkyahqKgI3bt3L11PqVSic+fOOHv2LABg/Pjx2LBhA9q1a4e3334bBw8efKgcZ8+ehUKhQJcuXUqX1atXD82aNSv9TACwsrIqLTIA4O7ujpSUlIf6bCIyPJYZIjKY3r17IyYmBufPn0dBQQG2bNkCe3t7AIAgCOXWFUWxdFm/fv0QFxeHKVOmICkpCY899thDTfeIonjP5WVzKJXKcs8LgnDP1xKR8WCZISKDsba2RpMmTdCoUaPSotCkSROoVCpERkaWrldUVISjR4+iRYsWpctcXFwwZswY/PDDD1i0aBG++uqrSj9DpVIBALRa7T1ztGzZEsXFxTh8+HDpstTUVFy4cKHcZxKRaeI+M0RUq6ytrTF+/Hi89dZbcHJyQsOGDTF//nzk5eXhlVdeAQDMmjULHTp0QKtWraDRaLBz5857lo5GjRpBEATs3LkTwcHBsLS0hI2NTbl1/Pz8MGjQILz66qtYtWoVbG1tMX36dDRo0ACDBg0y+O9MRIbFkRkiqnWfffYZnn32WYwaNQrt27fHpUuXsHv3bjg6OgIoGW2ZMWMG2rZti0ceeQRyuRwbNmyo9L0aNGiAOXPmYPr06XBzc8PEiRMrXW/NmjXo0KEDBgwYgG7dukEURYSHh1eYWiIi0yOInBAmIiIiE8aRGSIiIjJpLDNERERk0lhmiIiIyKSxzBAREZFJY5khIiIik8YyQ0RERCaNZYaIiIhMGssMERERmTSWGSIiIjJpLDNERERk0lhmiIiIyKT9H2Pi7HvY9QSJAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAV8pJREFUeJzt3XdclPUDB/DPc4s9ZQiCAopbEbcoqQ1N1LThLNPKfmkqjsq00rRlWprizkotJS1XDkrN0kDFhZh7IkNElD0PuHt+f6AEgoOD47k7Pu/X614Hzz139+ERvY/f7zMEURRFEBERERkpmdQBiIiIiKqCZYaIiIiMGssMERERGTWWGSIiIjJqLDNERERk1FhmiIiIyKixzBAREZFRU0gdQN+0Wi0SExNhY2MDQRCkjkNERESPQRRFZGVlwd3dHTLZw8deTL7MJCYmwtPTU+oYREREpIP4+Hh4eHg8dB2TLzM2NjYAijeGra2txGmIiIjocWRmZsLT07Pkc/xhTL7M3JtasrW1ZZkhIiIyMo+ziwh3ACYiIiKjxjJDRERERo1lhoiIiIyaye8zQ0RExkur1aKgoEDqGKQHSqUScrm8Wl6LZYaIiAxSQUEBYmJioNVqpY5CemJvb4+6detW+TxwLDNERGRwRFHEzZs3IZfL4enp+ciTppFxEUURubm5SE5OBgC4ublV6fVYZoiIyOAUFRUhNzcX7u7usLS0lDoO6YGFhQUAIDk5GS4uLlWacmLVJSIig6PRaAAAKpVK4iSkT/eKamFhYZVeh2WGiIgMFq+pZ9qq68+XZYaIiIiMmqRl5p9//kH//v3h7u4OQRCwbdu2Mo+LoohZs2bB3d0dFhYW6NGjB86ePStNWCIiIjJIkpaZnJwc+Pn5YcmSJRU+Pm/ePCxYsABLlizBsWPHULduXTzzzDPIysqq4aRERERkqCQtM3369MFnn32GF154odxjoihi4cKF+PDDD/HCCy+gZcuWWLt2LXJzcxEaGipB2vL59p2/BVEUpY5CREQGZNSoURg4cGC55fv374cgCEhPT6/xTKbOYPeZiYmJQVJSEnr16lWyzMzMDN27d8ehQ4ce+Dy1Wo3MzMwyN31YdyQOb6w9jrd+OoGM3KrthU1ERES6M9jzzCQlJQEAXF1dyyx3dXVFbGzsA583Z84czJ49W6/ZAEAAoJLLsOfcLZwNCcfi4f5oW99B7+9LRFQbiaKIvEKNJO9toZTzqCoDZ7Bl5p77f4FEUXzoL9X06dMxZcqUku8zMzPh6elZ7ble6dwAfh72GP9zFGJTcjF4xWFMfbYJRnfzgUzGX3oiouqUV6hB85m7JXnvc5/0hqXK4D8uazWD/dOpW7cugOIRmtKnOU5OTi43WlOamZkZzMzM9J4PAFp52GHHhG6YvuU0dv17E1+EXUDktVR8PcgPjlY80RMRUW21c+dOWFtbl1l270SAVP0Mtsx4e3ujbt262Lt3L/z9/QEUX3TswIEDmDt3rsTp/mNrrsSSYf7o4lMHn+w8h78uJKNvSDhChvmjg5ej1PGIiEyChVKOc5/0luy9K6tnz55Yvnx5mWVHjhzBK6+8Ul2xqBRJy0x2djauXLlS8n1MTAyio6Ph6OiI+vXrY9KkSfjiiy/g6+sLX19ffPHFF7C0tMTw4cMlTF2eIAh4pXMDtK3vgPGhUbh2JwdDv43ElGcaY2z3hpx2IiKqIkEQjGqqx8rKCo0aNSqzLCEhQaI0pk/S34zjx4+jZ8+eJd/f29dl5MiRWLNmDaZOnYq8vDy8/fbbSEtLQ6dOnbBnzx7Y2NhIFfmhmrvbYvuEbvho62lsi07EV7svIvJaCr4Z0gZO1jUz9UVERFTbSHpodo8ePSCKYrnbmjVrABQ38VmzZuHmzZvIz8/HgQMH0LJlSykjP5K1mQLfDGmDuS+2grlShvDLdxC0KByR11KkjkZERGSSDPY8M8ZMEAQM6VAfv43rhkYu1kjOUmP4qkgs+vMyNFqeZI+IiKg6CaKJn8I2MzMTdnZ2yMjIgK2tbY2/f25BEWb+dhabThTPlXZtVAffDGkDFxvzGs9CRGQs8vPzERMTA29vb5ib899LU/WwP+fKfH5zZEbPLFUKfD3ID/MH+cFCKcfBKykIWhSBiMt3pI5GRERkElhmasiL7TywY0I3NK1rgzvZaoz44QgW7LmIIo1W6mhERERGjWWmBjVysca2cV0xrKMnRBEI+esKhn93BLcy86WORkREZLRYZmqYuVKOOS+0xqKhbWClkuNoTCr6LArH/ovJUkcjIiIySiwzEhnQph52BgeiuZstUnMKMGr1Mcz94wKnnYiIiCqJZUZC3k5W2PJ2AEZ0bgAAWL7/KoZ+G4nE9DyJkxERERkPlhmJmSvl+HRgSyx7uS1szBQ4HpuGoJBw7Dt/S+poRERERoFlxkAEtXLDruBAtPawQ3puId5Yexyf7TyHgiJOOxERET0My4wBqV/HEr+O6YLXunoBAL6LiMHglYcRn5orbTAiIiIDxjJjYMwUcnzcvwVWjmgHW3MFouPT0TckHH+cSZI6GhERUaXs378fgiAgPT1dr+/DMmOgereoi7CJgWjjaY/M/CKMWXcCs7afhbpII3U0IiJ6iFGjRmHgwIHllj/uB/uaNWtgb2+vl2ymimXGgHk4FE87/e8JHwDAmkPX8dLyw4hNyZE4GRERSa2goEDqCAaDZcbAKeUyfBDUDD+Mag97SyVO38hA35AI7Pw3UepoREQ1RxSBghxpbjV4Peb9+/fjtddeQ0ZGBgRBgCAImDVrFgDAy8sLn332GUaNGgU7Ozu8+eabAID3338fjRs3hqWlJXx8fDBjxgwUFhaWvOasWbPQpk0brFy5Ep6enrC0tMSgQYPKjBDdG02aPXs2XFxcYGtri7feeqtMYRJFEfPmzYOPjw8sLCzg5+eHTZs2lckfFhaGxo0bw8LCAj179sT169f1tq1KU9TIu1CVPdnUFWHBgQj++SSOx6ZhfOhJHL6aghn9msNcKZc6HhGRfhXmAl+4S/PeHyQCKqsaeauAgAAsXLgQM2fOxMWLFwEA1tbWJY9/9dVXmDFjBj766KOSZTY2NlizZg3c3d1x+vRpvPnmm7CxscHUqVNL1rly5Qp++eUX7NixA5mZmXjjjTcwbtw4rF+/vmSdffv2wdzcHH///TeuX7+O1157DU5OTvj8888BAB999BG2bNmC5cuXw9fXF//88w9eeeUVODs7o3v37oiPj8cLL7yAMWPGYOzYsTh+/DjeeecdfW8yACwzRsXd3gIb/tcZC/ZewrL9V7H+SByi4tKxdLg/fJytH/0CRERUI3bu3FmmhACARvPofR5VKhXs7OwgCALq1q1b7vEnn3wS7777bpllpYuNl5cX3nnnHWzcuLFMmcnPz8fatWvh4eEBAFi8eDH69u2L+fPnl7yPSqXCDz/8AEtLS7Ro0QKffPIJ3nvvPXz66afIy8vDggUL8Ndff6FLly4AAB8fH0RERGDlypXo3r07li9fDh8fH3zzzTcQBAFNmjTB6dOnMXfu3MfcarpjmTEyCrkMU59tik4+dTBlYzTO38xEv8UR+OL5VhjoX0/qeERE+qG0LB4hkeq9K6lnz55Yvnx5mWVHjhzBK6+8UqUo7du3L7ds06ZNWLhwIa5cuYLs7GwUFRXB1ta2zDr169cvKTIA0KVLF2i1Wly8eLGkzPj5+cHS0rLMOtnZ2YiPj0dycjLy8/PxzDPPlHndgoIC+Pv7AwDOnz+Pzp07QxCEMq9RE1hmjFT3xs4Im1g87XQkJhWTNkbj8NUUzHquBSxUnHYiIhMjCDU21VMdrKys0KhRozLLEhISquV1S4uMjMTQoUMxe/Zs9O7dG3Z2dtiwYQPmz5//0Ne5VzhKF4+HravVFp/AddeuXahXr+x/nM3MzAAU71MjFZYZI+Zqa471ozsh5K8rWPzXZWw8Ho/o+HQsfdkfjVxspI5HREQ6UKlUjzUlBQAHDx5EgwYN8OGHH5Ysi42NLbdeXFwcEhMT4e5evN/R4cOHIZPJ0Lhx45J1Tp06hby8PFhYWAAoLkrW1tbw8PCAg4MDzMzMEBcXh+7du1eYpXnz5ti2bVuZZZGRkY/1c1QVj2Yycgq5DFOeaYx1b3SCk7UZLt7KQv/FB7HpRNX/B0BERDXPy8sL2dnZ2LdvH+7cuYPc3AefBb5Ro0aIi4vDhg0bcPXqVYSEhGDr1q3l1jM3N8fIkSNx6tQphIeHIzg4GIMHDy6zX05BQQHeeOMNnDt3Dr///js+/vhjjB8/HjKZDDY2Nnj33XcxefJkrF27FlevXsXJkyexdOlSrF27FgAwZswYXL16FVOmTMHFixcRGhqKNWvWVPv2qQjLjIno2sgJYRO7oWujOsgr1ODdX09hyi/RyC0okjoaERFVQkBAAMaMGYMhQ4bA2dkZ8+bNe+C6AwYMwOTJkzF+/Hi0adMGhw4dwowZM8qt16hRI7zwwgsICgpCr1690LJlSyxbtqzMOk899RR8fX3xxBNPYPDgwejfv3/JYeEA8Omnn2LmzJmYM2cOmjVrht69e2PHjh3w9vYGULxfzubNm7Fjxw74+flhxYoV+OKLL6pnozyCIEo5yVUDMjMzYWdnh4yMjHI7RJkijVbE0r+vYOGfl6AVgYbOVlj6cls0rWv6PzsRmY78/HzExMTA29sb5ubmUscxarNmzcK2bdsQHR39wHVGjRqF9PT0ctNE+vawP+fKfH5zZMbEyGUCgp/yReibneFqa4art3MwYMlBbDgaJ+nOWURERPrCMmOiOvvUQVhwILo3doa6SItpW05j0sZoZKs57UREJKU+ffrA2tq6wltNTcuYGk4zmTitVsTKf67h6z0XodGK8HaywpLh/mjhbid1NCKiBzLlaaYbN24gLy+vwsccHR3h6OhYw4mkU13TTDw028TJZALG9miIDl4OmPDzScTcycHzyw5hRr/meKVT/cc6xwARkVRM8f/b95+npTarrj9fTjPVEu29HBEWHIinm7mgoEiLGdvOYHzoSWTmFz76yURENUwuLz75J68MbdruHXauVCqr9DocmalFHKxUWPVqe3wfEYMvf7+AXadv4vSNDCwZ7o/WHvZSxyMiKqFQKGBpaYnbt29DqVRCJuP/vU2JKIrIzc1FcnIy7O3tS8qrrrjPTC11Mq74yts30vOglAv4IKgZRgV4cdqJiAxGQUEBYmJiSk6lT6bH3t4edevWrfCzpzKf3ywztVhGbiGmbj6F3WdvAQB6t3DFvBf9YGdZteE+IqLqotVqOdVkopRK5UNHZFhmSmGZeThRFLH20HV8EXYBBRot6tlbYMlwf/jXd5A6GhER1WI8aR49NkEQMKqrNzaPDUB9R0vcSM/DoBWHseqfa9BqTbrnEhGRiWCZIQBAKw877Azuhr6t3VCkFfF52HmM/vE40nI4vEtERIaNZYZK2JorsWSYPz4b2BIqhQx/XUhGUEg4jl9PlToaERHRA7HMUBmCIOCVzg2w9e0AeDtZ4WZGPoZ8G4ll+69w2omIiAwSywxVqIW7HXZM6IYBbdyh0YqY98dFjFpzDHey1VJHIyIiKoNlhh7I2kyBhUPaYO6LrWCmkOGfS7cRtCgckddSpI5GRERUgmWGHkoQBAzpUB/bx3dDIxdrJGepMXxVJEL2XYaG005ERGQAWGbosTSpa4Pt47vixbYe0IrAgr2X8OoPR5CclS91NCIiquVYZuixWaoUmD/YD18P8oOFUo6DV1IQtCgCB6/ckToaERHVYiwzVGkvtfPAjgld0cTVBney1Xjl+yNYsOcip52IiEgSLDOkk0YuNtg2riuGdvCEKAIhf13B8FWRSMrgtBMREdUslhnSmYVKji9fbI1FQ9vASiXHkZhUBIWE48Cl21JHIyKiWoRlhqpsQJt62DGhG5q52SI1pwAjfziKuX9cQJFGK3U0IiKqBVhmqFr4OFtj69sBeKVzfQDA8v1XMfTbSCSm50mcjIiITB3LDFUbc6Ucnw1shSXD/WFjpsDx2DQEhYRj3/lbUkcjIiITxjJD1a5fa3fsDO6GVvXskJ5biDfWHsfnu86hkNNORESkBywzpBcN6lhh09guGBXgBQBYFR6DQSsOIz41V9pgRERkclhmSG/MFHLMeq4FVo5oB1tzBaLj09E3JBy7zyZJHY2IiEwIywzpXe8WdbErOBBtPO2RmV+Et346gdk7zkJdpJE6GhERmQCWGaoRno6W+HVMF7wZ6A0AWH3wOl5afhhxKZx2IiKiqmGZoRqjlMvwYd/m+H5ke9hbKnH6Rgb6hoQj7PRNqaMREZERY5mhGvdUM1eEBQeifQMHZKmL8Pb6KHy07TTyCzntRERElccyQ5Jwt7fAz//rjLE9GgIA1kXG4YVlhxBzJ0fiZEREZGxYZkgySrkM7z/bFGtf7whHKxXO3cxEv5Bw/BZ9Q+poRERkRFhmSHLdGzvj94mB6OTtiJwCDSZuiMa0zf8ir4DTTkRE9GgGXWaKiorw0UcfwdvbGxYWFvDx8cEnn3wCrZZnkjU1rrbmWD+6E4KfbARBADYci8fApQdxJTlL6mhERGTgDLrMzJ07FytWrMCSJUtw/vx5zJs3D1999RUWL14sdTTSA4Vchim9mmDdG53gZG2Gi7ey0H/xQWw6kSB1NCIiMmCCKIqi1CEepF+/fnB1dcX3339fsuzFF1+EpaUlfvrppwqfo1aroVarS77PzMyEp6cnMjIyYGtrq/fMVD2Ss/IxeWM0Dl5JAQC82NYDnw5sAUuVQuJkRERUEzIzM2FnZ/dYn98GPTLTrVs37Nu3D5cuXQIAnDp1ChEREQgKCnrgc+bMmQM7O7uSm6enZ03FpWrkYmOOH1/vhCnPNIZMADZHJaD/4ghcTOK0ExERlWXQIzOiKOKDDz7A3LlzIZfLodFo8Pnnn2P69OkPfA5HZkxP5LUUBP98EslZapgpZJj9XAsM6eAJQRCkjkZERHpiMiMzGzduxLp16xAaGoqoqCisXbsWX3/9NdauXfvA55iZmcHW1rbMjYxbZ586CJsYiCcaO0NdpMW0LacxaWM0stVFUkcjIiIDYNAjM56enpg2bRrGjRtXsuyzzz7DunXrcOHChcd6jco0OzJsWq2IFf9cxfw9l6DRivB2ssKS4f5o4W4ndTQiIqpmJjMyk5ubC5msbES5XM5Ds2spmUzA2z0aYcP/OsPNzhwxd3Lw/LJD+CkyFgbcyYmISM8Musz0798fn3/+OXbt2oXr169j69atWLBgAZ5//nmpo5GEOng5Iiw4EE82dUFBkRYztp3B+J9PIjO/UOpoREQkAYOeZsrKysKMGTOwdetWJCcnw93dHcOGDcPMmTOhUqke6zU4zWS6tFoR30fEYO4fF1CkFVHf0RJLh7dFKw9OOxERGbvKfH4bdJmpDiwzpi8qLg0TQk/iRnoeVHIZPghqipEBXjzaiYjIiJnMPjNEj6NtfQeEBQeiV3NXFGi0mLXjHMasO4GMXE47ERHVBiwzZBLsLJVYOaIdPu7fHEq5gN1nb6Hv4nCcjEuTOhoREekZywyZDEEQ8FpXb2weG4D6jpZISMvDoBWH8V34NR7tRERkwlhmyOS09rDHzuBu6NvKDUVaEZ/tOo/Ra48jLadA6mhERKQHLDNkkmzNlVgy3B+fDWwJlUKGfReS0TckHCdiU6WORkRE1YxlhkyWIAh4pXMDbH07AN5OVkjMyMfglZFYvv8qtFpOOxERmQqWGTJ5LdztsGNCNwxo4w6NVsTcPy7g9bXHkJKtfvSTiYjI4LHMUK1gbabAwiFt8OULrWCmkGH/xdsICgnHkWspUkcjIqIqYpmhWkMQBAztWB/bx3dDQ2cr3MpUY9iqSCzedxkaTjsRERktlhmqdZrUtcGOCd3wYlsPaEVg/t5LGPnDUdzO4rQTEZExYpmhWslSpcD8wX74epAfLJRyRFy5gz6LwnHwyh2poxERUSWxzFCt9lI7D2wf3xVNXG1wJ1uNV74/ggV7L3HaiYjIiLDMUK3n62qDbeO6YmgHT4giELLvMoavisStzHypoxER0WNgmSECYKGS48sXW2PR0DawUslxJCYVQYvCceDSbamjERHRI7DMEJUyoE097JjQDc3cbJGSU4CRPxzF3D8uoEijlToaERE9AMsM0X18nK2x9e0AvNypPgBg+f6rGPptJBLT8yRORkREFWGZIaqAuVKOz59vhSXD/WFtpsDx2DQEhYTjrwu3pI5GRET3YZkheoh+rd2xK7gbWtazRXpuIV5fcxxfhJ1HIaediIgMBssM0SM0qGOFzWMDMCrACwDw7T/XMGjFYSSk5UobjIiIALDMED0WM4Ucs55rgRWvtIWNuQLR8ekIWhSO3WeTpI5GRFTrscwQVcKzLd0QFhwIP097ZOYX4a2fTmD2jrMoKOK0ExGRVFhmiCrJ09ESv77VBaO7eQMAVh+8jpdWHEJcCqediIikwDJDpAOVQoaP+jXHd6+2h52FEv8mZKBvSDjCTt+UOhoRUa3DMkNUBU83d0XYxEC0a+CALHUR3l4fhRnbziC/UCN1NCKiWoNlhqiK6tlbYMP/OmNM94YAgJ8iY/HCskOIuZMjcTIiotqBZYaoGijlMkzr0xRrXusARysVzt3MRL+QcPwWfUPqaEREJo9lhqga9WjigrDgQHT0dkROgQYTN0Rj+pZ/Oe1ERKRHLDNE1ayunTlCR3dC8JONIAjAz0fjMXDpQVxJzpY6GhGRSWKZIdIDhVyGKb2a4KfXO8HJ2gwXkrLQf3EENp9IkDoaEZHJYZkh0qNuvk4Im9gNAQ3rIK9Qg3d+PYV3fz2F3IIiqaMREZkMlhkiPXOxMcdPb3TClGcaQyYAm04kYMCSg7h0K0vqaEREJoFlhqgGyGUCgp/yxfrRneFiY4bLydl4bkkENh6LgyiKUscjIjJqLDNENahLwzoImxiIQF8n5Bdq8f7m05i8MRrZak47ERHpimWGqIY5WZth7WsdMfXZJpDLBGyLTsRziyNwLjFT6mhEREaJZYZIAjKZgLd7NMKG/3WGm505rt3JwcBlB7EuMpbTTkRElcQyQyShDl6O2BUciCebuqCgSIuPtp3B+J9PIiu/UOpoRERGg2WGSGKOVip892p7fBDUFAqZgF3/3kS/xRE4nZAhdTQiIqPAMkNkAGQyAf97oiF+GdMF9ewtEJuSixeXH8KagzGcdiIiegSWGSID0ra+A8KCA/FMc1cUaLSYteMcxq6LQkYep52IiB6EZYbIwNhZKvHtiHaY2a85lHIBf5xNQt+QcETHp0sdjYjIILHMEBkgQRDwejdvbBoTAE9HCySk5eGl5YfwXfg1TjsREd2HZYbIgPl52mNXcCCCWtVFkVbEZ7vO480fjyM9t0DqaEREBoNlhsjA2ZorsXR4W3w6oAVUchn+PJ+MoEXhOBGbKnU0IiKDwDJDZAQEQcCILl7Y8nYAvOpYIjEjH4NXRmLFgavQajntRES1G8sMkRFpWc8OO4MD0d/PHRqtiC9/v4DX1x5DSrZa6mhERJJhmSEyMtZmCoQMbYM5L7SCmUKG/RdvIygkHEeupUgdjYhIEiwzREZIEAQM61gf28Z1hY+zFW5lqjFsVSSW/HWZ005EVOsIoo7HeWq1Wly5cgXJycnQarVlHnviiSeqJVx1yMzMhJ2dHTIyMmBrayt1HKJql6MuwoxtZ7Dl5A0AQKCvExYMbgNnGzOJkxER6a4yn986lZnIyEgMHz4csbHlr/ArCAI0Gk1lX1JvWGaotvj1eDxm/nYWeYUaONuYYdGQNgho5CR1LCIinVTm81unaaYxY8agffv2OHPmDFJTU5GWllZyS03l4aJEUhjU3hPbx3dFY1dr3M5S4+Xvj+CbvZeg4bQTEZk4nUZmrKyscOrUKTRq1EgfmaoVR2aotskr0GDW9rPYeDweANDZxxEhQ/3hYmsucTIiosen95GZTp064cqVKzqFIyL9slDJMfel1lg4pA2sVHJEXktFn0Xh+OfSbamjERHphUKXJ02YMAHvvPMOkpKS0KpVKyiVyjKPt27dulrCEZHuBvrXQ2sPO4wLPYnzNzMxcvVRvN2jISY/3RgKOQ9kJCLTodM0k0xW/h9CQRAgiiJ3ACYyMPmFGny68xzWH4kDAHTwckDIMH+42VlInIyI6MH0fjRTbGzsQx9v0KBBZV9Sb1hmiIrt/DcR0zafRra6CA6WSiwY3AY9m7pIHYuIqEJ6LzPGhGWG6D/X7+Rg/M9ROHMjEwDw1hM+eLd3Eyg57UREBkbvOwADwNWrVzFhwgQ8/fTTeOaZZxAcHIyrV6/q+nIPdOPGDbzyyiuoU6cOLC0t0aZNG5w4caLa34eoNvByssLmsQEYFeAFAFj5zzUMXnkYCWm50gYjIqoCncrM7t270bx5cxw9ehStW7dGy5YtceTIEbRo0QJ79+6ttnBpaWno2rUrlEolfv/9d5w7dw7z58+Hvb19tb0HUW1jppBj1nMtsOKVtrAxV+BkXDqCFoVjz9kkqaMREelEp2kmf39/9O7dG19++WWZ5dOmTcOePXsQFRVVLeGmTZuGgwcPIjw8/LGfo1aroVb/dwXhzMxMeHp6cpqJqALxqbkY//NJnIpPBwC81tUL0/s0g0rBaScikpbep5nOnz+PN954o9zy119/HefOndPlJSu0fft2tG/fHoMGDYKLiwv8/f2xatWqhz5nzpw5sLOzK7l5enpWWx4iU+PpaIlf3+qC0d28AQCrD17HSysOIS6F005EZDx0KjPOzs6Ijo4utzw6OhouLtV3dMS1a9ewfPly+Pr6Yvfu3RgzZgyCg4Px448/PvA506dPR0ZGRsktPj6+2vIQmSKVQoaP+jXHd6+2h52FEv8mZKBvSDjCTt+UOhoR0WPR6aR5b775Jv73v//h2rVrCAgIgCAIiIiIwNy5c/HOO+9UWzitVov27dvjiy++AFA8vXX27FksX74cr776aoXPMTMzg5kZrxZMVFlPN3dF2MRATAiNQlRcOt5eH4URnRvgw77NYK6USx2PiOiBdCozM2bMgI2NDebPn4/p06cDANzd3TFr1iwEBwdXWzg3Nzc0b968zLJmzZph8+bN1fYeRPSfevYW2PhWF3y95yJWHriGnyJjERWXhiXD28LbyUrqeEREFdJpmkkQBEyePBkJCQkl0zkJCQmYOHEiBEGotnBdu3bFxYsXyyy7dOmSQZ2Uj8jUKOUyTO/TDKtf6wBHKxXOJmaiX0g4fou+IXU0IqIKVfmQBRsbG9jY2FRHlnImT56MyMhIfPHFF7hy5QpCQ0Px7bffYty4cXp5PyL6T88mLggLDkRHL0fkFGgwcUM0pm85jfxCw7lcCRERUIlDs9u2bYt9+/bBwcEB/v7+Dx2Bqa5DswFg586dmD59Oi5fvgxvb29MmTIFb7755mM/n2cAJqqaIo0Wi/ZdxpK/r0AUgaZ1bbBkeFs0crGWOhoRmbDKfH4/9j4zAwYMKNmxdsCAAdU6nfQw/fr1Q79+/WrkvYioPIVchnd6NUFHb0dM3hiNC0lZeG5JBD4b2BIvtPWQOh4REa/NRESPLzkzHxM3ROPwtRQAwKB2Hpg9oAUsVTodS0BE9EB6P2mej48PUlJSyi1PT0+Hj4+PLi9JREbAxdYc60Z3wqSnfSETgF9PJGDAkoO4dCtL6mhEVIvpVGauX78Ojab8ToBqtRoJCQlVDkVEhksuEzDp6cZYP7ozXGzMcDk5G88ticAvx+Jh4gO9RGSgKjU2vH379pKvd+/eDTs7u5LvNRoN9u3bB29v7+pLR0QGq0vDOgibGIjJG6MRfvkOpm7+F4evpeCzgS1hZcZpJyKqOZXaZ0YmKx7IEQSh3P/AlEolvLy8MH/+fIPaYZf7zBDpl1YrYvmBq1iw9xI0WhE+TlZY+nJbNHPj3zci0l1lPr912gHY29sbx44dg5OTk84hawrLDFHNOHY9FRNCTyIpMx8qhQwf92+O4R3r19iRj0RkWvS+A3BMTIxRFBkiqjkdvBwRNjEQTzZ1QUGRFh9uPYMJP59EVn6h1NGIyMTpfGh2Tk4ODhw4gLi4OBQUFJR5rDqvz1RVHJkhqllarYjvIq5h3h8XUaQV4VXHEkuGt0XLenaPfjIR0V16n2Y6efIkgoKCkJubi5ycHDg6OuLOnTuwtLSEi4sLrl27pnP46sYyQySNqLg0TAg9iRvpeVDJZfiwbzO82qUBp52I6LHofZpp8uTJ6N+/P1JTU2FhYYHIyEjExsaiXbt2+Prrr3UKTUSmpW19B+wK7oZnmruiQKPFx9vP4u31UcjI47QTEVUvncpMdHQ03nnnHcjlcsjlcqjVanh6emLevHn44IMPqjsjERkpe0sVvh3RDjP7NYdSLuD3M0notzgcp+LTpY5GRCZEpzKjVCpLhopdXV0RFxcHALCzsyv5mogIKD6Vw+vdvLFpTAA8HS0Qn5qHl1YcwvcRMTzJHhFVC53KjL+/P44fPw4A6NmzJ2bOnIn169dj0qRJaNWqVbUGJCLT4Odpj50TAtGnZV0UakR8uvMc3vzxBNJzCx79ZCKih9CpzHzxxRdwc3MDAHz66aeoU6cOxo4di+TkZHz77bfVGpCITIedhRLLXm6LTwe0gEouw5/nb6FvSAROxKZJHY2IjFilj2YSRRFxcXFwcXGBhYWFvnJVGx7NRGSYztzIwPjQKFxPyYVCJuC93k3wZqAPZDIe7UREej6aSRRF+Pr68oKSRFQlLevZYceEbujv544irYg5v1/AG2uPITWH005EVDmVLjMymQy+vr5ISUnRRx4iqkVszJUIGdoGc15oBTOFDH9fvI2gReE4GpMqdTQiMiI67TMzb948vPfeezhz5kx15yGiWkYQBAzrWB/bxnWFj7MVkjLzMWxVJJb+fQVaLY92IqJH0+kMwA4ODsjNzUVRURFUKlW5fWdSUw3nf1XcZ4bIeOSoizBj2xlsOXkDABDo64RvhrSBk7WZxMmIqKZV5vNbocsbfPPNNzwlORFVOyszBeYP9kPnhnUw87czCL98B30WhWPR0DYIaMiL2xJRxXS+0KSx4MgMkXG6fCsLb6+PwuXkbMgEIPgpX0x40hdyHu1EVCvo/dpMcrkcycnJ5ZanpKRALpfr8pJERGX4utpg+/huGNzeA1oRWPjnZYz4/giSM/OljkZEBkanMvOgwRy1Wg2VSlWlQERE91io5Jj3kh++GeIHS5Uch66mICgkHOGXb0sdjYgMSKX2mQkJCQFQfPTBd999B2tr65LHNBoN/vnnHzRt2rR6ExJRrfe8vwda1bPH+NAoXEjKwqs/HMW4Ho0w6WlfKOQ6/Z+MiExIpfaZ8fb2BgDExsbCw8OjzJSSSqWCl5cXPvnkE3Tq1Kn6k+qI+8wQmY78Qg0+2XkOoUeKL2jb0csRIcP8UdfOXOJkRFTdKvP5rdMOwD179sSWLVvg4OCgc8iawjJDZHp2nErE9C2nka0ugqOVCvMH+6FnExepYxFRNdJ7mTEmLDNEpun6nRyM/zkKZ25kAgDe6u6Dd3s1gZLTTkQmQe9lRqPRYM2aNdi3bx+Sk5Oh1WrLPP7XX39V9iX1hmWGyHSpizSYE3YBaw5dBwC0a+CAkGH+qGdv+BfBJaKH0/tJ8yZOnIg1a9agb9++aNmyJU+gR0SSMFPIMeu5Fujs44j3Nv2LE7FpCFoUjvmD/PB0c1ep4xFRDdFpZMbJyQk//vgjgoKC9JGpWnFkhqh2iE/NxfjQKJxKyAAAjO7mjanPNoVKwWknImOk95PmqVQqNGrUSKdwRET64OloiV/HBOCNbsVHXX4XEYNBKw8jPjVX4mREpG86lZl33nkHixYteuDJ84iIpKBSyDCjX3OserU97CyUOBWfjqCQcPxx5qbU0YhIj3SaZnr++efx999/w9HRES1atIBSqSzz+JYtW6otYFVxmomodrqRnocJoVGIiksHAIzs0gAf9G0GMwUvuUJkDPS+A7C9vT2ef/55ncIREdWEevYW2PhWF3y95yJWHriGtYdjcSIuDUuGtYWXk5XU8YioGvE8M0Rk8v6+kIwpv0QjLbcQ1mYKzHmhFfr7uUsdi4geQu87AANAUVER/vzzT6xcuRJZWVkAgMTERGRnZ+v6kkREetGzqQvCJgaio5cjstVFmPDzSXyw9TTyCzVSRyOiaqDTyExsbCyeffZZxMXFQa1W49KlS/Dx8cGkSZOQn5+PFStW6COrTjgyQ0T3FGm0WPjnZSzdfwWiCDSta4OlL7dFQ2frRz+ZiGqU3kdmJk6ciPbt2yMtLQ0WFv+dafP555/Hvn37dHlJIiK9U8hleLd3E/z4ekc4WatwISkL/RdHYOvJBKmjEVEV6FRmIiIi8NFHH0GlUpVZ3qBBA9y4caNaghER6UugrzPCggPRxacOcgs0mLzxFKZuOoW8Ak47ERkjncqMVquFRlP+L31CQgJsbGyqHIqISN9cbM2xbnQnTHraF4IA/HI8Ac8ticDlW1lSRyOiStKpzDzzzDNYuHBhyfeCICA7Oxsff/yxUVzigIgIAOQyAZOeboz1ozvB2cYMl5Oz0X9JBH45Hs+TghIZEZ12AE5MTETPnj0hl8tx+fJltG/fHpcvX4aTkxP++ecfuLi46COrTrgDMBE9jttZakz5JRrhl+8AAF7wr4dPB7aElZlOp+MioiqqzOe3zueZycvLw4YNG3DixAlotVq0bdsWL7/8cpkdgg0BywwRPS6tVsTyA1cxf89FaEWgobMVlgxvi2Zu/LeDqKbVSJkxFiwzRFRZR2NSEfzzSSRl5sNMIcPH/VtgWEdPCIIgdTSiWkPvh2bPmTMHP/zwQ7nlP/zwA+bOnavLSxIRGYyO3o4ImxiIHk2coS7S4oOtpxG8IRpZ+YVSRyOiCuhUZlauXImmTZuWW96iRQuDOmEeEZGuHK1U+GFkB0zr0xRymYAdpxLRf3EEztzIkDoaEd1HpzKTlJQENze3csudnZ1x8+bNKociIjIEMpmAMd0b4pe3usDdzhzXU3LxwrJD+OnwdR7tRGRAdCoznp6eOHjwYLnlBw8ehLs7L95GRKalXQMHhE0MxNPNXFGg0WLGb2cxLjQKmZx2IjIIOh1zOHr0aEyaNAmFhYV48sknAQD79u3D1KlT8c4771RrQCIiQ2BvqcKqV9vhh4PX8eXv5xF2Ogmnb2RgybC28PO0lzoeUa2m09FMoihi2rRpCAkJQUFBAQDA3Nwc77//PmbOnFntIauCRzMRUXWLjk/H+NAoJKTlQSkXML1PM7zW1YtHOxFVoxo7NDs7Oxvnz5+HhYUFfH19YWZmputL6Q3LDBHpQ0ZeId7f9C/+OJsEAHimuSu+fskPdpZKiZMRmQaeZ6YUlhki0hdRFPFTZCw+23keBRot6tlbYPFwf7St7yB1NCKjp/cyk5OTgy+//BL79u1DcnIytFptmcevXbtW2ZfUG5YZItK3MzcyMD40CtdTcqGQCZj6bBOM7uYDmYzTTkS6qsznt847AB84cAAjRoyAm5sb54mJqFZrWc8OOyZ0wwdbz2DHqUR8EXYBkddS8fUgPzhaqaSOR2TydBqZsbe3x65du9C1a1d9ZKpWHJkhopoiiiJ+PhqP2TvOQl2khZudOUKG+aODl6PU0YiMjt4vZ+Dg4ABHR/7lJCIqTRAEDO9UH9vGdYWPsxVuZuRj6LeRWPr3FWi1Jr17IpGkdCozn376KWbOnInc3NzqzvNQc+bMgSAImDRpUo2+LxFRZTRzs8WO8d3wgn89aLQivtp9ESNXH8WdbLXU0YhMkk7TTP7+/rh69SpEUYSXlxeUyrKHIkZFRVVbwHuOHTuGwYMHw9bWFj179sTChQsf63mcZiIiqYiiiF9PJGDmb2eQX6iFi40ZFg5tg4CGTlJHIzJ4et8BeODAgbo8TWfZ2dl4+eWXsWrVKnz22Wc1+t5ERLoSBAGD23uijac9xq2PwuXkbLzy3REEP+WLCU/6Qs6jnYiqhVGcZ2bkyJFwdHTEN998gx49eqBNmzYPHJlRq9VQq/8bys3MzISnpydHZohIUnkFGny8/Qx+OZ4AAAhoWAcLh7aBi425xMmIDJPeR2buOXHiBM6fPw9BENC8eXP4+/tX5eUqtGHDBkRFReHYsWOPtf6cOXMwe/bsas9BRFQVFio55r3kh84+dfDRtjM4dDUFQYvC8c2QNgj0dZY6HpFR02lkJjk5GUOHDsX+/fthb28PURSRkZGBnj17YsOGDXB2rp6/mPHx8Wjfvj327NkDPz8/AODIDBEZvSvJ2RgfGoULSVkQBGBcj0aY9LQvFHKdjskgMkl6PzR7woQJyMzMxNmzZ5Gamoq0tDScOXMGmZmZCA4O1il0RU6cOIHk5GS0a9cOCoUCCoUCBw4cQEhICBQKBTQaTbnnmJmZwdbWtsyNiMiQNHKxxrZxXTGsY32IIrDk7ysY/t0RJGXkSx2NyCjpNDJjZ2eHP//8Ex06dCiz/OjRo+jVqxfS09OrJVxWVhZiY2PLLHvttdfQtGlTvP/++2jZsuUjX4NHMxGRIdt+KhHTN/+LnAINHK1UWDDYDz2auEgdi0hyet9nRqvVljscGwCUSmW56zRVhY2NTbnCYmVlhTp16jxWkSEiMnTP+bmjVT07jA+NwtnETIxafQxvdffBu72aQMlpJ6LHotPflCeffBITJ05EYmJiybIbN25g8uTJeOqpp6otHBFRbeDtZIXNYwPwapcGAICVB65h6LeRuJGeJ3EyIuOg0zRTfHw8BgwYgDNnzsDT0xOCICAuLg6tWrXCb7/9Bg8PD31k1QmnmYjImISdvon3N/2LLHUR7C2V+PolPzzd3FXqWEQ1rjKf31U6z8zevXtx4cIFiKKI5s2b4+mnn9b1pfSGZYaIjE1cSi7G/xyFfxMyAACju3lj6rNNoVJw2olqD72Vmb/++gvjx49HZGRkuRfOyMhAQEAAVqxYgcDAQN2S6wHLDBEZo4IiLb78/QJ+OBgDAPDztMeSYf7wdLSUOBlRzdDbodkLFy7Em2++WeGL2tnZ4a233sKCBQsql5aIiMpRKWSY2b85vh3RDrbmCpyKT0dQSDj+OJMkdTQig1OpMnPq1Ck8++yzD3y8V69eOHHiRJVDERFRsV4t6iJsYiD869sjK78IY9adwKztZ6EuKn+eLaLaqlJl5tatWxUekn2PQqHA7du3qxyKiIj+4+FgiV/e6oK3uvsAANYcuo6Xlh9GbEqOxMmIDEOlyky9evVw+vTpBz7+77//ws3NrcqhiIioLKVchul9mmH1qA5wsFTi9I0M9A2JwM5/Ex/9ZCITV6kyExQUhJkzZyI/v/wpt/Py8vDxxx+jX79+1RaOiIjK6tnUBWETA9HBywHZ6iKMDz2JD7eeRn4hp52o9qrU0Uy3bt1C27ZtIZfLMX78eDRp0gSCIOD8+fNYunQpNBoNoqKi4OpqOOdE4NFMRGSKijRaLPzzMpbuvwJRBJq52WLJcH80dLaWOhpRtdDreWZiY2MxduxY7N69G/eeKggCevfujWXLlsHLy0vn4PrAMkNEpiz88m1M3hiNO9kFsFTJ8cXzrTDQv57UsYiqrEZOmpeWloYrV65AFEX4+vrCwcFBp7D6xjJDRKYuOTMfEzdE4/C1FADAkPaemPVcC1io5BInI9JdjZ0B2BiwzBBRbaDRigjZdxkhf12GKAJNXG2w9GV/NHKxkToakU70dtI8IiIyTHKZgMnPNMb6NzrB2cYMF29lof/ig9h0IkHqaER6xzJDRGRCAho5ISw4EIG+Tsgr1ODdX09hyi/RyFEXSR2NSG9YZoiITIyzjRnWvtYR7/ZqDJkAbIm6geeWROBCUqbU0Yj0gmWGiMgEyWQCxj/pi5/f7AxXWzNcvZ2DAUsO4uejcTDxXSWpFmKZISIyYZ186iAsOBA9mjhDXaTF9C2nMXFDNLI57UQmhGWGiMjE1bE2ww8jO2Ban6aQywRsP5WIfiHhOHMjQ+poRNWCZYaIqBaQyQSM6d4Qv7zVGe525riekosXlh/CT4evc9qJjB7LDBFRLdKugSPCJgbi6WYuKCjSYsZvZzEuNAqZ+YVSRyPSGcsMEVEtY2+pwqpX2+Ojvs2glAsIO52EfiER+DchXepoRDphmSEiqoUEQcDoQB/8OiYAHg4WiEvNxYvLD+GHiBhOO5HRYZkhIqrF2njaY1dwIJ5tUReFGhGf7DyHt346gYxcTjuR8WCZISKq5ewslFj+SlvMfq4FVHIZ9py7haCQcJyMS5M6GtFjYZkhIiIIgoCRAV7YPDYADepY4kZ6HgatOIxV/1yDVstpJzJsLDNERFSilYcddk7ohr6t3VCkFfF52HmM/vE40nIKpI5G9EAsM0REVIaNuRJLhvnj8+dbQqWQ4a8LyQgKCcfx66lSRyOqEMsMERGVIwgCXu7UANve7gofJyvczMjHkG8jsWz/FU47kcFhmSEiogdq7m6LHRO64Xn/etBoRcz74yJGrTmGO9lqqaMRlWCZISKih7IyU2DBYD/Me7E1zJUy/HPpNoIWhSPyWorU0YgAsMwQEdFjEAQBgzt4Yvv4bvB1sUZylhrDV0UiZN9laDjtRBJjmSEiosfW2NUGv43vikHtPKAVgQV7L+HVH44gOStf6mhUi7HMEBFRpViqFPhqkB8WDPaDhVKOg1dSELQoAgev3JE6GtVSLDNERKSTF9p6YMeEbmha1wZ3stV45fsjWLDnIoo0WqmjUS3DMkNERDpr5GKNbeO6YlhHT4giEPLXFQz/7giSMjjtRDWHZYaIiKrEXCnHnBdaY9HQNrBSyXE0JhVBIeHYfzFZ6mhUS7DMEBFRtRjQph52TOiG5m62SM0pwKjVx/Dl7xdQyGkn0jOWGSIiqjY+ztbY8nYARnRuAABYceAqhn4bicT0PImTkSljmSEiomplrpTj04EtsXR4W9iYKXAiNg1BIeH489wtqaORiWKZISIivejb2g07g7uhVT07pOcWYvSPx/HZznMoKOK0E1UvlhkiItKbBnWssGlsF7zW1QsA8F1EDAatPIz41Fxpg5FJYZkhIiK9MlPI8XH/Flg5oh1szRU4FZ+OviHh+ONMktTRyESwzBARUY3o3aIudgUHoo2nPTLzizBm3QnM2n4W6iKN1NHIyLHMEBFRjfF0tMSvY7rgf0/4AADWHLqOl5YfRmxKjsTJyJixzBARUY1SymX4IKgZvh/ZHvaWSpy+kYF+IRHY9e9NqaORkWKZISIiSTzVzBVhwYFo38ABWeoijAuNwkfbTiO/kNNOVDksM0REJBl3ewv8/L/OeLtHQwDAusg4PL/sEK7dzpY4GRkTlhkiIpKUUi7D1GebYu3rHVHHSoXzNzPRf3EEfou+IXU0MhIsM0REZBC6N3ZG2MRAdPZxRE6BBhM3RGPa5n+RV8BpJ3o4lhkiIjIYrrbmWD+6M4Kf8oUgABuOxWPg0oO4kpwldTQyYCwzRERkUOQyAVOeaYx1b3SCk7UZLt7KQv/FB7HpRILU0chAscwQEZFB6trICb9PDES3Rk7IK9Tg3V9P4Z1fTiG3oEjqaGRgWGaIiMhgOduYYe3rHfHOM40hE4DNUQl4bslBXEzitBP9h2WGiIgMmlwmYMJTvgh9szNcbc1wJTkbzy2JwIajcRBFUep4ZABYZoiIyCh09qmDsOBAdG/sDHWRFtO2nMakjdHIVnPaqbZjmSEiIqNRx9oMq0d1wPvPNoVcJuC36ET0XxyBs4kZUkcjCbHMEBGRUZHJBIzt0RAb/9cZbnbmiLmTg+eXHcJPkbGcdqqlDLrMzJkzBx06dICNjQ1cXFwwcOBAXLx4UepYRERkANp7OSIsOBBPNXVBQZEWM7adwfjQk8jML5Q6GtUwgy4zBw4cwLhx4xAZGYm9e/eiqKgIvXr1Qk4OLxVPRESAg5UK341sj4/6NoNCJmDX6ZvoFxKBfxPSpY5GNUgQjWhM7vbt23BxccGBAwfwxBNPPNZzMjMzYWdnh4yMDNja2uo5IRERSeVkXBrGh57EjfQ8KOUCpvdphte6ekEQBKmjkQ4q8/lt0CMz98vIKN7By9HR8YHrqNVqZGZmlrkREZHp86/vgLDgQPRu4YpCjYhPdp7DWz+dQEYup51MndGUGVEUMWXKFHTr1g0tW7Z84Hpz5syBnZ1dyc3T07MGUxIRkZTsLJVY8Uo7zOrfHCq5DHvO3UJQSDhOxqVJHY30yGimmcaNG4ddu3YhIiICHh4eD1xPrVZDrVaXfJ+ZmQlPT09OMxER1TKnEzIwLjQKcam5UMgEvP9sU4wO9Oa0k5EwuWmmCRMmYPv27fj7778fWmQAwMzMDLa2tmVuRERU+7TysMPO4G7o28oNRVoRn4edx+i1x5GWUyB1NKpmBl1mRFHE+PHjsWXLFvz111/w9vaWOhIRERkRW3Mllgz3x2cDW0KlkGHfhWQEhYTj+PVUqaNRNTLoMjNu3DisW7cOoaGhsLGxQVJSEpKSkpCXlyd1NCIiMhKCIOCVzg2w9e0AeDtZ4WZGPoZ8G4ll+69AqzWKPS3oEQx6n5kHzWuuXr0ao0aNeqzX4KHZRER0T7a6CB9uPY3fohMBAN0bO2PBYD/UsTaTOBndrzKf3wZdZqoDywwREZUmiiI2HovHx9vPQl2khautGRYN9UdnnzpSR6NSTG4HYCIiouoiCAKGdqyP7eO7oaGzFW5lqjF8VSRC9l2GhtNORollhoiIaqUmdW2wY0I3vNjWA1oRWLD3El794QiSs/KljkaVxDJDRES1lqVKgfmD/fD1ID9YKOU4eCUFQYsicPDKHamjUSWwzBARUa33UjsP7JjQFU1cbXAnW41Xvj+CBXsvcdrJSLDMEBERAWjkYoNt47piaAdPiCIQsu8yhq+KxK1MTjsZOpYZIiKiuyxUcnz5YmssGtoGVio5jsSkImhROA5cui11NHoIlhkiIqL7DGhTDzsmdENzN1uk5BRg5A9HMfePCyjSaKWORhVgmSEiIqqAj7M1trwdgBGdGwAAlu+/iqHfRiIxnWehNzQsM0RERA9grpTj04EtsXR4W9iYKXA8Ng1BIeHYd/6W1NGoFJYZIiKiR+jb2g07g7uhVT07pOcW4o21x/H5rnMo5LSTQWCZISIiegwN6lhh09guGBXgBQBYFR6DQSsOIz41V9pgxDJDRET0uMwUcsx6rgVWjmgHW3MFouPT0TckHH+cSZI6Wq3GMkNERFRJvVvUxa7gQLTxtEdmfhHGrDuBWdvPQl2kkTparcQyQ0REpANPR0v88lYXvBnoDQBYc+g6Xlp+GLEpORInq31YZoiIiHSkUsjwYd/m+H5ke9hbKnH6Rgb6hURg1783pY5Wq7DMEBERVdFTzVwRFhyI9g0ckKUuwrjQKHy07TTyCzntVBNYZoiIiKqBu70Ffv5fZ4zt0RAAsC4yDs8vO4Rrt7MlTmb6WGaIiIiqiVIuw/vPNsWa1zrA0UqF8zcz0X9xBH6LviF1NJPGMkNERFTNejRxQVhwIDp6OyKnQIOJG6IxbfO/yCvgtJM+sMwQERHpQV07c4SO7oTgJxtBEIANx+IxcOlBXEnOkjqayWGZISIi0hOFXIYpvZrgp9c7wcnaDBdvZaH/4oPYdCJB6mgmhWWGiIhIz7r5OiFsYjcENKyDvEIN3v31FN755RRyC4qkjmYSWGaIiIhqgIuNOX56oxOmPNMYMgHYHJWA55YcxMUkTjtVFcsMERFRDZHLBAQ/5Yv1ozvDxcYMV5Kz8dySCGw8FgdRFKWOZ7RYZoiIiGpYl4Z1EDYxEE80doa6SIv3N5/G5I3RyFZz2kkXgmjiVTAzMxN2dnbIyMiAra1t9b3w2a1A1I+A0hJQWty9WZa6t6xgmUXZ9VVWxfcKC0CuqL5sRERkFLRaESv+uYr5ey5BoxXh42SFJcPborl7NX5eGanKfH7zE1RXKVeBq39V3+vJVQ8pPxUUodLLVI9RnJSWxe8hCNWXmYiIqkQmE/B2j0bo6OWICT+fxLU7ORi47CBm9muOlzvVh8B/sx8LR2Z0lXweuHkKKMwFCvNK3d/9uiC3/LJyX+cCqMHNL8gfUYgsAZW1bl8rLAAZZy2JiHSVllOAd389hX0XkgEAfVu7Yc4LrWBrrpQ4mTQq8/nNMiMlUQSK8ssXnNL3ZUrRA4rTwx4vyAHEGjrjpNKq6qWooq8VqprJT0QkMVEU8X1EDL78/QKKtCIa1LHEkmFt0crDTupoNY5lphSDLjM1RVNYXGoeOEKU819pKsi5u24FXz9omb7JFP8VJZXV3ZJjdfdmXXwzs/7vezObUo9Z3f2+9NdWgMJM/7mJiHR0Mi4N40NP4kZ6HlRyGT4IaoqRAV61atqJZaYUlhk902qBoryHlKBcoCBbt681BfrLLVPeLUDWpYqOdQXlyOYhj5X6XmnJ/ZGIqFpl5BbivU2nsOfcLQDAsy3qYu5LrWFnUTumnVhmSmGZMWKaorujRvdGjir4Wp1dXH4Kskt9n1Xq65zi7+99XZSnp7DCA0aI7t6Xudk+fJnSgsWIiAAUTzutOXQdX4SdR6FGhIeDBRYP84d/fQepo+kdy0wpLDNUhqbov+JzrwSpS5ehrP8eK12UShej+0tUdRPkDyk9jyhE5qVLkRV3yiYyEf8mpGN86EnEpeZCIRMwrU9TvNHN26SnnVhmSmGZIb3SaktNrWWXLUP3vlffu88C1Jmlvr7/lonqPbpNeEgZuq8QmdvdLUN2xYXI3P6/ZdwBm8ggZOYXYvrm09h1+iYA4KmmLvh6kB8crEzz7yjLTCksM2Q07hWj+wtORaXnQWXo3r22Gs8iqrAoVXJKl577l9mXXXZvucqK02ZE1UQURaw7EodPd55DQZEW7nbmCBnmj/ZejlJHq3YsM6WwzFCtI4pAkfrxy1B+RvGy/Mzir+99r86snjyCvHzBKSlD9y+7d28PWNgX35vZsAwR3edsYgbGh55EzJ0cyGUC3unVGGOeaAiZzHT+rrDMlMIyQ6QjraZsyVGXKjtlik9Fy+5+XR0jRIL8v2JT+t7C4b5lDuXX46gQmbBsdRE+3Hoav0UnAgC6N3bGgsF+qGNtGqeeYJkphWWGSCKiWHweo/sLTunbgwpSfjqQlw5o1FXLIFNWUIQcHqMUOQBK86q9N1ENEEURG4/F4+PtZ6Eu0sLV1gwhQ/3RyaeO1NGqjGWmFJYZIiNWmAfkpRUXm3sFJz+9/LK8tPseTwe0hVV7b6UlYOEIWDrcvXd8yL1D8b2ZHY8gI0lcSMrEuPVRuHo7BzIBmPx0Y7zdsxHkRjztxDJTCssMUS0kisVHlT2sAD2wFGXofgmQe1NiDyo7DypDPCM1VYMcdRFm/HYGW6JuAAC6NqqDhUP84WxjnL9fLDOlsMwQUaVotcXTX3mpQG7a3fvUh9ynFd8X5uj+nkqrUqWnTvHNygmwdAKs6ty9v/u9ZZ3i9TgCRA/w6/F4zPztLPIKNXCyNsOioW3QtZGT1LEqjWWmFJYZIqoRhfl3R3oeUXpKL89LA0Rt5d9LkBWP6jyw8JR+7G4BkteOU+BTscu3sjAuNAqXbmVDEIAJT/pi4lO+RjXtxDJTCssMERksrbb4aLDSZSc35e7tDpBzp/jrnDt3v08pXl8X5nYVFx4rF8DKGbB2Lv7a2qW4KHHkx+jlFWgwa/tZbDweDwDo5O2IkGH+cLU1jp3bWWZKYZkhIpNSVFA8qlNScO4rPLkpxaXn3mN5qZUf/RHk/xUda+fismPlXFx0SpbdLT4c9TF4207ewAdbTyO3QIM6ViosGNIG3Rs7Sx3rkVhmSmGZIaJaTasp3rk5t4JRntw7QHYykHO7+JadXFx+KsvC8W7Rub/wOJcvP9zZWRLXbmdjXOhJnL9ZfDLMt3s0xJRnGkMhN9wROJaZUlhmiIgqQVNYXHhykoHs28X394rO/fe5dyo/6mPhAFjXBWxc797fvVm7lr1XWenn56vF8gs1+HTnOaw/EgcA6ODlgEVD/eFubyFxsoqxzJTCMkNEpCdaTfF+Pjm3y5afMsUnubgcZSdX7tw/ZrblC461K2DjVqoIuRavx7M8V8rOfxMxbfNpZKuL4GCpxPzBfniyqavUscphmSmFZYaIyACIYvFOzllJQHYSkHWr/H3WTSD7VvEFVx+XwqK41Ni4lS89tm6AjTtg6w6YWevvZzNCsSk5GBcahTM3iqed/veED97r3QRKA5p2YpkphWWGiMiIiGLxBVCzb90tPndLTsnX9+5vVe7ILjPb4lJj6/5fwbF1A2zr3S0+9YqP8KpFozzqIg3mhF3AmkPXAQD+9e2xeJg/PBwspQ12F8tMKSwzREQmqiD34aM8WTeBzMTHvwK83KzsaM79ZcfWrXh6S67Q789Vw/44k4Spm04hM78ItuYKfD3ID71a1JU6FstMaSwzRES1nDoLyLwJZN64W3Bu3P0+EchKLL7Puf14ryXIiqex7DxK3TzL3ls4GN0IT3xqLib8fBLR8ekAgNe6emF6n2ZQKaSbdmKZKYVlhoiIHqlIXTyFVVJ2Eu8rQInF99qiR7+W0uoBZefuzbYeoFDp/2eqpIIiLb7afQGrwmMAAK097LBkWFvUryPNtBPLTCksM0REVC202uIRnMwEIOMGkJFw9xb/3/1jjfAIFY/u2Hveva9ffMFSifx57hbe3XQK6bmFsDFTYO5LrRHUyq3Gc7DMlMIyQ0RENaYwr3gUp6TgJNz3dQJQlP/o1zG3A+wbAA4N7t57FZcc+wbF9yr9jpYkpudhws8ncSI2DQAwonMDfNi3GcyVcr2+b2ksM6WwzBARkcEQxeIzMd9fcDLigfR4ID2u+GSEj2Llcrfo1L+v9DQoHt2phktMFGq0WLD3EpbvvwoAaO5mi6Uvt4W3U82c0JBlphSWGSIiMirq7OJykxYLpMeWv3/U0VmCrPiIrNIFx74B4OgNOHgXX1aiEjso77+YjCm/nEJqTgGsVHJ88UIrDGhTr4o/5KOZXJlZtmwZvvrqK9y8eRMtWrTAwoULERgY+FjPZZkhIiKTce/kg+lxFRed9LhHT2MprQBHn+Jy4+h992uf4qJjW6/CK6YnZeQjeMNJHI0pvnbXsI6e+Lh/C71OO5lUmdm4cSNGjBiBZcuWoWvXrli5ciW+++47nDt3DvXr13/k81lmiIio1hDF4ktHlBSc6/8VndTrxSM+eMjHvtyseP+ckrLjUzKiU2TjgUX7r2PJ31cgikATVxssfbktGrno5+zKJlVmOnXqhLZt22L58uUly5o1a4aBAwdizpw5j3w+ywwREdFdReri0ZvUa3dvMf99nR778EPPBTlgXx9p5h7YnWSD8wXOuCFzx4u9eqBP1w6ArHpHaSrz+W3QpzEsKCjAiRMnMG3atDLLe/XqhUOHDlX4HLVaDbVaXfJ9ZuZjnvmRiIjI1CnMACff4tv9NEXFh52XKTp3y05aTPH0VVoMHBCDoQBwbx/jfXNwLHoAOkz4sQZ/kLIMuszcuXMHGo0Grq5lr+bp6uqKpKSkCp8zZ84czJ49uybiERERmQ65oniKycELaPhk2ce02uJLRaReA1KuAqlXId65gtT487DOiYdF3cZSJC5h0GXmHuG+va5FUSy37J7p06djypQpJd9nZmbC09NTr/mIiIhMmkz234U6vboBAAQAdQBcTc5ESwdpz2hs0GXGyckJcrm83ChMcnJyudGae8zMzGBmZlYT8YiIiGq9hi7S748q3RWkHoNKpUK7du2wd+/eMsv37t2LgIAAiVIRERGRITHokRkAmDJlCkaMGIH27dujS5cu+PbbbxEXF4cxY8ZIHY2IiIgMgMGXmSFDhiAlJQWffPIJbt68iZYtWyIsLAwNGjSQOhoREREZAIM/z0xV8TwzRERExqcyn98Gvc8MERER0aOwzBAREZFRY5khIiIio8YyQ0REREaNZYaIiIiMGssMERERGTWWGSIiIjJqLDNERERk1FhmiIiIyKgZ/OUMqureCY4zMzMlTkJERESP697n9uNcqMDky0xWVhYAwNPTU+IkREREVFlZWVmws7N76Domf20mrVaLxMRE2NjYQBCEan3tzMxMeHp6Ij4+ntd90iNu55rB7VwzuJ1rBrdzzdDndhZFEVlZWXB3d4dM9vC9Ykx+ZEYmk8HDw0Ov72Fra8u/LDWA27lmcDvXDG7nmsHtXDP0tZ0fNSJzD3cAJiIiIqPGMkNERERGjWWmCszMzPDxxx/DzMxM6igmjdu5ZnA71wxu55rB7VwzDGU7m/wOwERERGTaODJDRERERo1lhoiIiIwaywwREREZNZYZIiIiMmosMw+xbNkyeHt7w9zcHO3atUN4ePhD1z9w4ADatWsHc3Nz+Pj4YMWKFTWU1PhVZltv2bIFzzzzDJydnWFra4suXbpg9+7dNZjWeFX2d/qegwcPQqFQoE2bNvoNaCIqu53VajU+/PBDNGjQAGZmZmjYsCF++OGHGkprvCq7ndevXw8/Pz9YWlrCzc0Nr732GlJSUmoorXH6559/0L9/f7i7u0MQBGzbtu2Rz5Hks1CkCm3YsEFUKpXiqlWrxHPnzokTJ04UraysxNjY2ArXv3btmmhpaSlOnDhRPHfunLhq1SpRqVSKmzZtquHkxqey23rixIni3LlzxaNHj4qXLl0Sp0+fLiqVSjEqKqqGkxuXym7ne9LT00UfHx+xV69eop+fX82ENWK6bOfnnntO7NSpk7h3714xJiZGPHLkiHjw4MEaTG18Krudw8PDRZlMJi5atEi8du2aGB4eLrZo0UIcOHBgDSc3LmFhYeKHH34obt68WQQgbt269aHrS/VZyDLzAB07dhTHjBlTZlnTpk3FadOmVbj+1KlTxaZNm5ZZ9tZbb4mdO3fWW0ZTUdltXZHmzZuLs2fPru5oJkXX7TxkyBDxo48+Ej/++GOWmcdQ2e38+++/i3Z2dmJKSkpNxDMZld3OX331lejj41NmWUhIiOjh4aG3jKbmccqMVJ+FnGaqQEFBAU6cOIFevXqVWd6rVy8cOnSowuccPny43Pq9e/fG8ePHUVhYqLesxk6XbX0/rVaLrKwsODo66iOiSdB1O69evRpXr17Fxx9/rO+IJkGX7bx9+3a0b98e8+bNQ7169dC4cWO8++67yMvLq4nIRkmX7RwQEICEhASEhYVBFEXcunULmzZtQt++fWsicq0h1WehyV9oUhd37tyBRqOBq6trmeWurq5ISkqq8DlJSUkVrl9UVIQ7d+7Azc1Nb3mNmS7b+n7z589HTk4OBg8erI+IJkGX7Xz58mVMmzYN4eHhUCj4T8Xj0GU7X7t2DRERETA3N8fWrVtx584dvP3220hNTeV+Mw+gy3YOCAjA+vXrMWTIEOTn56OoqAjPPfccFi9eXBORaw2pPgs5MvMQgiCU+V4UxXLLHrV+RcupvMpu63t+/vlnzJo1Cxs3boSLi4u+4pmMx93OGo0Gw4cPx+zZs9G4ceOaimcyKvP7rNVqIQgC1q9fj44dOyIoKAgLFizAmjVrODrzCJXZzufOnUNwcDBmzpyJEydO4I8//kBMTAzGjBlTE1FrFSk+C/nfrQo4OTlBLpeXa/jJycnlGuc9devWrXB9hUKBOnXq6C2rsdNlW9+zceNGvPHGG/j111/x9NNP6zOm0avsds7KysLx48dx8uRJjB8/HkDxh64oilAoFNizZw+efPLJGsluTHT5fXZzc0O9evVgZ2dXsqxZs2YQRREJCQnw9fXVa2ZjpMt2njNnDrp27Yr33nsPANC6dWtYWVkhMDAQn332GUfPq4lUn4UcmamASqVCu3btsHfv3jLL9+7di4CAgAqf06VLl3Lr79mzB+3bt4dSqdRbVmOny7YGikdkRo0ahdDQUM55P4bKbmdbW1ucPn0a0dHRJbcxY8agSZMmiI6ORqdOnWoqulHR5fe5a9euSExMRHZ2dsmyS5cuQSaTwcPDQ695jZUu2zk3NxcyWdmPPLlcDuC/kQOqOsk+C/W6e7ERu3fY3/fffy+eO3dOnDRpkmhlZSVev35dFEVRnDZtmjhixIiS9e8djjZ58mTx3Llz4vfff89Dsx9TZbd1aGioqFAoxKVLl4o3b94suaWnp0v1IxiFym7n+/FopsdT2e2clZUlenh4iC+99JJ49uxZ8cCBA6Kvr684evRoqX4Eo1DZ7bx69WpRoVCIy5YtE69evSpGRESI7du3Fzt27CjVj2AUsrKyxJMnT4onT54UAYgLFiwQT548WXIIvKF8FrLMPMTSpUvFBg0aiCqVSmzbtq144MCBksdGjhwpdu/evcz6+/fvF/39/UWVSiV6eXmJy5cvr+HExqsy27p79+4igHK3kSNH1nxwI1PZ3+nSWGYeX2W38/nz58Wnn35atLCwED08PMQpU6aIubm5NZza+FR2O4eEhIjNmzcXLSwsRDc3N/Hll18WExISaji1cfn7778f+u+toXwWCqLI8TUiIiIyXtxnhoiIiIwaywwREREZNZYZIiIiMmosM0RERGTUWGaIiIjIqLHMEBERkVFjmSEiIiKjxjJDRERERo1lhoiMyvXr1yEIAqKjox+6Xo8ePTBp0qQayURE0mKZISK9GDVqFARBgCAIUCqV8PHxwbvvvoucnJwqva6npydu3ryJli1bAgD2798PQRCQnp5eZr0tW7bg008/rdJ7EZFxUEgdgIhM17PPPovVq1ejsLAQ4eHhGD16NHJycrB8+XKdX1Mul6Nu3bqPXM/R0VHn9yAi48KRGSLSGzMzM9StWxeenp4YPnw4Xn75ZWzbtg1qtRrBwcFwcXGBubk5unXrhmPHjpU8Ly0tDS+//DKcnZ1hYWEBX19frF69GkDZaabr16+jZ8+eAAAHBwcIgoBRo0YBKD/NlJaWhldffRUODg6wtLREnz59cPny5ZLH16xZA3t7e+zevRvNmjWDtbU1nn32Wdy8eVP/G4qIqoRlhohqjIWFBQoLCzF16lRs3rwZa9euRVRUFBo1aoTevXsjNTUVADBjxgycO3cOv//+O86fP4/ly5fDycmp3Ot5enpi8+bNAICLFy/i5s2bWLRoUYXvPWrUKBw/fhzbt2/H4cOHIYoigoKCUFhYWLJObm4uvv76a/z000/4559/EBcXh3fffVcPW4KIqhOnmYioRhw9ehShoaHo2bMnli9fjjVr1qBPnz4AgFWrVmHv3r34/vvv8d577yEuLg7+/v5o3749AMDLy6vC15TL5SXTSS4uLrC3t69wvcuXL2P79u04ePAgAgICAADr16+Hp6cntm3bhkGDBgEACgsLsWLFCjRs2BAAMH78eHzyySfVtQmISE84MkNEerNz505YW1vD3NwcXbp0wRNPPIEJEyagsLAQXbt2LVlPqVSiY8eOOH/+PABg7Nix2LBhA9q0aYOpU6fi0KFDVcpx/vx5KBQKdOrUqWRZnTp10KRJk5L3BABLS8uSIgMAbm5uSE5OrtJ7E5H+scwQkd707NkT0dHRuHjxIvLz87FlyxbY2dkBAARBKLOuKIoly/r06YPY2FhMmjQJiYmJeOqpp6o03SOK4gOXl86hVCrLPC4IwgOfS0SGg2WGiPTGysoKjRo1QoMGDUqKQqNGjaBSqRAREVGyXmFhIY4fP45mzZqVLHN2dsaoUaOwbt06LFy4EN9++22F76FSqQAAGo3mgTmaN2+OoqIiHDlypGRZSkoKLl26VOY9icg4cZ8ZIqpRVlZWGDt2LN577z04Ojqifv36mDdvHnJzc/HGG28AAGbOnIl27dqhRYsWUKvV2Llz5wNLR4MGDSAIAnbu3ImgoCBYWFjA2tq6zDq+vr4YMGAA3nzzTaxcuRI2NjaYNm0a6tWrhwEDBuj9ZyYi/eLIDBHVuC+//BIvvvgiRowYgbZt2+LKlSvYvXs3HBwcABSPtkyfPh2tW7fGE088Ablcjg0bNlT4WvXq1cPs2bMxbdo0uLq6Yvz48RWut3r1arRr1w79+vVDly5dIIoiwsLCyk0tEZHxEUROCBMREZER48gMERERGTWWGSIiIjJqLDNERERk1FhmiIiIyKixzBAREZFRY5khIiIio8YyQ0REREaNZYaIiIiMGssMERERGTWWGSIiIjJqLDNERERk1P4PHP/xumdxJQMAAAAASUVORK5CYII=", "text/plain": [ "" ] @@ -789,7 +789,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b702caa348454c5080b4ae4ec6a48862", + "model_id": "d1491ca0e8bb44d6847ede0b6f8037f4", "version_major": 2, "version_minor": 0 }, @@ -852,7 +852,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVY5JREFUeJzt3XlYVGUDBfBzZ2XfBVFQQXHfQNxQSss0UdMWcynTysoU0WzTFrPV7CtTNLWs1FLUyiVTSs3SQMUNMRXclUVElH0dYOZ+f6AEggrjDHdmOL/nmWeGO9vhpt7T+95FEEVRBBEREZGZkkkdgIiIiOhesMwQERGRWWOZISIiIrPGMkNERERmjWWGiIiIzBrLDBEREZk1lhkiIiIyawqpAxibTqdDamoq7O3tIQiC1HGIiIioFkRRRF5eHpo0aQKZ7M5jLxZfZlJTU+Ht7S11DCIiItJDcnIyvLy87vgaiy8z9vb2AMpXhoODg8RpiIiIqDZyc3Ph7e1dsR2/E4svMzenlhwcHFhmiIiIzExtdhHhDsBERERk1lhmiIiIyKyxzBAREZFZs/h9ZoiIiO6VVqtFaWmp1DEsilKphFwuN8hnscwQERHdhiiKSEtLQ3Z2ttRRLJKTkxMaN258z+eBY5khIiK6jZtFxt3dHTY2Njz5qoGIoojCwkKkp6cDADw9Pe/p81hmiIiIaqDVaiuKjKurq9RxLI61tTUAID09He7u7vc05cQdgImIiGpwcx8ZGxsbiZNYrpvr9l73R2KZISIiugNOLRmPodYtywwRERGZNUnLzD///INhw4ahSZMmEAQBmzdvrvK8KIqYM2cOmjRpAmtra/Tr1w8nT56UJiwRERGZJEnLTEFBAbp06YLFixfX+Pxnn32G+fPnY/HixTh06BAaN26Mhx56CHl5efWclIiIiEyVpGVm8ODB+Oijj/DYY49Ve04URSxYsABvv/02HnvsMXTs2BGrVq1CYWEhIiIiJEhbPd+uhKsQRVHqKERERFVMmDABI0aMqLZ89+7dEATB4s6bY7L7zFy8eBFpaWkYOHBgxTK1Wo37778f+/btu+37NBoNcnNzq9yMYfWBJDy/6jBe+vEIcgp5VkgiIiKpmOx5ZtLS0gAAHh4eVZZ7eHggMTHxtu+bO3cu3n//faNmAwABgEouw474qzgZHoVFY/0R0MzZ6N9LRETSEUURRaVaSb7bWinnkVW3YbJl5qZb/8OJonjH/5izZs3CjBkzKn7Ozc2Ft7e3wXM93as5ung5IXRtLBIzCvHksv144+E2mNjXFzIZ/7AREVmiolIt2s/eLsl3x38wCDYqk99sS8Jk10rjxo0BlI/QVD7NcXp6erXRmsrUajXUarXR8wFAJy9H/Da1L2ZtPI5t/17BJ5GnEHMhE5+P7AIXW1W9ZCAiIqrJ1q1bYWdnV2WZVivNqJKxmWyZ8fHxQePGjbFz5074+/sDAEpKSrBnzx7MmzdP4nT/cbBSYvEYf/T2dcUHW+Px16l0DAmPQvgYf3Rv4SJ1PCIiMiBrpRzxHwyS7Lvron///li6dGmVZQcOHMDTTz9tyFgmQdIyk5+fj3PnzlX8fPHiRcTFxcHFxQXNmjXD9OnT8cknn8DPzw9+fn745JNPYGNjg7Fjx0qYujpBEPB0r+YIaOaM0IhYXLhegNHfxGDGQ63x8v0tOe1ERGQhBEEwm6keW1tbtGrVqsqylJQUidIYl6T/RQ4fPoz+/ftX/HxzX5fx48dj5cqVeOONN1BUVITJkycjKysLPXv2xI4dO2Bvby9V5Dtq38QBW6b2xTubjmNzXCr+t/00Yi5k4MtRXeFmVz9TX0RERA2NpIdm9+vXD6IoVrutXLkSQHkDnjNnDq5cuYLi4mLs2bMHHTt2lDLyXdmpFfhyVFfMe7wTrJQyRJ29jpCFUYi5kCF1NCIiIotksueZMWeCIGBU92b4dUpftHK3Q3qeBmOXx2Dhn2eh1fEke0RERIYkiBZ+Ctvc3Fw4OjoiJycHDg4O9f79hSVlmP3rSfxypHyesk8rV3w5qivc7a3qPQsREdVecXExLl68CB8fH1hZ8d9sY7jTOq7L9psjM0Zmo1Lg85Fd8MXILrBWyrH3XAZCFkYj+ux1qaMRERFZBJaZevJ4Ny/8NrUv2ja2x/V8DcZ9fwDzd5xGmVYndTQiIiKzxjJTj1q522HzlD4Y08MbogiE/3UOY789gKu5xVJHIyIiMlssM/XMSinH3Mc6Y+HorrBVyXHwYiYGL4zC7tPpUkcjIiIySywzEhnetSm2hgWjvacDMgtKMGHFIcz74xSnnYiIiOqIZUZCPm622Dg5CON6NQcALN19HqO/iUFqdpHEyYiIiMwHy4zErJRyfDiiI5Y8FQB7tQKHE7MQEh6FXQlXpY5GRERkFlhmTERIJ09sCwtGZy9HZBeW4vlVh/HR1niUlHHaiYiI6E5YZkxIM1cb/DypN57t0wIA8G30RTz59X4kZxZKG4yIiMiEscyYGLVCjveGdcDX47rBwUqBuORsDAmPwh8n0qSORkREZkAQhDveJkyYYLTv3rhxIwYNGgQ3NzcIgoC4uDijfVdlLDMmalCHxoicFoyu3k7ILS7DpNVHMGfLSWjKtFJHIyIiE3blypWK24IFC+Dg4FBl2cKFC6u8vrS01GDfXVBQgD59+uDTTz812GfWBsuMCfNyLp92evE+XwDAyn2X8MTS/UjMKJA4GRERmarGjRtX3BwdHSEIQsXPxcXFcHJywk8//YR+/frBysoKq1evRkZGBsaMGQMvLy/Y2NigU6dOWLt2bZXP7devH0JDQxEaGgonJye4urrinXfeQeVLPI4bNw6zZ8/GgAED6vV3ZpkxcUq5DG+FtMP3EwLhZKPE8cs5GBIeja3/pkodjYio4RFFoKRAmpsBrwv95ptvIiwsDAkJCRg0aBCKi4vRrVs3bN26FSdOnMCLL76IcePG4cCBA1Xet2rVKigUChw4cADh4eH48ssv8e233xosl74UUgeg2nmgrQciw4IRtvYoDidmITTiKPafz8C7Q9vDSimXOh4RUcNQWgh80kSa734rFVDZGuSjpk+fjscee6zKstdee63i8dSpU/HHH3/g559/Rs+ePSuWe3t748svv4QgCGjTpg2OHz+OL7/8Ei+88IJBcumLIzNmpImTNda92AuT+7UEAKw5kIRHl+zDhWv5EicjIiJzEhgYWOVnrVaLjz/+GJ07d4arqyvs7OywY8cOJCUlVXldr169IAhCxc+9e/fG2bNnodVKuz8nR2bMjEIuwxsPt0VPX1fMWB+HhCu5GLooGp882gkj/JtKHY+IyLIpbcpHSKT6bgOxta06wvPFF1/gyy+/xIIFC9CpUyfY2tpi+vTpKCkpMdh3GhPLjJm6v3UjRE4rn3Y6cDET09fHYf/5DMx5pAOsVZx2IiIyCkEw2FSPKYmKisLw4cPx9NNPAwB0Oh3Onj2Ldu3aVXldTExMtZ/9/Pwgl0u73eE0kxnzcLDCmok9EfagHwQBWH84GSO+2otz6XlSRyMiIjPSqlUr7Ny5E/v27UNCQgJeeuklpKVVP79ZcnIyZsyYgdOnT2Pt2rVYtGgRpk2bVvF8ZmYm4uLiEB8fDwA4ffo04uLiavwsQ2KZMXMKuQwzHmqN1c/3hJudGqev5mHYor345UiK1NGIiMhMvPvuuwgICMCgQYPQr18/NG7cGCNGjKj2umeeeQZFRUXo0aMHpkyZgqlTp+LFF1+seH7Lli3w9/fHkCFDAACjR4+Gv78/li1bZtT8giga8FgvE5SbmwtHR0fk5OTAwcFB6jhGlZ5XjFfWx2HvuQwAwGMBTfHRiI6wUXE2kYioroqLi3Hx4kX4+PjAyspK6jiS69evH7p27YoFCxYY7DPvtI7rsv3myIwFcbe3wg/P9cSMh1pDJgAbYy9j2KJonErLlToaERGR0bDMWBi5TEDYg36IeKEXPBzUOH+tAMMX78W6g0mw8EE4IiJqoFhmLFQvX1dEhgXj/taNoCnTYebG45i+Pg75mjKpoxERkRnavXu3QaeYDIllxoK52qmxYkJ3vPlwW8hlAn6NS8WwRdE4mZojdTQiIiKDYZmxcDKZgJf7tcT6F3vB09EKF68X4NEl+/BjTCKnnYiIaoH/VhqPodYty0wDEdjCBZFhwRjQzh0lZTq8u/kEQiOOIrfYcJd+JyKyJEqlEgBQWFgocRLLdXPd3lzX+uIxuw2Is60Ky58JxHfRF/Hp76ew7fgVHL+cg8Vj/dHZy0nqeEREJkUul8PJyQnp6ekAABsbmyrXJSL9iaKIwsJCpKenw8nJ6Z7PIMzzzDRQR5PKr7x9ObsISrmAt0LaYUJQC/5FJSKqRBRFpKWlITs7W+ooFsnJyQmNGzeucdtTl+03y0wDllNYijc2HMP2k1cBAIM6eOCzx7vA0ebehvuIiCyNVqtFaSmn5Q1JqVTecUSGZaYSlpk7E0URq/ZdwieRp1Ci1aGpkzUWj/WHfzNnqaMREVEDxjMAU60JgoAJfXyw4eUgNHOxweXsIoxcth/L/7kAnc6iey4REVkIlhkCAHTycsTWsL4Y0tkTZToRH0cmYOIPh5FVUCJ1NCIiojtimaEKDlZKLB7jj49GdIRKIcNfp9IREh6Fw5cypY5GRER0WywzVIUgCHi6V3NsmhwEHzdbXMkpxqhvYrBk9zlOOxERkUlimaEadWjiiN+m9sXwrk2g1Yn47I/TmLDyEK7na6SORkREVAXLDN2WnVqBBaO6Yt7jnaBWyPDPmWsIWRiFmAsZUkcjIiKqwDJDdyQIAkZ1b4YtoX3Ryt0O6XkajF0eg/BdZ6HltBMREZkAlhmqlTaN7bEltA8eD/CCTgTm7zyDZ74/gPS8YqmjERFRA8cyQ7Vmo1Lgiye74PORXWCtlGPvuQyELIzG3nPXpY5GREQNGMsM1dkT3bzw29Q+aONhj+v5Gjz93QHM33Ga005ERCQJlhnSSyt3e2ye0geju3tDFIHwv85h7PIYpOVw2omIiOoXywzpzVolx6ePd8bC0V1hq5LjwMVMhIRHYc+Za1JHIyKiBoRlhu7Z8K5N8dvUvmjn6YDMghKM//4g5v1xCmVandTRiIioAWCZIYPwbWSHTZOD8HSvZgCApbvPY/Q3MUjNLpI4GRERWTqWGTIYK6UcH43ohMVj/WGvVuBwYhZCwqOwK+Gq1NGIiMiCscyQwQ3t3ARbw/qiU1NHZBeW4vlVh/HxtniUctqJiIiMgGWGjKK5qy1+ebk3JgS1AAAsj7qIkcv2IzmzUNpgRERkcVhmyGjUCjnmPNIBX4/rBgcrBeKSszEkPArbT6ZJHY2IiCwIywwZ3aAOjbEtLBhdvZ2QW1yGl348gvd/OwlNmVbqaEREZAFYZqheeLvY4OdJvfFCsA8AYMXeS3hi6X4kZXDaiYiI7g3LDNUbpVyGt4e0x3fjA+Fko8TxyzkYEh6FyONXpI5GRERmjGWG6t2D7TwQGRaMwObOyNOUYfKaWLyz+TiKSzntREREdccyQ5Jo4mSNtS/2wsv9WgIAVsck4bEl+3DxeoHEyYiIyNywzJBklHIZ3ny4LVY91wMutirEX8nF0PAo/Bp3WepoRERkRlhmSHL3t26E36cFo6ePCwpKtJi2Lg4zN/yLohJOOxER0d2ZdJkpKyvDO++8Ax8fH1hbW8PX1xcffPABdDqeSdbSeDhYYc3Engh7oBUEAVh3KBkjvtqLc+l5UkcjIiITZ9JlZt68eVi2bBkWL16MhIQEfPbZZ/jf//6HRYsWSR2NjEAhl2HGwDZY/XxPuNmpcfpqHoYt2otfjqRIHY2IiEyYIIqiKHWI2xk6dCg8PDzw3XffVSx7/PHHYWNjgx9//LHG92g0Gmg0moqfc3Nz4e3tjZycHDg4OBg9MxlGel4xXlkfh73nMgAAjwd44cMRHWCjUkicjIiI6kNubi4cHR1rtf026ZGZvn37YteuXThz5gwA4NixY4iOjkZISMht3zN37lw4OjpW3Ly9vesrLhmQu70VfniuJ2Y81BoyAdgQm4Jhi6JxOo3TTkREVJVJj8yIooi33noL8+bNg1wuh1arxccff4xZs2bd9j0cmbE8MRcyELb2KNLzNFArZHj/kQ4Y1d0bgiBIHY2IiIzEYkZm1q9fj9WrVyMiIgKxsbFYtWoVPv/8c6xateq271Gr1XBwcKhyI/PWy9cVkdOCcV/rRtCU6TBz43FMXx+HfE2Z1NGIiMgEmPTIjLe3N2bOnIkpU6ZULPvoo4+wevVqnDp1qlafUZdmR6ZNpxOx7J/z+GLHGWh1InzcbLF4rD86NHGUOhoRERmYxYzMFBYWQiarGlEul/PQ7AZKJhMwuV8rrHuxFzwdrXDxegEeXbIPP8YkwoQ7ORERGZlJl5lhw4bh448/xrZt23Dp0iVs2rQJ8+fPx6OPPip1NJJQ9xYuiAwLxgNt3VFSpsO7m08gdO1R5BaXSh2NiIgkYNLTTHl5eXj33XexadMmpKeno0mTJhgzZgxmz54NlUpVq8/gNJPl0ulEfBd9EfP+OIUynYhmLjb4amwAOnlx2omIyNzVZftt0mXGEFhmLF9sUhamRhzF5ewiqOQyvBXSFuODWvBoJyIiM2Yx+8wQ1UZAM2dEhgVjYHsPlGh1mPNbPCatPoKcQk47ERE1BCwzZBEcbZT4elw3vDesPZRyAdtPXsWQRVE4mpQldTQiIjIylhmyGIIg4Nk+PtjwchCaudggJasII5ftx7dRF3i0ExGRBWOZIYvT2csJW8P6YkgnT5TpRHy0LQETVx1GVkGJ1NGIiMgIWGbIIjlYKbF4rD8+GtERKoUMu06lY0h4FI4kZkodjYiIDIxlhiyWIAh4uldzbJocBB83W6TmFOPJr2OwdPd56HScdiIishQsM2TxOjRxxG9T+2J41ybQ6kTM++MUnlt1CBn5mru/mYiITB7LDDUIdmoFFozqik8f6wS1Qobdp68hJDwKBy5kSB2NiIjuEcsMNRiCIGB0j2bYEtoXLRvZ4mquBmOWx2DRrrPQctqJiMhsscxQg9OmsT1+m9oXjwd4QScCX+w8g/HfH8S1PE47ERGZI5YZapBsVAp88WQXfD6yC6yVckSfu47BC6Ow99x1qaMREVEdscxQg/ZENy9sCe2DNh72uJ6vwdPfHcD8nWc47UREZEZYZqjB8/Owx+YpfTC6uzdEEQjfdRZjl8fgam6x1NGIiKgWWGaIAFir5Pj08c5YOLorbFVyHLiYiZCFUdhz5prU0YiI6C5YZogqGd61KX6b2hftPB2QUVCC8d8fxLw/TqFMq5M6GhER3QbLDNEtfBvZYdPkIDzVsxkAYOnu8xj9TQxSs4skTkZERDVhmSGqgZVSjo8f7YTFY/1hp1bgcGIWQsKj8Nepq1JHIyKiW7DMEN3B0M5NsC2sLzo2dUB2YSmeW3kYn0QmoJTTTkREJoNlhugumrvaYsPLQZgQ1AIA8M0/FzBy2X6kZBVKG4yIiACwzBDVilohx5xHOmDZ0wGwt1IgLjkbIQujsP1kmtTRiIgaPJYZojp4uKMnIsOC0cXbCbnFZXjpxyN4/7eTKCnjtBMRkVRYZojqyNvFBj+/1BsT+/oAAFbsvYQnlu1DUgannYiIpMAyQ6QHlUKGd4a2x7fPBMLRWol/U3IwJDwKkcevSB2NiKjBYZkhugcD2nsgclowujV3Rp6mDJPXxOLdzSdQXKqVOhoRUYPBMkN0j5o6WWPdi70w6f6WAIAfYxLx2JJ9uHi9QOJkREQNA8sMkQEo5TLMHNwWK5/tDhdbFeKv5GJoeBR+jbssdTQiIovHMkNkQP3auCMyLBg9fFxQUKLFtHVxmLXxX047EREZEcsMkYE1drRCxMSeCHugFQQBWHswGSO+2otz6flSRyMiskgsM0RGoJDLMGNgG/z4XE+42alxKi0PwxZFY8ORFKmjERFZHJYZIiPq6+eGyGl9EdTSFUWlWrz68zG89vMxFJaUSR2NiMhisMwQGZm7vRV+fL4nZjzUGjIB+OVICoYv3oszV/OkjkZEZBFYZojqgVwmIOxBP6yZ2Avu9mqcTc/HI4ujsf5QEkRRlDoeEZFZY5khqke9W7oiclowgv3cUFyqw5sbjuOV9XHI13DaiYhIXywzRPXMzU6NVc/2wBsPt4FcJmBzXCoeWRSN+NRcqaMREZkllhkiCchkAib3a4V1L/aCp6MVLlwvwIgle7E6JpHTTkREdcQyQySh7i1csC0sGA+0dUdJmQ7vbD6B0LVHkVdcKnU0IiKzwTJDJDEXWxW+fSYQb4W0hUImYNu/VzB0UTSOp+RIHY2IyCywzBCZAJlMwIv3tcRPk3qjqZM1EjMK8fjSfVi59yKnnYiI7oJlhsiEBDRzRmRYMB5q74ESrQ5zfovHy6tjkVPEaSciotthmSEyMY42SnwzrhtmD20PpVzAHyfTMCQ8CnHJ2VJHIyIySSwzRCZIEAQ819cHv0wKgreLNVKyivDE0n34NuoCp52IiG7BMkNkwrp4O2FbWDBCOjVGmU7ER9sS8MIPh5FdWCJ1NCIik8EyQ2TiHKyU+GpsAD4c3gEquQx/JqQjZGEUjiRmSh2NiMgksMwQmQFBEDCudwtsnByEFq42SM0pxpNfx2DZnvPQ6TjtREQNG8sMkRnp2NQRW8OCMaxLE2h1Ij79/RSeW3UIGfkaqaMREUmGZYbIzNipFQgf3RVzH+sEtUKG3aevISQ8CgcuZEgdjYhIEiwzRGZIEASM6dEMm6f0gW8jW1zN1WDM8hgs/ussp52IqMERRD2P89TpdDh37hzS09Oh0+mqPHffffcZJJwh5ObmwtHRETk5OXBwcJA6DpHBFWjK8O7mE9h49DIAINjPDfOf7IpG9mqJkxER6a8u22+9ykxMTAzGjh2LxMTqV/gVBAFarbauH2k0LDPUUPx8OBmzfz2JolItGtmrsXBUVwS1cpM6FhGRXuqy/dZrmmnSpEkIDAzEiRMnkJmZiaysrIpbZiYPFyWSwshAb2wJ7YPWHna4lqfBU98dwJc7z0DLaScisnB6jczY2tri2LFjaNWqlTEyGRRHZqihKSrRYs6Wk1h/OBkA0MvXBeGj/eHuYCVxMiKi2jP6yEzPnj1x7tw5vcIRkXFZq+SY90RnLBjVFbYqOWIuZGLwwij8c+aa1NGIiIxCoc+bpk6dildffRVpaWno1KkTlEpllec7d+5skHBEpL8R/k3R2csRUyKOIuFKLsavOIjJ/VrilQGtoZDzQEYishx6TTPJZNX/IRQEAaIocgdgIhNTXKrFh1vjseZAEgCgewtnhI/xh6ejtcTJiIhuz+hHMyUmJt7x+ebNm9f1I42GZYao3NZ/UzFzw3Hka8rgbKPE/Ce7on9bd6ljERHVyOhlxpywzBD959L1AoSujcWJy7kAgJfu88Vrg9pAyWknIjIxRt8BGADOnz+PqVOnYsCAAXjooYcQFhaG8+fP6/txt3X58mU8/fTTcHV1hY2NDbp27YojR44Y/HuIGoIWbrbY8HIQJgS1AAB8/c8FPPn1fqRkFUobjIjoHuhVZrZv34727dvj4MGD6Ny5Mzp27IgDBw6gQ4cO2Llzp8HCZWVloU+fPlAqlfj9998RHx+PL774Ak5OTgb7DqKGRq2QY84jHbDs6QDYWylwNCkbIQujsONkmtTRiIj0otc0k7+/PwYNGoRPP/20yvKZM2dix44diI2NNUi4mTNnYu/evYiKiqr1ezQaDTSa/64gnJubC29vb04zEdUgObMQoWuP4lhyNgDg2T4tMGtwO6gUnHYiImkZfZopISEBzz//fLXlzz33HOLj4/X5yBpt2bIFgYGBGDlyJNzd3eHv74/ly5ff8T1z586Fo6Njxc3b29tgeYgsjbeLDX5+qTcm9vUBAKzYewlPLNuHpAxOOxGR+dCrzDRq1AhxcXHVlsfFxcHd3XBHR1y4cAFLly6Fn58ftm/fjkmTJiEsLAw//PDDbd8za9Ys5OTkVNySk5MNlofIEqkUMrwztD2+fSYQjtZK/JuSgyHhUYg8fkXqaEREtaLXSfNeeOEFvPjii7hw4QKCgoIgCAKio6Mxb948vPrqqwYLp9PpEBgYiE8++QRA+fTWyZMnsXTpUjzzzDM1vketVkOt5tWCiepqQHsPRE4LxtSIWMQmZWPymliM69Ucbw9pByulXOp4RES3pVeZeffdd2Fvb48vvvgCs2bNAgA0adIEc+bMQVhYmMHCeXp6on379lWWtWvXDhs2bDDYdxDRf5o6WWP9S73x+Y7T+HrPBfwYk4jYpCwsHhsAHzdbqeMREdVIr2kmQRDwyiuvICUlpWI6JyUlBdOmTYMgCAYL16dPH5w+fbrKsjNnzpjUSfmILI1SLsOswe2w4tnucLFV4WRqLoaGR+HXuMtSRyMiqtE9H7Jgb28Pe3t7Q2Sp5pVXXkFMTAw++eQTnDt3DhEREfjmm28wZcoUo3wfEf2nfxt3RIYFo0cLFxSUaDFtXRxmbTyO4lLTuVwJERFQh0OzAwICsGvXLjg7O8Pf3/+OIzCGOjQbALZu3YpZs2bh7Nmz8PHxwYwZM/DCCy/U+v08AzDRvSnT6rBw11ks/vscRBFo29gei8cGoJW7ndTRiMiC1WX7Xet9ZoYPH16xY+3w4cMNOp10J0OHDsXQoUPr5buIqDqFXIZXB7ZBDx8XvLI+DqfS8vDI4mh8NKIjHgvwkjoeERGvzUREtZeeW4xp6+Kw/0IGAGBkNy+8P7wDbFR6HUtARHRbRj9pnq+vLzIyMqotz87Ohq+vrz4fSURmwN3BCqsn9sT0AX6QCcDPR1IwfPFenLmaJ3U0ImrA9Cozly5dglZbfSdAjUaDlJSUew5FRKZLLhMwfUBrrJnYC+72apxNz8cji6Px06FkWPhALxGZqDqNDW/ZsqXi8fbt2+Ho6Fjxs1arxa5du+Dj42O4dERksnq3dEXktGC8sj4OUWev440N/2L/hQx8NKIjbNWcdiKi+lOnfWZksvKBHEEQqv0fmFKpRIsWLfDFF1+Y1A673GeGyLh0OhFL95zH/J1noNWJ8HWzxVdPBaCdJ/++EZH+6rL91msHYB8fHxw6dAhubm56h6wvLDNE9ePQpUxMjTiKtNxiqBQyvDesPcb2aFZvRz4SkWUx+g7AFy9eNIsiQ0T1p3sLF0ROC8YDbd1RUqbD25tOYOrao8grLpU6GhFZOL0PzS4oKMCePXuQlJSEkpKSKs8Z8vpM94ojM0T1S6cT8W30BXz2x2mU6US0cLXB4rEB6NjU8e5vJiK6wejTTEePHkVISAgKCwtRUFAAFxcXXL9+HTY2NnB3d8eFCxf0Dm9oLDNE0ohNysLUiKO4nF0ElVyGt4e0wzO9m3PaiYhqxejTTK+88gqGDRuGzMxMWFtbIyYmBomJiejWrRs+//xzvUITkWUJaOaMbWF98VB7D5RodXhvy0lMXhOLnCJOOxGRYelVZuLi4vDqq69CLpdDLpdDo9HA29sbn332Gd566y1DZyQiM+Vko8I347ph9tD2UMoF/H4iDUMXReFYcrbU0YjIguhVZpRKZcVQsYeHB5KSkgAAjo6OFY+JiIDyUzk819cHv0wKgreLNZIzi/DEsn34LvoiT7JHRAahV5nx9/fH4cOHAQD9+/fH7NmzsWbNGkyfPh2dOnUyaEAisgxdvJ2wdWowBndsjFKtiA+3xuOFH44gu7Dk7m8mIroDvcrMJ598Ak9PTwDAhx9+CFdXV7z88stIT0/HN998Y9CARGQ5HK2VWPJUAD4c3gEquQx/JlzFkPBoHEnMkjoaEZmxOh/NJIoikpKS4O7uDmtra2PlMhgezURkmk5czkFoRCwuZRRCIRPw+qA2eCHYFzIZj3YiIiMfzSSKIvz8/HhBSSK6Jx2bOuK3qX0xrEsTlOlEzP39FJ5fdQiZBZx2IqK6qXOZkclk8PPzQ0ZGhjHyEFEDYm+lRPjorpj7WCeoFTL8ffoaQhZG4eDFTKmjEZEZ0Wufmc8++wyvv/46Tpw4Yeg8RNTACIKAMT2aYfOUPvBtZIu03GKMWR6Dr/4+B52ORzsR0d3pdQZgZ2dnFBYWoqysDCqVqtq+M5mZpvN/Vdxnhsh8FGjK8O7mE9h49DIAINjPDV+O6go3O7XEyYiovtVl+63Q5wu+/PJLnpKciAzOVq3AF092Qa+Wrpj96wlEnb2OwQujsHB0VwS15MVtiahmel9o0lxwZIbIPJ29mofJa2JxNj0fMgEIe9APUx/wg5xHOxE1CEa/NpNcLkd6enq15RkZGZDL5fp8JBFRFX4e9tgS2hdPBnpBJwIL/jyLcd8dQHpusdTRiMjE6FVmbjeYo9FooFKp7ikQEdFN1io5PnuiC74c1QU2Kjn2nc9ASHgUos5ekzoaEZmQOu0zEx4eDqD86INvv/0WdnZ2Fc9ptVr8888/aNu2rWETElGD96i/Fzo1dUJoRCxOpeXhme8PYkq/Vpg+wA8KuV7/T0ZEFqRO+8z4+PgAABITE+Hl5VVlSkmlUqFFixb44IMP0LNnT8Mn1RP3mSGyHMWlWnywNR4RB8ovaNujhQvCx/ijsaOVxMmIyNDqsv3Wawfg/v37Y+PGjXB2dtY7ZH1hmSGyPL8dS8WsjceRrymDi60KXzzZBf3buEsdi4gMyOhlxpywzBBZpkvXCxC6NhYnLucCAF663xevDWwDJaediCyC0cuMVqvFypUrsWvXLqSnp0On01V5/q+//qrrRxoNywyR5dKUaTE38hRW7rsEAOjW3BnhY/zR1Mn0L4JLRHdm9JPmTZs2DStXrsSQIUPQsWNHnkCPiCShVsgx55EO6OXrgtd/+RdHErMQsjAKX4zsggHtPaSOR0T1RK+RGTc3N/zwww8ICQkxRiaD4sgMUcOQnFmI0IhYHEvJAQBM7OuDNx5uC5WC005E5sjoJ81TqVRo1aqVXuGIiIzB28UGP08KwvN9y4+6/Db6IkZ+vR/JmYUSJyMiY9OrzLz66qtYuHDhbU+eR0QkBZVChneHtsfyZwLhaK3EseRshIRH4Y8TV6SORkRGpNc006OPPoq///4bLi4u6NChA5RKZZXnN27caLCA94rTTEQN0+XsIkyNiEVsUjYAYHzv5nhrSDuoFbzkCpE5MPoOwE5OTnj00Uf1CkdEVB+aOllj/Uu98fmO0/h6zwWs2p+II0lZWDwmAC3cbKWOR0QGxPPMEJHF+/tUOmb8FIeswlLYqRWY+1gnDOvSROpYRHQHRt8BGADKysrw559/4uuvv0ZeXh4AIDU1Ffn5+fp+JBGRUfRv647IacHo0cIF+ZoyTF17FG9tOo7iUq3U0YjIAPQamUlMTMTDDz+MpKQkaDQanDlzBr6+vpg+fTqKi4uxbNkyY2TVC0dmiOimMq0OC/48i692n4MoAm0b2+OrpwLQspHd3d9MRPXK6CMz06ZNQ2BgILKysmBt/d+ZNh999FHs2rVLn48kIjI6hVyG1wa1wQ/P9YCbnQqn0vIwbFE0Nh1NkToaEd0DvcpMdHQ03nnnHahUqirLmzdvjsuXLxskGBGRsQT7NUJkWDB6+7qisESLV9Yfwxu/HENRCaediMyRXmVGp9NBq63+lz4lJQX29vb3HIqIyNjcHaywemJPTB/gB0EAfjqcgkcWR+Ps1TypoxFRHelVZh566CEsWLCg4mdBEJCfn4/33nvPLC5xQEQEAHKZgOkDWmPNxJ5oZK/G2fR8DFscjZ8OJ/OkoERmRK8dgFNTU9G/f3/I5XKcPXsWgYGBOHv2LNzc3PDPP//A3d3dGFn1wh2Aiag2ruVpMOOnOESdvQ4AeMy/KT4c0RG2ar1Ox0VE96gu22+9zzNTVFSEdevW4ciRI9DpdAgICMBTTz1VZYdgU8AyQ0S1pdOJWLrnPL7YcRo6EWjZyBaLxwagnSf/7SCqb/VSZswFywwR1dXBi5kIW3sUabnFUCtkeG9YB4zp4Q1BEKSORtRgGP3Q7Llz5+L777+vtvz777/HvHnz9PlIIiKT0cPHBZHTgtGvTSNoynR4a9NxhK2LQ15xqdTRiKgGepWZr7/+Gm3btq22vEOHDiZ1wjwiIn252Krw/fjumDm4LeQyAb8dS8WwRdE4cTlH6mhEdAu9ykxaWho8PT2rLW/UqBGuXLlyz6GIiEyBTCZg0v0t8dNLvdHE0QqXMgrx2JJ9+HH/JR7tRGRC9Coz3t7e2Lt3b7Xle/fuRZMmvHgbEVmWbs2dETktGAPaeaBEq8O7v57ElIhY5HLaicgk6HXM4cSJEzF9+nSUlpbigQceAADs2rULb7zxBl599VWDBiQiMgVONiosf6Ybvt97CZ/+noDI42k4fjkHi8cEoIu3k9TxiBo0vY5mEkURM2fORHh4OEpKSgAAVlZWePPNNzF79myDh7wXPJqJiAwtLjkboRGxSMkqglIuYNbgdni2Twse7URkQPV2aHZ+fj4SEhJgbW0NPz8/qNVqfT/KaFhmiMgYcopK8eYv/+KPk2kAgIfae+DzJ7rA0UYpcTIiy8DzzFTCMkNExiKKIn6MScRHWxNQotWhqZM1Fo31R0AzZ6mjEZk9o5eZgoICfPrpp9i1axfS09Oh0+mqPH/hwoW6fqTRsMwQkbGduJyD0IhYXMoohEIm4I2H22BiX1/IZJx2ItJXXbbfeu8AvGfPHowbNw6enp6cJyaiBq1jU0f8NrUv3tp0Ar8dS8UnkacQcyETn4/sAhdbldTxiCyeXiMzTk5O2LZtG/r06WOMTAbFkRkiqi+iKGLtwWS8/9tJaMp08HS0QvgYf3Rv4SJ1NCKzY/TLGTg7O8PFhX85iYgqEwQBY3s2w+YpfeDbyBZXcoox+psYfPX3Oeh0Fr17IpGk9CozH374IWbPno3CwkJD57mjuXPnQhAETJ8+vV6/l4ioLtp5OuC30L54zL8ptDoR/9t+GuNXHMT1fI3U0Ygskl7TTP7+/jh//jxEUUSLFi2gVFY9FDE2NtZgAW86dOgQnnzySTg4OKB///5YsGBBrd7HaSYikoooivj5SApm/3oCxaU6uNursWB0VwS1dJM6GpHJM/oOwCNGjNDnbXrLz8/HU089heXLl+Ojjz6q1+8mItKXIAh4MtAbXb2dMGVNLM6m5+Ppbw8g7EE/TH3AD3Ie7URkEGZxnpnx48fDxcUFX375Jfr164euXbvedmRGo9FAo/lvKDc3Nxfe3t4cmSEiSRWVaPHelhP46XAKACCopSsWjO4Kd3sriZMRmSajj8zcdOTIESQkJEAQBLRv3x7+/v738nE1WrduHWJjY3Ho0KFavX7u3Ll4//33DZ6DiOheWKvk+OyJLujl64p3Np/AvvMZCFkYhS9HdUWwXyOp4xGZNb1GZtLT0zF69Gjs3r0bTk5OEEUROTk56N+/P9atW4dGjQzzFzM5ORmBgYHYsWMHunTpAgAcmSEis3cuPR+hEbE4lZYHQQCm9GuF6QP8oJDrdUwGkUUy+qHZU6dORW5uLk6ePInMzExkZWXhxIkTyM3NRVhYmF6ha3LkyBGkp6ejW7duUCgUUCgU2LNnD8LDw6FQKKDVaqu9R61Ww8HBocqNiMiUtHK3w+YpfTCmRzOIIrD473MY++0BpOUUSx2NyCzpNTLj6OiIP//8E927d6+y/ODBgxg4cCCys7MNEi4vLw+JiYlVlj377LNo27Yt3nzzTXTs2PGun8GjmYjIlG05lopZG/5FQYkWLrYqzH+yC/q1cZc6FpHkjL7PjE6nq3Y4NgAolcpq12m6F/b29tUKi62tLVxdXWtVZIiITN0jXZqgU1NHhEbE4mRqLiasOISX7vfFawPbQMlpJ6Ja0etvygMPPIBp06YhNTW1Ytnly5fxyiuv4MEHHzRYOCKihsDHzRYbXg7CM72bAwC+3nMBo7+JweXsIomTEZkHvaaZkpOTMXz4cJw4cQLe3t4QBAFJSUno1KkTfv31V3h5eRkjq144zURE5iTy+BW8+cu/yNOUwclGic+f6IIB7T2kjkVU7+qy/b6n88zs3LkTp06dgiiKaN++PQYMGKDvRxkNywwRmZukjEKEro3Fvyk5AICJfX3wxsNtoVJw2okaDqOVmb/++guhoaGIiYmp9sE5OTkICgrCsmXLEBwcrF9yI2CZISJzVFKmw6e/n8L3ey8CALp4O2HxGH94u9hInIyofhjt0OwFCxbghRdeqPFDHR0d8dJLL2H+/Pl1S0tERNWoFDLMHtYe34zrBgcrBY4lZyMkPAp/nEiTOhqRyalTmTl27Bgefvjh2z4/cOBAHDly5J5DERFRuYEdGiNyWjD8mzkhr7gMk1YfwZwtJ6Epq36eLaKGqk5l5urVqzUekn2TQqHAtWvX7jkUERH9x8vZBj+91Bsv3e8LAFi57xKeWLofiRkFEicjMg11KjNNmzbF8ePHb/v8v//+C09Pz3sORUREVSnlMswa3A4rJnSHs40Sxy/nYEh4NLb+m3r3NxNZuDqVmZCQEMyePRvFxdVPuV1UVIT33nsPQ4cONVg4IiKqqn9bd0ROC0b3Fs7I15QhNOIo3t50HMWlnHaihqtORzNdvXoVAQEBkMvlCA0NRZs2bSAIAhISEvDVV19Bq9UiNjYWHh6mc04EHs1ERJaoTKvDgj/P4qvd5yCKQDtPBywe64+WjeykjkZkEEY9z0xiYiJefvllbN++HTffKggCBg0ahCVLlqBFixZ6BzcGlhkismRRZ6/hlfVxuJ5fAhuVHJ882gkj/JtKHYvontXLSfOysrJw7tw5iKIIPz8/ODs76xXW2FhmiMjSpecWY9q6OOy/kAEAGBXojTmPdIC1Si5xMiL91dsZgM0BywwRNQRanYjwXWcR/tdZiCLQxsMeXz3lj1bu9lJHI9KL0U6aR0REpkkuE/DKQ62x5vmeaGSvxumreRi2aC9+OZIidTQio2OZISKyIEGt3BAZFoxgPzcUlWrx2s/HMOOnOBRoyqSORmQ0LDNERBamkb0aq57tgdcGtoZMADbGXsYji6NxKi1X6mhERsEyQ0RkgWQyAaEP+GHtC73g4aDG+WsFGL54L9YeTIKF7ypJDRDLDBGRBevp64rIsGD0a9MImjIdZm08jmnr4pDPaSeyICwzREQWztVOje/Hd8fMwW0hlwnYciwVQ8OjcOJyjtTRiAyCZYaIqAGQyQRMur8lfnqpF5o4WuFSRiEeW7oPP+6/xGknMnssM0REDUi35i6InBaMAe3cUVKmw7u/nsSUiFjkFpdKHY1IbywzREQNjJONCsufCcQ7Q9pBKRcQeTwNQ8Oj8W9KttTRiPTCMkNE1AAJgoCJwb74eVIQvJytkZRZiMeX7sP30Rc57URmh2WGiKgB6+rthG1hwXi4Q2OUakV8sDUeL/14BDmFnHYi88EyQ0TUwDlaK7H06QC8/0gHqOQy7Ii/ipDwKBxNypI6GlGtsMwQEREEQcD4oBbY8HIQmrva4HJ2EUYu24/l/1yATsdpJzJtLDNERFShk5cjtk7tiyGdPVGmE/FxZAIm/nAYWQUlUkcjui2WGSIiqsLeSonFY/zx8aMdoVLI8NepdISER+HwpUypoxHViGWGiIiqEQQBT/Vsjs2T+8DXzRZXcoox6psYLNl9jtNOZHJYZoiI6LbaN3HAb1P74lH/ptDqRHz2x2lMWHkI1/M1UkcjqsAyQ0REd2SrVmD+k13w2eOdYaWU4Z8z1xCyMAoxFzKkjkYEgGWGiIhqQRAEPNndG1tC+8LP3Q7peRqMXR6D8F1noeW0E0mMZYaIiGqttYc9fg3tg5HdvKATgfk7z+CZ7w8gPa9Y6mjUgLHMEBFRndioFPjfyC6Y/2QXWCvl2HsuAyELo7H33HWpo1EDxTJDRER6eSzAC79N7Yu2je1xPV+Dp787gPk7TqNMq5M6GjUwLDNERKS3Vu522DylD8b08IYoAuF/ncPYbw8gLYfTTlR/WGaIiOieWCnlmPtYZywc3RW2KjkOXsxESHgUdp9OlzoaNRAsM0REZBDDuzbFb1P7or2nAzILSjBhxSF8+vsplHLaiYyMZYaIiAzGt5EdNk4OwrhezQEAy/acx+hvYpCaXSRxMrJkLDNERGRQVko5PhzREV+NDYC9WoEjiVkICY/Cn/FXpY5GFoplhoiIjGJIZ09sDeuLTk0dkV1Yiok/HMZHW+NRUsZpJzIslhkiIjKa5q62+OXl3ni2TwsAwLfRFzHy6/1IziyUNhhZFJYZIiIyKrVCjveGdcDX47rBwUqBY8nZGBIehT9OpEkdjSwEywwREdWLQR0aY1tYMLp6OyG3uAyTVh/BnC0noSnTSh2NzBzLDBER1RtvFxv8PKk3XrzPFwCwct8lPLF0PxIzCiRORuaMZYaIiOqVUi7DWyHt8N34QDjZKHH8cg6Ghkdj279XpI5GZoplhoiIJPFgOw9EhgUjsLkz8jRlmBIRi3c2H0dxKaedqG5YZoiISDJNnKyx9sVemNyvJQBgdUwSHl2yDxeu5UucjMwJywwREUlKKZfhjYfbYtVzPeBqq0LClVwMWxSNX+MuSx2NzATLDBERmYT7WzdC5LRg9PJ1QUGJFtPWxWHmhn9RVMJpJ7ozlhkiIjIZHg5WWDOxF8Ie9IMgAOsOJWPEV3txLj1P6mhkwlhmiIjIpMhlAmY81Bqrn+8JNzs1Tl/Nw7BFe/HLkRSpo5GJYpkhIiKT1KeVG36fFoy+rdxQVKrFaz8fw6s/HUNhSZnU0cjEsMwQEZHJamSvxqrneuDVh1pDJgAbYlPwyOK9OJ3GaSf6D8sMERGZNLlMwNQH/RDxQi94OKhxLj0fjyyOxrqDSRBFUep4ZAJYZoiIyCz08nVFZFgw7m/dCJoyHWZuPI7p6+OQr+G0U0PHMkNERGbD1U6NFRO6482H20IuE/BrXCqGLYrGydQcqaORhFhmiIjIrMhkAl7u1xLrX+wFT0crXLxegEeX7MOPMYmcdmqgTLrMzJ07F927d4e9vT3c3d0xYsQInD59WupYRERkAgJbuCAyLBgPtnVHSZkO724+gdCIo8gtLpU6GtUzky4ze/bswZQpUxATE4OdO3eirKwMAwcOREEBLxVPRESAs60K344PxDtD2kEhE7Dt+BUMDY/GvynZUkejeiSIZjQmd+3aNbi7u2PPnj247777avWe3NxcODo6IicnBw4ODkZOSEREUjmalIXQiKO4nF0EpVzArMHt8GyfFhAEQepopIe6bL9NemTmVjk55Tt4ubi43PY1Go0Gubm5VW5ERGT5/Js5IzIsGIM6eKBUK+KDrfF46ccjyCnktJOlM5syI4oiZsyYgb59+6Jjx463fd3cuXPh6OhYcfP29q7HlEREJCVHGyWWPd0Nc4a1h0ouw474qwgJj8LRpCypo5ERmc0005QpU7Bt2zZER0fDy8vrtq/TaDTQaDQVP+fm5sLb25vTTEREDczxlBxMiYhFUmYhFDIBbz7cFhODfTjtZCYsbppp6tSp2LJlC/7+++87FhkAUKvVcHBwqHIjIqKGp5OXI7aG9cWQTp4o04n4ODIBE1cdRlZBidTRyMBMusyIoojQ0FBs3LgRf/31F3x8fKSOREREZsTBSonFY/3x0YiOUClk2HUqHSHhUTh8KVPqaGRAJl1mpkyZgtWrVyMiIgL29vZIS0tDWloaioqKpI5GRERmQhAEPN2rOTZNDoKPmy2u5BRj1DcxWLL7HHQ6s9jTgu7CpPeZud285ooVKzBhwoRafQYPzSYiopvyNWV4e9Nx/BqXCgC4v3UjzH+yC1zt1BIno1vVZftt0mXGEFhmiIioMlEUsf5QMt7bchKaMh08HNRYONofvXxdpY5GlVjcDsBERESGIggCRvdohi2hfdGykS2u5mowdnkMwnedhZbTTmaJZYaIiBqkNo3t8dvUvng8wAs6EZi/8wye+f4A0vOKpY5GdcQyQ0REDZaNSoEvnuyCz0d2gbVSjr3nMhCyMBp7z12XOhrVAcsMERE1eE9088JvU/ugjYc9rudr8PR3BzB/5xlOO5kJlhkiIiIArdztsXlKH4zu7g1RBMJ3ncXY5TG4mstpJ1PHMkNERHSDtUqOTx/vjIWju8JWJceBi5kIWRiFPWeuSR2N7oBlhoiI6BbDuzbFb1P7or2nAzIKSjD++4OY98cplGl1UkejGrDMEBER1cC3kR02Tg7CuF7NAQBLd5/H6G9ikJrNs9CbGpYZIiKi27BSyvHhiI74amwA7NUKHE7MQkh4FHYlXJU6GlXCMkNERHQXQzp7YmtYX3Rq6ojswlI8v+owPt4Wj1JOO5kElhkiIqJaaO5qi19e7o0JQS0AAMujLmLksv1IziyUNhixzBAREdWWWiHHnEc64Otx3eBgpUBccjaGhEfhjxNpUkdr0FhmiIiI6mhQh8bYFhaMrt5OyC0uw6TVRzBny0loyrRSR2uQWGaIiIj04O1ig59e6o0Xgn0AACv3XcITS/cjMaNA4mQND8sMERGRnlQKGd4e0h7fjQ+Ek40Sxy/nYGh4NLb9e0XqaA0KywwREdE9erCdByLDghHY3Bl5mjJMiYjFO5uPo7iU0071gWWGiIjIAJo4WWPti73wcr+WAIDVMUl4dMk+XLiWL3Eyy8cyQ0REZCBKuQxvPtwWK5/tDhdbFRKu5GLYomj8GndZ6mgWjWWGiIjIwPq1cUdkWDB6+LigoESLaeviMHPDvygq4bSTMbDMEBERGUFjRytETOyJsAdaQRCAdYeSMeKrvTiXnid1NIvDMkNERGQkCrkMMwa2wY/P9YSbnRqnr+Zh2KK9+OVIitTRLArLDBERkZH19XND5LS+CGrpiqJSLV77+Rhe/ekYCkvKpI5mEVhmiIiI6oG7vRV+fL4nZjzUGjIB2BCbgkcW78XpNE473SuWGSIionoilwkIe9APayb2gru9GufS8/HI4misP5QEURSljme2WGaIiIjqWe+WroicFoz7WjeCpkyHNzccxyvr45Cv4bSTPgTRwqtgbm4uHB0dkZOTAwcHB8N98MlNQOwPgNIGUFrfuNlUurepYZl11derbMvvFdaAXGG4bEREZBZ0OhHL/jmPL3acgVYnwtfNFovHBqB9EwNur8xUXbbf3ILqK+M8cP4vw32eXHWH8lNDEaq8TFWL4qS0BeRKQBAMl5mIiO6JTCZgcr9W6NHCBVPXHsWF6wUYsWQvZg9tj6d6NoPAf7NrhSMz+kpPAK4cA0oLgdKiSvc3HpcUVl9W7XEhgHpc/YK8eiHSasqzena+UYzsbpQjPR7zLx0Rkd6yCkrw2s/HsOtUOgBgSGdPzH2sExyslBInk0Zdtt8sM1ISRaCsuHrBqXxfpRTdpjhV3NfwfEkBINbTGSeVtvoXoTs9VqjqJz8RkcREUcR30Rfx6e+nUKYT0dzVBovHBKCTl6PU0eody0wlJl1m6ou29M6jRYXXAU0eIMjKy09JwY3X3/L4dsuMTaa4UZQqlaXMC0DTboC1c3nhUdvdeN4OUNv/91hle+Pnyo9tAYXa+LmJiPR0NCkLoRFHcTm7CCq5DG+FtMX4oBYNatqJZaYSlhkj0+mAsqI7lKBCoCS/bo9Lb7xfW2K83DJlDUXH7sbjyuXI/g7PVSpOnGYjIgPLKSzF678cw474qwCAhzs0xrwnOsPRumFMO7HMVMIyY8a0Zf8Vm8ol5+bjjHPlZaMk/8atANDkAyV5lR7fuGluPF9WZKSwQvWik3kR8O4OWLuUl56Km8MtP9+yTGnNYkREAMqnnVbuu4RPIhNQqhXh5WyNRWP84d/MWepoRscyUwnLDFWhLfuv+FQpOjfLUN5/z9VUhmoqSoYmyO9Qeu5SiKwqlyJbQMZTSRFZgn9TshEacRRJmYVQyATMHNwWz/f1sehpJ5aZSlhmyKh0ukpTa/lVy1BJPnDtTHmx0OTduOVWenzrLReGPbpNuEMZulF+irIAt9aArduNMuRYXoisnMofqx24AzaRicgtLsWsDcex7fgVAMCDbd3x+cgucLa1zL+jLDOVsMyQ2bhZjG4tODWVntuVoZv3OgOeRVRhXankOFYqPbcuc6q67OZylS2nzYgMRBRFrD6QhA+3xqOkTIcmjlYIH+OPwBYuUkczOJaZSlhmqMERRaBMU/sydCkacPIuf1ycCxTn3HhNrmHyCPLqBaeiDNWwTCYHHJoC1k7lBUltzzJEdIuTqTkIjTiKi9cLIJcJeHVga0y6ryVkMsv5u8IyUwnLDJGedNryQlO54BTn3LhVeqypadmNx4YYIRLk/xWbinvn2i3jqBBZsHxNGd7edBy/xqUCAO5v3Qjzn+wCVzvLOPUEy0wlLDNEEhHF8vMY3VpwKt9qKkg5KUBeKiBXl5+h+l7IlFULjrXzLQWohmVWjoCNK6C0urfvJqoHoihi/aFkvLflJDRlOng4qBE+2h89fV2ljnbPWGYqYZkhMmOlReU7KRdlA8XZle5vWVaUdcvz2YCu9N6+W2lTfli9jfONe5c73DuX36sdeQQZSeJUWi6mrInF+WsFkAnAKwNaY3L/VpCb8bQTy0wlLDNEDZAolh9VdqcCdLtlhRn6f+/NKbHblZ3blSGekZoMoEBThnd/PYGNsZcBAH1auWLBKH80sjfPP18sM5WwzBBRneh05dNfRZlAYdaN+8w73GeV35cW6P+dStvyUlNwHXBvC7i0LD9c3sYNsHW9cX/jZxvX8nLEESC6jZ8PJ2P2rydRVKqFm50aC0d3RZ9WblLHqjOWmUpYZoioXpQW3xjpuUvpqby8KAsQdXX/LkFWPqpz28JT+bkbBUjeME6BT+XOXs3DlIhYnLmaD0EApj7gh2kP+pnVtBPLTCUsM0RksnS68qPBKped9Pjy54qzy0dqCjNu3F8HCjLKX68PK8dbCo9z+dRa8yDA1h2wa3Tj3r28KHHkx+wVlWgxZ8tJrD+cDADo6eOC8DH+8HAwj53bWWYqYZkhIotSVlI+qlNRcG4pPIUZ5aXn5nNFmXUf/RHk5aXH1r383s4dsG104/6W4sNRH5O3+ehlvLXpOApLtHC1VWH+qK64v3UjqWPdFctMJSwzRNSg6bTlIzCFNYzy5CQBl4+W77RccA3ITy8vP3Vl7XKbwtOoavmxbcRD3iVy4Vo+pkQcRcKV8pNhTu7XEjMeag2F3HRH4FhmKmGZISKqA21peeEpSAfyr5Xf3yw6t94XXq/7qI+1M2DXGLD3uOX+xs3Oo/xeZWuc368BKy7V4sOt8VhzIAkA0L2FMxaO9kcTJ2uJk9WMZaYSlhkiIiPRacv38ym4VrX83Fp8bj6uy7l/VPa3LzqV760ceZbnOtr6bypmbjiOfE0ZnG2U+OLJLnigrYfUsaphmamEZYaIyASIYvlOznlpQH4akHe1+n3eFSD/avkFV2tLYV19lEdlWz7d5d4OsG8CODQB1HbG+93MUGJGAaZExOLE5fJppxfv88Xrg9pAaULTTiwzlbDMEBGZEVEsv+hp/tUbxefG/c2iU7Hsat2O7FI7lJcae8/yC5k6NAEcbjy+uczGpUGN8mjKtJgbeQor910CAPg3c8KiMf7wcraRNtgNLDOVsMwQEVmoksJKBeeWUZ5LUeWXw9CW1P4K8HJ1ecG5OZpza9lxaFI+tSVXGPf3qmd/nEjDG78cQ25xGRysFPh8ZBcM7NBY6lgsM5WxzBARNXCaPCD3CpB7uXyEJ/fyjZ9Tyy9qmptavl9Pbdm4AS4+gKPXjZt31cfWzmY3wpOcWYipa48iLjkbAPBsnxaYNbgdVArppp1YZiphmSEiorsqKykvOrcrO7mp5c/pyu7+WUqbSuXmZtmpVHgcmgIKlfF/pzoqKdPhf9tPYXnURQBAZy9HLB4TgGau0kw7scxUwjJDREQGodOVj+BkXSw/Oisn5cYt+b/7Wo3wCOXTVbcWHrU90Lgj4NS8/Nw/Evkz/ipe++UYsgtLYa9WYN4TnRHSybPec7DMVMIyQ0RE9aa0qHwUp6LgpNzyOAUoK77751g5lpca5+bl91UeNwNUxh0tSc0uwtS1R3EkMQsAMK5Xc7w9pB2slHKjfm9lLDOVsMwQEZHJEMXyMzHfWnBykoGsS8CVY7X7HFv3G+WmWdWi49y8fJTHAJeYKNXqMH/nGSzdfR4A0N7TAV89FQAft/o5oSHLTCUsM0REZFY0+UB20o1bIpCVWPX+bkdnCbLy/XIqFx25qvyios4+5efgqcMOyrtPp2PGT8eQWVACW5UcnzzWCcO7Nr3HX/LuLK7MLFmyBP/73/9w5coVdOjQAQsWLEBwcHCt3ssyQ0REFkMUy6+ofmvByUr8r/zcbRpLaQu4+JYfkeXic+Oxb3nRcWha4xXT03KKEbbuKA5eLL9215ge3nhvWAejTjtZVJlZv349xo0bhyVLlqBPnz74+uuv8e233yI+Ph7NmjW76/tZZoiIqMEQxfKdkysKzqXy+6sngNSjAAQAd9jsy9WAc4tKZee/+zK7pli4+xIW/30Oogi08bDHV08FoJW7cc6ubFFlpmfPnggICMDSpUsrlrVr1w4jRozA3Llz7/p+lhkiIqIbyjTlIziZF27cLv73ODvxzoeeC3JA1CLLMxjb0+yRUNIIl2VN8PjAfhjcpzsgM+woTV223yZ9GsOSkhIcOXIEM2fOrLJ84MCB2LdvX43v0Wg00Gg0FT/n5tbyzI9ERESWTqEG3PzKb7fSlgG5KbeUnIvlh6JnXqiYvnK+EoXRAHBzH+Ndc3Eobji6T/2hvn6Laky6zFy/fh1arRYeHlWv5unh4YG0tLQa3zN37ly8//779RGPiIjIcsgV5VNMzi2Alrc8p9OVXyri+pny6aqiLIjXzyEzOQF2BcmwbtxagsD/Mekyc5Nwy17XoihWW3bTrFmzMGPGjIqfc3Nz4e3tbdR8REREFk0mu3G9qiaAbz8A5XvfuAI4n56Ljs7SntHYpMuMm5sb5HJ5tVGY9PT0aqM1N6nVaqjV6vqIR0RE1OC1dJd+f1TpriBVCyqVCt26dcPOnTurLN+5cyeCgoIkSkVERESmxKRHZgBgxowZGDduHAIDA9G7d2988803SEpKwqRJk6SORkRERCbA5MvMqFGjkJGRgQ8++ABXrlxBx44dERkZiebNm0sdjYiIiEyAyZ9n5l7xPDNERETmpy7bb5PeZ4aIiIjoblhmiIiIyKyxzBAREZFZY5khIiIis8YyQ0RERGaNZYaIiIjMGssMERERmTWWGSIiIjJrLDNERERk1kz+cgb36uYJjnNzcyVOQkRERLV1c7tdmwsVWHyZycvLAwB4e3tLnISIiIjqKi8vD46Ojnd8jcVfm0mn0yE1NRX29vYQBMGgn52bmwtvb28kJyfzuk9GxPVcP7ie6wfXc/3geq4fxlzPoigiLy8PTZo0gUx2571iLH5kRiaTwcvLy6jf4eDgwL8s9YDruX5wPdcPruf6wfVcP4y1nu82InMTdwAmIiIis8YyQ0RERGaNZeYeqNVqvPfee1Cr1VJHsWhcz/WD67l+cD3XD67n+mEq69nidwAmIiIiy8aRGSIiIjJrLDNERERk1lhmiIiIyKyxzBAREZFZY5m5gyVLlsDHxwdWVlbo1q0boqKi7vj6PXv2oFu3brCysoKvry+WLVtWT0nNX13W9caNG/HQQw+hUaNGcHBwQO/evbF9+/Z6TGu+6vpn+qa9e/dCoVCga9euxg1oIeq6njUaDd5++200b94carUaLVu2xPfff19Pac1XXdfzmjVr0KVLF9jY2MDT0xPPPvssMjIy6imtefrnn38wbNgwNGnSBIIgYPPmzXd9jyTbQpFqtG7dOlGpVIrLly8X4+PjxWnTpom2trZiYmJija+/cOGCaGNjI06bNk2Mj48Xly9fLiqVSvGXX36p5+Tmp67retq0aeK8efPEgwcPimfOnBFnzZolKpVKMTY2tp6Tm5e6ruebsrOzRV9fX3HgwIFily5d6iesGdNnPT/yyCNiz549xZ07d4oXL14UDxw4IO7du7ceU5ufuq7nqKgoUSaTiQsXLhQvXLggRkVFiR06dBBHjBhRz8nNS2RkpPj222+LGzZsEAGImzZtuuPrpdoWsszcRo8ePcRJkyZVWda2bVtx5syZNb7+jTfeENu2bVtl2UsvvST26tXLaBktRV3XdU3at28vvv/++4aOZlH0Xc+jRo0S33nnHfG9995jmamFuq7n33//XXR0dBQzMjLqI57FqOt6/t///if6+vpWWRYeHi56eXkZLaOlqU2ZkWpbyGmmGpSUlODIkSMYOHBgleUDBw7Evn37anzP/v37q71+0KBBOHz4MEpLS42W1dzps65vpdPpkJeXBxcXF2NEtAj6rucVK1bg/PnzeO+994wd0SLos563bNmCwMBAfPbZZ2jatClat26N1157DUVFRfUR2Szps56DgoKQkpKCyMhIiKKIq1ev4pdffsGQIUPqI3KDIdW20OIvNKmP69evQ6vVwsPDo8pyDw8PpKWl1fietLS0Gl9fVlaG69evw9PT02h5zZk+6/pWX3zxBQoKCvDkk08aI6JF0Gc9nz17FjNnzkRUVBQUCv5TURv6rOcLFy4gOjoaVlZW2LRpE65fv47JkycjMzOT+83chj7rOSgoCGvWrMGoUaNQXFyMsrIyPPLII1i0aFF9RG4wpNoWcmTmDgRBqPKzKIrVlt3t9TUtp+rquq5vWrt2LebMmYP169fD3d3dWPEsRm3Xs1arxdixY/H++++jdevW9RXPYtTlz7NOp4MgCFizZg169OiBkJAQzJ8/HytXruTozF3UZT3Hx8cjLCwMs2fPxpEjR/DHH3/g4sWLmDRpUn1EbVCk2Bbyf7dq4ObmBrlcXq3hp6enV2ucNzVu3LjG1ysUCri6uhotq7nTZ13ftH79ejz//PP4+eefMWDAAGPGNHt1Xc95eXk4fPgwjh49itDQUADlG11RFKFQKLBjxw488MAD9ZLdnOjz59nT0xNNmzaFo6NjxbJ27dpBFEWkpKTAz8/PqJnNkT7ree7cuejTpw9ef/11AEDnzp1ha2uL4OBgfPTRRxw9NxCptoUcmamBSqVCt27dsHPnzirLd+7ciaCgoBrf07t372qv37FjBwIDA6FUKo2W1dzps66B8hGZCRMmICIignPetVDX9ezg4IDjx48jLi6u4jZp0iS0adMGcXFx6NmzZ31FNyv6/Hnu06cPUlNTkZ+fX7HszJkzkMlk8PLyMmpec6XPei4sLIRMVnWTJ5fLAfw3ckD3TrJtoVF3LzZjNw/7++6778T4+Hhx+vTpoq2trXjp0iVRFEVx5syZ4rhx4ypef/NwtFdeeUWMj48Xv/vuOx6aXUt1XdcRERGiQqEQv/rqK/HKlSsVt+zsbKl+BbNQ1/V8Kx7NVDt1Xc95eXmil5eX+MQTT4gnT54U9+zZI/r5+YkTJ06U6lcwC3VdzytWrBAVCoW4ZMkS8fz582J0dLQYGBgo9ujRQ6pfwSzk5eWJR48eFY8ePSoCEOfPny8ePXq04hB4U9kWsszcwVdffSU2b95cVKlUYkBAgLhnz56K58aPHy/ef//9VV6/e/du0d/fX1SpVGKLFi3EpUuX1nNi81WXdX3//feLAKrdxo8fX//BzUxd/0xXxjJTe3VdzwkJCeKAAQNEa2tr0cvLS5wxY4ZYWFhYz6nNT13Xc3h4uNi+fXvR2tpa9PT0FJ966ikxJSWlnlObl7///vuO/96ayrZQEEWOrxEREZH54j4zREREZNZYZoiIiMisscwQERGRWWOZISIiIrPGMkNERERmjWWGiIiIzBrLDBEREZk1lhkiIiIyaywzRGRWLl26BEEQEBcXd8fX9evXD9OnT6+XTEQkLZYZIjKKCRMmQBAECIIApVIJX19fvPbaaygoKLinz/X29saVK1fQsWNHAMDu3bshCAKys7OrvG7jxo348MMP7+m7iMg8KKQOQESW6+GHH8aKFStQWlqKqKgoTJw4EQUFBVi6dKnenymXy9G4ceO7vs7FxUXv7yAi88KRGSIyGrVajcaNG8Pb2xtjx47FU089hc2bN0Oj0SAsLAzu7u6wsrJC3759cejQoYr3ZWVl4amnnkKjRo1gbW0NPz8/rFixAkDVaaZLly6hf//+AABnZ2cIgoAJEyYAqD7NlJWVhWeeeQbOzs6wsbHB4MGDcfbs2YrnV65cCScnJ2zfvh3t2rWDnZ0dHn74YVy5csX4K4qI7gnLDBHVG2tra5SWluKNN97Ahg0bsGrVKsTGxqJVq1YYNGgQMjMzAQDvvvsu4uPj8fvvvyMhIQFLly6Fm5tbtc/z9vbGhg0bAACnT5/GlStXsHDhwhq/e8KECTh8+DC2bNmC/fv3QxRFhISEoLS0tOI1hYWF+Pzzz/Hjjz/in3/+QVJSEl577TUjrAkiMiROMxFRvTh48CAiIiLQv39/LF26FCtXrsTgwYMBAMuXL8fOnTvx3Xff4fXXX0dSUhL8/f0RGBgIAGjRokWNnymXyyumk9zd3eHk5FTj686ePYstW7Zg7969CAoKAgCsWbMG3t7e2Lx5M0aOHAkAKC0txbJly9CyZUsAQGhoKD744ANDrQIiMhKOzBCR0WzduhV2dnawsrJC7969cd9992Hq1KkoLS1Fnz59Kl6nVCrRo0cPJCQkAABefvllrFu3Dl27dsUbb7yBffv23VOOhIQEKBQK9OzZs2KZq6sr2rRpU/GdAGBjY1NRZADA09MT6enp9/TdRGR8LDNEZDT9+/dHXFwcTp8+jeLiYmzcuBGOjo4AAEEQqrxWFMWKZYMHD0ZiYiKmT5+O1NRUPPjgg/c03SOK4m2XV86hVCqrPC8Iwm3fS0Smg2WGiIzG1tYWrVq1QvPmzSuKQqtWraBSqRAdHV3xutLSUhw+fBjt2rWrWNaoUSNMmDABq1evxoIFC/DNN9/U+B0qlQoAoNVqb5ujffv2KCsrw4EDByqWZWRk4MyZM1W+k4jME/eZIaJ6ZWtri5dffhmvv/46XFxc0KxZM3z22WcoLCzE888/DwCYPXs2unXrhg4dOkCj0WDr1q23LR3NmzeHIAjYunUrQkJCYG1tDTs7uyqv8fPzw/Dhw/HCCy/g66+/hr29PWbOnImmTZti+PDhRv+dici4ODJDRPXu008/xeOPP45x48YhICAA586dw/bt2+Hs7AygfLRl1qxZ6Ny5M+677z7I5XKsW7euxs9q2rQp3n//fcycORMeHh4IDQ2t8XUrVqxAt27dMHToUPTu3RuiKCIyMrLa1BIRmR9B5IQwERERmTGOzBAREZFZY5khIiIis8YyQ0RERGaNZYaIiIjMGssMERERmTWWGSIiIjJrLDNERERk1lhmiIiIyKyxzBAREZFZY5khIiIis8YyQ0RERGbt/xFkAOQ5+fPPAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVUtJREFUeJzt3XdclPUDB/DPc5O9hyiooLgXiBtKyzRR04Y5yrSyMkU0W9owm2a/MkVTy0otRa0cmVJqlgYqLsQcuJUhIsqeB9w9vz9QAkGF847n7vi8X697Hffc+vCkPp++32cIoiiKICIiIjJTMqkDEBEREd0LlhkiIiIyaywzREREZNZYZoiIiMisscwQERGRWWOZISIiIrPGMkNERERmTSF1AGPT6XRITU2Fvb09BEGQOg4RERHVgiiKyMvLQ+PGjSGT3XnsxeLLTGpqKnx8fKSOQURERHpITk6Gt7f3HV9j8WXG3t4eQPnKcHBwkDgNERER1UZubi58fHwqtuN3YvFl5ubUkoODA8sMERGRmanNLiLcAZiIiIjMGssMERERmTWWGSIiIjJrFr/PDBER0b3SarUoLS2VOoZFUSqVkMvlBvkslhkiIqLbEEURaWlpyM7OljqKRXJyckKjRo3u+TxwLDNERES3cbPIeHh4wMbGhidfNRBRFFFYWIj09HQAgJeX1z19HssMERFRDbRabUWRcXV1lTqOxbG2tgYApKenw8PD456mnLgDMBERUQ1u7iNjY2MjcRLLdXPd3uv+SCwzREREd8CpJeMx1LplmSEiIiKzJmmZ+eeffzB06FA0btwYgiBg06ZNVZ4XRRGzZ89G48aNYW1tjb59++LEiRPShCUiIiKTJGmZKSgoQOfOnbFo0aIan//ss88wb948LFq0CAcPHkSjRo3w0EMPIS8vr56TEhERkamStMwMGjQIH330ER577LFqz4miiPnz5+Ptt9/GY489hg4dOmDlypUoLCxEZGSkBGmr59uZcBWiKEodhYiIqIrx48dj+PDh1Zbv2rULgiBY3HlzTHafmYsXLyItLQ0DBgyoWKZWq3H//fdj7969t32fRqNBbm5ulZsxrNqfhOdXHsJLPx5GTiHPCklERCQVkz3PTFpaGgDA09OzynJPT08kJibe9n1z5szB+++/b9RsACAAUMll2H7yKk5ERGPhmAAENnU2+vcSEZF0RFFEUalWku+2Vsp5ZNVtmGyZuenW/3CiKN7xP+bMmTMxffr0ise5ubnw8fExeK6nezZDZ28nhK2JQ2JGIZ5cug9vPNwaE4L9IJPxDxsRkSUqKtWi3axtknz3yQ8GwkZl8pttSZjsWmnUqBGA8hGayqc5Tk9PrzZaU5larYZarTZ6PgDo6O2I36YEY+aGY9j67xV8EnUKsRcy8fmIznCxVdVLBiIiopps2bIFdnZ2VZZptdKMKhmbyZYZX19fNGrUCDt27EBAQAAAoKSkBLt378bcuXMlTvcfByslFo0OQC8/V3yw5ST+OpWOwRHRiBgdgG7NXaSOR0REBmStlOPkBwMl++666NevH5YsWVJl2f79+/H0008bMpZJkLTM5Ofn49y5cxWPL168iPj4eLi4uKBp06aYNm0aPvnkE/j7+8Pf3x+ffPIJbGxsMGbMGAlTVycIAp7u2QyBTZ0RFhmHC9cLMOqbWEx/qBVevr8Fp52IiCyEIAhmM9Vja2uLli1bVlmWkpIiURrjkvS/yKFDh9CvX7+Kxzf3dRk3bhxWrFiBN954A0VFRZg0aRKysrLQo0cPbN++Hfb29lJFvqN2jR2weUow3tl4DJviU/G/bacReyEDX47sAje7+pn6IiIiamgkPTS7b9++EEWx2m3FihUAyhvw7NmzceXKFRQXF2P37t3o0KGDlJHvyk6twJcju2Du4x1hpZQh+ux1hC6IRuyFDKmjERERWSSTPc+MORMEASO7NcWvk4PR0sMO6XkajFkWiwV/noVWx5PsERERGZIgWvgpbHNzc+Ho6IicnBw4ODjU+/cXlpRh1q8n8Mvh8nnKPi1d8eXILvCwt6r3LEREVHvFxcW4ePEifH19YWXFf7ON4U7ruC7bb47MGJmNSoHPR3TGFyM6w1opx55zGQhdEIOYs9eljkZERGQRWGbqyeNdvfHblGC0aWSP6/kajP1+P+ZtP40yrU7qaERERGaNZaYetfSww6bJfTC6uw9EEYj46xzGfLsfV3OLpY5GRERktlhm6pmVUo45j3XCglFdYKuS48DFTAxaEI1dp9OljkZERGSWWGYkMqxLE2wJD0E7LwdkFpRg/PKDmPvHKU47ERER1RHLjIR83WyxYVJvjO3ZDACwZNd5jPomFqnZRRInIyIiMh8sMxKzUsrx4fAOWPxUIOzVChxKzEJoRDR2JlyVOhoREZFZYJkxEaEdvbA1PASdvB2RXViK51cewkdbTqKkjNNOREREd8IyY0Kautrg54m98Gyf5gCAb2Mu4smv9yE5s1DaYERERCaMZcbEqBVyvDe0Pb4e2xUOVgrEJ2djcEQ0/jieJnU0IiIyA4Ig3PE2fvx4o333hg0bMHDgQLi5uUEQBMTHxxvtuypjmTFRA9s3QtTUEHTxcUJucRkmrjqM2ZtPQFOmlToaERGZsCtXrlTc5s+fDwcHhyrLFixYUOX1paWlBvvugoIC9OnTB59++qnBPrM2WGZMmLdz+bTTi/f5AQBW7L2EJ5bsQ2JGgcTJiIjIVDVq1Kji5ujoCEEQKh4XFxfDyckJP/30E/r27QsrKyusWrUKGRkZGD16NLy9vWFjY4OOHTtizZo1VT63b9++CAsLQ1hYGJycnODq6op33nkHlS/xOHbsWMyaNQv9+/ev19+ZZcbEKeUyvBXaFt+PD4KTjRLHLudgcEQMtvybKnU0IqKGRxSBkgJpbga8LvSbb76J8PBwJCQkYODAgSguLkbXrl2xZcsWHD9+HC+++CLGjh2L/fv3V3nfypUroVAosH//fkRERODLL7/Et99+a7Bc+lJIHYBq54E2nogKD0H4miM4lJiFsMgj2Hc+A+8OaQcrpVzqeEREDUNpIfBJY2m++61UQGVrkI+aNm0aHnvssSrLXnvttYqfp0yZgj/++AM///wzevToUbHcx8cHX375JQRBQOvWrXHs2DF8+eWXeOGFFwySS18cmTEjjZ2ssfbFnpjUtwUAYPX+JDy6eC8uXMuXOBkREZmToKCgKo+1Wi0+/vhjdOrUCa6urrCzs8P27duRlJRU5XU9e/aEIAgVj3v16oWzZ89Cq5V2f06OzJgZhVyGNx5ugx5+rpi+Lh4JV3IxZGEMPnm0I4YHNJE6HhGRZVPalI+QSPXdBmJrW3WE54svvsCXX36J+fPno2PHjrC1tcW0adNQUlJisO80JpYZM3V/K3dETS2fdtp/MRPT1sVj3/kMzH6kPaxVnHYiIjIKQTDYVI8piY6OxrBhw/D0008DAHQ6Hc6ePYu2bdtWeV1sbGy1x/7+/pDLpd3ucJrJjHk6WGH1hB4If9AfggCsO5SM4V/twbn0PKmjERGRGWnZsiV27NiBvXv3IiEhAS+99BLS0qqf3yw5ORnTp0/H6dOnsWbNGixcuBBTp06teD4zMxPx8fE4efIkAOD06dOIj4+v8bMMiWXGzCnkMkx/qBVWPd8DbnZqnL6ah6EL9+CXwylSRyMiIjPx7rvvIjAwEAMHDkTfvn3RqFEjDB8+vNrrnnnmGRQVFaF79+6YPHkypkyZghdffLHi+c2bNyMgIACDBw8GAIwaNQoBAQFYunSpUfMLomjAY71MUG5uLhwdHZGTkwMHBwep4xhVel4xXlkXjz3nMgAAjwU2wUfDO8BGxdlEIqK6Ki4uxsWLF+Hr6wsrKyup40iub9++6NKlC+bPn2+wz7zTOq7L9psjMxbEw94KPzzXA9MfagWZAGyIu4yhC2NwKi1X6mhERERGwzJjYeQyAeEP+iPyhZ7wdFDj/LUCDFu0B2sPJMHCB+GIiKiBYpmxUD39XBEVHoL7W7lDU6bDjA3HMG1dPPI1ZVJHIyIiM7Rr1y6DTjEZEsuMBXO1U2P5+G548+E2kMsE/BqfiqELY3AiNUfqaERERAbDMmPhZDIBL/dtgXUv9oSXoxUuXi/Ao4v34sfYRE47ERHVAv+tNB5DrVuWmQYiqLkLosJD0L+tB0rKdHh303GERR5BbrHhLv1ORGRJlEolAKCwsFDiJJbr5rq9ua71xWN2GxBnWxWWPROE72Iu4tPfT2HrsSs4djkHi8YEoJO3k9TxiIhMilwuh5OTE9LT0wEANjY2Va5LRPoTRRGFhYVIT0+Hk5PTPZ9BmOeZaaCOJJVfeftydhGUcgFvhbbF+N7N+ReViKgSURSRlpaG7OxsqaNYJCcnJzRq1KjGbU9dtt8sMw1YTmEp3lh/FNtOXAUADGzvic8e7wxHm3sb7iMisjRarRalpZyWNySlUnnHERmWmUpYZu5MFEWs3HsJn0SdQolWhyZO1lg0JgABTZ2ljkZERA0YzwBMtSYIAsb38cX6l3ujqYsNLmcXYcTSfVj2zwXodBbdc4mIyEKwzBAAoKO3I7aEB2NwJy+U6UR8HJWACT8cQlZBidTRiIiI7ohlhio4WCmxaHQAPhreASqFDH+dSkdoRDQOXcqUOhoREdFtscxQFYIg4OmezbBxUm/4utniSk4xRn4Ti8W7znHaiYiITBLLDNWofWNH/DYlGMO6NIZWJ+KzP05j/IqDuJ6vkToaERFRFSwzdFt2agXmj+yCuY93hFohwz9nriF0QTRiL2RIHY2IiKgCywzdkSAIGNmtKTaHBaOlhx3S8zQYsywWETvPQstpJyIiMgEsM1QrrRvZY3NYHzwe6A2dCMzbcQbPfL8f6XnFUkcjIqIGjmWGas1GpcAXT3bG5yM6w1opx55zGQhdEIM9565LHY2IiBowlhmqsye6euO3KX3Q2tMe1/M1ePq7/Zi3/TSnnYiISBIsM6SXlh722DS5D0Z184EoAhF/ncOYZbFIy+G0ExER1S+WGdKbtUqOTx/vhAWjusBWJcf+i5kIjYjG7jPXpI5GREQNCMsM3bNhXZrgtynBaOvlgMyCEoz7/gDm/nEKZVqd1NGIiKgBYJkhg/Bzt8PGSb3xdM+mAIAlu85j1DexSM0ukjgZERFZOpYZMhgrpRwfDe+IRWMCYK9W4FBiFkIjorEz4arU0YiIyIKxzJDBDenUGFvCg9GxiSOyC0vx/MpD+HjrSZRy2omIiIyAZYaMopmrLX55uRfG924OAFgWfREjlu5DcmahtMGIiMjisMyQ0agVcsx+pD2+HtsVDlYKxCdnY3BENLadSJM6GhERWRCWGTK6ge0bYWt4CLr4OCG3uAwv/XgY7/92ApoyrdTRiIjIArDMUL3wcbHBzxN74YUQXwDA8j2X8MSSfUjK4LQTERHdG5YZqjdKuQxvD26H78YFwclGiWOXczA4IhpRx65IHY2IiMwYywzVuwfbeiIqPARBzZyRpynDpNVxeGfTMRSXctqJiIjqjmWGJNHYyRprXuyJl/u2AACsik3CY4v34uL1AomTERGRuWGZIcko5TK8+XAbrHyuO1xsVTh5JRdDIqLxa/xlqaMREZEZYZkhyd3fyh2/Tw1BD18XFJRoMXVtPGas/xdFJZx2IiKiuzPpMlNWVoZ33nkHvr6+sLa2hp+fHz744APodDyTrKXxdLDC6gk9EP5ASwgCsPZgMoZ/tQfn0vOkjkZERCbOpMvM3LlzsXTpUixatAgJCQn47LPP8L///Q8LFy6UOhoZgUIuw/QBrbHq+R5ws1Pj9NU8DF24B78cTpE6GhERmTBBFEVR6hC3M2TIEHh6euK7776rWPb444/DxsYGP/74Y43v0Wg00Gg0FY9zc3Ph4+ODnJwcODg4GD0zGUZ6XjFeWRePPecyAACPB3rjw+HtYaNSSJyMiIjqQ25uLhwdHWu1/TbpkZng4GDs3LkTZ86cAQAcPXoUMTExCA0Nve175syZA0dHx4qbj49PfcUlA/Kwt8IPz/XA9IdaQSYA6+NSMHRhDE6ncdqJiIiqMumRGVEU8dZbb2Hu3LmQy+XQarX4+OOPMXPmzNu+hyMzlif2QgbC1xxBep4GaoUM7z/SHiO7+UAQBKmjERGRkVjMyMy6deuwatUqREZGIi4uDitXrsTnn3+OlStX3vY9arUaDg4OVW5k3nr6uSJqagjua+UOTZkOMzYcw7R18cjXlEkdjYiITIBJj8z4+PhgxowZmDx5csWyjz76CKtWrcKpU6dq9Rl1aXZk2nQ6EUv/OY8vtp+BVifC180Wi8YEoH1jR6mjERGRgVnMyExhYSFksqoR5XI5D81uoGQyAZP6tsTaF3vCy9EKF68X4NHFe/FjbCJMuJMTEZGRmXSZGTp0KD7++GNs3boVly5dwsaNGzFv3jw8+uijUkcjCXVr7oKo8BA80MYDJWU6vLvpOMLWHEFucanU0YiISAImPc2Ul5eHd999Fxs3bkR6ejoaN26M0aNHY9asWVCpVLX6DE4zWS6dTsR3MRcx949TKNOJaOpig6/GBKKjN6ediIjMXV223yZdZgyBZcbyxSVlYUrkEVzOLoJKLsNboW0wrndzHu1ERGTGLGafGaLaCGzqjKjwEAxo54kSrQ6zfzuJiasOI6eQ005ERA0BywxZBEcbJb4e2xXvDW0HpVzAthNXMXhhNI4kZUkdjYiIjIxlhiyGIAh4to8v1r/cG01dbJCSVYQRS/fh2+gLPNqJiMiCscyQxenk7YQt4cEY3NELZToRH21NwISVh5BVUCJ1NCIiMgKWGbJIDlZKLBoTgI+Gd4BKIcPOU+kYHBGNw4mZUkcjIiIDY5khiyUIAp7u2QwbJ/WGr5stUnOK8eTXsViy6zx0Ok47ERFZCpYZsnjtGzvitynBGNalMbQ6EXP/OIXnVh5ERr7m7m8mIiKTxzJDDYKdWoH5I7vg08c6Qq2QYdfpawiNiMb+CxlSRyMionvEMkMNhiAIGNW9KTaHBaOFuy2u5mowelksFu48Cy2nnYiIzBbLDDU4rRvZ47cpwXg80Bs6EfhixxmM+/4AruVx2omIyByxzFCDZKNS4IsnO+PzEZ1hrZQj5tx1DFoQjT3nrksdjYiI6ohlhhq0J7p6Y3NYH7T2tMf1fA2e/m4/5u04w2knIiIzwjJDDZ6/pz02Te6DUd18IIpAxM6zGLMsFldzi6WORkREtcAyQwTAWiXHp493woJRXWCrkmP/xUyELojG7jPXpI5GRER3wTJDVMmwLk3w25RgtPVyQEZBCcZ9fwBz/ziFMq1O6mhERHQbLDNEt/Bzt8PGSb3xVI+mAIAlu85j1DexSM0ukjgZERHVhGWGqAZWSjk+frQjFo0JgJ1agUOJWQiNiMZfp65KHY2IiG7BMkN0B0M6NcbW8GB0aOKA7MJSPLfiED6JSkApp52IiEwGywzRXTRztcX6l3tjfO/mAIBv/rmAEUv3ISWrUNpgREQEgGWGqFbUCjlmP9IeS58OhL2VAvHJ2QhdEI1tJ9KkjkZE1OCxzBDVwcMdvBAVHoLOPk7ILS7DSz8exvu/nUBJGaediIikwjJDVEc+Ljb4+aVemBDsCwBYvucSnli6F0kZnHYiIpICywyRHlQKGd4Z0g7fPhMER2sl/k3JweCIaEQduyJ1NCKiBodlhuge9G/niaipIejazBl5mjJMWh2HdzcdR3GpVupoREQNBssM0T1q4mSNtS/2xMT7WwAAfoxNxGOL9+Li9QKJkxERNQwsM0QGoJTLMGNQG6x4thtcbFU4eSUXQyKi8Wv8ZamjERFZPJYZIgPq29oDUeEh6O7rgoISLaaujcfMDf9y2omIyIhYZogMrJGjFSIn9ED4Ay0hCMCaA8kY/tUenEvPlzoaEZFFYpkhMgKFXIbpA1rjx+d6wM1OjVNpeRi6MAbrD6dIHY2IyOKwzBAZUbC/G6KmBqN3C1cUlWrx6s9H8drPR1FYUiZ1NCIii8EyQ2RkHvZW+PH5Hpj+UCvIBOCXwykYtmgPzlzNkzoaEZFFYJkhqgdymYDwB/2xekJPeNircTY9H48sisG6g0kQRVHqeEREZo1lhqge9WrhiqipIQjxd0NxqQ5vrj+GV9bFI1/DaSciIn2xzBDVMzc7NVY+2x1vPNwacpmATfGpeGRhDE6m5kodjYjILLHMEElAJhMwqW9LrH2xJ7wcrXDhegGGL96DVbGJnHYiIqojlhkiCXVr7oKt4SF4oI0HSsp0eGfTcYStOYK84lKpoxERmQ2WGSKJudiq8O0zQXgrtA0UMgFb/72CIQtjcCwlR+poRERmgWWGyATIZAJevK8FfprYC02crJGYUYjHl+zFij0XOe1ERHQXLDNEJiSwqTOiwkPwUDtPlGh1mP3bSby8Kg45RZx2IiK6HZYZIhPjaKPEN2O7YtaQdlDKBfxxIg2DI6IRn5wtdTQiIpPEMkNkggRBwHPBvvhlYm/4uFgjJasITyzZi2+jL3DaiYjoFiwzRCass48TtoaHILRjI5TpRHy0NQEv/HAI2YUlUkcjIjIZLDNEJs7BSomvxgTiw2HtoZLL8GdCOkIXRONwYqbU0YiITALLDJEZEAQBY3s1x4ZJvdHc1QapOcV48utYLN19Hjodp52IqGFjmSEyIx2aOGJLeAiGdm4MrU7Ep7+fwnMrDyIjXyN1NCIiybDMEJkZO7UCEaO6YM5jHaFWyLDr9DWERkRj/4UMqaMREUmCZYbIDAmCgNHdm2LT5D7wc7fF1VwNRi+LxaK/znLaiYgaHEHU8zhPnU6Hc+fOIT09HTqdrspz9913n0HCGUJubi4cHR2Rk5MDBwcHqeMQGVyBpgzvbjqODUcuAwBC/N0w78kucLdXS5yMiEh/ddl+61VmYmNjMWbMGCQmVr/CryAI0Gq1df1Io2GZoYbi50PJmPXrCRSVauFur8aCkV3Qu6Wb1LGIiPRSl+23XtNMEydORFBQEI4fP47MzExkZWVV3DIzebgokRRGBPlgc1gftPK0w7U8DZ76bj++3HEGWk47EZGF02tkxtbWFkePHkXLli2NkcmgODJDDU1RiRazN5/AukPJAICefi6IGBUADwcriZMREdWe0UdmevTogXPnzukVjoiMy1olx9wnOmH+yC6wVckReyETgxZE458z16SORkRkFAp93jRlyhS8+uqrSEtLQ8eOHaFUKqs836lTJ4OEIyL9DQ9ogk7ejpgceQQJV3IxbvkBTOrbAq/0bwWFnAcyEpHl0GuaSSar/g+hIAgQRZE7ABOZmOJSLT7cchKr9ycBALo1d0bE6AB4OVpLnIyI6PaMfjRTYmLiHZ9v1qxZXT/SaFhmiMpt+TcVM9YfQ76mDM42Ssx7sgv6tfGQOhYRUY2MXmbMCcsM0X8uXS9A2Jo4HL+cCwB46T4/vDawNZScdiIiE2P0HYAB4Pz585gyZQr69++Phx56COHh4Th//ry+H3dbly9fxtNPPw1XV1fY2NigS5cuOHz4sMG/h6ghaO5mi/Uv98b43s0BAF//cwFPfr0PKVmF0gYjIroHepWZbdu2oV27djhw4AA6deqEDh06YP/+/Wjfvj127NhhsHBZWVno06cPlEolfv/9d5w8eRJffPEFnJycDPYdRA2NWiHH7EfaY+nTgbC3UuBIUjZCF0Rj+4k0qaMREelFr2mmgIAADBw4EJ9++mmV5TNmzMD27dsRFxdnkHAzZszAnj17EB0dXev3aDQaaDT/XUE4NzcXPj4+nGYiqkFyZiHC1hzB0eRsAMCzfZpj5qC2UCk47URE0jL6NFNCQgKef/75asufe+45nDx5Up+PrNHmzZsRFBSEESNGwMPDAwEBAVi2bNkd3zNnzhw4OjpW3Hx8fAyWh8jS+LjY4OeXemFCsC8AYPmeS3hi6V4kZXDaiYjMh15lxt3dHfHx8dWWx8fHw8PDcEdHXLhwAUuWLIG/vz+2bduGiRMnIjw8HD/88MNt3zNz5kzk5ORU3JKTkw2Wh8gSqRQyvDOkHb59JgiO1kr8m5KDwRHRiDp2RepoRES1otdJ81544QW8+OKLuHDhAnr37g1BEBATE4O5c+fi1VdfNVg4nU6HoKAgfPLJJwDKp7dOnDiBJUuW4JlnnqnxPWq1Gmo1rxZMVFf923kiamoIpkTGIS4pG5NWx2Fsz2Z4e3BbWCnlUscjIrotvcrMu+++C3t7e3zxxReYOXMmAKBx48aYPXs2wsPDDRbOy8sL7dq1q7Ksbdu2WL9+vcG+g4j+08TJGute6oXPt5/G17sv4MfYRMQlZWHRmED4utlKHY+IqEZ6TTMJgoBXXnkFKSkpFdM5KSkpmDp1KgRBMFi4Pn364PTp01WWnTlzxqROykdkaZRyGWYOaovlz3aDi60KJ1JzMSQiGr/GX5Y6GhFRje75kAV7e3vY29sbIks1r7zyCmJjY/HJJ5/g3LlziIyMxDfffIPJkycb5fuI6D/9WnsgKjwE3Zu7oKBEi6lr4zFzwzEUl5rO5UqIiIA6HJodGBiInTt3wtnZGQEBAXccgTHUodkAsGXLFsycORNnz56Fr68vpk+fjhdeeKHW7+cZgInuTZlWhwU7z2LR3+cgikCbRvZYNCYQLT3spI5GRBasLtvvWu8zM2zYsIoda4cNG2bQ6aQ7GTJkCIYMGVIv30VE1SnkMrw6oDW6+7rglXXxOJWWh0cWxeCj4R3wWKC31PGIiHhtJiKqvfTcYkxdG499FzIAACO6euP9Ye1ho9LrWAIiotsy+knz/Pz8kJGRUW15dnY2/Pz89PlIIjIDHg5WWDWhB6b194dMAH4+nIJhi/bgzNU8qaMRUQOmV5m5dOkStNrqOwFqNBqkpKTccygiMl1ymYBp/Vth9YSe8LBX42x6Ph5ZFIOfDibDwgd6ichE1WlsePPmzRU/b9u2DY6OjhWPtVotdu7cCV9fX8OlIyKT1auFK6KmhuCVdfGIPnsdb6z/F/suZOCj4R1gq+a0ExHVnzrtMyOTlQ/kCIJQ7f/AlEolmjdvji+++MKkdtjlPjNExqXTiViy+zzm7TgDrU6En5stvnoqEG29+PeNiPRXl+23XjsA+/r64uDBg3Bzc9M7ZH1hmSGqHwcvZWJK5BGk5RZDpZDhvaHtMKZ703o78pGILIvRdwC+ePGiWRQZIqo/3Zq7IGpqCB5o44GSMh3e3ngcU9YcQV5xqdTRiMjC6X1odkFBAXbv3o2kpCSUlJRUec6Q12e6VxyZIapfOp2Ib2Mu4LM/TqNMJ6K5qw0WjQlEhyaOd38zEdENRp9mOnLkCEJDQ1FYWIiCggK4uLjg+vXrsLGxgYeHBy5cuKB3eENjmSGSRlxSFqZEHsHl7CKo5DK8PbgtnunVjNNORFQrRp9meuWVVzB06FBkZmbC2toasbGxSExMRNeuXfH555/rFZqILEtgU2dsDQ/GQ+08UaLV4b3NJzBpdRxyijjtRESGpVeZiY+Px6uvvgq5XA65XA6NRgMfHx989tlneOuttwydkYjMlJONCt+M7YpZQ9pBKRfw+/E0DFkYjaPJ2VJHIyILoleZUSqVFUPFnp6eSEpKAgA4OjpW/ExEBJSfyuG5YF/8MrE3fFyskZxZhCeW7sV3MRd5kj0iMgi9ykxAQAAOHToEAOjXrx9mzZqF1atXY9q0aejYsaNBAxKRZejs44QtU0IwqEMjlGpFfLjlJF744TCyC0vu/mYiojvQq8x88skn8PLyAgB8+OGHcHV1xcsvv4z09HR88803Bg1IRJbD0VqJxU8F4sNh7aGSy/BnwlUMjojB4cQsqaMRkRmr89FMoigiKSkJHh4esLa2NlYug+HRTESm6fjlHIRFxuFSRiEUMgGvD2yNF0L8IJPxaCciMvLRTKIowt/fnxeUJKJ70qGJI36bEoyhnRujTCdizu+n8PzKg8gs4LQTEdVNncuMTCaDv78/MjIyjJGHiBoQeyslIkZ1wZzHOkKtkOHv09cQuiAaBy5mSh2NiMyIXvvMfPbZZ3j99ddx/PhxQ+chogZGEASM7t4Umyb3gZ+7LdJyizF6WSy++vscdDoe7UREd6fXGYCdnZ1RWFiIsrIyqFSqavvOZGaazv9VcZ8ZIvNRoCnDu5uOY8ORywCAEH83fDmyC9zs1BInI6L6Vpftt0KfL/jyyy95SnIiMjhbtQJfPNkZPVu4YtavxxF99joGLYjGglFd0LsFL25LRDXT+0KT5oIjM0Tm6ezVPExaHYez6fmQCUD4g/6Y8oA/5DzaiahBMPq1meRyOdLT06stz8jIgFwu1+cjiYiq8Pe0x+awYDwZ5A2dCMz/8yzGfrcf6bnFUkcjIhOjV5m53WCORqOBSqW6p0BERDdZq+T47InO+HJkZ9io5Nh7PgOhEdGIPntN6mhEZELqtM9MREQEgPKjD7799lvY2dlVPKfVavHPP/+gTZs2hk1IRA3eowHe6NjECWGRcTiVlodnvj+AyX1bYlp/fyjkev0/GRFZkDrtM+Pr6wsASExMhLe3d5UpJZVKhebNm+ODDz5Ajx49DJ9UT9xnhshyFJdq8cGWk4jcX35B2+7NXRAxOgCNHK0kTkZEhlaX7bdeOwD369cPGzZsgLOzs94h6wvLDJHl+e1oKmZuOIZ8TRlcbFX44snO6NfaQ+pYRGRARi8z5oRlhsgyXbpegLA1cTh+ORcA8NL9fnhtQGsoOe1EZBGMXma0Wi1WrFiBnTt3Ij09HTqdrsrzf/31V10/0mhYZogsl6ZMizlRp7Bi7yUAQNdmzogYHYAmTqZ/EVwiujOjnzRv6tSpWLFiBQYPHowOHTrwBHpEJAm1Qo7Zj7RHTz8XvP7LvzicmIXQBdH4YkRn9G/nKXU8Iqoneo3MuLm54YcffkBoaKgxMhkUR2aIGobkzEKERcbhaEoOAGBCsC/eeLgNVApOOxGZI6OfNE+lUqFly5Z6hSMiMgYfFxv8PLE3ng8uP+ry25iLGPH1PiRnFkqcjIiMTa8y8+qrr2LBggW3PXkeEZEUVAoZ3h3SDsueCYKjtRJHk7MRGhGNP45fkToaERmRXtNMjz76KP7++2+4uLigffv2UCqVVZ7fsGGDwQLeK04zETVMl7OLMCUyDnFJ2QCAcb2a4a3BbaFW8JIrRObA6DsAOzk54dFHH9UrHBFRfWjiZI11L/XC59tP4+vdF7ByXyIOJ2Vh0ehANHezlToeERkQzzNDRBbv71PpmP5TPLIKS2GnVmDOYx0xtHNjqWMR0R0YfQdgACgrK8Off/6Jr7/+Gnl5eQCA1NRU5Ofn6/uRRERG0a+NB6KmhqB7cxfka8owZc0RvLXxGIpLtVJHIyID0GtkJjExEQ8//DCSkpKg0Whw5swZ+Pn5Ydq0aSguLsbSpUuNkVUvHJkhopvKtDrM//Msvtp1DqIItGlkj6+eCkQLd7u7v5mI6pXRR2amTp2KoKAgZGVlwdr6vzNtPvroo9i5c6c+H0lEZHQKuQyvDWyNH57rDjc7FU6l5WHowhhsPJIidTQiugd6lZmYmBi88847UKlUVZY3a9YMly9fNkgwIiJjCfF3R1R4CHr5uaKwRItX1h3FG78cRVEJp52IzJFeZUan00Grrf6XPiUlBfb29vcciojI2DwcrLBqQg9M6+8PQQB+OpSCRxbF4OzVPKmjEVEd6VVmHnroIcyfP7/isSAIyM/Px3vvvWcWlzggIgIAuUzAtP6tsHpCD7jbq3E2PR9DF8Xgp0PJPCkokRnRawfg1NRU9OvXD3K5HGfPnkVQUBDOnj0LNzc3/PPPP/Dw8DBGVr1wB2Aiqo1reRpM/yke0WevAwAeC2iCD4d3gK1ar9NxEdE9qsv2W+/zzBQVFWHt2rU4fPgwdDodAgMD8dRTT1XZIdgUsMwQUW3pdCKW7D6PL7afhk4EWrjbYtGYQLT14r8dRPWtXsqMuWCZIaK6OnAxE+FrjiAttxhqhQzvDW2P0d19IAiC1NGIGgyjH5o9Z84cfP/999WWf//995g7d64+H0lEZDK6+7ogamoI+rZ2h6ZMh7c2HkP42njkFZdKHY2IaqBXmfn666/Rpk2basvbt29vUifMIyLSl4utCt+P64YZg9pALhPw29FUDF0Yg+OXc6SORkS30KvMpKWlwcvLq9pyd3d3XLly5Z5DERGZAplMwMT7W+Cnl3qhsaMVLmUU4rHFe/Hjvks82onIhOhVZnx8fLBnz55qy/fs2YPGjXnxNiKyLF2bOSNqagj6t/VEiVaHd389gcmRccjltBORSdDrmMMJEyZg2rRpKC0txQMPPAAA2LlzJ9544w28+uqrBg1IRGQKnGxUWPZMV3y/5xI+/T0BUcfScOxyDhaNDkRnHyep4xE1aHodzSSKImbMmIGIiAiUlJQAAKysrPDmm29i1qxZBg95L3g0ExEZWnxyNsIi45CSVQSlXMDMQW3xbJ/mPNqJyIDq7dDs/Px8JCQkwNraGv7+/lCr1fp+lNGwzBCRMeQUleLNX/7FHyfSAAAPtfPE5090hqONUuJkRJaB55mphGWGiIxFFEX8GJuIj7YkoESrQxMnaywcE4DAps5SRyMye0YvMwUFBfj000+xc+dOpKenQ6fTVXn+woULdf1Io2GZISJjO345B2GRcbiUUQiFTMAbD7fGhGA/yGScdiLSV12233rvALx7926MHTsWXl5enCcmogatQxNH/DYlGG9tPI7fjqbik6hTiL2Qic9HdIaLrUrqeEQWT6+RGScnJ2zduhV9+vQxRiaD4sgMEdUXURSx5kAy3v/tBDRlOng5WiFidAC6NXeROhqR2TH65QycnZ3h4sK/nERElQmCgDE9mmLT5D7wc7fFlZxijPomFl/9fQ46nUXvnkgkKb3KzIcffohZs2ahsLDQ0HnuaM6cORAEAdOmTavX7yUiqou2Xg74LSwYjwU0gVYn4n/bTmPc8gO4nq+ROhqRRdJrmikgIADnz5+HKIpo3rw5lMqqhyLGxcUZLOBNBw8exJNPPgkHBwf069cP8+fPr9X7OM1ERFIRRRE/H07BrF+Po7hUBw97NeaP6oLeLdykjkZk8oy+A/Dw4cP1eZve8vPz8dRTT2HZsmX46KOP6vW7iYj0JQgCngzyQRcfJ0xeHYez6fl4+tv9CH/QH1Me8IecRzsRGYRZnGdm3LhxcHFxwZdffom+ffuiS5cutx2Z0Wg00Gj+G8rNzc2Fj48PR2aISFJFJVq8t/k4fjqUAgDo3cIV80d1gYe9lcTJiEyT0Udmbjp8+DASEhIgCALatWuHgICAe/m4Gq1duxZxcXE4ePBgrV4/Z84cvP/++wbPQUR0L6xVcnz2RGf09HPFO5uOY+/5DIQuiMaXI7sgxN9d6nhEZk2vkZn09HSMGjUKu3btgpOTE0RRRE5ODvr164e1a9fC3d0wfzGTk5MRFBSE7du3o3PnzgDAkRkiMnvn0vMRFhmHU2l5EARgct+WmNbfHwq5XsdkEFkkox+aPWXKFOTm5uLEiRPIzMxEVlYWjh8/jtzcXISHh+sVuiaHDx9Geno6unbtCoVCAYVCgd27dyMiIgIKhQJarbbae9RqNRwcHKrciIhMSUsPO2ya3AejuzeFKAKL/j6HMd/uR1pOsdTRiMySXiMzjo6O+PPPP9GtW7cqyw8cOIABAwYgOzvbIOHy8vKQmJhYZdmzzz6LNm3a4M0330SHDh3u+hk8momITNnmo6mYuf5fFJRo4WKrwrwnO6Nvaw+pYxFJzuj7zOh0umqHYwOAUqmsdp2me2Fvb1+tsNja2sLV1bVWRYaIyNQ90rkxOjZxRFhkHE6k5mL88oN46X4/vDagNZScdiKqFb3+pjzwwAOYOnUqUlNTK5ZdvnwZr7zyCh588EGDhSMiagh83Wyx/uXeeKZXMwDA17svYNQ3sbicXSRxMiLzoNc0U3JyMoYNG4bjx4/Dx8cHgiAgKSkJHTt2xK+//gpvb29jZNULp5mIyJxEHbuCN3/5F3maMjjZKPH5E53Rv52n1LGI6l1dtt/3dJ6ZHTt24NSpUxBFEe3atUP//v31/SijYZkhInOTlFGIsDVx+DclBwAwIdgXbzzcBioFp52o4TBamfnrr78QFhaG2NjYah+ck5OD3r17Y+nSpQgJCdEvuRGwzBCROSop0+HT30/h+z0XAQCdfZywaHQAfFxsJE5GVD+Mdmj2/Pnz8cILL9T4oY6OjnjppZcwb968uqUlIqJqVAoZZg1th2/GdoWDlQJHk7MRGhGNP46nSR2NyOTUqcwcPXoUDz/88G2fHzBgAA4fPnzPoYiIqNyA9o0QNTUEAU2dkFdchomrDmP25hPQlFU/zxZRQ1WnMnP16tUaD8m+SaFQ4Nq1a/ccioiI/uPtbIOfXuqFl+73AwCs2HsJTyzZh8SMAomTEZmGOpWZJk2a4NixY7d9/t9//4WXl9c9hyIioqqUchlmDmqL5eO7wdlGiWOXczA4IgZb/k29+5uJLFydykxoaChmzZqF4uLqp9wuKirCe++9hyFDhhgsHBERVdWvjQeipoagW3Nn5GvKEBZ5BG9vPIbiUk47UcNVp6OZrl69isDAQMjlcoSFhaF169YQBAEJCQn46quvoNVqERcXB09P0zknAo9mIiJLVKbVYf6fZ/HVrnMQRaCtlwMWjQlAC3c7qaMRGYRRzzOTmJiIl19+Gdu2bcPNtwqCgIEDB2Lx4sVo3ry53sGNgWWGiCxZ9NlreGVdPK7nl8BGJccnj3bE8IAmUsciumf1ctK8rKwsnDt3DqIowt/fH87OznqFNTaWGSKydOm5xZi6Nh77LmQAAEYG+WD2I+1hrZJLnIxIf/V2BmBzwDJDRA2BViciYudZRPx1FqIItPa0x1dPBaClh73U0Yj0YrST5hERkWmSywS88lArrH6+B9zt1Th9NQ9DF+7BL4dTpI5GZHQsM0REFqR3SzdEhYcgxN8NRaVavPbzUUz/KR4FmjKpoxEZDcsMEZGFcbdXY+Wz3fHagFaQCcCGuMt4ZFEMTqXlSh2NyChYZoiILJBMJiDsAX+seaEnPB3UOH+tAMMW7cGaA0mw8F0lqQFimSEismA9/FwRFR6Cvq3doSnTYeaGY5i6Nh75nHYiC8IyQ0Rk4Vzt1Ph+XDfMGNQGcpmAzUdTMSQiGscv50gdjcggWGaIiBoAmUzAxPtb4KeXeqKxoxUuZRTisSV78eO+S5x2IrPHMkNE1IB0beaCqKkh6N/WAyVlOrz76wlMjoxDbnGp1NGI9MYyQ0TUwDjZqLDsmSC8M7gtlHIBUcfSMCQiBv+mZEsdjUgvLDNERA2QIAiYEOKHnyf2hrezNZIyC/H4kr34PuYip53I7LDMEBE1YF18nLA1PAQPt2+EUq2ID7acxEs/HkZOIaedyHywzBARNXCO1koseToQ7z/SHiq5DNtPXkVoRDSOJGVJHY2oVlhmiIgIgiBgXO/mWP9ybzRztcHl7CKMWLoPy/65AJ2O005k2lhmiIioQkdvR2yZEozBnbxQphPxcVQCJvxwCFkFJVJHI7otlhkiIqrC3kqJRaMD8PGjHaBSyPDXqXSERkTj0KVMqaMR1YhlhoiIqhEEAU/1aIZNk/rAz80WV3KKMfKbWCzedY7TTmRyWGaIiOi22jV2wG9TgvFoQBNodSI+++M0xq84iOv5GqmjEVVgmSEiojuyVSsw78nO+OzxTrBSyvDPmWsIXRCN2AsZUkcjAsAyQ0REtSAIAp7s5oPNYcHw97BDep4GY5bFImLnWWg57UQSY5khIqJaa+Vpj1/D+mBEV2/oRGDejjN45vv9SM8rljoaNWAsM0REVCc2KgX+N6Iz5j3ZGdZKOfacy0DoghjsOXdd6mjUQLHMEBGRXh4L9MZvU4LRppE9rudr8PR3+zFv+2mUaXVSR6MGhmWGiIj01tLDDpsm98Ho7j4QRSDir3MY8+1+pOVw2onqD8sMERHdEyulHHMe64QFo7rAViXHgYuZCI2Ixq7T6VJHowaCZYaIiAxiWJcm+G1KMNp5OSCzoATjlx/Ep7+fQimnncjIWGaIiMhg/NztsGFSb4zt2QwAsHT3eYz6Jhap2UUSJyNLxjJDREQGZaWU48PhHfDVmEDYqxU4nJiF0Iho/HnyqtTRyEKxzBARkVEM7uSFLeHB6NjEEdmFpZjwwyF8tOUkSso47USGxTJDRERG08zVFr+83AvP9mkOAPg25iJGfL0PyZmF0gYji8IyQ0RERqVWyPHe0Pb4emxXOFgpcDQ5G4MjovHH8TSpo5GFYJkhIqJ6MbB9I2wND0EXHyfkFpdh4qrDmL35BDRlWqmjkZljmSEionrj42KDnyf2wov3+QEAVuy9hCeW7ENiRoHEycicscwQEVG9UspleCu0Lb4bFwQnGyWOXc7BkIgYbP33itTRyEyxzBARkSQebOuJqPAQBDVzRp6mDJMj4/DOpmMoLuW0E9UNywwREUmmsZM11rzYE5P6tgAArIpNwqOL9+LCtXyJk5E5YZkhIiJJKeUyvPFwG6x8rjtcbVVIuJKLoQtj8Gv8ZamjkZlgmSEiIpNwfyt3RE0NQU8/FxSUaDF1bTxmrP8XRSWcdqI7Y5khIiKT4elghdUTeiL8QX8IArD2YDKGf7UH59LzpI5GJoxlhoiITIpcJmD6Q62w6vkecLNT4/TVPAxduAe/HE6ROhqZKJYZIiIySX1auuH3qSEIbumGolItXvv5KF796SgKS8qkjkYmhmWGiIhMlru9Giuf645XH2oFmQCsj0vBI4v24HQap53oPywzRERk0uQyAVMe9EfkCz3h6aDGufR8PLIoBmsPJEEURanjkQlgmSEiIrPQ088VUeEhuL+VOzRlOszYcAzT1sUjX8Npp4aOZYaIiMyGq50ay8d3w5sPt4FcJuDX+FQMXRiDE6k5UkcjCbHMEBGRWZHJBLzctwXWvdgTXo5WuHi9AI8u3osfYxM57dRAmXSZmTNnDrp16wZ7e3t4eHhg+PDhOH36tNSxiIjIBAQ1d0FUeAgebOOBkjId3t10HGGRR5BbXCp1NKpnJl1mdu/ejcmTJyM2NhY7duxAWVkZBgwYgIICXiqeiIgAZ1sVvh0XhHcGt4VCJmDrsSsYEhGDf1OypY5G9UgQzWhM7tq1a/Dw8MDu3btx33331eo9ubm5cHR0RE5ODhwcHIyckIiIpHIkKQthkUdwObsISrmAmYPa4tk+zSEIgtTRSA912X6b9MjMrXJyynfwcnFxue1rNBoNcnNzq9yIiMjyBTR1RlR4CAa290SpVsQHW07ipR8PI6eQ006WzmzKjCiKmD59OoKDg9GhQ4fbvm7OnDlwdHSsuPn4+NRjSiIikpKjjRJLn+6K2UPbQSWXYfvJqwiNiMaRpCypo5ERmc000+TJk7F161bExMTA29v7tq/TaDTQaDQVj3Nzc+Hj48NpJiKiBuZYSg4mR8YhKbMQCpmANx9ugwkhvpx2MhMWN800ZcoUbN68GX///fcdiwwAqNVqODg4VLkREVHD09HbEVvCgzG4oxfKdCI+jkrAhJWHkFVQInU0MjCTLjOiKCIsLAwbNmzAX3/9BV9fX6kjERGRGXGwUmLRmAB8NLwDVAoZdp5KR2hENA5dypQ6GhmQSZeZyZMnY9WqVYiMjIS9vT3S0tKQlpaGoqIiqaMREZGZEAQBT/dsho2TesPXzRZXcoox8ptYLN51DjqdWexpQXdh0vvM3G5ec/ny5Rg/fnytPoOHZhMR0U35mjK8vfEYfo1PBQDc38od857sDFc7tcTJ6FZ12X6bdJkxBJYZIiKqTBRFrDuYjPc2n4CmTAdPBzUWjApATz9XqaNRJRa3AzAREZGhCIKAUd2bYnNYMFq42+JqrgZjlsUiYudZaDntZJZYZoiIqEFq3cgev00JxuOB3tCJwLwdZ/DM9/uRnlcsdTSqI5YZIiJqsGxUCnzxZGd8PqIzrJVy7DmXgdAFMdhz7rrU0agOWGaIiKjBe6KrN36b0getPe1xPV+Dp7/bj3k7znDayUywzBAREQFo6WGPTZP7YFQ3H4giELHzLMYsi8XVXE47mTqWGSIiohusVXJ8+ngnLBjVBbYqOfZfzETogmjsPnNN6mh0BywzREREtxjWpQl+mxKMdl4OyCgowbjvD2DuH6dQptVJHY1qwDJDRERUAz93O2yY1BtjezYDACzZdR6jvolFajbPQm9qWGaIiIhuw0opx4fDO+CrMYGwVytwKDELoRHR2JlwVepoVAnLDBER0V0M7uSFLeHB6NjEEdmFpXh+5SF8vPUkSjntZBJYZoiIiGqhmastfnm5F8b3bg4AWBZ9ESOW7kNyZqG0wYhlhoiIqLbUCjlmP9IeX4/tCgcrBeKTszE4Ihp/HE+TOlqDxjJDRERURwPbN8LW8BB08XFCbnEZJq46jNmbT0BTppU6WoPEMkNERKQHHxcb/PRSL7wQ4gsAWLH3Ep5Ysg+JGQUSJ2t4WGaIiIj0pFLI8PbgdvhuXBCcbJQ4djkHQyJisPXfK1JHa1BYZoiIiO7Rg209ERUegqBmzsjTlGFyZBze2XQMxaWcdqoPLDNEREQG0NjJGmte7ImX+7YAAKyKTcKji/fiwrV8iZNZPpYZIiIiA1HKZXjz4TZY8Ww3uNiqkHAlF0MXxuDX+MtSR7NoLDNEREQG1re1B6LCQ9Dd1wUFJVpMXRuPGev/RVEJp52MgWWGiIjICBo5WiFyQg+EP9ASggCsPZiM4V/twbn0PKmjWRyWGSIiIiNRyGWYPqA1fnyuB9zs1Dh9NQ9DF+7BL4dTpI5mUVhmiIiIjCzY3w1RU4PRu4Urikq1eO3no3j1p6MoLCmTOppFYJkhIiKqBx72Vvjx+R6Y/lAryARgfVwKHlm0B6fTOO10r1hmiIiI6olcJiD8QX+sntATHvZqnEvPxyOLYrDuYBJEUZQ6ntlimSEiIqpnvVq4ImpqCO5r5Q5NmQ5vrj+GV9bFI1/DaSd9CKKFV8Hc3Fw4OjoiJycHDg4OhvvgExuBuB8ApQ2gtL5xs6l0b1PDMuuqr1fZlt8rrAG5wnDZiIjILOh0Ipb+cx5fbD8DrU6En5stFo0JRLvGBtxemam6bL+5BdVXxnng/F+G+zy56g7lp4YiVHmZqhbFSWlT/h2CYLjMRER0T2QyAZP6tkT35i6YsuYILlwvwPDFezBrSDs81aMpBP6bXSscmdFXegJw5ShQWgiUFlW6v/FzSWH1ZdV+LgRQj6tfkN+lENkAKjv9flZYAzLOWhIR6SuroASv/XwUO0+lAwAGd/LCnMc6wsFKKXEyadRl+80yIyVRBMqKqxecyvdVStFtitOdni8pAMR6OuOk0vbeS1FNPytU9ZOfiEhioijiu5iL+PT3UyjTiWjmaoNFowPR0dtR6mj1jmWmEpMuM/VFW1peam47QlTwX2kqKbjx2hp+vt0yY5Mp/itKKtsbJcf2xs2u/Ka2+++x2r7Sc7Y3Hlf+2RZQqI2fm4hIT0eSshAWeQSXs4ugksvwVmgbjOvdvEFNO7HMVMIyY2Q6HVBWdIcSVAiU5Ov3s7bEeLllyhsFyK5S0bGroRzZ3+G5So+VNtwfiYgMKqewFK//chTbT14FADzcvhHmPtEJjtYNY9qJZaYSlhkzpi27MWp0c+Sohp81+eXlpyS/0uO8Sj8XlD+++XNZkZHCCrcZIbpxX+XmcOdlSmsWIyICUD7ttGLvJXwSlYBSrQhvZ2ssHB2AgKbOUkczOpaZSlhmqApt2X/F52YJ0lQuQ3n/PVe5KFUuRreWKEMT5HcoPXcpRFaVS5Etd8omshD/pmQjLPIIkjILoZAJmDGoDZ4P9rXoaSeWmUpYZsiodLpKU2v5VcvQzceam/d5gCa30s+33nJh2KPbhDuUoVsKkZXjjTLkWF6IrJz+W8YdsIlMQm5xKWauP4atx64AAB5s44HPR3SGs61l/h1lmamEZYbMxs1idGvBqan03K4M3bzXGfAsogrrSiWncum5dZlT1WU3l6tsOW1GZCCiKGLV/iR8uOUkSsp0aOxohYjRAQhq7iJ1NINjmamEZYYaHFEEyjS1L0PFOeXLinPLf775WJNrmDyCvHrBqShDty67ee8EWDuV36vtWYaIbnEiNQdhkUdw8XoB5DIBrw5ohYn3tYBMZjl/V1hmKmGZIdKTTlu15GgqlZ0qxaemZTd+NsQIkSD/r9hUvrd2vmWZc/XXcVSILFi+pgxvbzyGX+NTAQD3t3LHvCc7w9XOMk49wTJTCcsMkUREsfw8RrcWnMq32xWk4mygKBvQau4tg0xZQxFyrkUpcgaUVvf23UT1QBRFrDuYjPc2n4CmTAdPBzUiRgWgh5+r1NHuGctMJSwzRGastAgoyiovNjcLTnF29WVFWbc8nw3oSu/tu5U2gLULYON8497lDvfO5fdqRx5BRpI4lZaLyavjcP5aAWQC8Er/VpjUryXkZjztxDJTCcsMUQMkiuVHld2pAN22FOXofwmQm1Nitys7tytDPCM1GUCBpgzv/nocG+IuAwD6tHTF/JEBcLc3zz9fLDOVsMwQUZ3odOXTX0WZQGHWjfvMO9xnld+XFuj/nUrbSqXHtfxm6wbYuAG2rjfubzy2cS1/HUeA6DZ+PpSMWb+eQFGpFm52aiwY1QV9WrpJHavOWGYqYZkhonpRWnxjpOcupafy8qIsQNTV/bsEWfmozm0LT+XnbhQgecM4BT6VO3s1D5Mj43Dmaj4EAZjygD+mPuhvVtNOLDOVsMwQkcnS6cqPBqtcdgozbtyuAwXXy38uuH7jcUb56/Vh5Vhz4bH1AGzdATv38p/tPMqLEkd+zF5RiRazN5/AukPJAIAevi6IGB0ATwfz2LmdZaYSlhkisihlJeWjOhUF55bCU5hRXnpuPleUWffRH0H+X9Gxcy8vO7bu5UWnYtmN4sNRH5O36chlvLXxGApLtHC1VWHeyC64v5W71LHuimWmEpYZImrQdNrynZsLaxjlKbwO5KcDBdfKb/np5eWnrqxdbhSdWwuPe/Xyw52dJXHhWj4mRx5BwpXyk2FO6tsC0x9qBYXcdEfgWGYqYZkhIqoDbWl54SlIB/Kvld/fLDq33hder/uoj7UzYNcIsPe8cX/jZudZ9V5la5zfrwErLtXiwy0nsXp/EgCgW3NnLBgVgMZO1hInqxnLTCUsM0RERqLTlu/nU3CtavmpUnzSy8tRfnrdzv2jdqhecOw8AXuvSkXIs/x1PMtznWz5NxUz1h9DvqYMzjZKfPFkZzzQxlPqWNWwzFTCMkNEZAJEsXwn57w0ID8NyLta/T7vCpB/tfyCq7WlsC4vNfZe1UuPgxdg3xhwaAyo7Yz3u5mhxIwCTI6Mw/HL5dNOL97nh9cHtobShKadWGYqYZkhIjIjolh+AdT8qzeKz42SU/HzzfurdTuyS+1QXmocGv9XcBy8AIcmN4pPk/IjvBrQKI+mTIs5UaewYu8lAEBAUycsHB0Ab2cbaYPdwDJTCcsMEZGFKim88yhP3hUgN7X2V4CXq6uO5txadhy8yqe35Arj/l717I/jaXjjl6PILS6Dg5UCn4/ojAHtG0kdi2WmMpYZIqIGTpMH5F4Bci/fKDiXbzxOBfJSy+8LrtXuswRZ+TSWo3elm0/Ve2tnsxvhSc4sxJQ1RxCfnA0AeLZPc8wc1BYqhXTTTiwzlbDMEBHRXZVpyqewKspO6i0FKLX8Xld2989S2t6m7Ny4OTQBFCrj/051VFKmw/+2ncKy6IsAgE7ejlg0OhBNXaWZdmKZqYRlhoiIDEKnKx/ByU0Bci4DOSk3bsn/3ddqhEeoeXTHyefGfdPyC5ZK5M+TV/HaL0eRXVgKe7UCc5/ohNCOXvWeg2WmEpYZIiKqN6VF5aM4FQUn5ZafU4Cy4rt/jpUj4NQMcG524755eclxalZ+rzLuaElqdhGmrDmCw4lZAICxPZvh7cFtYaWUG/V7K2OZqYRlhoiITIYolp+J+daCk5MMZCcD2UnlJyO8G1uPG0Wn6S2lp1n56I4BLjFRqtVh3o4zWLLrPACgnZcDvnoqEL5u9XNCQ5aZSlhmiIjIrGjyy8tNViKQnVj9/m5HZwmy8iOyKhccp2aAiy/g7Ft+WYk67KC863Q6pv90FJkFJbBVyfHJYx0xrEuTe/wl787iyszixYvxv//9D1euXEH79u0xf/58hISE1Oq9LDNERGQxbp58MDup5qKTnXT3aSylLeDiV15uXHxv/OxXXnQcmtR4xfS0nGKErz2CAxfLr901ursP3hva3qjTThZVZtatW4exY8di8eLF6NOnD77++mt8++23OHnyJJo2bXrX97PMEBFRgyGK5ZeOqCg4l/4rOpmXykd8cIfNvlxdvn9ORdnxqxjRKbP3xoJdl7Do73MQRaC1pz2+eioQLT2Mc3ZliyozPXr0QGBgIJYsWVKxrG3bthg+fDjmzJlz1/ezzBAREd1Qpikfvcm8cON28b+fsxPvfOi5IAecmiLLyhvb0uyRUOKOy7LGeHxAXwzq0w2QGXaUpi7bb5M+jWFJSQkOHz6MGTNmVFk+YMAA7N27t8b3aDQaaDSaise5ubU88yMREZGlU6gBN//y2620ZeWHnVcpOjfKTtbF8umrrItwxkWMAoCb+xjvnIOD8cPQbcoP9fiLVGXSZeb69evQarXw9Kx6NU9PT0+kpaXV+J45c+bg/fffr494RERElkOuKJ9icm4OtHig6nM6XfmlIjIvABnngczzEK+fQ2ZyAuwKkmHdqJUUiSuYdJm5Sbhlr2tRFKstu2nmzJmYPn16xePc3Fz4+PgYNR8REZFFk8n+u1Bn82AAgADAFcD59Fx0cJb2jMYmXWbc3Nwgl8urjcKkp6dXG625Sa1WQ61W10c8IiKiBq+Fh/T7o0p3BalaUKlU6Nq1K3bs2FFl+Y4dO9C7d2+JUhEREZEpMemRGQCYPn06xo4di6CgIPTq1QvffPMNkpKSMHHiRKmjERERkQkw+TIzcuRIZGRk4IMPPsCVK1fQoUMHREVFoVmzZlJHIyIiIhNg8ueZuVc8zwwREZH5qcv226T3mSEiIiK6G5YZIiIiMmssM0RERGTWWGaIiIjIrLHMEBERkVljmSEiIiKzxjJDREREZo1lhoiIiMwaywwRERGZNZO/nMG9unmC49zcXImTEBERUW3d3G7X5kIFFl9m8vLyAAA+Pj4SJyEiIqK6ysvLg6Oj4x1fY/HXZtLpdEhNTYW9vT0EQTDoZ+fm5sLHxwfJycm87pMRcT3XD67n+sH1XD+4nuuHMdezKIrIy8tD48aNIZPdea8Yix+Zkclk8Pb2Nup3ODg48C9LPeB6rh9cz/WD67l+cD3XD2Ot57uNyNzEHYCJiIjIrLHMEBERkVljmbkHarUa7733HtRqtdRRLBrXc/3geq4fXM/1g+u5fpjKerb4HYCJiIjIsnFkhoiIiMwaywwRERGZNZYZIiIiMmssM0RERGTWWGbuYPHixfD19YWVlRW6du2K6OjoO75+9+7d6Nq1K6ysrODn54elS5fWU1LzV5d1vWHDBjz00ENwd3eHg4MDevXqhW3bttVjWvNV1z/TN+3ZswcKhQJdunQxbkALUdf1rNFo8Pbbb6NZs2ZQq9Vo0aIFvv/++3pKa77qup5Xr16Nzp07w8bGBl5eXnj22WeRkZFRT2nN0z///IOhQ4eicePGEAQBmzZtuut7JNkWilSjtWvXikqlUly2bJl48uRJcerUqaKtra2YmJhY4+svXLgg2tjYiFOnThVPnjwpLlu2TFQqleIvv/xSz8nNT13X9dSpU8W5c+eKBw4cEM+cOSPOnDlTVCqVYlxcXD0nNy91Xc83ZWdni35+fuKAAQPEzp07109YM6bPen7kkUfEHj16iDt27BAvXrwo7t+/X9yzZ089pjY/dV3P0dHRokwmExcsWCBeuHBBjI6OFtu3by8OHz68npObl6ioKPHtt98W169fLwIQN27ceMfXS7UtZJm5je7du4sTJ06ssqxNmzbijBkzanz9G2+8IbZp06bKspdeekns2bOn0TJairqu65q0a9dOfP/99w0dzaLou55HjhwpvvPOO+J7773HMlMLdV3Pv//+u+jo6ChmZGTURzyLUdf1/L///U/08/OrsiwiIkL09vY2WkZLU5syI9W2kNNMNSgpKcHhw4cxYMCAKssHDBiAvXv31vieffv2VXv9wIEDcejQIZSWlhotq7nTZ13fSqfTIS8vDy4uLsaIaBH0Xc/Lly/H+fPn8d577xk7okXQZz1v3rwZQUFB+Oyzz9CkSRO0atUKr732GoqKiuojslnSZz337t0bKSkpiIqKgiiKuHr1Kn755RcMHjy4PiI3GFJtCy3+QpP6uH79OrRaLTw9Pass9/T0RFpaWo3vSUtLq/H1ZWVluH79Ory8vIyW15zps65v9cUXX6CgoABPPvmkMSJaBH3W89mzZzFjxgxER0dDoeA/FbWhz3q+cOECYmJiYGVlhY0bN+L69euYNGkSMjMzud/Mbeiznnv37o3Vq1dj5MiRKC4uRllZGR555BEsXLiwPiI3GFJtCzkycweCIFR5LIpitWV3e31Ny6m6uq7rm9asWYPZs2dj3bp18PDwMFY8i1Hb9azVajFmzBi8//77aNWqVX3Fsxh1+fOs0+kgCAJWr16N7t27IzQ0FPPmzcOKFSs4OnMXdVnPJ0+eRHh4OGbNmoXDhw/jjz/+wMWLFzFx4sT6iNqgSLEt5P9u1cDNzQ1yubxaw09PT6/WOG9q1KhRja9XKBRwdXU1WlZzp8+6vmndunV4/vnn8fPPP6N///7GjGn26rqe8/LycOjQIRw5cgRhYWEAyje6oihCoVBg+/bteOCBB+oluznR58+zl5cXmjRpAkdHx4plbdu2hSiKSElJgb+/v1EzmyN91vOcOXPQp08fvP766wCATp06wdbWFiEhIfjoo484em4gUm0LOTJTA5VKha5du2LHjh1Vlu/YsQO9e/eu8T29evWq9vrt27cjKCgISqXSaFnNnT7rGigfkRk/fjwiIyM5510LdV3PDg4OOHbsGOLj4ytuEydOROvWrREfH48ePXrUV3Szos+f5z59+iA1NRX5+fkVy86cOQOZTAZvb2+j5jVX+qznwsJCyGRVN3lyuRzAfyMHdO8k2xYadfdiM3bzsL/vvvtOPHnypDht2jTR1tZWvHTpkiiKojhjxgxx7NixFa+/eTjaK6+8Ip48eVL87rvveGh2LdV1XUdGRooKhUL86quvxCtXrlTcsrOzpfoVzEJd1/OteDRT7dR1Pefl5Yne3t7iE088IZ44cULcvXu36O/vL06YMEGqX8Es1HU9L1++XFQoFOLixYvF8+fPizExMWJQUJDYvXt3qX4Fs5CXlyceOXJEPHLkiAhAnDdvnnjkyJGKQ+BNZVvIMnMHX331ldisWTNRpVKJgYGB4u7duyueGzdunHj//fdXef2uXbvEgIAAUaVSic2bNxeXLFlSz4nNV13W9f333y8CqHYbN25c/Qc3M3X9M10Zy0zt1XU9JyQkiP379xetra1Fb29vcfr06WJhYWE9pzY/dV3PERERYrt27URra2vRy8tLfOqpp8SUlJR6Tm1e/v777zv+e2sq20JBFDm+RkREROaL+8wQERGRWWOZISIiIrPGMkNERERmjWWGiIiIzBrLDBEREZk1lhkiIiIyaywzREREZNZYZoiIiMisscwQkVm5dOkSBEFAfHz8HV/Xt29fTJs2rV4yEZG0WGaIyCjGjx8PQRAgCAKUSiX8/Pzw2muvoaCg4J4+18fHB1euXEGHDh0AALt27YIgCMjOzq7yug0bNuDDDz+8p+8iIvOgkDoAEVmuhx9+GMuXL0dpaSmio6MxYcIEFBQUYMmSJXp/plwuR6NGje76OhcXF72/g4jMC0dmiMho1Go1GjVqBB8fH4wZMwZPPfUUNm3aBI1Gg/DwcHh4eMDKygrBwcE4ePBgxfuysrLw1FNPwd3dHdbW1vD398fy5csBVJ1munTpEvr16wcAcHZ2hiAIGD9+PIDq00xZWVl45pln4OzsDBsbGwwaNAhnz56teH7FihVwcnLCtm3b0LZtW9jZ2eHhhx/GlStXjL+iiOiesMwQUb2xtrZGaWkp3njjDaxfvx4rV65EXFwcWrZsiYEDByIzMxMA8O677+LkyZP4/fffkZCQgCVLlsDNza3a5/n4+GD9+vUAgNOnT+PKlStYsGBBjd89fvx4HDp0CJs3b8a+ffsgiiJCQ0NRWlpa8ZrCwkJ8/vnn+PHHH/HPP/8gKSkJr732mhHWBBEZEqeZiKheHDhwAJGRkejXrx+WLFmCFStWYNCgQQCAZcuWYceOHfjuu+/w+uuvIykpCQEBAQgKCgIANG/evMbPlMvlFdNJHh4ecHJyqvF1Z8+exebNm7Fnzx707t0bALB69Wr4+Phg06ZNGDFiBACgtLQUS5cuRYsWLQAAYWFh+OCDDwy1CojISDgyQ0RGs2XLFtjZ2cHKygq9evXCfffdhylTpqC0tBR9+vSpeJ1SqUT37t2RkJAAAHj55Zexdu1adOnSBW+88Qb27t17TzkSEhKgUCjQo0ePimWurq5o3bp1xXcCgI2NTUWRAQAvLy+kp6ff03cTkfGxzBCR0fTr1w/x8fE4ffo0iouLsWHDBjg6OgIABEGo8lpRFCuWDRo0CImJiZg2bRpSU1Px4IMP3tN0jyiKt11eOYdSqazyvCAIt30vEZkOlhkiMhpbW1u0bNkSzZo1qygKLVu2hEqlQkxMTMXrSktLcejQIbRt27Zimbu7O8aPH49Vq1Zh/vz5+Oabb2r8DpVKBQDQarW3zdGuXTuUlZVh//79FcsyMjJw5syZKt9JROaJ+8wQUb2ytbXFyy+/jNdffx0uLi5o2rQpPvvsMxQWFuL5558HAMyaNQtdu3ZF+/btodFosGXLltuWjmbNmkEQBGzZsgWhoaGwtraGnZ1dldf4+/tj2LBheOGFF/D111/D3t4eM2bMQJMmTTBs2DCj/85EZFwcmSGievfpp5/i8ccfx9ixYxEYGIhz585h27ZtcHZ2BlA+2jJz5kx06tQJ9913H+RyOdauXVvjZzVp0gTvv/8+ZsyYAU9PT4SFhdX4uuXLl6Nr164YMmQIevXqBVEUERUVVW1qiYjMjyByQpiIiIjMGEdmiIiIyKyxzBAREZFZY5khIiIis8YyQ0RERGaNZYaIiIjMGssMERERmTWWGSIiIjJrLDNERERk1lhmiIiIyKyxzBAREZFZY5khIiIis/Z/ynIGIyOKKbcAAAAASUVORK5CYII=", "text/plain": [ "" ] @@ -921,7 +921,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4f8b7ec659244bd29fd9058f4f735544", + "model_id": "ea441f34102b4af4891d8e7f6749eb87", "version_major": 2, "version_minor": 0 }, @@ -1012,7 +1012,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbt5JREFUeJzt3Xd4VGXexvHvmZLeSEJCgNAkdOnSccEuiiCuoLAiyoqFKpbF1wKuCquuhaJiW3BXig1ZVIroKgYRpEuTXqWE9J5MOe8fCSGRYhKSTMr98Zprzjxzyi/HkLnneU4xTNM0EREREamiLJ4uQERERORSKMyIiIhIlaYwIyIiIlWawoyIiIhUaQozIiIiUqUpzIiIiEiVpjAjIiIiVZrN0wWUN7fbzfHjxwkMDMQwDE+XIyIiIsVgmiZpaWnUrVsXi+XifS/VPswcP36c6OhoT5chIiIipXD06FHq169/0XmqfZgJDAwE8nZGUFCQh6sRERGR4khNTSU6Orrgc/xiqn2YOTO0FBQUpDAjIiJSxRTnEBEdACwiIiJVmsKMiIiIVGkKMyIiIlKlVftjZkREpPJyuVw4HA5PlyEeYLfbsVqtZbIuhRkREalwpmly8uRJkpOTPV2KeFBISAh16tS55OvAKcyIiEiFOxNkIiIi8PPz00VNaxjTNMnMzCQuLg6AqKioS1qfwoyIiFQol8tVEGTCwsI8XY54iK+vLwBxcXFERERc0pCTDgAWEZEKdeYYGT8/Pw9XIp525nfgUo+bUpgRERGP0NCSlNXvgMKMiIiIVGkeDTM//PAD/fv3p27duhiGweLFi4u8b5omU6ZMoW7duvj6+tKnTx927NjhmWJFRESkUvJomMnIyKBdu3bMmjXrvO+/9NJLvPrqq8yaNYv169dTp04drr32WtLS0iq4UhEREamsPBpmbrzxRp5//nkGDRp0znumafL666/z5JNPMmjQINq0acMHH3xAZmYm8+fP90C159b37a5TmKbp6VJERKSCjBgxgoEDB57T/v3332MYhq6b4yGV9piZgwcPcvLkSa677rqCNm9vb/70pz+xZs2aCy6Xk5NDampqkUd5+HDtYUZ+sIH7/7ORlExdvVJERMRTKu11Zk6ePAlAZGRkkfbIyEgOHz58weWmTZvGs88+W661AVgsBl5WC1/vPMWOGbHMGtqBDg1qlft2RUSqG9M0yXK4PLJtX7tVZ1VVA5U2zJzx+18y0zQv+ov3xBNPMHHixILXqampREdHl3ldw7o2pF39EEbP38ThhExun/0Tf7uhBX/t3Vj/MERESiDL4aLVMys8su2df78eP69K/1Eof6DS/h+sU6cOkNdDU/gyx3Fxcef01hTm7e2Nt7d3udcH0KZeMF+O7cWkRdv46pcTvLB0F2sPJPDP29tRy9+rQmoQEZGK9eWXXxIQEFCkzeXyTM+S5Km0YaZx48bUqVOHlStX0qFDBwByc3NZtWoVL774ooerOyvQx86sOzvQvUkYf/9yJ9/+Gke/GbHMvLMDnRuFero8EZFKz9duZeffr/fYtkuqb9++vPXWW0Xa1q1bx1/+8peyKktKyKNhJj09nX379hW8PnjwIFu2bCE0NJQGDRowYcIEpk6dSkxMDDExMUydOhU/Pz+GDh3qwarPZRgGf+nWkI4NajF6/iYOxmcw5J21PHJdMx648jIsFg07iYhciGEYVWqox9/fn6ZNmxZpO3bsmIeqEfBwmNmwYQN9+/YteH3mWJe7776buXPn8vjjj5OVlcVDDz1EUlISXbt25euvvyYwMNBTJV9Uq7pBfDG2F09+vo3/bjnOS8t3s/ZAIq8NbkdYQMUMfYmIiNQ0Hj01u0+fPpimec5j7ty5QF5anzJlCidOnCA7O5tVq1bRpk0bT5b8hwK8bbw+pD0v3nY53jYLP+w5Tb8Zsaw7kODp0kRERKqlSnudmarMMAyGXNGAJWN6cVltf06l5nDnu2uZ+e1eXG5dZE9ERKQsGWY1v4RtamoqwcHBpKSkEBQUVOHbz8x18vTiHXy2KW88tVfTcF4b0p7agRp2EpGaKTs7m4MHD9K4cWN8fHw8XY540MV+F0ry+a2emXLm52XjlcHt+Oft7fC1W1m9L55+M2JZsy/e06WJiIhUCwozFeTPneqzZExPmkUGcDoth2Hvr+PVlXs07CQiInKJFGYqUExkIP8d3YshnaMxTZjx7V6GvbeWU6nZni5NRESkylKYqWC+XlZe/HNbXh/SHj8vK2sPJNJveiw/7Dnt6dJERESqJIUZDxnYoR5fjO1FizqBJGTkcvecn3l5xa84XW5PlyYiIlKlKMx40GW1A1g8uidDuzbANOGN7/Yz9N11nEjJ8nRpIiIiVYbCjIf52K1MvfVyZt7ZgQBvGz8fyht2+m53nKdLExERqRIUZiqJ/u3q8uXYXrSpF0RSpoN75qxn2tJdODTsJCIiclEKM5VIo3B/PnuwB3d3bwjA2z8cYMjbP/FbsoadRERELkRhppLxtll5dkAb3hrWkUAfG5uOJNNveiwrd57ydGkiIiIlMnfuXEJCQsp9OwozldSNl0fx1djetKsfTEqWg/v+vYHnvtxJrlPDTiIinvLDDz/Qv39/6tati2EYLF68uMj7ffr0YcKECecsV5IP9SlTptC+fftLrrUmUZipxBqE+fHJAz24t2djAN5ffZDb3/6Jo4mZHq5MRKRmysjIoF27dsyaNcvTpeBwODxdQqWhMFPJedksPNO/Fe/c1YkgHxtbjybTb0Ysy7ef9HRpIiJlwzQhN8MzjxLea/nGG2/k+eefZ9CgQeWyK+bOncuzzz7L1q1bMQwDwzCYO3cuAIZhMHv2bAYMGIC/vz/PP/88LpeLkSNH0rhxY3x9fWnevDnTp08vss4RI0YwcOBAnn32WSIiIggKCuL+++8nNze3YJ4+ffowZswYxowZQ0hICGFhYTz11FMUvhd1bm4ujz/+OPXq1cPf35+uXbvy/fffn1N/gwYN8PPz49ZbbyUhIaFc9tPv2SpkK3LJrmtdh6V1gxi7YDObjyTzwIcbGdGjEU/0a4G3zerp8kRESs+RCVPrembb/3ccvPw9s+3zGDJkCNu3b2f58uV88803AAQHBxe8P3nyZKZNm8Zrr72G1WrF7XZTv359Pv74Y8LDw1mzZg2jRo0iKiqKwYMHFyz37bff4uPjw3fffcehQ4e45557CA8P54UXXiiY54MPPmDkyJGsW7eODRs2MGrUKBo2bMh9990HwD333MOhQ4dYuHAhdevW5fPPP+eGG25g27ZtxMTEsG7dOu69916mTp3KoEGDWL58OZMnT66Q/WaYZgljaRVTkluIVwUOl5t/rtjN2z8cAODyesHMGtqBhmGV5x+jiMjFZGdnc/DgQRo3boyPj09eD0kVDDOGYfD5558zcODAgrY+ffqwZs0avLy8iszrdDrx8fEhOTn5D9c7ZcoUFi9ezJYtW87Z3oQJE3jttdcuuvzo0aM5deoUn376KZDXM/PFF19w9OhR/Pz8AJg9ezaPPfYYKSkpWCwW+vTpQ1xcHDt27MAwDAAmTZrEkiVL2LlzJ/v37ycmJoZjx45Rt+7Z/1fXXHMNXbp0YerUqQwdOpSkpCSWLVtW8P4dd9zB8uXLL/hzn/O7UEhJPr/VM1PF2K0WnujXkq5NQnnk461s+y2Fm2es5h+3teWmtlGeLk9EpOTsfnmhwlPbLmPDhg3jySefLNK2aNEipk6desnr7ty58zlts2fP5r333uPw4cNkZWWRm5t7zgHE7dq1KwgyAN27dyc9PZ2jR4/SsGHe5UC6detWEGTOzPPKK6/gcrnYtGkTpmnSrFmzIuvNyckhLCwMgF27dnHrrbcWeb979+4sX778kn7m4lCYqaKuahHJ0vG9GTt/MxsOJzF6/iZ+OtCAp25qhY9dw04iUoUYRqUa6rlUwcHBNG3atEhbREREmazb37/ofvr44495+OGHeeWVV+jevTuBgYG8/PLLrFu3rljrKxxeLsbtdmO1Wtm4cSNWa9HPmICAAAA8OdCjMFOFRQX7snBUN15duYc3v9/Ph2uPsPFwMm8M7UCT2gGeLk9ERErBy8sLl8tVrHljY2Pp0aMHDz30UEHb/v37z5lv69atZGVl4evrC8DatWsJCAigfv36BfOsXbu2yDJr164lJiYGq9VKhw4dcLlcxMXF0bt37/PW0qpVq/OuoyLobKYqzma18PgNLfjg3i6E+Xux60Qq/Weu5r9bfvN0aSIi1U56ejpbtmwpOJ7l4MGDbNmyhSNHjpTZNho1alSw3vj4eHJyci44b9OmTdmwYQMrVqxgz549PP3006xfv/6c+XJzcxk5ciQ7d+5k2bJlTJ48mTFjxmCxnI0BR48eZeLEiezevZsFCxYwc+ZMxo8fD0CzZs0YNmwYw4cPZ9GiRRw8eJD169fz4osvsnTpUgDGjRvH8uXLeemll9izZw+zZs2qkCEmUJipNv7UrDZLx/ema+NQMnJdjF+4hUmf/UK2o3jpXkRE/tiGDRvo0KEDHTp0AGDixIl06NCBZ555psy2cdttt3HDDTfQt29fateuzYIFCy447wMPPMCgQYMYMmQIXbt2JSEhoUgvzRlXX301MTExXHnllQwePJj+/fszZcqUIvMMHz6crKwsunTpwujRoxk7diyjRo0qeH/OnDkMHz6cRx55hObNm3PLLbewbt06oqOjgbxjbt577z1mzpxJ+/bt+frrr3nqqafKZqf8AZ3NVM04XW5m/G8fM/+3F9OE5pGBvDGsA00jAj1dmogIcPEzWKTsjRgxguTk5HOuVlxYnz59aN++Pa+//nqF1QVldzaTemaqGZvVwsRrm/HhyK6EB3iz+1Qa/Wf+yGcbj3m6NBERkXKhMFNN9WwaztLxvejZNIwsh4tHPtnKo59sJTPX6enSRERqtNatWxMQEHDex7x58zxdXpWkYaZqzuU2eeO7fbz+zR7cJjSNCOCNoR1pXkfDTiLiGTV9mOnw4cMXvK9SZGQkgYE15++zLponxWK1GIy7OoYujUMZv3Az++LSGfDGap69pTWDO0cX+xoDIiJSNs5cpE7KjoaZaohuTcJYOq43VzarTbbDzd8+28bDH20hPUfDTiIiUrUpzNQgYQHezB1xBY/f0ByrxWDxluPcMnM1O4+nero0ERGRUlOYqWEsFoOH+jRl4ahuRAX7cCA+g4Fv/siHaw979FLUIiIipaUwU0Nd0SiUr8b15qoWEeQ63Ty1eDtjFmwmLfv8B6WJiIhUVgozNViovxfvDe/M//Vrgc1i8NUvJ7h55mq2/5bi6dJERESKTWGmhrNYDEZdeRkfP9CdeiG+HE7IZNCba/hgzSENO4mIyCWZO3cuISEh5b4dhRkBoGODWnw1rhfXtook1+Vm8pIdPDRvEylZGnYSEQGYNm0aV1xxBYGBgURERDBw4EB2795dZJ4+ffowYcKEc5YtyYf6lClTaN++/aUXXIMozEiBED8v3rmrE8/c3Aq71WDZ9pPcPDOWrUeTPV2aiIjHrVq1itGjR7N27VpWrlyJ0+nkuuuuIyMjwyP1XOjCezWRwowUYRgG9/ZqzKcP9CA61JejiVn8efYa3l99UMNOIlIuTNMk05HpkUdJ/q4tX76cESNG0Lp1a9q1a8ecOXM4cuQIGzduLLN9MXfuXJ599lm2bt2KYRgYhsHcuXOBvL/Ps2fPZsCAAfj7+/P888/jcrkYOXIkjRs3xtfXl+bNmzN9+vQi6xwxYgQDBw7k2WefJSIigqCgIO6//35yc3ML5unTpw9jxoxhzJgxhISEEBYWxlNPPVVk/+Tm5vL4449Tr149/P396dq1K99///059Tdo0AA/Pz9uvfVWEhISymzfXIyuACzn1S46hC/H9mbSZ7+wbPtJnvtyJz/tT+Cft7clxM/L0+WJSDWS5cyi6/yuHtn2uqHr8LP7lWrZlJS8kyVCQ0PLrJ4hQ4awfft2li9fzjfffANAcHBwwfuTJ09m2rRpvPbaa1itVtxuN/Xr1+fjjz8mPDycNWvWMGrUKKKiohg8eHDBct9++y0+Pj589913HDp0iHvuuYfw8HBeeOGFgnk++OADRo4cybp169iwYQOjRo2iYcOG3HfffQDcc889HDp0iIULF1K3bl0+//xzbrjhBrZt20ZMTAzr1q3j3nvvZerUqQwaNIjly5czefLkMts3F6N7M8lFmabJf9Ye5vkvd5HrclMvxJcZd3agU8Nani5NRKqo39+PJ9ORWeXCjGmaDBgwgKSkJGJjYwva+/Tpw5o1a/DyKvqlz+l04uPjQ3Jy8h+ue8qUKSxevJgtW7YUaTcMgwkTJvDaa69ddPnRo0dz6tQpPv30UyCvZ+aLL77g6NGj+Pnl/ayzZ8/mscceIyUlBYvFQp8+fYiLi2PHjh0Ft7mZNGkSS5YsYefOnezfv5+YmBiOHTtG3bp1C7Z1zTXX0KVLF6ZOncrQoUNJSkpi2bJlBe/fcccdLF++/II/t+7NJBXCMAyGd29Exwa1GD1/E4cTMhny9k88dn1z7uvdBItF93YSkUvja/Nl3dB1Htt2aYwZM4ZffvmF1atXn/PesGHDePLJJ4u0LVq0iKlTp5ZqW4V17tz5nLbZs2fz3nvvcfjwYbKyssjNzT3nAOJ27doVBBmA7t27k56eztGjRwvuFdWtW7ci9+vr3r07r7zyCi6Xi02bNmGaJs2aNSuy3pycHMLCwgDYtWsXt956a5H3u3fvzvLlyy/pZy4OhRkpljb1gvlybC+eWLSNL385wbRlv7L2QAKvDG5PqL+GnUSk9AzDKPVQjyeMHTuWJUuW8MMPP1C/fv1z3g8ODqZp06ZF2iIiIspk2/7+/kVef/zxxzz88MO88sordO/encDAQF5++WXWrSteOCzuzYbdbjdWq5WNGzditVqLvBcQEADg0eMqFWak2AJ97My8swM9Lgtnyhc7+G73afpNj2XGnR3o0rjsxoxFRCoj0zQZO3Ysn3/+Od9//z2NGzcul+14eXnhcrmKNW9sbCw9evTgoYceKmjbv3//OfNt3bqVrKwsfH3zeqLWrl1LQEBAkTC2du3aIsusXbuWmJgYrFYrHTp0wOVyERcXR+/evc9bS6tWrc67joqgs5mkRAzDYGjXBvx3dE+ahPtzMjWbO99dyxvf7cPtrtaHX4lIDTd69Gg+/PBD5s+fT2BgICdPnuTkyZNkZWWV6XYaNWrEwYMH2bJlC/Hx8eTk5Fxw3qZNm7JhwwZWrFjBnj17ePrpp1m/fv058+Xm5jJy5Eh27tzJsmXLmDx5MmPGjMFiORsDjh49ysSJE9m9ezcLFixg5syZjB8/HoBmzZoxbNgwhg8fzqJFizh48CDr16/nxRdfZOnSpQCMGzeO5cuX89JLL7Fnzx5mzZpVIUNMoDAjpdQyKogvxvbi1g71cLlNXl6xm7vn/Ex8+oX/0YmIVGVvvfUWKSkp9OnTh6ioqILHRx99VKbbue2227jhhhvo27cvtWvXZsGCBRec94EHHmDQoEEMGTKErl27kpCQUKSX5oyrr76amJgYrrzySgYPHkz//v2ZMmVKkXmGDx9OVlYWXbp0YfTo0YwdO5ZRo0YVvD9nzhyGDx/OI488QvPmzbnllltYt24d0dHRQN4xN++99x4zZ86kffv2fP311zz11FNls1P+gM5mkktimiafbDjGM0u2k+1wExHozfQ7OtD9sjBPlyYildTFzmCRsjdixAiSk5NZvHjxBefp06cP7du35/XXX6+wuqDszmZSz4xcEsMwGHxFNEvG9CImIoC4tByGvbeW6d/sxaVhJxERqQAKM1ImmkUG8t8xPbm9U33cJrz2zR7uen8dcWnZni5NRKRSad26NQEBAed9zJs3z9PlVUkaZpIyt2jTMZ78fDtZDhfhAV68PqQDvWLCPV2WiFQSNX2Y6fDhwxe8r1JkZCSBgYEVXJHn6KJ5UmkN6liftvVDGD1vE7tPpXHXv9Yxpm9Txl8dg82qzkARqdnOXKROyo4+WaRcNI0I4L9jenJnl2hME2b+bx9D31vHyRQNO4mISNlSmJFy42O3Mm1QW6bf0R5/Lys/H0yk34xYvt8d5+nSRESkGlGYkXI3oH09vhjbi5ZRQSRm5DJiznpeXP4rTpfb06WJiEg1oDAjFaJJ7QA+f6gHf+nWAIC3vt/PHe+s5Xhy2V45U0REah6FGakwPnYrzw+8nDeGdiTQ28aGw0n0mxHL/3495enSRESkClOYkQp3U9sovhzXi8vrBZOc6eDeuRt44audODTsJCJSbcydO5eQkJAK2ZbCjHhEwzB/Pn2wOyN6NALg3diD3D77J44lZXq2MBGRC3jrrbdo27YtQUFBBAUF0b17d5YtW1bwfp8+fZgwYcI5y5XkQ33KlCm0b9++bAquQRRmxGO8bVam3NKat+/qRJCPjS1Hk+k3PZYVO056ujQRkXPUr1+ff/zjH2zYsIENGzZw1VVXMWDAAHbs2FHhtVzoons1VaUOM06nk6eeeorGjRvj6+tLkyZN+Pvf/47breGI6uT61nX4alxv2keHkJrt5P7/bOTZL3aQ69T/Z5GawDRN3JmZHnmU5CL4/fv3p1+/fjRr1oxmzZrxwgsvEBAQwNq1a8tkP8ydO5dnn32WrVu3YhgGhmEwd+5cIO8+eLNnz2bAgAH4+/vz/PPP43K5GDlyZMFnZPPmzZk+fXqRdY4YMYKBAwfy7LPPEhERQVBQEPfffz+5ubkF8/Tp04cxY8YwZswYQkJCCAsL46mnniqyb3Jzc3n88cepV68e/v7+dO3ale+///6c+hs0aICfnx+33norCQkJZbJfiqNSXwH4xRdfZPbs2XzwwQe0bt2aDRs2cM899xAcHMz48eM9XZ6UoehQPz6+vzsvr/iVd2MPMufHQ2w8nMSsOzvSIMzP0+WJSDkys7LY3bGTR7bdfNNGDL+S/41xuVx88sknZGRk0L179zKpZciQIWzfvp3ly5fzzTffABAcHFzw/uTJk5k2bRqvvfYaVqsVt9tN/fr1+fjjjwkPD2fNmjWMGjWKqKgoBg8eXLDct99+i4+PD9999x2HDh3innvuITw8nBdeeKFgng8++ICRI0eybt06NmzYwKhRo2jYsCH33XcfAPfccw+HDh1i4cKF1K1bl88//5wbbriBbdu2ERMTw7p167j33nuZOnUqgwYNYvny5UyePLlM9ktxVOp7M918881ERkby/vvvF7Tddttt+Pn58Z///KdY69C9maqeb3ed4pFPtpKc6SDQ28aLf25Lv8ujPF2WiJSR39+Px52Z6dEwYylBmNm2bRvdu3cnOzubgIAA5s+fT79+/YC8Ho41a9bg5eVVZBmn04mPjw/Jycl/uP4pU6awePFitmzZUqTdMAwmTJjAa6+9dtHlR48ezalTp/j000+BvJ6ZL774gqNHj+KX/3POnj2bxx57jJSUFCwWC3369CEuLo4dO3ZgGAYAkyZNYsmSJezcuZP9+/cTExPDsWPHqFu3bsG2rrnmGrp06cLUqVMZOnQoSUlJRY4huuOOO1i+fPlFf+4acW+mXr16MXv2bPbs2UOzZs3YunUrq1ev5vXXX7/gMjk5OeTk5BS8Tk1NrYBKpSxd3TKSpeN6M3bBZjYeTuKheZu4q1tDnrypJT52q6fLE5EyZvj60nzTRo9tuySaN2/Oli1bSE5O5rPPPuPuu+9m1apVtGrVCoBhw4bx5JNPFllm0aJFTJ069ZJr7dy58zlts2fP5r333uPw4cNkZWWRm5t7zgHE7dq1KwgyAN27dyc9PZ2jR48W3CeqW7duBUHmzDyvvPIKLpeLTZs2YZomzZo1K7LenJwcwsLCANi1axe33nprkfe7d+/O8uXLL+lnLq5KHWb+9re/kZKSQosWLbBarbhcLl544QXuvPPOCy4zbdo0nn322QqsUspD3RBfFo7qxitf72H2qv38Z+1hNh5O4o1hHWkc7u/p8kSkDBmGUaqhHk/w8vKiadOmQF64WL9+PdOnT+ftt98G8oaFzrx/RkRERJls29+/6N++jz/+mIcffphXXnmF7t27ExgYyMsvv8y6deuKtb7C4eVi3G43VquVjRs3YrUW/UIZEBAAUKJjj8pDpQ4zH330ER9++CHz58+ndevWbNmyhQkTJlC3bl3uvvvu8y7zxBNPMHHixILXqampREdHV1TJUobsVguTbmxBtyahTPx4KztPpHLzjFimDrqcAe3rebo8ERFM0ywyGnCpvLy8cLlcxZo3NjaWHj168NBDDxW07d+//5z5tm7dSlZWFr75vVBr164lICCA+vXrF8zz+4OY165dS0xMDFarlQ4dOuByuYiLi6N3797nraVVq1bnXUdFqdRnMz322GNMmjSJO+64g8svv5y77rqLhx9+mGnTpl1wGW9v74JrAJx5SNXWp3kES8f1pkvjUDJyXYxfuIUnFv1CtqN4/+BFRMrC//3f/xEbG8uhQ4fYtm0bTz75JN9//z3Dhg0rs200atSIgwcPsmXLFuLj4y8alJo2bcqGDRtYsWIFe/bs4emnn2b9+vXnzJebm8vIkSPZuXMny5YtY/LkyYwZMwaL5WwEOHr0KBMnTmT37t0sWLCAmTNnFpxo06xZM4YNG8bw4cNZtGgRBw8eZP369bz44ossXboUgHHjxrF8+XJeeukl9uzZw6xZsypsiAkqeZjJzMwssrOBgiO4pWapE+zD/L92ZexVTTEMWPDzUQa+8SP74tI9XZqI1BCnTp3irrvuonnz5lx99dWsW7eO5cuXc+2115bZNm677TZuuOEG+vbtS+3atVmwYMEF533ggQcYNGgQQ4YMoWvXriQkJBTppTnj6quvJiYmhiuvvJLBgwfTv39/pkyZUmSe4cOHk5WVRZcuXRg9ejRjx45l1KhRBe/PmTOH4cOH88gjj9C8eXNuueUW1q1bVzDy0a1bN9577z1mzpxJ+/bt+frrr3nqqafKZqcUQ6U+m2nEiBF88803vP3227Ru3ZrNmzczatQo7r33Xl588cVirUNnM1U/q/fGM+GjzcSn5+Jrt/L8wDbc1qn+Hy8oIpXCxc5gkbI1YsQIkpOTWbx48QXn6dOnD+3bt7/oyTXlpazOZqrUPTMzZ87kz3/+Mw899BAtW7bk0Ucf5f777+e5557zdGniQb1iwlk6vjc9Lgsjy+HikU+28ugnW8nMdXq6NBER8YBKHWYCAwN5/fXXC045279/P88///w55/BLzRMR6MN/Rnbl4WuaYTHg043HGDDrR/acSvN0aSIiF9S6dWsCAgLO+5g3b56ny6uyKvUwU1nQMFP199P+BMYt3MzptBx87Bb+fksbbu9cv9inHYpIxarJw0yHDx++4H2VIiMjCQwMrOCKPKtGXDRPpDi6XxbGsvG9efijLcTujefxz37hpwMJPD+wDf7e+hUXkcrjzEXqpGxV6mEmkeIKD/Dmg3u68Nj1zbEY8Pnm3+g/azW7TugK0CKVlc5MlbL6HdDXVqk2LBaD0X2bckWjUMYt2MyB0xkMfONHJvdvzZ1dojXsJFJJeHl5YbFYOH78OLVr18bLy0v/PmsY0zTJzc3l9OnTWCyWSz4WVsfMSLWUmJHLIx9v4bvdpwHo364uU29tQ6CP3cOViQjkXcjtxIkTZGZmeroU8SA/Pz+ioqLOG2ZK8vmtMCPVlttt8m7sAV5esRun26RRmB+zhnakTb1gT5cmIuR9O3c6ncW+fL9UL1arFZvNdsFeOYWZQhRmZOPhJMYt2MxvyVl4WS08dXNL7urWUN3aIiKVWLW5aJ5IWejUsBZfjevFNS0jyXW5eea/Oxg9fxMpWec/PVJERKoWhRmpEUL8vHh3eCeevrkVdqvB0m0nuXlmLFuPJnu6NBERuUQKM1JjGIbByF6N+fSBHtSv5cvRxCz+PHsN768+SDUfbRURqdYUZqTGaRcdwlfjenND6zo4XCbPfbmTUf/ZSHJmrqdLExGRUlCYkRop2NfOW3/pyLO3tMbLamHlzlPcNGM1m44kebo0EREpIYUZqbEMw+DuHo1Y9FAPGob58VtyFoNn/8Tbq/bjdmvYSUSkqlCYkRqvTb1gvhzbi5vbRuF0m0xb9isjP1hPYoaGnUREqgKFGREg0MfOzDs78MKtbfCyWfhu92n6TY9l/aFET5cmIiJ/QGFGJJ9hGAzr2pDFD/WkSbg/J1OzueOdtbzx3T4NO4mIVGIKMyK/06puEF+M7cWtHerhcpu8vGI3d8/5mfj0HE+XJiIi56EwI3Ie/t42Xh3cjpdua4uP3ULs3nj6TY/lp/0Jni5NRER+R2FG5AIMw2DwFdH8d3QvmkYEEJeWw7D31jL9m724NOwkIlJpKMyI/IHmdQJZMqYnt3eqj9uE177Zw13vryMuLdvTpYmICAozIsXi52Xj5dvb8ergdvjarazZn0C/6bGs3hvv6dJERGo8hRmREhjUsT5fjO1FizqBxKfncte/1vHK17txutyeLk1EpMZSmBEpoaYRASwe3ZM7u0RjmjDzf/sY+t46TqZo2ElExBMUZkRKwcduZdqgtky/oz3+XlZ+PphIvxmxfL87ztOliYjUOAozIpdgQPt6fDmuN62igkjMyGXEnPX8Y9mvODTsJCJSYRRmRC5R43B/Fj3Ug7u6NQRg9qr93PHOWo4nZ3m4MhGRmkFhRqQM+NitPDewDW8M7Uigt42Nh5PoNyOWb3ae8nRpIiLVnsKMSBm6qW0UX47rxeX1gknOdPDXf2/g+S93kuvUsJOISHlRmBEpYw3D/Pn0we7c07MRAO+tPsjgt3/iaGKmZwsTEammFGZEyoG3zcrk/q15+65OBPnY2HI0mZtmxLJix0lPlyYiUu0ozIiUo+tb1+Grcb1pHx1CaraT+/+zkSlLdpDjdHm6NBGRakNhRqScRYf68fH93bmvd2MA5q45xJ/f+okjCRp2EhEpCwozIhXAy2bhyZta8a8RnQnxs7PttxRumhHL0m0nPF2aiEiVpzAjUoGuahHJ0nG96dywFmk5Th6at4mnFm8j26FhJxGR0lKYEalgdUN8WTCqGw/1uQyAD9ceYdCbazgYn+HhykREqiaFGREPsFstPH5DCz64twuh/l7sPJHKzTNi+e+W3zxdmohIlaMwI+JBf2pWm2Xje9O1cSgZuS7GL9zCE4t+0bCTiEgJKMyIeFhkkA/z/tqVcVc1xTBgwc9HGTDrR/bFpXu6NBGRKkFhRqQSsFktTLyuOR+O7Ep4gDe7T6XRf+ZqPtt4zNOliYhUegozIpVIz6bhLB3fi55Nw8hyuHjkk608+slWMnOdni5NRKTSUpgRqWQiAn34971dmXhtMywGfLrxGLfM+pHdJ9M8XZqISKWkMCNSCVktBuOujmH+fd2ICPRmX1w6A95YzUfrj2CapqfLExGpVBRmRCqxbk3CWDq+N1c2q022w83fPtvGwx9tIT1Hw04iImcozIhUcuEB3swdcQWP39Acq8Vg8Zbj3DJzNTuPp3q6NBGRSkFhRqQKsFgMHurTlIWjuhEV7MOB+AwGvvkj89Yd1rCTiNR4CjMiVcgVjUJZOq43V7WIINfp5snPtzNmwWbSsh2eLk1ExGMUZkSqmFr+Xrw3vDNP9muJzWLw1S8nuHnmarb/luLp0kREPEJhRqQKslgM7ruyCR8/0J16Ib4cTshk0Jtr+GDNIQ07iUiNY5il/MvndrvZt28fcXFxuN3uIu9deeWVZVJcWUhNTSU4OJiUlBSCgoI8XY5ImUvJdPDYp1v5eucpAG5oXYcX/9yWYF+7hysTESm9knx+lyrMrF27lqFDh3L48LkHHxqGgctVeW6SpzAjNYFpmsxdc4ipS3fhcJnUr+XLrKEdaR8d4unSRERKpSSf36UaZnrggQfo3Lkz27dvJzExkaSkpIJHYmJiqYoWkdIzDIN7ejbmswd70CDUj2NJWdw+ew3vxR7QsJOIVHul6pnx9/dn69atNG3atDxqKlPqmZGaJjXbwaTPfmHptpMAXNMygn/e3o4QPy8PVyYiUnzl3jPTtWtX9u3bV6riRKR8BfnYeWNoR54b0Bovm4VvdsXRb3osGw+r11REqidbaRYaO3YsjzzyCCdPnuTyyy/Hbi96oGHbtm3LpDgRKR3DMLireyM6NqzFmPmbORifweC31/Lodc25/8omWCyGp0sUESkzpRpmsljO7dAxDAPTNHUAsEglk57j5P8WbWPJ1uMA/KlZbV4d3I6wAG8PVyYicmHlfjbT4cOHL/p+w4YNS7rKcqMwI5J3ttNH648yeckOcpxuIoO8mXFHB7o2CfN0aSIi51XuYaYqUZgROevXk6mMnreJ/aczsBjw8DXNeKhvU6wadhKRSqbcDwAG2L9/P2PHjuWaa67h2muvZdy4cezfv7+0q7ug3377jb/85S+EhYXh5+dH+/bt2bhxY5lvR6QmaFEniCVjejGoYz3cJryycg93/+tnTqfleLo0EZFSK1WYWbFiBa1ateLnn3+mbdu2tGnThnXr1tG6dWtWrlxZZsUlJSXRs2dP7HY7y5YtY+fOnbzyyiuEhISU2TZEahp/bxuvDm7Py39ui6/dyup98dw4PZY1++I9XZqISKmUapipQ4cOXH/99fzjH/8o0j5p0iS+/vprNm3aVCbFTZo0iR9//JHY2NhiL5OTk0NOztlvmampqURHR2uYSeQ89p5KY/T8Tew5lY5hwNirYhh/dYyGnUTE48p9mGnXrl2MHDnynPZ7772XnTt3lmaV57VkyRI6d+7M7bffTkREBB06dODdd9+96DLTpk0jODi44BEdHV1m9YhUNzGRgfx3dC+GdI7GNGHGt3sZ9t5aTqVme7o0EZFiK1WYqV27Nlu2bDmnfcuWLURERFxqTQUOHDjAW2+9RUxMDCtWrOCBBx5g3Lhx/Pvf/77gMk888QQpKSkFj6NHj5ZZPSLVka+XlRf/3JbXh7THz8vK2gOJ9Jseyw97Tnu6NBGRYinVRfPuu+8+Ro0axYEDB+jRoweGYbB69WpefPFFHnnkkTIrzu1207lzZ6ZOnQrkDW/t2LGDt956i+HDh593GW9vb7y9df0MkZIa2KEel9cPZvS8Tfx6Mo3h//qZh/pcxsRrm2GzlvpcARGRcleqMPP0008TGBjIK6+8whNPPAFA3bp1mTJlCuPGjSuz4qKiomjVqlWRtpYtW/LZZ5+V2TZE5KzLageweHRPnvtyJ/PWHeHN7/ez/lAiM+7sQFSwr6fLExE5r1J93TIMg4cffphjx44VDOccO3aM8ePHYxhld+Bgz5492b17d5G2PXv2VKqL8olUNz52Ky/cejkz7+xAgLeN9YeS6Dc9lv/9esrTpYmInNcl9x0HBgYSGBhYFrWc4+GHH2bt2rVMnTqVffv2MX/+fN555x1Gjx5dLtsTkbP6t6vLl2N70aZeEEmZDu6du4FpS3fhcLk9XZqISBHFPjW7Y8eOfPvtt9SqVYsOHTpctAemrE7NBvjyyy954okn2Lt3L40bN2bixIncd999xV5eVwAWuTQ5ThfTlv7K3DWHAOjQIISZd3agfi0/zxYmItVaST6/i33MzIABAwoOrB0wYECZDiddzM0338zNN99cIdsSkXN526xMuaU13ZqE8tinv7D5SDI3zVjNy39uy3Wt63i6PBER3ZtJRIrvaGImY+ZvYuuxFADu6dmIJ25siZdNZzuJSNkq94vmNWnShISEhHPak5OTadKkSWlWKSJVQHSoH5880IORvRoDMOfHQ9w+ew1HEzM9XJmI1GSlCjOHDh3C5XKd056Tk8OxY8cuuSgRqby8bBaevrkV7w7vTLCvna3HUug3I5Zl2054ujQRqaFKdJ2ZJUuWFEyvWLGC4ODggtcul4tvv/2Wxo0bl111IlJpXdsqkqXjezN2/iY2HUnmwXmbGN69If/XryU+dqunyxORGqREx8xYLHkdOYZh8PvF7HY7jRo14pVXXqlUB+zqmBmR8uVwufnn17t5e9UBAFrXDeKNoR1pFO7v4cpEpCoryed3qQ4Abty4MevXryc8PLzURVYUhRmRivHd7jge+XgriRm5BHjbmDrocm5pV9fTZYlIFVXuBwAfPHiwSgQZEak4fZtHsHRcb7o0CiU9x8m4BZt5YtE2sh3nHl8nIlKWSn1qdkZGBqtWreLIkSPk5uYWea8s7890qdQzI1KxnC4307/dy6zv9mGa0KJOIG8M68hltQM8XZqIVCHlPsy0efNm+vXrR2ZmJhkZGYSGhhIfH4+fnx8REREcOHCg1MWXNYUZEc9YvTeeCR9tJj49Fz8vKy/c2oZbO9T3dFkiUkWU+zDTww8/TP/+/UlMTMTX15e1a9dy+PBhOnXqxD//+c9SFS0i1UuvmHCWjutNj8vCyMx18fBHW3nsk61k5WrYSUTKVqnCzJYtW3jkkUewWq1YrVZycnKIjo7mpZde4v/+7//KukYRqaIignz4z8iuPHxNMywGfLLxGLfMWs2eU2meLk1EqpFShRm73V5wb6bIyEiOHDkCQHBwcMG0iAiA1WIw/poYPvxrV2oHerM3Lp1bZq3m4w1Hz7nEg4hIaZQqzHTo0IENGzYA0LdvX5555hnmzZvHhAkTuPzyy8u0QBGpHnpcFs6y8b3pHRNOtsPN45/+wsSPt5KR4/R0aSJSxZUqzEydOpWoqCgAnnvuOcLCwnjwwQeJi4vjnXfeKdMCRaT6CA/w5oN7uvDY9c2xGPD55t/oP2s1u06kero0EanCSnw2k2maHDlyhIiICHx9fcurrjKjs5lEKqefDyYybsFmTqZm42WzMKV/a+7sEl0whC0iNVu5ns1kmiYxMTG6oaSIXJIujUNZOr43fZvXJtfp5v8+38a4hVtIy3Z4ujQRqWJKHGYsFgsxMTEkJCSURz0iUoOE+nvx/t1X8MSNLbBZDL7Yepz+M1ez/bcUT5cmIlVIqY6Zeemll3jsscfYvn17WdcjIjWMxWJw/58u46P7u1MvxJdDCZkMenMN//7pkM52EpFiKdUVgGvVqkVmZiZOpxMvL69zjp1JTEwsswIvlY6ZEak6kjNzefSTX/hm1ykAbmxTh3/c1pZgX7uHKxORilaSz29baTbw2muv6SA9ESlzIX5evDu8E//68RD/WLaLZdtPsv14CrPu7Ei76BBPlycilVSpbzRZVahnRqRq2no0mTELNnE0MQu71WDSjS25t2cjfZESqSHK/d5MVquVuLi4c9oTEhKwWq2lWaWISBHtokP4cmxvbmxTB4fL5Lkvd3LfvzeSnJnr6dJEpJIpVZi5UGdOTk4OXl5el1SQiMgZwb523hzWkb8PaI2X1cI3u05x04zVbDyc5OnSRKQSKdExMzNmzADAMAzee+89AgICCt5zuVz88MMPtGjRomwrFJEazTAMhndvRMcGtRgzfxOHEjIZ8vZPPHZ9c+7r3QSLRcNOIjVdiY6Zady4MQCHDx+mfv36RYaUvLy8aNSoEX//+9/p2rVr2VdaSjpmRqT6SMt28H+fb+eLrccB6Nu8Nq8Mbk+ov3qERaqbknx+l+oA4L59+7Jo0SJq1apV6iIrisKMSPVimiYL1x9lypId5Djd1AnyYcadHejSONTTpYlIGSr3MFOVKMyIVE+7TqQyev4mDpzOwGLAxGub8VCfphp2Eqkmyj3MuFwu5s6dy7fffktcXBxut7vI+//73/9KuspyozAjUn1l5Dh5evF2Fm3+DYDeMeG8Org9tQO9PVyZiFyqcr9o3vjx45k7dy433XQTbdq00XUfRMQj/L1tvDqkPd0vC+Pp/24ndm88/WbEMn1Ie3o0Dfd0eSJSQUrVMxMeHs6///1v+vXrVx41lSn1zIjUDHtPpTF6/ib2nErHMGDcVTGMuzoGq4adRKqkcr9onpeXF02bNi1VcSIi5SEmMpD/ju7F4M71MU2Y/u1e/vLeOuJSsz1dmoiUs1KFmUceeYTp06frjrYiUqn4ell56c/teG1IO/y8rPx0IIF+M2KJ3Xva06WJSDkq1TDTrbfeynfffUdoaCitW7fGbi96R9tFixaVWYGXSsNMIjXT/tPpjJ63iV9PpmEYMLpPUyZcE4PNWqrvcCJSwcr9AOCQkBBuvfXWUhUnIlIRLqsdwOLRPfn7lzuZv+4Is77bx88HE5l+Z3uign09XZ6IlCFdZ0ZEqr0vth7niUXbSM9xUsvPzqtD2tO3eYSnyxKRiyj3A4ABnE4n33zzDW+//TZpaWkAHD9+nPT09NKuUkSkXPRvV5cvx/aiTb0gkjId3DNnPdOW7cLhcv/xwiJS6ZWqZ+bw4cPccMMNHDlyhJycHPbs2UOTJk2YMGEC2dnZzJ49uzxqLRX1zIjIGTlOF9OW/srcNYcA6NgghJlDO1IvRMNOIpVNuffMjB8/ns6dO5OUlISv79k/ArfeeivffvttaVYpIlLuvG1WptzSmtl/6Uigj41NR5LpNz2WlTtPebo0EbkEpQozq1ev5qmnnsLLq+idahs2bMhvv/1WJoWJiJSXG9pEsXRcb9pFh5CS5eC+f2/guS93kuvUsJNIVVSqMON2u3G5XOe0Hzt2jMDAwEsuSkSkvEWH+vHJ/d35a6/GALy/+iC3z17D0cRMD1cmIiVVqjBz7bXX8vrrrxe8NgyD9PR0Jk+eXCVucSAiAuBls/DUza14b3hngn3tbD2WQr8ZsSzbdsLTpYlICZTqAODjx4/Tt29frFYre/fupXPnzuzdu5fw8HB++OEHIiIqzymPOgBYRIrjt+Qsxs7fxKYjyQAM796Q/+vXEh+71bOFidRQJfn8LvV1ZrKysli4cCEbN27E7XbTsWNHhg0bVuSA4MpAYUZEisvhcvPK13uYvWo/AK3rBvHG0I40Cvf3cGUiNU+FhJmqQmFGRErqu91xPPLxVhIzcgnwtjF10OXc0q6up8sSqVHK/dTsadOm8a9//euc9n/961+8+OKLpVmliEil0bd5BEvH9aZLo1DSc5yMW7CZJxZtI9tx7okPIuJ5pQozb7/9Ni1atDinvXXr1pXqgnkiIqVVJ9iH+fd1ZUzfphgGLPj5CAPf+JH9p3WVc5HKplRh5uTJk0RFRZ3TXrt2bU6c0FkAIlI92KwWHr2+Of++twvhAV78ejKN/jNX8/nmY54uTUQKKVWYiY6O5scffzyn/ccff6RuXY0ri0j10jumNkvH9abHZWFk5rp4+KOtPPbJVjJznZ4uTUQAW2kW+utf/8qECRNwOBxcddVVAHz77bc8/vjjPPLII2VaoIhIZRAR5MN/Rnblje/28fo3e/hk4zG2HE3mjWEdaRapi4WKeFKpzmYyTZNJkyYxY8YMcnNzAfDx8eFvf/sbzzzzTJkXeSl0NpOIlLWf9icwfuFm4tJy8LFb+PuANtzeqT6GYXi6NJFqo8JOzU5PT2fXrl34+voSExODt7d3aVdVbhRmRKQ8xKfn8PBHW4jdGw/ArR3q8fzANvh7l6rDW0R+R9eZKURhRkTKi9tt8taq/by6cg8ut0mTcH9mDe1Iq7r6WyNyqco9zGRkZPCPf/yDb7/9lri4ONzuoneaPXDgQElXWW4UZkSkvK0/lMi4BZs5kZKNl83C5P6tGNqlgYadRC5BST6/S30A8KpVq7jrrruIiorSP1gRqdGuaBTKV+N68+gnW/nfr3E8+fl2ftqfwLRBlxPoY/d0eSLVXql6ZkJCQvjqq6/o2bNnedRUptQzIyIVxe02eW/1AV5avhun26RhmB9vDO1Im3rBni5NpMop99sZ1KpVi9DQ0FIVJyJSXVksBqOuvIyPH+hOvRBfDidkMujNNXyw5hDV/PBEEY8qVZh57rnneOaZZ8jMzCzrei5q2rRpGIbBhAkTKnS7IiIl0bFBLb4a14trW0WS63IzeckOHvxwEylZDk+XJlItleqYmVdeeYX9+/cTGRlJo0aNsNuLjglv2rSpTIorbP369bzzzju0bdu2zNctIlLWQvy8eOeuTsz58RDTlu1i+Y6TbD+ewqyhHWkfHeLp8kSqlVKFmYEDB5ZxGReXnp7OsGHDePfdd3n++ecrdNsiIqVlGAb39mpM50a1GDN/M0cSM7l99hr+dkMLRvZqrJMnRMpIlbjOzN13301oaCivvfYaffr0oX379rz++uvnnTcnJ4ecnJyC16mpqURHR+sAYBHxqNRsB098to2vtuXdjPealhH88/Z2hPh5ebgykcqp3A8APmPjxo18+OGHzJs3j82bN1/Kqi5o4cKFbNq0iWnTphVr/mnTphEcHFzwiI6OLpe6RERKIsjHzqyhHXhuYBu8bBa+2RVHv+mxbDyc6OnSRKq8UvXMxMXFcccdd/D9998TEhKCaZqkpKTQt29fFi5cSO3atcukuKNHj9K5c2e+/vpr2rVrB6CeGRGp8nYcT2HM/M0cjM/AajF47PrmjOrdBItFw04iZ5R7z8zYsWNJTU1lx44dJCYmkpSUxPbt20lNTWXcuHGlKvp8Nm7cSFxcHJ06dcJms2Gz2Vi1ahUzZszAZrPhcrnOWcbb25ugoKAiDxGRyqR13WC+GNuLW9rVxeU2+ceyX7n3g/UkpOf88cIico5S9cwEBwfzzTffcMUVVxRp//nnn7nuuutITk4uk+LS0tI4fPhwkbZ77rmHFi1a8Le//Y02bdr84Tp00TwRqaxM0+Sj9UeZvGQHOU43kUHezLijA12bhHm6NBGPK/fbGbjd7nNOxwaw2+3n3KfpUgQGBp4TWPz9/QkLCytWkBERqcwMw+COLg1o3yCE0fM2sf90Bne+u5aHr2nGQ32bYtWwk0ixlGqY6aqrrmL8+PEcP368oO23337j4Ycf5uqrry6z4kREaoIWdYJYMqYXgzrWw23CKyv3cPe/fuZ0moadRIqjVMNMR48eZcCAAWzfvp3o6GgMw+DIkSNcfvnl/Pe//6V+/frlUWupaJhJRKqSTzYc5Zn/7iDL4SI8wJsZd7SnR9NwT5clUuFK8vl9SdeZWblyJb/++iumadKqVSuuueaa0q6q3CjMiEhVs/dUGqPnb2LPqXQMA8ZeFcP4q2M07CQ1SrmFmf/973+MGTOGtWvXnrPilJQUevTowezZs+ndu3fpKi8HCjMiUhVl5bp49osdLFx/FIBuTUKZfkcHIoN8PFyZSMUot1OzX3/9de67777zrjQ4OJj777+fV199tWTViojIOXy9rPzjtrZMv6M9/l5W1h5IpN/0WFbtOe3p0kQqnRKFma1bt3LDDTdc8P3rrruOjRs3XnJRIiKSZ0D7enwxthcto4JIyMjl7n/9zEvLf8XpKrszR0WquhKFmVOnTp33lOwzbDYbp0/rW4OISFlqUjuAzx/qwV+6NQDgze/3c+e7azmRkuXhykQqhxKFmXr16rFt27YLvv/LL78QFRV1yUWJiEhRPnYrzw+8nFlDOxDgbWP9oST6TY/lf7+e8nRpIh5XojDTr18/nnnmGbKzs895Lysri8mTJ3PzzTeXWXEiIlLUzW3r8tW4XlxeL5ikTAf3zt3A1KW7cGjYSWqwEp3NdOrUKTp27IjVamXMmDE0b94cwzDYtWsXb7zxBi6Xi02bNhEZGVmeNZeIzmYSkeoox+li2tJfmbvmEAAdGoQw884O1K/l59nCRMpIuV5n5vDhwzz44IOsWLGCM4sahsH111/Pm2++SaNGjUpdeHlQmBGR6mzFjpM89slWUrOdBPnYePn2dlzfuo6nyxK5ZBVy0bykpCT27duHaZrExMRQq1atUhVb3hRmRKS6O5qYydgFm9lyNBmAe3o2YtKNLfC2WT1bmMglqLArAFcFCjMiUhPkOt28vOJX3o09CMDl9YJ5Y2hHGoRp2EmqpnK7aJ6IiFROXjYLT97Uivfv7kyIn51tv6Vw04xYlm474enSRMqdwoyISDVydctIlo7rTeeGtUjLcfLQvE08vXg72Q6Xp0sTKTcKMyIi1UzdEF8WjOrGQ30uA+A/aw8z6M01HIzP8HBlIuVDYUZEpBqyWy08fkMLPri3C2H+Xuw8kcrNM2L575bfPF2aSJlTmBERqcb+1Kw2S8f3pluTUDJyXYxfuIVJn/1CVq6GnaT6UJgREanmIoN8mPfXboy7OgbDgIXrjzLwjR/ZF5fm6dJEyoTCjIhIDWC1GEy8thkfjuxKeIA3u0+l0X/mj3y68ZinSxO5ZAozIiI1SM+m4Swd34ueTcPIcrh49JOtPPLxVjJznZ4uTaTUFGZERGqYiEAf/n1vVx65thkWAz7bdIz+M1ez+6SGnaRqUpgREamBrBaDsVfHMP++bkQGebP/dAa3zFrNwp+PUM0vDC/VkMKMiEgN1q1JGEvH9eZPzWqT43QzadE2Jny0hfQcDTtJ1aEwIyJSw4UFeDNnxBX87YYWWC0G/91ynP4zV7PjeIqnSxMpFoUZERHBYjF4sM9lfDSqG1HBPhyMz+DWN9fwn7WHNewklZ7CjIiIFOjcKJSl43pzdYsIcp1unl68nTHzN5Oa7fB0aSIXpDAjIiJF1PL34r27O/PUTS2xWQy+2naCm2es5pdjyZ4uTeS8FGZEROQchmHw195N+PTBHtSv5cuRxExue2sNc348qGEnqXQUZkRE5ILaR4fw1bjeXN86EofL5NkvdnL/fzaSkqlhJ6k8FGZEROSign3tzP5LJ569pTVeVgtf7zxFvxmxbD6S5OnSRACFGRERKQbDMLi7RyM+e7AHDcP8+C05i9tn/8S7PxzA7dawk3iWwoyIiBTb5fWD+WJsL25qG4XTbfLC0l389d8bSMrI9XRpUoMpzIiISIkE+diZdWcHXri1DV42C//7NY5+M2JZfyjR06VJDaUwIyIiJWYYBsO6NmTxQz1pEu7PiZRs7nhnLW98t0/DTlLhFGZERKTUWtUN4ouxvbi1Qz1cbpOXV+zm7jk/E5+e4+nSpAZRmBERkUvi723j1cHteOm2tvjYLcTujaff9Fh+2p/g6dKkhlCYERGRS2YYBoOviGbJmF40jQggLi2HYe+tZfo3e3Fp2EnKmcKMiIiUmWaRgSwZ05PbO9XHbcJr3+zhrvfXEZeW7enSpBpTmBERkTLl52Xj5dvb8ergdvh5WVmzP4F+02OJ3Xva06VJNaUwIyIi5WJQx/osGdOLFnUCiU/PZfi/fuafK3bjdLk9XZpUMwozIiJSbppGBLB4dE/u7NIA04RZ3+1j6LvrOJmiYScpOwozIiJSrnzsVqYNupwZd3YgwNvGz4cS6Tcjlu92x3m6NKkmFGZERKRC3NKuLl+M7UXrukEkZuRyz5z1TFu2C4eGneQSKcyIiEiFaRzuz2cP9mB494YAvL3qAHe8s5bfkrM8XJlUZQozIiJSoXzsVv4+oA1vDutIoLeNjYeT6Dc9lpU7T3m6NKmiFGZERMQj+l0exVfjetO2fjApWQ7u+/cGnvtyJ7lODTtJySjMiIiIxzQI8+PTB3pwb8/GALy/+iC3z17D0cRMD1cmVYnCjIiIeJSXzcIz/Vvx7vDOBPva2XoshX4zYlm+/YSnS5MqQmFGREQqhWtbRfLVuF50aBBCWraTBz7cxOT/bifH6fJ0aVLJKcyIiEilUb+WHx/f3537/9QEgA9+OsygN9dwKD7Dw5VJZaYwIyIilYrdauGJG1syZ8QV1PKzs+N4KjfPXM0XW497ujSppBRmRESkUurbIoKl43tzRaNapOc4GbtgM08s2ka2Q8NOUpTCjIiIVFpRwb4suK8bY/o2xTBgwc9HGPjGj+yLS/d0aVKJKMyIiEilZrNaePT65vz73i6EB3jx68k0bpm1mkWbjnm6NKkkFGZERKRK6B1Tm6XjetO9SRiZuS4mfryVxz7ZSmau09OliYcpzIiISJUREeTDh3/tyoRrYjAM+GTjMQbM+pE9p9I8XZp4kMKMiIhUKVaLwYRrmjHvr12pHejN3rh0bpm1mo83HMU0TU+XJx5QqcPMtGnTuOKKKwgMDCQiIoKBAweye/duT5clIiKVQI/Lwlk6rje9Y8LJdrh5/NNfmPjxVjJyNOxU01TqMLNq1SpGjx7N2rVrWblyJU6nk+uuu46MDF08SUREoHagNx/c04XHrm+OxYDPN/9G/5mr2Xk81dOlSQUyzCrUJ3f69GkiIiJYtWoVV155ZbGWSU1NJTg4mJSUFIKCgsq5QhER8ZSfDyYybsFmTqZm42WzMLl/K4Z2aYBhGJ4uTUqhJJ/flbpn5vdSUlIACA0NveA8OTk5pKamFnmIiEj116VxKEvH96Zv89rkOt08+fl2xi7YTFq2w9OlSTmrMmHGNE0mTpxIr169aNOmzQXnmzZtGsHBwQWP6OjoCqxSREQ8KdTfi/fvvoL/69cCm8Xgy19OcPPM1Wz/LcXTpUk5qjLDTKNHj+arr75i9erV1K9f/4Lz5eTkkJOTU/A6NTWV6OhoDTOJiNQwGw8nMW7BZn5LzsLLauHJm1oyvHtDDTtVESUZZqoSYWbs2LEsXryYH374gcaNG5doWR0zIyJScyVn5vLoJ7/wza5TANzQug4v/rktwb52D1cmf6TaHDNjmiZjxoxh0aJF/O9//ytxkBERkZotxM+Ld4d34umbW2G3GizfcZKbZsSy5Wiyp0uTMlSpw8zo0aP58MMPmT9/PoGBgZw8eZKTJ0+SlZXl6dJERKSKMAyDkb0a8+kDPYgO9eVYUhZ/fmsN78Ue0EX2qolKPcx0oXHNOXPmMGLEiGKtQ8NMIiJyRmq2g0mf/cLSbScBuKZlBP+8vR0hfl4erkx+r9odM3MpFGZERKQw0zT5cO1hnvtqF7lON3WDfZg5tAOdGl74sh9S8arNMTMiIiJlzTAM7ureiM8f6kHjcH+Op2Qz+O21vPX9ftzuav39vtpSmBERkRqpdd1gvhjbi1va1cXlNnlx+a/cM3c9Cek5f7ywVCoKMyIiUmMFeNuYfkd7pg26HG+bhVV7TtNvRizrDiR4ujQpAYUZERGp0QzD4M4uDfjvmJ5cVtufU6k53PnuWmZ+uxeXhp2qBIUZERERoEWdIJaM6cWgjvVwm/DKyj0M/9c64tKyPV2a/AGFGRERkXz+3jZeHdyef97eDl+7lR/3JdBv+mp+3Bfv6dLkIhRmREREfufPnerzxdieNI8MJD49h7+8v45XV+7RsFMlpTAjIiJyHk0jAlk8uid3XBGNacKMb/cy9N21nErVsFNlozAjIiJyAb5eVv5xW1um39Eefy8r6w4m0m96LKv2nPZ0aVKIwoyIiMgfGNC+Hl+M7UXLqCASMnK5+18/8+LyX3G63J4uTVCYERERKZYmtQP4/KEe/KVbAwDe+n4/d7yzluPJuvmxpynMiIiIFJOP3crzAy9n1tAOBHrb2HA4iX4zYvl21ylPl1ajKcyIiIiU0M1t6/LluF5cXi+Y5EwHIz/YwAtf7STXqWEnT1CYERERKYWGYf58+mB3RvRoBMC7sQcZ/PZPHE3M9GxhNZDCjIiISCl526xMuaU1b9/ViSAfG1uOJnPTjFiWbz/p6dJqFIUZERGRS3R96zp8Na437aNDSM128sCHG5myZAc5TpenS6sRFGZERETKQHSoH5880J1RVzYBYO6aQ/z5rZ84nJDh4cqqP4UZERGRMmK3Wvi/fi3514jOhPjZ2fZbCjfNWM2Xvxz3dGnVmsKMiIhIGbuqRSRLx/Wmc8NapOc4GTN/M09+vo1sh4adyoPCjIiISDmoG+LLwlHdeKjPZQDMW3eEW99cw4HT6R6urPpRmBERESknNquFx29owQf3diHM34tdJ1K5eeZqFm/+zdOlVSuGaZrV+n7mqampBAcHk5KSQlBQUJmtN+WLL0j893+whtbCFlILa638R2gtbGema4VirRWCNTgYw6LcKCJSk51KzWb8ws2sPZAIwJDO0Uy5pTW+XlYPV1Y5leTz21ZBNVU7uUeOkL1tW/FmtliwhoTkB5wQbLVCz4afWiHYQvNfh9TCFprXbvj6YhhG+f4QIiJSYSKDfJj3125M/3YvM/+3l482HGXz0STeGNqRmMhAT5dXpalnppRyjx4lZ+8+XElJuJIScSYl4UpKxpWYiCspCWdyEq7EJNxpaaVav+HtjTU0r2fHFlILx8mT+PfqiS00DGtYKLawMGxhYVjDwrCFhmLx8yuzn01ERMrXmn3xjP9oC6fTcvC1W/n7gNbc3jna02VVKiX5/FaYKWdmbi6ulBSciUl5wSc5CWd+4CkIP8lJOM9MJyZiOhwl3o7h65sfbkILBZ5wbGGhWEPD8p7PBKCQEAyrujVFRDzpdFoOD3+0hdX74gEY1LEezw1og7+3Bk1AYaYIT4eZkjJNEzMzM7+nJ+/hTEzEFR9P1tatWAKDcCUk4ExIwJmYgCs+ATM3t2QbMQystWoV6dkpCDqFen1s4eFYw8OxeHuXzw8rIlLDudwmb32/j1dX7sFtwmW1/XljWEda1Kn8n1flTWGmkKoWZkrKNE3cGZm4EhNwxifkPSckFrx2JibgSkgseHYlJ0MJ/5dbgoKwhYeffdQOx1a7NtbwcGzhtfNeh4fnHeujA51FREps3YEExi3czKnUHLxtFqbc0po7roiu0cdOKswUUt3DTEmZTufZ3p6EvODjTIgvEniciYk440/jOh1fsiEvqzWvl6f2mdBTOy/snAlA+WHIGl4bi79fjf5HKiLyewnpOUz8eCur9pwG4JZ2dZk66HICauiwk8JMIQozpWeaJu7UVJzx8ThPx+c9x5/GVfj16dM44+NxJSWVqMfH8PUtFHjynyMjsUXUxh4RgS3/YQkMVOgRkRrD7TZ5J/YAL6/Yjctt0ijMj1lDO9KmXrCnS6twCjOFKMxUDNPhwJmYdDbsnAk8+WGnIAidjsedmVns9Ro+PvnBpjb2iMiCkHO2LT/06GwuEalGNh5OZOz8zRxPycbLauHpm1vyl24Na9SXO4WZQhRmKh93RkbeAczx8TjjTucFntOnccbF5T1Ox+GIO407JaXY67QEBJzbs1P7bPCxR0ZgrV0bi5dXOf5kIiJlJzkzl0c/+YVvdp0CoN/ldfjHbW0J8rF7uLKKoTBTiMJM1eXOzj4bcOLicMTF5YWf37WZJejpsdaqVaRn50yvjld0A7waRGOrUyfvQOYa9O1HRCov0zR5f/VBXlz+Kw6XSXSoL7Pu7Ei76BBPl1buFGYKUZip/lzpGTjjTv1h8CnuKeyGlxe2yEjskZHY6tTBXicSW2Qd7FF18p7rRGINC9OZWyJSYbYcTWbM/E0cS8rCbjWYdGNL7u3ZqFp/8VKYKURhRiD/YOaUlLyQc+rscFbW5i15Z3glJ+M4dQpXfHzxVmiz5Q1nFQ47hZ/r1MEWHo5hq5lnIYhI2UvJcvC3T39h+Y6TAFzTMpJ/3t6WEL/qOXyuMFOIwoyUhJmbiyPuNM5TJ3GcPInz5Ckcp4o+O0+fBrf7j1dmseSdpVUnEntknaLPdfJ7eSJqY+g4HhEpJtM0+fdPh3nhq13kutzUC/Flxp0d6NSwlqdLK3MKM4UozEhZM53OvIOXT57EcfJUfvAp9HzyJI64OHA6i7U+a3g49qgo7HXqYK8bhS0qCnudqLzpMz08GtISkUK2/5bC6PmbOJyQidVi8Nj1zRnVuwkWS/UZdlKYKURhRjzBdLtxJSTgOHm2h6dI2DmV91ysixLa7XlB5wJhx163LtaAgPL/oUSkUknLdvDEom18+csJAPo0r82rg9sT6l89ensVZgpRmJHKyjRNXElJOE6cyAs4x0/gOHkC54kT+dMnccbFFWtIyxIYmDd0VTc/6EQVDTv2iAgNZ4lUQ6ZpsuDno0z5Yge5Tjd1gnyYcWcHujQO9XRpl0xhphCFGanKTIcD5+nTOAoCTtGw4zhxonjX4zGMvCstny/sRNXFHlUn7wytanxmhEh1tutEKqPnb+LA6QwsBky8thkP9WlapYedFGYKUZiR6s6dkZEXbM4bdo7jPHGyWKelG15e2KLqFIQdW1SdvNCTH3bsUVFY/P0r4CcSkdLIyHHy1OLtfL75NwB6x4Tz6uD21A709nBlpaMwU4jCjNR0pmniSkwsGnZO5PXqnAk7ztOni3VvLUtwcH7AKdy7k/dsj4rCVru2TkcX8SDTNPlkwzGeWbKdbIeb2oHeTB/Snh5Nwz1dWokpzBSiMCPyx/JOSY/LDzpnws7xvON5TpzEcfw47vT0P16R1YotMiKvN6fwActRUXnH7kRF6eahIhVgz6k0Rs/bxN64dAwDxl0Vw7irY7BWoWEnhZlCFGZEyoYrLa3owcpnenbOTJ86VazT0S3+/vlDWHULenfyhrWidLCySBnKynUxecl2Pt5wDIBuTUKZcUcHIoJ8PFxZ8SjMFKIwI1IxTJcLZ3wCzvwenYLAc/JEQeBxJSX98YoKH6x8JvAUHMNTF3vdKN0/S6QEPt98jCc/305mroswfy9eG9KeK5vV9nRZf0hhphCFGZHKw52VVTCEdc6xO/mBp1gHK3t7nz1mp9B1dwp6eKKisPhUjW+fIhVh/+l0Rs/bxK8n0zAMeKjPZTx8TTNs1sp7QU6FmULKK8ycSD/BsfRjBa9N06Tgv/zpvDc4f3vhZQote7FlzLw3ztt+5n/jOe9dqL3QMudT+FuvgVH02Sj6+qLL/MG8hdsvuEz+kwULFsOCYRhFpw0LFgpNF3oYnG07Z7k/WMeZZS+2DZthK7J+uTQFBysXDjwFQ1p5ocd1unj3z7KGhp699s7vh7TqRGGrHZ73/8w0wXSB6T77KDcGGBawWMGwgq7sLBUo2+Hi71/uZP66IwB0aRTK9DvbExXs6+HKzk9hppDyCjPvbXuP6Zuml9n6pOqzGTasFmtByLFarFiN/Ef+tM1iw2pYsVjy5yn03jnPhec3LAXTVouVQymHaB7aHLvFjs1iw26xn3/aasdm5D2f933Dit00sZlu7KaBzXRhN828NrcLu9vE6nZguB3gdoLbBa4z0797uBx57xe0FXrtKrS8u9DyrvOs55x15U+bLjBN3A4XzjQnjjQXjlQXznQ3jjQ3jnQTRxo40k1MZzGCpcXE7uvC7ufC7u/C5pc/Xei11V4Bfx4N69lwUxB0Cgeewu9ZiradmffkL1CvM9i8wWoHix2sXnnTVq/fTdt/N13o/dwM8AkBn2Cw+4LN5+LPFmv57x8pc19sPc4Ti7aRnuOklp+dVwe3p2+LCE+XdQ6FmULKK8x8sucT/r3j3xiGUaTnoqBX4TzthXsezvuewUWX+X37mWUK2ouxrgstAxTpqSnSG5Q3ccH3Cvf+/H6es09F5y3NNs70JrlNN27cZ6dNNyZnp8/XZpombgpNF+P9wtso/LPVVAFuN16miZdp4p0feLzzX3uZXKD9zDS/e22eZ11581gwCXCb+Jgm3qYbX7eJnYJf2z9kmuB2GDgyrDgy8x7OTGvR11lWMP94jRa7G7v/2ZBjKxR27H4ubL4ujJrcuWKxFwo3PmDzzXvOiAffUKjVELz8wSsg79k78CKvA8A7v93ur16rcnYoPoMxCzax/bdUAO6/sgmPXt8ceyUadlKYKUTHzFRzbhe4csGZk/dt3pWT99rluEhbbtGHM/cibXnrMJ05mM5c3K5cTHcObpcDlysXlzMXlysXpzsHt8uJy+3A6crF5XbicufiMk1cBrgwcOY/uw1wAi7DwPW75zPtbiiY32WAM3+5M+txYnDAy049hxOHYeAwwGkYOPLfz2vLW5/DyG/DODttGDjJW67wtNMwcFbC4TILBt4WO75WL7wtdnwsXvhYvfCxeuNj8cLb6p33ntUbH6s3vjaf/GmfvHlsPnjbfPC1+uBj88XbsOObkos9MQOvhHSsp1MwTifhPhWfd4f0k6dwp6YWozALtoja2OtEYq8TiS0iEltkbewREdgiamOLiMi7M7rdnjf/mWEst6vQs6tQz5M77/YVhdvcrt8t9/v38ofJ0uPywoDLUeh32VloOr/d7fjdPI5Cz468Xh7/8LweH0c2OLOKPrtyyvd/9hl2/7yf2ZkFUe3zeot8gsE35Oy0T8jZnqTft9t1zNQfyXG6mLb0V+auOQRAhwYhzLyzA/Vr+Xm2sHwKM4UozFwC08wPCzm/+6NX+MO+bMJCqdvK9fiGclDQpZ//sHmdp837d93/xWnLn7Z5Fxo+uFDbBbZrtYNh4DbdON1OnG4nDrcDh9tBtjMbl+ki15VLriuXHFcOue7coq/zp3Pdea8dLkeR+YozT64rl6TsJLJd2VgNKy7TVaH/eyyGBT+bH742X2q5fYhMtxKRaiE81SQ0xU1wsoPApBz8EzPxScjA4ire7581LCzv+jsRkdgiCwefSOyREdgiI6vO9XfcbnBm5z0cWRd+Tj2eN78rF3LT84awctLynnMz8tvSISe96Ouy+jdt9S4agBL2Q9OrwS8s/xF6dto39GybrWpeLfdSLN9+gsc+/YW0bCdBPjb+eXs7rmtdx9NlKcwUVmnDjGn+7tvR778l/T4EOM79UD+nB+ICAaNIz0UJ11XVhleqQFiQ4jsTpLKd2WS78p5zXDlkObPIceWct/2P5sl2Zp/zXpYzq8S1GaZJcAaEp0B4qklYGoSmmYSeeU6H0DSwFzOPOb1tOEIDcYYHY4aHYokIwxoZiXdkFL5R9fCv14CAyPr4eQdUjdBTGqaZF4RyMyA3P/hkxOcHnUzITsl/JOc/Us4+sgq9vpS/W16BZ4OOxZb3b7b+FeBfGwIiIaA2+EdAQAT4hYO1elzx+mhiJmMWbGbr0WQA7unZiCdubImXzXPDTgozhZRbmNm9DHZ8fpHAUDhUnCcwuB1lV0tFshb+4FZYkOrB5XYVhJpMRyaZzszzTmc5s8h0Zv7hdMHDkUlgFmcDTv5zXvCB0PS8toDs4tXpNiApAFKCrKQH2ckK8iEn2BdHLX9ctYIgLAQjLBRreDj+fsH42f0IsAcQ4BWAn82PAK8AAr0C89rsAVir4wG8bnde+Pl92MlMhFPbwe4HmQn5j0TISjw7XeKeQCMv+PhHFA05GBDaGEKbQGAUBNYB31qV/u9TrtPNS8t/5b3VBwFoWz+YWXd2pEGYZ4adFGYKKbcwE/sqfPts2a0PI/9Du/AHvP0CQcD+u/m8zvOh/7sP/8Lz2n4XAAqHiYtt98y3FBEplt+HpAxHBhmODDKdmaTnppPuSCfDkUFWejLu0/GYcfFY4pOxJ6bhnZiOX1I2Ack5BKU6CE4zsZbgr3W6DyT7Q1KAQbI/JAdA8plp/7zpnBA/jKBAAr2DzoYcrwCCvIKKNe1r860+vURuN+Tkh54z4SYzARL2QtrJvOGv9DjIOJ33nBlfsiExm09eqDkTbgLrnn0dFHW23cvzN3P9ZucpHvlkKylZDgK9bbz457b0uzyqwutQmCmk3MLMsY1wZM35eweKFRh+N091/IYkImXG7XSSHvcb6cePkHX8GNlxJ3GcPoUzPgEzIQkjIQlrUhpeyRlYnMX/kHVaOBt2/A2SAyDVD1J9DVL886f9jPxncFnPhherYcXf7k+gV2BBGDrf9MWCkpe1it66wu3KCzwZcUVDTkYcpJ+GPcvzem3O9P4Ul08wBNWH4HoQXB+C8p/PTAfVy/vsKGe/JWcxbsFmNh7Ou2r3Xd0a8uRNLfGxV9xnlcJMIZX2mBkRkXJgmibulBSc8fF5j9OncZ7Of46Pxxl/GmfcaRzxpzFTinHG1u9keueFnBRfk7T8kJPinxd+Cqbz29N9wWG7eM+Nl8XrnJBTOPwEegUSaA/Mm85/PjMd6JX32m6xl3Z3VQxHNqSfzOvhSTuR95x6vNDrE5B6AhwZxViZkTeUVTjkBNeHkAYQ0jDvdHif4LIp2+Xm1ZV7eOv7/QC0igrijWEdaRxeMb1HCjOFKMyIiJyfOzcX15nQEx+PMy4v8LgSE3EmJeJKTMqbTkzMu6+Wu+RnGjm9rGT72cj0tZDua5DmY5Li7SLZy0mab95wWHrBs1HwOsdOsYe1faw+eSHHHnDBXqAiAelMOCoUlGyWSnAgb3ZqXshJPQYpxyDlt7zn1ELTxTk13ickL9ScCTchDaFWo7znkAYlPm39+91xTPx4K4kZufh7WZk66HIGtK9Xqh+xJKpdmHnzzTd5+eWXOXHiBK1bt+b111+nd+/exVpWYUZE5NKZbjeulBRcSfkBJyERV1J+0ElMwpWYgPNM+MkPQrhKf2q922rBEeBNjr+dbB8rmd6Q6Q3pdjdpXk5SbE5S7A6y8tszvSHLyyiYzvQGh41iByJfm+95w87vA9KZaT+7H/42/7xne96zn82vfEORaeYdx5NytGjQST4KyUcg+XDe+38kMOp3QafQc1C98x72cDIlm3ELN/PzwbwhszuuiGbKLa3LddipWoWZjz76iLvuuos333yTnj178vbbb/Pee++xc+dOGjRo8IfLK8yIiFQ80zRxZ2TgSk7BlZKMOyUlLwwlJ+c/578ueJxtx1E2Z3u6rRacvnZyfW3k+FjJ9jLItplk2dxk2Fxk2JxkWJ3k2CHHbpBth1w7ZNvzeoZyvCDHZpDjVagtfx7zAiHJ2+qNn80vL9zkB57CYacg/JyZx5b3+sw8vjbfvItA5j9751/00VLcS03npOUFm6TDeeGm4PlQ3vQfDWVZvfJ6cUKbFH2EXYYzoB7TvzvArO/2YZrQPDKQN4Z1oGlEYIn+vxRXtQozXbt2pWPHjrz11lsFbS1btmTgwIFMmzbtD5dXmBERqTpM08TMyioafNLScKdn4E5Lw52RjistHXd6Ou70NFzp6bjzX7vSz7Sn5/VilCOXJe94IIcVHFYThw0cVnBa857zXhs489sdVopMB2RDmi9k+Bi4LHnrc1vyTr8v/PrMtMVqw2K3Y7V5YbN5YbXZsdm9sdq98DVtGL6+2K1eeNu8sVm98bJ6YbVasVrz7sNms9iwWe1Y3bnYcjKw5aRhy07BlpOMLTMJW2Yi1qxEbGZekLTkPwzTzLstmAkWiw1LQARp9tpsSPDliCOYBKM2fa9ozzV/+hMhkQ3LdB+X5PO7EgwSXlhubi4bN25k0qRJRdqvu+461qxZc95lcnJyyMk5O6aYWpxLkouISKVgGAaGnx8WPz/sUaU7Hdh0u3FnZuFOT8sLOWl5z+7MLNxZmZhZWfnTZ15n50/nv87Mwp2dfXY6/z0z++wFgaxusOaaXPzok+IEquKGrtz8R3EOEi6tC/ewuPMfkIM3x+gJ9Dzz5hfLWNFlJkP+vb4ca7u4Sh1m4uPjcblcREZGFmmPjIzk5MmT511m2rRpPPtsWV7/RUREqhLDYsEa4I81oGzPujHdbszsvOBjOhyYublFHu6c/GlH4bac/OnC8+e15R4+gsXfH8PHG5wuTLcbXE5MpwvT5cJ0OnA5HbidDtxOJy6nA9PpwO1y4nY6MZ1OTLcLS1omtqQ0siNDME03uM28Z9PMz0pm/u1pzLPTJvnPJkbBPBS8NvKbvB15YSvXDue5J3ABi7dnr49TqcPMGb+/KJNpmhe8UNMTTzzBxIkTC16npqYSHR1drvWJiEj1Z1gsBb1Gctb+uFRuD/XsPa0qdZgJDw/HarWe0wsTFxd3Tm/NGd7e3nh717wbhYmIiHjCZRGePx7Vc3eQKgYvLy86derEypUri7SvXLmSHj16eKgqERERqUwqdc8MwMSJE7nrrrvo3Lkz3bt355133uHIkSM88MADni5NREREKoFKH2aGDBlCQkICf//73zlx4gRt2rRh6dKlNGxYtqeAiYiISNVU6a8zc6l0nRkREZGqpySf35X6mBkRERGRP6IwIyIiIlWawoyIiIhUaQozIiIiUqUpzIiIiEiVpjAjIiIiVZrCjIiIiFRpCjMiIiJSpSnMiIiISJVW6W9ncKnOXOA4NTXVw5WIiIhIcZ353C7OjQqqfZhJS0sDIDo62sOViIiISEmlpaURHBx80Xmq/b2Z3G43x48fJzAwEMMwynTdqampREdHc/ToUd33qRxpP1cM7eeKof1cMbSfK0Z57mfTNElLS6Nu3bpYLBc/Kqba98xYLBbq169frtsICgrSP5YKoP1cMbSfK4b2c8XQfq4Y5bWf/6hH5gwdACwiIiJVmsKMiIiIVGkKM5fA29ubyZMn4+3t7elSqjXt54qh/VwxtJ8rhvZzxags+7naHwAsIiIi1Zt6ZkRERKRKU5gRERGRKk1hRkRERKo0hRkRERGp0hRmLuLNN9+kcePG+Pj40KlTJ2JjYy86/6pVq+jUqRM+Pj40adKE2bNnV1ClVV9J9vWiRYu49tprqV27NkFBQXTv3p0VK1ZUYLVVV0l/p8/48ccfsdlstG/fvnwLrCZKup9zcnJ48sknadiwId7e3lx22WX861//qqBqq66S7ud58+bRrl07/Pz8iIqK4p577iEhIaGCqq2afvjhB/r370/dunUxDIPFixf/4TIe+Sw05bwWLlxo2u1289133zV37txpjh8/3vT39zcPHz583vkPHDhg+vn5mePHjzd37txpvvvuu6bdbjc//fTTCq686inpvh4/frz54osvmj///LO5Z88e84knnjDtdru5adOmCq68ainpfj4jOTnZbNKkiXndddeZ7dq1q5hiq7DS7OdbbrnF7Nq1q7ly5Urz4MGD5rp168wff/yxAquuekq6n2NjY02LxWJOnz7dPHDggBkbG2u2bt3aHDhwYAVXXrUsXbrUfPLJJ83PPvvMBMzPP//8ovN76rNQYeYCunTpYj7wwANF2lq0aGFOmjTpvPM//vjjZosWLYq03X///Wa3bt3KrcbqoqT7+nxatWplPvvss2VdWrVS2v08ZMgQ86mnnjInT56sMFMMJd3Py5YtM4ODg82EhISKKK/aKOl+fvnll80mTZoUaZsxY4ZZv379cquxuilOmPHUZ6GGmc4jNzeXjRs3ct111xVpv+6661izZs15l/npp5/Omf/6669nw4YNOByOcqu1qivNvv49t9tNWloaoaGh5VFitVDa/Txnzhz279/P5MmTy7vEaqE0+3nJkiV07tyZl156iXr16tGsWTMeffRRsrKyKqLkKqk0+7lHjx4cO3aMpUuXYpomp06d4tNPP+Wmm26qiJJrDE99Flb7G02WRnx8PC6Xi8jIyCLtkZGRnDx58rzLnDx58rzzO51O4uPjiYqKKrd6q7LS7Ovfe+WVV8jIyGDw4MHlUWK1UJr9vHfvXiZNmkRsbCw2m/5UFEdp9vOBAwdYvXo1Pj4+fP7558THx/PQQw+RmJio42YuoDT7uUePHsybN48hQ4aQnZ2N0+nklltuYebMmRVRco3hqc9C9cxchGEYRV6bpnlO2x/Nf752OVdJ9/UZCxYsYMqUKXz00UdERESUV3nVRnH3s8vlYujQoTz77LM0a9asosqrNkry++x2uzEMg3nz5tGlSxf69evHq6++yty5c9U78wdKsp937tzJuHHjeOaZZ9i4cSPLly/n4MGDPPDAAxVRao3iic9Cfd06j/DwcKxW6zkJPy4u7pzEeUadOnXOO7/NZiMsLKzcaq3qSrOvz/joo48YOXIkn3zyCddcc015llnllXQ/p6WlsWHDBjZv3syYMWOAvA9d0zSx2Wx8/fXXXHXVVRVSe1VSmt/nqKgo6tWrR3BwcEFby5YtMU2TY8eOERMTU641V0Wl2c/Tpk2jZ8+ePPbYYwC0bdsWf39/evfuzfPPP6/e8zLiqc9C9cych5eXF506dWLlypVF2leuXEmPHj3Ou0z37t3Pmf/rr7+mc+fO2O32cqu1qivNvoa8HpkRI0Ywf/58jXkXQ0n3c1BQENu2bWPLli0FjwceeIDmzZuzZcsWunbtWlGlVyml+X3u2bMnx48fJz09vaBtz549WCwW6tevX671VlWl2c+ZmZlYLEU/8qxWK3C250Auncc+C8v18OIq7Mxpf++//765c+dOc8KECaa/v7956NAh0zRNc9KkSeZdd91VMP+Z09Eefvhhc+fOneb777+vU7OLqaT7ev78+abNZjPfeOMN88SJEwWP5ORkT/0IVUJJ9/Pv6Wym4inpfk5LSzPr169v/vnPfzZ37Nhhrlq1yoyJiTH/+te/eupHqBJKup/nzJlj2mw288033zT3799vrl692uzcubPZpUsXT/0IVUJaWpq5efNmc/PmzSZgvvrqq+bmzZsLToGvLJ+FCjMX8cYbb5gNGzY0vby8zI4dO5qrVq0qeO/uu+82//SnPxWZ//vvvzc7dOhgenl5mY0aNTLfeuutCq646irJvv7Tn/5kAuc87r777oovvIop6e90YQozxVfS/bxr1y7zmmuuMX19fc369eubEydONDMzMyu46qqnpPt5xowZZqtWrUxfX18zKirKHDZsmHns2LEKrrpq+e677y7697ayfBYapqn+NREREam6dMyMiIiIVGkKMyIiIlKlKcyIiIhIlaYwIyIiIlWawoyIiIhUaQozIiIiUqUpzIiIiEiVpjAjIiIiVZrCjIhUKYcOHcIwDLZs2XLR+fr06cOECRMqpCYR8SyFGREpFyNGjMAwDAzDwG6306RJEx599FEyMjIuab3R0dGcOHGCNm3aAPD9999jGAbJyclF5lu0aBHPPffcJW1LRKoGm6cLEJHq64YbbmDOnDk4HA5iY2P561//SkZGBm+99Vap12m1WqlTp84fzhcaGlrqbYhI1aKeGREpN97e3tSpU4fo6GiGDh3KsGHDWLx4MTk5OYwbN46IiAh8fHzo1asX69evL1guKSmJYcOGUbt2bXx9fYmJiWHOnDlA0WGmQ4cO0bdvXwBq1aqFYRiMGDECOHeYKSkpieHDh1OrVi38/Py48cYb2bt3b8H7c+fOJSQkhBUrVtCyZUsCAgK44YYbOHHiRPnvKBG5JAozIlJhfH19cTgcPP7443z22Wd88MEHbNq0iaZNm3L99deTmJgIwNNPP83OnTtZtmwZu3bt4q233iI8PPyc9UVHR/PZZ58BsHv3bk6cOMH06dPPu+0RI0awYcMGlixZwk8//YRpmvTr1w+Hw1EwT2ZmJv/85z/5z3/+ww8//MCRI0d49NFHy2FPiEhZ0jCTiFSIn3/+mfnz59O3b1/eeust5s6dy4033gjAu+++y8qVK3n//fd57LHHOHLkCB06dKBz584ANGrU6LzrtFqtBcNJERERhISEnHe+vXv3smTJEn788Ud69OgBwLx584iOjmbx4sXcfvvtADgcDmbPns1ll10GwJgxY/j73/9eVrtARMqJemZEpNx8+eWXBAQE4OPjQ/fu3bnyyisZO3YsDoeDnj17Fsxnt9vp0qULu3btAuDBBx9k4cKFtG/fnscff5w1a9ZcUh27du3CZrPRtWvXgrawsDCaN29esE0APz+/giADEBUVRVxc3CVtW0TKn8KMiJSbvn37smXLFnbv3k12djaLFi0iODgYAMMwisxrmmZB24033sjhw4eZMGECx48f5+qrr76k4R7TNC/YXrgOu91e5H3DMC64rIhUHgozIlJu/P39adq0KQ0bNiwICk2bNsXLy4vVq1cXzOdwONiwYQMtW7YsaKtduzYjRozgww8/5PXXX+edd9457za8vLwAcLlcF6yjVatWOJ1O1q1bV9CWkJDAnj17imxTRKomHTMjIhXK39+fBx98kMcee4zQ0FAaNGjASy+9RGZmJiNHjgTgmWeeoVOnTrRu3ZqcnBy+/PLLC4aOhg0bYhgGX375Jf369cPX15eAgIAi88TExDBgwADuu+8+3n77bQIDA5k0aRL16tVjwIAB5f4zi0j5Us+MiFS4f/zjH9x2223cdddddOzYkX379rFixQpq1aoF5PW2PPHEE7Rt25Yrr7wSq9XKwoULz7uuevXq8eyzzzJp0iQiIyMZM2bMeeebM2cOnTp14uabb6Z79+6YpsnSpUvPGVoSkarHMDUgLCIiIlWYemZERESkSlOYERERkSpNYUZERESqNIUZERERqdIUZkRERKRKU5gRERGRKk1hRkRERKo0hRkRERGp0hRmREREpEpTmBEREZEqTWFGREREqrT/B2dvSM9KNYSTAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbsFJREFUeJzt3Xd4VGXexvHvmZLeSEJCgNAkdOnSccEuiiAqKKyIsmKhimXxtYANVl0LRcW24K4UG7KoiKKrGESQLk16lRJI75ly3j8CIaGZhCSTSe6P11znzKm/OYbMnec5xTBN00RERETES1k8XYCIiIjIxVCYEREREa+mMCMiIiJeTWFGREREvJrCjIiIiHg1hRkRERHxagozIiIi4tVsni6gvLndbg4fPkxwcDCGYXi6HBERESkG0zRJT0+ndu3aWCwXbnup8mHm8OHDxMbGeroMERERKYWDBw9St27dCy5T5cNMcHAwkH8wQkJCPFyNiIiIFEdaWhqxsbEF3+MXUuXDzKmupZCQEIUZERERL1OcU0R0ArCIiIh4NYUZERER8WoKMyIiIuLVqvw5MyIiUnm5XC4cDoenyxAPsNvtWK3WMtmWwoyIiFQ40zQ5evQoKSkpni5FPCgsLIxatWpd9H3gFGZERKTCnQoyUVFRBAQE6Kam1YxpmmRlZZGQkABATEzMRW1PYUZERCqUy+UqCDIRERGeLkc8xN/fH4CEhASioqIuqstJJwCLiEiFOnWOTEBAgIcrEU879TNwsedNKcyIiIhHqGtJyupnQGFGREREvJpHw8xPP/1E3759qV27NoZhsHDhwiLzTdNk0qRJ1K5dG39/f3r16sWWLVs8U6yIiIhUSh4NM5mZmbRp04YZM2acc/5LL73Eq6++yowZM1i9ejW1atXi6quvJj09vYIrFRERkcrKo2Hm+uuv5/nnn2fAgAFnzTNNk9dff50nnniCAQMG0KpVKz744AOysrKYO3euB6o9u77vtx3DNE1PlyIiIhVk2LBh9O/f/6zpP/74I4Zh6L45HlJpz5nZu3cvR48e5ZprrimY5uvry1/+8hdWrFhx3vVyc3NJS0sr8ioPH67cz/AP1nDff9aSmqW7V4qIiHhKpb3PzNGjRwGIjo4uMj06Opr9+/efd70pU6bwzDPPlGttABaLgY/Vwrdbj7FlWjwzBrejXb0a5b5fEZGqxjRNsh0uj+zb327VVVVVQKUNM6ec+UNmmuYFf/Aef/xxxo8fX/A+LS2N2NjYMq9rSOf6tKkbxsi569ifmMVtM3/h79c14289G+ofhohICWQ7XLR4+huP7Hvrs9cS4FPpvwrlT1Ta/4O1atUC8ltoCt/mOCEh4azWmsJ8fX3x9fUt9/oAWtUJ5cvRPZiwYBNf/XaEFxZvY+WeRP55WxtqBPpUSA0iIlKxvvzyS4KCgopMc7k807Ik+SptmGnYsCG1atVi6dKltGvXDoC8vDyWLVvGiy++6OHqTgv2szPjjnZ0bRTBs19u5fvfE+gzLZ7pd7SjY4NwT5cnIlLp+dutbH32Wo/tu6R69+7NW2+9VWTaqlWr+Otf/1pWZUkJeTTMZGRksGvXroL3e/fuZcOGDYSHh1OvXj3GjRvH5MmTiYuLIy4ujsmTJxMQEMDgwYM9WPXZDMPgr13q075eDUbOXcfeE5kMemclD1/ThPsvvwSLRd1OIiLnYxiGV3X1BAYG0rhx4yLTDh065KFqBDwcZtasWUPv3r0L3p861+Wuu+5i9uzZPPbYY2RnZ/Pggw+SnJxM586d+fbbbwkODvZUyRfUonYIX4zuwROfb+K/Gw7z0pLtrNyTxGsD2xARVDFdXyIiItWNRy/N7tWrF6ZpnvWaPXs2kJ/WJ02axJEjR8jJyWHZsmW0atXKkyX/qSBfG68PasuLt1yKr83CTzuO02daPKv2JHq6NBERkSqp0t5nxpsZhsGgy+qxaFQPLqkZyLG0XO54dyXTv9+Jy62b7ImIiJQlw6zit7BNS0sjNDSU1NRUQkJCKnz/WXlOnlq4hc/W5fen9mgcyWuD2lIzWN1OIlI95eTksHfvXho2bIifn5+nyxEPutDPQkm+v9UyU84CfGy8MrAN/7ytDf52K8t3naDPtHhW7Drh6dJERESqBIWZCnJrh7osGtWdJtFBHE/PZcj7q3h16Q51O4mIiFwkhZkKFBcdzH9H9mBQx1hME6Z9v5Mh763kWFqOp0sTERHxWgozFczfx8qLt7bm9UFtCfCxsnJPEn2mxvPTjuOeLk1ERMQrKcx4SP92dfhidA+a1QomMTOPu2b9ysvf/I7T5fZ0aSIiIl5FYcaDLqkZxMKR3RncuR6mCW/8sJvB767iSGq2p0sTERHxGgozHuZntzL55kuZfkc7gnxt/Lovv9vph+0Jni5NRETEKyjMVBJ929Tmy9E9aFUnhOQsB3fPWs2UxdtwqNtJRETkghRmKpEGkYF89kA37upaH4C3f9rDoLd/4Y8UdTuJiIicj8JMJeNrs/JMv1a8NaQ9wX421h1Ioc/UeJZuPebp0kREREpk9uzZhIWFlft+FGYqqesvjeGr0T1pUzeU1GwH9/57Dc99uZU8p7qdREQ85aeffqJv377Url0bwzBYuHBhkfm9evVi3LhxZ61Xki/1SZMm0bZt24uutTpRmKnE6kUE8Mn93bine0MA3l++l9ve/oWDSVkerkxEpHrKzMykTZs2zJgxw9Ol4HA4PF1CpaEwU8n52Cw83bcF79zZgRA/GxsPptBnWjxLNh/1dGkiImXDNCEv0zOvEj5r+frrr+f5559nwIAB5XIoZs+ezTPPPMPGjRsxDAPDMJg9ezYAhmEwc+ZM+vXrR2BgIM8//zwul4vhw4fTsGFD/P39adq0KVOnTi2yzWHDhtG/f3+eeeYZoqKiCAkJ4b777iMvL69gmV69ejFq1ChGjRpFWFgYERERPPnkkxR+FnVeXh6PPfYYderUITAwkM6dO/Pjjz+eVX+9evUICAjg5ptvJjExsVyO05lsFbIXuWjXtKzF4tohjJ63nvUHUrj/w7UM69aAx/s0w9dm9XR5IiKl58iCybU9s+//Oww+gZ7Z9zkMGjSIzZs3s2TJEr777jsAQkNDC+ZPnDiRKVOm8Nprr2G1WnG73dStW5ePP/6YyMhIVqxYwYgRI4iJiWHgwIEF633//ff4+fnxww8/sG/fPu6++24iIyN54YUXCpb54IMPGD58OKtWrWLNmjWMGDGC+vXrc++99wJw9913s2/fPubPn0/t2rX5/PPPue6669i0aRNxcXGsWrWKe+65h8mTJzNgwACWLFnCxIkTK+S4GaZZwljqZUryCHFv4HC5+ec323n7pz0AXFonlBmD21E/ovL8YxQRuZCcnBz27t1Lw4YN8fPzy28h8cIwYxgGn3/+Of379y+Y1qtXL1asWIGPj0+RZZ1OJ35+fqSkpPzpdidNmsTChQvZsGHDWfsbN24cr7322gXXHzlyJMeOHePTTz8F8ltmvvjiCw4ePEhAQAAAM2fO5NFHHyU1NRWLxUKvXr1ISEhgy5YtGIYBwIQJE1i0aBFbt25l9+7dxMXFcejQIWrXPv3/6qqrrqJTp05MnjyZwYMHk5yczNdff10w//bbb2fJkiXn/dxn/SwUUpLvb7XMeBm71cLjfZrTuVE4D3+8kU1/pHLjtOX845bW3NA6xtPliYiUnD0gP1R4at9lbMiQITzxxBNFpi1YsIDJkydf9LY7dux41rSZM2fy3nvvsX//frKzs8nLyzvrBOI2bdoUBBmArl27kpGRwcGDB6lfP/92IF26dCkIMqeWeeWVV3C5XKxbtw7TNGnSpEmR7ebm5hIREQHAtm3buPnmm4vM79q1K0uWLLmoz1wcCjNe6opm0Swe25PRc9ezZn8yI+eu45c99Xjyhhb42dXtJCJexDAqVVfPxQoNDaVx48ZFpkVFRZXJtgMDix6njz/+mIceeohXXnmFrl27EhwczMsvv8yqVauKtb3C4eVC3G43VquVtWvXYrUW/Y4JCgoCwJMdPQozXiwm1J/5I7rw6tIdvPnjbj5ceYC1+1N4Y3A7GtUM8nR5IiJSCj4+PrhcrmItGx8fT7du3XjwwQcLpu3evfus5TZu3Eh2djb+/v4ArFy5kqCgIOrWrVuwzMqVK4uss3LlSuLi4rBarbRr1w6Xy0VCQgI9e/Y8Zy0tWrQ45zYqgq5m8nI2q4XHrmvGB/d0IiLQh21H0ug7fTn/3fCHp0sTEalyMjIy2LBhQ8H5LHv37mXDhg0cOHCgzPbRoEGDgu2eOHGC3Nzc8y7buHFj1qxZwzfffMOOHTt46qmnWL169VnL5eXlMXz4cLZu3crXX3/NxIkTGTVqFBbL6Rhw8OBBxo8fz/bt25k3bx7Tp09n7NixADRp0oQhQ4YwdOhQFixYwN69e1m9ejUvvvgiixcvBmDMmDEsWbKEl156iR07djBjxowK6WIChZkq4y9NarJ4bE86NwwnM8/F2PkbmPDZb+Q4ipfuRUTkz61Zs4Z27drRrl07AMaPH0+7du14+umny2wft9xyC9dddx29e/emZs2azJs377zL3n///QwYMIBBgwbRuXNnEhMTi7TSnHLllVcSFxfH5ZdfzsCBA+nbty+TJk0qsszQoUPJzs6mU6dOjBw5ktGjRzNixIiC+bNmzWLo0KE8/PDDNG3alJtuuolVq1YRGxsL5J9z89577zF9+nTatm3Lt99+y5NPPlk2B+VP6GqmKsbpcjPtf7uY/r+dmCY0jQ7mjSHtaBwV7OnSRESAC1/BImVv2LBhpKSknHW34sJ69epF27Ztef311yusLii7q5nUMlPF2KwWxl/dhA+HdyYyyJftx9LpO/1nPlt7yNOliYiIlAuFmSqqe+NIFo/tQffGEWQ7XDz8yUYe+WQjWXlOT5cmIlKttWzZkqCgoHO+5syZ4+nyvJK6mao4l9vkjR928fp3O3Cb0DgqiDcGt6dpLXU7iYhnVPdupv3795/3uUrR0dEEB1ef38+6aZ4Ui9ViMObKODo1DGfs/PXsSsig3xvLeeamlgzsGFvsewyIiEjZOHWTOik76maqJro0imDxmJ5c3qQmOQ43f/9sEw99tIGMXHU7iYiId1OYqUYignyZPewyHruuKVaLwcINh7lp+nK2Hk7zdGkiIiKlpjBTzVgsBg/2asz8EV2ICfVjz4lM+r/5Mx+u3O/RW1GLiIiUlsJMNXVZg3C+GtOTK5pFked08+TCzYyat570nHOflCYiIlJZKcxUY+GBPrw3tCP/16cZNovBV78d4cbpy9n8R6qnSxMRESk2hZlqzmIxGHH5JXx8f1fqhPmzPzGLAW+u4IMV+9TtJCIiF2X27NmEhYWV+34UZgSA9vVq8NWYHlzdIpo8l5uJi7bw4Jx1pGar20lEBGDKlClcdtllBAcHExUVRf/+/dm+fXuRZXr16sW4cePOWrckX+qTJk2ibdu2F19wNaIwIwXCAnx4584OPH1jC+xWg683H+XG6fFsPJji6dJERDxu2bJljBw5kpUrV7J06VKcTifXXHMNmZmZHqnnfDfeq44UZqQIwzC4p0dDPr2/G7Hh/hxMyubWmSt4f/ledTuJSLkwTZMsR5ZHXiX5vbZkyRKGDRtGy5YtadOmDbNmzeLAgQOsXbu2zI7F7NmzeeaZZ9i4cSOGYWAYBrNnzwbyfz/PnDmTfv36ERgYyPPPP4/L5WL48OE0bNgQf39/mjZtytSpU4tsc9iwYfTv359nnnmGqKgoQkJCuO+++8jLyytYplevXowaNYpRo0YRFhZGREQETz75ZJHjk5eXx2OPPUadOnUIDAykc+fO/Pjjj2fVX69ePQICArj55ptJTEwss2NzIboDsJxTm9gwvhzdkwmf/cbXm4/y3Jdb+WV3Iv+8rTVhAT6eLk9EqpBsZzad53b2yL5XDV5FgD2gVOumpuZfLBEeHl5m9QwaNIjNmzezZMkSvvvuOwBCQ0ML5k+cOJEpU6bw2muvYbVacbvd1K1bl48//pjIyEhWrFjBiBEjiImJYeDAgQXrff/99/j5+fHDDz+wb98+7r77biIjI3nhhRcKlvnggw8YPnw4q1atYs2aNYwYMYL69etz7733AnD33Xezb98+5s+fT+3atfn888+57rrr2LRpE3FxcaxatYp77rmHyZMnM2DAAJYsWcLEiRPL7NhciJ7NJBdkmib/Wbmf57/cRp7LTZ0wf6bd0Y4O9Wt4ujQR8VJnPo8ny5HldWHGNE369etHcnIy8fHxBdN79erFihUr8PEp+kef0+nEz8+PlJSUP932pEmTWLhwIRs2bCgy3TAMxo0bx2uvvXbB9UeOHMmxY8f49NNPgfyWmS+++IKDBw8SEJD/WWfOnMmjjz5KamoqFouFXr16kZCQwJYtWwoeczNhwgQWLVrE1q1b2b17N3FxcRw6dIjatWsX7Ouqq66iU6dOTJ48mcGDB5OcnMzXX39dMP/2229nyZIl5/3cejaTVAjDMBjatQHt69Vg5Nx17E/MYtDbv/DotU25t2cjLBY920lELo6/zZ9Vg1d5bN+lMWrUKH777TeWL19+1rwhQ4bwxBNPFJm2YMECJk+eXKp9FdaxY8ezps2cOZP33nuP/fv3k52dTV5e3lknELdp06YgyAB07dqVjIwMDh48WPCsqC5duhR5Xl/Xrl155ZVXcLlcrFu3DtM0adKkSZHt5ubmEhERAcC2bdu4+eabi8zv2rUrS5YsuajPXBwKM1IsreqE8uXoHjy+YBNf/naEKV//zso9ibwysC3hgep2EpHSMwyj1F09njB69GgWLVrETz/9RN26dc+aHxoaSuPGjYtMi4qKKpN9BwYGFnn/8ccf89BDD/HKK6/QtWtXgoODefnll1m1qnjhsLgPG3a73VitVtauXYvVai0yLygoCMCj51UqzEixBfvZmX5HO7pdEsmkL7bww/bj9Jkaz7Q72tGpYdn1GYuIVEamaTJ69Gg+//xzfvzxRxo2bFgu+/Hx8cHlchVr2fj4eLp168aDDz5YMG337t1nLbdx40ays7Px989viVq5ciVBQUFFwtjKlSuLrLNy5Uri4uKwWq20a9cOl8tFQkICPXv2PGctLVq0OOc2KoKuZpISMQyDwZ3r8d+R3WkUGcjRtBzueHclb/ywC7e7Sp9+JSLV3MiRI/nwww+ZO3cuwcHBHD16lKNHj5KdnV2m+2nQoAF79+5lw4YNnDhxgtzc3PMu27hxY9asWcM333zDjh07eOqpp1i9evVZy+Xl5TF8+HC2bt3K119/zcSJExk1ahQWy+kYcPDgQcaPH8/27duZN28e06dPZ+zYsQA0adKEIUOGMHToUBYsWMDevXtZvXo1L774IosXLwZgzJgxLFmyhJdeeokdO3YwY8aMCuliAoUZKaXmMSF8MboHN7erg8tt8vI327lr1q+cyDj/PzoREW/21ltvkZqaSq9evYiJiSl4ffTRR2W6n1tuuYXrrruO3r17U7NmTebNm3feZe+//34GDBjAoEGD6Ny5M4mJiUVaaU658soriYuL4/LLL2fgwIH07duXSZMmFVlm6NChZGdn06lTJ0aOHMno0aMZMWJEwfxZs2YxdOhQHn74YZo2bcpNN93EqlWriI2NBfLPuXnvvfeYPn06bdu25dtvv+XJJ58sm4PyJ3Q1k1wU0zT5ZM0hnl60mRyHm6hgX6be3o6ul0R4ujQRqaQudAWLlL1hw4aRkpLCwoULz7tMr169aNu2La+//nqF1QVldzWTWmbkohiGwcDLYlk0qgdxUUEkpOcy5L2VTP1uJy51O4mISAVQmJEy0SQ6mP+O6s5tHeriNuG173Zw5/urSEjP8XRpIiKVSsuWLQkKCjrna86cOZ4uzyupm0nK3IJ1h3ji881kO1xEBvnw+qB29IiL9HRZIlJJVPdupv3795/3uUrR0dEEBwdXcEWeo5vmSaU1oH1dWtcNY+ScdWw/ls6d/1rFqN6NGXtlHDarGgNFpHo7dZM6KTv6ZpFy0TgqiP+O6s4dnWIxTZj+v10Mfm8VR1PV7SQiImVLYUbKjZ/dypQBrZl6e1sCfaz8ujeJPtPi+XF7gqdLExGRKkRhRspdv7Z1+GJ0D5rHhJCUmcewWat5ccnvOF1uT5cmIiJVgMKMVIhGNYP4/MFu/LVLPQDe+nE3t7+zksMpZXvnTBERqX4UZqTC+NmtPN//Ut4Y3J5gXxtr9ifTZ1o8//v9mKdLExERL6YwIxXuhtYxfDmmB5fWCSUly8E9s9fwwldbcajbSUSkypg9ezZhYWEVsi+FGfGI+hGBfPpAV4Z1awDAu/F7uW3mLxxKzvJsYSIi5/HWW2/RunVrQkJCCAkJoWvXrnz99dcF83v16sW4cePOWq8kX+qTJk2ibdu2ZVNwNaIwIx7ja7My6aaWvH1nB0L8bGw4mEKfqfF8s+Wop0sTETlL3bp1+cc//sGaNWtYs2YNV1xxBf369WPLli0VXsv5brpXXVXqMON0OnnyySdp2LAh/v7+NGrUiGeffRa3W90RVcm1LWvx1ZietI0NIy3HyX3/WcszX2whz6n/zyLVgWmauLOyPPIqyU3w+/btS58+fWjSpAlNmjThhRdeICgoiJUrV5bJcZg9ezbPPPMMGzduxDAMDMNg9uzZQP5z8GbOnEm/fv0IDAzk+eefx+VyMXz48ILvyKZNmzJ16tQi2xw2bBj9+/fnmWeeISoqipCQEO677z7y8vIKlunVqxejRo1i1KhRhIWFERERwZNPPlnk2OTl5fHYY49Rp04dAgMD6dy5Mz/++ONZ9derV4+AgABuvvlmEhMTy+S4FEelvgPwiy++yMyZM/nggw9o2bIla9as4e677yY0NJSxY8d6ujwpQ7HhAXx8X1de/uZ33o3fy6yf97F2fzIz7mhPvYgAT5cnIuXIzM5me/sOHtl303VrMQJK/jvG5XLxySefkJmZSdeuXcuklkGDBrF582aWLFnCd999B0BoaGjB/IkTJzJlyhRee+01rFYrbrebunXr8vHHHxMZGcmKFSsYMWIEMTExDBw4sGC977//Hj8/P3744Qf27dvH3XffTWRkJC+88ELBMh988AHDhw9n1apVrFmzhhEjRlC/fn3uvfdeAO6++2727dvH/PnzqV27Np9//jnXXXcdmzZtIi4ujlWrVnHPPfcwefJkBgwYwJIlS5g4cWKZHJfiqNTPZrrxxhuJjo7m/fffL5h2yy23EBAQwH/+859ibUPPZvI+3287xsOfbCQly0Gwr40Xb21Nn0tjPF2WiJSRM5/H487K8miYsZQgzGzatImuXbuSk5NDUFAQc+fOpU+fPkB+C8eKFSvw8fEpso7T6cTPz4+UlJQ/3f6kSZNYuHAhGzZsKDLdMAzGjRvHa6+9dsH1R44cybFjx/j000+B/JaZL774goMHDxJw8nPOnDmTRx99lNTUVCwWC7169SIhIYEtW7ZgGAYAEyZMYNGiRWzdupXdu3cTFxfHoUOHqF27dsG+rrrqKjp16sTkyZMZPHgwycnJRc4huv3221myZMkFP3e1eDZTjx49mDlzJjt27KBJkyZs3LiR5cuX8/rrr593ndzcXHJzcwvep6WlVUClUpaubB7N4jE9GT1vPWv3J/PgnHXc2aU+T9zQHD+71dPliUgZM/z9abpurcf2XRJNmzZlw4YNpKSk8Nlnn3HXXXexbNkyWrRoAcCQIUN44okniqyzYMECJk+efNG1duzY8axpM2fO5L333mP//v1kZ2eTl5d31gnEbdq0KQgyAF27diUjI4ODBw8WPCeqS5cuBUHm1DKvvPIKLpeLdevWYZomTZo0KbLd3NxcIiIiANi2bRs333xzkfldu3ZlyZIlF/WZi6tSh5m///3vpKam0qxZM6xWKy6XixdeeIE77rjjvOtMmTKFZ555pgKrlPJQO8yf+SO68Mq3O5i5bDf/WbmftfuTeWNIexpGBnq6PBEpQ4ZhlKqrxxN8fHxo3LgxkB8uVq9ezdSpU3n77beB/G6hU/NPiYqKKpN9BwYW/d338ccf89BDD/HKK6/QtWtXgoODefnll1m1alWxtlc4vFyI2+3GarWydu1arNaif1AGBQUBlOjco/JQqcPMRx99xIcffsjcuXNp2bIlGzZsYNy4cdSuXZu77rrrnOs8/vjjjB8/vuB9WloasbGxFVWylCG71cKE65vRpVE44z/eyNYjadw4LZ7JAy6lX9s6ni5PRATTNIv0BlwsHx8fXC5XsZaNj4+nW7duPPjggwXTdu/efdZyGzduJDs7G/+TrVArV64kKCiIunXrFixz5knMK1euJC4uDqvVSrt27XC5XCQkJNCzZ89z1tKiRYtzbqOiVOqrmR599FEmTJjA7bffzqWXXsqdd97JQw89xJQpU867jq+vb8E9AE69xLv1ahrF4jE96dQwnMw8F2Pnb+DxBb+R4yjeP3gRkbLwf//3f8THx7Nv3z42bdrEE088wY8//siQIUPKbB8NGjRg7969bNiwgRMnTlwwKDVu3Jg1a9bwzTffsGPHDp566ilWr1591nJ5eXkMHz6crVu38vXXXzNx4kRGjRqFxXI6Ahw8eJDx48ezfft25s2bx/Tp0wsutGnSpAlDhgxh6NChLFiwgL1797J69WpefPFFFi9eDMCYMWNYsmQJL730Ejt27GDGjBkV1sUElTzMZGVlFTnYQMEZ3FK91Ar1Y+7fOjP6isYYBsz79SD93/iZXQkZni5NRKqJY8eOceedd9K0aVOuvPJKVq1axZIlS7j66qvLbB+33HIL1113Hb1796ZmzZrMmzfvvMvef//9DBgwgEGDBtG5c2cSExOLtNKccuWVVxIXF8fll1/OwIED6du3L5MmTSqyzNChQ8nOzqZTp06MHDmS0aNHM2LEiIL5s2bNYujQoTz88MM0bdqUm266iVWrVhX0fHTp0oX33nuP6dOn07ZtW7799luefPLJsjkoxVCpr2YaNmwY3333HW+//TYtW7Zk/fr1jBgxgnvuuYcXX3yxWNvQ1UxVz/KdJxj30XpOZOThb7fyfP9W3NKh7p+vKCKVwoWuYJGyNWzYMFJSUli4cOF5l+nVqxdt27a94MU15aWsrmaq1C0z06dP59Zbb+XBBx+kefPmPPLII9x3330899xzni5NPKhHXCSLx/ak2yURZDtcPPzJRh75ZCNZeU5PlyYiIh5QqcNMcHAwr7/+esElZ7t37+b5558/6xp+qX6igv34z/DOPHRVEywGfLr2EP1m/MyOY+meLk1E5LxatmxJUFDQOV9z5szxdHleq1J3M5UFdTNVfb/sTmTM/PUcT8/Fz27h2ZtacVvHusW+7FBEKlZ17mbav3//eZ+rFB0dTXBwcAVX5FnV4qZ5IsXR9ZIIvh7bk4c+2kD8zhM89tlv/LInkef7tyLQVz/iIlJ5nLpJnZStSt3NJFJckUG+fHB3Jx69tikWAz5f/wd9Zyxn2xHdAVqkstKVqVJWPwP6s1WqDIvFYGTvxlzWIJwx89az53gm/d/4mYl9W3JHp1h1O4lUEj4+PlgsFg4fPkzNmjXx8fHRv89qxjRN8vLyOH78OBaL5aLPhdU5M1IlJWXm8fDHG/hh+3EA+rapzeSbWxHsZ/dwZSIC+TdyO3LkCFlZWZ4uRTwoICCAmJiYc4aZknx/K8xIleV2m7wbv4eXv9mO023SICKAGYPb06pOqKdLExHy/zp3Op3Fvn2/VC1WqxWbzXbeVjmFmUIUZmTt/mTGzFvPHynZ+FgtPHljc+7sUl/N2iIilViVuWmeSFnoUL8GX43pwVXNo8lzuXn6v1sYOXcdqdnnvjxSRES8i8KMVAthAT68O7QDT93YArvVYPGmo9w4PZ6NB1M8XZqIiFwkhRmpNgzDYHiPhnx6fzfq1vDnYFI2t85cwfvL91LFe1tFRKo0hRmpdtrEhvHVmJ5c17IWDpfJc19uZcR/1pKSlefp0kREpBQUZqRaCvW389Zf2/PMTS3xsVpYuvUYN0xbzroDyZ4uTURESkhhRqotwzC4q1sDFjzYjfoRAfyRks3Amb/w9rLduN3qdhIR8RYKM1LttaoTypeje3Bj6xicbpMpX//O8A9Wk5SpbicREW+gMCMCBPvZmX5HO164uRU+Ngs/bD9On6nxrN6X5OnSRETkTyjMiJxkGAZDOtdn4YPdaRQZyNG0HG5/ZyVv/LBL3U4iIpWYwozIGVrUDuGL0T24uV0dXG6Tl7/Zzl2zfuVERq6nSxMRkXNQmBE5h0BfG68ObMNLt7TGz24hfucJ+kyN55fdiZ4uTUREzqAwI3IehmEw8LJY/juyB42jgkhIz2XIeyuZ+t1OXOp2EhGpNBRmRP5E01rBLBrVnds61MVtwmvf7eDO91eRkJ7j6dJERASFGZFiCfCx8fJtbXh1YBv87VZW7E6kz9R4lu884enSRESqPYUZkRIY0L4uX4zuQbNawZzIyOPOf63ilW+343S5PV2aiEi1pTAjUkKNo4JYOLI7d3SKxTRh+v92Mfi9VRxNVbeTiIgnKMyIlIKf3cqUAa2ZentbAn2s/Lo3iT7T4vlxe4KnSxMRqXYUZkQuQr+2dfhyTE9axISQlJnHsFmr+cfXv+NQt5OISIVRmBG5SA0jA1nwYDfu7FIfgJnLdnP7Oys5nJLt4cpERKoHhRmRMuBnt/Jc/1a8Mbg9wb421u5Pps+0eL7beszTpYmIVHkKMyJl6IbWMXw5pgeX1gklJcvB3/69hue/3EqeU91OIiLlRWFGpIzVjwjk0we6cnf3BgC8t3wvA9/+hYNJWZ4tTESkilKYESkHvjYrE/u25O07OxDiZ2PDwRRumBbPN1uOero0EZEqR2FGpBxd27IWX43pSdvYMNJynNz3n7VMWrSFXKfL06WJiFQZCjMi5Sw2PICP7+vKvT0bAjB7xT5ufesXDiSq20lEpCwozIhUAB+bhSduaMG/hnUkLMDOpj9SuWFaPIs3HfF0aSIiXk9hRqQCXdEsmsVjetKxfg3Sc508OGcdTy7cRI5D3U4iIqWlMCNSwWqH+TNvRBce7HUJAB+uPMCAN1ew90SmhysTEfFOCjMiHmC3WnjsumZ8cE8nwgN92HokjRunxfPfDX94ujQREa+jMCPiQX9pUpOvx/akc8NwMvNcjJ2/gccX/KZuJxGRElCYEfGw6BA/5vytM2OuaIxhwLxfD9Jvxs/sSsjwdGkiIl5BYUakErBZLYy/pikfDu9MZJAv24+l03f6cj5be8jTpYmIVHoKMyKVSPfGkSwe24PujSPIdrh4+JONPPLJRrLynJ4uTUSk0lKYEalkooL9+Pc9nRl/dRMsBny69hA3zfiZ7UfTPV2aiEilpDAjUglZLQZjroxj7r1diAr2ZVdCBv3eWM5Hqw9gmqanyxMRqVQUZkQqsS6NIlg8tieXN6lJjsPN3z/bxEMfbSAjV91OIiKnKMyIVHKRQb7MHnYZj13XFKvFYOGGw9w0fTlbD6d5ujQRkUpBYUbEC1gsBg/2asz8EV2ICfVjz4lM+r/5M3NW7Ve3k4hUewozIl7ksgbhLB7TkyuaRZHndPPE55sZNW896TkOT5cmIuIxCjMiXqZGoA/vDe3IE32aY7MYfPXbEW6cvpzNf6R6ujQREY9QmBHxQhaLwb2XN+Lj+7tSJ8yf/YlZDHhzBR+s2KduJxGpdgyzlL/53G43u3btIiEhAbfbXWTe5ZdfXibFlYW0tDRCQ0NJTU0lJCTE0+WIlLnULAePfrqRb7ceA+C6lrV48dbWhPrbPVyZiEjpleT7u1RhZuXKlQwePJj9+88++dAwDFyuyvOQPIUZqQ5M02T2in1MXrwNh8ukbg1/ZgxuT9vYME+XJiJSKiX5/i5VN9P9999Px44d2bx5M0lJSSQnJxe8kpKSSlW0iJSeYRjc3b0hnz3QjXrhARxKzua2mSt4L36Pup1EpMorVctMYGAgGzdupHHjxuVRU5lSy4xUN2k5DiZ89huLNx0F4KrmUfzztjaEBfh4uDIRkeIr95aZzp07s2vXrlIVJyLlK8TPzhuD2/Ncv5b42Cx8ty2BPlPjWbtfraYiUjXZSrPS6NGjefjhhzl69CiXXnopdnvREw1bt25dJsWJSOkYhsGdXRvQvn4NRs1dz94TmQx8eyWPXNOU+y5vhMVieLpEEZEyU6puJovl7AYdwzAwTVMnAItUMhm5Tv5vwSYWbTwMwF+a1OTVgW2ICPL1cGUiIudX7lcz7d+//4Lz69evX9JNlhuFGZH8q50+Wn2QiYu2kOt0Ex3iy7Tb29G5UYSnSxMROadyDzPeRGFG5LTfj6Yxcs46dh/PxGLAQ1c14cHejbGq20lEKplyPwEYYPfu3YwePZqrrrqKq6++mjFjxrB79+7Sbu68/vjjD/76178SERFBQEAAbdu2Ze3atWW+H5HqoFmtEBaN6sGA9nVwm/DK0h3c9a9fOZ6e6+nSRERKrVRh5ptvvqFFixb8+uuvtG7dmlatWrFq1SpatmzJ0qVLy6y45ORkunfvjt1u5+uvv2br1q288sorhIWFldk+RKqbQF8brw5sy8u3tsbfbmX5rhNcPzWeFbtOeLo0EZFSKVU3U7t27bj22mv5xz/+UWT6hAkT+Pbbb1m3bl2ZFDdhwgR+/vln4uPji71Obm4uubmn/8pMS0sjNjZW3Uwi57DzWDoj565jx7EMDANGXxHH2Cvj1O0kIh5X7t1M27ZtY/jw4WdNv+eee9i6dWtpNnlOixYtomPHjtx2221ERUXRrl073n333QuuM2XKFEJDQwtesbGxZVaPSFUTFx3Mf0f2YFDHWEwTpn2/kyHvreRYWo6nSxMRKbZShZmaNWuyYcOGs6Zv2LCBqKioi62pwJ49e3jrrbeIi4vjm2++4f7772fMmDH8+9//Pu86jz/+OKmpqQWvgwcPllk9IlWRv4+VF29tzeuD2hLgY2XlniT6TI3npx3HPV2aiEixlOqmeffeey8jRoxgz549dOvWDcMwWL58OS+++CIPP/xwmRXndrvp2LEjkydPBvK7t7Zs2cJbb73F0KFDz7mOr68vvr66f4ZISfVvV4dL64Yycs46fj+aztB//cqDvS5h/NVNsFlLfa2AiEi5K1WYeeqppwgODuaVV17h8ccfB6B27dpMmjSJMWPGlFlxMTExtGjRosi05s2b89lnn5XZPkTktEtqBrFwZHee+3Irc1Yd4M0fd7N6XxLT7mhHTKi/p8sTETmnUv25ZRgGDz30EIcOHSrozjl06BBjx47FMMruxMHu3buzffv2ItN27NhRqW7KJ1LV+NmtvHDzpUy/ox1BvjZW70umz9R4/vf7MU+XJiJyThfddhwcHExwcHBZ1HKWhx56iJUrVzJ58mR27drF3Llzeeeddxg5cmS57E9ETuvbpjZfju5BqzohJGc5uGf2GqYs3obD5fZ0aSIiRRT70uz27dvz/fffU6NGDdq1a3fBFpiyujQb4Msvv+Txxx9n586dNGzYkPHjx3PvvfcWe33dAVjk4uQ6XUxZ/DuzV+wDoF29MKbf0Y66NQI8W5iIVGkl+f4u9jkz/fr1Kzixtl+/fmXanXQhN954IzfeeGOF7EtEzuZrszLpppZ0aRTOo5/+xvoDKdwwbTkv39qaa1rW8nR5IiJ6NpOIFN/BpCxGzV3HxkOpANzdvQGPX98cH5uudhKRslXuN81r1KgRiYmJZ01PSUmhUaNGpdmkiHiB2PAAPrm/G8N7NARg1s/7uG3mCg4mZXm4MhGpzkoVZvbt24fL5Tprem5uLocOHbrookSk8vKxWXjqxha8O7Qjof52Nh5Kpc+0eL7edMTTpYlINVWi+8wsWrSoYPybb74hNDS04L3L5eL777+nYcOGZVediFRaV7eIZvHYnoyeu451B1J4YM46hnatz//1aY6f3erp8kSkGinROTMWS35DjmEYnLma3W6nQYMGvPLKK5XqhF2dMyNSvhwuN//8djtvL9sDQMvaIbwxuD0NIgM9XJmIeLOSfH+X6gTghg0bsnr1aiIjI0tdZEVRmBGpGD9sT+DhjzeSlJlHkK+NyQMu5aY2tT1dloh4qXI/AXjv3r1eEWREpOL0bhrF4jE96dQgnIxcJ2PmrefxBZvIcZx9fp2ISFkq9aXZmZmZLFu2jAMHDpCXl1dkXlk+n+liqWVGpGI5XW6mfr+TGT/swjShWa1g3hjSnktqBnm6NBHxIuXezbR+/Xr69OlDVlYWmZmZhIeHc+LECQICAoiKimLPnj2lLr6sKcyIeMbynScY99F6TmTkEeBj5YWbW3Fzu7qeLktEvES5dzM99NBD9O3bl6SkJPz9/Vm5ciX79++nQ4cO/POf/yxV0SJStfSIi2TxmJ50uySCrDwXD320kUc/2Uh2nrqdRKRslSrMbNiwgYcffhir1YrVaiU3N5fY2Fheeukl/u///q+saxQRLxUV4sd/hnfmoauaYDHgk7WHuGnGcnYcS/d0aSJShZQqzNjt9oJnM0VHR3PgwAEAQkNDC8ZFRACsFoOxV8Xx4d86UzPYl50JGdw0Yzkfrzl41i0eRERKo1Rhpl27dqxZswaA3r178/TTTzNnzhzGjRvHpZdeWqYFikjV0O2SSL4e25OecZHkONw89ulvjP94I5m5Tk+XJiJerlRhZvLkycTExADw3HPPERERwQMPPEBCQgLvvPNOmRYoIlVHZJAvH9zdiUevbYrFgM/X/0HfGcvZdiTN06WJiBcr8dVMpmly4MABoqKi8Pf3L6+6yoyuZhKpnH7dm8SYees5mpaDj83CpL4tuaNTbEEXtohUb+V6NZNpmsTFxemBkiJyUTo1DGfx2J70blqTPKeb//t8E2PmbyA9x+Hp0kTEy5Q4zFgsFuLi4khMTCyPekSkGgkP9OH9uy7j8eubYbMYfLHxMH2nL2fzH6meLk1EvEipzpl56aWXePTRR9m8eXNZ1yMi1YzFYnDfXy7ho/u6UifMn32JWQx4cwX//mWfrnYSkWIp1R2Aa9SoQVZWFk6nEx8fn7POnUlKSiqzAi+WzpkR8R4pWXk88slvfLftGADXt6rFP25pTai/3cOViUhFK8n3t600O3jttdd0kp6IlLmwAB/eHdqBf/28j398vY2vNx9l8+FUZtzRnjaxYZ4uT0QqqVI/aNJbqGVGxDttPJjCqHnrOJiUjd1qMOH65tzTvYH+kBKpJsr92UxWq5WEhISzpicmJmK1WkuzSRGRItrEhvHl6J5c36oWDpfJc19u5d5/ryUlK8/TpYlIJVOqMHO+xpzc3Fx8fHwuqiARkVNC/e28OaQ9z/ZriY/VwnfbjnHDtOWs3Z/s6dJEpBIp0Tkz06ZNA8AwDN577z2CgoIK5rlcLn766SeaNWtWthWKSLVmGAZDuzagfb0ajJq7jn2JWQx6+xcevbYp9/ZshMWibieR6q5E58w0bNgQgP3791O3bt0iXUo+Pj40aNCAZ599ls6dO5d9paWkc2ZEqo70HAf/9/lmvth4GIDeTWvyysC2hAeqRVikqinJ93epTgDu3bs3CxYsoEaNGqUusqIozIhULaZpMn/1QSYt2kKu002tED+m3dGOTg3DPV2aiJShcg8z3kRhRqRq2nYkjZFz17HneCYWA8Zf3YQHezVWt5NIFVHuYcblcjF79my+//57EhIScLvdReb/73//K+kmy43CjEjVlZnr5KmFm1mw/g8AesZF8urAttQM9vVwZSJyscr9pnljx45l9uzZ3HDDDbRq1Ur3fRARjwj0tfHqoLZ0vSSCp/67mfidJ+gzLZ6pg9rSrXGkp8sTkQpSqpaZyMhI/v3vf9OnT5/yqKlMqWVGpHrYeSydkXPXseNYBoYBY66IY8yVcVjV7STilcr9pnk+Pj40bty4VMWJiJSHuOhg/juyBwM71sU0Yer3O/nre6tISMvxdGkiUs5KFWYefvhhpk6dqifaikil4u9j5aVb2/DaoDYE+Fj5ZU8ifabFE7/zuKdLE5FyVKpupptvvpkffviB8PBwWrZsid1e9Im2CxYsKLMCL5a6mUSqp93HMxg5Zx2/H03HMGBkr8aMuyoOm7VUf8OJSAUr9xOAw8LCuPnmm0tVnIhIRbikZhALR3bn2S+3MnfVAWb8sItf9yYx9Y62xIT6e7o8ESlDus+MiFR5X2w8zOMLNpGR66RGgJ1XB7Wld9MoT5clIhdQ7icAAzidTr777jvefvtt0tPTATh8+DAZGRml3aSISLno26Y2X47uQas6ISRnObh71mqmfL0Nh8v95yuLSKVXqpaZ/fv3c91113HgwAFyc3PZsWMHjRo1Yty4ceTk5DBz5szyqLVU1DIjIqfkOl1MWfw7s1fsA6B9vTCmD25PnTB1O4lUNuXeMjN27Fg6duxIcnIy/v6nfwncfPPNfP/996XZpIhIufO1WZl0U0tm/rU9wX421h1Ioc/UeJZuPebp0kTkIpQqzCxfvpwnn3wSH5+iT6qtX78+f/zxR5kUJiJSXq5rFcPiMT1pExtGaraDe/+9hue+3EqeU91OIt6oVGHG7XbjcrnOmn7o0CGCg4MvuigRkfIWGx7AJ/d15W89GgLw/vK93DZzBQeTsjxcmYiUVKnCzNVXX83rr79e8N4wDDIyMpg4caJXPOJARATAx2bhyRtb8N7QjoT629l4KJU+0+L5etMRT5cmIiVQqhOADx8+TO/evbFarezcuZOOHTuyc+dOIiMj+emnn4iKqjyXPOoEYBEpjj9Sshk9dx3rDqQAMLRrff6vT3P87FbPFiZSTZXk+7vU95nJzs5m/vz5rF27FrfbTfv27RkyZEiRE4IrA4UZESkuh8vNK9/uYOay3QC0rB3CG4Pb0yAy0MOViVQ/FRJmvIXCjIiU1A/bE3j4440kZeYR5Gtj8oBLualNbU+XJVKtlPul2VOmTOFf//rXWdP/9a9/8eKLL5ZmkyIilUbvplEsHtOTTg3Cych1Mmbeeh5fsIkcx9kXPoiI55UqzLz99ts0a9bsrOktW7asVDfMExEprVqhfsy9tzOjejfGMGDerwfo/8bP7D6uu5yLVDalCjNHjx4lJibmrOk1a9bkyBFdBSAiVYPNauGRa5vy73s6ERnkw+9H0+k7fTmfrz/k6dJEpJBShZnY2Fh+/vnns6b//PPP1K6tfmURqVp6xtVk8ZiedLskgqw8Fw99tJFHP9lIVp7T06WJCGArzUp/+9vfGDduHA6HgyuuuAKA77//nscee4yHH364TAsUEakMokL8+M/wzrzxwy5e/24Hn6w9xIaDKbwxpD1NonWzUBFPKtXVTKZpMmHCBKZNm0ZeXh4Afn5+/P3vf+fpp58u8yIvhq5mEpGy9svuRMbOX09Cei5+dgvP9mvFbR3qYhiGp0sTqTIq7NLsjIwMtm3bhr+/P3Fxcfj6+pZ2U+VGYUZEysOJjFwe+mgD8TtPAHBzuzo8378Vgb6lavAWkTPoPjOFKMyISHlxu03eWrabV5fuwOU2aRQZyIzB7WlRW79rRC5WuYeZzMxM/vGPf/D999+TkJCA2130SbN79uwp6SbLjcKMiJS31fuSGDNvPUdSc/CxWZjYtwWDO9VTt5PIRSjJ93epTwBetmwZd955JzExMfoHKyLV2mUNwvlqTE8e+WQj//s9gSc+38wvuxOZMuBSgv3sni5PpMorVctMWFgYX331Fd27dy+PmsqUWmZEpKK43SbvLd/DS0u243Sb1I8I4I3B7WlVJ9TTpYl4nXJ/nEGNGjUIDw8vVXEiIlWVxWIw4vJL+Pj+rtQJ82d/YhYD3lzBByv2UcVPTxTxqFKFmeeee46nn36arKyssq7ngqZMmYJhGIwbN65C9ysiUhLt69XgqzE9uLpFNHkuNxMXbeGBD9eRmu3wdGkiVVKpzpl55ZVX2L17N9HR0TRo0AC7vWif8Lp168qkuMJWr17NO++8Q+vWrct82yIiZS0swId37uzArJ/3MeXrbSzZcpTNh1OZMbg9bWPDPF2eSJVSqjDTv3//Mi7jwjIyMhgyZAjvvvsuzz//fIXuW0SktAzD4J4eDenYoAaj5q7nQFIWt81cwd+va8bwHg118YRIGfGK+8zcddddhIeH89prr9GrVy/atm3L66+/fs5lc3Nzyc3NLXiflpZGbGysTgAWEY9Ky3Hw+Geb+GpT/sN4r2oexT9va0NYgI+HKxOpnMr9BOBT1q5dy4cffsicOXNYv379xWzqvObPn8+6deuYMmVKsZafMmUKoaGhBa/Y2NhyqUtEpCRC/OzMGNyO5/q3wsdm4bttCfSZGs/a/UmeLk3E65WqZSYhIYHbb7+dH3/8kbCwMEzTJDU1ld69ezN//nxq1qxZJsUdPHiQjh078u2339KmTRsAtcyIiNfbcjiVUXPXs/dEJlaLwaPXNmVEz0ZYLOp2Ejml3FtmRo8eTVpaGlu2bCEpKYnk5GQ2b95MWloaY8aMKVXR57J27VoSEhLo0KEDNpsNm83GsmXLmDZtGjabDZfLddY6vr6+hISEFHmJiFQmLWuH8sXoHtzUpjYut8k/vv6dez5YTWJG7p+vLCJnKVXLTGhoKN999x2XXXZZkem//vor11xzDSkpKWVSXHp6Ovv37y8y7e6776ZZs2b8/e9/p1WrVn+6Dd00T0QqK9M0+Wj1QSYu2kKu0010iC/Tbm9H50YRni5NxOPK/XEGbrf7rMuxAex2+1nPaboYwcHBZwWWwMBAIiIiihVkREQqM8MwuL1TPdrWC2PknHXsPp7JHe+u5KGrmvBg78ZY1e0kUiyl6ma64oorGDt2LIcPHy6Y9scff/DQQw9x5ZVXlllxIiLVQbNaISwa1YMB7evgNuGVpTu461+/cjxd3U4ixVGqbqaDBw/Sr18/Nm/eTGxsLIZhcODAAS699FL++9//Urdu3fKotVTUzSQi3uSTNQd5+r9byHa4iAzyZdrtbenWONLTZYlUuJJ8f1/UfWaWLl3K77//jmmatGjRgquuuqq0myo3CjMi4m12Hktn5Nx17DiWgWHA6CviGHtlnLqdpFoptzDzv//9j1GjRrFy5cqzNpyamkq3bt2YOXMmPXv2LF3l5UBhRkS8UXaei2e+2ML81QcB6NIonKm3tyM6xM/DlYlUjHK7NPv111/n3nvvPedGQ0NDue+++3j11VdLVq2IiJzF38fKP25pzdTb2xLoY2XlniT6TI1n2Y7jni5NpNIpUZjZuHEj11133XnnX3PNNaxdu/aiixIRkXz92tbhi9E9aB4TQmJmHnf961deWvI7TlfZXTkq4u1KFGaOHTt2zkuyT7HZbBw/rr8aRETKUqOaQXz+YDf+2qUeAG/+uJs73l3JkdRsD1cmUjmUKMzUqVOHTZs2nXf+b7/9RkxMzEUXJSIiRfnZrTzf/1JmDG5HkK+N1fuS6TM1nv/9fszTpYl4XInCTJ8+fXj66afJyck5a152djYTJ07kxhtvLLPiRESkqBtb1+arMT24tE4oyVkO7pm9hsmLt+FQt5NUYyW6munYsWO0b98eq9XKqFGjaNq0KYZhsG3bNt544w1cLhfr1q0jOjq6PGsuEV3NJCJVUa7TxZTFvzN7xT4A2tULY/od7ahbI8CzhYmUkXK9z8z+/ft54IEH+Oabbzi1qmEYXHvttbz55ps0aNCg1IWXB4UZEanKvtlylEc/2UhajpMQPxsv39aGa1vW8nRZIhetQm6al5yczK5duzBNk7i4OGrUqFGqYsubwoyIVHUHk7IYPW89Gw6mAHB39wZMuL4ZvjarZwsTuQgVdgdgb6AwIyLVQZ7Tzcvf/M678XsBuLROKG8Mbk+9CHU7iXcqt5vmiYhI5eRjs/DEDS14/66OhAXY2fRHKjdMi2fxpiOeLk2k3CnMiIhUIVc2j2bxmJ50rF+D9FwnD85Zx1MLN5PjcHm6NJFyozAjIlLF1A7zZ96ILjzY6xIA/rNyPwPeXMHeE5kerkykfCjMiIhUQXarhceua8YH93QiItCHrUfSuHFaPP/d8IenSxMpcwozIiJV2F+a1GTx2J50aRROZp6LsfM3MOGz38jOU7eTVB0KMyIiVVx0iB9z/taFMVfGYRgwf/VB+r/xM7sS0j1dmkiZUJgREakGrBaD8Vc34cPhnYkM8mX7sXT6Tv+ZT9ce8nRpIhdNYUZEpBrp3jiSxWN70L1xBNkOF498spGHP95IVp7T06WJlJrCjIhINRMV7Me/7+nMw1c3wWLAZ+sO0Xf6crYfVbeTeCeFGRGRashqMRh9ZRxz7+1CdIgvu49nctOM5cz/9QBV/MbwUgUpzIiIVGNdGkWweExP/tKkJrlONxMWbGLcRxvIyFW3k3gPhRkRkWouIsiXWcMu4+/XNcNqMfjvhsP0nb6cLYdTPV2aSLEozIiICBaLwQO9LuGjEV2ICfVj74lMbn5zBf9ZuV/dTlLpKcyIiEiBjg3CWTymJ1c2iyLP6eaphZsZNXc9aTkOT5cmcl4KMyIiUkSNQB/eu6sjT97QHJvF4KtNR7hx2nJ+O5Ti6dJEzklhRkREzmIYBn/r2YhPH+hG3Rr+HEjK4pa3VjDr573qdpJKR2FGRETOq21sGF+N6cm1LaNxuEye+WIr9/1nLalZ6naSykNhRkRELijU387Mv3bgmZta4mO18O3WY/SZFs/6A8meLk0EUJgREZFiMAyDu7o14LMHulE/IoA/UrK5beYvvPvTHtxudTuJZynMiIhIsV1aN5QvRvfghtYxON0mLyzext/+vYbkzDxPlybVmMKMiIiUSIifnRl3tOOFm1vhY7Pwv98T6DMtntX7kjxdmlRTCjMiIlJihmEwpHN9Fj7YnUaRgRxJzeH2d1byxg+71O0kFU5hRkRESq1F7RC+GN2Dm9vVweU2efmb7dw161dOZOR6ujSpRhRmRETkogT62nh1YBteuqU1fnYL8TtP0GdqPL/sTvR0aVJNKMyIiMhFMwyDgZfFsmhUDxpHBZGQnsuQ91Yy9buduNTtJOVMYUZERMpMk+hgFo3qzm0d6uI24bXvdnDn+6tISM/xdGlShSnMiIhImQrwsfHybW14dWAbAnysrNidSJ+p8cTvPO7p0qSKUpgREZFyMaB9XRaN6kGzWsGcyMhj6L9+5Z/fbMfpcnu6NKliFGZERKTcNI4KYuHI7tzRqR6mCTN+2MXgd1dxNFXdTlJ2FGZERKRc+dmtTBlwKdPuaEeQr41f9yXRZ1o8P2xP8HRpUkUozIiISIW4qU1tvhjdg5a1Q0jKzOPuWauZ8vU2HOp2koukMCMiIhWmYWQgnz3QjaFd6wPw9rI93P7OSv5IyfZwZeLNFGZERKRC+dmtPNuvFW8OaU+wr421+5PpMzWepVuPebo08VIKMyIi4hF9Lo3hqzE9aV03lNRsB/f+ew3PfbmVPKe6naRkFGZERMRj6kUE8On93bine0MA3l++l9tmruBgUpaHKxNvojAjIiIe5WOz8HTfFrw7tCOh/nY2Hkqlz7R4lmw+4unSxEsozIiISKVwdYtovhrTg3b1wkjPcXL/h+uY+N/N5Dpdni5NKjmFGRERqTTq1gjg4/u6ct9fGgHwwS/7GfDmCvadyPRwZVKZKcyIiEilYrdaePz65swadhk1AuxsOZzGjdOX88XGw54uTSophRkREamUejeLYvHYnlzWoAYZuU5Gz1vP4ws2keNQt5MUpTAjIiKVVkyoP/Pu7cKo3o0xDJj36wH6v/EzuxIyPF2aVCIKMyIiUqnZrBYeubYp/76nE5FBPvx+NJ2bZixnwbpDni5NKgmFGRER8Qo942qyeExPujaKICvPxfiPN/LoJxvJynN6ujTxMIUZERHxGlEhfnz4t86MuyoOw4BP1h6i34yf2XEs3dOliQcpzIiIiFexWgzGXdWEOX/rTM1gX3YmZHDTjOV8vOYgpml6ujzxgEodZqZMmcJll11GcHAwUVFR9O/fn+3bt3u6LBERqQS6XRLJ4jE96RkXSY7DzWOf/sb4jzeSmatup+qmUoeZZcuWMXLkSFauXMnSpUtxOp1cc801ZGbq5kkiIgI1g3354O5OPHptUywGfL7+D/pOX87Ww2meLk0qkGF6UZvc8ePHiYqKYtmyZVx++eXFWictLY3Q0FBSU1MJCQkp5wpFRMRTft2bxJh56zmaloOPzcLEvi0Y3KkehmF4ujQphZJ8f1fqlpkzpaamAhAeHn7eZXJzc0lLSyvyEhGRqq9Tw3AWj+1J76Y1yXO6eeLzzYyet570HIenS5Ny5jVhxjRNxo8fT48ePWjVqtV5l5syZQqhoaEFr9jY2AqsUkREPCk80If377qM/+vTDJvF4MvfjnDj9OVs/iPV06VJOfKabqaRI0fy1VdfsXz5curWrXve5XJzc8nNzS14n5aWRmxsrLqZRESqmbX7kxkzbz1/pGTjY7XwxA3NGdq1vrqdvERJupm8IsyMHj2ahQsX8tNPP9GwYcMSratzZkREqq+UrDwe+eQ3vtt2DIDrWtbixVtbE+pv93Bl8meqzDkzpmkyatQoFixYwP/+978SBxkREanewgJ8eHdoB566sQV2q8GSLUe5YVo8Gw6meLo0KUOVOsyMHDmSDz/8kLlz5xIcHMzRo0c5evQo2dnZni5NRES8hGEYDO/RkE/v70ZsuD+HkrO59a0VvBe/RzfZqyIqdTfT+fo1Z82axbBhw4q1DXUziYjIKWk5DiZ89huLNx0F4KrmUfzztjaEBfh4uDI5U5U7Z+ZiKMyIiEhhpmny4cr9PPfVNvKcbmqH+jF9cDs61D//bT+k4lWZc2ZERETKmmEY3Nm1AZ8/2I2GkYEcTs1h4NsreevH3bjdVfrv+ypLYUZERKqllrVD+WJ0D25qUxuX2+TFJb9z9+zVJGbk/vnKUqkozIiISLUV5Gtj6u1tmTLgUnxtFpbtOE6fafGs2pPo6dKkBBRmRESkWjMMgzs61eO/o7pzSc1AjqXlcse7K5n+/U5c6nbyCgozIiIiQLNaISwa1YMB7evgNuGVpTsY+q9VJKTneLo0+RMKMyIiIicF+tp4dWBb/nlbG/ztVn7elUifqcv5edcJT5cmF6AwIyIicoZbO9Tli9HdaRodzImMXP76/ipeXbpD3U6VlMKMiIjIOTSOCmbhyO7cflkspgnTvt/J4HdXcixN3U6VjcKMiIjIefj7WPnHLa2ZentbAn2srNqbRJ+p8SzbcdzTpUkhCjMiIiJ/ol/bOnwxugfNY0JIzMzjrn/9yotLfsfpcnu6NEFhRkREpFga1Qzi8we78dcu9QB468fd3P7OSg6n6OHHnqYwIyIiUkx+divP97+UGYPbEexrY83+ZPpMi+f7bcc8XVq1pjAjIiJSQje2rs2XY3pwaZ1QUrIcDP9gDS98tZU8p7qdPEFhRkREpBTqRwTy6QNdGdatAQDvxu9l4Nu/cDApy7OFVUMKMyIiIqXka7My6aaWvH1nB0L8bGw4mMIN0+JZsvmop0urVhRmRERELtK1LWvx1ZietI0NIy3Hyf0frmXSoi3kOl2eLq1aUJgREREpA7HhAXxyf1dGXN4IgNkr9nHrW7+wPzHTw5VVfQozIiIiZcRutfB/fZrzr2EdCQuws+mPVG6Ytpwvfzvs6dKqNIUZERGRMnZFs2gWj+lJx/o1yMh1Mmruep74fBM5DnU7lQeFGRERkXJQO8yf+SO68GCvSwCYs+oAN7+5gj3HMzxcWdWjMCMiIlJObFYLj13XjA/u6UREoA/bjqRx4/TlLFz/h6dLq1IM0zSr9PPM09LSCA0NJTU1lZCQkDLbbuoXX5D07/9gDa+BLawG1honX+E1sJ0arxGOtUYY1tBQDItyo4hIdXYsLYex89ezck8SAIM6xjLpppb4+1g9XFnlVJLvb1sF1VTl5B04QM6mTcVb2GLBGhZ2MuCEYasRfjr81AjDFn7yfVgNbOH50w1/fwzDKN8PISIiFSY6xI85f+vC1O93Mv1/O/lozUHWH0zmjcHtiYsO9nR5Xk0tM6WUd/AguTt34UpOxpWchDM5GVdyCq6kJFzJyThTknElJeNOTy/V9g1fX6zh+S07BS0/EeHYwiPyhxGR2CLCsUZEYAsPxxIQUGafTUREyteKXScY+9EGjqfn4m+38my/ltzWMdbTZVUqJfn+VpgpZ2ZeHq7UVJxJyfnBJyUZ58nA4yoy7eR4UhKmw1Hi/RgBAfktPCcDjy0yAmt4RH7gKXgfji0iAmtYGIZVzZoiIp50PD2Xhz7awPJdJwAY0L4Oz/VrRaCvOk1AYaYIT4eZkjJNE3dmFq6U0+HGWRB8knAmJuFKTMSZlIQz8QSuE4mYeXkl24lhYK1RIz/YnGzZsUZEnHwfjjU4BFtEOPbatbFGRmLx9S2fDysiUs253CZv/biLV5fuwG3CJTUDeWNIe5rVqvzfV+VNYaYQbwszJVUQfpIScZ5IzB8mJhUMnYkncCUm4UxKxJWYhCslBUr4v9wSEoItMvL0q2Yktpo1sUZGYousmf8+MjL/XB+d6CwiUmKr9iQyZv56jqXl4muzMOmmltx+WWy1PndSYaaQqh5mSsp0OvPP6Uk62cJzjsDjTEoi57ffSr5xqzW/lafmqdBTMz/snApAJ8OQNbImlsCAav2PVETkTIkZuYz/eCPLdhwH4KY2tZk84FKCqmm3k8JMIQozpWeaJu60NJwnTuA8fiJ/eOI4rlPvjx8/Oe0EruTkErX4GP7+2GrWBMAaHIx/27bYoqKwRUdhj4rKH4+KwhIcrNAjItWG223yTvweXv5mOy63SYOIAGYMbk+rOqGeLq3CKcwUojBTMUyHA2dS8umwc47A4zxxHNfxE7izsoq9XcPP72SwqYk9Krog5JyedjL06GouEalC1u5PYvTc9RxOzcHHauGpG5vz1y71q9UfdwozhSjMVD7uzEyciYkFgSd3+++4UlJwZ2XjTEjAeTwBR8Jx3Kmpxd6mJSgIW3R0kYBjqxl1Vvix+PiU4ycTESk7KVl5PPLJb3y37RgAfS6txT9uaU2In93DlVUMhZlCFGa8lzs7O79lJyEBZ0ICjoQEnAmn35+aZpagpcdao0bRcBMQiLVGGH7NmmOvFY2tVq38E5mr0V8/IlJ5mabJ+8v38uKS33G4TGLD/ZlxR3vaxIZ5urRypzBTiMJM1efKyMSZcOyskHNm8CnuJeyGjw+26Gjs0fnhxl4rGlt0LewxtfKHtaKxRkToyi0RqTAbDqYwau46DiVnY7caTLi+Ofd0b1Cl//BSmClEYUbg5MnMqan5IedYQkF3ljMhgaw1a3GlpeVf6XXiRPE2aLPld2cVDjuFh7VqYYuMxLBVz6sQRKTspWY7+Punv7Fky1EArmoezT9va01YQNXsPleYKURhRkrCzMvDkXAc57GjOI4exXn0GI5jRYfO48fB7f7zjVks+Zen14rGHl2r6LDWyVaeqJoYOo9HRIrJNE3+/ct+XvhqG3kuN3XC/Jl2Rzs61K/h6dLKnMJMIQozUtZMpzP/5OWjR3EcPXYy+BQaHj2KIyEBnM5ibc/w88M3Lg57rVrYa8dgi4nBXismf/xUC4+6tESkkM1/pDJy7jr2J2ZhtRg8em1TRvRshMVSdbqdFGYKUZgRTzDdblyJiadDzpGjRcPOsfxhsZ7DZbfnB51TYadWDPaY02HHXrs21qCg8v9QIlKppOc4eHzBJr787QgAvZrW5NWBbQkPrBqtvQozhSjMSGVlmiau5GTy9u/HlZSE4/ARHEeP4Dxy5OT4UZwJCcXq0rIEB+d3XdU+2apzRtixR0WpO0ukCjJNk3m/HmTSF1vIc7qpFeLHtDva0alhuKdLu2gKM4UozIg3Mx0OnMeP4ygIOEXDjuPIkeLdj8cw8h8nca6wE1Mbe0yt/Cu0qvCVESJV2bYjaYycu449xzOxGDD+6iY82KuxV3c7KcwUojAjVZ07MzM/2BQOO0fyg47jyGGcR44W67J0w8cHW0ytgrBji6mVH3piYrBFROBTvz6WwMAK+EQiUhqZuU6eXLiZz9f/AUDPuEheHdiWmsG+Hq6sdBRmClGYkerONM2zu7HOCDvO48eL9WwtS2hoQcApaN2Jiclv3akdg61mTQyrtQI+lYici2mafLLmEE8v2kyOw03NYF+mDmpLt8aRni6txBRmClGYEflzBZekHzl8MuQcLQg6jiNHyN2xo3gbslrzbzZY+2TAObM7q3YM1uDg8v0wIsKOY+mMnLOOnQkZGAaMuSKOMVfGYfWibieFmUIUZkTKhis9HceRUy07hQLP4ZPvjx0r1uXolqCg/K6r2qdaePJDTkGXVlQUhr16PHtGpDxl57mYuGgzH685BECXRuFMu70dUSF+Hq6seBRmClGYEakYpsuF88QJHIcPnw48p4LOkSM4Dx/GVZyTlS0WbFFRJ8NNrSLdWKcCjyU0VCcrixTT5+sP8cTnm8nKcxER6MNrg9pyeZOani7rTynMFKIwI1J5FJysXNCNdUbgOXKkWPfeMQICLnzuTnS0npAuUsju4xmMnLOO34+mYxjwYK9LeOiqJtislfeGnAozhZRXmDmScYRDGYcK3pumScF/J8fzZ3Du6YXXKbTuhdYx82ecc/qp/41nzTvf9ELr5LpyyXJkUcPv9O2wC//Va2AUHRpF319wnT9ZtvD0865jgMPlwGW6CLIHYRgGFixYDEv+uGHBQqFxw4KBgdVixaDQtDPXK8Y2LjTfYliwGbYi25eLU3CzwSIhp2jocSUlFWtb1pqRp8/bOUfgsdaokf8TZppgusB0n36VGwMMC1isYFhBd3aWCpTjcPHsl1uZu+oAAJ0ahDP1jrbEhPp7uLJzU5gppLzCzHub3mPquqlltj3xfjbDhtViLQg5VosVq3HydXLcZrFhNaxYLCeXKTTvrGHh5Q1LwXjhbdkt9oLhOcetdmxG/vCc8w0rdtPEZrqxmwY204XdNPOnuV3Y3SZWtwMjJwVsvuB2gcsBbue5X67C7x35y7udhdZxnZx+ruULb6fQum4HHN4AkU3AYsXtcOFMc+JIc+FId+FId+PIcONMN3FkgCPDxHT9ebA0rCb2ABf2ABe2ACf2QFfBe3ugC5u/C0tFPCfUsJ4ONwVBp3DgKTzPUnTaqWUNC1jtYPXJH1oKjVt9zhi3nzF+5nwfsPmB3f/PhxZdueaNvth4mMcXbCIj10mNADuvDmxL72ZRni7rLCX5/tYjfUsp1DeUBiH5j18v3HJR0KpwjumFWx7OOc/gguucOf3UOgXTi7GtM9fJcmSRkptC3eC6FM61RVqD8kfOO69w68+Zy5weFF22JPtIyU0hIy+D2kG1859+bbpx4z49broxOT1+rmmmaeKm0Hgx5hfeR+HPdj5O04nTVbznMXkTwzSxAb6mic/Jl+/JwHN6GueZfmqcM96fa1unl/E7+fI13fi7TeyAcXwbABbAB/AJAAKA6KL1mia4ci04sqw4sqw4M60F46feO3OsmC6DvHQbeek24Nz34bD6Fgo3hYKO1deNT7ATm68b42IbV0wXuFwXuREPsdgLhRs/sPkXHfoEnXwF5r98g0+OB53jfRD4npxuD1SrVTnq26Y2l9YJZdS8dWz+I427Z6/mvssb8ci1TbFX4m6nC1HLjHg3twtceeDMzf9r3pWb/97luMC0vKIvZ94FpuVvw3TmYjrzcLvyMN25uF0OXK48XM48XK48nO5c3C4nLrcDpysPl9uJy52HyzRxGeDCwHly6DbACbgMA9cZw1PT3VCwvMsA58n1Tm3HWWi6w8if5jAMHJwed3Jy2qn5Zyybv27Rcadh4KyE3WUWDHwtdvytPvha7PhZfPCz+uBn9cXP4oOv1Td/ntUXP6sv/ja/k+N++cvY/PC1+eFv9cPP5o+vacM/JQfriXR8kzKxHU/FOJ6C+9hxHEeP4ThyFDM7+88Ls1qxRUZij47CFh2Vf+JydBS2qJr5l6hH18QWFXX6/B23CzDzh6b75NB1emi68x9fUXhawTzz7Glu1+luMpcjvxXL5Tj9814wnnd63H2e6QXL54IjB5zZ5x66csv1/3UB+6kAFAS+IeAXCv5h+cOCV9jJ15nzwvLDlFxQrtPFlMW/M3vFPgDa1Qtj+h3tqFsjwLOFnaRupkIUZi7CqV+ehcNA4S/7vMz85cogLJR6Wrme31AOCpr0TzXn+5xjmu8Zzf/FmXZy3OZbqMvgfNPOs1+rHQwDt+nG6XbidDtxuB35L5eDPHceea78V64r9+z3J8fz3PnvHS5HkeWKs8yp5XJdueQ4c3CZFdtiYTEsBNgC8Lf6EeH0o1a6lah0CxFpJuGpLkJTHAQn5RJ6MBlbbvFb4azh4diio08GnGjstaKxRdfCFh2V/0yt6GjveVio2w3OnPyXI/v8Q0c25GXk/544NcxNP/n+1LQMyM0o+r6s/k1bfU+Hm1NBx78GBEScfIWfHvcPPz3N5p13y70YSzYf4dFPfyM9x0mIn41/3taGa1rW8nRZCjOFVdowY5pn/HV05l9JZ4YAx9lf6me1QBRe9owAUmSZEmyrGN0rlYoXhAUpPofbQY4zh1xXLtnO7CLjpwJPjiunRMvkOHMK5mU7s0nJTSlVbYbbJCwTwtMhIt08PUyD8AyTiDQIzwCfYmYep7+dvPBgXJGhmDUjMGpGYqsVhW9wGP6XxBEYU5egqDoE+AZV3ZPNTfNkCMqEvJPBJzcDctMgJxWyU/KHOWcOC89L5aJ+b/kEFw06AREQGAlBURAYBUE1Tw6jICASrFXjbI2DSVmMmreejQdTALi7ewMev745PjbPdTspzBRSbmFm+9ew5fMLBIbCoeIcgcH955efVkqnvqzz0sE3FPxDFRbE67ncLnJc+SEny5FFljPrvONZjpPvzxjPdmQXWTY/WGUTlA0R6RBeOPCkFw1BgcXsuXEbkBoAacFWMkLsZIf4khPmT16NIFzhwZjhNTAia2CLjCQgMIwAewBB9iCCfILwtfoSZA8izC8sf5o9CGtVPIHX7c5v4SkcdE6FnexkyEos9EqC7KTT4yVuCTTyg8+ZISewJgRFQ3AtCI7JH/rXqPS/n/Kcbl5a8jvvLd8LQOu6ocy4oz31IjzT7aQwU0i5hZn4V+H7Z8puexgnv7QLf8HbzxME7Gcs53OOL/0zvvyLXKlwRgAoHCYutF+LrdL/YxSpTFxuF9nO7ILAk5KbgsPlINORSaYjkwxHBpmOTHLSk3ElnICEE1hPpGBPTMc3KYOAlBxCknOpe8SB2wBLCX5bZ/hBchCkBBqkBOWPJwcZpASeHs+rEYgtMIhg3xCCfYILgk+IT0ixxv1t/lWnlcjthtzU/FBzKtxkJULWCchIgMzjRYdZJ0rWJWbzKxpugmMKvQpN9/V8d+N3W4/x8CcbSc12EOxr48VbW9Pn0pgKr0NhppByCzOH1sKBFeduHShWYDhjmar4F5KIlBm300lGwh9kHjlI1tHD5Bw/Sl7CMVzHT2CeSMJISsaalI5PcgYWZ/G/ZPNs+a09qQGQFmicHEJqwOnxlECDtABICwCX9XR4sRpWAu2BBPsEF4Shc41fKCj5WL305oZuV37gyUw4I+wkQMZxyDgK6ccg/XB+i1Bx+YZCaF0IrZM/DDk5PDUeUif/u6Oc/ZGSzZh561m7P7/2O7vU54kbmuNnr7jvKoWZQirtOTMiIuXANE3cqak4jx/Pf504kT9MOF4wzXE8Aefx45iZWSXefqZffshJCTRJOxl4gnLg97oGGf6Q7g/p/vnjGf6Q7cMFW3R9LD4FwWZ/2n461upImG9YQeAJ9gkm2B6cP35yeGo82Cf/vd1SyZ/l5cg5GW6OQtrh/GH6kULDI5B2BByZxdiYkd+VdSrcBEXl/0FcvxuE1Yca9fNPdi6Lsl1uXl26g7d+3A1Ai5gQ3hjSnoaRgWWy/T+jMFOIwoyIyLm5MzNxJifjSkzEmZiEK+ncQ2dSIq6kZEpzPxyX1SA3wE5mgJWMAEj3gxQ/F8m+TjL8ToUfyPA3SPeHLN/89w4bxe7W9rP65Yeck61B52oFKjy9IBwVCkq2CrlD4p/ITjkZeA5B6iFI/SN/mFZovDiXxvvXOB1sCoYN8oehsSW+bP3H7QmM/3gjSZl5BPpYmTzgUvq1rVOqj1gSVS7MvPnmm7z88sscOXKEli1b8vrrr9OzZ89iraswIyJy8Uy3G1dqKq6kJJyJiaeHifnDzBUrsMfE4EpJyV8uJQUzt/T3pHFbLTgCfcjzs5HrZyXL3yDLB9J9TdJ9nKTYnaTaHWT5QpZffgjK9DXyh36Q7QtuS/HP5/G3+Z8z7JwZkNymm1qBtQj2CSbQFkiAPYBAe/4wwBZQvqHINPPP40k9WDToHN4AR3/LP68xK/HPtxMcc46wUx/C6uW3+JzjtIejqTmMmb+eX/fmP07k9stimXRTy3LtdqpSYeajjz7izjvv5M0336R79+68/fbbvPfee2zdupV69er96foKMyIinuHOzs4PN2e+UlNxJZ9j+sl5ZcVlt+Lys+PwsZDnayHHxyDHDtk2N5l2Nxk2Jxk2J7l2Cubl+HDy/elpebb8liKHDfKs+UOnlXO2HPlafQmwBeSHG3sAgbbAImGnIPycWsaW/z7QHojFsFDDr0b+TSBt/vhaffNv/mjzw1LcW03npkPKAUjeDyn7IXlfofH9f96VZbFDjQYQcQmENzr9irgEZ1Adpv6whxk/7MI0oWl0MG8MaUfjqOCS/q8plioVZjp37kz79u156623CqY1b96c/v37M2XKlD9dX2FGRMR7mKaJOzMLd3oarvR03OnpJ4cZuNLTcKdnnJxXeJheZNli3b25DOTZjJMBxyTPDg5r4eBjFASfUy+nBVynXtZC4xajYJrTAm7LyWWt5N9B3AqG1YbFbsdq98Fm88Fm9cFu9cFms2O3+eJjzZ/uY/PlRHYidUNj8+db7VitdmxWW/64Ow9rXha23LT8V04Ktqwk7NlJOLOPE+B2Y5B/5ZwFMDBPv7fYsARHkW6vyZpEfw44Qkk0atL7srZc9Ze/EBZdv0yPb5UJM3l5eQQEBPDJJ59w8803F0wfO3YsGzZsYNmyZWetk5ubS26hps20tDRiY2MVZkREqgnT4cCVkYGZlYX71Cs7O3+YmYU7+/R0Mzs7f1rhZU7NOzWel4eZm4uZk+Ppj1Zp/dYpiEH/Xl2m26wyD5o8ceIELpeL6OiiT5KLjo7m6NGj51xnypQpPPNMWd7/RUREvIlht2OrUQNq1CjT7ZqmCQ7H6XCTm4s7Jxcz7+R4bi5mbl6h9yeXyzu5nNMBTiem04XpzH9qvOlwYjqdmC5nkXn5LwcuRx4uRx5upwO3w4HpdOB2OTHdbkz3yYfjul0F782Tz/dyuPKwYT357C4T3GbBuHHqPfl3sjbM0+OmaZ7z3kEmFCx3LhbfirnC6XwqdZg55cwDe76DDfD4448zfvz4gvenWmZEREQuhmEY4OOD1ccHvOVZWhVgd0Iat4V79plWlTrMREZGYrVaz2qFSUhIOKu15hRfX198favfg8JEREQ84ZIoz5/C4bknSBWDj48PHTp0YOnSpUWmL126lG7dunmoKhEREalMKnXLDMD48eO588476dixI127duWdd97hwIED3H///Z4uTURERCqBSh9mBg0aRGJiIs8++yxHjhyhVatWLF68mPr1y/YSMBEREfFOlfrS7LKg+8yIiIh4n5J8f1fqc2ZERERE/ozCjIiIiHg1hRkRERHxagozIiIi4tUUZkRERMSrKcyIiIiIV1OYEREREa+mMCMiIiJeTWFGREREvFqlf5zBxTp1g+O0tDQPVyIiIiLFdep7uzgPKqjyYSY9PR2A2NhYD1ciIiIiJZWenk5oaOgFl6nyz2Zyu90cPnyY4OBgDMMo022npaURGxvLwYMH9dyncqTjXDF0nCuGjnPF0HGuGOV5nE3TJD09ndq1a2OxXPismCrfMmOxWKhbt2657iMkJET/WCqAjnPF0HGuGDrOFUPHuWKU13H+sxaZU3QCsIiIiHg1hRkRERHxagozF8HX15eJEyfi6+vr6VKqNB3niqHjXDF0nCuGjnPFqCzHucqfACwiIiJVm1pmRERExKspzIiIiIhXU5gRERERr6YwIyIiIl5NYeYC3nzzTRo2bIifnx8dOnQgPj7+gssvW7aMDh064OfnR6NGjZg5c2YFVer9SnKsFyxYwNVXX03NmjUJCQmha9eufPPNNxVYrfcq6c/0KT///DM2m422bduWb4FVREmPc25uLk888QT169fH19eXSy65hH/9618VVK33KulxnjNnDm3atCEgIICYmBjuvvtuEhMTK6ha7/TTTz/Rt29fateujWEYLFy48E/X8ch3oSnnNH/+fNNut5vvvvuuuXXrVnPs2LFmYGCguX///nMuv2fPHjMgIMAcO3asuXXrVvPdd9817Xa7+emnn1Zw5d6npMd67Nix5osvvmj++uuv5o4dO8zHH3/ctNvt5rp16yq4cu9S0uN8SkpKitmoUSPzmmuuMdu0aVMxxXqx0hznm266yezcubO5dOlSc+/eveaqVavMn3/+uQKr9j4lPc7x8fGmxWIxp06dau7Zs8eMj483W7Zsafbv37+CK/cuixcvNp944gnzs88+MwHz888/v+DynvouVJg5j06dOpn3339/kWnNmjUzJ0yYcM7lH3vsMbNZs2ZFpt13331mly5dyq3GqqKkx/pcWrRoYT7zzDNlXVqVUtrjPGjQIPPJJ580J06cqDBTDCU9zl9//bUZGhpqJiYmVkR5VUZJj/PLL79sNmrUqMi0adOmmXXr1i23Gqua4oQZT30XqpvpHPLy8li7di3XXHNNkenXXHMNK1asOOc6v/zyy1nLX3vttaxZswaHw1FutXq70hzrM7ndbtLT0wkPDy+PEquE0h7nWbNmsXv3biZOnFjeJVYJpTnOixYtomPHjrz00kvUqVOHJk2a8Mgjj5CdnV0RJXul0hznbt26cejQIRYvXoxpmhw7doxPP/2UG264oSJKrjY89V1Y5R80WRonTpzA5XIRHR1dZHp0dDRHjx495zpHjx495/JOp5MTJ04QExNTbvV6s9Ic6zO98sorZGZmMnDgwPIosUoozXHeuXMnEyZMID4+HptNvyqKozTHec+ePSxfvhw/Pz8+//xzTpw4wYMPPkhSUpLOmzmP0hznbt26MWfOHAYNGkROTg5Op5ObbrqJ6dOnV0TJ1YanvgvVMnMBhmEUeW+a5lnT/mz5c02Xs5X0WJ8yb948Jk2axEcffURUVFR5lVdlFPc4u1wuBg8ezDPPPEOTJk0qqrwqoyQ/z263G8MwmDNnDp06daJPnz68+uqrzJ49W60zf6Ikx3nr1q2MGTOGp59+mrVr17JkyRL27t3L/fffXxGlViue+C7Un1vnEBkZidVqPSvhJyQknJU4T6lVq9Y5l7fZbERERJRbrd6uNMf6lI8++ojhw4fzySefcNVVV5VnmV6vpMc5PT2dNWvWsH79ekaNGgXkf+maponNZuPbb7/liiuuqJDavUlpfp5jYmKoU6cOoaGhBdOaN2+OaZocOnSIuLi4cq3ZG5XmOE+ZMoXu3bvz6KOPAtC6dWsCAwPp2bMnzz//vFrPy4invgvVMnMOPj4+dOjQgaVLlxaZvnTpUrp163bOdbp27XrW8t9++y0dO3bEbreXW63erjTHGvJbZIYNG8bcuXPV510MJT3OISEhbNq0iQ0bNhS87r//fpo2bcqGDRvo3LlzRZXuVUrz89y9e3cOHz5MRkZGwbQdO3ZgsVioW7duudbrrUpznLOysrBYin7lWa1W4HTLgVw8j30XluvpxV7s1GV/77//vrl161Zz3LhxZmBgoLlv3z7TNE1zwoQJ5p133lmw/KnL0R566CFz69at5vvvv69Ls4uppMd67ty5ps1mM9944w3zyJEjBa+UlBRPfQSvUNLjfCZdzVQ8JT3O6enpZt26dc1bb73V3LJli7ls2TIzLi7O/Nvf/uapj+AVSnqcZ82aZdpsNvPNN980d+/ebS5fvtzs2LGj2alTJ099BK+Qnp5url+/3ly/fr0JmK+++qq5fv36gkvgK8t3ocLMBbzxxhtm/fr1TR8fH7N9+/bmsmXLCubddddd5l/+8pciy//4449mu3btTB8fH7NBgwbmW2+9VcEVe6+SHOu//OUvJnDW66677qr4wr1MSX+mC1OYKb6SHudt27aZV111lenv72/WrVvXHD9+vJmVlVXBVXufkh7nadOmmS1atDD9/f3NmJgYc8iQIeahQ4cquGrv8sMPP1zw921l+S40TFPtayIiIuK9dM6MiIiIeDWFGREREfFqCjMiIiLi1RRmRERExKspzIiIiIhXU5gRERERr6YwIyIiIl5NYUZERES8msKMiHiVffv2YRgGGzZsuOByvXr1Yty4cRVSk4h4lsKMiJSLYcOGYRgGhmFgt9tp1KgRjzzyCJmZmRe13djYWI4cOUKrVq0A+PHHHzEMg5SUlCLLLViwgOeee+6i9iUi3sHm6QJEpOq67rrrmDVrFg6Hg/j4eP72t7+RmZnJW2+9VeptWq1WatWq9afLhYeHl3ofIuJd1DIjIuXG19eXWrVqERsby+DBgxkyZAgLFy4kNzeXMWPGEBUVhZ+fHz169GD16tUF6yUnJzNkyBBq1qyJv78/cXFxzJo1CyjazbRv3z569+4NQI0aNTAMg2HDhgFndzMlJyczdOhQatSoQUBAANdffz07d+4smD979mzCwsL45ptvaN68OUFBQVx33XUcOXKk/A+UiFwUhRkRqTD+/v44HA4ee+wxPvvsMz744APWrVtH48aNufbaa0lKSgLgqaeeYuvWrXz99dds27aNt956i8jIyLO2Fxsby2effQbA9u3bOXLkCFOnTj3nvocNG8aaNWtYtGgRv/zyC6Zp0qdPHxwOR8EyWVlZ/POf/+Q///kPP/30EwcOHOCRRx4phyMhImVJ3UwiUiF+/fVX5s6dS+/evXnrrbeYPXs2119/PQDvvvsuS5cu5f333+fRRx/lwIEDtGvXjo4dOwLQoEGDc27TarUWdCdFRUURFhZ2zuV27tzJokWL+Pnnn+nWrRsAc+bMITY2loULF3LbbbcB4HA4mDlzJpdccgkAo0aN4tlnny2rQyAi5UQtMyJSbr788kuCgoLw8/Oja9euXH755YwePRqHw0H37t0LlrPb7XTq1Ilt27YB8MADDzB//nzatm3LY489xooVKy6qjm3btmGz2ejcuXPBtIiICJo2bVqwT4CAgICCIAMQExNDQkLCRe1bRMqfwoyIlJvevXuzYcMGtm/fTk5ODgsWLCA0NBQAwzCKLGuaZsG066+/nv379zNu3DgOHz7MlVdeeVHdPaZpnnd64TrsdnuR+YZhnHddEak8FGZEpNwEBgbSuHFj6tevXxAUGjdujI+PD8uXLy9YzuFwsGbNGpo3b14wrWbNmgwbNowPP/yQ119/nXfeeeec+/Dx8QHA5XKdt44WLVrgdDpZtWpVwbTExER27NhRZJ8i4p10zoyIVKjAwEAeeOABHn30UcLDw6lXrx4vvfQSWVlZDB8+HICnn36aDh060LJlS3Jzc/nyyy/PGzrq16+PYRh8+eWX9OnTB39/f4KCgoosExcXR79+/bj33nt5++23CQ4OZsKECdSpU4d+/fqV+2cWkfKllhkRqXD/+Mc/uOWWW7jzzjtp3749u3bt4ptvvqFGjRpAfmvL448/TuvWrbn88suxWq3Mnz//nNuqU6cOzzzzDBMmTCA6OppRo0adc7lZs2bRoUMHbrzxRrp27YppmixevPisriUR8T6GqQ5hERER8WJqmRERERGvpjAjIiIiXk1hRkRERLyawoyIiIh4NYUZERER8WoKMyIiIuLVFGZERETEqynMiIiIiFdTmBERERGvpjAjIiIiXk1hRkRERLza/wMq50a8gEJvnQAAAABJRU5ErkJggg==", "text/plain": [ "" ] @@ -1082,7 +1082,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "58f62bbc87a0409d9977831ae1bc89b8", + "model_id": "f04adf61a93940f181ae41336a3de1c6", "version_major": 2, "version_minor": 0 }, @@ -1167,7 +1167,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAjIpJREFUeJzs3Xd4lFXax/HvzKT33ntCLyH0qiDSIYMNEXXFXXfXQlF0LWuv2LAg1t131V0FsTJDUZqg9JrQWya9955MMuX9IzIkUoSQZFLuz3XNBTnPM09uhsD85pzznKMwm81mhBBCCCE6KKW1CxBCCCGEuBoSZoQQQgjRoUmYEUIIIUSHJmFGCCGEEB2ahBkhhBBCdGgSZoQQQgjRoUmYEUIIIUSHZmPtAlqbyWQiOzsbV1dXFAqFtcsRQgghxGUwm81UVFQQFBSEUnnpvpdOH2ays7MJDQ21dhlCCCGEaIaMjAxCQkIueU6nDzOurq5Aw4vh5uZm5WqEEEIIcTnKy8sJDQ21vI9fSqcPM2eHltzc3CTMCCGEEB3M5UwRkQnAQgghhOjQJMwIIYQQokOTMCOEEEKIDq3Tz5kRQgjRcZlMJurq6qxdhmgFtra2qFSqFrmWhBkhhBDtUl1dHSkpKZhMJmuXIlqJh4cHAQEBV70OnIQZIYQQ7Y7ZbCYnJweVSkVoaOgfLpomOhaz2Ux1dTX5+fkABAYGXtX1JMwIIYRodwwGA9XV1QQFBeHk5GTtckQrcHR0BCA/Px8/P7+rGnKSqCuEEKLdMRqNANjZ2Vm5EtGazgbV+vr6q7qOhBkhhBDtluyp17m11N+vhBkhhBBCdGhWDTO//vorM2bMICgoCIVCwapVq5ocN5vNPPfccwQFBeHo6MjYsWM5duyYdYoVQgghRLtk1TBTVVVFbGwsy5Ytu+Dx119/nbfeeotly5axb98+AgICmDBhAhUVFW1cqRBCCCHaK6uGmSlTpvDSSy9x4403nnfMbDbzzjvv8OSTT3LjjTfSt29fPv/8c6qrq1m+fLkVqj2/vs0n8jCbzdYuRQghRDsyd+5cZs6ceV771q1bUSgUlJaWtnlNnV27nTOTkpJCbm4uEydOtLTZ29tz7bXXsnPnzos+T6/XU15e3uTRGr7Yk85fPt/P3/93gLLqq5uFLYQQQojma7frzOTm5gLg7+/fpN3f35+0tLSLPm/x4sU8//zzrVobgAKwUynZcDyPY0u38d6cOAaGebb69xVCiK7IbDZTU2+0yvd2tFXJXVXtXLsNM2f9/gfIbDZf8ofqiSeeYNGiRZavy8vLCQ0NbfG67hgeTmyIB/NWHCStqJpZH+3i0ck9uGd0FEql/NALIURLqqk30vuZ9Vb53sdfmISTXbt/u+zS2u3fTkBAANDQQ9N4meP8/Pzzemsas7e3x97evtXrA+gX4s7q+aN54vsjrD2cwyvrTrI7uZg3b4nFy1kWehJCiK5qzZo1uLi4NGk7uxCgaHntNsxERkYSEBDAxo0biYuLAxo2Hfvll1947bXXrFzdOW4Otiy7LY4RUd68sOY4P5/MZ9rSbSy9LY4hEV7WLk8IIToFR1sVx1+YZLXvfaXGjRvHhx9+2KRtz5493HHHHS1VlmjEqmGmsrKSpKQky9cpKSkkJibi5eVFWFgYDz74IK+88grdunWjW7duvPLKKzg5OTFnzhwrVn0+hULBHcPDGRjmybzlB0kurGL2J7tZNKE7910bLcNOQghxlRQKRYca6nF2diYmJqZJW2ZmppWq6fys+pOxf/9+xo0bZ/n67FyXu+66i88++4xHH32Umpoa7r//fkpKShg2bBgbNmzA1dXVWiVfUu8gN7TzR/PUD0dYlZjNG+tPsTu5iLdvHYCPS9sMfQkhhBBdjVVvzR47dixms/m8x2effQY0JPHnnnuOnJwcamtr+eWXX+jbt681S/5DLvY2vH3rAF67qR8Otkq2nSlk6rvb2J1cZO3ShBBCiE6p3a4z05EpFApuHRKG5oHRxPi5kF+hZ86/dvPupjMYTbLInhBCCNGSFOZOvoRteXk57u7ulJWV4ebm1ubfv7rOwDOaY3x7oGGsdFSMN2/fOgA/V4c2r0UIITqK2tpaUlJSiIyMxMFB/r/srC7193wl79/SM9PKnOxsePOWWJbcEoujrYodSUVMfXc7288UWrs0IYQQolOQMNNGbhoUwur5o+kZ4EphpZ47/7OHtzacwmA0Wbs0IYQQokOTMNOGYvxcWPXAKG4bGorZDEt/TmLOv/eQV15r7dKEEEKIDkvCTBtzsFWx+Mb+vDt7AM52KvamFDPl3W1sPZVv7dKEEEKIDknCjJWoBwSzZsEYege6UVxVx9xP9/HaTydl2EkIIYS4QhJmrCjSx5nv7x/JncPDAfhwq47Zn+wmu7TGypUJIYQQHYeEGStzsFXx4sy+fHD7QFztbdifVsLUpdvYfCLP2qUJIYQQHYKEmXZiar9A1i4YQ/8Qd0qr6/nL5/t5ac1x6gwy7CSEEEJcioSZdiTM24lv7h3B3aMiAPj39hRmfbyLjOJq6xYmhBBCtGMSZtoZexsVz87ow8d3DsLNwYbEjFKmLd3GT0dzrV2aEEKIS1AoFJd8zJ0719oldlodZz/1LmZSnwD6BLkxb3kCiRml3PvFAeaOjOCJqT2xt1FZuzwhhBC/k5OTY/n9ypUreeaZZzh16pSlzdHR0RpldQkSZtqxEM+GYac31p/ik1+T+WxnKgfSSlg2J45wb2drlyeEEKKRgIAAy+/d3d1RKBRN2kTrkTDTztmqlPxzai+GR3mx6OtDHMkqY9rS7bx6Uz+m9w+ydnlCCNEmzGYzNQbrLFvhaOOIQqGwyvcWl0fCTAdxXU9/1i0Yw4IVCexPK2He8gR26Yp4enpvHGxl2EkI0bnVGGoYtnyYVb73njl7cLJ1ssr3FpdHJgB3IEEejnz1t+HcPzYagC/3pHPDBztJLqi0cmVCCCGE9UjPTAdjo1Ly6OSeDIvyZtHKRE7klDP9ve28ckM/ZsYFW7s8IYRoFY42juyZs8dq31u0bxJmOqhru/uybmHDsNOelGIeXJnILl0Rz8X3wdFOhp2EEJ2LQqGQoR5xUTLM1IH5uznw5T3DWDC+GwoFrNyfwcz3d5CUX2Ht0oQQQog2I2Gmg7NRKVk0oTtf/GUYPi72nMqrYMZ7O/j2QKa1SxNCCCHahISZTmJUjA/rFo5mVIw3NfVGHvnmEIu+TqS6zmDt0oQQosuZO3cupaWl1i6jy5Aw04n4uTrw3z8PY9GE7igV8P3BLGa8t52TueXWLk0IIYRoNRJmOhmVUsGC8d1Y/tfh+LvZoyuoQr1sB1/tTcdsNlu7PCGEEKLFSZjppIZHebNuwRiu7e6L3mDi8e+P8ODKRCr1MuwkhBCic5Ew04l5u9jz6dwhPDa5JyqlAk1iNjPe286x7DJrlyaEEEK0GAkznZxSqeC+sdGs/NtwAt0dSCms4oYPdvK/3Wky7CSEEKJTkDDTRQyO8GLdgjFc38uPOoOJp1cdZd7yBMpr661dmhBCCHFVJMx0IZ7OdvzrT4N5alovbJQK1h7JYfrS7RzOLLV2aUIIIUSzSZjpYhQKBfeMieKbe0cQ7OFIenE1N324k093pMiwkxBCiA5JwkwXFRfmyboFY5jUx596o5nnVx/n3i8OUFYtw05CCCE6FgkzXZi7ky0f3TGI52b0xk6lZP2xPKYu3UZCeom1SxNCCCEum4SZLk6hUDB3VCTf3TeSMC8nskpruOWjXfzr12RMJhl2EkII0Xxbt25FoVC0+tYOEmYEAP1C3FmzYDTT+gdiMJl5ed0J7vnvfkqq6qxdmhBCdChz585l5syZ57Vf7hv7Z599hoeHR6vU1llJmBEWbg62LLstjpdm9sXORsnPJ/OZunQb+1OLrV2aEEKI36mrkw+bZ0mYEU0oFAruGB7OD/ePJNLHmZyyWm79ZDcfbE2SYSchhNVV1xku+qitN7b4uW1t69at3H333ZSVlaFQKFAoFDz33HMARERE8NJLLzF37lzc3d3561//CsBjjz1G9+7dcXJyIioqiqeffpr6+nM3czz33HMMGDCAjz/+mNDQUJycnLjlllua9BCd7U16/vnn8fPzw83Njb///e9NApPZbOb1118nKioKR0dHYmNj+fbbb5vUv27dOrp3746joyPjxo0jNTW11V6rxmza5LuIDqdPkDur54/myR+OoEnM5vWfTrE7uZi3ZsXi42Jv7fKEEF1U72fWX/TYuB6+fHr3UMvXg17cRM3vQstZwyK9WPn3EZavR7+2heILDKunvjrtKqq9ciNHjuSdd97hmWee4dSpUwC4uLhYjr/xxhs8/fTTPPXUU5Y2V1dXPvvsM4KCgjhy5Ah//etfcXV15dFHH7Wck5SUxNdff83q1aspLy/nL3/5Cw888ABffvml5ZzNmzfj4ODAli1bSE1N5e6778bHx4eXX34ZgKeeeorvv/+eDz/8kG7duvHrr79yxx134Ovry7XXXktGRgY33ngj9957L/fddx/79+/n4Ycfbu2XDJAwIy7Bxd6Gd24dwMhob57RHOPX0wVMfXcbS2+LY3iUt7XLE0KIdmvNmjVNQgiA0XjhYNWYnZ0d7u7uKBQKAgICzjt+3XXX8cgjjzRpaxxsIiIiePjhh1m5cmWTMFNbW8vnn39OSEgIAO+99x7Tpk1jyZIllu9jZ2fHf/7zH5ycnOjTpw8vvPAC//jHP3jxxRepqanhrbfe4ueff2bEiIYQGBUVxfbt2/n444+59tpr+fDDD4mKiuLtt99GoVDQo0cPjhw5wmuvvXaZr1rzSZgRl6RQKLh1SBgDQj15YPlBkvIrmfOv3Tx4fXceGBeDSqmwdolCiC7k+AuTLnpMqWj6/9GBp6+/7HO3Pzbu6gr7nXHjxvHhhx82aduzZw933HHHVV138ODB57V9++23vPPOOyQlJVFZWYnBYMDNza3JOWFhYZYgAzBixAhMJhOnTp2yhJnY2FicnJyanFNZWUlGRgb5+fnU1tYyYcKEJtetq6sjLi4OgBMnTjB8+HAUjV7bs8GntUmYEZelR4Ar2nmjeHrVMb47mMlbG0+zJ6WIt28dgJ+rg7XLE0J0EU52l/+21VrnXg5nZ2diYmKatGVmZrbIdRvbvXs3s2fP5vnnn2fSpEm4u7vz1VdfsWTJkkte52zgUCj++AOpQqHAZDIBsHbtWoKDg5sct7dvmHpgzVXkJcyIy+ZkZ8OSWbGMiPbm6VVH2ZFUxNR3t/Pu7AGMivGxdnlCCNEp2NnZXdaQFMCOHTsIDw/nySeftLSlpaWdd156ejrZ2dkEBQUBsGvXLpRKJd27d7ecc+jQIWpqanB0dAQagpKLiwshISF4enpib29Peno611577QVr6d27N6tWrWrStnv37sv6c1wtuZtJXLGbB4Wwev4oevi7Ulip547/28NbG05hlLudhBDiqkVERFBZWcnmzZspLCykurr6oufGxMSQnp7OV199hU6nY+nSpfzwww/nnefg4MBdd93FoUOH2LZtGwsWLGDWrFlN5uXU1dXxl7/8hePHj/Pjjz/y7LPPMm/ePJRKJa6urjzyyCM89NBDfP755+h0OhISEnj//ff5/PPPAbj33nvR6XQsWrSIU6dOsXz5cj777LMWf30uRMKMaJYYP1dWPTCK2UNCMZth6c9JzPnXbnLLaq1dmhBCdGgjR47k3nvv5dZbb8XX15fXX3/9oueq1Woeeugh5s2bx4ABA9i5cydPP/30eefFxMRw4403MnXqVCZOnEjfvn354IMPmpwzfvx4unXrxjXXXMOsWbOYMWOG5bZwgBdffJFnnnmGxYsX06tXLyZNmsTq1auJjIwEGublfPfdd6xevZrY2Fg++ugjXnnllZZ5Uf6AwtzJt0ouLy/H3d2dsrKy8yZEiZahSczin98foarOiJezHW/fOoBru/tauywhRAdWW1tLSkoKkZGRODjIvLyr8dxzz7Fq1SoSExMves7cuXMpLS09b5iotV3q7/lK3r+lZ0ZcNfWAYFbPH02vQDeKq+q46z97ee2nkxiMJmuXJoQQoguQMCNaRJSvCz/cP5I7h4cD8OFWHbM/2U12aY2VKxNCiPZlypQpuLi4XPDRVsMynY0MM4kWt/ZwDo9/d5gKvQEPJ1uW3BLL+F7+1i5LCNGBdOZhpqysLGpqLvxBz8vLCy8vrzauyHpaaphJbs0WLW5a/0D6Brsxb3kCR7LK+Mvn+/nrmEgendwTW5V0Bgohurbfr9Mirp68s4hWEe7tzLf3jeDuUREA/GtbCrd8tIuM4ovfYiiEEEI0h4QZ0WrsbVQ8O6MPH985CDcHGxIzSpm2dBvrj+VauzQhhBCdiIQZ0eom9Qlg7YIxDAj1oLzWwN//d4DnVx9Db7i8FS6FEEKIS5EwI9pEqJcT39w7gr+OaVhc6dMdqdz84S7Si2TYSQghxNWRMCPajK1KyZPTevN/dw3Gw8mWI1llTFu6jXVHcqxdmhBCiA5Mwoxoc+N7+bNuwRgGh3tSoTdw/5cHeWrVEWrrZdhJCCE6C4VC0WYrCkuYEVYR5OHIir8N576x0QB8sTudGz/YSUphlZUrE0KI5lEoFJd8zJ0795LPT01NRaFQXHLbAXFhEmaE1diqlDw2uSef/3koXs52HM8pZ/rSbWgSs6xdmhBCXLGcnBzL45133sHNza1J27vvvtsi36eurq5FrtOZtOswYzAYeOqpp4iMjMTR0ZGoqCheeOEFTCbZ86czuba7Lz8uHMOwSC+q6ows/CqRx787TE2dDDsJIZqqrq++6ENv1F/2ubWG2ss690oEBARYHu7u7igUivPaLuXs7tNxcXEoFArGjh0LNGwCOXPmTBYvXkxQUBDdu3cH4IsvvmDw4MG4uroSEBDAnDlzyM/Pt1xv69atKBQK1q5dS2xsLA4ODgwbNowjR45Yzvnss8/w8PBg1apVdO/eHQcHByZMmEBGRkaT2lavXs2gQYNwcHAgKiqK559/HoPBYDl+5swZrrnmGhwcHOjduzcbN268otfuarXrFYBfe+01PvroIz7//HP69OnD/v37ufvuu3F3d2fhwoXWLk+0IH83B768ZxhLN5/hvS1JfLUvg4T0Ut6/PY4YP1drlyeEaCeGLR920WNjgsfwwfUfWL4e+/VYagwX3jZgsP9gPp38qeXryd9NpkRfct55R+46cl5ba9m7dy9Dhw5l06ZN9OnTBzs7O8uxzZs34+bmxsaNGzm7C1FdXR0vvvgiPXr0ID8/n4ceeoi5c+eybt26Jtf9xz/+wbvvvktAQAD//Oc/iY+P5/Tp09ja2gJQXV3Nyy+/zOeff46dnR33338/s2fPZseOHQCsX7+eO+64g6VLlzJmzBh0Oh1/+9vfAHj22WcxmUzceOON+Pj4sHv3bsrLy3nwwQfb4BU7p12HmV27dqFWq5k2bRoAERERrFixgv3791u5MtEabFRKFk3swbAobxZ+lcipvApmvLeDF2f25eZBIdYuTwghWpWvry8A3t7eBAQENDnm7OzMv//97yYB589//rPl91FRUSxdupShQ4dSWVmJi4uL5dizzz7LhAkTAPj8888JCQnhhx9+YNasWQDU19ezbNkyhg0bZjmnV69elnD18ssv8/jjj3PXXXdZvteLL77Io48+yrPPPsumTZs4ceIEqamphIQ0/F/9yiuvMGXKlJZ+iS6qXYeZ0aNH89FHH3H69Gm6d+/OoUOH2L59O++8885Fn6PX69Hrz3U1lpeXt0GloiWNivFh3cLRPLQykR1JRTzyzSF26Yp4cWYfnOza9Y+sEKKV7Zmz56LHVEpVk6+3ztp60XOViqazLH666aerqqu19evXr0mQAUhISOC5554jMTGR4uJiyxSM9PR0evfubTlvxIgRlt97eXnRo0cPTpw4YWmzsbFh8ODBlq979uyJh4cHJ06cYOjQoRw4cIB9+/bx8ssvW84xGo3U1tZSXV3NiRMnCAsLswSZ33/PttCu3xkee+wxysrK6NmzJyqVCqPRyMsvv8xtt9120ecsXryY559/vg2rFK3Bz9WB//55GO9vSeKdTaf57mAmiRklfHD7IHoEyLCTEF2Vk62T1c+1Bmdn5yZfV1VVMXHiRCZOnMgXX3yBr68v6enpTJo06bImCCsUikt+3bjNZDLx/PPPc+ONN553joODg2XY64+u15ra9QTglStX8sUXX7B8+XIOHjzI559/zptvvsnnn39+0ec88cQTlJWVWR6/n8QkOg6VUsGC8d1Y/tfh+LnaoyuoIn7Zdr7am37BfzxCCNGRne15MRr/+OaHkydPUlhYyKuvvsqYMWPo2bNnk8m/je3evdvy+5KSEk6fPk3Pnj0tbQaDocn0jVOnTlFaWmo5Z+DAgZw6dYqYmJjzHkqlkt69e5Oenk52drblGrt27bqyP/xVatc9M//4xz94/PHHmT17NtDQzZaWlsbixYstY3e/Z29vj729fVuWKVrZ8Chv1i0cw6KvD/Hr6QIe//4Iu5KLePmGfrjYt+sfYSGEuGx+fn44Ojry008/ERISgoODw0XvgAoLC8POzo733nuPe++9l6NHj/Liiy9e8NwXXngBb29v/P39efLJJ/Hx8WHmzJmW47a2tsyfP5+lS5dia2vLvHnzGD58OEOHDgXgmWeeYfr06YSGhnLLLbegVCo5fPgwR44c4aWXXuL666+nR48e/OlPf2LJkiWUl5fz5JNPtvjrcyntumemuroapbJpiSqVSm7N7oJ8XOz5bO4QHp3cA5VSgSYxmxnvbedYdpm1SxNCiBZhY2PD0qVL+fjjjwkKCkKtVl/0XF9fXz777DO++eYbevfuzauvvsqbb755wXNfffVVFi5cyKBBg8jJyUGr1TaZf+Pk5MRjjz3GnDlzGDFiBI6Ojnz11VeW45MmTWLNmjVs3LiRIUOGMHz4cN566y3Cw8MBUCqV/PDDD+j1eoYOHco999zTZH5NW1CY23F//dy5c9m0aRMff/wxffr0ISEhgb/97W/8+c9/5rXXXrusa5SXl+Pu7k5ZWRlubm6tXLFoC/tSi1mwIoGcslrsbJQ8Pb03dwwLa/MxWiFE66mtrSUlJYXIyEgcHBysXU6HtHXrVsaNG0dJSQkeHh4XPOezzz7jwQcfpLS0tE1rO+tSf89X8v7drntm3nvvPW6++Wbuv/9+evXqxSOPPMLf//73i3alia5hSIQX6xaM4bqeftQZTDy96ijzViRQXltv7dKEEEJYQbsOM66urrzzzjukpaVRU1ODTqfjpZdeOu/2NNH1eDrb8e8/DebJqb2wUSpYeziH6Uu3cyRThp2EEO3TK6+8gouLywUfbbkmS2fUroeZWoIMM3V+B9NLmL88gazSGuxUSv45tSd3jYyQYSchOrDOOMxUXFxMcXHxBY85OjoSHBzcxhVZX0sNM8mtIKLDGxjmyboFY/jHt4fYcDyP51YfZ1dyEa/fFIu7k621yxNCCKBhwTovLy9rl9EptethJiEul7uTLR/fOYhnZ/TGVqVg/bE8pr23jYT08/daEUJ0HJ188KDLa6m7k6VnRnQaCoWCu0dFMijck3nLE0gvruaWj3bx+JSe/GV0pAw7CdGB2NraolAoKCgowNfXV/79djJms5m6ujoKCgpQKpVXPRdW5syITqm8tp4nvjvC2iM5AIzv6cebt8Ti6SyTx4XoKCorK8nMzJTemU7MycmJwMDAC4aZK3n/ljAjOi2z2cyXe9J5Yc1x6gwmgtwdeG9OHIPCZcxaiI7CaDRSXy/LLnRGKpUKGxubi/a6SZhpRMKMOJZdxrzlCaQUVqFSKnhkYg/+fk0USqV0WwshRHvVaRbNE6Il9AlyZ/X80agHBGE0mXntp5Pc/dk+iir11i5NCCFEC5AwI7oEF3sb3rl1AK/e2A97GyW/nC5g6tJt7EkusnZpQgghrpKEGdFlKBQKZg8NQztvNNG+zuSV67ntX7t5b/MZjKZOPdoqhBCdmoQZ0eX0CHBl9fzR3DQwBJMZlmw8zZ/+s4f8ilprlyaEEKIZJMyILsnJzoYls2J585ZYHG1V7EgqYuq729mRVGjt0oQQQlwhCTOiS7t5UAjaeaPo4e9KYaWeO/5vD29tPC3DTkII0YFImBFdXjd/V1Y9MIrZQ0Ixm2Hp5jPM+ddu8spl2EkIIToCCTNCAI52Kl69qT/vzh6As52KPSnFTH13G7+cLrB2aUIIIf6AhBkhGlEPCGb1/NH0CnSjqKqOu/6zl9d+OonB2DKboQkhhGh5EmaE+J0oXxd+uH8ktw8LA+DDrTpmf7Kb7NIaK1cmhBDiQiTMCHEBDrYqXr6hH8vmxOFib8P+tBKmLt3GzyfzrF2aEEKI35EwI8QlTO8fxNoFo+kb7EZpdT1//mw/r6w7Qb0MOwkhRLshYUaIPxDu7cx3941k7sgIAD75NZlbPtpFZkm1dQsTQggBSJgR4rLY26h4Lr4PH90xEFcHGxIzSpn67jbWH8u1dmlCCNHlSZgR4gpM7hvIugVjiA31oLzWwN//d4DnVx+jziDDTkIIYS0SZoS4QqFeTnzz9xHcMzoSgE93pHLzRztJL5JhJyGEsAYJM0I0g52Nkqem9+bffxqMu6MthzPLmLZ0G+uO5Fi7NCGE6HIkzAhxFa7v7c+6hWMYFO5Jhd7A/V8e5OlVR6mtN1q7NCGE6DIkzAhxlYI9HPnqb8O599poAP63O40bP9hJSmGVlSsTQoiuQcKMEC3AVqXk8Sk9+ezuIXg523E8p5zpS7ehScyydmlCCNHpSZgRogWN7eHHugVjGBrpRVWdkYVfJfLE94dl2EkIIVqRhBkhWliAuwPL7xnGgutiUChgxd4MZr6/g6T8SmuXJoQQnZKEGSFagY1KyaKJPfjfn4fh42LPydwKZry3ne8OZFq7NCGE6HQkzAjRikZ382HdwtGMjPampt7Iw98c4pFvDlFdZ7B2aUII0WlImBGilfm5OvC/vwxj0YTuKBXw7YFM1Mt2cDqvwtqlCSFEpyBhRog2oFIqWDC+G1/eMxw/V3vO5FcSv2w7K/elYzabrV2eEEJ0aBJmhGhDI6K9WbdwDGO6+VBbb+Kx747w0MpEKvUy7CSEEM0lYUaINubjYs/ndw/l0ck9UCkVrErMJv697RzPLrd2aUII0SFJmBHCCpRKBfePjeGrvw0n0N2B5MIqZn6wgy92p8mwkxBCXCEJM0JY0ZAIL9YuGMN1Pf2oM5h4atVR5q1IoKK23tqlCSFEhyFhRggr83K2499/Gsw/p/bERqlg7eEcpr+3nSOZZdYuTQghOgQJM0K0A0qlgr9dE83X944g2MORtKJqbvpwJ5/tSJFhJyGE+AMSZoRoRwaGebJuwRgm9PanzmjiudXHue+Lg5TVyLCTEEJcjIQZIdoZdydbPrlzEM9M742tSsFPx3KZtnQbiRml1i5NCCHaJQkzQrRDCoWCP4+O5Nt7RxLq5UhmSQ03f7iTf29LlmEnIYT4HQkzQrRjsaEerF0whqn9AjCYzLy09gR//e9+SqvrrF2aEEK0GxJmhGjn3BxseX/OQF5U98FOpWTTiXymvruNA2nF1i5NCCHaBQkzQnQACoWCO0dE8P39I4nwdiK7rJZZH+/mo190mEwy7CSE6NokzAjRgfQNdmfNgjHMiA3CaDLz6o8n+fPn+yiq1Fu7NCGEsBoJM0J0MC72NiydPYDFN/bD3kbJ1lMFTF26jT3JRdYuTQghrELCjBAdkEKh4LahYWjmjSLa15m8cj23/Ws3y34+I8NOQoguR2Fu5n2eJpOJpKQk8vPzMZlMTY5dc801LVJcSygvL8fd3Z2ysjLc3NysXY4QLa5Kb+BpzVG+P5gFwJhuPrw1awC+rvZWrkwIIZrvSt6/mxVmdu/ezZw5c0hLO3+HX4VCgdFovNJLthoJM6Kr+GZ/Bs9ojlFTb8TX1Z53bx3AyBgfa5clhBDNciXv380aZrr33nsZPHgwR48epbi4mJKSEsujuFhuFxXCGm4ZHIp23ii6+7tQUKHn9v/bw9sbT2OUYSchRCfXrJ4ZZ2dnDh06RExMTGvU1KKkZ0Z0NTV1Rp7THmPl/gwAhkd58e7sOPzdHKxcmRBCXL5W75kZNmwYSUlJzSpOCNG6HO1UvHZzf965dQDOdip2Jxcz9d1t/Hq6wNqlCSFEq7BpzpPmz5/Pww8/TG5uLv369cPW1rbJ8f79+7dIcUKI5psZF0z/EHceWJ7AiZxy/vSfvdw/NppFE7pjo5IbGYUQnUezhpmUyvP/I1QoFJjNZpkALEQ7U1tv5MU1x/lyTzoAg8M9WXpbHEEejlauTAghLq7V72ZKS0u75PHw8PArvWSrkTAjRIM1h7N5/LsjVOoNeDrZsmRWLNf19Ld2WUIIcUGtHmY6EgkzQpyTWljFvBUHOZpVDsDfroniH5N6YCvDTkKIdqbVJwAD6HQ65s+fz/XXX8+ECRNYsGABOp2uuZe7qKysLO644w68vb1xcnJiwIABHDhwoMW/jxBdQYSPM9/dN5K5IyMA+OTXZGZ9vIvMkmrrFiaEEFehWWFm/fr19O7dm71799K/f3/69u3Lnj176NOnDxs3bmyx4kpKShg1ahS2trb8+OOPHD9+nCVLluDh4dFi30OIrsbeRsVz8X346I6BuDrYkJBeytR3t7HhWK61SxNCiGZp1jBTXFwckyZN4tVXX23S/vjjj7NhwwYOHjzYIsU9/vjj7Nixg23btl32c/R6PXr9uR2Ey8vLCQ0NlWEmIS4go7iaeSsSOJRRCsDdoyJ4Ykov7Gxk2EkIYV2tPsx04sQJ/vKXv5zX/uc//5njx48355IXpNVqGTx4MLfccgt+fn7ExcXxr3/965LPWbx4Me7u7pZHaGhoi9UjRGcT6uXEN38fwT2jIwH4dEcqN3+0k/QiGXYSQnQczQozvr6+JCYmnteemJiIn5/f1dZkkZyczIcffki3bt1Yv3499957LwsWLOC///3vRZ/zxBNPUFZWZnlkZGS0WD1CdEZ2Nkqemt6bf/9pMO6OthzOLGPa0m2sO5Jj7dKEEOKyNGvRvL/+9a/87W9/Izk5mZEjR6JQKNi+fTuvvfYaDz/8cIsVZzKZGDx4MK+88grQMLx17NgxPvzwQ/70pz9d8Dn29vbY28tuwUJcqet7+7Nu4RjmLz/IwfRS7v/yIHcOD+fJab1wsFVZuzwhhLioZoWZp59+GldXV5YsWcITTzwBQFBQEM899xwLFixoseICAwPp3bt3k7ZevXrx3Xfftdj3EEKcE+zhyMq/j+DNDaf4+Jdk/rc7jYPpJSybM5BIH2drlyeEEBfUrGEmhULBQw89RGZmpmU4JzMzk4ULF6JQKFqsuFGjRnHq1KkmbadPn25Xi/IJ0dnYqpQ8MaUXn949BC9nO45llzN96TY0iVnWLk0IIS7oqm9ZcHV1xdXVtSVqOc9DDz3E7t27eeWVV0hKSmL58uV88sknPPDAA63y/YQQ54zr4ce6BWMYGuFFVZ2RhV8l8sT3R6itbz/blQghBFzBrdkDBw5k8+bNeHp6EhcXd8kemJa6NRtgzZo1PPHEE5w5c4bIyEgWLVrEX//618t+vqwALMTVMRhNvLv5DMu2JGE2Q88AV5bNGUiMn4u1SxNCdGJX8v592XNm1Gq1ZWKtWq1u0eGkS5k+fTrTp09vk+8lhDifjUrJwxN7MDTSi4dWJnIyt4L4Zdt5aWZfbhwYYu3yhBBC9mYSQly+/PJaFn6VyK7kIgBuGRTC8+o+ONk1614CIYS4qFZfNC8qKoqioqLz2ktLS4mKimrOJYUQHYCfmwNf3DOMB6/vhlIB3xzIRL1sB6fzKqxdmhCiC2tWmElNTcVoPH8SoF6vJzMz86qLEkK0Xyqlggev786X9wzHz9WeM/mVxC/bztf7MujkHb1CiHbqivqGtVqt5ffr16/H3d3d8rXRaGTz5s1ERka2XHVCiHZrRLQ36xaO4aGViWw7U8ij3x1mV3IRL83si7O9DDsJIdrOFc2ZUSobOnIUCsV5n8BsbW2JiIhgyZIl7WrCrsyZEaJ1mUxmPvxFx1sbT2M0mYnyceb92wfSK1D+vQkhmu9K3r+bNQE4MjKSffv24ePj0+wi24qEGSHaxr7UYuYvTyC3vBY7GyXPzujNnKFhbXbnoxCic2n1CcApKSkdIsgIIdrOkAgv1i0cw3U9/agzmHjyh6PMX5FARW29tUsTQnRyzb41u6qqil9++YX09HTq6uqaHGvJ/ZmulvTMCNG2TCYz/96ezOs/ncJgMhPh7cSyOQPpG+z+x08WQojftPowU0JCAlOnTqW6upqqqiq8vLwoLCzEyckJPz8/kpOTm118S5MwI4R1HEwvYf7yBLJKa7BTKXlyWi/+NCJchp2EEJel1YeZHnroIWbMmEFxcTGOjo7s3r2btLQ0Bg0axJtvvtmsooUQncvAME/WLhjNhN7+1BlNPKs9xn1fHKSsRoadhBAtq1lhJjExkYcffhiVSoVKpUKv1xMaGsrrr7/OP//5z5auUQjRQXk42fHJnYN4ZnpvbFUKfjqWy7Sl20jMKLV2aUKITqRZYcbW1tbSVezv7096ejoA7u7ult8LIQQ0LOXw59GRfHvvSEK9HMksqeGWj3by723JssieEKJFNCvMxMXFsX//fgDGjRvHM888w5dffsmDDz5Iv379WrRAIUTnEBvqwZr5Y5jSN4B6o5mX1p7gr/89QGl13R8/WQghLqFZYeaVV14hMDAQgBdffBFvb2/uu+8+8vPz+eSTT1q0QCFE5+HuaMsHtw/kRXUf7FRKNp3IY9rS7RxIK7F2aUKIDuyK72Yym82kp6fj5+eHo6Nja9XVYuRuJiHap6NZZcxbfpDUompslAr+MakHfx0ThVIpdzsJIVr5biaz2Uy3bt1kQ0khxFXpG+zO6vmjmREbhMFkZvGPJ/nL5/sorpJhJyHElbniMKNUKunWrRtFRUWtUY8QogtxdbBl6ewBLL6xH/Y2SracKmDqu9vYm1Js7dKEEB1Is+bMvP766/zjH//g6NGjLV2PEKKLUSgU3DY0jFUPjCLK15nc8lpu+9du3t+ShMkkdzsJIf5Ys1YA9vT0pLq6GoPBgJ2d3XlzZ4qL28+nKpkzI0THUaU38PSqo3yfkAXAmG4+vH3rAHxc7K1cmRCirV3J+7dNc77B22+/LUuSCyFanLO9DUtmxTI82ptnNEfZdqaQKe9u493ZAxgZLZvbCiEurNkbTXYU0jMjRMd0Jq+C+788yJn8SpQKWDC+G/Ov64ZK7nYSokto9b2ZVCoV+fn557UXFRWhUqmac0khhGiim78r2nmjmTU4BJMZ3tl0hjv/bw/55bXWLk0I0c40K8xcrDNHr9djZ2d3VQUJIcRZjnYqXr85lrdvjcXJTsVOXRFTl25j25kCa5cmhGhHrmjOzNKlS4GGuw/+/e9/4+LiYjlmNBr59ddf6dmzZ8tWKITo8m6IC6F/iAcPfHmQk7kV/Ok/e3lgbAwPXt8NG1WzPpMJITqRK5ozExkZCUBaWhohISFNhpTs7OyIiIjghRdeYNiwYS1faTPJnBkhOo/aeiMvrDnO8j0NG9oOjfBi6W1xBLg7WLkyIboms9nM8eLjhLiE4G7v3qLXvpL372ZNAB43bhzff/89np6ezS6yrUiYEaLzWXM4m8e/O0Kl3oCXsx1LZsUyroeftcsSossoqC5gbfJaNDoNSaVJPDbkMe7ofUeLfo9WvzV7y5YtzSpMCCFawvT+QfQNcmfeioMczSrn7k/38fdro3hkYg9sZdhJiFahN+rZkrEFbZKWHdk7MJlNANgp7SjRW3ez2Gb1zBiNRj777DM2b95Mfn4+JpOpyfGff/65xQq8WtIzI0TnpTcYWbzuJJ/tTAVgULgnS2+LI9ij/W+CK0RHYDabOVx4GE2Shp9Sf6KirsJybIDvAOJj4pkUMQk3u5Z/f231npmFCxfy2WefMW3aNPr27SsL6AkhrMLeRsVz8X0YHuXFP749zIG0Eqa+u40lt8RyfW9/a5cnRIeVW5XLat1qtDotqeWplvYA5wBmRM0gPjqeCPcIq9X3e83qmfHx8eG///0vU6dObY2aWpT0zAjRNWQUVzNv+UEOZZYBcM/oSB6d3BM7Gxl2EuJy1Bhq2JS2Ca1Oy56cPZhpiAcOKgcmhE8gPiaeoQFDUSra5t9Uq/fM2NnZERMT06zihBCiNYR6OfHNvSN57aeT/N/2FP69PYV9aSUsuy2OUC8na5cnRLtkNps5kHcArU7LhrQNVNVXWY4N8h+EOlrNhPAJuNi5XOIq1tesnpklS5aQnJzMsmXL2v0Qk/TMCNH1bDyexyPfHKKsph5XBxveuLk/k/sGWrssIdqNrMostDot2iQtmZWZlvZgl2DU0WqmR08n1DXUihW2wa3ZN9xwA1u2bMHLy4s+ffpga2vb5Pj3339/pZdsNRJmhOiaskprmL/8IAfTSwG4a0Q4/5zWC3sb2XJFdE1V9VVsTNuIJknD/rz9lnYnGycmRUwiPjqegf4D22wY6Y+0+jCTh4cHN9xwQ7OKE0KIthDs4cjKv4/gzQ2n+PiXZD7flcaB9BKW3TaQCB9na5cnRJswmU3sy92HJknDpvRN1BhqAFCgYGjgUNTRasaHjcfJtmMPxcqu2UKITm/LyXwWfZ1ISXU9LvY2LL6xHzNig6xdlhCtJr08HY1Ow2rdanKqcizt4W7hxEfHMyNqBoEu7XvotdWHmQAMBgNbt25Fp9MxZ84cXF1dyc7Oxs3NrcmeTdYmYUYIAZBTVsPCFYnsTS0GYM6wMJ6Z3hsHWxl2Ep1DRV0F61PXo9VpSchPsLS72royKXIS6mg1sb6x7X6u61mtHmbS0tKYPHky6enp6PV6Tp8+TVRUFA8++CC1tbV89NFHzS6+pUmYEUKcZTCaeGfTGd7fmoTZDD0DXHn/9oFE+7afD2BCXAmjycjunN1okjT8nPEzeqMeAKVCycigkaij1YwNHYuDTcfbv6xNFs0bPHgwhw4dwtvb29J+ww03cM899zTnkkII0epsVEoemdSDYVFePLQykZO5Fcx4bzsv39CXG+JCrF2eEJctuTQZjU7DGt0a8mvyLe3R7tGoY9RMi5qGn1PX2a+sWWFm+/bt7NixAzs7uybt4eHhZGVltUhhQgjRWsZ082XdgjEs/CqRXclFPLTyELt0RTwf3xdHOxl2Eu1Tmb6MH1N+RKvTcqTwiKXd3d6dKRFTmBkzk97evTvMMFJLalaYMZlMGI3G89ozMzNxdXW96qKEEKK1+bk58MU9w3jv5zO8u/kMX+/PJCG9lA9uH0g3f/l/TLQP9aZ6dmbtRKPTsDVjK/WmegBUChVjgsegjlFzTcg12KnsLn2hTq5Zc2ZuvfVW3N3d+eSTT3B1deXw4cP4+vqiVqsJCwvj008/bY1am0XmzAgh/shOXSELv0qkoEKPg62SF9R9uWVQSJf8hCvah1PFp9DqtKxNXktRbZGlvYdnD+Kj45kWNQ1vR+9LXKHja/UJwNnZ2YwbNw6VSsWZM2cYPHgwZ86cwcfHh19//RU/v/YzTidhRghxOQoq9Cz6OpFtZwoBuDEumBdn9sXZvlkd2EJcseLaYtYlr0Oj03Cy+KSl3cvBi6mRU1HHqOnp1dOKFbatNrk1u6amhq+++ooDBw5gMpkYOHAgt99+O46Ojs0qurVImBFCXC6TycyHv+hYsuEUJjNE+zqzbM5AegXK/x2iddQb6/k181c0Og3bMrdhMBsAsFHaMDZkLPHR8YwOGY2t0vYPrtT5tEmY6SgkzAghrtTelGIWrEggt7wWexslz87ow21DQ2XYSbQIs9nMieITaJI0rEtZR6m+1HKsj3cf1DFqpkRMwcPBw2o1tgetHmYWL16Mv78/f/7zn5u0/+c//6GgoIDHHnvsSi/ZaiTMCCGao7iqjkVfJ7L1VAEAM2KDeOWGvrg6dL1PyKJlFFQXsDZ5LRqdhqTSJEu7r6Mv06Ono45WE+0RbcUK25dWDzMREREsX76ckSNHNmnfs2cPs2fPJiUl5Uov2WokzAghmstkMvPJtmTeWH8Ko8lMhLcTy+YMpG+wu7VLEx2E3qhnS8YWtEladmTvwGQ2AWCntOO6sOuIj45nRNAIbJQyN+v3Wn3RvNzcXAIDz9/TwdfXl5ycnAs8QwghOh6lUsG910YzJMKLBSsSSC2q5sYPdvL09F7cMTxchp3EBZnNZo4UHkGTpOHH1B+pqKuwHIv1jSU+Op7JkZNxs5MP2C2lWWEmNDSUHTt2EBkZ2aR9x44dBAXJ5m1CiM5lULgnaxeM5pFvDrPpRB5Pa46xK7mIV2/qj5sMO4nf5FblsiZ5DZokDanlqZb2AOcAZkTNYEb0DCLdIy9+AdFszQoz99xzDw8++CD19fVcd911AGzevJlHH32Uhx9+uEULFEKI9sDDyY5//WkQn+5IZfGPJ1h3JJcjWWUsu20gsaEe1i5PWEmNoYbN6ZvRJmnZnbMbMw0zNxxUDlwffj3qGDVDA4aiVCitXGnn1qw5M2azmccff5ylS5dSV1cHgIODA4899hjPPPNMixd5NWTOjBCipR3KKGXeioNkFNdgq1LwxJRe3D0qQoadugiz2UxCfgIanYb1qeupqq+yHBvkPwh1tJqJERNxtnW2YpUdX5vdml1ZWcmJEydwdHSkW7du2NvbN/dSrUbCjBCiNZTV1PP4d4f58WguABN6+/PGzf3xcOray8p3ZlmVWazWrUar05JRkWFpD3YJJj46nhnRMwh1DbVihZ2LrDPTiIQZIURrMZvN/G93Gi+tOUGd0USwhyPvzYljYJintUsTLaS6vpqNaRvR6DTsy91naXeycWJixETU0WoG+g+UYaRW0OphpqqqildffZXNmzeTn5+PyWRqcjw5OflKL9lqJMwIIVrb0awy5i0/SGpRNTZKBf+Y1IO/jolCqZRhp47IZDaxL3cfWp2WjWkbqTHUAKBAwdDAoaij1YwPG4+TrZOVK+3cWv3W7HvuuYdffvmFO++8k8DAQBknFkJ0aX2D3Vk9fzT//OEoqw9ls/jHk+xOLmLJrAF4OcuwU0eRXp6ORqdhtW41OVXnlhkJdwtvGEaKmkGgy/nLkgjra1bPjIeHB2vXrmXUqFGtUVOLkp4ZIURbMZvNrNibwfOrj6E3mAhwc2DpbXEMjfSydmniIirqKlifuh6tTktCfoKl3dXWlUmRk1BHq4n1jZUP7VbQ6j0znp6eeHnJP04hhGhMoVAwZ1gYcWEePLD8IMkFVdz2r90smtCd+66NlmGndsJoMrInZw8anYbN6ZvRG/UAKBVKRgSNQB2tZlzoOBxsHKxcqbhczeqZ+eKLL9BoNHz++ec4ObXdmOHixYv55z//ycKFC3nnnXcu6znSMyOEsIYqvYGnVx3l+4QsAMZ08+HtWwfg49L+7vrsKpJLk9HoNKxJXkN+db6lPdo9mviYeKZHTcfPyc+KFYrGWn0CcFxcHDqdDrPZTEREBLa2TVfAPHjw4JVe8g/t27ePWbNm4ebmxrhx4yTMCCHaPbPZzDcHMnlGc5TaehN+rva8M3sAI6N9rF1al1GmL+PHlB/R6rQcKTxiaXezc2NK5BRmxsykj3cfGUZqh1p9mGnmzJnNeVqzVVZWcvvtt/Ovf/2Ll156qU2/txBCNJdCoWDW4FAGhHrwwJcHOZNfyR3/3sOC8d2Yf103VDLs1CoMJgM7s3eiSdKwJWML9aZ6AFQKFWOCxxAfE8+1Iddip5LJ2Z1Fh1hn5q677sLLy4u3336bsWPHMmDAgIv2zOj1evR6veXr8vJyQkNDpWdGCGFVNXVGntUe5ev9mQCMjPbmndkD8HOVeRkt5XTJabRJWtYkr6GotsjS3sOzB/HR8UyNmoqPo/SKdRSt3jNz1oEDBzhx4gQKhYLevXsTFxd3NZe7oK+++oqDBw+yb9++Pz6Zhnk1zz//fIvXIYQQV8PRTsXrN8cyPMqbp1YdZaeuiKnvbuPtWwcwppuvtcvrsIpri1mXvA6tTsuJ4hOWdi8HL6ZGTkUdo6anV08rVijaQrN6ZvLz85k9ezZbt27Fw8MDs9lMWVkZ48aN46uvvsLXt2X+YWZkZDB48GA2bNhAbGwsgPTMCCE6vKT8SuYtP8jJ3AoUCnhgbAwPXt8NG5WsIns56o31/Jr5Kxqdhm2Z2zCYDQDYKG0YGzIWdYyaUcGjsFXKjuYdWatPAL711lvR6XT873//o1evXgAcP36cu+66i5iYGFasWNG8yn9n1apV3HDDDahUKkub0WhEoVCgVCrR6/VNjl2ITAAWQrRHtfVGnl99nBV70wEYGunF0tlxBLjLsNOFmM1mThSfQJOkYV3KOkr1pZZjfbz7NAwjRU7Fw8HDajWKltXqYcbd3Z1NmzYxZMiQJu179+5l4sSJlJaWXuklL6iiooK0tLQmbXfffTc9e/bkscceo2/fvn94DQkzQoj2THsomye+O0xVnREvZzvemhXL2B5ye/BZhTWFrE1ey6qkVSSVJlnafR19mR41nfjoeGI8Y6xYoWgtrT5nxmQynXc7NoCtre15+zRdDVdX1/MCi7OzM97e3pcVZIQQor2Ljw2iX7A785Yf5Fh2OXM/3cffr43ikYk9sO2iw056o56tGVvRJGnYmb0To9kIgJ3SjuvCriM+Op4RQSOwUV7VtE/RiTTrJ+G6665j4cKFrFixgqCgIACysrJ46KGHGD9+fIsWKIQQnV2kjzPf3TeSV9ad4L+70vj4l2T2p5aw9LY4gj0crV1emzCbzRwuPIw2ScuPqT9SUVdhOdbftz/qaDWTIyfjZic97OJ8zRpmysjIQK1Wc/ToUUJDQ1EoFKSnp9OvXz80Gg0hISGtUWuzyDCTEKIj+fFIDo9+d5iKWgMeTra8eXMs1/f2t3ZZrSa3Kpc1yWvQJGlILU+1tPs7+Tds7hg9g0j3SOsVKKym1efMnLVx40ZOnjyJ2Wymd+/eXH/99c29VKuRMCOE6GjSi6qZv+IghzLLALhndCSPTu6JnU3nGHaqMdTwc/rPaHVadmXvwkzD25CDyoHrw68nPjqeoQFDUSkvfYOH6NxaLcz8/PPPzJs3j927d5934bKyMkaOHMlHH33EmDFjmld5K5AwI4ToiOoMJl776ST/tz0FgNhQD5bdFkeoV9vth9eSzGYzCfkJaHQa1qeup6q+ynJskP8g1NFqJoRPwMXOxYpVivak1cJMfHw848aN46GHHrrg8aVLl7JlyxZ++OGHK6u4FUmYEUJ0ZBuP5/HIN4coq6nH1cGGN26OZXLfAGuXddmyK7PR6rRodVoyKjIs7cEuwcyInkF8VDyhbqFWrFC0V60WZsLDw/npp58sa8v83smTJ5k4cSLp6elXVnErkjAjhOjoMkuqWbAigYPppQDMHRnBE1N7Ym/TPodhquur2Zi2Ea1Oy97cvZZ2JxsnJkZMJD46nkH+g1AqOsewmWgdrXZrdl5e3gVvybZczMaGgoKCK7mkEEKIPxDi6cTKv4/gzQ2n+PiXZD7bmcqBtBKWzYkj3NvZ2uUBYDKb2J+7H41Ow8a0jdQYagBQoGBo4FDU0WrGh43HybZjDpOJ9u2KwkxwcDBHjhwhJubCCxQdPnyYwMDAFilMCCHEObYqJU9M6cXwSG8WfZ3Ikawypi3dzqs39WN6/yCr1ZVeno5Wp2W1bjXZVdmW9nC38Ia7kaJmEOgi7wuidV3RMNP8+fPZunUr+/btw8Gh6ZLbNTU1DB06lHHjxrF06dIWL7S5ZJhJCNHZ5JTVsGBFAvtSSwC4fVgYT0/vjYNt2ww7VdRVsD51PVqdloT8BEu7i60LkyMno45WE+sbi0KhaJN6ROfUanNm8vLyGDhwICqVinnz5tGjRw8UCgUnTpzg/fffx2g0cvDgQfz928+aCBJmhBCdkcFo4p1NZ3h/axJmM/QKdGPZnDiifVvnbiCjycienD2s0q3i5/Sf0RsbNvRVKpSMCBxBfHQ814Vdh4ON7C0lWkarrjOTlpbGfffdx/r16zn7VIVCwaRJk/jggw+IiIhoduGtQcKMEKIz23amgIdWJlJYWYeTnYpXbujHzLjgFrt+clky2iQtq5NXk1+db2mPdo8mPiae6VHT8XOSvaREy2uTRfNKSkpISkrCbDbTrVs3PD09m1Vsa5MwI4To7PLLa1n4VSK7kosAuHVwKM/F98HRrnnDTmX6Mn5K+QmNTsORwiOWdjc7N6ZGTkUdo6aPdx8ZRhKtqs1WAO4IJMwIIboCo8nM0s1nWPrzGcxm6O7vwvtzBtLN3/Wynm8wGdiZvZNVSavYmrGVelM9ACqFitHBo1HHqLk25FrsVHat+KcQ4hwJM41ImBFCdCU7kwpZuDKRggo9DrZKXlT35ZbBF1+U7nTJabRJWtYkr6GotsjS3t2zO+poNVOjpuLj6NMWpQvRhISZRiTMCCG6moIKPYu+TmTbmUIAbhwYzIvqvjjbN6zGUVJbwrqUdWiSNJwoPmF5npeDl2UYqadXT6vULsRZEmYakTAjhOiKTCYzH2xN4q2NpzGZIcrXnrnX13KgaCO/Zv6KwWwAwEZpw7Uh16KOVjM6ZDS2yosvjCpEW2q1FYCFEEJ0DEqlggfGxeDnU8jibf8jz+EgbySe29yxt3dv4qPjmRo5FU+H9nkDhxCXS8KMEEJ0MoU1haxNXotGp+FMyRlwASVgMrhiKItjtP9k3p0wBRd7eQsQnYP8JAshRCegN+rZmrEVrU7LjqwdGM1GAOyUdlwXdh0zomZwVBfAkg1JbM43Mz17G8vmDKRvsLt1CxeiBUiYEUKIDspsNnOk8AhanZZ1KeuoqKuwHOvv2x91tJpJEZNwt28ILNeEwrBIH+YvTyC1qJobP9zJ09N6ccfwcFkzRnRoMgFYCCE6mNyqXNYkr0GTpCG1PNXS7u/k37C5Y/QMIt0jL/r80uo6HvnmEJtONKzoO7VfAK/e1B83B5n8K9oPuZupEQkzQojOoMZQw8/pP6NJ0rA7ZzdmGv7rdlA5MD58PPHR8QwLGIZKeXmr/prNZv5vewqv/XSSeqOZMC8nls2Jo3+IRyv+KYS4fBJmGpEwI4ToqMxmMwn5CWh1Wn5K/Ymq+nN3Iw30G8jMmJlMCJ+Ai13zN5dMzChl3vKDZJbUYKtS8MSUXtw9KkKGnYTVSZhpRMKMEKKjya7MRqvTslq3mvSKdEt7sEuwZRgp1PXiq/peqbKaeh779jA/HcsFYGJvf964ORZ3Jxl2EtYjYaYRCTNCiI6gur6ajWkb0eq07M3da2l3tHFkYvhE1DFqBvkPQqlQtsr3N5vN/HdXGi+vPUGd0USwhyPL5sQRFyZr0AjrkDDTiIQZIUR7ZTKb2J+7H41Ow8a0jdQYagBQoGBowFDiY+K5Pux6nGyd2qymI5llzFtxkLSiamyUCh6b3JO/jI5EqZRhJ9G2JMw0ImFGCNHepJeno9U1bO6YVZllaQ9zDbMMIwW5BFmtvoraep74/ghrDucAcF1PP5bcEouns+yYLdqOhJlGJMwIIdqDyrpK1qeuR6vTcjD/oKXd1daVSZGTUEerifWNbTcTb81mMyv2ZvD86mPoDSYC3R1477Y4Bkd4Wbs00UVImGlEwowQwlqMJiN7cvegSdLwc/rP1BprAVAqlIwIGoE6Ws240HE42DhYudKLO5FTzgNfHiS5sAqVUsHDE7tz7zXRMuwkWp2EmUYkzAgh2lpKWQpanRatTkt+db6lPco9CnWMmulR0/Fz8rNihVemSm/gqVVH+SGhYUjsmu6+vDUrFh8XeytXJjozCTONSJgRQrSFMn0ZP6X8hFan5XDhYUu7m50bUyOnoo5R08e7T7sZRrpSZrOZb/Zn8oz2KLX1Jvxc7Vl6WxzDo7ytXZropCTMNCJhRgjRWgwmAzuzd6JJ0rAlYwv1pnoAVAoVo4NHEx8dz9jQsdipOs/E2dN5FTzw5UHO5FeiVMDC8d2Zd10MKhl2Ei1MwkwjEmaEEC3tdMlptEkNdyMV1RZZ2rt7dkcdrWZq1FR8HH2sWGHrqq4z8KzmGN8cyARgZLQ378wegJ9r+537IzoeCTONSJgRQrSEktoS1qWsQ5Ok4UTxCUu7p70n06KmER8dTy/vXlassO19fzCTJ384Sk29ER8XO965NY7R3TpviBNtS8JMIxJmhBDNVW+sZ1vWNjRJGn7N+hWDyQCAjdKGa0OuRR2tZnTIaGyVXXfZ/6T8SuYtP8jJ3AoUCpg3LoaF47tho2qdlYpF1yFhphEJM0KIK2E2mzlRfAKtTsu65HWU6Essx3p790YdrWZK5BQ8HWSZ/7Nq6408v/oYK/ZmADA00ouls+MIcJdhJ9F8EmYakTAjhLgchTWFrE1ei0an4UzJGUu7j6MP06OmEx8dTzfPblassP3TJGbxz++PUFVnxMvZjrdmxTK2R8e5BV20LxJmGpEwI4S4mDpjHVsztqLRadiRtQOj2QiAndKOcWHjiI+OZ2TQSGyUNtYttANJLqhk3vIEjueUA3DvtdE8PLE7tjLsJK6QhJlGJMwIIRozm80cLTyKRqfhx5QfKa8rtxzr79sfdbSaSRGTcLd3t2KVHVttvZGX157gf7vTABgU7sl7t8UR5OFo5cpERyJhphEJM0IIgLyqPFYnr0ar05JSlmJp93fyZ0b0DOKj44l0j7RihZ3P2sM5PP7dYSr0BjycbHnz5liu7+1v7bJEByFhphEJM0J0XbWGWn5O/xmNTsPunN2YzCYAHFQOjA8fjzpazdCAoaiUKitX2nmlFVUxb3kCR7LKALhndCSPTu6JnY0MO4lLkzDTiIQZIboWs9lMYkEimiQN61PXU1lfaTk20G8g6hg1E8Mn4mLnYsUquxa9wcirP57k0x2pAMSGerDstjhCvZysW5ho1yTMNCJhRoiuIbsyG61Oy2rdatIr0i3twS7BDcNIUfGEuoVasUKx/lgu//jmEOW1BtwcbHj95lgm9w2wdlminZIw04iEGSE6r+r6ajambUSr07I3d6+l3dHGkYnhE1HHqBnkPwilQoY02ouM4mrmr0ggMaMUgLkjI3hiak/sbWSoTzQlYaYRCTNCdC4ms4n9ufvR6DRsTNtIjaHGcmxYwDDiY+K5Pux6nGxlCKO9qjeaeGP9KT75NRmAfsHuLJsTR7i3s5UrE+2JhJlGJMwI0TlklGeg0WlYrVtNdlW2pT3MNYz46HhmRM8gyCXIihWKK7X5RB4Pf3OI0up6XO1tePWm/kzrH2jtskQ7IWGmEQkzQnRclXWVbEjbgCZJw8H8g5Z2F1sXJkVMQh2jZoDvABQKhRWrFFcju7SGBSsS2J/WsG3EHcPDeGpabxxsZdipq5Mw04iEGSE6FqPJyJ6cPWh0Gn5O/5laYy0ASoWSEYEjiI+O57qw63CwkX1/Oot6o4m3N57mg606AHoFuvH+nDiifOWOs65MwkwjEmaE6BiSy5LRJmlZnbya/Op8S3uke2TDMFLUDPydZcG1zuyX0wUsWplIUVUdznYqXrmxH+oBwdYuS1iJhJlGJMwI0X6V6ctYn7oeTZKGw4WHLe1udm5MiZyCOlpNX5++MozUheSV17LwqwR2JxcDMHtIKM/O6IOjnQw7dTUSZhqRMCNE+2IwGdiZvROtTsuW9C3UmeoAUClUjA4eTXx0PGNDx2KnsrNypcJajCYz724+w3s/n8Fshh7+rrx/exwxfq7WLk20IQkzjUiYEaJ9OF1yGm2SlrUpaymsKbS0d/PsxszomUyNmoqPo48VKxTtzY6kQhZ+lUhhpR5HWxUvzuzLzYNCrF2WaCMSZhqRMCOE9ZTUlrAuZR2aJA0nik9Y2j3tPZkWNQ11jJqeXj2tWKFo7woq9Dy0MpHtSQ0B+KaBIbw4sw9OdjZWrky0NgkzjUiYEaJt1Rvr2Za1DU2Shl+zfsVgMgBgo7ThmuBrUMeoGRM8BluVrZUrFR2F0WTmgy1JvL3pNCYzxPi58P6cgfQIkGGnzkzCTCMSZoRofWazmZPFJ9HqtKxNXkuJvsRyrLd3b+Kj45kaORVPB08rVik6ut3JRSz8KoG8cj32Nkqej+/DrUNCZYJ4JyVhphEJM0K0nsKaQtYmr0Wj03Cm5Iyl3cfRh+lR04mPjqebZzcrVig6m6JKPYu+PsQvpwsAUA8I4uUb+uFiL8NOnY2EmUYkzAjRsvRGPVsztqLVadmRtQOj2QiArdKW68KuIz46npFBI7FRypuLaB0mk5mPf03mzQ2nMJrMRPo4s2xOHH2C3K1dmmhBEmYakTAjxNUzm80cLTyKRqfhx5QfKa8rtxzr79sfdbSaSRGTcLeXNxPRdvanFjN/RQI5ZbXY2Sh5enpv7hgWJsNOnUSnCTOLFy/m+++/5+TJkzg6OjJy5Ehee+01evTocdnXkDAjRPPlVeWxJnkNWp2W5LJkS7u/kz8zomcQHx1PpHukFSsUXV1JVR2PfHOIzScbVo2e1i+QxTf1w81BJph3dJ0mzEyePJnZs2czZMgQDAYDTz75JEeOHOH48eM4O1/eVvESZoS4MrWGWn5O/xmNTsPunN2YzCYAHFQOjA8fT3x0PMMChqFSyoqson0wm8383/YUXv3xJAaTmTAvJ5bNiaN/iIe1SxNXodOEmd8rKCjAz8+PX375hWuuueayntOaYaagQk9eeS0eTrZ4OtnhZKeS7k3RIZnNZhILEtEkaVifup7K+krLsYF+A4mPjmdSxCRc7GTjP9F+JaSXMG95AlmlNdiqFDwxpRd3j4qQ/5dbkdFkxGQ2tcpSC1fy/t2hZuiVlZUB4OXlddFz9Ho9er3e8nV5eflFz71a64/l8tSqo5avbVUK3B3t8HSyxcPJlsen9GJQeMOtqGfyKtibWoyHox0evx33cLLDw9FWQpCwmpzKHLQ6LVqdlvSKdEt7kHMQ8THxxEfFE+oWasUKhbh8cWGerFswhke/O8T6Y3m8sOY4u5OLeOPmWNydZNippeRX5/Nr5q/syt7F7pzdPDL4EW7odoNVa+owYcZsNrNo0SJGjx5N3759L3re4sWLef7559ukJoUC/FztKa2up85oot5oprBST2FlQ5iqM5gs5+5OKebpRsGnMTuVko/uHMh1PRt2BN6XWszKfRm/hSI73B0ben48nGxxd7QlwsdZbkMUzVZdX82m9E1ok7Tsyd1jaXe0cWRi+ETUMWoG+Q9CqVBasUohmsfdyZaP7hjE5ztTeWXdSTYcz+PY0m0smxNHXJisc9QclXWVKBQKnG0bpnf8kvkLL+x6wXJ8f95+q4eZDjPM9MADD7B27Vq2b99OSMjF9+a4UM9MaGhoq86ZMZvN1NQbKa2u/+1RR2lNPSOivPF0btgsb/OJPL7al0FZdT0lvx0vra6j3tjw8n/1t+EMj/IG4H+70y4afAA+umMQk/sGWK775obTeDk3BB5vZzs8ne3w+u0xONyLAHcHS53SA9Q1mcwmDuQdQJOkYUPaBmoMNZZjQwOGoo5Rc33Y9TjZOlmxSiFa1pHMMh5YfpD04mpslAoem9yTe8ZEyv+Df8BgMnCs6Bi7snexK3sXhwsO8+jQR7mt520AZFVm8cS2JxgRNIIRgSPo69O3VZZi6HTDTPPnz0er1fLrr79eMsgA2NvbY29v30aVNVAoFDjZ2eBkZ0OQh+MFzxnfy5/xvfybtJnNZqrrjJTW1OPtfG6H4LhQD/4xqQdlvwWekup6yqrrKa1p+L1Xo3OzS2s4kXPxobSP7hjEZPeG4LPmcA7//P4Inr8FHm9nu4YA5NLw68Q+/kT7NsyJqKkzojcYcXOwRamUf/gdVUZ5BhqdhjXJa8iqzLK0h7qGoo5WMyN6BkEuQVasUIjW0y/EnTULRvPEd0dYeySHl9edYHdyEW/eEmv5oCkaVNdXs+LkCn5K/Ymsyiwq6iqaHD9dctry+2CXYP475b9tXeIlteswYzabmT9/Pj/88ANbt24lMrJz3QKqUChwtrfB+XdDRn2D3ekbfHnrdUzsE0CYtzMlVXUUn31U11Fc2fBrcKNwVVJdR4XeQIXeQHpx9XnXivRxtoSZjSfyWLAiAZVSgedvE5zP9vZ4Otsxe0io5U6Bsup68ipq8Xa2w8PJDpWEH6uqrKtkQ9oGNEkaDuYftLS72LowKWIS8dHxxPnFyadT0SW4OdiybE4cI/Z488Ka42w+mc/Updt477Y4BkdcfP5lZ5dTmUOxvpg+3n0AqDPW8c7BdyzHXe1cGR443NL7EuLavncrb9dh5oEHHmD58uVoNBpcXV3Jzc0FwN3dHUfHC/eAdDX+bg74uzlc1rk3DwphdIwPJdV1FFXWUVJdR3FVPcVVeoqr6onyPXe7e1lNPdCwwVthZR2FlXVNrnVtd1/6//az/cuZAhasSABAqQAvZ3t8XBp6fLyd7blrZIRlInRxVR0ZxdV4u9jh42KPg63c3tsSjCYje3L3oNVp2Zy2mVpjLQBKhZIRgSOIj47nurDrcLC5vJ8VIToThULBHcPDiQvzYN7yBFIKq7j1k908PLE7914T3SV6nwtrCtmXu489OXvYl7uP9Ip0env3ZuX0lQC427sT7R7N5MjJjAoaRW/v3h1q+YV2PWfmYp8cP/30U+bOnXtZ15B1ZppPb2iYB3Qu+Jx73BAXTIRPQ/j5/mAmL645Tkl1/QWv88mdg5jYp2GoS5OYxcKvEi3HXOxtfgs9dni72PO3a6IY8tunpYIKPUn5lb8FI3s8HGXI6/dSylLQ6rSs1q0mrzrP0h7lHkV8dDzTo6bj7+x/iSsI0bVU6g08+cMRNInZQMMHs7dmxeLt0rbTE9rKh4kfsiFtA0mlSU3aVQoV/Xz68Z/J/8FW2T7v9Oo0c2bacc7qEuxtVPi7qf6w5+fGgSHcODCEeqOJkqq633py9BRV6SmsqKNXYNMfwiB3Bwor66gzmqjUG6jUG0grahj2mjX43G3AO3WFTYKPjVKBr6t9w8PFnr9fG83QyIbgU1SpJ7WoGr/fjnfmHp8yfRnrU9ejSdJwuPCwpd3VzpWpkVNRR6vp69NXhpGEuAAXexveuXUAI6K8eVZ7jF9OFzB16TbenR1nuQmjI6qur+Zg/kES8xN5YMADln//KeUpliDTw7MHwwKHMSxwGAP9BnaqdaPadc9MS5CemfbJbDZToTdQVFlHUaXeEoCu6+lnmUS95nA2b208TVFlnWXYq7F//2kw1/du6HX4fY+Pq4ONJdj4ujpw96gIBv52W2ZpdR255bX4uTp0mN4eg8nAzuydaHVatqRvoc7UMOynUqgYFTwKdbSasaFjsVPJpEYhLtep3AoeWH6QpPxKlAp48PruPDAupkPM+6uqr+JQ/iH25+1Ho9OQX51vObZKvYpoj2gAEvITKKguYEjAEDwdOtat6Z2mZ0Z0XgqFAjcHW9wcbIn0ufDWFNP7BzG9f8OdNnUGE0VVevLL9RRU6Cmo1NMnuOkPd4inI/kVeuoMJipqDVTUGtAVVAEwc8C5O3a2nirgwZWJwPm9PX5u9swZGk6/kIYJ2JV6A9V6A94u9lb5D+5MyRm0Oi1rktdQWFNoae/m2Q11tJppUdPwcfRp87qE6Ax6BLiinTeKp1cd47uDmby18TR7Uop4+9YB+Lm23/llX574kjf2vWHZsf6sIOcghgUOa7JGVJxfXFuXZxUSZkSHYGejJNDdkUD3C0/8Vg8IRj0gGLPZTHmtgYIKPfkVtQ3Bp0JPz0ZDXXVGE55OtpRU12MwmckpqyWnrNZyfEJvf6AhzGw8nstDKw+hUirwdbHH383eMuk6wN2BKX0DiPrtDjCTyYxCcfG5XperpLaEdSnr0Oq0HC86bmn3tPdkWtQ04qPj6enVU4aRhGgBTnY2LJkVy4hob55edZQdSUVMfXc7784ewKgY631QKKgu4ED+AQ7kHuBA/gEeGvgQY0LGABDmGobRbCTYJZg4vzhCXENQR6vb/R1HrUnCjOhUFAoF7o4NKyXH+F14PHjW4FBmDQ69YG9Pfrmebn6ulnPLawwoFQ13deWW15JbXguUWY73DnSzhBnNoSz++f1R/N3s8XNzIMDNoUn4GRbphd9F5h/Vm+rZlrkNrU7LL5m/YDAZALBR2nBtyLXER8czJnhMq+x/IoRouNtzQKgHD3x5kFN5Fdzxf3uYf103Fo7v1ia9suV15WzN2MqBvAMcyDtAWnlak+P78/ZbwsyQgCFsvHkjAc4BrV5XRyFzZoT4Aw23pzdsKppbVktehZ68slryymt5YFyM5a6uD7fqeO2nkxe9zqdzhzCupx8A647ksHTzGUpqanBxKaLQeJRaRQ5KmzIUtmX09vflhu4zmBo5tcONcwvRkdXWG3l+9TFW7M0AYFikF0tvi7vsJTAuh8lsIrUslazKLEYFj0KpUJJcmoxao7aco0BBD68eDPIfZHl4OXStdXE67a7ZzSFhRrSV2nojeeW15JXryS2vtQSe3PJa8sv1vHJjX2L8XCmsKeRx7c9sSrjwXCFoGnx26gpZfSiHIHcHAj0cLb8Gujt06ru2hLAmTWIW//z+CFV1Rryd7Xjr1gFc2923WdeqMdRwtPAohwoOkZCfwKGCQ5TpyxgSMIRXRr9CgHMAZrOZ+zbfR3fP7gz2H8wAvwG42XXt9yyZACyEFTjYqgj3dibc+/yQUmesY2vGVt7ZrGV71nbq65xxDPVHafTCmxFEeoSCwZ3cMj3ZZTUEepz7FJiQXsqKvennXRPA08mWj+8cbLlF/VRuBcdzygh0dyTI3RF/d3vsbSTwCHGl1AOC6RfszrzlCRzPKeeu/+zlvrHRPDyhOzaqy9uE1WgyMvenuRwtPIrBbLjg8bNDRQqFgo+u/6hF/wxdiYQZIVqJ2WzmaOFRNDoNP6b8SHnduT20BgRGoI5RMyliEu72529d0bjDdFikFwvGdyOntIbc8lqyS2vIKaulus5ISXU9bo7n/hlvOpHHG+tPNbmWj4vdb5OnHXh0cg9ifpsTVFZdj8FkwsvZTiYTC3EBUb4ufH//SF5ee4L/7U7jw6069qUUs/S2OMsSEkaTkTOlZ0jMTyQhP4E6Yx1vj3sbAJVSRZ2pDoPZgJ+jHwP8BhDnF8cAvwH08OrRbher64hkmEmIFpZXlcea5DVodBpSylIs7X5OfsyImkF8TDxR7lFX9T3MZjPlNQayy2qI8nW29L58dyCTbw9kWkKP3mBq8rz1D15Dj4CGMPPB1iRe/+kUDrZKgj0cCfZ0ItjDkRBPR4I9HBnbwxcPJ1m3RgiAtYdzePy7w1ToDbh7ZjBhYDll5jMcLjhMteHcXnc2Cht2ztmJo01D2DlWdAwPew+CnIPkQ8MVkmEmIdpYraGWn9N/RqvTsitnFyZzQ4hwUDkwPnw88dHxDAsY1mJ7nSgUCtydbHF3avrJ7qZBIdw0qOH2TLPZTEl1vaUnJ6eshlCvc7e2l1XXo1BAbb0JXUGVZU2es356cIwlzCzfk472UBbBHk4EezYEnhAPR4I9G26Xt7O5vG53IToSg8lAUmkSxwqPcWO/G+kb7Ma85Qmc4UvWZx+xnOds60ysbywDfAcwwG8ANspzb61nN3IUrUvCjBDNZDabSSxIRJOkYX3qeirrKy3HBvoNRB2jZmL4RKstGa5QKCw7nV9oF/YnpvZi0cTu5JTWklVaQ1ZJDZmlNWSWVJNVUtNkx/Vj2WXsTi4Gii/wfWDDg9fQzb+hx2dfajEpBVWEeDkS5uVEoLtjh1hRVYi8qjyOFB7hcMFhDhce5njRcWoMNQAM8h9EhHcE3943gnt/OMKuHBXG6ghi3Pvy4aypRHi7/sHVRWuSMCPEFcquzGa1bjVanZb0inMTc4Ocg5gRPYP46HjC3MKsWOHls7dREeHjbLm9/GL+NCKCwRGeZJXUkFVaQ+Zvv2aVNAxl+bufm7C8KiGLL/ece11slAqCPR0J9XQi1MuRRyb2sGzqV2cwYatSSPe7aHPV9dXYKm0tazd9cvgT3kt477zznG2d6evT17ITvb2Nik9vuY/1x27gH98c4kSpgfj3dvL6zbFM7ivrvliLhBkhLkN1fTWb0jehTdKyJ3ePpd3RxpEJ4RNQR6sZHDC4yTLinUmPAFfLXJvGzGYzRVV1uDmcG+7q5ufCmG4+ZJY09PLUG82kFVVbNhN9Ymovy7kvrDnGqoRsQjwbenFCvZwI9XQkzNuJUE8nonxdpFdHXLWzk3QP5h0kqTSJI4VHOFNyhmXjlzE6eDQAMR4xKBVKunl0o59vP/r79KefTz8i3SMvODw8qU8AvQPdmL8igcSMUu794gBzR0bwxNSecgehFcgEYCEuwmQ2cSDvAJokDRvTNjaZ5Dc0YCjx0fFMCJ+Ak62TFats34wmM3nltWQUV5NeXE1eeS3zrutmOX7Xf/byy+mCiz7/0LMTcXdsCEo/JGSSXlRDhI8TYV5ORHg74+FkK7064qKOFh7lzf1vNhkuauzBgQ/yl35/AUBv1GM0Ga/433OdwcQb60/yr20Nk/37BbuzbE7cBZdoEFdGFs1rRMKMuFIZ5Rlok7Ws1q0mqzLL0h7qGoo6Ws2M6BkEuQRd4grictXWG8ksqSGjuJqMkmrSixp+zSiuoaymnh2PX2c5d+6ne9l6qmnwcXOwIcLHmTAvJ5bMirV8Iq6uM+Boq5Kg08mZzWayq7I5VniMY0XHOFZ4jKlRU7mx240AnC45zU3amyznD/QbSKxvLP18+9HPp1+Lbgew+UQeD39ziNLqelztbXj1pv5M6x/YYtfviiTMNCJhRlyOyrpKNqRtQJOk4WD+QUu7i60LkyImER8dT5xfnLw5WtGKvekkppeSWlRFWlH1b/tkNXBzsOHQsxMtfz9/+Wwfu5KLLD044T5OhHs5E+HtRLiPM0HuDvJ32UGV6cv47/H/cqzoGMcLj1OiL2lyPD46npdHvww03I20Nnktfbz7XHS4qCVll9awYEUC+9MaarpjeBhPTestK3U3k4SZRiTMiIsxmozszd2LVqdlU9omywQ/BQqGBw5HHaPmurDrLOtFiPalps5IRkk1qYVVVNQaLLekA0x46xfO5Fde8Hmu9jYcfu5c8Pl6XwZ1RhNRPs5E+brg72YvQcfKzGYzedV5nCw+yZ6cPdip7Hho0ENAw/y14cuHY6bhrctGYUM3z2708elDX+++xPnFEeVxdes4XY16o4m3Np7mw606AHoFuvH+nDjLhrTi8kmYaUTCjPi9lLIUtLqGYaS86jxLe6R7JPHR8UyPmi670XZwdQYTmSXVv008riL1t1/Tiqpxd7Llh/tHWc79ffBxslMR4e1MlK8zvQLdeGBcjDX+CF2K2Wxmfdp6Thad5ETxCU4Wn6S49twyAEHOQay/eb3l66UHl+Lv5E8fnz508+yGvcreGmVf0tZT+Sz6+hDFVXU426l45cZ+qAcEW7usDkXCTCMSZgQ0dE2vT12PRqfhcMFhS7urnStTI6cSHx1PP59+8om8CzCbzU3+nl//6SSncitILqwivbgao+ncf4m9At34ceEYy9dz/rWbeqOJKB8XIn2difRxJsrHmTBvJ7mD5TLUm+pJKUvhRNEJ9EY9s3rMshwb//V48mvyLV+rFCoi3CIwmo3c2fvOJud2FLlltSz4KoG9KQ3BbPaQUJ6d0QdHO/lZuRwSZhqRMNN1GUwGdmbvRKvTsiV9C3WmOqDhP8lRwaOIj45nbOjYdvmpTlhHvdFERnE1KYVVJBdU4WSv4vZh4QCYTGZ6PfPTeVtEACgVMKabL5//eailbUdSIVG+zgS4dd35OceLjnO08GhDb0vRSU6XnLb8O/R28GbrrVst5765702qDFX08upFL69edPPshoONw0Wu3HEYjCaWbj7De1uSMJuhh78r798eZ9kjTVychJlGJMx0PWdKzqDVaVmTvIbCmkJLe4xHDDNjZjItaho+jj5WrFB0RCaTmWPZ5SQXVpJcUEVKYdVvoaeSqjojk/r48/GdgwEoq6kn9vkNALjY2xDt60y0nwsxfi7E+LrQK9CNUK/OcUv/2fktp0tOk1mRyZxecyzH7v7pbvbn7W9yvoutCz28etDLqxeLBi2yLFrX2W0/U8iDKxMprNTjaKvixZl9ubnRPC9xPgkzjUiY6RpKa0tZl7IOjU7D8aLjlnZPe0+mRjUMI/Xy6tVlPyGL1mM2mymo0KM3mCwBpay6nuvf/oWCCv0FnzO+px//N3eI5fnLfk4izNuJGD8Xon1d2vXdL8llyRzKP8TpktOcLjnNqZJTlOnLLMd33bbLsoXHh4c+5FD+IXp596KnV096efUixDWk0y4u+UfyK2p58KtEduqKALhpYAgvzuyDk52sX3shEmYakTDTedWb6tmWuQ2tTssvmb9gMBmAhrsbrgm5hviYeK4JvqbLfPIT7U+dwURaURVJ+ZUNj4KGX8f38mfRhO4AFFToGfLyJstzFAoI8XQkxrehJ2d0N1+u7e7bpnWbzWYKago4VXyK0yWnubP3ndipGjYdfW7nc3x35rsm55+d39LdqzuPDH4EPye/Nq23IzGazLy/JYl3Np3GZIYYPxfenzPwgitsd3Wya7bo1E4Wn0STpGFdyromdzz08upFfHQ8U6Om4uXgZcUKhWhgZ6Okm7+rZRPOCzGazMweEkpSfiVn8ispq6kno7iGjOIatpwqwGAyW8JMWXU9sz7eRYC7A9f38qO7f8M2E2d3N2+utPI0DuQd4EzJGb49/S0qpYqq+nO7qI8MGkkv74ZtKGJ9Y8moyKC7Z3e6e3anh1cPoj2iZe7ZZVIpFSwY340hEV4s/CqBpPxK4pdt5wV1H2YNDpXe42aSnhnRIRTWFLIuuWEY6XTJaUu7t4M306OmEx8TT3fP7lasUIirZzabKaysIym/Et1vvTjXdvdlXM+Gno4DacXc9OGu857n52pPjwBXZg8Ju+iqs3qjnpSyFM6UnCGpNIlbe9xqWcn6P0f/w9sH3m5yvlKhbOht8ezOX/v/Vf59tYLCSj2Lvj7Er79t6TFzQBAv3dAPF3vpZwDpmRGdRJ2xjl8yf0GTpGF71naMZiMAtkpbxoWOQx2jZmTQSGyU8mMsOgeFQoGvqz2+rvaMiPY+73i4tzNLboll6+kCskqqya/Qk1lSQ36FnvwKPdf38rec++OpBJ7e9CVOzoUYbXKoMOZi5tydWH28+1jCTF/vvowIHIGngye9vXsz2H8w0R7RneJuovbMx8Wez+YO4aNfdSzZcJpVidkczixj2ZyB9A6SD99XQt4FRLtiNps5WngUjU7Djyk/Ul5XbjnW36c/8dHxTI6cjLu9uxWrFMI6fFzsuWlQCDcNCsFkNpFdmc2RglPsyzrO8cLTeHm7AREA7M86jd5lPXqAhs8BmI2OmPQBuCiCSc+zO3sqA3wH88H4wdiouubEXGtSKhXcPzaGoRFezF+RQHJhFTM/2MEz03tz+7AwGXa6TBJmRLuQV5XHmuQ1aHVaksuSLe1+Tn7MiJpBfEw8Ue7WW6JciPYguSyZ/zvyf2zL3HbenkQAeXWxQMMif7Nih5NVNxU7UyA1VX4UFnmSlKugutZINRAzrrfleRuO57Lo60PUGUyM7+nH0EgvegW60SvQDV9XmQvTFgZHeLFuwRge+eYQm0/m89Sqo+xKLmLxjf1wc5CbGP6IzJkRVlNrqOXn9J/R6rTsytmFydzQBW6vsue6sOuYGT2TYYHDWn1zOCHag1pDLanlqSSXJpNc1vBIKUvhlu63WNZuOVV8iptX32x5jq3Slij3KGI8Y4jxiGFk0Eh6e/e+2LfAbDaTX6HnVG4FsaEeuDs2vEm+vfE0724+c8Hn+LjY88HtAxka2TCpvkpvwFalxM5GenFag9ls5v+2p/DqjycxmMyEezux7LaB9Avper3RMmdGtFtms5lDBYdYlbSK9anrqaw/tyfOQL+BxEfHMzFiIq52cpui6JzK9GXUm+otCzeml6fzt41/I7sy27J5YmONJ7xHuEdwX+x9eDt4MyRwCGGuYVc0Z0yhUODv5oC/W9O5MAvHd+OmgSGcyqtgzeFs6o0mTuZUkFJURWGlHr9GvTOf7UzlnU2nifFzpVegK70C3H7rxXHF20V6ca6WQqHgnjFRDAr3ZN7yBNKKqrnpw538c2pP7hoZIcNOFyE9M6JN5FTmNGzumLyatPI0S3ugcyAzomegjlYT5hZmxQqFaDlms5nsqmzSytNIKUtp0ttSXFvMrT1u5anhTwENu0APWz4MAHd7d6Lco4hyjyLSPZIo9yi6e3bH39n/Ut+u1dTUGTmVV0H/YHeUyoY30UVfJ/L9wawLnu/ras/39420LB5YXluPs50NKqW8ATdHWXU9//j2EBuON2yIO6mPP6/fFIu7U9cYdpJF8xqRMGM91fXVbErfhDZJy97cvZZPnY42jkwIn4A6Ws3ggMFddjVQ0fGV15WTVpZGankq7vbuXBNyjaV91IpRF33exPCJLBm7xPJ1Yn4ioa6heDl4tftP3mazmcySGk7klHMip4KTueWcyCknrbgaG6WCY89PtgxBPfrtIVYfyqFnoCt9g9zpE+RG32B3uvm7yMacl8lsNvPZzlReWXeCeqOZEE9H3rstjrgwT2uX1upkmElYjcls4kDeATRJGjambaTaUG05NiRgCOpoNRPCJ+Bk2zn2pRFdh9Fk5LNjn5FWnkZaeUOAabxo48igkZYwo6AhkES4RVh6WKI8zvW4ONs6N7n2AL8BbfbnuFoKhYJQLydCvZyY2CfA0l6lN5BaVNVkLk1SfiU19UYS0ktJSC+1tNsoFfQIcGXVA6Ow/e0OKqPJLD04F6BQKLh7VKRl2Cm9uJpbPtrFY5N7cs+YyHYfftuK9MyIFpFRkcFq3Wq0Oi1Zlee6oENdQ4mPjmdG9AyCXYKtWKEQF2cym8iryiOlPOVcWClLJcA5gOdGPmc5b/RXo5vsQwTg6+hLhHsEcX5xzI+bb2k3moxdfvK60WQmpbCKY9llHMsu51h2GUezyimrqSfC24mt/xhnOXf2J7vIr9DTJ8idvkFu9PmtJ8fT+epWN+5MymvreeK7I6w9kgM07PH15i2xnfY1kmGmRiTMtJ7Kuko2pG1Ak6ThYP5BS7uzrTOTIyYTHx1PnF+cfHIQ7cLZwFJeV04Prx6W9rt+vItjRcfQG8/fFDLMNYy1N661fP1+4vsoURLuFk6EewThbuHn9bKISzObzWSV1lBYWceAUA9LW//nNlChN1zwObOHhPLqTf3bsMr2y2w288WedF5cc5w6g4kgdweW3hbH4IjOt4WLhJlGJMy0LKPJyN7cvWh0GjanbabWWAs0dKsPDxxOfEw848PG42jjaOVKRVe2N2cvujIdGRUZZJRnkF6RTmZFJnWmOiLcIlh9w2rLubetuY2jRUexUdoQ6hraEFTcIixDRAP9B1rxT9J1FFToLT04x7PLOZpdRlpRwzC1h5Mtic9MtJw766Nd+LnZ0z/Enf4hHvQJcsO1i63Fciy7jHnLE0gprEKlVPDwxO7ce020ZaJ2ZyBhphEJMy0jtSwVrU6LVqclrzrP0h7hFoE6Rs30qOkEOAdc4gpCtAy9UU9mRSYZFRmkl6eTUZFBvam+yXDQrNWzOFF84rzn2ihtiHCL4Pv47y09hieLT+Jk40SQS5BsjdHOlNfWsze5GEc7FaNiGm5lz6+oZejLm5ucp1BAlI8z/UM8uL6X/0X3p+psKvUGnvzhCJrEbACu7e7LW7NiO80t8hJmGpEw03zldeX8lPITWp2WQwWHLO2udq5MjZxKfHQ8/Xz6yTCSaFFms5lSfSn51flNhoOe3/U827O2k1eVd956LHZKO/bdsc9yZ9yS/UtIK08jzDWMMLcwQl1DCXUNJcA5QAJLB1dbb2R/agmHs0o5nFHGkawyskprLMfvGhHO8+q+AFTXGXhOe4x+IR70D3anR4ArDradax6T2Wxm5b4MntUeQ28w4e9mz9LZcQyLOn9vr45GwkwjEmaujMFkYFf2LjQ6DVvSt1BnqgNApVAxMmgk6hg1Y0PHYq/qHMlfWNeBvAOcLD5JZkUmWZVZZFVmkVmRSbWhGnuVPftu32cJy4u2LmJj2kagYV5WmGtDSDkbVmZEzcBW1bWGGkSDwko9RzLLOJxZxpAIT0b+1ouzP7WYmz86t8u4nUpJ7yA3BoR6EBfmwfAo7/MWEOyoTuaW88CXB9EVVKFUwEPXd+f+cTEd+g4xCTONSJi5PGdKzqDVaVmTvIbCmkJLe4xHDDNjZjItapplxVIh/ojBZCCvOo+siiwyKzMtYSWvOo9PJ31qCSgPbXmITembLngNP0c/vov/Dg8HDwCOFx2nzlhHmFsYnvae0iMo/lBqYRXfHsjkcFYZB1KLqaozNjn+1LRe3DOmYc+3wko9J3LKiQ316LB7IVXpDTytOWpZ1HBUjDfv3BrXYffXknVmxGUprS1lXco6NDoNx4uOW9o97D2YGjkVdYyaXl695E1DnMdgMlBQXUB2VTY5VTlMi5xm+Tl5YdcL/HDmBwzmC9+ZUlRbZAnGg/wHARDsEkywazAhLiEEuwYT5ByEg03TT8yX2nNIiAuJ8HHmkUkNQ5Vms5n04moSMxrWvEnIKGVQ+LmF5345VcDD3xxCoYBoXxdL782AUA96+Lt2iB3Fne1teGvWAEZEefOM5hg7koqY8u423p09wDLnqLOSnpkupt5Uz/bM7Wh1WrZmbsVganjDsVHYMCZkDOoYNdcEXyPd9V1cnbEOW6WtJaD8lPIT27K2kVWZRU5lDnnVeRjN5z7lbpm1xRJQ3tj3Bv89/l9slbYNIeW3R4hrCMEuwYwOHi2LJop25+v9GSz7OYn04urzjjnaqvj8z0Mtm212hAX+zuRV8MDyg5zOq0ShgPnXdWPh+G7tvu7GZJipEQkzDU4Wn0STpGFdyromq5b28uqFOkbNlMgpeDl0vnUKxMVlV2aTVJpEdmV2Qw9LZY7l94U1hU0Cyuv7Xud/x//X5Pk2ShsCnAIIcgni+ZHPE+IaAkBBdQFGsxE/Jz/ZqkJ0OIWVeg791nuTmFHKoYxSKvQG9j15vWW45p1Np/lmfyaDIzwZFN7w6Bng1u6CQk2dkee0x1i5PwOAYZFeLL0trsPME5Iw00hXDjOFNYWsS16HVqflVMkpS7uXgxfTo6YTHx3f5G4R0TnUGevIq84jtyrX8mtuVS55VXk8P+p5S2h9be9rfHHii4teZ/nU5fTz7QfAnpw9HCk8QpBzEEEuQQQ6B+Lj6NPlV7gVnZ/JZCalqIpoXxdL253/t4dtZwqbnOdib0NcmAcDwzz5+7VRONm1n1kcqxKy+OcPR6iuM+LtbMdbtw7g2u6+1i7rD0mYaaSrhZk6Yx2/ZP6CNknLtqxtlqEAW6UtY0PHMjNmJiODRsrtqR3U2bkqudW5lpByY7cbcbd3B+C9hPf45PAnF33+imkr6OvTcNvqt6e/5etTXxPoHGgJKEEuQQS6BBLkHISHvYfMlxLiAir1BhLTS9mfVsyBtBIS0kup/G31Yhd7Gw49O9HSS/P9wUxUSgUDwzwJ8XS02r+p5IJKHliewImccgDuHxvNognd2/VcIJkA3MWYzWaOFR1Dk6Thx9Qfm+wd08+nH+poNZMjJ1ve8ET7ZDQZKawpJLc6l+6e3S2rKGt1WlaeXEluVS6FtYWYzKYmzxvsP9jSg+Ju1/B3bK+yx9/JnwDnAAKcA5r8/qybu9/Mzd1vbqM/nRCdh4u9DaO7+TC6W8MwrNFk5lRuBQfSS6iorW8y3PTu5jOWlYz93ewZHO7FwHBPBod70jvIzbLRZmuL8nXhh/tH8tLa43yxO50PturYl1rMu7PjCPLo+Cu2S89MB5Zfnc+a5DVok7ToynSWdj9HP2ZEzyA+Op4ojygrVijOqjHUYKu0tfSI7cvdx5aMLeRX5/Nr5q/YKGyoMdRY7gBqPMTzv+P/4/V9r1uuZaO0wd/J3xJQ7ul3D908uwFQUVeBwWSQXhUh2gGjycwr606wP62EY1llGExN3259XOzZ/9T1lq/rjaY2CTdrDmfzxHdHqNAb8HSyZcmsWK7r6d/q3/dKSc9MJ1ZrqGVLxhY0Og27sndZPqXbq+wZHzYedbSaYYHDZC6DFZwpOcP+vP0UVBeQV51HfnU+BdUF5FfnU1FfwZdTv6S/b8NmeSeLT543oRYaFif0dfKlxnBuRdNrQq4h0DnQ0rPi5eB10Ym1rnaurfOHE0JcMZVSwdPTG5YUqKkzciizlANpJZZHkIcDWaU1BHs4UmcwMfiljfQIcGVopBdDI70ZFO6Ji33Lv01P7x9Ev2B35i1P4EhWGX/+bD9/uyaKf0zq0WY9RS1NemY6ALPZzKGCQ2h0GtanrKeivsJyLM4vDnW0mokRE+WNrBXkV+dzpuQM+dX55FXnWcJJfk0++dX5LB231NKD8sXxL3ht32sXvdY7Y99hfPh4AA4XHGZT2iYcbR0JcAogyiOKAKcAmVQrRBdhMpmprDNYFuhLSC/hhg92NjlHpVTQN8iNoZFeTOkXyMAwzwtdqtn0BiOL153ks52pAMSFefDebXGEeLaPpRNkAnAjHTnM5FTmsDp5NVqdlrTyNEt7oHOgZRgp3C3cihV2TGX6MjIrMimoKaCwpvC8xz+H/dOyQNsfBZS3x77N9eEN3cR7cvaw4uQK/Jz8LA9fR1/8nfzxdfLFxdZFhn6EEBd0dlG/PcnF7EkpZm9qERnF53poH5vck/vGRgNQVKlnV3IRQyO98HO9+tusfzqay6PfHqK81oCbgw1v3BLLpD7W3zhYhpk6sOr6ajanb0aj07A3Z69lQz1HG0cmhE9AHa1mcMBgWb/jd6rrq8mtzqWw+vxwUlBTwKJBi+jl3QuANclreHXvqxe9VnZltiXMhLqG0t2ze5Nw0jisNA6TwwKHMSxwWOv+QYUQnZJCoSDc25lwb2dmDQkFILu0hn2pxexOLmZMt3Mr+G5PKmThV4kABLg54Otqzz1jIhkR5Y1fM9aQmdw3gD5BbsxfkUBiRil//98B7h4VweNTemJv0zF6iqVnph0wmU0cyDuAVqdlQ+oGqg3nVqAcEjAEdbSaCeETutyqqXqjnoLqAopri0mvSKe0tpSK+gqKaooorCnkvtj7LOvkLD+xnMV7F1/0Wm+NfYsJ4RMA2Jy2mVf2voKvoy8+jj74OPrg7eht+TrWNxZfp/a/BoMQomtaczib97foOJlbzu/fwWP8XFhySyyxoR5XfN06g4k31p/kX9tSAOgX7M77cwYS5m2d9x7pmekgMioyWK1rGEbKqsyytIe4hBAfE098dDzBLsFWrLDlVdVXkVOZQ1FtEcW1xRTXFlNUU2T59f4B91t6UH448wMv73n5oteaGjnVEmZ8nXxxtXXFx6khnPg4+Jz7vaMPfb37Wp43Pny8Ze6KEEJ0NNP7BzG9fxBl1fXsTyvm2wOZ7EstoahKT1J+JQHu53pnfkjI5Hh2OSOjfRgS6XXJCcV2NkqenNabYZHePPLtIY5klTFt6TZevak/0/oHtsUfrdmkZ6aNVdVXsSF1AxqdhgN5ByztzrbOTIqYRHx0PAP9BnaouRVl+jLSy9PPhZPaonMBpbaIhwY+RB+fPgCsPLmSl/a8dNFrLbl2CRMjJgKwMW0jj//6ODZKG8yYGRow1BJOfBx9GBU0ilC3hu5Ys9ncoV4zIYRoaSVVdSRmljKuh5+l7U//2cuvpwsAsFEqiA31YGS0NyOivRkY5omD7YWHkbJLa5i/IoEDaSUA3DE8jKem9b7o+a1BJgA30h7CjNFkZG/uXrQ6LZvTN1tuu1WgYHjgcNQxaq4Lu86ySFp7kFuVy7GiY5TWllKiL6GktoRSfSnFtcWU1pby2NDHGOA3AICvT33Ni7tfvOi13rz2TSZFTAIahnie2/UcXg5eloe3o7fl9yOCRhDq2hBQTGYTChQSUoQQopl+PJLD1lMF7EwubDKhGMDDyZYDT02wLPL3+w+F9UYTb208zYdbG9Yx6x3oxvu3DyTSx7lNapdhpnYitSwVrU7L6uTV5FblWtoj3CJQx6iZHjW9yYqsLclsNjcs1KayxVbZcOvfmZIz7M7ZTUltCSX6kvOCypvXvsmQgCEAbMvaxgu7Xrjo9XOrz/15fB19LeufeDv8Fkwcz/2+v09/y7lXMsQjk5yFEOLqTOkXyJR+DUNEGcXV7NIVsVNXyE5dET0CXC1Bpt5ootuTP3JdTz+u6ebD6G6+RPs689jkngyL9GLR14c4nlPO9KXbeOXGfqgHtK8pEB0izHzwwQe88cYb5OTk0KdPH9555x3GjBlj7bIuqLyunJ9SfkKr03Ko4JCl3dXOlSkRU4iPiae/T/8r6m0wm81UG6op05dRqi8lzDUMF7uGTc8S8hNYn7re0mNi6T3Rl6I36vnXxH8xPHA4AIcKDjVZSfb3imqLLL8Pdg6mv09/PB088bD3wNPBs+Fh3/D12f19AMaFjWNc2LjL/vMIIYRoe6FeToR6OTFrSChms5nyWoPlWGGlHoCfT+bz88l8AILcHRjTzZcx3X1Ycc9wntYeZW9KMQu/SmSXrojn4vu06bDTpbT7MLNy5UoefPBBPvjgA0aNGsXHH3/MlClTOH78OGFhYdYuD2gYRtqVswtNkoaf03+mzlQHNKzmOjJoJPEx8YwLHYed0o4aQw25VbmU6kspqyujTN/wGBs6Fj+nhnHOTWmb+O/x/1qOldWVYTCd+6H7ZMInjAgaAYCuVMeXJ768aG2ltaWW30d7RDMlckpDIHHwwNO+UUBx8CDEJcRy7sjgkYwMHtmSL5MQQoh2QqFQ4O5oa/na39WBlX8bzu7khjVu9qWUkF1Wy8r9Gazcn8FNA0NYfs8w3t18hvd+TuKrfRkkpJfy/u1xxPhZf8HWdj9nZtiwYQwcOJAPP/zQ0tarVy9mzpzJ4sUXvxX3rNacM5OQl8C3p7/ll8xfKKs7t7mjh70HwS7BPDH0CWL9YoGGW4ff3P8m9ab6C17r4wkfMzKoITx8d/o7ntv13Hnn2Cnt8LD34LmRzzEmpKFn6kTRCTakbTjXe/JbQPGw98DLwQtHG+vt0iqEEKJjqqkzsieliG1nCtl+ppD7x0Vbhpb+tyuNpzVHAbBVKlg0sYdlQb+W1GnmzNTV1XHgwAEef/zxJu0TJ05k586dF3yOXq9Hr9dbvi4vL2+V2l7f9/oF99YBKNU3DPdUGaosbfYqe0uQsVXa4mHvgbu9O252bnjYe+Bqey7ZDgscxpJrl1jOOftwUDmcF0x6efey3MoshBBCtARHOxVje/gx9rc7oxr3e9TWGy2/rzeZee2nk+SU1fCCuu9512kr7TrMFBYWYjQa8fdvupunv78/ubm5F3zO4sWLef7551u9tji/OL48/iU2Shu8HL0Icg6yhA8Pew/c7N0IdQm1nD8xYiKjgkfhZuf2h70lIa4hhLiGXPS4EEII0ZYav2f9ZXQkI2O8+fV0ISv2ppNRXM2g8JbdN+pKteswc9bv3/gvtabIE088waJFiyxfl5eXExoaesFzr8bYkLFsuXULXg5el3W+q52rbAQphBCiw1MqFfQJcqdPkDv3jY1GV1BJtK+LVWtq12HGx8cHlUp1Xi9Mfn7+eb01Z9nb22Nvb9/qtdmqbPFSXV6QEUIIITorawcZgHa9kIednR2DBg1i48aNTdo3btzIyJFyp40QQggh2nnPDMCiRYu48847GTx4MCNGjOCTTz4hPT2de++919qlCSGEEKIdaPdh5tZbb6WoqIgXXniBnJwc+vbty7p16wgPD7d2aUIIIYRoB9r9OjNXqz3szSSEEEKIK3Ml79/tes6MEEIIIcQfkTAjhBBCiA5NwowQQgghOjQJM0IIIYTo0CTMCCGEEKJDkzAjhBBCiA5NwowQQgghOjQJM0IIIYTo0CTMCCGEEKJDa/fbGVytswscl5eXW7kSIYQQQlyus+/bl7NRQacPMxUVFQCEhoZauRIhhBBCXKmKigrc3d0veU6n35vJZDKRnZ2Nq6srCoWiRa9dXl5OaGgoGRkZsu9TK5LXuW3I69w25HVuG/I6t43WfJ3NZjMVFRUEBQWhVF56Vkyn75lRKpWEhIS06vdwc3OTfyxtQF7ntiGvc9uQ17ltyOvcNlrrdf6jHpmzZAKwEEIIITo0CTNCCCGE6NAkzFwFe3t7nn32Wezt7a1dSqcmr3PbkNe5bcjr3DbkdW4b7eV17vQTgIUQQgjRuUnPjBBCCCE6NAkzQgghhOjQJMwIIYQQokOTMCOEEEKIDk3CzCV88MEHREZG4uDgwKBBg9i2bdslz//ll18YNGgQDg4OREVF8dFHH7VRpR3flbzW33//PRMmTMDX1xc3NzdGjBjB+vXr27DajutKf6bP2rFjBzY2NgwYMKB1C+wkrvR11uv1PPnkk4SHh2Nvb090dDT/+c9/2qjajutKX+cvv/yS2NhYnJycCAwM5O6776aoqKiNqu2Y/r+9+4+Juv7jAP78cD/iOApB5UdAOAIVbJbCIKA0yqFQaZuam8y8TVvYSKgBO1dpVFtl5dJmVIwdrSBcoowx/MEfqaBOQ2FrHRMS0TExh8pGkHbg6/tH875dnMod3l0fej62+4P3vT6fz+vz2o33i/f7PuPIkSN4/vnn8eCDD0JRFNTV1d31GJ/MhUJO1dTUiE6nk/LycrFarVJQUCBGo1HOnz/vNL67u1sCAgKkoKBArFarlJeXi06nk927d3s5c/VxtdYFBQXy0UcfycmTJ6Wzs1M2bdokOp1OTp8+7eXM1cXVOt8yMDAgsbGxkpWVJY8++qh3klUxd+q8dOlSSU1NlaamJjl37pycOHFCjh496sWs1cfVOjc3N4ufn59s375duru7pbm5WebMmSMvvPCClzNXl8bGRnnzzTeltrZWAMjevXvvGO+ruZDNzG2kpKRIXl6ew9js2bPFbDY7jS8pKZHZs2c7jL3yyivy+OOPeyzHycLVWjuTmJgopaWl9zq1ScXdOq9atUreeust2bJlC5uZcXC1zvv27ZOgoCC5cuWKN9KbNFyt88cffyyxsbEOYzt27JCoqCiP5TjZjKeZ8dVcyG0mJ/7880+cOnUKWVlZDuNZWVk4duyY02OOHz8+Jn7x4sVobW2FzWbzWK5q506t/+nmzZsYHBxESEiIJ1KcFNyts8ViwdmzZ7FlyxZPpzgpuFPn+vp6JCcnY+vWrYiMjMTMmTNRVFSEP/74wxspq5I7dU5PT0dvby8aGxshIvjtt9+we/duPPvss95I+T/DV3PhpP9Hk+7o7+/H6OgowsLCHMbDwsJw6dIlp8dcunTJafzIyAj6+/sRERHhsXzVzJ1a/9Onn36KoaEhvPjii55IcVJwp85dXV0wm81obm6GVstfFePhTp27u7vR0tICf39/7N27F/39/Xj11Vdx9epVfm/mNtypc3p6OqqqqrBq1Spcv34dIyMjWLp0KT7//HNvpPyf4au5kCszd6AoisPPIjJm7G7xzsZpLFdrfcv333+Pd955B7t27UJoaKin0ps0xlvn0dFRrF69GqWlpZg5c6a30ps0XPk837x5E4qioKqqCikpKcjJycG2bdtQWVnJ1Zm7cKXOVqsVGzduxObNm3Hq1Cns378f586dQ15enjdS/U/xxVzIP7ecmDZtGjQazZgO//Lly2M6zlvCw8Odxmu1WkydOtVjuaqdO7W+ZdeuXVi3bh1++OEHLFq0yJNpqp6rdR4cHERrayva2tqQn58P4K9JV0Sg1Wpx8OBBPP30017JXU3c+TxHREQgMjISQUFB9rGEhASICHp7exEfH+/RnNXInTp/8MEHyMjIQHFxMQBg7ty5MBqNePLJJ/H+++9z9fwe8dVcyJUZJ/R6PZKSktDU1OQw3tTUhPT0dKfHpKWljYk/ePAgkpOTodPpPJar2rlTa+CvFRmTyYTq6mrueY+Dq3V+4IEH8PPPP6O9vd3+ysvLw6xZs9De3o7U1FRvpa4q7nyeMzIycPHiRfz+++/2sc7OTvj5+SEqKsqj+aqVO3UeHh6Gn5/jlKfRaAD8f+WAJs5nc6FHv16sYrce+6uoqBCr1SqFhYViNBqlp6dHRETMZrOsWbPGHn/rcbTXX39drFarVFRU8NHscXK11tXV1aLVamXnzp3S19dnfw0MDPjqFlTB1Tr/E59mGh9X6zw4OChRUVGyYsUK+eWXX+Tw4cMSHx8v69ev99UtqIKrdbZYLKLVauWLL76Qs2fPSktLiyQnJ0tKSoqvbkEVBgcHpa2tTdra2gSAbNu2Tdra2uyPwP9b5kI2M3ewc+dOiYmJEb1eL/Pnz5fDhw/b31u7dq0sXLjQIf7QoUMyb9480ev1MmPGDCkrK/NyxurlSq0XLlwoAMa81q5d6/3EVcbVz/TfsZkZP1fr3NHRIYsWLRKDwSBRUVHyxhtvyPDwsJezVh9X67xjxw5JTEwUg8EgERERkpubK729vV7OWl1+/PHHO/6+/bfMhYoI19eIiIhIvfidGSIiIlI1NjNERESkamxmiIiISNXYzBAREZGqsZkhIiIiVWMzQ0RERKrGZoaIiIhUjc0MERERqRqbGSJSlZ6eHiiKgvb29jvGPfXUUygsLPRKTkTkW2xmiMgjTCYTFEWBoijQ6XSIjY1FUVERhoaGJnTe6Oho9PX14ZFHHgEAHDp0CIqiYGBgwCFuz549eO+99yZ0LSJSB62vEyCiyWvJkiWwWCyw2Wxobm7G+vXrMTQ0hLKyMrfPqdFoEB4efte4kJAQt69BROrClRki8pj77rsP4eHhiI6OxurVq5Gbm4u6ujrcuHEDGzduRGhoKPz9/fHEE0/gp59+sh937do15ObmYvr06TAYDIiPj4fFYgHguM3U09ODzMxMAEBwcDAURYHJZAIwdpvp2rVreOmllxAcHIyAgABkZ2ejq6vL/n5lZSWmTJmCAwcOICEhAYGBgViyZAn6+vo8XygimhA2M0TkNQaDATabDSUlJaitrcU333yD06dPIy4uDosXL8bVq1cBAG+//TasViv27duHjo4OlJWVYdq0aWPOFx0djdraWgDAmTNn0NfXh+3btzu9tslkQmtrK+rr63H8+HGICHJycmCz2ewxw8PD+OSTT/Dtt9/iyJEjuHDhAoqKijxQCSK6l7jNRERecfLkSVRXVyMzMxNlZWWorKxEdnY2AKC8vBxNTU2oqKhAcXExLly4gHnz5iE5ORkAMGPGDKfn1Gg09u2k0NBQTJkyxWlcV1cX6uvrcfToUaSnpwMAqqqqEB0djbq6OqxcuRIAYLPZ8OWXX+Lhhx8GAOTn5+Pdd9+9VyUgIg/hygwReUxDQwMCAwPh7++PtLQ0LFiwAK+99hpsNhsyMjLscTqdDikpKejo6AAAbNiwATU1NXjsscdQUlKCY8eOTSiPjo4OaLVapKam2semTp2KWbNm2a8JAAEBAfZGBgAiIiJw+fLlCV2biDyPzQwReUxmZiba29tx5swZXL9+HXv27EFQUBAAQFEUh1gRsY9lZ2fj/PnzKCwsxMWLF/HMM89MaLtHRG47/vc8dDqdw/uKotz2WCL692AzQ0QeYzQaERcXh5iYGHujEBcXB71ej5aWFnuczWZDa2srEhIS7GPTp0+HyWTCd999h88++wxff/2102vo9XoAwOjo6G3zSExMxMjICE6cOGEfu3LlCjo7Ox2uSUTqxO/MEJFXGY1GbNiwAcXFxQgJCcFDDz2ErVu3Ynh4GOvWrQMAbN68GUlJSZgzZw5u3LiBhoaG2zYdMTExUBQFDQ0NyMnJgcFgQGBgoENMfHw8li1bhpdffhlfffUV7r//fpjNZkRGRmLZsmUev2ci8iyuzBCR13344YdYvnw51qxZg/nz5+PXX3/FgQMHEBwcDOCv1ZZNmzZh7ty5WLBgATQaDWpqapyeKzIyEqWlpTCbzQgLC0N+fr7TOIvFgqSkJDz33HNIS0uDiKCxsXHM1hIRqY8i3BAmIiIiFePKDBEREakamxkiIiJSNTYzREREpGpsZoiIiEjV2MwQERGRqrGZISIiIlVjM0NERESqxmaGiIiIVI3NDBEREakamxkiIiJSNTYzREREpGr/A3v9sDwV76aAAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAjIFJREFUeJzs3Xd4VFX+x/H3zKT33ntCLyH0KiDSIcGGyOqKu+6uhaLoWtZeUVcsiH1/q64K2MlQFAEB6TWht0x67z2ZZGbu74/IkAgohCST8n09zzyQc+/cfBkC85lzzj1HpSiKghBCCCFEB6W2dAFCCCGEEFdDwowQQgghOjQJM0IIIYTo0CTMCCGEEKJDkzAjhBBCiA5NwowQQgghOjQJM0IIIYTo0KwsXUBrM5lMZGdn4+zsjEqlsnQ5QgghhLgMiqJQUVFBQEAAavXv9710+jCTnZ1NcHCwpcsQQgghRDNkZGQQFBT0u+d0+jDj7OwMNLwYLi4uFq5GCCGEEJejvLyc4OBg8/v47+n0Yebc0JKLi4uEGSGEEKKDuZwpIjIBWAghhBAdmoQZIYQQQnRoEmaEEEII0aF1+jkzQgghOi6TyURdXZ2lyxCtwNraGo1G0yLXkjAjhBCiXaqrqyMlJQWTyWTpUkQrcXNzw8/P76rXgZMwI4QQot1RFIWcnBw0Gg3BwcF/uGia6FgURaG6upr8/HwA/P39r+p6EmaEEEK0OwaDgerqagICAnBwcLB0OaIV2NvbA5Cfn4+Pj89VDTlJ1BVCCNHuGI1GAGxsbCxciWhN54JqfX39VV1HwowQQoh2S/bU69xa6u9XwowQQgghOjSLhplffvmFmTNnEhAQgEqlYvXq1U2OK4rCM888Q0BAAPb29owbN47jx49bplghhBBCtEsWDTNVVVVER0ezfPnyix5/9dVXef3111m+fDn79+/Hz8+PiRMnUlFR0caVCiGEEKK9smiYmTp1Ki+88AI33HDDBccUReHNN9/k8ccf54YbbqBv3758+umnVFdXs2LFCgtUe2F9m0/moSiKpUsRQgjRjsybN49Zs2Zd0L5161ZUKhWlpaVtXlNn127nzKSkpJCbm8ukSZPMbba2towdO5Zdu3Zd8nl6vZ7y8vImj9bw+d50/vrpAf7x2UHKqq9uFrYQQgghmq/drjOTm5sLgK+vb5N2X19f0tLSLvm8JUuW8Oyzz7ZqbQAqwEaj5qcTeRxftp2358YwMMS91b+vEEJ0RYqiUFNvtMj3trfWyF1V7Vy7DTPn/PYHSFGU3/2heuyxx1i8eLH56/LycoKDg1u8rtuGhxId5Mb8lYdIK6pm9vu7eXhKD+4aHYFaLT/0QgjRkmrqjfR+aoNFvveJ5ybjYNPu3y67tHb7t+Pn5wc09NA0XuY4Pz//gt6axmxtbbG1tW31+gD6BbmyZsFoHvvuKOuO5PDS+lPsSS7mtZuj8XCUhZ6EEKKrWrt2LU5OTk3azi0EKFpeuw0z4eHh+Pn5sXHjRmJiYoCGTce2bdvGK6+8YuHqznOxs2b5rTGMiPDkubUn+PlUPtOXbWfZrTEMCfOwdHlCCNEp2FtrOPHcZIt97ys1fvx43nvvvSZte/fu5bbbbmupskQjFg0zlZWVJCUlmb9OSUkhMTERDw8PQkJCuP/++3nppZfo1q0b3bp146WXXsLBwYG5c+dasOoLqVQqbhseysAQd+avOERyYRVzPtzD4onduWdspAw7CSHEVVKpVB1qqMfR0ZGoqKgmbZmZmRaqpvOz6E/GgQMHGD9+vPnrc3Nd7rjjDj755BMefvhhampquPfeeykpKWHYsGH89NNPODs7W6rk39U7wAXtgtE88f1RVidm8+8Np9mTXMQbtwzAy6lthr6EEEKIrsait2aPGzcORVEueHzyySdAQxJ/5plnyMnJoba2lm3bttG3b19LlvyHnGyteOOWAbxyYz/srNVsP1vItLe2sye5yNKlCSGEEJ1Su11npiNTqVTcMiSE+PtGE+XjRH6Fnrkf7eGtTWcxmmSRPSGEEKIlqZROvoRteXk5rq6ulJWV4eLi0ubfv7rOwFPxx/nmYMNY6agoT964ZQA+znZtXosQQnQUtbW1pKSkEB4ejp2d/H/ZWf3e3/OVvH9Lz0wrc7Cx4rWbo1l6czT21hp2JhUx7a0d7DhbaOnShBBCiE5BwkwbuXFQEGsWjKannzOFlXpu/+9eXv/pNAajydKlCSGEEB2ahJk2FOXjxOr7RnHr0GAUBZb9nMTc/+wlr7zW0qUJIYQQHZaEmTZmZ61hyQ39eWvOABxtNOxLKWbqW9vZejrf0qUJIYQQHZKEGQuJGxDI2oVj6O3vQnFVHfM+3s8rP56SYSchhBDiCkmYsaBwL0e+u3cktw8PBeC9rTrmfLiH7NIaC1cmhBBCdBwSZizMzlrD87P68u6fBuJsa8WBtBKmLdvO5pN5li5NCCGE6BAkzLQT0/r5s27hGPoHuVJaXc9fPz3AC2tPUGeQYSchhBDi90iYaUdCPB34+u4R3DkqDID/7Ehh9ge7ySiutmxhQgghRDsmYaadsbXS8PTMPnxw+yBc7KxIzChl+rLt/Hgs19KlCSGE+B0qlep3H/PmzbN0iZ1Wx9lPvYuZ3MePPgEuzF+RQGJGKXd/fpB5I8N4bFpPbK00li5PCCHEb+Tk5Jh//+WXX/LUU09x+vRpc5u9vb0lyuoSJMy0Y0HuDcNO/95wmg9/SeaTXakcTCth+dwYQj0dLV2eEEKIRvz8/My/d3V1RaVSNWkTrUfCTDtnrVHzr2m9GB7hweKvDnM0q4zpy3bw8o39mNE/wNLlCSFEm1AUhRqDZZatsLeyR6VSWeR7i8sjYaaDuLanL+sXjmHhygQOpJUwf0UCu3VFPDmjN3bWMuwkhOjcagw1DFsxzCLfe+/cvThYO1jke4vLIxOAO5AAN3tW/X04946LBOCLvelc/+4ukgsqLVyZEEIIYTnSM9PBWGnUPDylJ8MiPFn8ZSInc8qZ8fYOXrq+H7NiAi1dnhBCtAp7K3v2zt1rse8t2jcJMx3U2O7erF/UMOy0N6WY+79MZLeuiGdi+2BvI8NOQojORaVSyVCPuCQZZurAfF3s+OKuYSyc0A2VCr48kMGsd3aSlF9h6dKEEEKINiNhpoOz0qhZPLE7n/91GF5OtpzOq2Dm2zv55mCmpUsTQggh2oSEmU5iVJQX6xeNZlSUJzX1Rh76+jCLv0qkus5g6dKEEKLLmTdvHqWlpZYuo8uQMNOJ+Djb8b+/DGPxxO6oVfDdoSxmvr2DU7nlli5NCCGEaDUSZjoZjVrFwgndWPG34fi62KIrqCJu+U5W7UtHURRLlyeEEEK0OAkzndTwCE/WLxzD2O7e6A0mHv3uKPd/mUilXoadhBBCdC4SZjoxTydbPp43hEem9ESjVhGfmM3Mt3dwPLvM0qUJIYQQLUbCTCenVqu4Z1wkX/59OP6udqQUVnH9u7v4bE+aDDsJIYToFCTMdBGDwzxYv3AM1/Xyoc5g4snVx5i/IoHy2npLlyaEEEJcFQkzXYi7ow0f/XkwT0zvhZVaxbqjOcxYtoMjmaWWLk0IIYRoNgkzXYxKpeKuMRF8ffcIAt3sSS+u5sb3dvHxzhQZdhJCCNEhSZjpomJC3Fm/cAyT+/hSb1R4ds0J7v78IGXVMuwkhBCiY5Ew04W5Oljz/m2DeGZmb2w0ajYcz2Pasu0kpJdYujQhhBDiskmY6eJUKhXzRoXz7T0jCfFwIKu0hpvf381HvyRjMsmwkxBCiObbunUrKpWq1bd2kDAjAOgX5MrahaOZ3t8fg0nhxfUnuet/ByipqrN0aUII0aHMmzePWbNmXdB+uW/sn3zyCW5ubq1SW2clYUaYudhZs/zWGF6Y1RcbKzU/n8pn2rLtHEgttnRpQgghfqOuTj5sniNhRjShUqm4bXgo3987knAvR3LKarnlwz28uzVJhp2EEBZXXWe45KO23tji57a1rVu3cuedd1JWVoZKpUKlUvHMM88AEBYWxgsvvMC8efNwdXXlb3/7GwCPPPII3bt3x8HBgYiICJ588knq68/fzPHMM88wYMAAPvjgA4KDg3FwcODmm29u0kN0rjfp2WefxcfHBxcXF/7xj380CUyKovDqq68SERGBvb090dHRfPPNN03qX79+Pd27d8fe3p7x48eTmpraaq9VY1Zt8l1Eh9MnwJU1C0bz+PdHiU/M5tUfT7MnuZjXZ0fj5WRr6fKEEF1U76c2XPLY+B7efHznUPPXg57fRM1vQss5w8I9+PIfI8xfj35lC8UXGVZPfXn6VVR75UaOHMmbb77JU089xenTpwFwcnIyH//3v//Nk08+yRNPPGFuc3Z25pNPPiEgIICjR4/yt7/9DWdnZx5++GHzOUlJSXz11VesWbOG8vJy/vrXv3LffffxxRdfmM/ZvHkzdnZ2bNmyhdTUVO688068vLx48cUXAXjiiSf47rvveO+99+jWrRu//PILt912G97e3owdO5aMjAxuuOEG7r77bu655x4OHDjAgw8+2NovGSBhRvwOJ1sr3rxlACMjPXkq/ji/nClg2lvbWXZrDMMjPC1dnhBCtFtr165tEkIAjMaLB6vGbGxscHV1RaVS4efnd8Hxa6+9loceeqhJW+NgExYWxoMPPsiXX37ZJMzU1tby6aefEhQUBMDbb7/N9OnTWbp0qfn72NjY8N///hcHBwf69OnDc889xz//+U+ef/55ampqeP311/n5558ZMaIhBEZERLBjxw4++OADxo4dy3vvvUdERARvvPEGKpWKHj16cPToUV555ZXLfNWaT8KM+F0qlYpbhoQwINid+1YcIim/krkf7eH+67pz3/goNGqVpUsUQnQhJ56bfMljalXT/48OPnndZZ+745HxV1fYb4wfP5733nuvSdvevXu57bbbruq6gwcPvqDtm2++4c033yQpKYnKykoMBgMuLi5NzgkJCTEHGYARI0ZgMpk4ffq0OcxER0fj4ODQ5JzKykoyMjLIz8+ntraWiRMnNrluXV0dMTExAJw8eZLhw4ejavTangs+rU3CjLgsPfyc0c4fxZOrj/PtoUxe33iGvSlFvHHLAHyc7SxdnhCii3Cwufy3rdY693I4OjoSFRXVpC0zM7NFrtvYnj17mDNnDs8++yyTJ0/G1dWVVatWsXTp0t+9zrnAoVL98QdSlUqFyWQCYN26dQQGBjY5bmvbMPXAkqvIS5gRl83Bxoqls6MZEenJk6uPsTOpiGlv7eCtOQMYFeVl6fKEEKJTsLGxuawhKYCdO3cSGhrK448/bm5LS0u74Lz09HSys7MJCAgAYPfu3ajVarp3724+5/Dhw9TU1GBvbw80BCUnJyeCgoJwd3fH1taW9PR0xo4de9FaevfuzerVq5u07dmz57L+HFdL7mYSV+ymQUGsWTCKHr7OFFbque3/9vL6T6cxyt1OQghx1cLCwqisrGTz5s0UFhZSXV19yXOjoqJIT09n1apV6HQ6li1bxvfff3/BeXZ2dtxxxx0cPnyY7du3s3DhQmbPnt1kXk5dXR1//etfOXHiBD/88ANPP/008+fPR61W4+zszEMPPcQDDzzAp59+ik6nIyEhgXfeeYdPP/0UgLvvvhudTsfixYs5ffo0K1as4JNPPmnx1+diJMyIZonycWb1faOYMyQYRYFlPycx96M95JbVWro0IYTo0EaOHMndd9/NLbfcgre3N6+++uolz42Li+OBBx5g/vz5DBgwgF27dvHkk09ecF5UVBQ33HAD06ZNY9KkSfTt25d33323yTkTJkygW7duXHPNNcyePZuZM2eabwsHeP7553nqqadYsmQJvXr1YvLkyaxZs4bw8HCgYV7Ot99+y5o1a4iOjub999/npZdeapkX5Q+olE6+VXJ5eTmurq6UlZVdMCFKtIz4xCz+9d1RquqMeDja8MYtAxjb3dvSZQkhOrDa2lpSUlIIDw/Hzk7m5V2NZ555htWrV5OYmHjJc+bNm0dpaekFw0St7ff+nq/k/Vt6ZsRVixsQyJoFo+nl70JxVR13/Hcfr/x4CoPRZOnShBBCdAESZkSLiPB24vt7R3L78FAA3tuqY86He8gurbFwZUII0b5MnToVJyeniz7aalims5FhJtHi1h3J4dFvj1ChN+DmYM3Sm6OZ0MvX0mUJITqQzjzMlJWVRU3NxT/oeXh44OHh0cYVWU5LDTPJrdmixU3v70/fQBfmr0jgaFYZf/30AH8bE87DU3pirZHOQCFE1/bbdVrE1ZN3FtEqQj0d+eaeEdw5KgyAj7ancPP7u8kovvQthkIIIURzSJgRrcbWSsPTM/vwwe2DcLGzIjGjlOnLtrPheK6lSxNCCNGJSJgRrW5yHz/WLRzDgGA3ymsN/OOzgzy75jh6w+WtcCmEEEL8Hgkzok0Eezjw9d0j+NuYhsWVPt6Zyk3v7Sa9SIadhBBCXB0JM6LNWGvUPD69N/93x2DcHKw5mlXG9GXbWX80x9KlCSGE6MAkzIg2N6GXL+sXjmFwqDsVegP3fnGIJ1YfpbZehp2EEKKzUKlUbbaisIQZYREBbvas/Ptw7hkXCcDne9K54d1dpBRWWbgyIYRoHpVK9buPefPm/e7zU1NTUalUv7vtgLg4CTPCYqw1ah6Z0pNP/zIUD0cbTuSUM2PZduITsyxdmhBCXLGcnBzz480338TFxaVJ21tvvdUi36eurq5FrtOZtOswYzAYeOKJJwgPD8fe3p6IiAiee+45TCbZ86czGdvdmx8WjWFYuAdVdUYWrUrk0W+PUFMnw05CiKaq66sv+dAb9Zd9bq2h9rLOvRJ+fn7mh6urKyqV6oK233Nu9+mYmBhUKhXjxo0DGjaBnDVrFkuWLCEgIIDu3bsD8PnnnzN48GCcnZ3x8/Nj7ty55Ofnm6+3detWVCoV69atIzo6Gjs7O4YNG8bRo0fN53zyySe4ubmxevVqunfvjp2dHRMnTiQjI6NJbWvWrGHQoEHY2dkRERHBs88+i8FgMB8/e/Ys11xzDXZ2dvTu3ZuNGzde0Wt3tdr1CsCvvPIK77//Pp9++il9+vThwIED3Hnnnbi6urJo0SJLlydakK+LHV/cNYxlm8/y9pYkVu3PICG9lHf+FEOUj7OlyxNCtBPDVgy75LExgWN497p3zV+P+2ocNYaLbxsw2HcwH0/52Pz1lG+nUKIvueC8o3ccvaCttezbt4+hQ4eyadMm+vTpg42NjfnY5s2bcXFxYePGjZzbhaiuro7nn3+eHj16kJ+fzwMPPMC8efNYv359k+v+85//5K233sLPz49//etfxMbGcubMGaytrQGorq7mxRdf5NNPP8XGxoZ7772XOXPmsHPnTgA2bNjAbbfdxrJlyxgzZgw6nY6///3vADz99NOYTCZuuOEGvLy82LNnD+Xl5dx///1t8Iqd167DzO7du4mLi2P69OkAhIWFsXLlSg4cOGDhykRrsNKoWTypB8MiPFm0KpHTeRXMfHsnz8/qy02DgixdnhBCtCpvb28APD098fPza3LM0dGR//znP00Czl/+8hfz7yMiIli2bBlDhw6lsrISJycn87Gnn36aiRMnAvDpp58SFBTE999/z+zZswGor69n+fLlDBs2zHxOr169zOHqxRdf5NFHH+WOO+4wf6/nn3+ehx9+mKeffppNmzZx8uRJUlNTCQpq+L/6pZdeYurUqS39El1Suw4zo0eP5v333+fMmTN0796dw4cPs2PHDt58881LPkev16PXn+9qLC8vb4NKRUsaFeXF+kWjeeDLRHYmFfHQ14fZrSvi+Vl9cLBp1z+yQohWtnfu3kse06g1Tb7eOnvrJc9Vq5rOsvjxxh+vqq7W1q9fvyZBBiAhIYFnnnmGxMREiouLzVMw0tPT6d27t/m8ESNGmH/v4eFBjx49OHnypLnNysqKwYMHm7/u2bMnbm5unDx5kqFDh3Lw4EH279/Piy++aD7HaDRSW1tLdXU1J0+eJCQkxBxkfvs920K7fmd45JFHKCsro2fPnmg0GoxGIy+++CK33nrrJZ+zZMkSnn322TasUrQGH2c7/veXYbyzJYk3N53h20OZJGaU8O6fBtHDT4adhOiqHKwdLH6uJTg6Ojb5uqqqikmTJjFp0iQ+//xzvL29SU9PZ/LkyZc1QVilUv3u143bTCYTzz77LDfccMMF59jZ2ZmHvf7oeq2pXU8A/vLLL/n8889ZsWIFhw4d4tNPP+W1117j008/veRzHnvsMcrKysyP305iEh2HRq1i4YRurPjbcHycbdEVVBG7fAer9qVf9B+PEEJ0ZOd6XozGP7754dSpUxQWFvLyyy8zZswYevbs2WTyb2N79uwx/76kpIQzZ87Qs2dPc5vBYGgyfeP06dOUlpaazxk4cCCnT58mKirqgodaraZ3796kp6eTnZ1tvsbu3buv7A9/ldp1z8w///lPHn30UebMmQM0dLOlpaWxZMkS89jdb9na2mJra9uWZYpWNjzCk/WLxrD4q8P8cqaAR787yu7kIl68vh9Otu36R1gIIS6bj48P9vb2/PjjjwQFBWFnZ3fJO6BCQkKwsbHh7bff5u677+bYsWM8//zzFz33ueeew9PTE19fXx5//HG8vLyYNWuW+bi1tTULFixg2bJlWFtbM3/+fIYPH87QoUMBeOqpp5gxYwbBwcHcfPPNqNVqjhw5wtGjR3nhhRe47rrr6NGjB3/+859ZunQp5eXlPP744y3++vyedt0zU11djVrdtESNRiO3ZndBXk62fDJvCA9P6YFGrSI+MZuZb+/geHaZpUsTQogWYWVlxbJly/jggw8ICAggLi7ukud6e3vzySef8PXXX9O7d29efvllXnvttYue+/LLL7No0SIGDRpETk4OWq22yfwbBwcHHnnkEebOncuIESOwt7dn1apV5uOTJ09m7dq1bNy4kSFDhjB8+HBef/11QkNDAVCr1Xz//ffo9XqGDh3KXXfd1WR+TVtQKe24v37evHls2rSJDz74gD59+pCQkMDf//53/vKXv/DKK69c1jXKy8txdXWlrKwMFxeXVq5YtIX9qcUsXJlATlktNlZqnpzRm9uGhbT5GK0QovXU1taSkpJCeHg4dnZ2li6nQ9q6dSvjx4+npKQENze3i57zySefcP/991NaWtqmtZ3ze3/PV/L+3a57Zt5++21uuukm7r33Xnr16sVDDz3EP/7xj0t2pYmuYUiYB+sXjuHanj7UGUw8ufoY81cmUF5bb+nShBBCWEC7DjPOzs68+eabpKWlUVNTg06n44UXXrjg9jTR9bg72vCfPw/m8Wm9sFKrWHckhxnLdnA0U4adhBDt00svvYSTk9NFH225Jktn1K6HmVqCDDN1fofSS1iwIoGs0hpsNGr+Na0nd4wMk2EnITqwzjjMVFxcTHFx8UWP2dvbExgY2MYVWV5LDTPJrSCiwxsY4s76hWP45zeH+elEHs+sOcHu5CJevTEaVwdrS5cnhBBAw4J1Hh4eli6jU2rXw0xCXC5XB2s+uH0QT8/sjbVGxYbjeUx/ezsJ6RfutSKE6Dg6+eBBl9dSdydLz4zoNFQqFXeOCmdQqDvzVySQXlzNze/v5tGpPfnr6HAZdhKiA7G2tkalUlFQUIC3t7f8++1kFEWhrq6OgoIC1Gr1Vc+FlTkzolMqr63nsW+Psu5oDgATevrw2s3RuDvK5HEhOorKykoyMzOld6YTc3BwwN/f/6Jh5krevyXMiE5LURS+2JvOc2tPUGcwEeBqx9tzYxgUKmPWQnQURqOR+npZdqEz0mg0WFlZXbLXTcJMIxJmxPHsMuavSCClsAqNWsVDk3rwj2siUKul21oIIdqrTrNonhAtoU+AK2sWjCZuQABGk8IrP57izk/2U1Spt3RpQgghWoCEGdElONla8eYtA3j5hn7YWqnZdqaAacu2sze5yNKlCSGEuEoSZkSXoVKpmDM0BO380UR6O5JXrufWj/bw9uazGE2derRVCCE6NQkzosvp4efMmgWjuXFgECYFlm48w5//u5f8ilpLlyaEEKIZJMyILsnBxoqls6N57eZo7K017EwqYtpbO9iZVGjp0oQQQlwhCTOiS7tpUBDa+aPo4etMYaWe2/5vL69vPCPDTkII0YFImBFdXjdfZ1bfN4o5Q4JRFFi2+SxzP9pDXrkMOwkhREcgYUYIwN5Gw8s39uetOQNwtNGwN6WYaW9tZ9uZAkuXJoQQ4g9ImBGikbgBgaxZMJpe/i4UVdVxx3/38cqPpzAYW2YzNCGEEC1PwowQvxHh7cT3947kT8NCAHhvq445H+4hu7TGwpUJIYS4GAkzQlyEnbWGF6/vx/K5MTjZWnEgrYRpy7bz86k8S5cmhBDiNyTMCPE7ZvQPYN3C0fQNdKG0up6/fHKAl9afpF6GnYQQot2QMCPEHwj1dOTbe0Yyb2QYAB/+kszN7+8ms6TasoUJIYQAJMwIcVlsrTQ8E9uH928biLOdFYkZpUx7azsbjudaujQhhOjyJMwIcQWm9PVn/cIxRAe7UV5r4B+fHeTZNcepM8iwkxBCWIqEGSGuULCHA1//YwR3jQ4H4OOdqdz0/i7Si2TYSQghLEHCjBDNYGOl5okZvfnPnwfjam/Nkcwypi/bzvqjOZYuTQghuhwJM0Jchet6+7J+0RgGhbpToTdw7xeHeHL1MWrrjZYuTQghugwJM0JcpUA3e1b9fTh3j40E4LM9adzw7i5SCqssXJkQQnQNEmaEaAHWGjWPTu3JJ3cOwcPRhhM55cxYtp34xCxLlyaEEJ2ehBkhWtC4Hj6sXziGoeEeVNUZWbQqkce+OyLDTkII0YokzAjRwvxc7Vhx1zAWXhuFSgUr92Uw652dJOVXWro0IYTolCTMCNEKrDRqFk/qwWd/GYaXky2nciuY+fYOvj2YaenShBCi05EwI0QrGt3Ni/WLRjMy0pOaeiMPfn2Yh74+THWdwdKlCSFEpyFhRohW5uNsx2d/Hcbiid1Rq+Cbg5nELd/JmbwKS5cmhBCdgoQZIdqARq1i4YRufHHXcHycbTmbX0ns8h18uT8dRVEsXZ4QQnRoEmaEaEMjIj1Zv2gMY7p5UVtv4pFvj/LAl4lU6mXYSQghmkvCjBBtzMvJlk/vHMrDU3qgUatYnZhN7Ns7OJFdbunShBCiQ5IwI4QFqNUq7h0Xxaq/D8ff1Y7kwipmvbuTz/ekybCTEEJcIQkzQljQkDAP1i0cw7U9fagzmHhi9THmr0ygorbe0qUJIUSHIWFGCAvzcLThP38ezL+m9cRKrWLdkRxmvL2Do5llli5NCCE6BAkzQrQDarWKv18TyVd3jyDQzZ60ompufG8Xn+xMkWEnIYT4AxJmhGhHBoa4s37hGCb29qXOaOKZNSe45/NDlNXIsJMQQlyKhBkh2hlXB2s+vH0QT83ojbVGxY/Hc5m+bDuJGaWWLk0IIdolCTNCtEMqlYq/jA7nm7tHEuxhT2ZJDTe9t4v/bE+WYSchhPgNCTNCtGPRwW6sWziGaf38MJgUXlh3kr/97wCl1XWWLk0IIdoNCTNCtHMudta8M3cgz8f1wUajZtPJfKa9tZ2DacWWLk0IIdoFCTNCdAAqlYrbR4Tx3b0jCfN0ILusltkf7OH9bTpMJhl2EkJ0bRJmhOhA+ga6snbhGGZGB2A0Kbz8wyn+8ul+iir1li5NCCEsRsKMEB2Mk60Vy+YMYMkN/bC1UrP1dAHTlm1nb3KRpUsTQgiLkDAjRAekUqm4dWgI8fNHEentSF65nls/2sPyn8/KsJMQostRKc28z9NkMpGUlER+fj4mk6nJsWuuuaZFimsJ5eXluLq6UlZWhouLi6XLEaLFVekNPBl/jO8OZQEwppsXr88egLezrYUrE0KI5ruS9+9mhZk9e/Ywd+5c0tIu3OFXpVJhNBqv9JKtRsKM6Cq+PpDBU/HHqak34u1sy1u3DGBklJelyxJCiGa5kvfvZg0z3X333QwePJhjx45RXFxMSUmJ+VFcLLeLCmEJNw8ORjt/FN19nSio0POn/9vLGxvPYJRhJyFEJ9esnhlHR0cOHz5MVFRUa9TUoqRnRnQ1NXVGntEe58sDGQAMj/DgrTkx+LrYWbgyIYS4fK3eMzNs2DCSkpKaVZwQonXZ22h45ab+vHnLABxtNOxJLmbaW9v55UyBpUsTQohWYdWcJy1YsIAHH3yQ3Nxc+vXrh7W1dZPj/fv3b5HihBDNNysmkP5Brty3IoGTOeX8+b/7uHdcJIsndsdKIzcyCiE6j2YNM6nVF/5HqFKpUBRFJgAL0c7U1ht5fu0JvtibDsDgUHeW3RpDgJu9hSsTQohLa/W7mdLS0n73eGho6JVestVImBGiwdoj2Tz67VEq9QbcHaxZOjuaa3v6WrosIYS4qFYPMx2JhBkhzkstrGL+ykMcyyoH4O/XRPDPyT2wlmEnIUQ70+oTgAF0Oh0LFizguuuuY+LEiSxcuBCdTtfcy11SVlYWt912G56enjg4ODBgwAAOHjzY4t9HiK4gzMuRb+8ZybyRYQB8+Esysz/YTWZJtWULE0KIq9CsMLNhwwZ69+7Nvn376N+/P3379mXv3r306dOHjRs3tlhxJSUljBo1Cmtra3744QdOnDjB0qVLcXNza7HvIURXY2ul4ZnYPrx/20Cc7axISC9l2lvb+el4rqVLE0KIZmnWMFNMTAyTJ0/m5ZdfbtL+6KOP8tNPP3Ho0KEWKe7RRx9l586dbN++/bKfo9fr0evP7yBcXl5OcHCwDDMJcREZxdXMX5nA4YxSAO4cFcZjU3thYyXDTkIIy2r1YaaTJ0/y17/+9YL2v/zlL5w4caI5l7worVbL4MGDufnmm/Hx8SEmJoaPPvrod5+zZMkSXF1dzY/g4OAWq0eIzibYw4Gv/zGCu0aHA/DxzlRuen8X6UUy7CSE6DiaFWa8vb1JTEy8oD0xMREfH5+rrcksOTmZ9957j27durFhwwbuvvtuFi5cyP/+979LPuexxx6jrKzM/MjIyGixeoTojGys1Dwxozf/+fNgXO2tOZJZxvRl21l/NMfSpQkhxGVp1qJ5f/vb3/j73/9OcnIyI0eORKVSsWPHDl555RUefPDBFivOZDIxePBgXnrpJaBheOv48eO89957/PnPf77oc2xtbbG1ld2ChbhS1/X2Zf2iMSxYcYhD6aXc+8Uhbh8eyuPTe2FnrbF0eUIIcUnNCjNPPvkkzs7OLF26lMceewyAgIAAnnnmGRYuXNhixfn7+9O7d+8mbb169eLbb79tse8hhDgv0M2eL/8xgtd+Os0H25L5bE8ah9JLWD53IOFejpYuTwghLqpZw0wqlYoHHniAzMxM83BOZmYmixYtQqVStVhxo0aN4vTp003azpw5064W5ROis7HWqHlsai8+vnMIHo42HM8uZ8ay7cQnZlm6NCGEuKirvmXB2dkZZ2fnlqjlAg888AB79uzhpZdeIikpiRUrVvDhhx9y3333tcr3E0KcN76HD+sXjmFomAdVdUYWrUrkse+OUlvffrYrEUIIuIJbswcOHMjmzZtxd3cnJibmd3tgWurWbIC1a9fy2GOPcfbsWcLDw1m8eDF/+9vfLvv5sgKwEFfHYDTx1uazLN+ShKJATz9nls8dSJSPk6VLE0J0Ylfy/n3Zc2bi4uLME2vj4uJadDjp98yYMYMZM2a0yfcSQlzISqPmwUk9GBruwQNfJnIqt4LY5Tt4YVZfbhgYZOnyhBBC9mYSQly+/PJaFq1KZHdyEQA3Dwri2bg+ONg0614CIYS4pFZfNC8iIoKioqIL2ktLS4mIiGjOJYUQHYCPix2f3zWM+6/rhloFXx/MJG75Ts7kVVi6NCFEF9asMJOamorReOEkQL1eT2Zm5lUXJYRovzRqFfdf150v7hqOj7MtZ/MriV2+g6/2Z9DJO3qFEO3UFfUNa7Va8+83bNiAq6ur+Wuj0cjmzZsJDw9vueqEEO3WiEhP1i8awwNfJrL9bCEPf3uE3clFvDCrL462MuwkhGg7VzRnRq1u6MhRqVQXfAKztrYmLCyMpUuXtqsJuzJnRojWZTIpvLdNx+sbz2A0KUR4OfLOnwbSy1/+vQkhmu9K3r+bNQE4PDyc/fv34+Xl1ewi24qEGSHaxv7UYhasSCC3vBYbKzVPz+zN3KEhbXbnoxCic2n1CcApKSkdIsgIIdrOkDAP1i8aw7U9fagzmHj8+2MsWJlARW29pUsTQnRyzb41u6qqim3btpGenk5dXV2TYy25P9PVkp4ZIdqWyaTwnx3JvPrjaQwmhTBPB5bPHUjfQNc/frIQQvyq1YeZEhISmDZtGtXV1VRVVeHh4UFhYSEODg74+PiQnJzc7OJbmoQZISzjUHoJC1YkkFVag41GzePTe/HnEaEy7CSEuCytPsz0wAMPMHPmTIqLi7G3t2fPnj2kpaUxaNAgXnvttWYVLYToXAaGuLNu4Wgm9valzmjiae1x7vn8EGU1MuwkhGhZzQoziYmJPPjgg2g0GjQaDXq9nuDgYF599VX+9a9/tXSNQogOys3Bhg9vH8RTM3pjrVHx4/Fcpi/bTmJGqaVLE0J0Is0KM9bW1uauYl9fX9LT0wFwdXU1/14IIaBhKYe/jA7nm7tHEuxhT2ZJDTe/v4v/bE+WRfaEEC2iWWEmJiaGAwcOADB+/HieeuopvvjiC+6//3769evXogUKITqH6GA31i4Yw9S+ftQbFV5Yd5K//e8gpdV1f/xkIYT4Hc0KMy+99BL+/v4APP/883h6enLPPfeQn5/Phx9+2KIFCiE6D1d7a97900Cej+uDjUbNppN5TF+2g4NpJZYuTQjRgV3x3UyKopCeno6Pjw/29vatVVeLkbuZhGifjmWVMX/FIVKLqrFSq/jn5B78bUwEarXc7SSEaOW7mRRFoVu3brKhpBDiqvQNdGXNgtHMjA7AYFJY8sMp/vrpfoqrZNhJCHFlrjjMqNVqunXrRlFRUWvUI4ToQpztrFk2ZwBLbuiHrZWaLacLmPbWdvalFFu6NCFEB9KsOTOvvvoq//znPzl27FhL1yOE6GJUKhW3Dg1h9X2jiPB2JLe8lls/2sM7W5IwmeRuJyHEH2vWCsDu7u5UV1djMBiwsbG5YO5McXH7+VQlc2aE6Diq9AaeXH2M7xKyABjTzYs3bhmAl5OthSsTQrS1K3n/tmrON3jjjTdkSXIhRItztLVi6exohkd68lT8MbafLWTqW9t5a84ARkbK5rZCiItr9kaTHYX0zAjRMZ3Nq+DeLw5xNr8StQoWTujGgmu7oZG7nYToElp9byaNRkN+fv4F7UVFRWg0muZcUgghmujm64x2/mhmDw7CpMCbm85y+//tJb+81tKlCSHamWaFmUt15uj1emxsbK6qICGEOMfeRsOrN0Xzxi3RONho2KUrYtqy7Ww/W2Dp0oQQ7cgVzZlZtmwZ0HD3wX/+8x+cnJzMx4xGI7/88gs9e/Zs2QqFEF3e9TFB9A9y474vDnEqt4I//3cf942L4v7rumGladZnMiFEJ3JFc2bCw8MBSEtLIygoqMmQko2NDWFhYTz33HMMGzas5SttJpkzI0TnUVtv5Lm1J1ixt2FD26FhHiy7NQY/VzsLVyZE16QoCieKTxDkFISrrWuLXvtK3r+bNQF4/PjxfPfdd7i7uze7yLYiYUaIzmftkWwe/fYolXoDHo42LJ0dzfgePpYuS4guo6C6gHXJ64jXxZNUmsQjQx7htt63tej3aPVbs7ds2dKswoQQoiXM6B9A3wBX5q88xLGscu78eD//GBvBQ5N6YC3DTkK0Cr1Rz5aMLWiTtOzM3olJMQFgo7ahRG/ZzWKb1TNjNBr55JNP2Lx5M/n5+ZhMpibHf/755xYr8GpJz4wQnZfeYGTJ+lN8sisVgEGh7iy7NYZAt/a/Ca4QHYGiKBwpPEJ8Ujw/pv5IRV2F+dgA7wHERsUyOWwyLjYt//7a6j0zixYt4pNPPmH69On07dtXFtATQliErZWGZ2L7MDzCg39+c4SDaSVMe2s7S2+O5rrevpYuT4gOK7cqlzW6NWh1WlLLU83tfo5+zIyYSWxkLGGuYRar77ea1TPj5eXF//73P6ZNm9YaNbUo6ZkRomvIKK5m/opDHM4sA+Cu0eE8PKUnNlYy7CTE5agx1LApbRNanZa9OXtRaIgHdho7JoZOJDYqlqF+Q1Gr2ubfVKv3zNjY2BAVFdWs4oQQojUEezjw9d0jeeXHU/zfjhT+syOF/WklLL81hmAPB0uXJ0S7pCgKB/MOotVp+SntJ6rqq8zHBvkOIi4yjomhE3Gycfqdq1hes3pmli5dSnJyMsuXL2/3Q0zSMyNE17PxRB4PfX2Yspp6nO2s+PdN/ZnS19/SZQnRbmRVZqHVadEmacmszDS3BzoFEhcZx4zIGQQ7B1uwwja4Nfv6669ny5YteHh40KdPH6ytrZsc/+677670kq1GwowQXVNWaQ0LVhziUHopAHeMCOVf03thayVbroiuqaq+io1pG4lPiudA3gFzu4OVA5PDJhMbGctA34FtNoz0R1p9mMnNzY3rr7++WcUJIURbCHSz58t/jOC1n07zwbZkPt2dxsH0EpbfOpAwL0dLlydEmzApJvbn7ic+KZ5N6ZuoMdQAoELFUP+hxEXGMSFkAg7WHXsoVnbNFkJ0eltO5bP4q0RKqutxsrViyQ39mBkdYOmyhGg16eXpxOviWaNbQ05Vjrk91CWU2MhYZkbMxN+pfQ+9tvowE4DBYGDr1q3odDrmzp2Ls7Mz2dnZuLi4NNmzydIkzAghAHLKali0MpF9qcUAzB0WwlMzemNnLcNOonOoqKtgQ+oGtDotCfkJ5nZna2cmh08mLjKOaO/odj/X9ZxWDzNpaWlMmTKF9PR09Ho9Z86cISIigvvvv5/a2lref//9Zhff0iTMCCHOMRhNvLnpLO9sTUJRoKefM+/8aSCR3u3nA5gQV8JoMrInZw/xSfH8nPEzeqMeALVKzciAkcRFxjEueBx2Vh1v/7I2WTRv8ODBHD58GE9PT3P79ddfz1133dWcSwohRKuz0qh5aHIPhkV48MCXiZzKrWDm2zt48fq+XB8TZOnyhLhsyaXJxOviWatbS35Nvrk90jWSuKg4pkdMx8eh6+xX1qwws2PHDnbu3ImNjU2T9tDQULKyslqkMCGEaC1junmzfuEYFq1KZHdyEQ98eZjduiKeje2LvY0MO4n2qUxfxg8pP6DVaTlaeNTc7mrrytSwqcyKmkVvz94dZhipJTUrzJhMJoxG4wXtmZmZODs7X3VRQgjR2nxc7Pj8rmG8/fNZ3tp8lq8OZJKQXsq7fxpIN1/5f0y0D/WmenZl7SJeF8/WjK3Um+oB0Kg0jAkcQ1xUHNcEXYONxub3L9TJNWvOzC233IKrqysffvghzs7OHDlyBG9vb+Li4ggJCeHjjz9ujVqbRebMCCH+yC5dIYtWJVJQocfOWs1zcX25eVBQl/yEK9qH08Wn0eq0rEteR1Ftkbm9h3sPYiNjmR4xHU97z9+5QsfX6hOAs7OzGT9+PBqNhrNnzzJ48GDOnj2Ll5cXv/zyCz4+7WecTsKMEOJyFFToWfxVItvPFgJwQ0wgz8/qi6NtszqwhbhixbXFrE9eT7wunlPFp8ztHnYeTAufRlxUHD09elqwwrbVJrdm19TUsGrVKg4ePIjJZGLgwIH86U9/wt7evllFtxYJM0KIy2UyKby3TcfSn05jUiDS25HlcwfSy1/+7xCto95Yzy+ZvxCvi2d75nYMigEAK7UV44LGERsZy+ig0Virrf/gSp1Pm4SZjkLCjBDiSu1LKWbhygRyy2uxtVLz9Mw+3Do0WIadRItQFIWTxSeJT4pnfcp6SvWl5mN9PPsQFxXH1LCpuNm5WazG9qDVw8ySJUvw9fXlL3/5S5P2//73vxQUFPDII49c6SVbjYQZIURzFFfVsfirRLaeLgBgZnQAL13fF2e7rvcJWbSMguoC1iWvI14XT1Jpkrnd296bGZEziIuMI9It0oIVti+tHmbCwsJYsWIFI0eObNK+d+9e5syZQ0pKypVestVImBFCNJfJpPDh9mT+veE0RpNCmKcDy+cOpG+gq6VLEx2E3qhnS8YWtEladmbvxKSYALBR23BtyLXERsYyImAEVmqZm/Vbrb5oXm5uLv7+F+7p4O3tTU5OzkWeIYQQHY9areLusZEMCfNg4coEUouqueHdXTw5oxe3DQ+VYSdxUYqicLTwKPFJ8fyQ+gMVdRXmY9He0cRGxjIlfAouNvIBu6U0K8wEBwezc+dOwsPDm7Tv3LmTgADZvE0I0bkMCnVn3cLRPPT1ETadzOPJ+OPsTi7i5Rv74yLDTuJXuVW5rE1eS3xSPKnlqeZ2P0c/ZkbMZGbkTMJdwy99AdFszQozd911F/fffz/19fVce+21AGzevJmHH36YBx98sEULFEKI9sDNwYaP/jyIj3emsuSHk6w/msvRrDKW3zqQ6GA3S5cnLKTGUMPm9M1ok7TsydmDQsPMDTuNHdeFXkdcVBxD/YaiVqktXGnn1qw5M4qi8Oijj7Js2TLq6uoAsLOz45FHHuGpp55q8SKvhsyZEUK0tMMZpcxfeYiM4hqsNSoem9qLO0eFybBTF6EoCgn5CcTr4tmQuoGq+irzsUG+g4iLjGNS2CQcrR0tWGXH12a3ZldWVnLy5Ens7e3p1q0btra2zb1Uq5EwI4RoDWU19Tz67RF+OJYLwMTevvz7pv64OXTtZeU7s6zKLNbo1qDVacmoyDC3BzoFEhsZy8zImQQ7B1uwws5F1plpRMKMEKK1KIrCZ3vSeGHtSeqMJgLd7Hl7bgwDQ9wtXZpoIdX11WxM20i8Lp79ufvN7Q5WDkwKm0RcZBwDfQfKMFIraPUwU1VVxcsvv8zmzZvJz8/HZDI1OZ6cnHyll2w1EmaEEK3tWFYZ81ccIrWoGiu1in9O7sHfxkSgVsuwU0dkUkzsz92PVqdlY9pGagw1AKhQMdR/KHGRcUwImYCDtYOFK+3cWv3W7Lvuuott27Zx++234+/vL+PEQogurW+gK2sWjOZf3x9jzeFslvxwij3JRSydPQAPRxl26ijSy9OJ18WzRreGnKrzy4yEuoQ2DCNFzMTf6cJlSYTlNatnxs3NjXXr1jFq1KjWqKlFSc+MEKKtKIrCyn0ZPLvmOHqDCT8XO5bdGsPQcA9LlyYuoaKugg2pG9DqtCTkJ5jbna2dmRw+mbjIOKK9o+VDuwW0es+Mu7s7Hh7yj1MIIRpTqVTMHRZCTIgb9604RHJBFbd+tIfFE7tzz9hIGXZqJ4wmI3tz9hKvi2dz+mb0Rj0AapWaEQEjiIuMY3zweOys7CxcqbhczeqZ+fzzz4mPj+fTTz/FwaHtxgyXLFnCv/71LxYtWsSbb755Wc+RnhkhhCVU6Q08ufoY3yVkATCmmxdv3DIAL6f2d9dnV5Fcmky8Lp61yWvJr843t0e6RhIbFcuMiBn4OPhYsELRWKtPAI6JiUGn06EoCmFhYVhbN10B89ChQ1d6yT+0f/9+Zs+ejYuLC+PHj5cwI4Ro9xRF4euDmTwVf4zaehM+zra8OWcAIyO9LF1al1GmL+OHlB/Q6rQcLTxqbnexcWFq+FRmRc2ij2cfGUZqh1p9mGnWrFnNeVqzVVZW8qc//YmPPvqIF154oU2/txBCNJdKpWL24GAGBLtx3xeHOJtfyW3/2cvCCd1YcG03NDLs1CoMJgO7sncRnxTPlowt1JvqAdCoNIwJHENsVCxjg8Zio5HJ2Z1Fh1hn5o477sDDw4M33niDcePGMWDAgEv2zOj1evR6vfnr8vJygoODpWdGCGFRNXVGntYe46sDmQCMjPTkzTkD8HGWeRkt5UzJGbRJWtYmr6Wotsjc3sO9B7GRsUyLmIaXvfSKdRSt3jNzzsGDBzl58iQqlYrevXsTExNzNZe7qFWrVnHo0CH279//xyfTMK/m2WefbfE6hBDiatjbaHj1pmiGR3jyxOpj7NIVMe2t7bxxywDGdPO2dHkdVnFtMeuT16PVaTlZfNLc7mHnwbTwacRFxdHTo6cFKxRtoVk9M/n5+cyZM4etW7fi5uaGoiiUlZUxfvx4Vq1ahbd3y/zDzMjIYPDgwfz0009ER0cDSM+MEKLDS8qvZP6KQ5zKrUClgvvGRXH/dd2w0sgqspej3ljPL5m/EK+LZ3vmdgyKAQArtRXjgsYRFxXHqMBRWKtlR/OOrNUnAN9yyy3odDo+++wzevXqBcCJEye44447iIqKYuXKlc2r/DdWr17N9ddfj0ajMbcZjUZUKhVqtRq9Xt/k2MXIBGAhRHtUW2/k2TUnWLkvHYCh4R4smxODn6sMO12MoiicLD5JfFI861PWU6ovNR/r49mnYRgpfBpudm4Wq1G0rFYPM66urmzatIkhQ4Y0ad+3bx+TJk2itLT0Si95URUVFaSlpTVpu/POO+nZsyePPPIIffv2/cNrSJgRQrRn2sPZPPbtEarqjHg42vD67GjG9ZDbg88prClkXfI6VietJqk0ydzube/NjIgZxEbGEuUeZcEKRWtp9TkzJpPpgtuxAaytrS/Yp+lqODs7XxBYHB0d8fT0vKwgI4QQ7V1sdAD9Al2Zv+IQx7PLmffxfv4xNoKHJvXAuosOO+mNerZmbCU+KZ5d2bswKkYAbNQ2XBtyLbGRsYwIGIGV+qqmfYpOpFk/Cddeey2LFi1i5cqVBAQEAJCVlcUDDzzAhAkTWrRAIYTo7MK9HPn2npG8tP4k/9udxgfbkjmQWsKyW2MIdLO3dHltQlEUjhQeQZuk5YfUH6ioqzAf6+/dn7jIOKaET8HFRnrYxYWaNcyUkZFBXFwcx44dIzg4GJVKRXp6Ov369SM+Pp6goKDWqLVZZJhJCNGR/HA0h4e/PUJFrQE3B2teuyma63r7WrqsVpNblcva5LXEJ8WTWp5qbvd18G3Y3DFyJuGu4ZYrUFhMq8+ZOWfjxo2cOnUKRVHo3bs31113XXMv1WokzAghOpr0omoWrDzE4cwyAO4aHc7DU3piY9U5hp1qDDX8nP4zWp2W3dm7UWh4G7LT2HFd6HXERsYy1G8oGvXv3+AhOrdWCzM///wz8+fPZ8+ePRdcuKysjJEjR/L+++8zZsyY5lXeCiTMCCE6ojqDiVd+PMX/7UgBIDrYjeW3xhDs0Xb74bUkRVFIyE8gXhfPhtQNVNVXmY8N8h1EXGQcE0Mn4mTjZMEqRXvSamEmNjaW8ePH88ADD1z0+LJly9iyZQvff//9lVXciiTMCCE6so0n8njo68OU1dTjbGfFv2+KZkpfP0uXddmyK7PR6rRodVoyKjLM7YFOgcyMnElsRCzBLsEWrFC0V60WZkJDQ/nxxx/Na8v81qlTp5g0aRLp6elXVnErkjAjhOjoMkuqWbgygUPppQDMGxnGY9N6YmvVPodhquur2Zi2Ea1Oy77cfeZ2BysHJoVNIjYylkG+g1CrOsewmWgdrXZrdl5e3kVvyTZfzMqKgoKCK7mkEEKIPxDk7sCX/xjBaz+d5oNtyXyyK5WDaSUsnxtDqKejpcsDwKSYOJB7gHhdPBvTNlJjqAFAhYqh/kOJi4xjQsgEHKw75jCZaN+uKMwEBgZy9OhRoqIuvkDRkSNH8Pf3b5HChBBCnGetUfPY1F4MD/dk8VeJHM0qY/qyHbx8Yz9m9A+wWF3p5elodVrW6NaQXZVtbg91CW24GyliJv5O8r4gWtcVDTMtWLCArVu3sn//fuzsmi65XVNTw9ChQxk/fjzLli1r8UKbS4aZhBCdTU5ZDQtXJrA/tQSAPw0L4ckZvbGzbpthp4q6CjakbkCr05KQn2Bud7J2Ykr4FOIi44j2jkalUrVJPaJzarU5M3l5eQwcOBCNRsP8+fPp0aMHKpWKkydP8s4772A0Gjl06BC+vu1nTQQJM0KIzshgNPHmprO8szUJRYFe/i4snxtDpHfr3A1kNBnZm7OX1brV/Jz+M3pjw4a+apWaEf4jiI2M5dqQa7Gzkr2lRMto1XVm0tLSuOeee9iwYQPnnqpSqZg8eTLvvvsuYWFhzS68NUiYEUJ0ZtvPFvDAl4kUVtbhYKPhpev7MSsmsMWun1yWjDZJy5rkNeRX55vbI10jiY2KZUbEDHwcZC8p0fLaZNG8kpISkpKSUBSFbt264e7u3qxiW5uEGSFEZ5dfXsuiVYnsTi4C4JbBwTwT2wd7m+YNO5Xpy/gx5UfidfEcLTxqbnexcWFa+DTiouLo49lHhpFEq2qzFYA7AgkzQoiuwGhSWLb5LMt+PouiQHdfJ96ZO5Buvs6X9XyDycCu7F2sTlrN1oyt1JvqAdCoNIwOHE1cVBxjg8Zio7FpxT+FEOdJmGlEwowQoivZlVTIoi8TKajQY2et5vm4vtw8+NKL0p0pOYM2Scva5LUU1RaZ27u7dycuMo5pEdPwsvdqi9KFaELCTCMSZoQQXU1BhZ7FXyWy/WwhADcMDOT5uL442jasxlFSW8L6lPXEJ8Vzsvik+Xkedh7mYaSeHj0tUrsQ50iYaUTCjBCiKzKZFN7dmsTrG89gUiDC25Z519VysGgjv2T+gkExAGCltmJs0FjiIuMYHTQaa/WlF0YVoi212grAQgghOga1WsV946Pw8SpkyfbPyLM7xL8Tz2/u2NuzN7GRsUwLn4a7Xfu8gUOIyyVhRgghOpnCmkLWJa8jXhfP2ZKz4ARqwGRwxlAWw2jfKbw1cSpOtvIWIDoH+UkWQohOQG/UszVjK1qdlp1ZOzEqRgBs1DZcG3ItMyNmckznx9KfkticrzAjezvL5w6kb6CrZQsXogVImBFCiA5KURSOFh5Fq9OyPmU9FXUV5mP9vfsTFxnH5LDJuNo2BJZrgmFYuBcLViSQWlTNDe/t4snpvbhteKisGSM6NJkALIQQHUxuVS5rk9cSnxRPanmqud3Xwbdhc8fImYS7hl/y+aXVdTz09WE2nWxY0XdaPz9evrE/LnYy+Ve0H3I3UyMSZoQQnUGNoYaf038mPimePTl7UGj4r9tOY8eE0AnERsYyzG8YGvXlrfqrKAr/tyOFV348Rb1RIcTDgeVzY+gf5NaKfwohLp+EmUYkzAghOipFUUjIT0Cr0/Jj6o9U1Z+/G2mgz0BmRc1iYuhEnGyav7lkYkYp81ccIrOkBmuNisem9uLOUWEy7CQsTsJMIxJmhBAdTXZlNlqdljW6NaRXpJvbA50CzcNIwc6XXtX3SpXV1PPIN0f48XguAJN6+/Lvm6JxdZBhJ2E5EmYakTAjhOgIquur2Zi2Ea1Oy77cfeZ2eyt7JoVOIi4qjkG+g1Cr1K3y/RVF4X+703hx3UnqjCYC3exZPjeGmBBZg0ZYhoSZRiTMCCHaK5Ni4kDuAeJ18WxM20iNoQYAFSqG+g0lNiqW60Kuw8Haoc1qOppZxvyVh0grqsZKreKRKT356+hw1GoZdhJtS8JMIxJmhBDtTXp5Olpdw+aOWZVZ5vYQ5xDzMFKAU4DF6quoreex746y9kgOANf29GHpzdG4O8qO2aLtSJhpRMKMEKI9qKyrZEPqBrQ6LYfyD5nbna2dmRw+mbjIOKK9o9vNxFtFUVi5L4Nn1xxHbzDh72rH27fGMDjMw9KliS5CwkwjEmaEEJZiNBnZm7uX+KR4fk7/mVpjLQBqlZoRASOIi4xjfPB47KzsLFzppZ3MKee+Lw6RXFiFRq3iwUndufuaSBl2Eq1OwkwjEmaEEG0tpSwFrU6LVqclvzrf3B7hGkFcVBwzImbg4+BjwQqvTJXewBOrj/F9QsOQ2DXdvXl9djReTrYWrkx0ZhJmGpEwI4RoC2X6Mn5M+RGtTsuRwiPmdhcbF6aFTyMuKo4+nn3azTDSlVIUha8PZPKU9hi19SZ8nG1ZdmsMwyM8LV2a6KQkzDQiYUYI0VoMJgO7sncRnxTPlowt1JvqAdCoNIwOHE1sZCzjgsdho+k8E2fP5FVw3xeHOJtfiVoFiyZ0Z/61UWhk2Em0MAkzjUiYEUK0tDMlZ9AmNdyNVFRbZG7v7t6duMg4pkVMw8vey4IVtq7qOgNPxx/n64OZAIyM9OTNOQPwcW6/c39ExyNhphEJM0KIllBSW8L6lPXEJ8Vzsvikud3d1p3pEdOJjYyll2cvC1bY9r47lMnj3x+jpt6Il5MNb94Sw+hunTfEibYlYaYRCTNCiOaqN9azPWs78Unx/JL1CwaTAQArtRVjg8YSFxnH6KDRWKu77rL/SfmVzF9xiFO5FahUMH98FIsmdMNK0zorFYuuQ8JMIxJmhBBXQlEUThafRKvTsj55PSX6EvOx3p69iYuMY2r4VNztZJn/c2rrjTy75jgr92UAMDTcg2VzYvBzlWEn0XwSZhqRMCOEuByFNYWsS15HvC6esyVnze1e9l7MiJhBbGQs3dy7WbDC9i8+MYt/fXeUqjojHo42vD47mnE9Os4t6KJ9kTDTiIQZIcSl1Bnr2JqxlXhdPDuzdmJUjADYqG0YHzKe2MhYRgaMxEptZdlCO5Dkgkrmr0jgRE45AHePjeTBSd2xlmEncYUkzDQiYUYI0ZiiKBwrPEa8Lp4fUn6gvK7cfKy/d3/iIuOYHDYZV1tXC1bZsdXWG3lx3Uk+25MGwKBQd96+NYYAN3sLVyY6EgkzjUiYEUIA5FXlsSZ5DVqdlpSyFHO7r4MvMyNnEhsZS7hruAUr7HzWHcnh0W+PUKE34OZgzWs3RXNdb19LlyU6CAkzjUiYEaLrqjXU8nP6z8Tr4tmTsweTYgLATmPHhNAJxEXGMdRvKBq1xsKVdl5pRVXMX5HA0awyAO4aHc7DU3piYyXDTuL3SZhpRMKMEF2LoigkFiQSnxTPhtQNVNZXmo8N9BlIXFQck0In4WTjZMEquxa9wcjLP5zi452pAEQHu7H81hiCPRwsW5ho1yTMNCJhRoiuIbsyG61OyxrdGtIr0s3tgU6BDcNIEbEEuwRbsEKx4Xgu//z6MOW1BlzsrHj1pmim9PWzdFminZIw04iEGSE6r+r6ajambUSr07Ivd5+53d7Knkmhk4iLimOQ7yDUKhnSaC8yiqtZsDKBxIxSAOaNDOOxaT2xtZKhPtGUhJlGJMwI0bmYFBMHcg8Qr4tnY9pGagw15mPD/IYRGxXLdSHX4WAtQxjtVb3RxL83nObDX5IB6BfoyvK5MYR6Olq4MtGeSJhpRMKMEJ1DRnkG8bp41ujWkF2VbW4PcQ4hNjKWmZEzCXAKsGCF4kptPpnHg18fprS6HmdbK16+sT/T+/tbuizRTkiYaUTCjBAdV2VdJT+l/UR8UjyH8g+Z252snZgcNpm4qDgGeA9ApVJZsEpxNbJLa1i4MoEDaQ3bRtw2PIQnpvfGzlqGnbo6CTONSJgRomMxmozszdlLvC6en9N/ptZYC4BapWaE/whiI2O5NuRa7Kxk35/Oot5o4o2NZ3h3qw6AXv4uvDM3hghvueOsK5Mw04iEGSE6huSyZLRJWtYkryG/Ot/cHu4a3jCMFDETX0dZcK0z23amgMVfJlJUVYejjYaXbuhH3IBAS5clLETCTCMSZoRov8r0ZWxI3UB8UjxHCo+Y211sXJgaPpW4yDj6evWVYaQuJK+8lkWrEtiTXAzAnCHBPD2zD/Y2MuzU1UiYaUTCjBDti8FkYFf2LrQ6LVvSt1BnqgNAo9IwOnA0sZGxjAseh43GxsKVCksxmhTe2nyWt38+i6JAD19n3vlTDFE+zpYuTbQhCTONSJgRon04U3IGbZKWdSnrKKwpNLd3c+/GrMhZTIuYhpe9lwUrFO3NzqRCFq1KpLBSj721hudn9eWmQUGWLku0EQkzjUiYEcJySmpLWJ+ynvikeE4WnzS3u9u6Mz1iOnFRcfT06GnBCkV7V1Ch54EvE9mR1BCAbxwYxPOz+uBgY2XhykRrkzDTiIQZIdpWvbGe7VnbiU+K55esXzCYDABYqa24JvAa4qLiGBM4BmuNtYUrFR2F0aTw7pYk3th0BpMCUT5OvDN3ID38ZNipM5Mw04iEGSFan6IonCo+hVanZV3yOkr0JeZjvT17ExsZy7TwabjbuVuwStHR7UkuYtGqBPLK9dhaqXk2tg+3DAmWCeKdlISZRiTMCNF6CmsKWZe8jnhdPGdLzprbvey9mBExg9jIWLq5d7NghaKzKarUs/irw2w7UwBA3IAAXry+H062MuzU2UiYaUTCjBAtS2/UszVjK1qdlp1ZOzEqRgCs1dZcG3ItsZGxjAwYiZVa3lxE6zCZFD74JZnXfjqN0aQQ7uXI8rkx9AlwtXRpogVJmGlEwowQV09RFI4VHiNeF88PKT9QXlduPtbfuz9xkXFMDpuMq628mYi2cyC1mAUrE8gpq8XGSs2TM3pz27AQGXbqJDpNmFmyZAnfffcdp06dwt7enpEjR/LKK6/Qo0ePy76GhBkhmi+vKo+1yWvR6rQklyWb230dfJkZOZPYyFjCXcMtWKHo6kqq6njo68NsPtWwavT0fv4subEfLnYywbyj6zRhZsqUKcyZM4chQ4ZgMBh4/PHHOXr0KCdOnMDR8fK2ipcwI8SVqTXU8nP6z8Tr4tmTsweTYgLATmPHhNAJxEbGMsxvGBq1rMgq2gdFUfi/HSm8/MMpDCaFEA8Hls+NoX+Qm6VLE1eh04SZ3yooKMDHx4dt27ZxzTXXXNZzWjPMFFToySuvxc3BGncHGxxsNNK9KTokRVFILEgkPimeDakbqKyvNB8b6DOQ2MhYJodNxslGNv4T7VdCegnzVySQVVqDtUbFY1N7ceeoMPl/uRUZTUZMiqlVllq4kvfvDjVDr6ysDAAPD49LnqPX69Hr9eavy8vLL3nu1dpwPJcnVh8zf22tUeFqb4O7gzVuDtY8OrUXg0IbbkU9m1fBvtRi3OxtcPv1uJuDDW721hKChMXkVOag1WnR6rSkV6Sb2wMcA4iNiiU2IpZgl2ALVijE5YsJcWf9wjE8/O1hNhzP47m1J9iTXMS/b4rG1UGGnVpKfnU+v2T+wu7s3ezJ2cNDgx/i+m7XW7SmDhNmFEVh8eLFjB49mr59+17yvCVLlvDss8+2SU0qFfg421JaXU+d0US9UaGwUk9hZUOYqjOYzOfuSSnmyUbBpzEbjZr3bx/ItT0bdgTen1rMl/szfg1FNrjaN/T8uDlY42pvTZiXo9yGKJqtur6aTemb0CZp2Zu719xub2XPpNBJxEXFMch3EGqV2oJVCtE8rg7WvH/bID7dlcpL60/x04k8ji/bzvK5McSEyDpHzVFZV4lKpcLRumF6x7bMbTy3+znz8QN5ByweZjrMMNN9993HunXr2LFjB0FBl96b42I9M8HBwa06Z0ZRFGrqjZRW1//6qKO0pp4REZ64OzZslrf5ZB6r9mdQVl1Pya/HS6vrqDc2vPyr/j6c4RGeAHy2J+2SwQfg/dsGMaWvn/m6r/10Bg/HhsDj6WiDu6MNHr8+Bod64OdqZ65TeoC6JpNi4mDeQeKT4vkp7SdqDDXmY0P9hhIXFcd1IdfhYO1gwSqFaFlHM8u4b8Uh0oursVKreGRKT+4aEy7/D/4Bg8nA8aLj7M7eze7s3RwpOMLDQx/m1p63ApBVmcVj2x9jRMAIRviPoK9X31ZZiqHTDTMtWLAArVbLL7/88rtBBsDW1hZbW9s2qqyBSqXCwcYKBxsrAtzsL3rOhF6+TOjl26RNURSq64yU1tTj6Xh+h+CYYDf+ObkHZb8GnpLqesqq6ymtafi9R6Nzs0trOJlz6aG0928bxBTXhuCz9kgO//ruKO6/Bh5PR5uGAOTU8OukPr5EejfMiaipM6I3GHGxs0atln/4HVVGeQbxunjWJq8lqzLL3B7sHExcZBwzI2cS4BRgwQqFaD39glxZu3A0j317lHVHc3hx/Un2JBfx2s3R5g+aokF1fTVrk9eyO3s3e3P3UlFX0eT4mZIz5t8HOgXyv6n/a+sSf1e7DjOKorBgwQK+//57tm7dSnh457oFVKVS4WhrheNvhoz6BrrSN/Dy1uuY1MePEE9HSqrqKD73qK6juLLh18BG4aqkuo4KvYEKvYH04uoLrhXu5WgOMxtP5rFwZQIatQr3Xyc4n+vtcXe0Yc6QYPOdAmXV9eRV1OLpaIObgw0aCT8WVVlXyU9pPxGfFM+h/EPmdidrJyaHTSY2MpYYnxj5dCq6BBc7a5bPjWHEXk+eW3uCzafymbZsO2/fGsPgsEvPv+zscipzKNYX08ezj7ltyd4lGJSGvdScbZwZ7j/c3PsS5Ny+dytv12HmvvvuY8WKFcTHx+Ps7Exubi4Arq6u2NtfvAekq/F1scPXxe6yzr1pUBCjo7woqa6jqLKOkuo6iqvqKa7SU1xVT4T3+dvdy2rqgYYN3gor6yisrGtyrbHdven/68/2trMFLFyZAIBaBR6Otng5NfT4eDracsfIMPNE6OKqOjKKq/F0ssHLyRY7a7m9tyUYTUb25u5Fq9OyOW0ztcZaANQqNSP8RxAbGcu1IddiZ3V5PytCdCYqlYrbhocSE+LG/BUJpBRWccuHe3hwUnfuviayS/Q+F9YUsj93P3tz9rI/dz/pFen09uzNlzO+BMDB2oHZPWbjbufOyICR9PHs06GWX2jXc2Yu9cnx448/Zt68eZd1DVlnpvn0hoZ5QOeDz/nH9TGBhHk1hJ/vDmXy/NoTlFTXX/Q6H94+iEl9Goa64hOzWLQq0XzMydbq19Bjg6eTLX+/JoIhv35aKqjQk5Rf+WswssXNXoa8fiulLAWtTssa3RryqvPM7RGuEcRGxjIjYga+jr6/cwUhupZKvYHHvz9KfGI20PDB7PXZ0Xg6te30hLbyXuJ7/JT2E0mlSU3aNSoN/bz68d8p/8Va3T7v9Oo0c2bacc7qEmytNPi6aP6w5+eGgUHcMDCIeqOJkqq6X3ty9BRV6SmsqKOXf9MfwgBXOwor66gzmqjUG6jUG0grahj2mj34/G3Au3SFTYKPtUaFl5Mt3s62eDvZ8o+xkQwNbwg+RZV6Uouq8XFuON6Ze3zK9GVsSN1AfFI8RwqPmNudbZyZFj6NuMg4+nr1lWEkIS7CydaKN28ZwIgIT57WHmfbmQKmLdvOW3NizDdhdETV9dUcyj9EYn4i9w24z/zvP6U8xRxkerj3YJj/MIb5D2Ogz8BOtW5Uu+6ZaQnSM9M+KYpChd5AUWUdRZV6cwC6tqePeRL12iPZvL7xDEWVdeZhr8b+8+fBXNe7odfhtz0+znZW5mDj7WzHnaPCGPjrbZml1XXkltfi42zXYXp7DCYDu7J3odVp2ZK+hTpTw7CfRqVhVOAo4iLjGBc8DhuNTGoU4nKdzq3gvhWHSMqvRK2C+6/rzn3jozrEvL+q+ioS8xM5mHeQA3kHOFpw1DzfZXXcaiLdIgFIyE+goLqAIX5DcLfrWLemd5qeGdF5qVQqXOyscbGzJtzr4ltTzOgfwIz+DXfa1BlMFFXpyS/XU1Chp6BST5/Apj/cQe725FfoqTOYqKg1UFFrQFdQBcCsAefv2Nl6uoD7v0wEwEqt+jXwNPT2+LjYMndoKP2CGiZgV+oNVOsNeDrZWuQ/uLMlZ9HqtKxNXkthTaG5vZt7N+Ii45geMR0ve682r0uIzqCHnzPa+aN4cvVxvj2Uyesbz7A3pYg3bhmAj3P7nV/2xckveHX/q+atRs4JcAxgmP+wJmtExfjEtHV5FiFhRnQINlZq/F3t8Xe9+MTvuAGBxA0IRFEUymsNFFToya+obQg+FXp6NhrqqjOacHewpqS6HoNJIaeslpyyWvPxib19gYYws/FELg98eRiNWoW3ky2+LrbmSdd+rnZM7etHxK93gJlMCirVped6Xa6S2hLWp6xHq9NyouiEud3d1p3pEdOJjYylp0dPGUYSogU42FixdHY0IyI9eXL1MXYmFTHtrR28NWcAo6Is90GhsKaQA3kHOJh7kIP5B3lg4AOMCRoDQIhzCCbFRKBTIIN8BzHYdzBD/Ia0+zuOWpOEGdGpqFQqXO0bVkqO8rn4ePDswcHMHhx80d6e/HI93XyczeeW1xhQqxru6sotryW3vBYoMx/v7e9iDjPxh7P413fH8HWxxcfFDj8XuybhZ1i4Bz6XmH9Ub6pne+Z2tDot2zK3YTA1dBdbqa0YGzSW2MhYxgSOaZX9T4QQDXd7Dgh2474vDnE6r4Lb/m8vC67txqIJ3dqkV7a8rpxtGds4mHeQg3kHSS1PbXL8QN4Bc5gZ4jeEjTdtxM/Rr9Xr6ihkzowQf6Dh9vSGTUVzy2rJq9CTV1ZLXnkt942PMt/V9d5WHa/8eOqS1/l43hDG9/QBYP3RHJZtPoujvYEqUzY5+hPUqnJQW5Whsi6jt68313efybTwaR1unFuIjqy23siza46zcl8GAMPCPVh2a8xlL4FxOUyKidSyVBQU89yW5NJk4uLjzOeoUNHDoweDfAeZHx52XWtdnE67a3ZzSJgRbaW23kheeS155Xpyy2vNgSe3vJb8cj0v3dCXKB9nCmsKeVT7M5sSLj5XCJoGn126QtYcziHA1Q5/N3vzr/6udp36ri0hLCk+MYt/fXeUqjojno42vH7LAMZ2927WtWoMNRwrPMbhgsMk5CdwuOAwZfoypoZN5dWxrwINN0Xcs/keurt3Z7DvYAb4DMDFpmu/Z8kEYCEswM5aQ6inI6GeF4aUOmMdWzO28uZmLTuydlBf54h9sC9qowehDtH42PTAZHAlr0xPdlkN/m7nPwUmpJeycl/6BdcEcHew5oPbB5tvUT+dW8GJnDL8Xe0JcLXH19UWWysJPEJcqbgBgfQLdGX+igRO5JRzx3/3cc+4SB6c2B0rzeVtwmo0GZn34zyOFR4z32l0jp3GDoXzfQkqlYr3r3u/Rf8MXYmEGSFaiaIoHCs8Rrwunh9SfqC87vweWgP8w4iLimNy2GRcbS/cuqJxh+mwcA8WTuhGTmkNueW1ZJfWkFNWS3WdkZLqelzsz/8z3nQyj39vON3kWl5ONr9Onrbj4Sk9iPp1TlBZdT0GkwkPRxuZTCzERUR4O/HdvSN5cd1JPtuTxntbdexPKWbZrTHmJSSMJiNnS8+SmJ9IQn4CdcY63hj/BgAatYY6Ux0GxYCPvQ8DfAYwwGcAMT4x9PDo0W4Xq+uIZJhJiBaWV5XH2uS1xOviSSlLMbf7OPgwM2ImsVGxRLhGXNX3UBSF8hoD2WU1RHg7mntfvj2YyTcHM82hR29oeuvmhvuvoYdfQ5h5d2sSr/54GjtrNYFu9gS6OxDoZk+Quz2BbvaM6+GNm4OsWyMEwLojOTz67REq9AZc3TOYOLCcMuUsRwqOUG04v9edlcqKXXN3YW/VEHaOFx3HzdaNAMcA+dBwhWSYSYg2Vmuo5ef0n9HqtOzO2W1e/8FOY8eE0AnERsYyzG9Yi+11olKpcHWwxtWh6Se7GwcFceOghtszFUWhpLre3JOTU1ZDsMf5W9vLqutRqaC23oSuoMq8Js85P94/xhxmVuxNR3s4i0A3BwLdGwJPkJs9ge4Nt8vbWF1et7sQHYnBZCCpNInjhce5od8N9A10Yf6KBM7yBRuyj5rPc7R2JNo7mgHeDT0vVurzb62NN3IUrUfCjBDNpCgKiQWJxCfFsyF1A5X1leZjA30GEhcVx6TQSRZbMlylUpl3Or/YLuyPTevF4kndySmtJau0hqySGjJLa8gsqSarpKbJjuvHs8vYk1wMFF/k+8BP919DN9+GHp/9qcWkFFQR5GFPiIcD/q72HWJFVSHyqvI4WniUIwVHOFJ4hBNFJ6gx1AAwyHcQYZ5hfHPPCO7+/ii7czQYq8OIcu3Le7OnEebp/AdXF61JwowQVyi7Mps1ujVodVrSK85PzA1wDGBm5ExiI2MJcQmxYIWXz9ZKQ5iXo/n28kv584gwBoe5k1VSQ1ZpDZm//ppV0jCU5et6fsLy6oQsvth7/nWxUqsIdLcn2N2BYA97HprUw7ypX53BhLVGJd3vos1V11djrbY2r9304ZEPeTvh7QvOc7R2pK9XX/NO9LZWGj6++R42HL+ef359mJOlBmLf3sWrN0Uzpa+s+2IpEmaEuAzV9dVsSt+ENknL3ty95nZ7K3smhk4kLjKOwX6Dmywj3pn08HM2z7VpTFEUiqrqcLE7P9zVzceJMd28yCxp6OWpNyqkFVWbNxN9bFov87nPrT3O6oRsgtwbenGCPRwIdrcnxNOBYHcHIrydpFdHXDWjyUhqeaq51+Vo4VHOlpxl+YTljA4cDUCUWxRqlZpubt3o592P/l796efVj3DX8IsOD0/u40dvfxcWrEwgMaOUuz8/yLyRYTw2rafcQWgBMgFYiEswKSYO5h0kPimejWkbm0zyG+o3lNjIWCaGTsTB2sGCVbZvRpNCXnktGcXVpBdXk1dey/xru5mP3/HffWw7U3DJ5x9+ehKu9g1B6fuETNKLagjzciDEw4EwT0fcHKylV0dc0rHCY7x24DVOFp1s8u/3nPsH3s9f+/0VAL1Rj9FkvOJ/z3UGE//ecIqPtjdM9u8X6MryuTEXXaJBXBlZNK8RCTPiSmWUZ6BN1rJGt4asyixze7BzMHGRccyMnEmAU8DvXEFcrtp6I5klNWQUV5NRUk16UcOvGcU1lNXUs/PRa83nzvt4H1tPNw0+LnZWhHk5EuLhwNLZ0eZPxNV1BuytNRJ0OjlFUciuyuZ44XGOFx3neOFxpkVM44ZuNwBwpuQMN2pvBBp6UXt59KK/d3/6ezf0urTkdgCbT+bx4NeHKa2ux9nWipdv7M/0/v4tdv2uSMJMIxJmxOWorKvkp7SfiE+K51D+IXO7k7UTk8MmExsZS4xPjLw5WtDKfekkppeSWlRFWlH1r/tkNXCxs+Lw05PMfz9//WQ/u5OLzD04oV4OhHo4EubpQKiXIwGudvJ32UGV6cv434n/cbzoOCcKT1CiL2lyPDYylhdHvwg03I20LnkdfTz7XHK4qCVll9awcGUCB9IaarpteAhPTO8tK3U3k4SZRiTMiEsxmozsy92HVqdlU9om8wQ/FSqG+w8nLiqOa0OuNa8XIdqXmjojGSXVpBZWUVFrMN+SDjDx9W2cza+86POcba048sz54PPV/gzqjCYivByJ8HbC18VWgo6FKYpCfnU+p4pPcaL4BD72PtzYvaGHpbq+muErhptXz7VSWdHNvRt9vPrQ17MvMT4xRLhd3TpOV6PeaOL1jWd4b6sOgF7+LrwzN8a8Ia24fBJmGpEwI34rpSwFra5hGCmvOs/cHu4aTmxkLDMiZshutB1cncFEZkn1rxOPq0j99de0ompcHaz5/t5R5nN/G3wcbDSEeToS4e1IL38X7hsfZYk/QpeiKAob0jZwqugUJ4tPcqr4FMW155cBGOA9gM+mfWb+etmhZfg6+NLHqw/d3Lthq7G1RNm/a+vpfBZ/dZjiqjocbTS8dEM/4gYEWrqsDkXCTCMSZgQ0dE1vSN1AvC6eIwVHzO3ONs5MC59GbGQs/bz6ySfyLkBRlCZ/z6/+eIrTuRUkF1aRXlyN0XT+v8Re/i78sGiM+eu5H+2h3mgiwsuJcG9Hwr0cifByJMTTQe5guQz1pnpSylI4WXQSvVHP7B6zzccmfDWB/Jp889calYZw13B6efRigM+AJud2FLlltSxclcC+lIZgNmdIME/P7IO9jfysXA4JM41ImOm6DCYDu7J3odVp2ZK+hTpTHdDwn+SowFHERsYyLnhcu/xUJyyj3mgio7ialMIqkguqcLDV8KdhoQCYTAq9nvrxgi0iANQqGNPNm0//MtTclpBegp+rHX4uXXd+zomiExwrPNbQ21J0ijMlZ8z/Dj3tPNl6y1bzua/tf40qQxW9PHrRy6MX3dy7YWdld4krdxwGo4llm8/y9pYkFAV6+Drzzp9izHukiUuTMNOIhJmu52zJWbQ6LWuT11JYU2huj3KLYlbULKZHTMfL3suCFYqOyGRSOJ5dTnJhJckFVaQUVv0aeiqpqjMyuY8vH9w+GGjo/en79Aaq6ow42VoR6e1IpI8TUT5ORHk70cvfhWCPznFLv6Io5FXncabkDJkVmcztNdd87M4f7+RA3oEm5ztZO9HDowe9PHqxeNBi86J1nd2Os4Xc/2UihZV67K01PD+rLzc1muclLiRhphEJM11DaW0p61PWE6+L50TRCXO7u6070yIahpF6efTqsp+QRetRFIWCCj16g8kcUMqq67n+3Z2k/WbY6pwJPX34v3lDzM9f/nMSIZ4ORPk4Eent1K7vfkkuS+Zw/mHOlJzhTMkZTpecpkxfZj6++9bd5i083jv8HofzD9PLsxc9PXrSy6MXQc5BnXZxyT+SX1HL/asS2aUrAuDGgUE8P6sPDjayfu3FSJhpRMJM51Vvqmd75na0Oi3bMrdhMBmAhrsbrgm6htioWK4JvKbLfPIT7U+dwURaURVJ+ZUNj4KGXyf08mXxxO4AFFToGfLiJvNzVCoIcrcnyruhJ2d0N2/Gdvdu07oVRaGgpoDTxac5U3KG23vfjo2mYdPRZ3Y9w7dnv21yvkalIcwljO4e3Xlo8EP4OPi0ab0didGk8M6WJN7cdAaTAlE+Trwzd+BFV9ju6mTXbNGpnSo+RXxSPOtT1je546GXRy9iI2OZFjENDzsPC1YoRAMbKzXdfJ3Nm3BejNGkMGdIMEn5lZzNr6Sspp6M4hoyimvYcroAg0kxh5my6nr+8fkBuvk4093Xie6+DdtMnNvdvLnSytM4mHeQsyVnOVt6ljPFZ5qs3zIyYCS9PBu2oYj2jiajIoPu7t3p7t6dHh49iHSLlLlnl0mjVrFwQjeGhHmwaFUCSfmVxC7fwXNxfZg9OFh6j5tJemZEh1BYU8j65IZhpDMlZ8ztnnaezIiYQWxULN3du1uwQiGunqIoFFbWkZRfie7XXpyx3b0Z37Ohp+NgWjE3vrf7guf5ONvSw8+ZOUNCLrnqrN6oJ6UshbMlZ0kqTeKWHreYV7L+77H/8sbBN5qcr1apG3pb3Lvzt/5/k39fraCwUs/irw7zy69beswaEMAL1/fDyVb6GUB6ZkQnUWesY1vmNuKT4tmRtQOjYgTAWm3N+ODxxEXFMTJgJFZq+TEWnYNKpcLb2RZvZ1tGRHpecDzU05GlN0dzNr+Ss3kVnM6rILOkhvwKPfkVeq7r5Ws+94fTCTy56QscHAsxWuVQYcxF4fydWH08+5jDTF/PvozwH0GUexRRblH0cG/obekMdxO1Z15Otnwybwjv/6Jj6U9nWJ2YzZHMMpbPHUjvAPnwfSXkXUC0K4qicKzwGPG6eH5I+YHyunLzsf5e/YmNjGVK+BRcbV0tWKUQluHlZGte6dikmMiuzOZowWn2Z53gROEZPDxdgDAADmSdQe+0AT1Aw+cAFKM9Jr0fTqpA0vNszp3KAO/BvDthMFaarjkx15LUahX3jotiaJgHC1YmkFxYxax3d/LUjN78aViIDDtdJgkzol3Iq8pjbfJatDotyWXJ5nYfBx9mRswkNiqWCFfLLVEuRHuQXJbM/x39P5JLk9GV6agx1DQ5nlcXDTQs8jc7ejhZddOwMflTU+VDYZE7SbkqqmuNVANR43ubn/fTiVwWf3WYKG8nevg509PPmV7+LvTyd8HbWebCtIXBYR6sXziGh74+zOZT+Tyx+hi7k4tYckM/XOzkJoY/InNmhMXUGmr5Of1ntDotu3N2Y1IausBtNbZcG3ItsyJnMcx/WKtvDidEe1BrqCW1PJXk0mSSyxoeKWUp3Nz9ZvPaLaeLT3PTmpvMz7FWWxPhGmEeHhoZMJLenr0v9S0a9jyq0HM6t4LoYDdc7RveJN/YeIa3Np+96HO8nGx5908DGRreMKm+Sm/AWqPGxkp6cVqDoij8344UXv7hFAaTQqinA8tvHUi/oK7XGy1zZkS7pSgKhwsOszppNRtSN1BZf35PnIE+A4mNjGVS2CScbeQ2RdE5lenLqDfVmxduTC9P5+8b/052ZbZ588TGGk94D3MNY/6A+YS7hhPlHkWIc8gVzRlTqVT4utjh69J0LsyiCd24cWAQp/MqOJVTzqncCk7mlJNSVEVhpR6fRr0zn+xK5c1NZ4jycaZXox6cnv7OeDlJL87VUqlU3DUmgkGh7sxfkUBaUTU3vreLf03ryR0jw2TY6RKkZ0a0iZzKnIbNHZPXkFaeZm73d/RnZuRM4iLjCHEJsWCFQrScc6vinutdOdfbklKWQlFtEbf0uIUnhj8BNOwCPWzFMABcbV2JcI0gwjWCcNdwIlwj6O7eHV9H39/7dq2mps7I6bwK+ge6olY3vIku/iqR7w5lXfR8b2dbvrtnpHnxwPLaehxtrNCo5Q24Ocqq6/nnN4f56UTDhriT+/jy6o3RuDp0jWEnWTSvEQkzllNdX82m9E1ok7Tsy91n/tRpb2XPxNCJxEXGMdhvcJddDVR0fOV15aSVpZFanoqrrSvXBF1jbh+1ctQlnzcpdBJLxy01f52Yn0iwczAedh7t/pO3oihkltRwMqeckzkVnMot52ROOWnF1VipVRx/dop5COrhbw6z5nAOPf2d6RvgSp8AF/oGutLN10k25rxMiqLwya5UXlp/knqjQpC7PW/fGkNMiLulS2t1EmYakTDTtkyKiYN5B4lPimdj2kaqDdXmY0P8hhAXGcfE0Ik4WHeOfWlE12E0Gfnk+CeklaeRVt4QYBov2jgyYCQfTPzA/PWEryfgYOVg7mGJcDvf4+Jo7WiJP0KrqtIbSC2qok/A+bkdN7y7k0PppReca6VW0cPPmdX3jcL61zuojCZFenB+x5HMUuavSCD919D4yJSe3DUmvN2H36shYaYRCTNtI6MigzW6NWh1WrIqz3dBBzsHExsZy8zImQQ6BVqwQiEuzaSYyKvKI6U85XxYKUvFz9GPZ0Y+Yz5v9KrRTfYhAvC29ybMNYwYnxgWxCwwtxtNxi4/ed1oUkgprOJ4dhnHs8s5nl3GsaxyymrqCfN0YOs/x5vPnfPhbvIr9PQJcKVvgAt9fu3JcXe8utWNO5Py2noe+/Yo647mAA17fL12c3SnfY0kzDQiYab1VNZV8lPaT8QnxXMo/5C53dHakSlhU4iNjCXGJ6ZTf3IQHce5wFJeV04Pjx7m9jt+uIPjRcfRG/UXPCfEOYR1N6wzf/1O4juoURPqEkqYaxihLqGdspelNSmKQlZpDYWVdQwIdjO39X/mJyr0hgvOD3SzZ0w3L16+sX8bV9o+KYrC53vTeX7tCeoMJgJc7Vh2awyDwzrfFi5yN5NoNUaTkX25+4jXxbM5bTO1xloAVKgY7j+c2KhYJoRMwN7K3sKViq5sX84+dGU6MioyyCjPIL0incyKTOpMdYS5hLHm+jXmc+uMdeiNeqzUVgQ7BzcEFZcwwlzCCHcNb3Ld+wbc19Z/lE5HpVIR5O5AkLtDk7afHxrXpAfneHY5aUXVZJXWkFNW2+Qas9/fjY+LLf2DXOkf5EafABecu8haLCqVituHhzIwxI35KxJIKazilg/38OCk7tx9TaR5onZXIz0z4rKklqWi1WnR6rTkVeeZ28NcwoiLimNGxAz8HP0sWKHoKvRGPZkVmWRUZJBenk5GRQb1pvomw0Gz18zmZPHJC55rpbYizCWM72K/M/cYnio+hYOVAwFOAbI1RjtTXlvPiexyrNQqc89DfkUtQ1/c3OQ8lQoivBzpH+TGdb18L7k/VWdTqTfw+PdHiU/MBmBsd29enx2NZye5RV6GmRqRMNN85XXl/JjyI1qdlsMFh83tzjbOTAufRmxkLP28+skwkmhRiqJQqi8lvzq/yXDQs7ufZUfWDvKq8i5Yj8VGbcP+2/ab74xbemApaeVphDiHEOISQrBzMMHOwfg5+klg6eBq640cSC3hSFYpRzLKOJpVRlbp+ZWQ7xgRyrNxfQGorjPwjPY4/YLc6B/oSk9/5053F5WiKHy5P4OntcfRG0z4utiybE4MwyIu3Nuro5Ew04iEmStjMBnYnb2beF08W9K3UGeqA0Cj0jAyYCRxUXGMCx6HraZzJH9hWQfzDnKq+BSZFZlkVWaRVZlFZkUm1YZqbDW27P/TfnNYXrx1MRvTNgIN87JCnBtCyrmwMjNiJtaarjHUIJoqrNRzNLOMI5llDAlzZ2RUw4KEB1KLuen987uM22jU9A5wYUCwGzEhbgyP8LxgAcGO6lRuOfd9cQhdQRVqFTxwXXfuHR/Voe8QkzDTiISZy3O25CxanZa1yWsprCk0t0e5RTErahbTI6abVywV4o8YTAbyqvPIqsgiszLTHFbyqvP4ePLH5oDywJYH2JS+6aLX8LH34dvYb3GzcwPgRNEJ6ox1hLiE4G7rLj2C4g+lFlbx7aFMjmSWcSSzlJLq+ibHn5jei7vGNOz5Vlip52ROOdHBbh12L6QqvYEn44+ZFzUcFeXJm7fEdNj9tWQCsLgspbWlrE9ZT7wunhNFJ8ztbrZuTAufRlxUHL08esmbhriAwWSgoLqA7KpscqpymB4+3fxz8tzu5/j+7PcYlAvvTAEoqi0yB+NBvoMACHQKJNA5kCCnIAKdAwlwDMDOqukn5t/bc0iIiwnzcuTBSQ1DlYqikF5cTWJGKQnppSRklDIo9PzCc9tOF/Dg14dRqSDS28ncezMg2I0evs4dYkdxR1srXp89gBERnjwVf5ydSUVMfWs7b80ZwKiozv1hVHpmuph6Uz07Mneg1WnZmrkVg6nhDcdKZcWYoDHERcVxTeA10l3fxdUZ67BWW5sDyo8pP7I9aztZlVnkVOaQV52HUTGaz98ye4s5oPx7/7/534n/Ya22bggpvz6CnIMIdApkdOBoWTRRtDtfHchg+c9JpBdXX3DM3lrDp38Zat5ssyMs8Hc2r4L7VhziTF4lKhUsuLYbiyZ0a/d1NybDTI1ImGlwqvgU8UnxrE9Z32TV0l4evYiLimNq+FQ87DrfOgXi0rIrs0kqTSK7Mruhh6Uyx/z7wprCJgHl1f2v8tmJz5o830pthZ+DHwFOATw78lmCnIMAKKguwKgY8XHwka0qRIdTWKnn8K+9N4kZpRzOKKVCb2D/49eZh2ve3HSGrw9kMjjMnUGhDY+efi7tLijU1Bl5RnucLw9kADAs3INlt8Z0mHlCEmYa6cphprCmkPXJ69HqtJwuOW1u97DzYEbEDGIjY5vcLSI6hzpjHXnVeeRW5Zp/za3KJa8qj2dHPWsOra/se4XPT35+yeusmLaCft79ANibs5ejhUcJcAwgwCkAf0d/vOy9uvwKt6LzM5kUUoqqiPR2Mrfd/n972X62sMl5TrZWxIS4MTDEnX+MjcDBpv3M4lidkMW/vj9KdZ0RT0cbXr9lAGO7e1u6rD8kYaaRrhZm6ox1bMvchjZJy/as7eahAGu1NeOCxzErahYjA0bK7akd1Lm5KrnVueaQckO3G3C1bdgP5+2Et/nwyIeXfP7K6Svp69Vw2+o3Z77hq9Nf4e/obw4oAU4B+Dv5E+AYgJutm8yXEuIiKvUGEtNLOZBWzMG0EhLSS6n8dfViJ1srDj89ydxL892hTDRqFQND3Alyt7fYv6nkgkruW5HAyZxyAO4dF8niid3b9VwgmQDcxSiKwvGi48QnxfND6g9N9o7p59WPuMg4poRPMb/hifbJaDJSWFNIbnUu3d27m1dR1uq0fHnqS3KrcimsLcSkmJo8b7DvYHMPiqtNw9+xrcYWXwdf/Bz98HP0a/L7c27qfhM3db+pjf50QnQeTrZWjO7mxehuDcOwRpPC6dwKDqaXUFFb32S46a3NZ0krapiH4+ti++uwlAeDQ93pHeBi3miztUV4O/H9vSN5Yd0JPt+TzrtbdexPLeatOTEEuHX8FdulZ6YDy6/OZ23yWrRJWnRlOnO7j70PMyNnEhsZS4RbhAUrFOfUGGqwVlube8T25+5nS8YW8qvzya/OJ7cql4LqAvMdQI2HeD478Rmv7n/VfC0rtRW+Dr7mgHJXv7vo5t4NgIq6Cgwmg/SqCNEOGE0KL60/yYG0Eo5nlWEwNX277RvowtoFY8xf1xtNbRJu1h7J5rFvj1KhN+DuYM3S2dFc29O31b/vlZKemU6s1lDLlowtxOvi2Z292/wp3VZjy4SQCcRFxjHMf5jMZbCAsyVnOZB3gILqAvKq88ivzqeguoD86nwq6iv4YtoX9Pdu2CzvVPGpCybUQsPihN4O3tQYzq9oek3QNfg7+pt7VjzsPC45sdbZxrl1/nBCiCumUat4ckbDkgI1dUaOZJZyIK2Eg78+ooPczOfWGUwMfmEjPfycGRruwdBwTwaFuuNk2/Jv0zP6B9Av0JX5KxI4mlXGXz45wN+vieCfk3u0WU9RS5OemQ5AURQOFxwmXhfPhpQNVNRXmI/F+MQQFxnHpLBJ8kbWCvKr8zlbcpb86nzyqvPM4SS/pqFHZdn4ZeYelM9PfM4r+1+55LXeHPcmE0InAHCk4Aib0jbh7eCNj4NPQ1Bx8JNJtUJ0ESaTQk29Ecdfw0pCegnXv7uryTkatYq+AS4MDfdgaj9/Boa4X+xSzaY3GFmy/hSf7EoFICbEjbdvjWmyCaglyQTgRjpymMmpzGFN8hq0Oi1p5Wnmdn9Hf/MwUqhLqAUr7JjK9GVkVmRSUFNAYU3hBY9/DfuXeYG2Pwoob4x7g+tCrwMa7vhZeWolPg4+5oe3vTe+Dr54O3jjZO0kQz9CiIs6t6jf3uRi9qYUsy+1iIzi8z20j0zpyT3jIgEorqpjl66QoeEe+Dhf/W3WPx7L5eFvDlNea8DFzop/3xzN5D6W3zhYhpk6sOr6ajanbyZeF8++nH3mDfXsreyZGDqRuMg4BvsNlvU7fqO6vprc6lwKqy8MJwU1BSwetJhenr0AWJu8lpf3vXzJa2VXZpvDTLBzMN3duzcJJ43DSuMwOcx/GMP8h7XuH1QI0SmpVCpCPR0J9XRk9pBgALJLa9ifWsye5GLGdDu/gu/2swUsWpUINOwWPjTcgxGRnoyI8MSnGWvITOnrR58AFxasTCAxo5R/fHaQO0eF8ejUnh1mY07pmWkHTIqJg3kH0eq0/JT6E9WG8ytQDvEbQlxkHBNDJ3a5VVP1Rj0F1QUU1xZTXFtsDiZFNUUU1hRyT/Q95nVyVpxcwZJ9Sy55rdfHvc7E0IkAbE7bzEv7XsLb3hsvey+87L3wtPc0fx3tHY23Q/tfg0EI0TWtPZLNO1t0nMot57fv4FE+Tiy9OZroYLcrvm6dwcS/N5zio+0pAPQLdOWduQMJ8bTMe4/0zHQQGRUZrNE1DCNlVWaZ24OcgoiNiiU2MpZAp0ALVtjyquqryKnMoai2yBxSimqKzL/eO+Becw/K92e/58W9L17yWtPCp5nDjLeDN87Wzng5NIQTLzuv87+396KvZ1/z8yaETjDPXRFCiI5mRv8AZvQPoKy6ngNpxexJLmJ3chHHs8tJyq/Ez/V878z3CZmcyC5nZKQXQ8I9fndCsY2Vmsen92ZYuCcPfXOYo1llTF+2nZdv7M/0/v5t8UdrNumZaWNV9VX8lPoT8bp4DuYdNLc7WjsyOWwysZGxDPQZ2KHmVpTpy0gvTz8fTmqLzgeU2iIeGPgAfbz6APDlqS95Ye8Ll7zW0rFLmRQ2CYCNaRt59JdH8bT3xMPOwxxMzj1GBYwi2KWhO1ZRlA71mgkhREsrra4jIaOU8T18zG1//u8+fjlTAICVWkV0sBsjIz0ZEenJwBB37KwvPoyUXVrDgpUJHEwrAeC24SE8Mb33Jc9vDTIBuJH2EGaMJiP7cveh1WnZnL7ZfNutChXD/YcTFxXHtSHXmhdJaw9yq3I5XnSc0tpSSvQllNSWUKovpbi2mNLaUh4Z+ggDfAYA8NXpr3h+z/OXvNZrY19jcthkoGGI55ndz+Bh52F+nAsrHnYejAgYQbBzQ0AxKSZUqCSkCCFEM/1wNIetpwvYlVzYZEIxgJuDNQefmGhe5O+3HwrrjSZe33iG97Y2rGPW29+Fd/40kHAvxzapXYaZ2onUslS0Oi1rkteQW5Vrbg9zCSMuKo4ZETOarMjakhRFaVioTWONtbphB+yzJWfZk7OHktoSSvQlFwSV18a+xhC/IQBsz9rOc7ufu+T1c6vP/3m87b3N65942v0aTOzP/76/V3/zuVcyxCOTnIUQ4upM7efP1H4NQ0QZxdXs1hWxS1fILl0RPfycm6xWfMN7u/BwsGFMNy/GdPcmwsuRR6b0ZFi4B4u/OsyJnHJmLNvOSzf0I25A+5oC0SHCzLvvvsu///1vcnJy6NOnD2+++SZjxoz54ydaQHldOT+m/IhWp+VwwWFzu7ONM1PDphIbFUt/r/5X1NugKArVhmrK9GWU6ksJcQ7ByaZh07OE/AQ2pG4w95iYe0/0peiNej6a9BHD/YcDcLjgcJOVZH+rqLbI/PtAx0D6e/XH3c4dN1s33O3cGx62DV+f298HYHzIeMaHjL/sP48QQoi2F+zhQLCHA7OHBKMoCuW1BvOx/IpaEtJLAdh8Kh+AAFc7xnTzZkx3L1beNZwntcfYl1LMolWJ7NYV8UxsnzYddvo97T7MfPnll9x///28++67jBo1ig8++ICpU6dy4sQJQkJCLF0e0DCMtDtnN/FJ8fyc/jN1pjqgYTXXkQEjiY2KZXzweGzUNtQYasityqVUX0pZXRll+obHuOBx+Dg0jHNuStvE/078z3ysrK4Mg+n8D92HEz9kRMAIAHSlOr44+cUlayutLTX/PtItkqnhUxsCiZ0b7raNAoqdG0FOQeZzRwaOZGTgyJZ8mYQQQrQTKpUKV3tr89dejrasXTCaHUmFbD9bwP6UErLLavnyQAZfHsjgxoFBrLhrGG9tPsvbPyexan8GCemlvPOnGKJ8LL9ga7ufMzNs2DAGDhzIe++9Z27r1asXs2bNYsmSS9+Ke05rzplJyEvgmzPfsC1zG2V15zd3dLN1I9ApkMeGPka0TzTQcOvwawdeo95Uf9FrfTDxA0YGNISHb898yzO7n7ngHBu1DW62bjwz8hnGBDX0TJ0sOslPaT+d7z35NaC42brhYeeBvZXldmkVQgjRMdXUGdmXWsz2MwVsP1vIveMjzUNLn+1O48n4YwBYq1UsntTDvKBfS+o0c2bq6uo4ePAgjz76aJP2SZMmsWvXros+R6/Xo9frzV+Xl5e3Sm2v7n/1onvrAJTqG4Z7qgxV5jZbja05yFirrXGzdcPV1hUXGxfcbN1wtj6fbIf5D2Pp2KXmc8497DR2FwSTXp69zLcyCyGEEC3B3kbD2O7ejO3esOZW436P2nqj+ff1JoVXfjxFTlkNz8X1veA6baVdh5nCwkKMRiO+vk138/T19SU3N/eiz1myZAnPPvtsq9cW4xPDFye+wEpthYe9BwGOAebw4WbrhoutC8FOwebzJ4VNYlTgKFxsXP6wtyTIOYgg56BLHhdCCCHaUuP3rL+ODmdklCe/nClk5b50MoqrGRTasvtGXal2HWbO+e0b/++tKfLYY4+xePFi89fl5eUEBwdf9NyrMS5oHFtu2YKHncdlne9s4ywbQQohhOjw1GoVfQJc6RPgyj3jItEVVBLp7WTRmtp1mPHy8kKj0VzQC5Ofn39Bb805tra22Nratnpt1hprPDSXF2SEEEKIzsrSQQagXS/kYWNjw6BBg9i4cWOT9o0bNzJypNxpI4QQQoh23jMDsHjxYm6//XYGDx7MiBEj+PDDD0lPT+fuu++2dGlCCCGEaAfafZi55ZZbKCoq4rnnniMnJ4e+ffuyfv16QkNDLV2aEEIIIdqBdr/OzNVqD3szCSGEEOLKXMn7d7ueMyOEEEII8UckzAghhBCiQ5MwI4QQQogOTcKMEEIIITo0CTNCCCGE6NAkzAghhBCiQ5MwI4QQQogOTcKMEEIIITo0CTNCCCGE6NDa/XYGV+vcAsfl5eUWrkQIIYQQl+vc+/blbFTQ6cNMRUUFAMHBwRauRAghhBBXqqKiAldX1989p9PvzWQymcjOzsbZ2RmVStWi1y4vLyc4OJiMjAzZ96kVyevcNuR1bhvyOrcNeZ3bRmu+zoqiUFFRQUBAAGr178+K6fQ9M2q1mqCgoFb9Hi4uLvKPpQ3I69w25HVuG/I6tw15ndtGa73Of9Qjc45MABZCCCFEhyZhRgghhBAdmoSZq2Bra8vTTz+Nra2tpUvp1OR1bhvyOrcNeZ3bhrzObaO9vM6dfgKwEEIIITo36ZkRQgghRIcmYUYIIYQQHZqEGSGEEEJ0aBJmhBBCCNGhSZj5He+++y7h4eHY2dkxaNAgtm/f/rvnb9u2jUGDBmFnZ0dERATvv/9+G1Xa8V3Ja/3dd98xceJEvL29cXFxYcSIEWzYsKENq+24rvRn+pydO3diZWXFgAEDWrfATuJKX2e9Xs/jjz9OaGgotra2REZG8t///reNqu24rvR1/uKLL4iOjsbBwQF/f3/uvPNOioqK2qjajumXX35h5syZBAQEoFKpWL169R8+xyLvhYq4qFWrVinW1tbKRx99pJw4cUJZtGiR4ujoqKSlpV30/OTkZMXBwUFZtGiRcuLECeWjjz5SrK2tlW+++aaNK+94rvS1XrTo/9u715gozi4O4P9hL2WFFkHlEqAYCiporAoBAW+0BoU2amJbE4l1EzXFhlo0QNbUarFNtN5SbSzahixNC9W0qCEEq3zwAmq0KCRGiFAVDRFrUEkQ1C543g+N+3bLquziLB36/yX7gWfPzJw52fAcnmcnfCxffvmlnDt3TpqammTt2rViMBjkwoULHs5cW1yt8xMdHR0SGRkpaWlp8vrrr3smWQ1zp87z5s2TxMREqaqqkmvXrsnZs2fl1KlTHsxae1ytc3V1tXh5ecnOnTvl6tWrUl1dLePHj5cFCxZ4OHNtqayslE8++UTKysoEgBw8ePCZ8YM1F7KZeYqEhATJyspyGBs3bpxYLBan8fn5+TJu3DiHsQ8++ECmTp2qWo5Dhau1diY2NlYKCgpedGpDirt1XrRokaxbt042bNjAZqYfXK3z4cOHxc/PT+7cueOJ9IYMV+u8detWiYyMdBjbtWuXhIWFqZbjUNOfZmaw5kJuMznx559/4vz580hLS3MYT0tLw+nTp50ec+bMmT7xc+bMQW1tLWw2m2q5ap07tf6nx48fo7OzEwEBAWqkOCS4W2er1YorV65gw4YNaqc4JLhT5/LycsTHx2PLli0IDQ3FmDFjkJubiwcPHngiZU1yp87JyclobW1FZWUlRAR//PEHfvnlF7z11lueSPk/Y7DmwiH/jybd0d7ejt7eXgQFBTmMBwUF4datW06PuXXrltP4np4etLe3IyQkRLV8tcydWv/T9u3b0dXVhffee0+NFIcEd+rc3NwMi8WC6upq6PX8VdEf7tT56tWrqKmpgbe3Nw4ePIj29nZ8+OGHuHv3Lr838xTu1Dk5ORklJSVYtGgRHj58iJ6eHsybNw9ff/21J1L+zxisuZArM8+gKIrDzyLSZ+x58c7GqS9Xa/3ETz/9hM8++wz79+9HYGCgWukNGf2tc29vLxYvXoyCggKMGTPGU+kNGa58nh8/fgxFUVBSUoKEhARkZGRgx44dKC4u5urMc7hS54aGBqxatQrr16/H+fPn8euvv+LatWvIysryRKr/KYMxF/LPLSdGjhwJnU7Xp8O/fft2n47zieDgYKfxer0eI0aMUC1XrXOn1k/s378fy5Ytw88//4zZs2ermabmuVrnzs5O1NbWoq6uDtnZ2QD+mnRFBHq9HkePHsUbb7zhkdy1xJ3Pc0hICEJDQ+Hn52cfi4mJgYigtbUV0dHRquasRe7UedOmTUhJSUFeXh4AYOLEifDx8cH06dPxxRdfcPX8BRmsuZArM04YjUbExcWhqqrKYbyqqgrJyclOj0lKSuoTf/ToUcTHx8NgMKiWq9a5U2vgrxUZs9mM0tJS7nn3g6t1fuWVV3Dx4kXU19fbX1lZWRg7dizq6+uRmJjoqdQ1xZ3Pc0pKCm7evIn79+/bx5qamuDl5YWwsDBV89Uqd+rc3d0NLy/HKU+n0wH4/8oBDdygzYWqfr1Yw5489ldUVCQNDQ2Sk5MjPj4+0tLSIiIiFotFlixZYo9/8jja6tWrpaGhQYqKivhodj+5WuvS0lLR6/Wye/duaWtrs786OjoG6xY0wdU6/xOfZuofV+vc2dkpYWFh8s4778ilS5fkxIkTEh0dLcuXLx+sW9AEV+tstVpFr9fLN998I1euXJGamhqJj4+XhISEwboFTejs7JS6ujqpq6sTALJjxw6pq6uzPwL/b5kL2cw8w+7duyUiIkKMRqNMmTJFTpw4YX9v6dKlMnPmTIf448ePy+TJk8VoNMro0aOlsLDQwxlrlyu1njlzpgDo81q6dKnnE9cYVz/Tf8dmpv9crXNjY6PMnj1bTCaThIWFyZo1a6S7u9vDWWuPq3XetWuXxMbGislkkpCQEMnMzJTW1lYPZ60tx44de+bv23/LXKiIcH2NiIiItIvfmSEiIiJNYzNDREREmsZmhoiIiDSNzQwRERFpGpsZIiIi0jQ2M0RERKRpbGaIiIhI09jMEBERkaaxmSEiTWlpaYGiKKivr39m3KxZs5CTk+ORnIhocLGZISJVmM1mKIoCRVFgMBgQGRmJ3NxcdHV1Dei84eHhaGtrw4QJEwAAx48fh6Io6OjocIg7cOAAPv/88wFdi4i0QT/YCRDR0DV37lxYrVbYbDZUV1dj+fLl6OrqQmFhodvn1Ol0CA4Ofm5cQECA29cgIm3hygwRqeall15CcHAwwsPDsXjxYmRmZuLQoUN49OgRVq1ahcDAQHh7e2PatGn47bff7Mfdu3cPmZmZGDVqFEwmE6Kjo2G1WgE4bjO1tLQgNTUVAODv7w9FUWA2mwH03Wa6d+8e3n//ffj7+2PYsGFIT09Hc3Oz/f3i4mIMHz4cR44cQUxMDHx9fTF37ly0tbWpXygiGhA2M0TkMSaTCTabDfn5+SgrK8P333+PCxcuICoqCnPmzMHdu3cBAJ9++ikaGhpw+PBhNDY2orCwECNHjuxzvvDwcJSVlQEALl++jLa2NuzcudPptc1mM2pra1FeXo4zZ85ARJCRkQGbzWaP6e7uxrZt2/DDDz/g5MmTuHHjBnJzc1WoBBG9SNxmIiKPOHfuHEpLS5GamorCwkIUFxcjPT0dAPDdd9+hqqoKRUVFyMvLw40bNzB58mTEx8cDAEaPHu30nDqdzr6dFBgYiOHDhzuNa25uRnl5OU6dOoXk5GQAQElJCcLDw3Ho0CG8++67AACbzYY9e/bgtddeAwBkZ2dj48aNL6oERKQSrswQkWoqKirg6+sLb29vJCUlYcaMGfjoo49gs9mQkpJijzMYDEhISEBjYyMAYOXKldi3bx8mTZqE/Px8nD59ekB5NDY2Qq/XIzEx0T42YsQIjB071n5NABg2bJi9kQGAkJAQ3L59e0DXJiL1sZkhItWkpqaivr4ely9fxsOHD3HgwAH4+fkBABRFcYgVEftYeno6rl+/jpycHNy8eRNvvvnmgLZ7ROSp43/Pw2AwOLyvKMpTjyWifw82M0SkGh8fH0RFRSEiIsLeKERFRcFoNKKmpsYeZ7PZUFtbi5iYGPvYqFGjYDab8eOPP+Krr77Ct99+6/QaRqMRANDb2/vUPGJjY9HT04OzZ8/ax+7cuYOmpiaHaxKRNvE7M0TkUT4+Pli5ciXy8vIQEBCAV199FVu2bEF3dzeWLVsGAFi/fj3i4uIwfvx4PHr0CBUVFU9tOiIiIqAoCioqKpCRkQGTyQRfX1+HmOjoaMyfPx8rVqzA3r178fLLL8NisSA0NBTz589X/Z6JSF1cmSEij9u8eTMWLlyIJUuWYMqUKfj9999x5MgR+Pv7A/hrtWXt2rWYOHEiZsyYAZ1Oh3379jk9V2hoKAoKCmCxWBAUFITs7GyncVarFXFxcXj77beRlJQEEUFlZWWfrSUi0h5FuCFMREREGsaVGSIiItI0NjNERESkaWxmiIiISNPYzBAREZGmsZkhIiIiTWMzQ0RERJrGZoaIiIg0jc0MERERaRqbGSIiItI0NjNERESkaWxmiIiISNP+Bwv4sfW0RtBgAAAAAElFTkSuQmCC", "text/plain": [ "" ] @@ -1229,7 +1229,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4dc2003ca89d45b2a12be64ab0c8f7a5", + "model_id": "6c9a9efaf1714bf7aabe25246af0f93d", "version_major": 2, "version_minor": 0 }, @@ -1253,10 +1253,6 @@ "\n", "my_model.species = [mobile_H, mobile_T, trapped_H, trapped_T]\n", "\n", - "my_model.initial_conditions = [\n", - " F.InitialCondition(value=2, species=trapped_T),\n", - "]\n", - "\n", "left_surf = F.SurfaceSubdomain1D(id=1, x=0)\n", "right_surf = F.SurfaceSubdomain1D(id=2, x=1)\n", "\n", @@ -1264,6 +1260,10 @@ "\n", "vol = F.VolumeSubdomain1D(id=1, borders=[0, 1], material=material)\n", "\n", + "my_model.initial_conditions = [\n", + " F.InitialConcentration(value=2, volume=vol, species=trapped_T),\n", + "]\n", + "\n", "my_model.subdomains = [vol, left_surf, right_surf]\n", "\n", "my_model.reactions = [\n", @@ -1305,7 +1305,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcbxJREFUeJzt3Xd8zPcfB/DX9/ZdxmUPSYRI7BVii9JaDUq1RunQTW2tlg6j2tJBKyi60F+t1qpVipbG3js2sYXsefP7+yNyRBKSyOXuktfz8biH3Pc+9/2+8xXulc/n8/18BVEURRARERE5KImtCyAiIiJ6HAwzRERE5NAYZoiIiMihMcwQERGRQ2OYISIiIofGMENEREQOjWGGiIiIHJrM1gVYm9lsxvXr1+Hi4gJBEGxdDhERERWBKIpIS0tDpUqVIJE8vO+l3IeZ69evIygoyNZlEBERUQlcuXIFgYGBD21T7sOMi4sLgJyT4erqauNqiIiIqChSU1MRFBRk+Rx/mHIfZnKHllxdXRlmiIiIHExRpohwAjARERE5NIYZIiIicmgMM0REROTQyv2cGSIiclxmsxl6vd7WZZAVyOVySKXSUtkXwwwREdklvV6Pixcvwmw227oUshI3Nzf4+fk99jpwDDNERGR3RFHEjRs3IJVKERQU9MhF08ixiKKIzMxMxMfHAwD8/f0fa38MM0REZHeMRiMyMzNRqVIlaDQaW5dDVqBWqwEA8fHx8PHxeawhJ0ZdIiKyOyaTCQCgUChsXAlZU25QNRgMj7UfhhkiIrJbvKde+VZaf78MM0REROTQbBpm/vvvP3Tr1g2VKlWCIAhYtWpVntdFUcSECRNQqVIlqNVqtG3bFidOnLBNsURERGSXbBpmMjIy0KBBA8ycObPA17/66itMmzYNM2fOxL59++Dn54cOHTogLS2tjCslIiIie2XTMPP000/js88+Q8+ePfO9JooivvvuO3z00Ufo2bMn6tatiwULFiAzMxOLFi2yQbX569sSewuiKNq6FCIisiMDBgxAjx498m3funUrBEFAcnJymddU3tntnJmLFy/i5s2b6Nixo2WbUqnEE088gZ07dxb6Pp1Oh9TU1DwPa/htdxxeX7Afb//vAFIyH28WNhEREZWc3a4zc/PmTQCAr69vnu2+vr6Ii4sr9H2TJ0/GxIkTrVobAEgkAhRSCf4+eQsnomMws184wiu7W/24REQVkSiKyDKYbHJstVzKq6rsnN2GmVwP/gCJovjQH6qxY8di1KhRluepqakICgoq9br6NwtG/QA3DFl8EHEJmeg1ZxfGPF0Tr7euyh96IqJSlmUwofa4jTY59slPO0GjsPuPywrNbv92/Pz8AOT00Ny/zHF8fHy+3pr7KZVKKJVKq9cHAPUCtVgztDXGLj+Gdcdu4LN1sdh9IQFfP98A7k5c6ImIqKJau3YtnJ2d82zLXQiQSp/dhpmqVavCz88PmzZtQnh4OICcm45t27YNX375pY2ru8dVJcfMfuFovscTk9aexObYeHSJjsGMfuFoHOxh6/KIiMoFtVyKk592stmxi6tdu3aYPXt2nm179uzBiy++WFpl0X1sGmbS09Nx7tw5y/OLFy/i8OHD8PDwQOXKlTFixAh88cUXCAsLQ1hYGL744gtoNBr069fPhlXnJwgCXmoejPAgNwxdfAgX72Sg99zdeL9TDbwZGQKJhMNORESPQxAEhxrqcXJyQmhoaJ5tV69etVE15Z9NfzL279+Pdu3aWZ7nznV55ZVXMH/+fLz//vvIysrCO++8g6SkJDRr1gx///03XFxcbFXyQ9UNyBl2+nDFMaw+ch2T/zqF3RcSMLV3Q3hw2ImIiMgqbHppdtu2bSGKYr7H/PnzAeQk8QkTJuDGjRvIzs7Gtm3bULduXVuW/EjOShmm922IyT3rQSmT4N/TtxE1PQb7LiXaujQiIqJyyW7XmXFkgiDghaaVsWpwK4R4O+Fmajb6/rAb3289B7OZi+wRERGVJkEs50vYpqamQqvVIiUlBa6urmV+/AydER+vOo6Vh64BAJ6o7o1pvRvA07lsrrgiInJE2dnZuHjxIqpWrQqVSmXrcshKHvb3XJzPb/bMWJmTUoZpvRvgq+fqQyWXYNuZ24iKjsHuCwm2Lo2IiKhcYJgpA4IgoHeTIPw5uDVCfZxxK1WHfj/uxowtZ2HisBMREdFjYZgpQzX8XLB6SCs81ygQZhGYuukMXvllL26n6WxdGhERkcNimCljGoUMU3s3wDe9GkAtl2L7uTuIio7BznN3bF0aERGRQ2KYsZHnGwdi9ZBWqO7rjNtpOvT/eQ++3XSGw05ERETFxDBjQ2G+LvhzcGv0jgiEKALTt5zFiz/tQXxqtq1LIyIichgMMzamVkjx1fMN8G2fBtAopNh1IQFR0THYfpbDTkREREXBMGMnng0PxOohrVHTzwV30vV46Zc9mPr3aRhNZluXRkREZNcYZuxIqI8zVg1uhReaVoYoAjP+OYd+P+3BzRQOOxERERWGYcbOqORSTO5ZD9EvhMNJIcXei4mIio7B1tPxti6NiIgeQhCEhz4GDBhg6xLLLce5n3oF80yDSqgXoMXghQdx8kYqBszbh0Ftq+HdDtUhkzKDEhHZmxs3bli+Xrp0KcaNG4fTp09btqnValuUVSHwU9GOVfVywop3WuKl5sEAgNlbz6PvD7txPTnLxpUREdGD/Pz8LA+tVgtBEPJtI+tgz4ydU8mlmNSjLpqHeOKD5UexPy4JXaJjMK13Q7Sr6WPr8oiIyoQoisgy2uYXObVMDUEQbHJsKhqGGQfRpb4/6ga4YvCigzh+LRWvzt+Ht9uE4L1ONSDnsBMRlXNZxiw0W9TMJsfe028PNHKNTY5NRcNPQQcS7OmE5YNaYkDLKgCAuf9dQJ+5u3CNw05ERFSBsWfGwShlUkx4pg6ah3hg9LKjOHg5GVHTY/BNrwboUNvX1uUREVmFWqbGnn57bHZssm8MMw6qc11/1KmkxZBFB3Hkagre/HU/Xm9dFR90rgmFjB1uRFS+CILAoR4qFD/1HFiQhwZ/DGyJ11pVBQD8vP0ies3dhSuJmTaujIiIqOwwzDg4hUyCcd1q44eXGkOrluPIlWRERcdgw/Gbti6NiIioTDDMlBMd6/hh3bDWCK/shrRsIwb+dgATVp+AzmiydWlERBXOgAEDkJycbOsyKgyGmXIk0F2D399ugbfahAAA5u+8hOdn78LlBA47ERFR+cUwU87IpRJ8GFULvwyIgJtGjmPXUtAlOgbrj9149JuJiIgcEMNMOfVkTV+sHxaJiGB3pOmMeGfhQXyy6jiyDRx2IiKi8oVhphyr5KbG4reaY1DbagCA/+2Ow3Ozd+LinQwbV0ZERFR6GGbKOblUgg8618T8V5vAw0mBE9dT0W3Gdqw+ct3WpREREZUKhpkKom0NH6wfFommVT2QrjNi2OJDGLviGIediIjI4THMVCB+WhUWvdEMQ58MhSAAi/deRo9ZO3D+drqtSyMiIioxhpkKRiaV4N2ONfDra03h5azAqZtp6DZjO1Yeumrr0oiIiEqEYaaCigzzxvphkWge4oFMvQkjlx7BB8uOIkvPYSciInIsDDMVmI+rCgvfaI7hT4VBEICl+6+gx6wdOBefZuvSiIiIioxhpoKTSgSM7FAdC19vBi9nJU7fSkO3GTuw7ACHnYiI6PFs3boVgiBY/dYODDMEAGgZ6oW/hkeidagXsgwmvPfHEbz7+xFk6o22Lo2IyKEMGDAAPXr0yLe9qB/s8+fPh5ubm1VqK68YZsjC20WJBa81xbsdqkMiAMsPXsUzM3fg9E0OOxER2Ru9Xm/rEuwGwwzlIZUIGPpUGBa92Ry+rkqci09H91nbsXTfZYiiaOvyiKiCy9QbC308uG5WabQta1u3bsWrr76KlJQUCIIAQRAwYcIEAECVKlXw2WefYcCAAdBqtXjzzTcBAB988AGqV68OjUaDkJAQfPLJJzAYDJZ9TpgwAQ0bNsTcuXMRFBQEjUaDXr165ekhyu1NmjhxInx8fODq6oq33347T2ASRRFfffUVQkJCoFar0aBBAyxbtixP/evXr0f16tWhVqvRrl07XLp0yWrn6n6yMjkKOZzmIZ5YPywSI38/gv/O3MYHy49h1/kEfP5sPTgp+WNDRLZRe9zGQl9rV8Mb815tanneeNJmZBWyMGizqh5Y+nYLy/PWX/6LxIz8PR2XpnR5jGqLr2XLlvjuu+8wbtw4nD59GgDg7Oxsef3rr7/GJ598go8//tiyzcXFBfPnz0elSpVw7NgxvPnmm3BxccH7779vaXPu3Dn8/vvvWLNmDVJTU/H6669j8ODBWLhwoaXNli1boFKp8O+//+LSpUt49dVX4eXlhc8//xwA8PHHH2PFihWYPXs2wsLC8N9//+HFF1+Et7c3nnjiCVy5cgU9e/bEwIEDMWjQIOzfvx/vvvuutU8ZAIYZeghPZyXmD2iCOf+dx9S/z2DV4es4ejUFs/o3Qi1/V1uXR0Rkt9auXZsnhACAyfTopS8UCgW0Wi0EQYCfn1++15988km89957ebbdH2yqVKmCd999F0uXLs0TZrKzs7FgwQIEBgYCAGbMmIEuXbpg6tSpluMoFAr88ssv0Gg0qFOnDj799FOMHj0akyZNQlZWFqZNm4Z//vkHLVrkhMCQkBBs374dc+fOxRNPPIHZs2cjJCQE3377LQRBQI0aNXDs2DF8+eWXRTxrJccwQw8lkQh4p20omlTxwLDFh3DhTga6z9qBCd3q4IWmQRAEwdYlElEFcvLTToW+Jnng/6MDn7QvctvtH7R7vMIe0K5dO8yePTvPtj179uDFF198rP1GRETk27Zs2TJ89913OHfuHNLT02E0GuHqmvcXzsqVK1uCDAC0aNECZrMZp0+ftoSZBg0aQKPR5GmTnp6OK1euID4+HtnZ2ejQoUOe/er1eoSHhwMAYmNj0bx58zyfC7nBx9oYZqhImlTxwLphkXjvjyP451Q8Plx5DLsuJOCLZ+vCRSW3dXlEVEFoFEX/2LJW26JwcnJCaGhonm1Xrz7+khdOTk55nu/evRt9+/bFxIkT0alTJ2i1WixZsgRTp0596H5yA0dRfiEVBAFmsxkAsG7dOgQEBOR5XalUAoBN51UyzFCReTgp8NPLEfhp+wV8teE01hy5jmNXkzGzXyPUDdDaujwionJBoVAUaUgKAHbs2IHg4GB89NFHlm1xcXH52l2+fBnXr19HpUqVAAC7du2CRCJB9erVLW2OHDmCrKwsqNVqADlBydnZGYGBgXB3d4dSqcTly5fxxBNPFFhL7dq1sWrVqjzbdu/eXaTv43HxaiYqFolEwFttqmHp2y0Q4KbGpYRM9Px+J/636xKvdiIiKgVVqlRBeno6tmzZgjt37iAzM7PQtqGhobh8+TKWLFmC8+fPIzo6GitXrszXTqVS4ZVXXsGRI0cQExODYcOGoXfv3nnm5ej1erz++us4efIk/vrrL4wfPx5DhgyBRCKBi4sL3nvvPYwcORILFizA+fPncejQIcyaNQsLFiwAAAwcOBDnz5/HqFGjcPr0aSxatAjz588v9fNTEIYZKpHGwe5YN6w12tfyhd5kxid/nsDgRQeRmm149JuJiKhQLVu2xMCBA9GnTx94e3vjq6++KrRt9+7dMXLkSAwZMgQNGzbEzp078cknn+RrFxoaip49eyIqKgodO3ZE3bp18f333+dp89RTTyEsLAxt2rRB79690a1bN8tl4QAwadIkjBs3DpMnT0atWrXQqVMnrFmzBlWrVgWQMy9n+fLlWLNmDRo0aIA5c+bgiy++KJ2T8giCWM5/nU5NTYVWq0VKSkq+CVH0+ERRxM/bL+LLDadgMIkI8lBjVr9GqB/oZuvSiMiBZWdn4+LFi6hatSpUKpWty3FoEyZMwKpVq3D48OFC2wwYMADJycn5homs7WF/z8X5/GbPDD0WQRDwRmQI/hjYEoHualxJzMJzs3fil+0XOexERERlgmGGSkXDIDesGxaJTnV8YTCJ+HTtSbz9vwNIyeSwExHR/Z5++mk4OzsX+CirYZnyhsNMVKpEUcSCnZfwxfpT0JvMCHBTY2a/cIRXdrd1aUTkQMrzMNO1a9eQlZVV4GseHh7w8PAo44psp7SGmXhpNpUqQRAwoFVVNA72wOBFB3E5MRO95uzCmKdr4vXWVbnIHhFVeA+u00KPj8NMZBX1ArVYO6w1utTzh9Es4rN1sXjz1/1IzuRdXomIqHQxzJDVuKrkmNkvHJN61IVCJsHm2HhETY/BgbhEW5dGRETlCMMMWZUgCHipeTBWvtMSVb2ccD0lG73n7sacbedhNpfr6VpERFRGGGaoTNSppMWaoa3RrUElmMwipvx1Cq8t2IeEdJ2tSyMiIgfHMENlxlkpQ3Tfhpjcsx6UMgm2nr6NqOgY7L3IYSciIio5hhkqU4Ig4IWmlbFqcCuEeDvhVqoOfX/YhZn/nOWwExFROSIIQpmtKMwwQzZRy98Va4a0Rs/wAJhF4Ju/z+CVeXtxh8NOROSgBEF46GPAgAEPff+lS5cgCMJDbztABWOYIZtxUsowrU9DfP18fajkEsScvYOo6THYdT7B1qURERXbjRs3LI/vvvsOrq6uebZNnz69VI6j13OJiwcxzJDN9YoIwpohrRHm44z4NB36/7Qb0zefhYnDTkT0gExDZqEPnUlX5LbZxuwitS0OPz8/y0Or1UIQhHzbHib37tPh4eEQBAFt27YFkHMTyB49emDy5MmoVKkSqlevDgD47bffEBERARcXF/j5+aFfv36Ij4+37G/r1q0QBAHr1q1DgwYNoFKp0KxZMxw7dszSZv78+XBzc8OqVatQvXp1qFQqdOjQAVeuXMlT25o1a9C4cWOoVCqEhIRg4sSJMBqNltfPnj2LNm3aQKVSoXbt2ti0aVOxzt3jsusVgI1GIyZMmICFCxfi5s2b8Pf3x4ABA/Dxxx9DImEOK0/CfF2wekhrjF99HL/vv4pvN5/BnosJ+K5vQ/i4lK+lzImo5Jotalboa5EBkfi+/feW521/b4ssY8G3DYjwjcC8zvMszzsv74wkXVK+dsdeOZZvm7Xs3bsXTZs2xebNm1GnTh0oFArLa1u2bIGrqys2bdpkuYmvXq/HpEmTUKNGDcTHx2PkyJEYMGAA1q9fn2e/o0ePxvTp0+Hn54cPP/wQzzzzDM6cOQO5XA4AyMzMxOeff44FCxZAoVDgnXfeQd++fbFjxw4AwMaNG/Hiiy8iOjoakZGROH/+PN566y0AwPjx42E2m9GzZ094eXlh9+7dSE1NxYgRI8rgjN1j12Hmyy+/xJw5c7BgwQLUqVMH+/fvx6uvvgqtVovhw4fbujwqZWqFFF893wDNQzzx8arj2Hk+AVHTt2N634ZoFepl6/KIiKzK29sbAODp6Qk/P788rzk5OeGnn37KE3Bee+01y9chISGIjo5G06ZNkZ6eDmdnZ8tr48ePR4cOHQAACxYsQGBgIFauXInevXsDAAwGA2bOnIlmzZpZ2tSqVcsSrj7//HOMGTMGr7zyiuVYkyZNwvvvv4/x48dj8+bNiI2NxaVLlxAYGAgA+OKLL/D000+X9ikqlF2HmV27dqF79+7o0qULAKBKlSpYvHgx9u/fX+h7dDoddLp7XY2pqalWr5NKV89Ggagf6IYhiw7i1M00vPjzHgxtF4rh7atDKuG9nYgqsj399hT6mlQizfN8a++thbaVCHl79zc8t+Gx6rK2evXq5QkyAHDo0CFMmDABhw8fRmJiIsxmMwDg8uXLqF27tqVdixYtLF97eHigRo0aiI2NtWyTyWSIiIiwPK9Zsybc3NwQGxuLpk2b4sCBA9i3bx8+//xzSxuTyYTs7GxkZmYiNjYWlStXtgSZB49ZFux6rKZ169bYsmULzpw5AwA4cuQItm/fjqioqELfM3nyZGi1WssjKCiorMqlUhTq44xVg1vhhaZBEEUg+p9z6PfjbtxKzX70m4mo3NLINYU+lFJlkduqZKoitbUXTk5OeZ5nZGSgY8eOcHZ2xm+//YZ9+/Zh5cqVAIo2QfjBm/4WdBPg3G1msxkTJ07E4cOHLY9jx47h7NmzUKlUlmGvR+3Pmuw6zHzwwQd44YUXULNmTcjlcoSHh2PEiBF44YUXCn3P2LFjkZKSYnk8OImJHIdKLsXknvUxvW9DOCmk2HMxEVHTY7DtzG1bl0ZEVOpye15MJtMj2546dQp37tzBlClTEBkZiZo1a+aZ/Hu/3bt3W75OSkrCmTNnULNmTcs2o9GYZ8Tj9OnTSE5OtrRp1KgRTp8+jdDQ0HwPiUSC2rVr4/Lly7h+/bplH7t27SreN/+Y7HqYaenSpfjtt9+waNEi1KlTB4cPH8aIESNQqVIly9jdg5RKJZRKZYGvkWPq3jAA9QK0GLzoEGJvpOKVX/ZiUNtqeLdDdcikdp3HiYiKzMfHB2q1Ghs2bEBgYCBUKlWhV0BVrlwZCoUCM2bMwMCBA3H8+HFMmjSpwLaffvopPD094evri48++gheXl7o0aOH5XW5XI6hQ4ciOjoacrkcQ4YMQfPmzdG0aVMAwLhx49C1a1cEBQWhV69ekEgkOHr0KI4dO4bPPvsM7du3R40aNfDyyy9j6tSpSE1NxUcffVTq5+dh7PqTYPTo0RgzZgz69u2LevXq4aWXXsLIkSMxefJkW5dGZSzE2xkr32mJF5tXBgDM3noeL/y4G9eTC75SgYjI0chkMkRHR2Pu3LmoVKkSunfvXmhbb29vzJ8/H3/88Qdq166NKVOm4Jtvvimw7ZQpUzB8+HA0btwYN27cwOrVq/PMv9FoNPjggw/Qr18/tGjRAmq1GkuWLLG83qlTJ6xduxabNm1CkyZN0Lx5c0ybNg3BwcEAAIlEgpUrV0Kn06Fp06Z444038syvKQuCWNBgl53w9PTEZ599hkGDBlm2TZ48GfPmzbPMo3mU1NRUaLVapKSkwNXV1VqlUhlae/Q6xi4/hjSdEe4aOab1boh2NX1sXRYRlaLs7GxcvHgRVatWhUrF5RlKYuvWrWjXrh2SkpLg5uZWYJv58+djxIgRSE5OLtPacj3s77k4n9923TPTrVs3fP7551i3bh0uXbqElStXYtq0aXj22WdtXRrZUNf6lbB2WGvUC9AiKdOAV+fvw+T1sTCYzLYujYiIbMCuw8yMGTPw/PPP45133kGtWrXw3nvv4e233y50XJAqjmBPJywb1AIDWlYBAMz97wJ6z92Fq0nFW7GTiKisfPHFF3B2di7wUZZrspRHdj3MVBo4zFT+bTh+A6OXHUVathFatRxfP18fHev4PfqNRGS3yuMwU2JiIhITEwt8Ta1WIyAgoIwrsr3SGmay66uZiIqic11/1KmkxZDFh3DkSjLe+t8BvNaqKsY8XRMKmV13PhJRBeLh4QEPDw9bl1Eu8X96KheCPDT44+0WeL11zo3aftlxEb3m7MSVRA47ETmycj54UOHlrlr8uNgzQ+WGQibBJ11ro3mIJ9774wiOXE1BVHQMvnquPp6u52/r8oioGORyOQRBwO3bt+Ht7V3mK8qSdYmiCL1ej9u3b0MikeS7VUNxcc4MlUtXkzIxbPEhHLycDAB4pUUwPuxSC0qZ9OFvJCK7kZ6ejqtXr7J3phzTaDTw9/cvMMwU5/ObYYbKLYPJjG/+Po252y4AAOoGuGLmC41QxcvpEe8kInthMplgMBhsXQZZgVQqhUwmK7TXjWHmPgwz9O+peIz6/TCSMg1wVsow5bl66Fq/kq3LIiKihyg3i+YRlYZ2NX2wfngkmlRxR7rOiCGLDuGjlceQbXj0zdyIiMj+McxQheCvVWPxm80xuF01CAKwcM9l9Ji1A+dvp9u6NCIiekwMM1RhyKQSjO5UEwtebQpPJwVO3UxDtxnbserQNVuXRkREj4FhhiqcNtW9sX54JJqHeCBTb8KIpYfxwbKjyNJz2ImIyBExzFCF5OuqwsI3mmPYU2EQBGDp/ivoMWsHzsWn2bo0IiIqJoYZqrCkEgGjOlTHb683g5ezEqdvpaHbjB1YduCqrUsjIqJiYJihCq9VqBfWD2+NVqGeyDKY8N4fR/Du70eQqTfaujQiIioChhkiAD4uKvz6WjO826E6JAKw/OBVPDNzB07f5LATEZG9Y5ghuksqETD0qTAserM5fF2VOBefjmdmbsfSfZe5nDoRkR1jmCF6QPMQT6wfFok21b2hM5rxwfJjGLn0MNJ1HHYiIrJHDDNEBfB0VmL+gCZ4v3MNSCUCVh2+jmdmbMfJ66m2Lo2IiB7AMENUCIlEwDttQ7Hkrebw16pw4U4Geny/A7/tjuOwExGRHWGYIXqEJlU8sH5YJJ6s6QO90YyPVx3HkMWHkJbNO/kSEdkDhhmiInB3UuCnlyPwUVQtyCQC1h29ga4ztuP4tRRbl0ZEVOExzBAVkUQi4M02Ifh9YAsEuKkRl5CJnt/vxIKdlzjsRERkQwwzRMXUqLI71g+LRIfavtCbzBi/+gQG/XYQKVkcdiIisgWGGaIS0Grk+OGlxhjXtTbkUgEbTtxEl+gYHL6SbOvSiIgqHIYZohISBAGvta6KZQNbIshDjatJWeg1Zyd+irnAYSciojLEMEP0mBoEuWHt0Eg8XdcPBpOIz9bF4s1fDyA5U2/r0oiIKgSGGaJSoFXL8X3/Rvi0ex0opBJsjr2FLtHbcSAuydalERGVewwzRKVEEAS83KIKVrzTElU8NbiWnIU+c3dh7rbzMJs57EREZC0MM0SlrG6AFmuGtka3BpVgNIuY/NcpvL5gHxIzOOxERGQNDDNEVuCikiO6b0N88Ww9KGQS/Hv6NqKmx2DvxURbl0ZEVO4wzBBZiSAI6NesMv4c3AohXk64mZqNF37cjVn/nuOwExFRKWKYIbKyWv6uWDO0NZ4ND4DJLOLrjafxyry9uJOus3VpRETlAsMMURlwUsowrXcDfPVcfajkEsScvYOo6THYdT7B1qURETk8hhmiMiIIAno3CcLqIa0R6uOM+DQd+v+0G99tPgMTh52IiEqMYYaojFX3dcHqIa3Qq3EgzCLw3eazeOnnPYhPy7Z1aUREDolhhsgGNAoZvu7VAFN7NYBaLsXO8wmImh6D7Wfv2Lo0IiKHwzBDZEPPNQ7EmqGtUdPPBXfS9Xjplz2Y+vdpGE1mW5dGROQwGGaIbCzUxxmrBrfCC02DIIrAjH/Oof9Pe3ArlcNORERFwTBDZAdUcikm96yP6X0bwkkhxZ6LiXh6egy2no63dWlERHaPYYbIjnRvGIC1wyJR298ViRl6DJi3D19uOMVhJyKih2CYIbIzVb2csOKdlnipeTAAYPbW8+j7w25cT86ycWVERPaJYYbIDqnkUkzqURez+jWCi1KG/XFJiIqOwZbYW7YujYjI7jDMENmxLvX9sXZYa9QL0CI504DXF+zH5+tOQm/ksBMRUS6GGSI7F+zphGWDWmBAyyoAgB9jLqL33F24kphp28KIiOwEwwyRA1DKpJjwTB3MebExXFUyHL6SjC7RMdh44qatSyMisjmGGSIH0rmuH9YNi0TDIDekZhvx9v8OYMLqE9AZTbYujYjIZhhmiBxMkIcGv7/dAm9GVgUAzN95Cc/P3oW4hAwbV0ZEZBsMM0QOSCGT4KMutfHTyxFw08hx7FoKukZvx7qjN2xdGhFRmRNEURRL8kaz2Yxz584hPj4eZnPeKyvatGlTKsWVhtTUVGi1WqSkpMDV1dXW5RCVuuvJWRi6+BAOxCUBAF5sXhkfd6kNlVxq48qIiEquOJ/fJQozu3fvRr9+/RAXF4cH3y4IAkwm+xm/Z5ihisBgMmPapjOYvfU8AKC2vytm9W+Eql5ONq6MiKhkivP5XaJhpoEDByIiIgLHjx9HYmIikpKSLI/ExMQSFU1EJSeXSvBB55qY/2oTeDgpcPJGKrpGx+DPw9dsXRoRkdWVqGfGyckJR44cQWhoqDVqKlXsmaGK5mZKNoYtOYS9F3N+sejbJAgTnqnDYScicihW75lp1qwZzp07V6LiiMi6/LQqLHqjGYY+GQpBAJbsu4LuM3fgXHyarUsjIrIKWUneNHToULz77ru4efMm6tWrB7lcnuf1+vXrl0pxRFQyMqkE73asgWZVPTFi6WGcvpWGbjN24LMedfFc40Bbl0dEVKpKNMwkkeTv0BEEAaIocgIwkZ2JT8vGiCWHsfN8AgDg+caB+LR7HWgUJfpdhoioTFj9aqa4uLiHvh4cHFzcXVoNwwwRYDKLmPXvOXy3+QzMIhDm44xZ/Ruhuq+LrUsjIiqQ1cOMI2GYIbpn1/kEDF9yCPFpOqjkEnz6TF30igiEIAi2Lo2IKA+rTwAGgPPnz2Po0KFo3749OnTogGHDhuH8+fMl3V2hrl27hhdffBGenp7QaDRo2LAhDhw4UOrHIaoIWlTzxPrhkYgM80K2wYz3lx/FqN+PIENntHVpREQlVqIws3HjRtSuXRt79+5F/fr1UbduXezZswd16tTBpk2bSq24pKQktGrVCnK5HH/99RdOnjyJqVOnws3NrdSOQVTReDkrseDVphjdqQakEgErD11DtxnbEXsj1dalERGVSImGmcLDw9GpUydMmTIlz/YxY8bg77//xsGDB0uluDFjxmDHjh2IiYkp8nt0Oh10Op3leWpqKoKCgjjMRFSAfZcSMWzxIdxIyYZCJsH4brXRr2llDjsRkc1ZfZgpNjYWr7/+er7tr732Gk6ePFmSXRZo9erViIiIQK9eveDj44Pw8HD8+OOPD33P5MmTodVqLY+goKBSq4eovGlSxQPrhkXiyZo+0BvN+GjlcQxdfAhp2QZbl0ZEVGQlCjPe3t44fPhwvu2HDx+Gj4/P49ZkceHCBcyePRthYWHYuHEjBg4ciGHDhuHXX38t9D1jx45FSkqK5XHlypVSq4eoPPJwUuCnlyPwYVRNyCQC1h69ga4ztuP4tRRbl0ZEVCQlWmjizTffxFtvvYULFy6gZcuWEAQB27dvx5dffol333231Iozm82IiIjAF198ASBneOvEiROYPXs2Xn755QLfo1QqoVQqS60GoopAIhHwVptqiKjigaGLDiEuIRM9v9+Jj7rUwsstgjnsRER2rURh5pNPPoGLiwumTp2KsWPHAgAqVaqECRMmYNiwYaVWnL+/P2rXrp1nW61atbB8+fJSOwYR3dOosjvWDWuN0cuOYtPJWxi/+gR2nU/Al8/Xh1Ytf/QOiIhsoETDTIIgYOTIkbh69aplOOfq1asYPnx4qf4G16pVK5w+fTrPtjNnztjVonxE5Y2bRoEfXmqMcV1rQy4VsOHETXSJjsHhK8m2Lo2IqEAlXmcml4uLC1xcrLOK6MiRI7F792588cUXOHfuHBYtWoQffvgBgwcPtsrxiCiHIAh4rXVVLBvYEkEealxNykKvOTvxU8wFlPN1NonIARX50uxGjRphy5YtcHd3R3h4+EN7YErr0mwAWLt2LcaOHYuzZ8+iatWqGDVqFN58880iv58rABM9npQsA8YsP4q/jt8EALSv5YNvejWAm0Zh48qIqDwrzud3kefMdO/e3TKxtnv37mU2IbBr167o2rVrmRyLiPLTquX4vn8j/LY7DpPWxmJzbDyipsdgRr9wNA72sHV5RES8NxMRFd3xaykYsuggLiVkQioRMLpTDbwVGQKJhFc7EVHpsvqieSEhIUhISMi3PTk5GSEhISXZJRE5gLoBWqwZ2hrdGlSCySxiyl+n8NqCfUhI1z36zUREVlKiMHPp0iWYTKZ823U6Ha5evfrYRRGR/XJRyRHdtyEm96wHpUyCradvIyo6BnsvJtq6NCKqoIq1zszq1astX2/cuBFardby3GQyYcuWLahatWrpVUdEdkkQBLzQtDIaBrlh8KKDuHA7A31/2IVRHarjnbahHHYiojJVrDkzEklOR44gCPkuz5TL5ahSpQqmTp1qVxN2OWeGyLoydEZ8suo4Vhy6BgCIDPPCtN4N4e3ClbiJqOSK8/ldognAVatWxb59++Dl5VXiIssKwwyR9YmiiD8OXMW4P48j22CGt4sS0/s0RMtQ+/8/gojsk9UnAF+8eNEhggwRlQ1BENA7IghrhrRGmI8zbqfp0P/nPfh20xmYzOX6gkkisgMlvjQ7IyMD27Ztw+XLl6HX6/O8Vpr3Z3pc7JkhKltZehPGrz6O3/fnXAzQIsQT0/s2hI+rysaVEZEjsfow06FDhxAVFYXMzExkZGTAw8MDd+7cgUajgY+PDy5cuFDi4ksbwwyRbaw8dBUfrTyOTL0JXs4KfNunISLDvG1dFhE5CKsPM40cORLdunVDYmIi1Go1du/ejbi4ODRu3BjffPNNiYomovLl2fBArB7SGjX9XHAnXY+Xf9mLbzaehtFktnVpRFTOlCjMHD58GO+++y6kUimkUil0Oh2CgoLw1Vdf4cMPPyztGonIQYX6OGPV4Fbo16wyRBGY+e859PtxD26mZNu6NCIqR0oUZuRyueXeTL6+vrh8+TIAQKvVWr4mIgIAlVyKL56th+gXwuGslGHvpURERcfg39Pxti6NiMqJEoWZ8PBw7N+/HwDQrl07jBs3DgsXLsSIESNQr169Ui2QiMqHZxpUwtqhrVE3wBWJGXq8Om8fJv8VCwOHnYjoMZUozHzxxRfw9/cHAEyaNAmenp4YNGgQ4uPj8cMPP5RqgURUflTxcsLyQS0xoGUVAMDcbRfQZ+4uXEvOsm1hROTQin01kyiKuHz5Mnx8fKBWq61VV6nh1UxE9mnD8RsYvewo0rKN0Krl+KZXA3So7WvrsojITlj1aiZRFBEWFsYbShLRY+lc1x/rh0WiQaAWKVkGvPnrfkxaexJ6I4ediKh4ih1mJBIJwsLCkJCQYI16iKgCCfLQ4I+BLfF665wb1P68/SJ6zdmJK4mZNq6MiBxJiebMfPXVVxg9ejSOHz9e2vUQUQWjkEnwSdfa+PHlCGjVchy5moKo6BhsOH7D1qURkYMo0QrA7u7uyMzMhNFohEKhyDd3JjExsdQKfFycM0PkOK4lZ2HoooM4eDkZAPBKi2CMjaoFlVxq28KIqMwV5/NbVpIDfPvtt5Z1ZoiISkuAmxpL326Bb/4+jbnbLmDBrjjsj0vCrH6NUMXLydblEZGdKvGNJh0Fe2aIHNO/p+Ix6vfDSMo0wFkpw+Se9dCtQSVbl0VEZcTq92aSSqWIj8+/emdCQgKkUnYHE9Hja1fTB+uHR6JpFQ+k64wYuvgQPlx5DNkGk61LIyI7U6IwU1hnjk6ng0KheKyCiIhy+WvVWPRmMwxpFwpBABbtuYwes3bg/O10W5dGRHakWHNmoqOjAQCCIOCnn36Cs7Oz5TWTyYT//vsPNWvWLN0KiahCk0kleK9TDTQL8cDIpYdx6mYaus3Yjs+frYtnwwNtXR4R2YFizZmpWjVnLYi4uDgEBgbmGVJSKBSoUqUKPv30UzRr1qz0Ky0hzpkhKj/iU7MxfMlh7LqQs85V74hATHymLtQKDm8TlTfF+fwu0QTgdu3aYcWKFXB3dy9xkWWFYYaofDGZRcz45yymbzkLUQTCfJwxq38jVPd1sXVpRFSKrB5mHAnDDFH5tPP8HQxfchi303RQySX49Jm66BURyGUjiMoJq4cZk8mE+fPnY8uWLYiPj4fZnPdeKv/8809xd2k1DDNE5deddB1GLj2MmLN3AADPhgfgsx514aQs0RJaRGRHrL5o3vDhwzF//nx06dIFdevW5W9CRGQTXs5KLHi1KWZvO49pm85g5aFrOHI1GbP6NUItf/7yQlRRlKhnxsvLC7/++iuioqKsUVOpYs8MUcWw71Iihi46hJup2VDIJJjQrQ5eaBrEX7aIHJTVF81TKBQIDQ0tUXFERNbQpIoH1g+PRLsa3tAbzfhw5TEMXXwIadkGW5dGRFZWojDz7rvvYvr06YUunkdEZAseTgr8/EoTfBhVEzKJgLVHb6DbjO04fi3F1qURkRWVaJjp2Wefxb///gsPDw/UqVMHcrk8z+srVqwotQIfF4eZiCqmg5eTMHTRIVxLzoJCKsHHXWvhpebBHHYichBWnwDs5uaGZ599tkTFERGVhUaV3bFuWGuMXnYUm07ewrg/T2DX+QRMea4+tGr5o3dARA6D68wQUbkmiiLm7biEyX/FwmASEeShxswXGqFBkJutSyOih7D6BGAAMBqN2Lx5M+bOnYu0tDQAwPXr15GezhvAEZH9EAQBr7WuiuWDWiLIQ40riVl4fs5O/Lz9Iuf9EZUTJeqZiYuLQ+fOnXH58mXodDqcOXMGISEhGDFiBLKzszFnzhxr1Foi7Jkholyp2QaMWX4U64/dBAC0r+WLb3rVh5tGYePKiOhBVu+ZGT58OCIiIpCUlAS1Wm3Z/uyzz2LLli0l2SURkdW5quSY1a8RJnWvA4VUgs2xtxA1PQYH4hJtXRoRPYYShZnt27fj448/hkKR97eZ4OBgXLt2rVQKIyKyBkEQ8FKLKljxTktU9XLC9ZRs9J67G3O2nYfZzGEnIkdUojBjNpthMpnybb969SpcXHjnWiKyf3UDtFgztDWeaVAJJrOIKX+dwmsL9iEhXWfr0oiomEoUZjp06IDvvvvO8lwQBKSnp2P8+PEOcYsDIiIAcFbKML1vQ0zpWQ9KmQRbT99GVHQM9l7ksBORIynRBODr16+jXbt2kEqlOHv2LCIiInD27Fl4eXnhv//+g4+PjzVqLRFOACaiojh1MxWDFx7E+dsZkAjAqA7V8U7bUEgkXGSPyBaK8/ld4nVmsrKysGTJEhw4cABmsxmNGjVC//7980wItgcMM0RUVJl6Iz5ZdQLLD14FAESGeWFa74bwdlHauDKiiqdMwoyjYJghouJaduAqPll1HFkGE7xdlJjepyFahnrZuiyiCsXql2ZPnjwZv/zyS77tv/zyC7788suS7JKIyG483zgQq4e0QnVfZ9xO06H/z3swbdMZmHi1E5FdKlGYmTt3LmrWrJlve506dexqwTwiopIK83XBn4Nbo09EEEQRiN5yFv1/2o1bqdm2Lo2IHlCiMHPz5k34+/vn2+7t7Y0bN248dlFERPZArZDiy+frY3rfhnBSSLH7QiKipsfgvzO3bV0aEd2nRGEmKCgIO3bsyLd9x44dqFSp0mMXRURkT7o3DMCaoa1Ry98VCRl6vPzLXny14RSMJrOtSyMilDDMvPHGGxgxYgTmzZuHuLg4xMXF4ZdffsHIkSPx5ptvlnaNREQ2F+LtjJXvtMRLzYMBAN9vPY8XftyNGylZNq6MiEp0NZMoihgzZgyio6Oh1+sBACqVCh988AHGjRtX6kU+Dl7NRESlbd3RGxiz/CjSdEa4a+SY2rsBnqzpa+uyiMqVMrs0Oz09HbGxsVCr1QgLC4NSaX9rMTDMEJE1xCVkYMiiQzh2LQUA8FabEIzuVANyaYk6vInoAVxn5j4MM0RkLTqjCZPXn8L8nZcAAA2D3DDjhXAEeWhsWxhROWD1MJORkYEpU6Zgy5YtiI+Ph9mcdxLchQsXirtLq2GYISJr23jiJkb/cQSp2Ua4qmT4ulcDdKrjZ+uyiBxacT6/ZSU5wBtvvIFt27bhpZdegr+/PwSB9y4hooqrUx0/1PZ3xdDFh3D4SjLe/t8BDGhZBWOjakIpk9q6PKJyr0Q9M25ubli3bh1atWpljZpKFXtmiKisGExmfL3xNH74L6d3ul6AFjP7hSPY08nGlRE5HqvfzsDd3R0eHh4lKo6IqLySSyX4MKoWfhkQATeNHMeupaBr9HasO8rFRImsqURhZtKkSRg3bhwyMzNLu56Hmjx5MgRBwIgRI8r0uERExfFkTV+sHxaJiGB3pOmMGLzoID5edQzZBpOtSyMql0o0zBQeHo7z589DFEVUqVIFcrk8z+sHDx4stQJz7du3D71794arqyvatWuH7777rkjv4zATEdmK0WTGtE1n8P3W8wCA2v6umNkvHCHezjaujMj+WX0CcI8ePUrythJLT09H//798eOPP+Kzzz4r02MTEZWUTCrB+51rolmIJ0YtPYyTN1LRbcZ2fNGzHro3DLB1eUTlhkOsM/PKK6/Aw8MD3377Ldq2bYuGDRsW2jOj0+mg0+ksz1NTUxEUFMSeGSKyqVup2Ri+5BB2X0gEAPSJCMKEZ+pAreDVTkQFsXrPTK4DBw4gNjYWgiCgdu3aCA8Pf5zdFWjJkiU4ePAg9u3bV6T2kydPxsSJE0u9DiKix+HrqsLCN5ojestZRP9zFkv3X8GhK0mY1a8RwnxdbF0ekUMrUc9MfHw8+vbti61bt8LNzQ2iKCIlJQXt2rXDkiVL4O3tXSrFXblyBREREfj777/RoEEDAGDPDBE5vJ3n7mD40sO4naaDWi7Fp93roFdEkK3LIrIrVr80e+jQoUhNTcWJEyeQmJiIpKQkHD9+HKmpqRg2bFiJii7IgQMHEB8fj8aNG0Mmk0Emk2Hbtm2Ijo6GTCaDyZT/ygClUglXV9c8DyIie9Iy1Avrh0WidagXsgwmjF52FKN+P4wMndHWpRE5pBL1zGi1WmzevBlNmjTJs33v3r3o2LEjkpOTS6W4tLQ0xMXF5dn26quvombNmvjggw9Qt27dR+6DVzMRkb0ymUXM3noO0zadgVkEqnk7YVb/Rqjpx/+riKw+Z8ZsNue7HBsA5HJ5vvs0PQ4XF5d8gcXJyQmenp5FCjJERPZMKhEw5MkwNKnigWFLDuH87Qx0n7kD47vVwQtNg3irGKIiKtEw05NPPonhw4fj+vXrlm3Xrl3DyJEj8dRTT5VacUREFUGzEE+sHxaJtjW8oTOa8eHKYxi25DDSsg22Lo3IIZRomOnKlSvo3r07jh8/jqCgnN8eLl++jHr16uHPP/9EYGCgNWotEQ4zEZGjMJtF/BhzAV9tPA2TWUQVTw1m9muEugFaW5dGVOaK8/n9WOvMbNq0CadOnYIoiqhduzbat29f0l1ZDcMMETmaA3FJGLb4EK4lZ0EhleCTrrXwYvNgDjtRhWK1MPPPP/9gyJAh2L17d74dp6SkoGXLlpgzZw4iIyNLVrkVMMwQkSNKztTjvT+OYnPsLQBAVD0/THmuPlxV+ecrEpVHVrs0+7vvvsObb75Z4E61Wi3efvttTJs2rXjVEhFRPm4aBX58uTE+6VobcqmA9cduokt0DI5cSbZ1aUR2p1hh5siRI+jcuXOhr3fs2BEHDhx47KKIiAgQBAGvt66KZQNbIshDjSuJWXh+zk78vP0iHOBONERlplhh5tatWwVekp1LJpPh9u3bj10UERHd0yDIDWuHRuLpun4wmERMWnsSb/56AMmZeluXRmQXihVmAgICcOzYsUJfP3r0KPz9/R+7KCIiykurluP7/o3wafc6UEgl2Bx7C12it+NAXJKtSyOyuWKFmaioKIwbNw7Z2dn5XsvKysL48ePRtWvXUiuOiIjuEQQBL7eoghXvtEQVTw2uJWeh99xdmLPtPMxmDjtRxVWsq5lu3bqFRo0aQSqVYsiQIahRowYEQUBsbCxmzZoFk8mEgwcPwtfX15o1FwuvZiKi8igt24APVx7HmiM5i5e2reGNqb0awNNZaePKiEqHVdeZiYuLw6BBg7Bx40bLBDRBENCpUyd8//33qFKlSokLtwaGGSIqr0RRxJJ9VzBh9QnojGb4uioR3TcczUI8bV0a0WMrk0XzkpKScO7cOYiiiLCwMLi7u5eoWGtjmCGi8i72RioGLzqIC7czIBGAUR2q4522oZBIuMgeOa4yWwHYETDMEFFFkKEz4pNVx7Hi0DUAQGSYF6b1bghvFw47kWOy2qJ5RERkn5yUMkzr0xBfP18farkUMWfvICo6BjvP3bF1aURWxzBDRFSO9IoIwuohrVDd1xm303To//MeTNt0BiZe7UTlGMMMEVE5E+brgj8Ht0bfJkEQRSB6y1n0/2k3bqXmX1aDqDxgmCEiKofUCimmPFcf0/s2hJNCit0XEhE1PQbbznCVdip/GGaIiMqx7g0DsGZoa9Tyd0VChh6v/LIXX244BaPJbOvSiEoNwwwRUTkX4u2Mle+0xEvNgwEAs7eeR98fduN6cpaNKyMqHQwzREQVgEouxaQedTGrXyO4KGXYH5eEqOgY/HPqlq1LI3psDDNERBVIl/r+WDusNeoFaJGcacBr8/fji/WxMHDYiRwYwwwRUQUT7OmEZYNa4NVWVQAAP/x3Ab3m7MKVxEzbFkZUQgwzREQVkFImxfhudTD3pcZwVclw+EoyukTHYMPxm7YujajYGGaIiCqwTnX8sH54JMIruyE124iBvx24e+NKk61LIyoyhhkiogou0F2D399ugbfahAAA5u+8hOdn70JcQoaNKyMqGoYZIiKCXCrBh1G18MuACLhr5Dh2LQVdordj7dHrti6N6JEYZoiIyOLJmr5YPzwSTaq4I11nxJBFh/DRymPINnDYiewXwwwREeXhr1Vj8ZvN8U7bagCAhXsu49nvd+LC7XQbV0ZUMIYZIiLKRyaV4P3ONfHra03h6aRA7I1UdJ2xHasOXbN1aUT5MMwQEVGh2lT3xvrhkWge4oFMvQkjlh7GB8uOIkvPYSeyHwwzRET0UL6uKix8ozmGPxUGQQCW7r+C7rO24+ytNFuXRgSAYYaIiIpAKhEwskN1LHy9GbxdlDhzKx3dZm7H7/uvQBRFW5dHFRzDDBERFVnLUC+sHxaJyDAvZBvMeH/ZUbz7+xFk6Iy2Lo0qMIYZIiIqFm8XJRa82hSjO9WARABWHLqGbjO3I/ZGqq1LowqKYYaIiIpNIhEwuF0olrzVAn6uKly4nYHus3Zg4Z44DjtRmWOYISKiEmta1QPrh0eiXQ1v6I1mfLTyOIYuPoS0bIOtS6MKhGGGiIgei4eTAj+/0gRjn64JmUTA2qM30HXGdhy/lmLr0qiCYJghIqLHJpEIePuJalj6dgsEuKkRl5CJnt/vxIKdlzjsRFbHMENERKWmcbA71g1rjQ61faE3mTF+9QkM+u0gUrI47ETWwzBDRESlyk2jwA8vNca4rrUhlwrYcOImukTH4NDlJFuXRuUUwwwREZU6QRDwWuuqWD6oJSp7aHA1KQu95uzCTzEXOOxEpY5hhoiIrKZ+oBvWDmuNqHp+MJpFfLYuFm8s2I+kDL2tS6NyhGGGiIisylUlx6x+jTCpR10oZBJsORWPLtEx2H8p0dalUTnBMENERFYnCAJeah6Mle+0RFUvJ1xPyUafH3bj+63nYDZz2IkeD8MMERGVmTqVtFgztDW6N6wEk1nEVxtO49X5+5CQrrN1aeTAGGaIiKhMOStl+K5PQ3z5XD0oZRJsO3MbUdEx2H0hwdalkYNimCEiojInCAL6NKmM1UNaI9THGbdSdej3425EbzkLE4edqJgYZoiIyGZq+Llg9ZBWeL5xIMwiMG3TGbz8yx7Ep2XbujRyIAwzRERkUxqFDN/0aoCpvRpALZdix7kERE3fju1n79i6NHIQDDNERGQXnmsciDVDW6OmnwvupOvw0i97MPXv0zCazLYujewcwwwREdmNUB9nrBrcCi80rQxRBGb8cw79ftqDmykcdqLCMcwQEZFdUcmlmNyzHqJfCIezUoa9FxMRFR2Df0/H27o0slMMM0REZJeeaVAJa4a2Rp1KrkjM0OPVefsw+a9YGDjsRA9gmCEiIrtV1csJywe1xMstggEAc7ddQJ+5u3AtOcvGlZE9YZghIiK7ppJL8Wn3upjdvxFcVDIcvJyMqOkx2HTylq1LIzvBMENERA7h6Xr+WD8sEg0CtUjJMuDNX/dj0tqT0Bs57FTRMcwQEZHDCPLQ4I+BLfFG66oAgJ+3X0SvOTtxJTHTxpWRLTHMEBGRQ1HIJPi4a2389HIEtGo5jlxNQVR0DP46dsPWpZGN2HWYmTx5Mpo0aQIXFxf4+PigR48eOH36tK3LIiIiO9C+ti/WD49E42B3pGUbMWjhQYz78ziyDSZbl0ZlzK7DzLZt2zB48GDs3r0bmzZtgtFoRMeOHZGRkWHr0oiIyA4EuKmx5K3mGNS2GgDg111xeG72Tly8w8+JikQQRdFhbk96+/Zt+Pj4YNu2bWjTpk2R3pOamgqtVouUlBS4urpauUIiIrKVrafjMer3I0jM0MNJIcUXPeuhe8MAW5dV7mQZs5CiS4GnyhNyqdxqxynO57fMalVYQUpKCgDAw8Oj0DY6nQ46nc7yPDU11ep1ERGR7bWt4YO/hkdi2OJD2HMxEcOXHMbuCwkY360OVHKprcuzO9nGbKToUpCsS0aqPhUpuhS0rNQSGrkGALDh0gZsuLjhXhtdKlL0KdCZcj5jl3VbhhoeNWz5LVg4TJgRRRGjRo1C69atUbdu3ULbTZ48GRMnTizDyoiIyF74uqqw8I1miP7nHGb8cxaL917BwbhkzOofjlAfF1uXZxWZhkwkZCdYAkmqPjUneNz9+vW6r8NN5QYAmHd8Hn6L/Q0punuh5H7Ln1mO6u7VAQCXUy9jy+UtBR5TJsiQYbCfoTyHCTNDhgzB0aNHsX379oe2Gzt2LEaNGmV5npqaiqCgIGuXR0REdkImlWBUh+poVtUDw5ccxulbaeg2Ywcm9aiL5xsH2rq8fERRRLYpG0qpEhIhZyprbEIsTiWeyh9Q9ClI1aUi+sloeGu8AQDfH/4eC04uKHT/XUO6WsKMwWxAfOa9e1zJBBlcla7QKrXQKrR53tcqoBW0Cm3Oa/c93JRu0Mg0EAShlM9EyTlEmBk6dChWr16N//77D4GBD/9BVCqVUCqVZVQZERHZq1ahXlg/vDVGLj2MHecS8N4fR7Dz/B1M6l4XTsrS//gzmo1I06dZwkeKLgXN/Ztb5pVsuLgBMddikKpLtbyeG070Zj02Pb8Jfk5+AIB1F9Y9NKAkZidawoyr0hVqmRouChdolVq4KlwtIcRV4QoXxb0eqWeqPYPWAa2LFErqeNZBHc86pXV6rMquJwCLooihQ4di5cqV2Lp1K8LCwoq9D04AJiKq2ExmEbP+PYfvNp+BWQSqeTthVv9GqOlX8GdCpiEzzzyS+8NJqj4VAxsMhFqmBgDMPjwbq86tQqo+FemG9Hz7uj+gfLPvm4cGlPvnoPx57k9suLThXjh54M/Gvo0tIcUsmi09OuVJuZkAPHjwYCxatAh//vknXFxccPPmTQCAVquFWq22cXVERGSPDGYD0vRpcFe6QxAESCUC2tTLQJYqHksPnMEVQxp6/v4b6gYq4O5sQqo+FT93+tky8XXK3ilYeW5lofvvW6Mv1M45n0EZhgxcz7ie53VnubMleBhMBsv2NoFt4K5yzxNM7v9aI9NY2nYP7Y7uod2L9P2WxyBTXHYdZmbPng0AaNu2bZ7t8+bNw4ABA8q+ICIisjpRFJFhyECaPi1nrog+FWn6NKTp0/BMtWcswyILYxdi9/Xdlja57bKMOXfU3t1vN5zkTgCAledWYsW5FYAWyJ2IEJsGIC3n61R9qiXMaJVayCVyyzyS3MDhqnSFq8I1z+XIfWr0QccqHS2BxEXhApmk4I/Wpv5N0dS/aemfMLLvMGPHI2BERFREF5Iv4HrG9ZxwoktFmiHNMm8k3ZCOr9t8bQkoH23/CGsvrIVZLPjmke2D21sCypmkM9h6dWuhx03Tp1na1vaojaSgpJw5JHIXnL5hwo4zGTAZVfBx0uJqAuCX0xQjGo3AqMajijTBNcg1CEHgRSa2ZtdhhoiIbMNgMljCRm5vRxO/JpbXV51bhZMJJy29Iam6VEtPSoYhA7v77baEgRmHZmDz5c2FHmtiy4mW0CEVpJYgI5PIcnpE7j5clC45wzZ3O0a6hnRFPa96lkmurkpXuMpzvnZWOOfpIelTsw/61OyT57gH4hIxdNEhXL+RjX5zD+GTrrXwYvNgSCVck8bR2PUE4NLACcBEVJHFpcbhTtYdyzBNbjhJ16fDYDbgg6YfWNp+vP1j7Li+A2n6tHxrkEgFKQ69dMgSUEb+O/KhAeX+IZ5vD3yLndd33gsdD/z5bNizlgm1d7LuwCya4aJwgUqqsvrlv0kZeoxedgSbY3MuV366rh+mPFcfWrX1VraloinO5zfDDBGRndGZdJbwkaZPg8FsQGPfxpbXfz/9O84ln0O6PieYpBnSLAFFIkjw13N/Wdq+sfEN7Lm5p8DjFCWgOMmd4Cx3hovCBYu7LIZKpgIArL2wFheSL1jmieQGk9yv/Z38HaaHQxRF/Lz9Ir7ccAoGk4ggDzVmvtAIDYLcbF1ahVZurmYiInJkF5IvICE7IU+PSO5DLpFjROMRlrbD/xmOw7cPW8LL/dyUbojpG2N5vvHSRuy9ubfAY0oFKURRtASUSs6VEOwabAkkuY/c5ybRBJmQ81EwrNEwvN3gbcvrznLnQgNJ15Cuj3Nq7IogCHgjMgQRVTwwZNFBXEnMwvNzdmLM07XwWqsqdrU4HBWMPTNERMj57Vxn0iHdkI50fXrO1TSGNAgQ0My/maXdz8d+xpW0K5bXM/QZSDek41zyOYRoQ/Bnjz8tbXuv6Y3YxNgCj/dgQHl94+t5AooAAc4KZ7jIXeCmcsPSrkstry07swzX06/DVeGa00bhAhe5i2WuSBVXfgCXVEqWAR8sO4oNJ3KWAmlfyxff9KoPN43CxpVVPOyZIaIKxWA2QG/SW+ZoAMDOazuRqEtEhv5u6Lh7qW+GIQNuSrc8c0X6rO2DM4lnYBSN+fYd5BKE9T3XW55vvLSx0IByJ+tOnueBLoHIMmbl6w3JXan1fh82+xAm0WQJJRq5ptD1Q56v/vyjTwqViFYtx+wXG+F/u+Pw2dpYbI69hajpMZjRrxEaB7vbujwqBMMMEdlUbshI16fn9IrkPvTpcFG4oFOVTpa2H2//GDczb1p6Q3LbZZuyUduzdp7ei093f4pr6dcKPGZll8p5woxZNFuCjAAhZ56IImeYpZJzpTzvfS7sOSTpkuCicIGT3AkuchcopAq4KFzgofLI03Za22lFPg/V3KoVuS1ZlyAIeLlFFTSq7I4hiw7iUkImes/dhdGdauCtyBBIJOz1sjcMM0RUbCazCRnGDGToM5BhyIBUIkVVbVXL64tiFyFFn4Ljd47DW+2dZ0immls1TGg5wdK247KOSNWnFnicOp518oSZ/bf2FxpQ0vV5l5Jv6NMQgS6BcJHfDR2Ke396qj3ztP2u3XeQClI4y50f2iMCIN/lvVR+1Q3QYs3Q1hi74hjWHr2BKX+dwu4LCZjaqwE8nXkPQHvCMENUQZhFMwxmA5RSpeX57hu7kWnIRLohZ47I/Y+q2qroX6s/gJz5JD3+7GFZQyR3hdVczfyb4aeOP1mezzw0E2mGtALrMJrzDuU4y52RaciEs8I5b+iQu6CKtkqetiMajYBRNFoCSm7vibPcGU4Kpzxtp0ROKfK5CXAOKHJbqlhcVHLMeCEcLat5YeKaE9h6+jaiomMQ3TcczUI8H70DKhMMM0R2ziyacSfrjiVkPBg8ApwD0CawDQBAb9Jj9LbRedrmhpVMYyY6BHewDH0IEDBo86BCV1pt4d/CEmYEQcDtrNtI0+cNKHKJPCdIyPIGiS4hXXAy8STCvcMtE1RzA8qDvSJrnl0DuURepAmrnat2LtpJIypFgiCgX7PKCK/shsGLDuLC7Qy88ONujGxfHe+0C4WUw042xzBDVMpEUUSWMQuZxkyk6lKRZcpCpiET7kp3hLqHAsi5K+9Px37KE0ruDx5PBD6BURGjLG2f+uOpQo/XIbiDJczIJDL8e+VfiCj4IsUMQ4bla0EQUM+rHiSCBBq5xtLDkft1Fdcqed47t/1cKKQKOMmdLA+FtOArPD5q/lGRz1dh+yCyN7X8XbFmSGt8suo4Vhy6hqmbzmDPxUR826chvF047GRLDDNU4ZlFMzINmcg0ZiLDkAFnuTO8Nd4Acu7tsuHSBmQacl7LNGTmzBW5+3VkQKRlDkV8ZjyeWfUMMg2ZBYaJ58Kes8wVMYkm/Hjsx0JrCnMPs3ytkWsgE2RQy9RwUjjlCRxOcic08G5gaSsRJBjfYjxUMlWedpavFc55jvNb1G9FPk/1vOsVuS1ReeWklGFan4ZoGeqFT1Ydx/Zzd/D09BhM79sQrUK9bF1ehcUwQw7HaDYi05gJmSCz3OU2TZ+GfTf3WeZz3N/jkWXMQquAVugQ3AEAcDn1MgZtHmQJLw/O/3il9it4r8l7lv1+uuvTQmvxUt/7z0slU+Xp+QAApVQJrVILJ7kT3FX3LuvUyDToV7OfpYfjwYDio/GxtJUIEhx86WCR1w15rvpzRWpHRCX3fONANAjUYsiiQzh9Kw0v/rwHQ58Mw/CnwjjsZAMMM2R1969GmmHIwLnkczk9IQ/0cmQYMtCiUgvLzezOJZ3DpN2TLKEk05jznmxTNgBgSMMheLvB2wCA6+nXMfzf4YXW4KpwtYQZqUSKy2mX87WRCBI4yZwgkUjyvK9tUNuc0CFzgkaugUaugZMsJ4Tcfzmts9wZ655dl9NGpoFapi40gEglUoxtNrbI55ALoBHZnzBfF6wa3AoT15zAkn1XEL3lLPZcSED0C+HwdVXZurwKhWGGCpRpyMSNjBuW4ZfcP7OMOfM/mvk3Qw2PGgCA04mnMefIHKQb0rH/5n5UdauaZ1hmVMQoy0TSU4mnMGDDgEKPq5KpLGHGJJpwMP5g4TUaMy1fa5Va1PeqbwkSTvKc4OEkd4JGpkFDn4aWtt5qbyzovMASSnIDSkE3tXNWOGPGkzOKdM4kggSVXSsXqS0RlQ9qhRRTnquPFtU88eGKY9hzMRFPT4/BtN4N0LaGz6N3QKWCYcbBZRoycTvrdp7QkTv5NNOQiZaVWloubz16+yj+d/J/eULJ/UHlo2YfoUtIFwDA3pt7MfSfoYUe98NmH1rCTKo+Nc/N6c4mnc1XYy4XhQsCnANy5n/cN5E093kdzzqWtgHOAZj6xNR8bXIfcsm9u9r6OflhYZeFRTpnCqkCjXwbFaktEVFRdG8YgHoBOcNOJ2+kYsC8fRj4RDW827E65NLC1y2i0sEwU0YyDZlI0iXlCxu5f7YJbAM/Jz8AwP6b+7Hi7Iq8bYyZyDLkvG9Sq0mWq1e2XN6CD7d/WOhxv2j9hSXMJGQlYMOlDYW2vX/RMWe5M9yUbtDINHmGTdRyNTQyDYJcgixtq2qr4uNmHyPDmIHKLpUtPSK5vR5uSjdL2+ru1bHhucJruJ+zwhkdq3QsUlsiIlsL8XbGinda4vN1sfjf7jjM2XYe+y4lIvqFcAS4qW1dXrnGMPMYdl7fiQ0XNxQ4DJNpzMTUJ6ZahjdWnVuFyXsnF7qvmU/OtISZ6xnXsebCmkLb3r/Wh+VKFZnGEjTUMrUlgOTuEwCqe1THB00+sLymkd9te/e9Pup7XaIRfhF5boL3MF5qL66KSkQEQCWXYlKPumhRzRMfLDuKA3FJiJoeg6m9GqB9bV9bl1duMcw8hospF7Hy3MpCX79/ifbcORm5AeL+wKGRafLcdK6OZx282/jde2HjvtChkWvg7+Rvaduucjvs6rerSPUGOAfgxdovluA7JSKi4oiq54+6lbQYsvggjl5NwRu/7sfrravig841oZBx2Km0CaIoFry6VjlRnFuIF9eJhBPYdX1XnqBx/59BLkGWdT3uv6KHiIgqBp3RhC//Oo1fdlwEADQIcsPMF8IR5KGxcWX2rzif3wwzREREVvb3iZt4748jSM02wkUlw9fP10fnuv6PfmMFVpzPb/Z1ERERWVnHOn5YPzwS4ZXdkJZtxMDfDmL8n8ehM5psXVq5wDBDRERUBgLdNfj97RZ4+4kQAMCCXXHo+f1OXLqT8Yh30qMwzBAREZURuVSCsU/XwrwBTeCukePE9VR0nbEdq49ct3VpDo1hhoiIqIy1q+mD9cMj0bSKB9J1RgxbfAhjVxxDtoHDTiXBMENERGQD/lo1Fr3ZDEOfDIUgAIv3XkaPWTtwLj790W+mPBhmiIiIbEQmleDdjjXw62tN4eWswKmbaeg2YzuWH7hq69IcCsMMERGRjUWGeWP9sEi0rOaJLIMJ7/5xBO/9cQSZeqOtS3MIDDNERER2wMdVhf+93gwj21eHRACWHbiKZ2buwOmbaY9+cwXHMENERGQnpBIBw9uHYeEbzeHjosS5+HR0n7UdS/ddRjlf4/axMMwQERHZmRbVPLF+eCTaVPdGtsGMD5Yfw4ilh5Gu47BTQRhmiIiI7JCXsxLzBzTB+51rQCoR8Ofh6+g2YztOXE+xdWl2h2GGiIjITkkkAt5pG4qlbzWHv1aFi3cy8Oz3O/G/XZc47HQf3mjyMfx5+Bpm/nMOGqUMTgopNAoZnJR3/1RI0adJEMJ8XQAAVxIzceJ6iqWNWn5fW6UUarmUd9UmIqJCJWXoMXrZEWyOjQcARNXzw5Tn6sNVJbdxZdZRnM9vWRnVVC7dTtPh7EMWN2pT3dsSZnacu4MxK44V2vb7/o0QVS/nDqr/norHVxtP5wSku0FJrZDCSSGDRinFMw0qoU4lLQDgVmo2jl1Ngea+EHV/uFLI2PlGRFQeuDsp8OPLEfh5+0VM+esU1h+7iWPXUjDzhUZoEORm6/JsimHmMXStXwm1K7kiU2dCht6ITL0p56EzIkNvQrCnxtLWTaNARLA7MvQmZOlzXs9tBwBOynt/FbfTdIi9kVrocesFaC1hZv+lJAxedLDQtl8+Vw99mlS+2zYRn649CY0lGOUNSh1q+1r+QSRl6HHkajKclLJ77e8GJY1cComEvUhERGVNEAS8ERmCiCoeGLLoIK4kZuH5OTsx5ulaeK1VlQrbw88w8xj8tCr4aVVFatu5rh861/XLt91sFpFtNEEuvdeD8kQNb/z6WlNk6o3I0Jly/rwvKIX6OFvaOimlaBDkhkxdTpjKDVV6oxkAoFbc+yu+k67D0auFTxwLcFdbwszx6ykYMG9foW3Hda2N11pXBQCcupmKD1ccw7n4dLSo5gknpQzOShmc7oallqFeaFTZHQCQoTMi9kYqNIrcNlI4KWVQyiQV9h8hEVFxNQxyw7phkfhg2VFsOHETk9aexK7zCfimV324aRS2Lq/MMczYmEQiQKPI+9fg66qCr2vRQlLbGj5oW8Mn33aDyYxMvQnK+4aZGgW74+dXIu71Dt0flHRG1PBzsbRVSCWoU8k1JyDdF5RyZ1gp5ff2m5Cux8HLyQCAjSdu5atlrFRiCTPn4tPx/Jxd+dpIJQKcFFIMbheKt5+oBgC4npyF8atP3As9irsBSSmDs1KKOpW0qBuQ00OlN5pxPTnr7uucg0RE5Z9WLcfsFxvh111x+HxdLDbH3kKX6O2IfiEcjYPdbV1emWKYKafkUgm06rzzZXxcVHiqVtFCUrMQT6wbFplnmyiK0BnNyNAZoZJLLdtr+LlgzouNka4zIi4hA05KGTJ1RqTfDUu5Q2K5gj01yNDlhKSsu3eINZlFpGYbYb5vOvqddB02ncwfjnINaRdqCTNXkzLx5NRtltckAizhR6OUok9EkCUkpWQZ8OWGU3BSSC29SLkTsZ2VMgR7Oll6v8xmEZkGE4fWiMguCYKAV1pWQeNgdwxedBBxCZnoPXcXRneqgbciQyrM/1sMM1RkgiBAJZfmCTJAzloIBQ2hFaRBkBu2jW5neW4yizlDYzoT0nVGuGnuzcr316rx+bN1kZEbjHRGZOhzvs7QGRHme2+4TWc0w0khtcxBMotAms6ItLsLTKVkGSxtEzP0WLTncqE1vtwiGJ92r5vTNlOPiM82A4BlcvX9PUUdavvijcgQADm9Q7P+PWcZOjObRXg5K+GmUcBZKYO3i7LIw5JERMVRN0CLtUNbY+yKY1h79Aam/HUKey4kYGrvhvBwKv/DTgwzZFNSiQBXlbzASwu9XZTo3yy4SPup5e+KE592htksIstguhuAcobSMvRG+N03bOeikmFE+zBk6k132+Q+ctpW9rg3cTvjvtU2M/QmZOhNuJ2ms2y7P1ClZRswfcvZQmvs0bASvusbDiAn+DT5fDOc74YjZ1VOL5LL3aDUqLI7+jatbHnvmiPXoVFILW3vf59SJi3skERUgbio5JjxQjhaVPPEp2tO4t/TtxE1PQbRL4SjaVUPW5dnVQwzVK5IJIJlXk3+mUQ5vJyVGNG+epH2V9lDg9hPO98LPXfnGuWGpfuDj0wiwYvNKyPjbi9Tpt6InecTEOSugd5ohpez0tI2Q2dESpYhT4/R/XRGsyXM6I1mDF18qNAa29fyxU+vRFie9/txNxQyyb3Ac18AqurlhKdq+Vranr2VBpX8Xki6fyI6ETkeQRDQv1kwGlXOGXa6cDsDfX/YhVEdquOdtqHldtiJYYboIQRBgPru5eveLsqHttVq5PisR70i7ddFJcPmUU9YQlJattHydbrOiGre93p8DCYzWoR45gyxZecMneVOygYAjUKap+3O8wmFHvfJmj55wswzM3dY5i0BgDI3BKlkaFbVA18938Dy2uT1sRABy5VqLrmTsVUyeDsrUbvSvUWtzGax3P6nSeQIavm7Ys2Q1vhk1XGsOHQN3/x9BrsvJOLbPg0f+X+ZI2KYIbIBmVSS5xL7h3FSyrD4reb5tufONxLN97YJAGb3b2QJPOnZRqTfDUEZOmO+wOGklEGEiGxDzk50RjN0Rj0SMvQI8XLKc7z/7Y6zBKgHRQS7Y9mglpbnLaZswa1UHbxdlHBRyuCiygk9Lko5wnyd8W7HGpa2647egAgRznfbuajklq+dFDKGIqISclLKMK1PQ7QM9cInq45j+7k7iIqOwXd9GqJVqJetyytVDDMllGHIQLq+8NV/7UlpXaIsoPQ+VMrysumi1F2Ueoq0n1I6VlEIggBIAEECpOqzLNtb1cgbQh6s6f6f263v54Sk3Ev5c4bQcuYGqeVSZBgyAORcyfZa6yDLEFpuu9yvgzyVyDRkWvabmp0z1+h2mi7PHCMAuJWmxTtP3psPNHHNccSn6Qv8HsN8nLBmWHPL9/ve78eRnGnICUdKGZxV94bIfFyUiKp3byL69eQsKKRSuKgesY5RAZtL+nddaj9HXFaAStHzjQPRIFCLwYsO4sytdLz48x4MfTIMw58Kg7Sc/LLAezOV0E/HfsL0g9NLbX9E5YnZqAHMKogmNURRAZiUEM0qiGYlBGkm5K73bu2Rda0vRKMrRFPO6znvUwGQQqKOg1OV2Za26WfHQjRqCzgiIFHcglO1by3PMy6MgFmXG25MEKTZgCQbgkQHieIO1IGLLG31Sc0gmlQQJDoI0pw2kGZDkGRDkGZBIk8uzdNjNQ8GJauG9CJ8BpblLwC2DollffyS/HIpAtAZTDCYcnpipZKcK1QlpVDXy3VexqAGgx57P/fjvZnKgESQQCax8emzYgwVS2nnJd1PSTJ2adVMj08iywSQ+ch2AKAOWJJvmygCEGU5j/uo/FZCNDlBNCvzhh+zCoIs7YGdCADMACQApBBNToDJKeenRMx7BZghqcV9wScvQZYC57DJludZV16GSe+dE3Qk2RCkOpgNrpCqr0KQpULptdXS1pTtD4iSe0FKmg1BKHiorjQ8+G/Aqr+r8p+bwxLu/vibAWQaH9q0yPSmgntXywp7ZogeUNJ/EkUJUwXtu0jvK8onR5GalOxYRTkn1vwgLcm+RYiWS/XTsk33TbQ2QSoBmle7t0Lq7H/jcD1Zh/TceUa5w2jZRni5KLB0YLil7XOzDuJcfMFBzUUlRcyY5pbjv/rzMRy+kjdkqWQSOKuk8HJWYNHA+pbtS/bcwK1UPZyV0rtzjHL+dFJK4KKSIdTn3pVz1vwloSQ/x6X5i0Sp1VjCf49FUVr/HkvtWCVwJTED49ecxPm7N0vu16wyXmtVBbISXtHoqnCFu6p0Vx1mzwzRYyhpV3CRun3Lx/C0Q9GqgPvu1FGgDzoV7So0AJjdPwKJGXqk3w1HaToj0rINOHQ5GXUqucJN5WZp6+Oigb/WgNQsg2VBx2yjGdnpZgiCBB6qe2t//HPyFPbHJRV4TJVcglOTnrY8H7b4EA7EJcFVLYeLSnZ3rSaZ5fnI9tUtE6dP30xDlsEE17uTq11UsnwLX1LFU9kVWDuwOj5fF4v/7Y7Dwu2ZOHXlBqJfCEeAm9rW5RUbwwwRUTGE+T4iGd3nh5fvrf9jNJktASgly2CZt5Dr2UYBaBjkhtRsA9Kyjff+zDLkWxjxRkoWriXnPB6klEnyXC321YZT2HIqPk8bhUySE35Ucvw9so3lt/Gl+y7jXHw6XO6GIxeV3BKQXFQy1PRzLTcTRglQyaWY1KMumod4YszyozgQl4Qu0TH45vkGaF/b99E7sCMMM0REZUAmlcBNo4CbRoGgAl4v6mrXADCtd0PcSdflCz1p2UaYHhg6cdMoEOCmznn97orWeqMZd9L1SMs25hlW+PvErXzB536nP+sMqSQnWH286hj+PXUbWrUcrmpZzp93w49WLcdbbUIsPUBXEjORZTBZ2qjkD7m6jMpcl/r+qBegxZDFB3H0agre+HU/3mhdFe93rgmFzDEW0mSYISJyMEEeGgTdt/r0w0ztfW/hQ7NZRLr+XvB5cN2gLvX9Uc3H2fJ6arYBqdk5w2g6gzlPD9GN5OxCe4cA4K02IZavp206g5WHrlmeK6QSuKpzhsVcVXIseK0ptOqcW5psPnkL526nw1UlzxeUtHeDEtceKn2VPTX4Y2ALTPnrFObtuISftl/EvrgkzHwhvMg/a7bEMENEVEFIHnIvNADo2SiwyPua2L0OhjwZipSsnMCTkpUzNyg1y4B0nTHPvByVXAJ3jRyp2UaYzCL0ppyeoTvpesvrudYfu4EV9wWfB+396Cn4uOTca23OtvP451R8nrDjqpZZvu5c1w9OypyPuXSdEQJyVsxmr1DBlDIpxnerg+Yhnhj9xxEcuZKMqOgYfP18fXSu62/r8h6KYYaIiIot0F2DQPei/cY+uWd9TO5ZH6IoIkNvQurd+5Kl3g1C9/f4NKnqAQi4G4zuhqTse5Ooc3twAODMzTTsvZhY6HHbVPe2hJlvNp7G/J2XIJMIlqGw3EnTrmo5JnSrY1nm/9jVFFxJyrT0BLlpcv50VsoqRBDqVMcPdSq5YujiQzh0ORkDfzuIV1oEY2xULbudPM5Ls4mIyCEYTOY8N0M9fi0FlxIy7gaje8EnNyj99EqEJSi9+/sRLD94tdB97/uovSXMTFh9AvN3XsrXRioRoFXLsWJQS1S5e7uPDcdvYNf5hJzgo1HkhB+1HFpNzp+VPTUOe2d7g8mMbzaextz/LgAA6lRyxax+jSzfu7UV5/ObYYaIiMo9UcxZcyhP6Mm8F376Nwu2THb9KeYCNp64iZQsA5IzDUjOMkBvvHf1WVGCT67No9og1MfFst8/9l+F9m5Pj9t9vT5ajQJd6vnDw0kBAEjLNsBkFuGiktv8CrJ/T8Vj1O+HkZRpgLNShi961sMzDSpZ/bjlbp2Z77//Hl9//TVu3LiBOnXq4LvvvkNkZKStyyIiIgchCAI0Chk0Chn8tKqHtn0jMgRvRIbk2ZZtMCE5Myf45AYOAHiihjeclbKc4HN3+CwlU295rlXfa3s1KQunbz2wUvV9WoR4Wvb9Y8xFRG85C0EAXJQyuOX2+mhyhsU+6FQTlT1zhvnO3ErDhdsZeYbE3DRyqOWlMz+oXU0frB8eieGLD2PvpUQMW3wIu84nYHy32nYz7GT3YWbp0qUYMWIEvv/+e7Rq1Qpz587F008/jZMnT6Jy5cqP3gEREdFjUsml8NNK8wWhdjV80K6GT5H28XrrqmhfyxfJWXpLr09O+DEgOUsPL+d7wSfz7mX0ophz49bcm7fmGtm+uuXrtUdvIHrL2XzHy7lqTI75rzZB3YCce5r9d+Y2tp6+DXfN3eCjUeR8rVbATSOHr6uqwMux/bVqLHqzGb7bfBaztp7D4r2XcehyEmb2a4RQH+ciff/WZPfDTM2aNUOjRo0we/a9m83VqlULPXr0wOTJkx/yzhwcZiIiIkekN5pzwk6WASkPBKBeEUFwvju5eeGeOCw/cPW+tgYYTPc+2jePesISOKZtOlNg8Mm1fFBLNA7OuS3BioNXsXDP5bvDYTlhx00tx50MHVYcuIo0nQlquRSf9aiL5xoX/Uq4oio3w0x6vR4HDhzAmDFj8mzv2LEjdu7cWeB7dDoddDqd5XlqaqpVayQiIrIGhUwCbxelZX5OYfo3C86z6KIoisjUm3KGvTINCPK4d3uCplU8MPCJakjO1N+dD3T3z7tfu2nuXS126U4GDhRyiw0AqBfgimPXUvHuH0dw9GoyJnav+xjf7eOx6zBz584dmEwm+PrmXVbZ19cXN2/eLPA9kydPxsSJE8uiPCIiIrsjCAKclDI4KWX57rPUOswLrcO8Cn3v/YM1PcIDULuSK5IzDUi6G3ZSMg1IuhuEvnyuPv48fB3Tt5xBo+DSvclkcdl1mMn14AQmURQLndQ0duxYjBo1yvI8NTUVQUEFLR5ORERE97v/szXE2xkh3g+fDzO8fRi6NvBHtUe0sza7DjNeXl6QSqX5emHi4+Pz9dbkUiqVUCof3iVHREREpcPWQQYA7PoOUgqFAo0bN8amTZvybN+0aRNatmxpo6qIiIjInth1zwwAjBo1Ci+99BIiIiLQokUL/PDDD7h8+TIGDhxo69KIiIjIDth9mOnTpw8SEhLw6aef4saNG6hbty7Wr1+P4ODgR7+ZiIiIyj27X2fmcXGdGSIiIsdTnM9vu54zQ0RERPQoDDNERETk0BhmiIiIyKExzBAREZFDY5ghIiIih8YwQ0RERA6NYYaIiIgcGsMMEREROTSGGSIiInJodn87g8eVu8BxamqqjSshIiKiosr93C7KjQrKfZhJS0sDAAQFBdm4EiIiIiqutLQ0aLXah7Yp9/dmMpvNuH79OlxcXCAIQqnuOzU1FUFBQbhy5Qrv+2RFPM9lg+e5bPA8lw2e57JhzfMsiiLS0tJQqVIlSCQPnxVT7ntmJBIJAgMDrXoMV1dX/mMpAzzPZYPnuWzwPJcNnueyYa3z/KgemVycAExEREQOjWGGiIiIHBrDzGNQKpUYP348lEqlrUsp13ieywbPc9ngeS4bPM9lw17Oc7mfAExERETlG3tmiIiIyKExzBAREZFDY5ghIiIih8YwQ0RERA6NYeYhvv/+e1StWhUqlQqNGzdGTEzMQ9tv27YNjRs3hkqlQkhICObMmVNGlTq+4pzrFStWoEOHDvD29oarqytatGiBjRs3lmG1jqu4P9O5duzYAZlMhoYNG1q3wHKiuOdZp9Pho48+QnBwMJRKJapVq4ZffvmljKp1XMU9zwsXLkSDBg2g0Wjg7++PV199FQkJCWVUrWP677//0K1bN1SqVAmCIGDVqlWPfI9NPgtFKtCSJUtEuVwu/vjjj+LJkyfF4cOHi05OTmJcXFyB7S9cuCBqNBpx+PDh4smTJ8Uff/xRlMvl4rJly8q4csdT3HM9fPhw8csvvxT37t0rnjlzRhw7dqwol8vFgwcPlnHljqW45zlXcnKyGBISInbs2FFs0KBB2RTrwEpynp955hmxWbNm4qZNm8SLFy+Ke/bsEXfs2FGGVTue4p7nmJgYUSKRiNOnTxcvXLggxsTEiHXq1BF79OhRxpU7lvXr14sfffSRuHz5chGAuHLlyoe2t9VnIcNMIZo2bSoOHDgwz7aaNWuKY8aMKbD9+++/L9asWTPPtrffflts3ry51WosL4p7rgtSu3ZtceLEiaVdWrlS0vPcp08f8eOPPxbHjx/PMFMExT3Pf/31l6jVasWEhISyKK/cKO55/vrrr8WQkJA826Kjo8XAwECr1VjeFCXM2OqzkMNMBdDr9Thw4AA6duyYZ3vHjh2xc+fOAt+za9eufO07deqE/fv3w2AwWK1WR1eSc/0gs9mMtLQ0eHh4WKPEcqGk53nevHk4f/48xo8fb+0Sy4WSnOfVq1cjIiICX331FQICAlC9enW89957yMrKKouSHVJJznPLli1x9epVrF+/HqIo4tatW1i2bBm6dOlSFiVXGLb6LCz3N5osiTt37sBkMsHX1zfPdl9fX9y8ebPA99y8ebPA9kajEXfu3IG/v7/V6nVkJTnXD5o6dSoyMjLQu3dva5RYLpTkPJ89exZjxoxBTEwMZDL+V1EUJTnPFy5cwPbt26FSqbBy5UrcuXMH77zzDhITEzlvphAlOc8tW7bEwoUL0adPH2RnZ8NoNOKZZ57BjBkzyqLkCsNWn4XsmXkIQRDyPBdFMd+2R7UvaDvlV9xznWvx4sWYMGECli5dCh8fH2uVV24U9TybTCb069cPEydORPXq1cuqvHKjOD/PZrMZgiBg4cKFaNq0KaKiojBt2jTMnz+fvTOPUJzzfPLkSQwbNgzjxo3DgQMHsGHDBly8eBEDBw4si1IrFFt8FvLXrQJ4eXlBKpXmS/jx8fH5EmcuPz+/AtvLZDJ4enparVZHV5JznWvp0qV4/fXX8ccff6B9+/bWLNPhFfc8p6WlYf/+/Th06BCGDBkCIOdDVxRFyGQy/P3333jyySfLpHZHUpKfZ39/fwQEBECr1Vq21apVC6Io4urVqwgLC7NqzY6oJOd58uTJaNWqFUaPHg0AqF+/PpycnBAZGYnPPvuMveelxFafheyZKYBCoUDjxo2xadOmPNs3bdqEli1bFvieFi1a5Gv/999/IyIiAnK53Gq1OrqSnGsgp0dmwIABWLRoEce8i6C459nV1RXHjh3D4cOHLY+BAweiRo0aOHz4MJo1a1ZWpTuUkvw8t2rVCtevX0d6erpl25kzZyCRSBAYGGjVeh1VSc5zZmYmJJK8H3lSqRTAvZ4Denw2+yy06vRiB5Z72d/PP/8snjx5UhwxYoTo5OQkXrp0SRRFURwzZoz40ksvWdrnXo42cuRI8eTJk+LPP//MS7OLqLjnetGiRaJMJhNnzZol3rhxw/JITk621bfgEIp7nh/Eq5mKprjnOS0tTQwMDBSff/558cSJE+K2bdvEsLAw8Y033rDVt+AQinue582bJ8pkMvH7778Xz58/L27fvl2MiIgQmzZtaqtvwSGkpaWJhw4dEg8dOiQCEKdNmyYeOnTIcgm8vXwWMsw8xKxZs8Tg4GBRoVCIjRo1Erdt22Z57ZVXXhGfeOKJPO23bt0qhoeHiwqFQqxSpYo4e/bsMq7YcRXnXD/xxBMigHyPV155pewLdzDF/Zm+H8NM0RX3PMfGxort27cX1Wq1GBgYKI4aNUrMzMws46odT3HPc3R0tFi7dm1RrVaL/v7+Yv/+/cWrV6+WcdWO5d9//33o/7f28lkoiCL714iIiMhxcc4MEREROTSGGSIiInJoDDNERETk0BhmiIiIyKExzBAREZFDY5ghIiIih8YwQ0RERA6NYYaIiIgcGsMMETmUS5cuQRAEHD58+KHt2rZtixEjRpRJTURkWwwzRGQVAwYMgCAIEAQBcrkcISEheO+995CRkfFY+w0KCsKNGzdQt25dAMDWrVshCAKSk5PztFuxYgUmTZr0WMciIscgs3UBRFR+de7cGfPmzYPBYEBMTAzeeOMNZGRkYPbs2SXep1QqhZ+f3yPbeXh4lPgYRORY2DNDRFajVCrh5+eHoKAg9OvXD/3798eqVaug0+kwbNgw+Pj4QKVSoXXr1ti3b5/lfUlJSejfvz+8vb2hVqsRFhaGefPmAcg7zHTp0iW0a9cOAODu7g5BEDBgwAAA+YeZkpKS8PLLL8Pd3R0ajQZPP/00zp49a3l9/vz5cHNzw8aNG1GrVi04Ozujc+fOuHHjhvVPFBE9FoYZIiozarUaBoMB77//PpYvX44FCxbg4MGDCA0NRadOnZCYmAgA+OSTT3Dy5En89ddfiI2NxezZs+Hl5ZVvf0FBQVi+fDkA4PTp07hx4wamT59e4LEHDBiA/fv3Y/Xq1di1axdEUURUVBQMBoOlTWZmJr755hv873//w3///YfLly/jvffes8KZIKLSxGEmIioTe/fuxaJFi9CuXTvMnj0b8+fPx9NPPw0A+PHHH7Fp0yb8/PPPGD16NC5fvozw8HBEREQAAKpUqVLgPqVSqWU4ycfHB25ubgW2O3v2LFavXo0dO3agZcuWAICFCxciKCgIq1atQq9evQAABoMBc+bMQbVq1QAAQ4YMwaefflpap4CIrIQ9M0RkNWvXroWzszNUKhVatGiBNm3aYOjQoTAYDGjVqpWlnVwuR9OmTREbGwsAGDRoEJYsWYKGDRvi/fffx86dOx+rjtjYWMhkMjRr1syyzdPTEzVq1LAcEwA0Go0lyACAv78/4uPjH+vYRGR9DDNEZDXt2rXD4cOHcfr0aWRnZ2PFihXQarUAAEEQ8rQVRdGy7emnn0ZcXBxGjBiB69ev46mnnnqs4R5RFAvdfn8dcrk8z+uCIBT6XiKyHwwzRGQ1Tk5OCA0NRXBwsCUohIaGQqFQYPv27ZZ2BoMB+/fvR61atSzbvL29MWDAAPz222/47rvv8MMPPxR4DIVCAQAwmUyF1lG7dm0YjUbs2bPHsi0hIQFnzpzJc0wickycM0NEZcrJyQmDBg3C6NGj4eHhgcqVK+Orr75CZmYmXn/9dQDAuHHj0LhxY9SpUwc6nQ5r164tNHQEBwdDEASsXbsWUVFRUKvVcHZ2ztMmLCwM3bt3x5tvvom5c+fCxcUFY8aMQUBAALp3727175mIrIs9M0RU5qZMmYLnnnsOL730Eho1aoRz585h48aNcHd3B5DT2zJ27FjUr18fbdq0gVQqxZIlSwrcV0BAACZOnIgxY8bA19cXQ4YMKbDdvHnz0LhxY3Tt2hUtWrSAKIpYv359vqElInI8gsgBYSIiInJg7JkhIiIih8YwQ0RERA6NYYaIiIgcGsMMEREROTSGGSIiInJoDDNERETk0BhmiIiIyKExzBAREZFDY5ghIiIih8YwQ0RERA6NYYaIiIgc2v8BhUU2FeFWV3YAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcWJJREFUeJzt3Xd8zPcfB/DX9/ZdxmUPSYQ0sYkRW5TWalCqNUqHbmprtXQY1ZYOSlB0ob9arVWrFC2NvXdsYgvZ8+b390fkiCQkkcvdJa/n43GP5L73ue/37SvcK5/P5/v5CqIoiiAiIiJyUBJbF0BERET0OBhmiIiIyKExzBAREZFDY5ghIiIih8YwQ0RERA6NYYaIiIgcGsMMEREROTSZrQuwNrPZjOvXr8PFxQWCINi6HCIiIioCURSRlpaGSpUqQSJ5eN9LuQ8z169fR1BQkK3LICIiohK4cuUKAgMDH9qm3IcZFxcXADknw9XV1cbVEBERUVGkpqYiKCjI8jn+MOU+zOQOLbm6ujLMEBEROZiiTBHhBGAiIiJyaAwzRERE5NAYZoiIiMihlfs5M0RE5LjMZjP0er2tyyArkMvlkEqlpbIvhhkiIrJLer0eFy9ehNlstnUpZCVubm7w8/N77HXgGGaIiMjuiKKIGzduQCqVIigo6JGLppFjEUURmZmZiI+PBwD4+/s/1v4YZoiIyO4YjUZkZmaiUqVK0Gg0ti6HrECtVgMA4uPj4ePj81hDToy6RERkd0wmEwBAoVDYuBKyptygajAYHms/DDNERGS3eE+98q20/n4ZZoiIiMih2TTM/Pfff+jatSsqVaoEQRCwatWqPK+Loojx48ejUqVKUKvVaNOmDU6cOGGbYomIiMgu2TTMZGRkIDw8HDNnzizw9a+//hpTp07FzJkzsW/fPvj5+aF9+/ZIS0sr40qJiIjIXtk0zDzzzDP4/PPP0aNHj3yviaKIadOm4eOPP0aPHj1Qp04dLFiwAJmZmVi0aJENqs1f35bYWxBF0dalEBGRHenfvz+6d++eb/vWrVshCAKSk5PLvKbyzm7nzFy8eBE3b95Ehw4dLNuUSiWefPJJ7Ny5s9D36XQ6pKam5nlYw2+74/DGgv14538HkJL5eLOwiYiIqOTsdp2ZmzdvAgB8fX3zbPf19UVcXFyh75s0aRImTJhg1doAQCIRoJBK8PfJWzgRHYOZfRugQWV3qx+XiKgiEkURWQaTTY6tlkt5VZWds9swk+vBHyBRFB/6QzVmzBiMHDnS8jw1NRVBQUGlXle/psGoF+CGwYsPIi4hEz3n7MLoZ2rgjVZV+UNPRFTKsgwm1Bq70SbHPvlZR2gUdv9xWaHZ7d+On58fgJwemvuXOY6Pj8/XW3M/pVIJpVJp9foAoG6gFmuGtMKY5cew7tgNfL4uFrsvJOCbF8Lh7sSFnoiIKqq1a9fC2dk5z7bchQCp9NltmKlatSr8/PywadMmNGjQAEDOTce2bduGr776ysbV3eOqkmNm3wZotscTE9eexObYeHSOjsGMvg3QKNjD1uUREZULarkUJz/raLNjF1fbtm0xe/bsPNv27NmDl156qbTKovvYNMykp6fj3LlzlucXL17E4cOH4eHhgcqVK2P48OH48ssvERYWhrCwMHz55ZfQaDTo27evDavOTxAEvNwsGA2C3DBk8SFcvJOBXnN344OO1fFWZAgkEg47ERE9DkEQHGqox8nJCaGhoXm2Xb161UbVlH82/cnYv38/2rZta3meO9fl1Vdfxfz58/HBBx8gKysL7777LpKSktC0aVP8/fffcHFxsVXJD1UnIGfY6aMVx7D6yHVM+usUdl9IwJRe9eHBYSciIiKrsOml2W3atIEoivke8+fPB5CTxMePH48bN24gOzsb27ZtQ506dWxZ8iM5K2WY3qc+JvWoC6VMgn9P30bU9Bjsu5Ro69KIiIjKJbtdZ8aRCYKAF5tUxqpBLRHi7YSbqdno88NufL/1HMxmLrJHRERUmgSxnC9hm5qaCq1Wi5SUFLi6upb58TN0Rnyy6jhWHroGAHiymjem9gqHp3PZXHFFROSIsrOzcfHiRVStWhUqlcrW5ZCVPOzvuTif3+yZsTInpQxTe4Xj6+frQSWXYNuZ24iKjsHuCwm2Lo2IiKhcYJgpA4IgoFfjIPw5qBVCfZxxK1WHvj/uxowtZ2HisBMREdFjYZgpQ9X9XLB6cEs83zAQZhGYsukMXv1lL26n6WxdGhERkcNimCljGoUMU3qF49ue4VDLpdh+7g6iomOw89wdW5dGRETkkBhmbOSFRoFYPbglqvk643aaDv1+3oPvNp3hsBMREVExMczYUJivC/4c1Aq9IgIhisD0LWfx0k97EJ+abevSiIiIHAbDjI2pFVJ8/UI4vusdDo1Cil0XEhAVHYPtZznsREREVBQMM3biuQaBWD24FWr4ueBOuh4v/7IHU/4+DaPJbOvSiIiI7BrDjB0J9XHGqkEt8WKTyhBFYMY/59D3pz24mcJhJyIiosIwzNgZlVyKST3qIvrFBnBSSLH3YiKiomOw9XS8rUsjIqKHEAThoY/+/fvbusRyy3Hup17BPBteCXUDtBi08CBO3khF/3n7MLDNE3ivfTXIpMygRET25saNG5bvly5dirFjx+L06dOWbWq12hZlVQj8VLRjVb2csOLdFni5WTAAYPbW8+jzw25cT86ycWVERPQgPz8/y0Or1UIQhHzbyDrYM2PnVHIpJnavg2Yhnvhw+VHsj0tC5+gYTO1VH21r+Ni6PCKiMiGKIrKMtvlFTi1TQxAEmxybioZhxkF0ruePOgGuGLToII5fS8Vr8/fhndYheL9jdcg57ERE5VyWMQtNFzW1ybH39N0DjVxjk2NT0fBT0IEEezph+cAW6N+iCgBg7n8X0HvuLlzjsBMREVVg7JlxMEqZFOOfrY1mIR4YtewoDl5ORtT0GHzbMxzta/naujwiIqtQy9TY03ePzY5N9o1hxkF1quOP2pW0GLzoII5cTcFbv+7HG62q4sNONaCQscONiMoXQRA41EOF4qeeAwvy0OCPAS3wesuqAICft19Ez7m7cCUx08aVERERlR2GGQenkEkwtmst/PByI2jVchy5koyo6BhsOH7T1qURERGVCYaZcqJDbT+sG9oKDSq7IS3biAG/HcD41SegM5psXRoRUYXTv39/JCcn27qMCoNhphwJdNfg93ea4+3WIQCA+Tsv4YXZu3A5gcNORERUfjHMlDNyqQQfRdXEL/0j4KaR49i1FHSOjsH6Yzce/WYiIiIHxDBTTj1Vwxfrh0YiItgdaToj3l14EJ+uOo5sA4ediIiofGGYKccquamx+O1mGNjmCQDA/3bH4fnZO3HxToaNKyMiIio9DDPlnFwqwYedamD+a43h4aTAieup6DpjO1YfuW7r0oiIiEoFw0wF0aa6D9YPjUSTqh5I1xkxdPEhjFlxjMNORETk8BhmKhA/rQqL3myKIU+FQhCAxXsvo/usHTh/O93WpREREZUYw0wFI5NK8F6H6vj19Sbwclbg1M00dJ2xHSsPXbV1aURERCXCMFNBRYZ5Y/3QSDQL8UCm3oQRS4/gw2VHkaXnsBMRETkWhpkKzMdVhYVvNsOwp8MgCMDS/VfQfdYOnItPs3VpRERERcYwU8FJJQJGtK+GhW80hZezEqdvpaHrjB1YdoDDTkRE9Hi2bt0KQRCsfmsHhhkCALQI9cJfwyLRKtQLWQYT3v/jCN77/Qgy9UZbl0ZE5FD69++P7t2759te1A/2+fPnw83NzSq1lVcMM2Th7aLEgteb4L321SARgOUHr+LZmTtw+iaHnYiI7I1er7d1CXaDYYbykEoEDHk6DIveagZfVyXOxaej26ztWLrvMkRRtHV5RFTBZeqNhT4eXDerNNqWta1bt+K1115DSkoKBEGAIAgYP348AKBKlSr4/PPP0b9/f2i1Wrz11lsAgA8//BDVqlWDRqNBSEgIPv30UxgMBss+x48fj/r162Pu3LkICgqCRqNBz5498/QQ5fYmTZgwAT4+PnB1dcU777yTJzCJooivv/4aISEhUKvVCA8Px7Jly/LUv379elSrVg1qtRpt27bFpUuXrHau7icrk6OQw2kW4on1QyMx4vcj+O/MbXy4/Bh2nU/AF8/VhZOSPzZEZBu1xm4s9LW21b0x77UmlueNJm5GViELgzat6oGl7zS3PG/11b9IzMjf03FpcufHqLb4WrRogWnTpmHs2LE4ffo0AMDZ2dny+jfffINPP/0Un3zyiWWbi4sL5s+fj0qVKuHYsWN466234OLigg8++MDS5ty5c/j999+xZs0apKam4o033sCgQYOwcOFCS5stW7ZApVLh33//xaVLl/Daa6/By8sLX3zxBQDgk08+wYoVKzB79myEhYXhv//+w0svvQRvb288+eSTuHLlCnr06IEBAwZg4MCB2L9/P9577z1rnzIADDP0EJ7OSszv3xhz/juPKX+fwarD13H0agpm9WuImv6uti6PiMhurV27Nk8IAQCT6dFLXygUCmi1WgiCAD8/v3yvP/XUU3j//ffzbLs/2FSpUgXvvfceli5dmifMZGdnY8GCBQgMDAQAzJgxA507d8aUKVMsx1EoFPjll1+g0WhQu3ZtfPbZZxg1ahQmTpyIrKwsTJ06Ff/88w+aN88JgSEhIdi+fTvmzp2LJ598ErNnz0ZISAi+++47CIKA6tWr49ixY/jqq6+KeNZKjmGGHkoiEfBum1A0ruKBoYsP4cKdDHSbtQPju9bGi02CIAiCrUskogrk5GcdC31N8sD/Rwc+bVfktts/bPt4hT2gbdu2mD17dp5te/bswUsvvfRY+42IiMi3bdmyZZg2bRrOnTuH9PR0GI1GuLrm/YWzcuXKliADAM2bN4fZbMbp06ctYSY8PBwajSZPm/T0dFy5cgXx8fHIzs5G+/bt8+xXr9ejQYMGAIDY2Fg0a9Ysz+dCbvCxNoYZKpLGVTywbmgk3v/jCP45FY+PVh7DrgsJ+PK5OnBRyW1dHhFVEBpF0T+2rNW2KJycnBAaGppn29Wrj7/khZOTU57nu3fvRp8+fTBhwgR07NgRWq0WS5YswZQpUx66n9zAUZRfSAVBgNlsBgCsW7cOAQEBeV5XKpUAYNN5lQwzVGQeTgr89EoEftp+AV9vOI01R67j2NVkzOzbEHUCtLYuj4ioXFAoFEUakgKAHTt2IDg4GB9//LFlW1xcXL52ly9fxvXr11GpUiUAwK5duyCRSFCtWjVLmyNHjiArKwtqtRpATlBydnZGYGAg3N3doVQqcfnyZTz55JMF1lKrVi2sWrUqz7bdu3cX6c/xuHg1ExWLRCLg7dZPYOk7zRHgpsalhEz0+H4n/rfrEq92IiIqBVWqVEF6ejq2bNmCO3fuIDMzs9C2oaGhuHz5MpYsWYLz588jOjoaK1euzNdOpVLh1VdfxZEjRxATE4OhQ4eiV69eeebl6PV6vPHGGzh58iT++usvjBs3DoMHD4ZEIoGLiwvef/99jBgxAgsWLMD58+dx6NAhzJo1CwsWLAAADBgwAOfPn8fIkSNx+vRpLFq0CPPnzy/181MQhhkqkUbB7lg3tBXa1fSF3mTGp3+ewKBFB5GabXj0m4mIqFAtWrTAgAED0Lt3b3h7e+Prr78utG23bt0wYsQIDB48GPXr18fOnTvx6aef5msXGhqKHj16ICoqCh06dECdOnXw/fff52nz9NNPIywsDK1bt0avXr3QtWtXy2XhADBx4kSMHTsWkyZNQs2aNdGxY0esWbMGVatWBZAzL2f58uVYs2YNwsPDMWfOHHz55Zelc1IeQRDL+a/Tqamp0Gq1SElJyTchih6fKIr4eftFfLXhFAwmEUEeaszq2xD1At1sXRoRObDs7GxcvHgRVatWhUqlsnU5Dm38+PFYtWoVDh8+XGib/v37Izk5Od8wkbU97O+5OJ/f7JmhxyIIAt6MDMEfA1og0F2NK4lZeH72Tvyy/SKHnYiIqEwwzFCpqB/khnVDI9Gxti8MJhGfrT2Jd/53ACmZHHYiIrrfM888A2dn5wIfZTUsU95wmIlKlSiKWLDzEr5cfwp6kxkBbmrM7NsADSq727o0InIg5XmY6dq1a8jKyirwNQ8PD3h4eJRxRbZTWsNMvDSbSpUgCOjfsioaBXtg0KKDuJyYiZ5zdmH0MzXwRquqXGSPiCq8B9dpocfHYSayirqBWqwd2gqd6/rDaBbx+bpYvPXrfiRn8i6vRERUuhhmyGpcVXLM7NsAE7vXgUImwebYeERNj8GBuERbl0ZEROUIwwxZlSAIeLlZMFa+2wJVvZxwPSUbvebuxpxt52E2l+vpWkREVEYYZqhM1K6kxZohrdA1vBJMZhGT/zqF1xfsQ0K6ztalERGRg2OYoTLjrJQhuk99TOpRF0qZBFtP30ZUdAz2XuSwExERlRzDDJUpQRDwYpPKWDWoJUK8nXArVYc+P+zCzH/OctiJiKgcEQShzFYUZpghm6jp74o1g1uhR4MAmEXg27/P4NV5e3GHw05E5KAEQXjoo3///g99/6VLlyAIwkNvO0AFY5ghm3FSyjC1d31880I9qOQSxJy9g6jpMdh1PsHWpRERFduNGzcsj2nTpsHV1TXPtunTp5fKcfR6LnHxIIYZsrmeEUFYM7gVwnycEZ+mQ7+fdmP65rMwcdiJiB6Qacgs9KEz6YrcNtuYXaS2xeHn52d5aLVaCIKQb9vD5N59ukGDBhAEAW3atAGQcxPI7t27Y9KkSahUqRKqVasGAPjtt98QEREBFxcX+Pn5oW/fvoiPj7fsb+vWrRAEAevWrUN4eDhUKhWaNm2KY8eOWdrMnz8fbm5uWLVqFapVqwaVSoX27dvjypUreWpbs2YNGjVqBJVKhZCQEEyYMAFGo9Hy+tmzZ9G6dWuoVCrUqlULmzZtKta5e1x2vQKw0WjE+PHjsXDhQty8eRP+/v7o378/PvnkE0gkzGHlSZivC1YPboVxq4/j9/1X8d3mM9hzMQHT+tSHj0v5WsqciEqu6aKmhb4WGRCJ79t9b3ne5vc2yDIWfNuACN8IzOs0z/K80/JOSNIl5Wt37NVj+bZZy969e9GkSRNs3rwZtWvXhkKhsLy2ZcsWuLq6YtOmTZab+Or1ekycOBHVq1dHfHw8RowYgf79+2P9+vV59jtq1ChMnz4dfn5++Oijj/Dss8/izJkzkMvlAIDMzEx88cUXWLBgARQKBd5991306dMHO3bsAABs3LgRL730EqKjoxEZGYnz58/j7bffBgCMGzcOZrMZPXr0gJeXF3bv3o3U1FQMHz68DM7YPXYdZr766ivMmTMHCxYsQO3atbF//3689tpr0Gq1GDZsmK3Lo1KmVkjx9QvhaBbiiU9WHcfO8wmImr4d0/vUR8tQL1uXR0RkVd7e3gAAT09P+Pn55XnNyckJP/30U56A8/rrr1u+DwkJQXR0NJo0aYL09HQ4OztbXhs3bhzat28PAFiwYAECAwOxcuVK9OrVCwBgMBgwc+ZMNG3a1NKmZs2alnD1xRdfYPTo0Xj11Vctx5o4cSI++OADjBs3Dps3b0ZsbCwuXbqEwMBAAMCXX36JZ555prRPUaHsOszs2rUL3bp1Q+fOnQEAVapUweLFi7F///5C36PT6aDT3etqTE1NtXqdVLp6NAxEvUA3DF50EKdupuGln/dgSNtQDGtXDVIJ7+1EVJHt6bun0NekEmme51t7bS20rUTI27u/4fkNj1WXtdWtWzdPkAGAQ4cOYfz48Th8+DASExNhNpsBAJcvX0atWrUs7Zo3b2753sPDA9WrV0dsbKxlm0wmQ0REhOV5jRo14ObmhtjYWDRp0gQHDhzAvn378MUXX1jamEwmZGdnIzMzE7GxsahcubIlyDx4zLJg12M1rVq1wpYtW3DmzBkAwJEjR7B9+3ZERUUV+p5JkyZBq9VaHkFBQWVVLpWiUB9nrBrUEi82CYIoAtH/nEPfH3fjVmr2o99MROWWRq4p9KGUKovcViVTFamtvXBycsrzPCMjAx06dICzszN+++037Nu3DytXrgRQtAnCD970t6CbAOduM5vNmDBhAg4fPmx5HDt2DGfPnoVKpbIMez1qf9Zk12Hmww8/xIsvvogaNWpALpejQYMGGD58OF588cVC3zNmzBikpKRYHg9OYiLHoZJLMalHPUzvUx9OCin2XExE1PQYbDtz29alERGVutyeF5PJ9Mi2p06dwp07dzB58mRERkaiRo0aeSb/3m/37t2W75OSknDmzBnUqFHDss1oNOYZ8Th9+jSSk5MtbRo2bIjTp08jNDQ030MikaBWrVq4fPkyrl+/btnHrl27iveHf0x2Pcy0dOlS/Pbbb1i0aBFq166Nw4cPY/jw4ahUqZJl7O5BSqUSSqWywNfIMXWrH4C6AVoMWnQIsTdS8eovezGwzRN4r301yKR2nceJiIrMx8cHarUaGzZsQGBgIFQqVaFXQFWuXBkKhQIzZszAgAEDcPz4cUycOLHAtp999hk8PT3h6+uLjz/+GF5eXujevbvldblcjiFDhiA6OhpyuRyDBw9Gs2bN0KRJEwDA2LFj0aVLFwQFBaFnz56QSCQ4evQojh07hs8//xzt2rVD9erV8corr2DKlClITU3Fxx9/XOrn52Hs+pNg1KhRGD16NPr06YO6devi5ZdfxogRIzBp0iRbl0ZlLMTbGSvfbYGXmlUGAMzeeh4v/rgb15MLvlKBiMjRyGQyREdHY+7cuahUqRK6detWaFtvb2/Mnz8ff/zxB2rVqoXJkyfj22+/LbDt5MmTMWzYMDRq1Ag3btzA6tWr88y/0Wg0+PDDD9G3b180b94carUaS5YssbzesWNHrF27Fps2bULjxo3RrFkzTJ06FcHBwQAAiUSClStXQqfToUmTJnjzzTfzzK8pC4JY0GCXnfD09MTnn3+OgQMHWrZNmjQJ8+bNs8yjeZTU1FRotVqkpKTA1dXVWqVSGVp79DrGLD+GNJ0R7ho5pvaqj7Y1fGxdFhGVouzsbFy8eBFVq1aFSsXlGUpi69ataNu2LZKSkuDm5lZgm/nz52P48OFITk4u09pyPezvuTif33bdM9O1a1d88cUXWLduHS5duoSVK1di6tSpeO6552xdGtlQl3qVsHZoK9QN0CIp04DX5u/DpPWxMJjMti6NiIhswK7DzIwZM/DCCy/g3XffRc2aNfH+++/jnXfeKXRckCqOYE8nLBvYHP1bVAEAzP3vAnrN3YWrScVbsZOIqKx8+eWXcHZ2LvBRlmuylEd2PcxUGjjMVP5tOH4Do5YdRVq2EVq1HN+8UA8davs9+o1EZLfK4zBTYmIiEhMTC3xNrVYjICCgjCuyvdIaZrLrq5mIiqJTHX/UrqTF4MWHcORKMt7+3wG83rIqRj9TAwqZXXc+ElEF4uHhAQ8PD1uXUS7xf3oqF4I8NPjjneZ4o1XOjdp+2XERPefsxJVEDjsRObJyPnhQ4eWuWvy42DND5YZCJsGnXWqhWYgn3v/jCI5cTUFUdAy+fr4enqnrb+vyiKgY5HI5BEHA7du34e3tXeYrypJ1iaIIvV6P27dvQyKR5LtVQ3FxzgyVS1eTMjF08SEcvJwMAHi1eTA+6lwTSpn04W8kIruRnp6Oq1evsnemHNNoNPD39y8wzBTn85thhsotg8mMb/8+jbnbLgAA6gS4YuaLDVHFy+kR7yQie2EymWAwGGxdBlmBVCqFTCYrtNeNYeY+DDP076l4jPz9MJIyDXBWyjD5+broUq+SrcsiIqKHKDeL5hGVhrY1fLB+WCQaV3FHus6IwYsO4eOVx5BtePTN3IiIyP4xzFCF4K9VY/FbzTCo7RMQBGDhnsvoPmsHzt9Ot3VpRET0mBhmqMKQSSUY1bEGFrzWBJ5OCpy6mYauM7Zj1aFrti6NiIgeA8MMVTitq3lj/bBINAvxQKbehOFLD+PDZUeRpeewExGRI2KYoQrJ11WFhW82w9CnwyAIwNL9V9B91g6ci0+zdWlERFRMDDNUYUklAka2r4bf3mgKL2clTt9KQ9cZO7DswFVbl0ZERMXAMEMVXstQL6wf1gotQz2RZTDh/T+O4L3fjyBTb7R1aUREVAQMM0QAfFxU+PX1pnivfTVIBGD5wat4duYOnL7JYSciInvHMEN0l1QiYMjTYVj0VjP4uipxLj4dz87cjqX7LnM5dSIiO8YwQ/SAZiGeWD80Eq2reUNnNOPD5ccwYulhpOs47EREZI8YZogK4OmsxPz+jfFBp+qQSgSsOnwdz87YjpPXU21dGhERPYBhhqgQEomAd9uEYsnbzeCvVeHCnQx0/34Hftsdx2EnIiI7wjBD9AiNq3hg/dBIPFXDB3qjGZ+sOo7Biw8hLZt38iUisgcMM0RF4O6kwE+vRODjqJqQSQSsO3oDXWZsx/FrKbYujYiowmOYISoiiUTAW61D8PuA5ghwUyMuIRM9vt+JBTsvcdiJiMiGGGaIiqlhZXesHxqJ9rV8oTeZMW71CQz87SBSsjjsRERkCwwzRCWg1cjxw8uNMLZLLcilAjacuInO0TE4fCXZ1qUREVU4DDNEJSQIAl5vVRXLBrRAkIcaV5Oy0HPOTvwUc4HDTkREZYhhhugxhQe5Ye2QSDxTxw8Gk4jP18XirV8PIDlTb+vSiIgqBIYZolKgVcvxfb+G+KxbbSikEmyOvYXO0dtxIC7J1qUREZV7DDNEpUQQBLzSvApWvNsCVTw1uJachd5zd2HutvMwmznsRERkLQwzRKWsToAWa4a0QtfwSjCaRUz66xTeWLAPiRkcdiIisgaGGSIrcFHJEd2nPr58ri4UMgn+PX0bUdNjsPdioq1LIyIqdxhmiKxEEAT0bVoZfw5qiRAvJ9xMzcaLP+7GrH/PcdiJiKgUMcwQWVlNf1esGdIKzzUIgMks4puNp/HqvL24k66zdWlEROUCwwxRGXBSyjC1Vzi+fr4eVHIJYs7eQdT0GOw6n2Dr0oiIHB7DDFEZEQQBvRoHYfXgVgj1cUZ8mg79ftqNaZvPwMRhJyKiEmOYISpj1XxdsHpwS/RsFAizCEzbfBYv/7wH8WnZti6NiMghMcwQ2YBGIcM3PcMxpWc41HIpdp5PQNT0GGw/e8fWpRERORyGGSIber5RINYMaYUafi64k67Hy7/swZS/T8NoMtu6NCIih8EwQ2RjoT7OWDWoJV5sEgRRBGb8cw79ftqDW6kcdiIiKgqGGSI7oJJLMalHPUzvUx9OCin2XEzEM9NjsPV0vK1LIyKyewwzRHakW/0ArB0aiVr+rkjM0KP/vH34asMpDjsRET0EwwyRnanq5YQV77bAy82CAQCzt55Hnx9243pylo0rIyKyTwwzRHZIJZdiYvc6mNW3IVyUMuyPS0JUdAy2xN6ydWlERHaHYYbIjnWu54+1Q1uhboAWyZkGvLFgP75YdxJ6I4ediIhyMcwQ2blgTycsG9gc/VtUAQD8GHMRvebuwpXETNsWRkRkJxhmiByAUibF+GdrY85LjeCqkuHwlWR0jo7BxhM3bV0aEZHNMcwQOZBOdfywbmgk6ge5ITXbiHf+dwDjV5+AzmiydWlERDbDMEPkYII8NPj9neZ4K7IqAGD+zkt4YfYuxCVk2LgyIiLbYJghckAKmQQfd66Fn16JgJtGjmPXUtAlejvWHb1h69KIiMqcIIqiWJI3ms1mnDt3DvHx8TCb815Z0bp161IprjSkpqZCq9UiJSUFrq6uti6HqNRdT87CkMWHcCAuCQDwUrPK+KRzLajkUhtXRkRUcsX5/C5RmNm9ezf69u2LuLg4PPh2QRBgMtnP+D3DDFUEBpMZUzedweyt5wEAtfxdMatfQ1T1crJxZUREJVOcz+8SDTMNGDAAEREROH78OBITE5GUlGR5JCYmlqhoIio5uVSCDzvVwPzXGsPDSYGTN1LRJToGfx6+ZuvSiIisrkQ9M05OTjhy5AhCQ0OtUVOpYs8MVTQ3U7IxdMkh7L2Y84tFn8ZBGP9sbQ47EZFDsXrPTNOmTXHu3LkSFUdE1uWnVWHRm00x5KlQCAKwZN8VdJu5A+fi02xdGhGRVchK8qYhQ4bgvffew82bN1G3bl3I5fI8r9erV69UiiOikpFJJXivQ3U0reqJ4UsP4/StNHSdsQOfd6+D5xsF2ro8IqJSVaJhJokkf4eOIAgQRZETgInsTHxaNoYvOYyd5xMAAC80CsRn3WpDoyjR7zJERGXC6lczxcXFPfT14ODg4u7SahhmiACTWcSsf89h2uYzMItAmI8zZvVriGq+LrYujYioQFYPM46EYYbonl3nEzBsySHEp+mgkkvw2bN10DMiEIIg2Lo0IqI8rD4BGADOnz+PIUOGoF27dmjfvj2GDh2K8+fPl3R3hbp27RpeeukleHp6QqPRoH79+jhw4ECpH4eoImj+hCfWD4tEZJgXsg1mfLD8KEb+fgQZOqOtSyMiKrEShZmNGzeiVq1a2Lt3L+rVq4c6depgz549qF27NjZt2lRqxSUlJaFly5aQy+X466+/cPLkSUyZMgVubm6ldgyiisbLWYkFrzXBqI7VIZUIWHnoGrrO2I7YG6m2Lo2IqERKNMzUoEEDdOzYEZMnT86zffTo0fj7779x8ODBUilu9OjR2LFjB2JiYor8Hp1OB51OZ3mempqKoKAgDjMRFWDfpUQMXXwIN1KyoZBJMK5rLfRtUpnDTkRkc1YfZoqNjcUbb7yRb/vrr7+OkydPlmSXBVq9ejUiIiLQs2dP+Pj4oEGDBvjxxx8f+p5JkyZBq9VaHkFBQaVWD1F507iKB9YNjcRTNXygN5rx8crjGLL4ENKyDbYujYioyEoUZry9vXH48OF82w8fPgwfH5/HrcniwoULmD17NsLCwrBx40YMGDAAQ4cOxa+//lroe8aMGYOUlBTL48qVK6VWD1F55OGkwE+vROCjqBqQSQSsPXoDXWZsx/FrKbYujYioSEq00MRbb72Ft99+GxcuXECLFi0gCAK2b9+Or776Cu+9916pFWc2mxEREYEvv/wSQM7w1okTJzB79my88sorBb5HqVRCqVSWWg1EFYFEIuDt1k8goooHhiw6hLiETPT4fic+7lwTrzQP5rATEdm1EoWZTz/9FC4uLpgyZQrGjBkDAKhUqRLGjx+PoUOHllpx/v7+qFWrVp5tNWvWxPLly0vtGER0T8PK7lg3tBVGLTuKTSdvYdzqE9h1PgFfvVAPWrX80TsgIrKBEg0zCYKAESNG4OrVq5bhnKtXr2LYsGGl+htcy5Ytcfr06Tzbzpw5Y1eL8hGVN24aBX54uRHGdqkFuVTAhhM30Tk6BoevJNu6NCKiApV4nZlcLi4ucHGxziqiI0aMwO7du/Hll1/i3LlzWLRoEX744QcMGjTIKscjohyCIOD1VlWxbEALBHmocTUpCz3n7MRPMRdQztfZJCIHVORLsxs2bIgtW7bA3d0dDRo0eGgPTGldmg0Aa9euxZgxY3D27FlUrVoVI0eOxFtvvVXk93MFYKLHk5JlwOjlR/HX8ZsAgHY1ffBtz3C4aRQ2royIyrPifH4Xec5Mt27dLBNru3XrVmYTArt06YIuXbqUybGIKD+tWo7v+zXEb7vjMHFtLDbHxiNqegxm9G2ARsEeti6PiIj3ZiKiojt+LQWDFx3EpYRMSCUCRnWsjrcjQyCR8GonIipdVl80LyQkBAkJCfm2JycnIyQkpCS7JCIHUCdAizVDWqFreCWYzCIm/3UKry/Yh4R03aPfTERkJSUKM5cuXYLJZMq3XafT4erVq49dFBHZLxeVHNF96mNSj7pQyiTYevo2oqJjsPdioq1LI6IKqljrzKxevdry/caNG6HVai3PTSYTtmzZgqpVq5ZedURklwRBwItNKqN+kBsGLTqIC7cz0OeHXRjZvhrebRPKYSciKlPFmjMjkeR05AiCkO/yTLlcjipVqmDKlCl2NWGXc2aIrCtDZ8Snq45jxaFrAIDIMC9M7VUf3i5ciZuISq44n98lmgBctWpV7Nu3D15eXiUusqwwzBBZnyiK+OPAVYz98ziyDWZ4uygxvXd9tAi1//8jiMg+WX0C8MWLFx0iyBBR2RAEAb0igrBmcCuE+TjjdpoO/X7eg+82nYHJXK4vmCQiO1DiS7MzMjKwbds2XL58GXq9Ps9rpXl/psfFnhmispWlN2Hc6uP4fX/OxQDNQzwxvU99+LiqbFwZETkSqw8zHTp0CFFRUcjMzERGRgY8PDxw584daDQa+Pj44MKFCyUuvrQxzBDZxspDV/HxyuPI1Jvg5azAd73rIzLM29ZlEZGDsPow04gRI9C1a1ckJiZCrVZj9+7diIuLQ6NGjfDtt9+WqGgiKl+eaxCI1YNboYafC+6k6/HKL3vx7cbTMJrMti6NiMqZEoWZw4cP47333oNUKoVUKoVOp0NQUBC+/vprfPTRR6VdIxE5qFAfZ6wa1BJ9m1aGKAIz/z2Hvj/uwc2UbFuXRkTlSInCjFwut9ybydfXF5cvXwYAaLVay/dERACgkkvx5XN1Ef1iAzgrZdh7KRFR0TH493S8rUsjonKiRGGmQYMG2L9/PwCgbdu2GDt2LBYuXIjhw4ejbt26pVogEZUPz4ZXwtohrVAnwBWJGXq8Nm8fJv0VCwOHnYjoMZUozHz55Zfw9/cHAEycOBGenp4YOHAg4uPj8cMPP5RqgURUflTxcsLygS3Qv0UVAMDcbRfQe+4uXEvOsm1hROTQin01kyiKuHz5Mnx8fKBWq61VV6nh1UxE9mnD8RsYtewo0rKN0Krl+LZnONrX8rV1WURkJ6x6NZMoiggLC+MNJYnosXSq44/1QyMRHqhFSpYBb/26HxPXnoTeyGEnIiqeYocZiUSCsLAwJCQkWKMeIqpAgjw0+GNAC7zRKucGtT9vv4iec3biSmKmjSsjIkdSojkzX3/9NUaNGoXjx4+Xdj1EVMEoZBJ82qUWfnwlAlq1HEeupiAqOgYbjt+wdWlE5CBKtAKwu7s7MjMzYTQaoVAo8s2dSUxMLLUCHxfnzBA5jmvJWRiy6CAOXk4GALzaPBhjompCJZfatjAiKnPF+fyWleQA3333nWWdGSKi0hLgpsbSd5rj279PY+62C1iwKw7745Iwq29DVPFysnV5RGSnSnyjSUfBnhkix/TvqXiM/P0wkjINcFbKMKlHXXQNr2TrsoiojFj93kxSqRTx8flX70xISIBUyu5gInp8bWv4YP2wSDSp4oF0nRFDFh/CRyuPIdtgsnVpRGRnShRmCuvM0el0UCgUj1UQEVEuf60ai95qisFtQyEIwKI9l9F91g6cv51u69KIyI4Ua85MdHQ0AEAQBPz0009wdna2vGYymfDff/+hRo0apVshEVVoMqkE73esjqYhHhix9DBO3UxD1xnb8cVzdfBcg0Bbl0dEdqBYc2aqVs1ZCyIuLg6BgYF5hpQUCgWqVKmCzz77DE2bNi39SkuIc2aIyo/41GwMW3IYuy7krHPVKyIQE56tA7WCw9tE5U1xPr9LNAG4bdu2WLFiBdzd3UtcZFlhmCEqX0xmETP+OYvpW85CFIEwH2fM6tcQ1XxdbF0aEZUiq4cZR8IwQ1Q+7Tx/B8OWHMbtNB1Ucgk+e7YOekYEctkIonLC6mHGZDJh/vz52LJlC+Lj42E2572Xyj///FPcXVoNwwxR+XUnXYcRSw8j5uwdAMBzDQLwefc6cFKWaAktIrIjVl80b9iwYZg/fz46d+6MOnXq8DchIrIJL2clFrzWBLO3ncfUTWew8tA1HLmajFl9G6KmP395IaooStQz4+XlhV9//RVRUVHWqKlUsWeGqGLYdykRQxYdws3UbChkEozvWhsvNgniL1tEDsrqi+YpFAqEhoaWqDgiImtoXMUD64dFom11b+iNZny08hiGLD6EtGyDrUsjIisrUZh57733MH369EIXzyMisgUPJwV+frUxPoqqAZlEwNqjN9B1xnYcv5Zi69KIyIpKNMz03HPP4d9//4WHhwdq164NuVye5/UVK1aUWoGPi8NMRBXTwctJGLLoEK4lZ0EhleCTLjXxcrNgDjsROQirTwB2c3PDc889V6LiiIjKQsPK7lg3tBVGLTuKTSdvYeyfJ7DrfAImP18PWrX80TsgIofBdWaIqFwTRRHzdlzCpL9iYTCJCPJQY+aLDREe5Gbr0ojoIaw+ARgAjEYjNm/ejLlz5yItLQ0AcP36daSn8wZwRGQ/BEHA662qYvnAFgjyUONKYhZemLMTP2+/yHl/ROVEiXpm4uLi0KlTJ1y+fBk6nQ5nzpxBSEgIhg8fjuzsbMyZM8catZYIe2aIKFdqtgGjlx/F+mM3AQDtavri25714KZR2LgyInqQ1Xtmhg0bhoiICCQlJUGtVlu2P/fcc9iyZUtJdklEZHWuKjlm9W2Iid1qQyGVYHPsLURNj8GBuERbl0ZEj6FEYWb79u345JNPoFDk/W0mODgY165dK5XCiIisQRAEvNy8Cla82wJVvZxwPSUbvebuxpxt52E2c9iJyBGVKMyYzWaYTKZ8269evQoXF965lojsX50ALdYMaYVnwyvBZBYx+a9TeH3BPiSk62xdGhEVU4nCTPv27TFt2jTLc0EQkJ6ejnHjxjnELQ6IiADAWSnD9D71MblHXShlEmw9fRtR0THYe5HDTkSOpEQTgK9fv462bdtCKpXi7NmziIiIwNmzZ+Hl5YX//vsPPj4+1qi1RDgBmIiK4tTNVAxaeBDnb2dAIgAj21fDu21CIZFwkT0iWyjO53eJ15nJysrCkiVLcODAAZjNZjRs2BD9+vXLMyHYHjDMEFFRZeqN+HTVCSw/eBUAEBnmham96sPbRWnjyogqnjIJM46CYYaIimvZgav4dNVxZBlM8HZRYnrv+mgR6mXrsogqFKtfmj1p0iT88ssv+bb/8ssv+Oqrr0qySyIiu/FCo0CsHtwS1XydcTtNh34/78HUTWdg4tVORHapRGFm7ty5qFGjRr7ttWvXtqsF84iISirM1wV/DmqF3hFBEEUgestZ9PtpN26lZtu6NCJ6QInCzM2bN+Hv759vu7e3N27cuPHYRRER2QO1QoqvXqiH6X3qw0khxe4LiYiaHoP/zty2dWlEdJ8ShZmgoCDs2LEj3/YdO3agUqVKj10UEZE96VY/AGuGtEJNf1ckZOjxyi978fWGUzCazLYujYhQwjDz5ptvYvjw4Zg3bx7i4uIQFxeHX375BSNGjMBbb71V2jUSEdlciLczVr7bAi83CwYAfL/1PF78cTdupGTZuDIiKtHVTKIoYvTo0YiOjoZerwcAqFQqfPjhhxg7dmypF/k4eDUTEZW2dUdvYPTyo0jTGeGukWNKr3A8VcPX1mURlStldml2eno6YmNjoVarERYWBqXS/tZiYJghImuIS8jA4EWHcOxaCgDg7dYhGNWxOuTSEnV4E9EDuM7MfRhmiMhadEYTJq0/hfk7LwEA6ge5YcaLDRDkobFtYUTlgNXDTEZGBiZPnowtW7YgPj4eZnPeSXAXLlwo7i6thmGGiKxt44mbGPXHEaRmG+GqkuGbnuHoWNvP1mURObTifH7LSnKAN998E9u2bcPLL78Mf39/CALvXUJEFVfH2n6o5e+KIYsP4fCVZLzzvwPo36IKxkTVgFImtXV5ROVeiXpm3NzcsG7dOrRs2dIaNZUq9swQUVkxmMz4ZuNp/PBfTu903QAtZvZtgGBPJxtXRuR4rH47A3d3d3h4eJSoOCKi8kouleCjqJr4pX8E3DRyHLuWgi7R27HuKBcTJbKmEoWZiRMnYuzYscjMzCzteh5q0qRJEAQBw4cPL9PjEhEVx1M1fLF+aCQigt2RpjNi0KKD+GTVMWQbTLYujahcKtEwU4MGDXD+/HmIoogqVapALpfnef3gwYOlVmCuffv2oVevXnB1dUXbtm0xbdq0Ir2Pw0xEZCtGkxlTN53B91vPAwBq+btiZt8GCPF2tnFlRPbP6hOAu3fvXpK3lVh6ejr69euHH3/8EZ9//nmZHpuIqKRkUgk+6FQDTUM8MXLpYZy8kYquM7bjyx510a1+gK3LIyo3HGKdmVdffRUeHh747rvv0KZNG9SvX7/QnhmdTgedTmd5npqaiqCgIPbMEJFN3UrNxrAlh7D7QiIAoHdEEMY/WxtqBa92IiqI1Xtmch04cACxsbEQBAG1atVCgwYNHmd3BVqyZAkOHjyIffv2Fan9pEmTMGHChFKvg4jocfi6qrDwzWaI3nIW0f+cxdL9V3DoShJm9W2IMF8XW5dH5NBK1DMTHx+PPn36YOvWrXBzc4MoikhJSUHbtm2xZMkSeHt7l0pxV65cQUREBP7++2+Eh4cDAHtmiMjh7Tx3B8OWHsbtNB3Ucik+61YbPSOCbF0WkV2x+qXZQ4YMQWpqKk6cOIHExEQkJSXh+PHjSE1NxdChQ0tUdEEOHDiA+Ph4NGrUCDKZDDKZDNu2bUN0dDRkMhlMpvxXBiiVSri6uuZ5EBHZkxahXlg/NBKtQr2QZTBh1LKjGPn7YWTojLYujcghlahnRqvVYvPmzWjcuHGe7Xv37kWHDh2QnJxcKsWlpaUhLi4uz7bXXnsNNWrUwIcffog6deo8ch+8momI7JXJLGL21nOYuukMzCLwhLcTZvVriBp+/L+KyOpzZsxmc77LsQFALpfnu0/T43BxcckXWJycnODp6VmkIENEZM+kEgGDnwpD4yoeGLrkEM7fzkC3mTswrmttvNgkiLeKISqiEg0zPfXUUxg2bBiuX79u2Xbt2jWMGDECTz/9dKkVR0RUETQN8cT6oZFoU90bOqMZH608hqFLDiMt22Dr0ogcQomGma5cuYJu3brh+PHjCArK+e3h8uXLqFu3Lv78808EBgZao9YS4TATETkKs1nEjzEX8PXG0zCZRVTx1GBm34aoE6C1dWlEZa44n9+Ptc7Mpk2bcOrUKYiiiFq1aqFdu3Yl3ZXVMMwQkaM5EJeEoYsP4VpyFhRSCT7tUhMvNQvmsBNVKFYLM//88w8GDx6M3bt359txSkoKWrRogTlz5iAyMrJklVsBwwwROaLkTD3e/+MoNsfeAgBE1fXD5OfrwVWVf74iUXlktUuzp02bhrfeeqvAnWq1WrzzzjuYOnVq8aolIqJ83DQK/PhKI3zapRbkUgHrj91E5+gYHLmSbOvSiOxOscLMkSNH0KlTp0Jf79ChAw4cOPDYRRERESAIAt5oVRXLBrRAkIcaVxKz8MKcnfh5+0U4wJ1oiMpMscLMrVu3CrwkO5dMJsPt27cfuygiIronPMgNa4dE4pk6fjCYRExcexJv/XoAyZl6W5dGZBeKFWYCAgJw7NixQl8/evQo/P39H7soIiLKS6uW4/t+DfFZt9pQSCXYHHsLnaO340Bckq1LI7K5YoWZqKgojB07FtnZ2fley8rKwrhx49ClS5dSK46IiO4RBAGvNK+CFe+2QBVPDa4lZ6HX3F2Ys+08zGYOO1HFVayrmW7duoWGDRtCKpVi8ODBqF69OgRBQGxsLGbNmgWTyYSDBw/C19fXmjUXC69mIqLyKC3bgI9WHseaIzmLl7ap7o0pPcPh6ay0cWVEpcOq68zExcVh4MCB2Lhxo2UCmiAI6NixI77//ntUqVKlxIVbA8MMEZVXoihiyb4rGL/6BHRGM3xdlYju0wBNQzxtXRrRYyuTRfOSkpJw7tw5iKKIsLAwuLu7l6hYa2OYIaLyLvZGKgYtOogLtzMgEYCR7avh3TahkEi4yB45rjJbAdgRMMwQUUWQoTPi01XHseLQNQBAZJgXpvaqD28XDjuRY7LaonlERGSfnJQyTO1dH9+8UA9quRQxZ+8gKjoGO8/dsXVpRFbHMENEVI70jAjC6sEtUc3XGbfTdOj38x5M3XQGJl7tROUYwwwRUTkT5uuCPwe1Qp/GQRBFIHrLWfT7aTdupeZfVoOoPGCYISIqh9QKKSY/Xw/T+9SHk0KK3RcSETU9BtvOcJV2Kn8YZoiIyrFu9QOwZkgr1PR3RUKGHq/+shdfbTgFo8ls69KISg3DDBFRORfi7YyV77bAy82CAQCzt55Hnx9243pylo0rIyodDDNERBWASi7FxO51MKtvQ7goZdgfl4So6Bj8c+qWrUsjemwMM0REFUjnev5YO7QV6gZokZxpwOvz9+PL9bEwcNiJHBjDDBFRBRPs6YRlA5vjtZZVAAA//HcBPefswpXETNsWRlRCDDNERBWQUibFuK61MfflRnBVyXD4SjI6R8dgw/Gbti6NqNgYZoiIKrCOtf2wflgkGlR2Q2q2EQN+O3D3xpUmW5dGVGQMM0REFVyguwa/v9Mcb7cOAQDM33kJL8zehbiEDBtXRlQ0DDNERAS5VIKPomril/4RcNfIcexaCjpHb8fao9dtXRrRIzHMEBGRxVM1fLF+WCQaV3FHus6IwYsO4eOVx5Bt4LAT2S+GGSIiysNfq8bit5rh3TZPAAAW7rmM577fiQu3021cGVHBGGaIiCgfmVSCDzrVwK+vN4GnkwKxN1LRZcZ2rDp0zdalEeXDMENERIVqXc0b64dFolmIBzL1JgxfehgfLjuKLD2Hnch+MMwQEdFD+bqqsPDNZhj2dBgEAVi6/wq6zdqOs7fSbF0aEQCGGSIiKgKpRMCI9tWw8I2m8HZR4sytdHSduR2/778CURRtXR5VcAwzRERUZC1CvbB+aCQiw7yQbTDjg2VH8d7vR5ChM9q6NKrAGGaIiKhYvF2UWPBaE4zqWB0SAVhx6Bq6ztyO2Bupti6NKiiGGSIiKjaJRMCgtqFY8nZz+LmqcOF2BrrN2oGFe+I47ERljmGGiIhKrElVD6wfFom21b2hN5rx8crjGLL4ENKyDbYujSoQhhkiInosHk4K/PxqY4x5pgZkEgFrj95Alxnbcfxaiq1LowqCYYaIiB6bRCLgnSefwNJ3miPATY24hEz0+H4nFuy8xGEnsjqGGSIiKjWNgt2xbmgrtK/lC73JjHGrT2DgbweRksVhJ7IehhkiIipVbhoFfni5EcZ2qQW5VMCGEzfROToGhy4n2bo0KqcYZoiIqNQJgoDXW1XF8oEtUNlDg6tJWeg5Zxd+irnAYScqdQwzRERkNfUC3bB2aCtE1fWD0Szi83WxeHPBfiRl6G1dGpUjDDNERGRVrio5ZvVtiInd60Ahk2DLqXh0jo7B/kuJti6NygmGGSIisjpBEPBys2CsfLcFqno54XpKNnr/sBvfbz0Hs5nDTvR4GGaIiKjM1K6kxZohrdCtfiWYzCK+3nAar83fh4R0na1LIwfGMENERGXKWSnDtN718dXzdaGUSbDtzG1ERcdg94UEW5dGDophhoiIypwgCOjduDJWD26FUB9n3ErVoe+PuxG95SxMHHaiYmKYISIim6nu54LVg1vihUaBMIvA1E1n8MovexCflm3r0siBMMwQEZFNaRQyfNszHFN6hkMtl2LHuQRETd+O7Wfv2Lo0chAMM0REZBeebxSINUNaoYafC+6k6/DyL3sw5e/TMJrMti6N7BzDDBER2Y1QH2esGtQSLzapDFEEZvxzDn1/2oObKRx2osIxzBARkV1RyaWY1KMuol9sAGelDHsvJiIqOgb/no63dWlkpxhmiIjILj0bXglrhrRC7UquSMzQ47V5+zDpr1gYOOxED2CYISIiu1XVywnLB7bAK82DAQBzt11A77m7cC05y8aVkT1hmCEiIrumkkvxWbc6mN2vIVxUMhy8nIyo6THYdPKWrUsjO8EwQ0REDuGZuv5YPzQS4YFapGQZ8Nav+zFx7UnojRx2qugYZoiIyGEEeWjwx4AWeLNVVQDAz9svouecnbiSmGnjysiWGGaIiMihKGQSfNKlFn56JQJatRxHrqYgKjoGfx27YevSyEbsOsxMmjQJjRs3houLC3x8fNC9e3ecPn3a1mUREZEdaFfLF+uHRaJRsDvSso0YuPAgxv55HNkGk61LozJm12Fm27ZtGDRoEHbv3o1NmzbBaDSiQ4cOyMjIsHVpRERkBwLc1FjydjMMbPMEAODXXXF4fvZOXLzDz4mKRBBF0WFuT3r79m34+Phg27ZtaN26dZHek5qaCq1Wi5SUFLi6ulq5QiIispWtp+Mx8vcjSMzQw0khxZc96qJb/QBbl1XuZBmzkKJLgafKE3Kp3GrHKc7nt8xqVVhBSkoKAMDDw6PQNjqdDjqdzvI8NTXV6nUREZHttanug7+GRWLo4kPYczERw5Ycxu4LCRjXtTZUcqmty7M72cZspOhSkKxLRqo+FSm6FLSo1AIauQYAsOHSBmy4uOFeG10qUvQp0JlyPmOXdV2G6h7VbflHsHCYMCOKIkaOHIlWrVqhTp06hbabNGkSJkyYUIaVERGRvfB1VWHhm00R/c85zPjnLBbvvYKDccmY1a8BQn1cbF2eVWQaMpGQnWAJJKn61Jzgcff7N+q8ATeVGwBg3vF5+C32N6To7oWS+y1/djmquVcDAFxOvYwtl7cUeEyZIEOGwX6G8hwmzAwePBhHjx7F9u3bH9puzJgxGDlypOV5amoqgoKCrF0eERHZCZlUgpHtq6FpVQ8MW3IYp2+loeuMHZjYvQ5eaBRo6/LyEUUR2aZsKKVKSIScqayxCbE4lXgqf0DRpyBVl4rop6LhrfEGAHx/+HssOLmg0P13CeliCTMGswHxmffucSUTZHBVukKr1EKr0OZ5X8uAltAqtDmv3fdwU7pBI9NAEIRSPhMl5xBhZsiQIVi9ejX+++8/BAY+/AdRqVRCqVSWUWVERGSvWoZ6Yf2wVhix9DB2nEvA+38cwc7zdzCxWx04KUv/489oNiJNn2YJHym6FDTzb2aZV7Lh4gbEXItBqi7V8npuONGb9dj0wib4OfkBANZdWPfQgJKYnWgJM65KV6hlargoXKBVauGqcLWEEFeFK1wU93qknn3iWbQKaFWkUFLbszZqe9YurdNjVXY9AVgURQwZMgQrV67E1q1bERYWVux9cAIwEVHFZjKLmPXvOUzbfAZmEXjC2wmz+jVEDb+CPxMyDZl55pHcH05S9akYED4AapkaADD78GysOrcKqfpUpBvS8+3r/oDy7b5vHxpQ7p+D8ue5P7Hh0oZ74eSBr418G1lCilk0W3p0ypNyMwF40KBBWLRoEf7880+4uLjg5s2bAACtVgu1Wm3j6oiIyB4ZzAak6dPgrnSHIAiQSgS0rpuBLFU8lh44gyuGNPT4/TfUCVTA3dmEVH0qfu74s2Xi6+S9k7Hy3MpC99+neh+onXM+gzIMGbiecT3P685yZ0vwMJgMlu2tA1vDXeWeJ5jc/71GprG07RbaDd1CuxXpz1seg0xx2XWYmT17NgCgTZs2ebbPmzcP/fv3L/uCiIjI6kRRRIYhA2n6tJy5IvpUpOnTkKZPw7NPPGsZFlkYuxC7r++2tMltl2XMuaP27r674SR3AgCsPLcSK86tALRA7kSE2DQAaTnfp+pTLWFGq9RCLpFb5pHkBg5XpStcFa55LkfuXb03OlTpYAkkLgoXyCQFf7Q28W+CJv5NSv+EkX2HGTseASMioiK6kHwB1zOu54QTXSrSDGmWeSPphnR80/obS0D5ePvHWHthLcxiwTePbBfczhJQziSdwdarWws9bpo+zdK2lkctJAUl5cwhkbvg9A0TdpzJgMmogo+TFlcTAL+cphjecDhGNhpZpAmuQa5BCAIvMrE1uw4zRERkGwaTwRI2cns7Gvs1try+6twqnEw4aekNSdWlWnpSMgwZ2N13tyUMzDg0A5svby70WBNaTLCEDqkgtQQZmUSW0yNy9+GidMkZtrnbMdIlpAvqetW1THJ1VbrCVZ7zvbPCOU8PSe8avdG7Ru88xz0Ql4ghiw7h+o1s9J17CJ92qYmXmgVDKuGaNI7GricAlwZOACaiiiwuNQ53su5Yhmlyw0m6Ph0GswEfNvnQ0vaT7Z9gx/UdSNOn5VuDRCpIcejlQ5aAMuLfEQ8NKPcP8Xx34DvsvL7zXuh44OtzYc9ZJtTeyboDs2iGi8IFKqnK6pf/JmXoMWrZEWyOzblc+Zk6fpj8fD1o1dZb2ZaKpjif3wwzRER2RmfSWcJHmj4NBrMBjXwbWV7//fTvOJd8Dun6nGCSZkizBBSJIMFfz/9lafvmxjex5+aeAo9TlIDiJHeCs9wZLgoXLO68GCqZCgCw9sJaXEi+YJknkhtMcr/3d/J3mB4OURTx8/aL+GrDKRhMIoI81Jj5YkOEB7nZurQKrdxczURE5MguJF9AQnZCnh6R3IdcIsfwRsMtbYf9MwyHbx+2hJf7uSndENMnxvJ846WN2Htzb4HHlApSiKJoCSiVnCsh2DXYEkhyH7nPTaIJMiHno2Bow6F4J/wdy+vOcudCA0mXkC6Pc2rsiiAIeDMyBBFVPDB40UFcSczCC3N2YvQzNfF6yyp2tTgcFYw9M0REyPntXGfSId2QjnR9es7VNIY0CBDQ1L+ppd3Px37GlbQrltcz9BmWoOKucscfXf+wtO21phdiE2MLPN6DAeWNjW/kCSgCBDgrnOEid4Gbyg1Luyy1vLbszDJcT78OV4VrThuFC1zkLpa5IlVc+QFcUilZBny47Cg2nMhZCqRdTV9827Me3DQKG1dW8bBnhogqFIPZAL1Jb5mjAQA7r+1Eoi4RGfq7oePupb4Zhgy4Kd3yzBXpvbY3ziSegVE05tt3kEsQ1vdYb3m+8dLGQgOK3qTP8zzQJRBZxqx8vSG5K7Xe76OmH8EkmiyhRCPXFLp+yAvVXnj0SaES0arlmP1SQ/xvdxw+XxuLzbG3EDU9BjP6NkSjYHdbl0eFYJghIpvKDRnp+vScXpHchz4dLgoXdKzS0dL2k+2f4GbmTUtvSG67bFM2annWytN78dnuz3At/VqBx6zsUjlPmDGLZkuQESDkzBNR5AyzVHKulOe9z4c9jyRdElwULnCSO8FF7gInhZMlhNxvapupRT4PT7g9UeS2ZF2CIOCV5lXQsLI7Bi86iEsJmeg1dxdGdayOtyNDIJGw18veMMwQUbGZzCZkGDOQoc9AhiEDUokUVbVVLa8vil1kuUQ3tzckd0jmCbcnML7FeEvbDss6IFWfWuBxanvWzhNm9t/aX2hASdfnXUq+vk99BLoE5oQNudO98KFwgafaM0/baW2nQSpI4Sx3fmiPCIB8l/dS+VUnQIs1Q1phzIpjWHv0Bib/dQq7LyRgSs9weDrzHoD2hGGGqIIwi2YYzAYopUrL8903diPTkIl0Q84ckfsfVbVV0a9mPwA580m6/9ndElByV1jN1dS/KX7q8JPl+czDM5GmTyuwDqM571COs9wZmYZMOCuc84YOuQuqaKvkaTu84XAYRaMloOT2njjLneGkcMrTdnLk5CKfmwDngCK3pYrFRSXHjBcboMUTXpiw5gS2nr6NqOgYRPdpgKYhno/eAZUJhhkiO2cWzbiTdccSMh4MHgHOAWgd2BpAzpyNUdtG5WmbG1YyjZloH9zeMvQhQMDAzQMLXWm1uX9zS5gRBAG3s27nCyhyiTwnSMjyBonOVTvDKBrhJHOyTFDNDSgP9oqseW4N5BJ5kSasdqraqWgnjagUCYKAvk0ro0FlNwxadBAXbmfgxR93Y0S7ani3bSikHHayOYYZolImiiKyjFnINGbmCRTuSneEuocCyLkr70/HfsoTSu4PHk8GPomRESMtbZ/+4+lCj9c+uL0lzMgkMvx75V+IKPgixQxDhuV7QRBQ16suJIIEGrnG0sOR+30V1yp53ju33VwopAo4yZ0sD4W04Cs8Pm72cZHPV2H7ILI3Nf1dsWZwK3y66jhWHLqGKZvOYM/FRHzXuz68XTjsZEsMM1ThmUUzMg2ZlvDhLHeGt8YbQM69XTZc2oBMQ85rmYbMnLkid7+PDIi0zKGIz4zHs6ueRaYhs8Aw8XzY85a5IibRhB+P/VhoTWHuYZbvNXINZIIMapkaTgqnPIHDSe6EcO9wS1uJIMG45uOgkqnytLN8r3DOc5zfon4r8nmq6123yG2JyisnpQxTe9dHi1AvfLrqOLafu4Nnpsdgep/6aBnqZevyKiyGGXI4RrMRmcZMyASZ5S63afo07Lu5zzKf4/4ejyxjFloGtET74PYAgMuplzFw80BLeHlw/sertV7F+43ft+z3s12fFVqLl/ref14qmSpvzwcEaOQaSy+Gu+reZZ0amQZ9a/S1vPZgQPHR+FjaSgQJDr58sMjrhjxf7fkitSOiknuhUSDCA7UYvOgQTt9Kw0s/78GQp8Iw7OkwDjvZAMMMWd39q5FmGDJwLvlcTk/IA70cGYYMNK/U3HIzu3NJ5zBx90RLKMk05rwn25QNABhcfzDeCX8HAHA9/TqG/Tus0BpcFa6WMCOVSHE57XK+NhJBAieZEyQSSZ73tQlqkxM6ZE7QyDU5AUWWE0Luv5zWWe6Mdc+ty2kj00AtUxcaQKQSKcY0HVPkc8gF0IjsT5ivC1YNaokJa05gyb4riN5yFnsuJCD6xQbwdVXZurwKhWGGCpRpyMSNjBuW4Zfcr1nGLGQaMtHUvymqe1QHAJxOPI05R+ZY2mUYM/IMy4yMGGmZSHoq8RT6b+hf6HFVMpUlzJhEEw7GHyy8RmOm5XutUot6XvUsQcJJ7mTpFdHINKjvU9/S1lvtjQWdFlhCSW5AKeimds4KZ8x4akaRzplEkKCya+UitSWi8kGtkGLy8/XQ/AlPfLTiGPZcTMQz02MwtVc42lT3efQOqFQwzDi4TEMmbmfdzhM6ciefZhoy0aJSC8vlrUdvH8X/Tv4vTyi5P6h83PRjdA7pDADYe3MvhvwzpNDjftT0I0uYSdWnPvTuuZmGe6HDReGCAOeAnPkf900kzX1e27O2pW2AcwCmPDklX5vch1xy7662fk5+WNh5YZHOmUKqQEPfhkVqS0RUFN3qB6BuQM6w08kbqeg/bx8GPPkE3utQDXJp4esWUelgmCkjmYZMJOmS8oWN3K+tA1vDz8kPALD/5n6sOLsibxtjJrIMOe+b2HKi5eqVLZe34KPtHxV63C9bfWkJMwlZCdhwaUOhbe9fdMxZ7gw3pRs0Mk2eYRO1XA2NTIMglyBL26raqvik6SeW1yzzRO72ergp3Sxtq7lXw4bnC6/hfs4KZ3So0qFIbYmIbC3E2xkr3m2BL9bF4n+74zBn23nsu5SI6BcbIMBNbevyyjWGmcew8/pObLi4ocBhmExjJqY8OcUyvLHq3CpM2jup0H3NfGqmJcxcz7iONRfWFNr2/rU+LFeqyDSWMKGWqS0BJHefAFDNoxo+bPyh5TWN/G7bu+/1Ud/rEo3wi8hzE7yH8VJ7cVVUIiIAKrkUE7vXQfMnPPHhsqM4EJeEqOkxmNIzHO1q+dq6vHKLYeYxXEy5iJXnVhb6+v1LtOfOycgNEPcHDo1Mk+emc7U9a+O9Ru/dCxv3hQ6NXAN/J39L27aV22JX311FqjfAOQAv1XqpBH9SIiIqjqi6/qhTSYvBiw/i6NUUvPnrfrzRqio+7FQDChmHnUqbIIpiwatrlRPFuYV4cZ1IOIFd13flCRr3fw1yCbKs63H/FT1ERFQx6IwmfPXXafyy4yIAIDzIDTNfbIAgD42NK7N/xfn8ZpghIiKysr9P3MT7fxxBarYRLioZvnmhHjrV8X/0Gyuw4nx+s6+LiIjIyjrU9sP6YZFoUNkNadlGDPjtIMb9eRw6o8nWpZULDDNERERlINBdg9/faY53ngwBACzYFYce3+/EpTsZj3gnPQrDDBERURmRSyUY80xNzOvfGO4aOU5cT0WXGdux+sh1W5fm0BhmiIiIyljbGj5YPywSTap4IF1nxNDFhzBmxTFkGzjsVBIMM0RERDbgr1Vj0VtNMeSpUAgCsHjvZXSftQPn4tMf/WbKg2GGiIjIRmRSCd7rUB2/vt4EXs4KnLqZhq4ztmP5gau2Ls2hMMwQERHZWGSYN9YPjUSLJzyRZTDhvT+O4P0/jiBTb7R1aQ6BYYaIiMgO+Liq8L83mmJEu2qQCMCyA1fx7MwdOH0z7dFvruAYZoiIiOyEVCJgWLswLHyzGXxclDgXn45us7Zj6b7LKOdr3D4WhhkiIiI70/wJT6wfFonW1byRbTDjw+XHMHzpYaTrOOxUEIYZIiIiO+TlrMT8/o3xQafqkEoE/Hn4OrrO2I4T11NsXZrdYZghIiKyUxKJgHfbhGLp283gr1Xh4p0MPPf9Tvxv1yUOO92HN5p8DH8evoaZ/5yDRimDk0IKjUIGJ+XdrwopejcOQpivCwDgSmImTlxPsbRRy+9rq5RCLZfyrtpERFSopAw9Ri07gs2x8QCAqLp+mPx8Pbiq5DauzDqK8/ktK6OayqXbaTqcfcjiRq2reVvCzI5zdzB6xbFC237fryGi6ubcQfXfU/H4euPpnIB0NyipFVI4KWTQKKV4NrwSalfSAgBupWbj2NUUaO4LUfeHK4WMnW9EROWBu5MCP74SgZ+3X8Tkv05h/bGbOHYtBTNfbIjwIDdbl2dTDDOPoUu9SqhVyRWZOhMy9EZk6k05D50RGXoTgj01lrZuGgUigt2RoTchS5/zem47AHBS3vuruJ2mQ+yN1EKPWzdAawkz+y8lYdCig4W2/er5uujduPLdton4bO1JaCzBKG9Qal/L1/IPIilDjyNXk+GklN1rfzcoaeRSSCTsRSIiKmuCIODNyBBEVPHA4EUHcSUxCy/M2YnRz9TE6y2rVNgefoaZx+CnVcFPqypS2051/NCpjl++7WaziGyjCXLpvR6UJ6t749fXmyBTb0SGzpTz9b6gFOrjbGnrpJQiPMgNmbqcMJUbqvRGMwBArbj3V3wnXYejVwufOBbgrraEmePXU9B/3r5C247tUguvt6oKADh1MxUfrzyeE3YUUjgpZXBWyuB0Nyy1CPVCw8ruAIAMnRGxN1KhUeS2yWmvlEkq7D9CIqLiqh/khnVDI/HhsqPYcOImJq49iV3nE/Btz3pw0yhsXV6ZY5ixMYlEgEaR96/B11UFX9eihaQ21X3QprpPvu0GkxmZehOU9w0zNQx2x8+vRtzrHbo/KOmMqO7nYmmrkEpQu5JrTkC6LyjlzrBSyu/tNyFdjwNxSYXWOEYqsYSZc/HpeGHOrnxtpBIBTgopBrUNxTtPPgEAuJ6chXGrT9wLPYq7AUkpg7NSitqVtKgTkNNDpTeacT056+7rnINEROWfVi3H7Jca4tddcfhiXSw2x95C5+jtiH6xARoFu9u6vDLFMFNOyaUSaNV558v4uKjwdM2ihaSmIZ5YNzQyzzZRFKEzmpGhM0Ill1q2V/dzwZyXGlmCUYbOiEydEel3w1LukFiuYE8NMnQ57bLu3iHWZBaRmm2E+b7p6HfSddh08lahNQ5uG2oJM1eTMvHUlG2W1yQCLOFHo5Sid0SQJSSlZBnw1YZTcLqvFyl3IrazUoZgTydL75fZLCLTYOLQGhHZJUEQ8GqLKmgU7I5Biw4iLiETvebuwqiO1fF2ZEiF+X+LYYaKTBAEqOTSPEEGyFkLoaAhtIKEB7lh26i2lucms5gzNKYzIV1nhJvm3qx8f60aXzxXBxm5wUhnRIY+5/sMnRFhvveG23RGM5wUUsscJLMIpOmMSLu7wFRKlsHSNjFDj0V7Lhda4yvNg/FZtzo5bTP1iPh8MwBYJlff31PUvpYv3owMAZDTOzTr33OWobPckOR893tvF2WRhyWJiIqjToAWa4e0wpgVx7D26A1M/usU9lxIwJRe9eHhVP6HnRhmyKakEgGuKnmBlxZ6uyjRr2lwkfZT098VJz7rBLNZRJbBdDcA5QylZeiN8Ltv2M5FJcPwdmHI1Jvutsl95LSt7HFv4nbGfattZuhNyNCbcDtNZ9l2f6BKyzZg+pazhdbYvX4lTOvTAEBO8Gn8xWZL0HFW5fQiudwNSg0ru6NPk8qW9645ch0ahdTS9v73KWXSwg5JRBWIi0qOGS82QPMnPPHZmpP49/RtRE2PQfSLDdCkqoety7MqhhkqVyQSwTKvJv9MohxezkoMb1etSPur7KFB7Ged7oWeu3ONcsPS/cFHJpHgpWaVkXG3lylTb0R69r1Q5eWstLTN0BmRkmXI02N0P53RbAkzeqMZQxYfKrTGdjV98dOrEZbnfX/cDYVMci/w3BeAqno54emavpa2Z2+lQSW/F5Lun4hORI5HEAT0axqMhpVzhp0u3M5Anx92YWT7ani3TWi5HXZimCF6CEEQoL57+bq3i/KhbbUaOT7vXrdI+3VRybB55JOWkJRmCT05X5/wvtfjYzCZ0TzEM2eILTtn6Cx3UjYAaBTSPG13nk8o9LhP1fDJE2aenbnDMm8JAJS5IUglQ9OqHvj6hXDLa5PWx0IELFequeROxlbJ4O2sRK1K9xa1MpvFcvufJpEjqOnvijWDW+HTVcex4tA1fPv3Gey+kIjvetd/5P9ljohhhsgGZFJJnkvsH8ZJKcPit5vl254730g039smAJjdr6El8KRnG5F+NwRl6Iz5AoeTUgYRIrINOTvRGc3QGfVIyNAjxMspz/H+tzvOEqAeFBHsjmUDW1ieN5+8BalZRjirckKPi0p293s5wnyd8V6H6pa2647egAgRznfbuajklu+dFDKGIqISclLKMLV3fbQI9cKnq45j+7k7iIqOwbTe9dEy1MvW5ZUqhpkSyjBkIF1f+Oq/9qS0LlEWUHofKmV52XRR6i5KPUXaTykdqygEQQAkgCABUvVZlu0tq+cNIQ/WdP/P7dYPckJS7qX8OUNoOXOD1HIpMgwZAHKuZHu9VZBlCC23Xe73QZ5KZBoyLftNy865Ui3LkHeOEQDcStPi3afuzQeasOY44tP0Bf4Zw3ycsGZoM8uf9/3fjyM505ATjpQyOKvuDZH5uCgRVffeRPTryVlQSKVwUT1iHaMCNpf077rUfo64rACVohcaBSI8UItBiw7izK10vPTzHgx5KgzDng6DtJz8ssB7M5XQT8d+wvSD00ttf0TlidmoAcwqiGYlRLMKMOV8Fc1KCNJMyF3v3doj61ofiEZXiKac12FWQTSpAEghUcfBqcpsS9v0s2MgGrUFHBGQKG7B6YnvLM8zLgyHWZcbbkwQpNmAJBuCRAeJ4g7UgYssbfVJTSGaVBAkOgjSnDaQZkOQZEOQZkEiTy7N02M1DwYlq4b0InwGluUvALYOiWV9/JL8cikC0BlMMJhyemKlkpwrVCWlUNcrtV/BwPCBj72f+/HeTGVAIkggk9j49FkxhoqltPOS7qckGbu0aqbHJ5FlAsh8ZDsAUAcsybdNFAGIspzHfVR+KyGanHJC0v3hx6yCIEt7YCcCADMACQApRJMTYHLK+SkR814BZkhqfl/wyUuQpcA5bJLledaVV2DSe+cEHUk2BKnubkjKhiBLh9Jrq6WtKdsfECX3gpQ0G4JQ8FBdaXjw34BVf1flPzeHJdz98TcDyDQ+tGmR6U0F966WFfbMED2gpP8kihKmCtp3kd5XlE+OIjUp2bGKck6s+UFakn2LEC2X6qdlm+6baG2CVAI0e+LeCqmz/43D9WQd0nPnGeUOo2Ub4eWiwNIBDSxtn591EOfiCw5q3s5ybHq/ieX4r/18DIev5A1ZKpkEziopvJwVWDSgnmX7kj03cCtVD2el9O4co5yvTkoJXFQyhPrcu3LOmr8klOTnuDR/kSi1Gkv477EoSuvfY6kdqwSuJGZg3JqTOH/3Zsl9m1bG6y2rQFbCKxpdFa5wV5XuqsPsmSF6DCXtCi5St2/5GJ52KFoVcN+dOgr0YceiXYUGALP7RSAxQ4/0u+EoTWdEWrYBadlGKGUSuKncLG19XDTw1xqQmmWwLOiYbTQjO90MQZDAQ3Vv7Y9/Tp7C/kJuC6KSS3Bq4jOW50MXH8KBuCS4quVwUcnurtUkszwf0a6aZeL06ZtpyDKY4Hp3crWLSpZv4UuqeCq7AmsHVMMX62Lxv91xWLg9E6eu3ED0iw0Q4Ka2dXnFxjBDRFQMYb6PSEb3+eGVe+v/GE1mSwBKyTJY5i3keq5hAOoHuSH1bjCyfM0y5FsY8UZKFq4l5zwepJRJ8lwt9vWGU9hyKj5PG4VMkhN+VHL8PaK15bfxpfsu41x8OlzuhiMXldwSkFxUMtTwcy03E0YJUMmlmNi9DpqFeGL08qM4EJeEztEx+PaFcLSr5fvoHdgRhhkiojIgk0rgplHATaNAUAGvF3W1awCY2qs+7qTr8oWetGwjTA8MnbhpFAhwU+e8fndFa73RjDvpeqRlG/MMK/x94la+4HO/0593glSSE6w+WXUM/566Da1aDle1LOfr3fCjVcvxdusQSw/QlcRMZBlMljYq+UOuLqMy17meP+oGaDF48UEcvZqCN3/djzdbVcUHnWpAIXOMhTQZZoiIHEyQhwZB960+/TBTet1b+NBsFpGuvxd8Hlw3qHM9fzzh42x5PTXbgNTsnGE0ncGcp4foRnJ2ob1DAPB26xDL91M3ncHKQ9cszxVSCVzVOcNirio5FrzeBFp1zi1NNp+8hXO30+GqkucLStq7QYlrD5W+yp4a/DGgOSb/dQrzdlzCT9svYl9cEma+2KDIP2u2xDBDRFRBSB5yLzQA6NEwsMj7mtCtNgY/FYqUrJzAk5KVMzcoNcuAdJ0xz7wclVwCd40cqdlGmMwi9KacnqE76XrL67nWH7uBFfcFnwft/fhp+Ljk3Gttzrbz+OdUfJ6w46qWWb7vVMcPTsqcj7l0nRECclbMZq9QwZQyKcZ1rY1mIZ4Y9ccRHLmSjKjoGHzzQj10quNv6/IeimGGiIiKLdBdg0D3ov3GPqlHPUzqUQ+iKCJDb0Lq3fuSpd4NQvf3+DSu6gEIuBuM7oak7HuTqHN7cADgzM007L2YWOhxW1fztoSZbzeexvydlyCTCJahsNxJ065qOcZ3rW1Z5v/Y1RRcScq09AS5aXK+OitlFSIIdazth9qVXDFk8SEcupyMAb8dxKvNgzEmqqbdTh7npdlEROQQDCZznpuhHr+WgksJGXeD0b3gkxuUfno1whKU3vv9CJYfvFrovvd93M4SZsavPoH5Oy/layOVCNCq5VgxsAWq3L3dx4bjN7DrfEJO8NEocsKPWg6tJudrZU+Nw97Z3mAy49uNpzH3vwsAgNqVXDGrb0PLn93aivP5zTBDRETlnijmrDmUJ/Rk3gs//ZoGWya7/hRzARtP3ERKlgHJmQYkZxmgN967+qwowSfX5pGtEerjYtnvH/uvQnu3p8ftvl4frUaBznX94eGkAACkZRtgMotwUcltfgXZv6fiMfL3w0jKNMBZKcOXPeri2fBKVj9uuVtn5vvvv8c333yDGzduoHbt2pg2bRoiIyNtXRYRETkIQRCgUcigUcjgp1U9tO2bkSF4MzIkz7ZsgwnJmTnBJzdwAMCT1b3hrJTlBJ+7w2cpmXrLc636XturSVk4feuBlarv0zzE07LvH2MuInrLWQgC4KKUwS2310eTMyz2YccaqOyZM8x35lYaLtzOyDMk5qaRQy0vnflBbWv4YP2wSAxbfBh7LyVi6OJD2HU+AeO61rKbYSe7DzNLly7F8OHD8f3336Nly5aYO3cunnnmGZw8eRKVK1d+9A6IiIgek0ouhZ9Wmi8Ita3ug7bVfYq0jzdaVUW7mr5IztJben1ywo8ByVl6eDnfCz6Zdy+jF0UgNduI1Oy89x0Y0a6a5fu1R28gesvZfMfLuWpMjvmvNUadgJx7mv135ja2nr4Nd83d4KNR5HyvVsBNI4evq6rAy7H9tWoseqsppm0+i1lbz2Hx3ss4dDkJM/s2RKiPc5H+/NZk98NMTZs2RcOGDTF79r2bzdWsWRPdu3fHpEmTHvLOHBxmIiIiR6Q3mnPCTpYBKQ8EoJ4RQXC+O7l54Z44LD9w9b62BhhM9z7aN4980hI4pm46U2DwybV8YAs0Cs65LcGKg1excM/lu8NhOWHHTS3HnQwdVhy4ijSdCWq5FJ93r4PnGxX9SriiKjfDTHq9HgcOHMDo0aPzbO/QoQN27txZ4Ht0Oh10Op3leWpqqlVrJCIisgaFTAJvF6Vlfk5h+jUNzrPooiiKyNSbcoa9Mg0I8rh3e4ImVTww4MknkJypvzsf6O7Xu9+7ae5dLXbpTgYOFHKLDQCoG+CKY9dS8d4fR3D0ajImdKvzGH/ax2PXYebOnTswmUzw9c27rLKvry9u3rxZ4HsmTZqECRMmlEV5REREdkcQBDgpZXBSyvLdZ6lVmBdahXkV+t77B2u6NwhArUquSM40IOlu2EnJNCDpbhD66vl6+PPwdUzfcgYNg0v3JpPFZddhJteDE5hEUSx0UtOYMWMwcuRIy/PU1FQEBRW0eDgRERHd7/7P1hBvZ4R4P3w+zLB2YegS7o8nHtHO2uw6zHh5eUEqlebrhYmPj8/XW5NLqVRCqXx4lxwRERGVDlsHGQCw6ztIKRQKNGrUCJs2bcqzfdOmTWjRooWNqiIiIiJ7Ytc9MwAwcuRIvPzyy4iIiEDz5s3xww8/4PLlyxgwYICtSyMiIiI7YPdhpnfv3khISMBnn32GGzduoE6dOli/fj2Cg4Mf/WYiIiIq9+x+nZnHxXVmiIiIHE9xPr/tes4MERER0aMwzBAREZFDY5ghIiIih8YwQ0RERA6NYYaIiIgcGsMMEREROTSGGSIiInJoDDNERETk0BhmiIiIyKHZ/e0MHlfuAsepqak2roSIiIiKKvdzuyg3Kij3YSYtLQ0AEBQUZONKiIiIqLjS0tKg1Wof2qbc35vJbDbj+vXrcHFxgSAIpbrv1NRUBAUF4cqVK7zvkxXxPJcNnueywfNcNniey4Y1z7MoikhLS0OlSpUgkTx8Vky575mRSCQIDAy06jFcXV35j6UM8DyXDZ7nssHzXDZ4nsuGtc7zo3pkcnECMBERETk0hhkiIiJyaAwzj0GpVGLcuHFQKpW2LqVc43kuGzzPZYPnuWzwPJcNeznP5X4CMBEREZVv7JkhIiIih8YwQ0RERA6NYYaIiIgcGsMMEREROTSGmYf4/vvvUbVqVahUKjRq1AgxMTEPbb9t2zY0atQIKpUKISEhmDNnThlV6viKc65XrFiB9u3bw9vbG66urmjevDk2btxYhtU6ruL+TOfasWMHZDIZ6tevb90Cy4ninmedToePP/4YwcHBUCqVeOKJJ/DLL7+UUbWOq7jneeHChQgPD4dGo4G/vz9ee+01JCQklFG1jum///5D165dUalSJQiCgFWrVj3yPTb5LBSpQEuWLBHlcrn4448/iidPnhSHDRsmOjk5iXFxcQW2v3DhgqjRaMRhw4aJJ0+eFH/88UdRLpeLy5YtK+PKHU9xz/WwYcPEr776Sty7d6945swZccyYMaJcLhcPHjxYxpU7luKe51zJycliSEiI2KFDBzE8PLxsinVgJTnPzz77rNi0aVNx06ZN4sWLF8U9e/aIO3bsKMOqHU9xz3NMTIwokUjE6dOnixcuXBBjYmLE2rVri927dy/jyh3L+vXrxY8//lhcvny5CEBcuXLlQ9vb6rOQYaYQTZo0EQcMGJBnW40aNcTRo0cX2P6DDz4Qa9SokWfbO++8IzZr1sxqNZYXxT3XBalVq5Y4YcKE0i6tXCnpee7du7f4ySefiOPGjWOYKYLinue//vpL1Gq1YkJCQlmUV24U9zx/8803YkhISJ5t0dHRYmBgoNVqLG+KEmZs9VnIYaYC6PV6HDhwAB06dMizvUOHDti5c2eB79m1a1e+9h07dsT+/fthMBisVqujK8m5fpDZbEZaWho8PDysUWK5UNLzPG/ePJw/fx7jxo2zdonlQknO8+rVqxEREYGvv/4aAQEBqFatGt5//31kZWWVRckOqSTnuUWLFrh69SrWr18PURRx69YtLFu2DJ07dy6LkisMW30WlvsbTZbEnTt3YDKZ4Ovrm2e7r68vbt68WeB7bt68WWB7o9GIO3fuwN/f32r1OrKSnOsHTZkyBRkZGejVq5c1SiwXSnKez549i9GjRyMmJgYyGf+rKIqSnOcLFy5g+/btUKlUWLlyJe7cuYN3330XiYmJnDdTiJKc5xYtWmDhwoXo3bs3srOzYTQa8eyzz2LGjBllUXKFYavPQvbMPIQgCHmei6KYb9uj2he0nfIr7rnOtXjxYowfPx5Lly6Fj4+PtcorN4p6nk0mE/r27YsJEyagWrVqZVVeuVGcn2ez2QxBELBw4UI0adIEUVFRmDp1KubPn8/emUcoznk+efIkhg4dirFjx+LAgQPYsGEDLl68iAEDBpRFqRWKLT4L+etWAby8vCCVSvMl/Pj4+HyJM5efn1+B7WUyGTw9Pa1Wq6MrybnOtXTpUrzxxhv4448/0K5dO2uW6fCKe57T0tKwf/9+HDp0CIMHDwaQ86EriiJkMhn+/vtvPPXUU2VSuyMpyc+zv78/AgICoNVqLdtq1qwJURRx9epVhIWFWbVmR1SS8zxp0iS0bNkSo0aNAgDUq1cPTk5OiIyMxOeff87e81Jiq89C9swUQKFQoFGjRti0aVOe7Zs2bUKLFi0KfE/z5s3ztf/7778REREBuVxutVodXUnONZDTI9O/f38sWrSIY95FUNzz7OrqimPHjuHw4cOWx4ABA1C9enUcPnwYTZs2LavSHUpJfp5btmyJ69evIz093bLtzJkzkEgkCAwMtGq9jqok5zkzMxMSSd6PPKlUCuBezwE9Ppt9Flp1erEDy73s7+effxZPnjwpDh8+XHRychIvXbokiqIojh49Wnz55Zct7XMvRxsxYoR48uRJ8eeff+al2UVU3HO9aNEiUSaTibNmzRJv3LhheSQnJ9vqj+AQinueH8SrmYqmuOc5LS1NDAwMFF944QXxxIkT4rZt28SwsDDxzTfftNUfwSEU9zzPmzdPlMlk4vfffy+eP39e3L59uxgRESE2adLEVn8Eh5CWliYeOnRIPHTokAhAnDp1qnjo0CHLJfD28lnIMPMQs2bNEoODg0WFQiE2bNhQ3LZtm+W1V199VXzyySfztN+6davYoEEDUaFQiFWqVBFnz55dxhU7ruKc6yeffFIEkO/x6quvln3hDqa4P9P3Y5gpuuKe59jYWLFdu3aiWq0WAwMDxZEjR4qZmZllXLXjKe55jo6OFmvVqiWq1WrR399f7Nevn3j16tUyrtqx/Pvvvw/9/9ZePgsFUWT/GhERETkuzpkhIiIih8YwQ0RERA6NYYaIiIgcGsMMEREROTSGGSIiInJoDDNERETk0BhmiIiIyKExzBAREZFDY5ghIody6dIlCIKAw4cPP7RdmzZtMHz48DKpiYhsi2GGiKyif//+EAQBgiBALpcjJCQE77//PjIyMh5rv0FBQbhx4wbq1KkDANi6dSsEQUBycnKeditWrMDEiRMf61hE5Bhkti6AiMqvTp06Yd68eTAYDIiJicGbb76JjIwMzJ49u8T7lEql8PPze2Q7Dw+PEh+DiBwLe2aIyGqUSiX8/PwQFBSEvn37ol+/fli1ahV0Oh2GDh0KHx8fqFQqtGrVCvv27bO8LykpCf369YO3tzfUajXCwsIwb948AHmHmS5duoS2bdsCANzd3SEIAvr37w8g/zBTUlISXnnlFbi7u0Oj0eCZZ57B2bNnLa/Pnz8fbm5u2LhxI2rWrAlnZ2d06tQJN27csP6JIqLHwjBDRGVGrVbDYDDggw8+wPLly7FgwQIcPHgQoaGh6NixIxITEwEAn376KU6ePIm//voLsbGxmD17Nry8vPLtLygoCMuXLwcAnD59Gjdu3MD06dMLPHb//v2xf/9+rF69Grt27YIoioiKioLBYLC0yczMxLfffov//e9/+O+//3D58mW8//77VjgTRFSaOMxERGVi7969WLRoEdq2bYvZs2dj/vz5eOaZZwAAP/74IzZt2oSff/4Zo0aNwuXLl9GgQQNEREQAAKpUqVLgPqVSqWU4ycfHB25ubgW2O3v2LFavXo0dO3agRYsWAICFCxciKCgIq1atQs+ePQEABoMBc+bMwRNPPAEAGDx4MD777LPSOgVEZCXsmSEiq1m7di2cnZ2hUqnQvHlztG7dGkOGDIHBYEDLli0t7eRyOZo0aYLY2FgAwMCBA7FkyRLUr18fH3zwAXbu3PlYdcTGxkImk6Fp06aWbZ6enqhevbrlmACg0WgsQQYA/P39ER8f/1jHJiLrY5ghIqtp27YtDh8+jNOnTyM7OxsrVqyAVqsFAAiCkKetKIqWbc888wzi4uIwfPhwXL9+HU8//fRjDfeIoljo9vvrkMvleV4XBKHQ9xKR/WCYISKrcXJyQmhoKIKDgy1BITQ0FAqFAtu3b7e0MxgM2L9/P2rWrGnZ5u3tjf79++O3337DtGnT8MMPPxR4DIVCAQAwmUyF1lGrVi0YjUbs2bPHsi0hIQFnzpzJc0wickycM0NEZcrJyQkDBw7EqFGj4OHhgcqVK+Prr79GZmYm3njjDQDA2LFj0ahRI9SuXRs6nQ5r164tNHQEBwdDEASsXbsWUVFRUKvVcHZ2ztMmLCwM3bp1w1tvvYW5c+fCxcUFo0ePRkBAALp162b1PzMRWRd7ZoiozE2ePBnPP/88Xn75ZTRs2BDnzp3Dxo0b4e7uDiCnt2XMmDGoV68eWrduDalUiiVLlhS4r4CAAEyYMAGjR4+Gr68vBg8eXGC7efPmoVGjRujSpQuaN28OURSxfv36fENLROR4BJEDwkREROTA2DNDREREDo1hhoiIiBwawwwRERE5NIYZIiIicmgMM0REROTQGGaIiIjIoTHMEBERkUNjmCEiIiKHxjBDREREDo1hhoiIiBwawwwRERE5tP8DhyI2H7uyihAAAAAASUVORK5CYII=", "text/plain": [ "" ] @@ -1379,7 +1379,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f009b6e1a3994d5ca0cd59aa9e6e2c57", + "model_id": "30764b2e57f142e0b55e8346ece4880a", "version_major": 2, "version_minor": 0 }, @@ -1399,8 +1399,6 @@ "\n", "my_model.species = [A]\n", "\n", - "my_model.initial_conditions = [F.InitialCondition(value=1, species=A)]\n", - "\n", "left_surf = F.SurfaceSubdomain1D(id=1, x=0)\n", "right_surf = F.SurfaceSubdomain1D(id=2, x=1)\n", "\n", @@ -1408,6 +1406,8 @@ "\n", "vol = F.VolumeSubdomain1D(id=1, borders=[0, 1], material=material)\n", "\n", + "my_model.initial_conditions = [F.InitialConcentration(value=1, volume=vol, species=A)]\n", + "\n", "my_model.subdomains = [vol, left_surf, right_surf]\n", "\n", "my_model.reactions = [\n", @@ -1436,7 +1436,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQwVJREFUeJzt3Xl0FHW+9/FPZw9LQthCgLAagQAihC1wBRkhLMoFr0qe60wkijqorBlkUUSR+xhRGQERFCeQYVBADSCPwkBkJAHJgCDhzkhA0GgUkolsaQgSstTzB4ce2yykm+50Qr1f5/Q51q+/Xf2tAro//qq6ymIYhiEAAAAT8fJ0AwAAADWNAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEzHx9MN1EZlZWU6deqUGjZsKIvF4ul2AABANRiGoQsXLqhly5by8qp6jocAVIFTp04pPDzc020AAAAn/PDDD2rdunWVNQSgCjRs2FDS1R0YFBTk4W4AAEB1WK1WhYeH277Hq0IAqsC1w15BQUEEIAAA6pjqnL7CSdAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0PBqAEhMT1adPHzVs2FDNmzfX2LFjdezYseu+Li0tTVFRUQoICFCHDh301ltvlatJSUlRZGSk/P39FRkZqU2bNrljEwAAQB3k0QshpqWl6amnnlKfPn1UUlKiZ599VjExMTpy5Ijq169f4Wuys7M1atQoPfbYY1q7dq0+//xzPfnkk2rWrJnuu+8+SVJGRoZiY2O1YMEC3Xvvvdq0aZPGjRunPXv2qF+/ftXur/BKobyveJcb9/byVoBPgF1dZbwsXgr0DXSq9lLxJRmGUWGtxWJRPd96TtX+XPyzyoyySvuo71ffqdrLJZdVWlbqktp6vvVsF7IqKilSSVmJS2oDfQPlZbma+6+UXlFxabFLagN8AuTt5e1wbXFpsa6UXqm01t/HXz5ePg7XlpSVqKikqNJaP28/+Xr7OlxbWlaqyyWXK6319faVn7efw7VlRpl+Lv7ZJbU+Xj7y9/GXdPW+QJeKL7mk1pF/93xGVFzLZwSfETXxGVFdFqOyfxEe8NNPP6l58+ZKS0vToEGDKqyZNWuWtmzZoqysLNvYxIkTdfjwYWVkZEiSYmNjZbVatW3bNlvNiBEjFBISonXr1pVbZ1FRkYqK/v2He+1S2potKaBcuUZFjNInD35iW67/Uv1KPzgHtx2sXfG7bMvNXm2m05dOV1jbu2VvffHYF7bldovb6fuC7yusjWwWqa+e/Mq23HV5Vx356UiFtW2D2+q7ad/Zlvu800cHTh2osLZpvab66emfbMt3Jt+ptO/TKqyt51tPhc/8+8P67vfu1tbjWyuslSTj+X//VXvggwf04ZEPK629OOei7cMwfnO8/nz4z5XW5s/IV7P6zSRJT33ylJYfWF5pbfbUbLVr1E6S9PSOp/VaxmuV1v7ziX+qa/OukqQXdr2g+WnzK63d/+h+9WnVR5L06uevauanMyut/Wz8Z7qz3Z2SpDf3v6lJ2yZVWvvxf3+su2+9W5KUnJmshz96uNLa9+9/Xw90fUCS9MFXH2jch+MqrV09ZrXib4+XJH3y9Se6Z909ldYuG7lMT/V9SpK067tdGvLnIZXWvjL0FT098GlJ0hcnv1DfP/WttPb5wc/rhTtfkCR9lf+Vuq3oVmntjOgZejXmVUnSd+e/U/sl7SutfbL3k3rz7jclST8V/qTmrzWvtHZ8j/FKHpss6WrwaJDYoNLa+yPv1wcPfGBbtsyv/EqzfEZcxWfEv/EZcZW7PyOsVquCg4NVUFBw3Ts51KpzgAoKCiRJjRs3rrQmIyNDMTExdmPDhw/XgQMHVFxcXGXN3r17K1xnYmKigoODbQ9uhAoAwM2t1swAGYahMWPG6Ny5c9q9e3eldbfeeqvi4+P1zDPP2Mb27t2rgQMH6tSpUwoLC5Ofn5+Sk5P14IMP2mree+89Pfzww3YzPddUNgN06qdTFSZIprcrrmV6m+ltDoE5XstnhHO1fEZcxWeEfa0jM0C15maokyZN0v/+7/9qz54916399U3Orv2j/uV4RTWV3RzN399f/v7+5cbr+9W3+wdZmerUOFP7yw8kV9b+8gPUlbW//MB3Za2/j7/8Vf7P50Zr/bz9qn3M2F21vt6+tg8OV9b6ePnIx696/7wdqfX28q7232FHar0sXm6ptVgsbqmV3Pfvns8Ix2v5jHC89mb+jKiuWhGAJk+erC1btig9PV2tW7eusrZFixbKy8uzG8vPz5ePj4+aNGlSZU1oaKhrGwcAAHWSR88BMgxDkyZN0saNG/W3v/1N7dtXfmLjNdHR0UpNTbUb27Fjh3r37i1fX98qawYMGOC65gEAQJ3l0QD01FNPae3atXrvvffUsGFD5eXlKS8vTz///O/jfHPmzNFDDz1kW544caK+//57JSQkKCsrS6tWrVJSUpJmzJhhq5k6dap27NihhQsX6ujRo1q4cKE+/fRTTZs2rSY3DwAA1FIePQm6snNyVq9erfj4eElSfHy8vvvuO+3atcv2fFpamqZPn66vvvpKLVu21KxZszRx4kS7dXz44YeaO3euvv32W3Xs2FH/9//+X/3Xf/1Xtfpy5CQqAABQOzjy/V1rfgVWmxCAAACoe+rsdYAAAABqAgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYjkcDUHp6ukaPHq2WLVvKYrFo8+bNVdbHx8fLYrGUe3Tt2tVWk5ycXGHN5cuX3bw1AACgrvBoACosLFSPHj20bNmyatUvWbJEubm5tscPP/ygxo0b64EHHrCrCwoKsqvLzc1VQECAOzYBAADUQT6efPORI0dq5MiR1a4PDg5WcHCwbXnz5s06d+6cHn74Ybs6i8WiFi1auKxPAABwc6nT5wAlJSVp6NChatu2rd34xYsX1bZtW7Vu3Vr33HOPDh06VOV6ioqKZLVa7R4AAODmVWcDUG5urrZt26ZHH33Ubrxz585KTk7Wli1btG7dOgUEBGjgwIE6fvx4petKTEy0zS4FBwcrPDzc3e0DAAAPshiGYXi6CenqYatNmzZp7Nix1apPTEzUokWLdOrUKfn5+VVaV1ZWpl69emnQoEFaunRphTVFRUUqKiqyLVutVoWHh6ugoEBBQUEObQcAAPAMq9Wq4ODgan1/e/QcIGcZhqFVq1YpLi6uyvAjSV5eXurTp0+VM0D+/v7y9/d3dZsAAKCWqpOHwNLS0nTixAlNmDDhurWGYSgzM1NhYWE10BkAAKgLPDoDdPHiRZ04ccK2nJ2drczMTDVu3Fht2rTRnDlzdPLkSa1Zs8budUlJSerXr5+6detWbp3z589X//79FRERIavVqqVLlyozM1Nvvvmm27cHAADUDR4NQAcOHNCQIUNsywkJCZKk8ePHKzk5Wbm5ucrJybF7TUFBgVJSUrRkyZIK13n+/Hk9/vjjysvLU3BwsHr27Kn09HT17dvXfRsCAADqlFpzEnRt4shJVAAAoHZw5Pu7Tp4DBAAAcCMIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQ8GoDS09M1evRotWzZUhaLRZs3b66yfteuXbJYLOUeR48etatLSUlRZGSk/P39FRkZqU2bNrlxKwAAQF3j0QBUWFioHj16aNmyZQ697tixY8rNzbU9IiIibM9lZGQoNjZWcXFxOnz4sOLi4jRu3Djt27fP1e0DAIA6ymIYhuHpJiTJYrFo06ZNGjt2bKU1u3bt0pAhQ3Tu3Dk1atSowprY2FhZrVZt27bNNjZixAiFhIRo3bp11erFarUqODhYBQUFCgoKcmQzAACAhzjy/V0nzwHq2bOnwsLCdNddd+mzzz6zey4jI0MxMTF2Y8OHD9fevXsrXV9RUZGsVqvdAwAA3LzqVAAKCwvTypUrlZKSoo0bN6pTp0666667lJ6ebqvJy8tTaGio3etCQ0OVl5dX6XoTExMVHBxse4SHh7ttGwAAgOf5eLoBR3Tq1EmdOnWyLUdHR+uHH37Qa6+9pkGDBtnGLRaL3esMwyg39ktz5sxRQkKCbdlqtRKCAAC4idWpGaCK9O/fX8ePH7ctt2jRotxsT35+frlZoV/y9/dXUFCQ3QMAANy86nwAOnTokMLCwmzL0dHRSk1NtavZsWOHBgwYUNOtAQCAWsqjh8AuXryoEydO2Jazs7OVmZmpxo0bq02bNpozZ45OnjypNWvWSJIWL16sdu3aqWvXrrpy5YrWrl2rlJQUpaSk2NYxdepUDRo0SAsXLtSYMWP00Ucf6dNPP9WePXtqfPsAAEDt5NEAdODAAQ0ZMsS2fO08nPHjxys5OVm5ubnKycmxPX/lyhXNmDFDJ0+eVGBgoLp27apPPvlEo0aNstUMGDBA69ev19y5c/Xcc8+pY8eO2rBhg/r161dzGwYAAGq1WnMdoNqE6wABAFD33PTXAQIAALgRBCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6Ps6+sKysTCdOnFB+fr7Kysrsnhs0aNANNwYAAOAuTgWgv//973rwwQf1/fffyzAMu+csFotKS0td0hwAAIA7OBWAJk6cqN69e+uTTz5RWFiYLBaLq/sCAABwG6cC0PHjx/Xhhx/qlltucXU/AAAAbufUSdD9+vXTiRMnbvjN09PTNXr0aLVs2VIWi0WbN2+usn7jxo0aNmyYmjVrpqCgIEVHR2v79u12NcnJybJYLOUely9fvuF+AQDAzcGpGaDJkyfrD3/4g/Ly8tS9e3f5+vraPX/bbbdVaz2FhYXq0aOHHn74Yd13333XrU9PT9ewYcP00ksvqVGjRlq9erVGjx6tffv2qWfPnra6oKAgHTt2zO61AQEB1eoJAADc/CzGr89irgYvr/ITRxaLRYZhOH0StMVi0aZNmzR27FiHXte1a1fFxsZq3rx5kq7OAE2bNk3nz593uIdrrFargoODVVBQoKCgIKfXAwAAao4j399OzQBlZ2c71ZirlZWV6cKFC2rcuLHd+MWLF9W2bVuVlpbq9ttv14IFC+xmiH6tqKhIRUVFtmWr1eq2ngEAgOc5FYDatm3r6j6csmjRIhUWFmrcuHG2sc6dOys5OVndu3eX1WrVkiVLNHDgQB0+fFgREREVricxMVHz58+vqbYBAICHOXUITJK++eYbLV68WFlZWbJYLOrSpYumTp2qjh07OteIg4fA1q1bp0cffVQfffSRhg4dWmldWVmZevXqpUGDBmnp0qUV1lQ0AxQeHs4hMAAA6hBHDoE59Suw7du3KzIyUvv379dtt92mbt26ad++feratatSU1OdatoRGzZs0IQJE/T+++9XGX6kq+cr9enTR8ePH6+0xt/fX0FBQXYPAABw83LqENjs2bM1ffp0vfzyy+XGZ82apWHDhrmkuYqsW7dOjzzyiNatW6e77777uvWGYSgzM1Pdu3d3W08AAKBucSoAZWVl6f333y83/sgjj2jx4sXVXs/FixftrieUnZ2tzMxMNW7cWG3atNGcOXN08uRJrVmzRtLV8PPQQw9pyZIl6t+/v/Ly8iRJgYGBCg4OliTNnz9f/fv3V0REhKxWq5YuXarMzEy9+eabzmwqAAC4CTl1CKxZs2bKzMwsN56ZmanmzZtXez0HDhxQz549bb/QSkhIUM+ePW0/ac/NzVVOTo6t/u2331ZJSYmeeuophYWF2R5Tp0611Zw/f16PP/64unTpopiYGJ08eVLp6enq27evM5sKAABuQk6dBP3iiy/q9ddf1+zZszVgwABZLBbt2bNHCxcu1B/+8AfNnTvXHb3WGK4DBABA3ePI97dTAcgwDC1evFiLFi3SqVOnJEktW7bU008/rSlTptT5m6MSgAAAqHvcHoB+6cKFC5Kkhg0b3shqahUCEAAAdY/brwT9SzdT8AEAAOZQ7QDUq1cv7dy5UyEhIerZs2eVh7m+/PJLlzQHAADgDtUOQGPGjJG/v7/tv+v6eT4AAMC8bvgcoJsR5wABAFD3uP1WGB06dNCZM2fKjZ8/f14dOnRwZpUAAAA1xqkA9N1336m0tLTceFFRkX788ccbbgoAAMCdHPoV2JYtW2z/vX37dtvtJySptLRUO3fuVPv27V3XHQAAgBs4FIDGjh0rSbJYLBo/frzdc76+vmrXrp0WLVrksuYAAADcwaEAVFZWJklq3769vvjiCzVt2tQtTQEAALiTUxdCzM7OdnUfAAAANcbpK0EXFhYqLS1NOTk5unLlit1zU6ZMueHGAAAA3MWpAHTo0CGNGjVKly5dUmFhoRo3bqzTp0+rXr16at68OQEIAADUak79DH769OkaPXq0zp49q8DAQP3973/X999/r6ioKL322muu7hEAAMClnApAmZmZ+sMf/iBvb295e3urqKhI4eHheuWVV/TMM8+4ukcAAACXcioA+fr62u4FFhoaqpycHElScHCw7b8BAABqK6fOAerZs6cOHDigW2+9VUOGDNG8efN0+vRp/eUvf1H37t1d3SMAAIBLOTUD9NJLLyksLEyStGDBAjVp0kRPPPGE8vPztXLlSpc2CAAA4GoOzwAZhqFmzZqpa9eukqRmzZpp69atLm8MAADAXRyeATIMQxEREdz0FAAA1FkOByAvLy9FRETozJkz7ugHAADA7Zw6B+iVV17R008/rX/+85+u7gcAAMDtLIZhGI6+KCQkRJcuXVJJSYn8/PwUGBho9/zZs2dd1qAnWK1WBQcHq6CgQEFBQZ5uBwAAVIMj399O/Qz+9ddft10HCAAAoK5xKgDFx8e7uA0AAICa49Q5QN7e3srPzy83fubMGXl7e99wUwAAAO7kVACq7LShoqIi+fn53VBDAAAA7ubQIbClS5dKkiwWi/70pz+pQYMGtudKS0uVnp6uzp07u7ZDAAAAF3MoAL3++uuSrs4AvfXWW3aHu/z8/NSuXTu99dZbru0QAADAxRwKQNnZ2ZKkIUOGaOPGjQoJCXFLUwAAAO7k1K/APvvsM1f3AQAAUGOcCkClpaVKTk7Wzp07lZ+fr7KyMrvn//a3v7mkOQAAAHdwKgBNnTpVycnJuvvuu9WtWzcuiggAAOoUp34Gv379er3//vvasGGDFi9erNdff93uUV3p6ekaPXq0WrZsKYvFos2bN1/3NWlpaYqKilJAQIA6dOhQ4UnXKSkpioyMlL+/vyIjI7Vp0yZHNg8AANzknApAfn5+uuWWW274zQsLC9WjRw8tW7asWvXZ2dkaNWqU7rjjDh06dEjPPPOMpkyZopSUFFtNRkaGYmNjFRcXp8OHDysuLk7jxo3Tvn37brhfAABwc3DqZqiLFi3St99+q2XLlrns8JfFYtGmTZs0duzYSmtmzZqlLVu2KCsryzY2ceJEHT58WBkZGZKk2NhYWa1Wbdu2zVYzYsQIhYSEaN26ddXqhZuhAgBQ97j9Zqh79uzRZ599pm3btqlr167y9fW1e37jxo3OrPa6MjIyFBMTYzc2fPhwJSUlqbi4WL6+vsrIyND06dPL1SxevLjS9RYVFamoqMi2bLVaXdo3AACoXZwKQI0aNdK9997r6l6uKy8vT6GhoXZjoaGhKikp0enTpxUWFlZpTV5eXqXrTUxM1Pz5893SMwAAqH2cCkCrV692dR/V9utDbteO4P1yvKKaqg7VzZkzRwkJCbZlq9Wq8PBwV7QLAABqIacCkCSVlJRo165d+uabb/Tggw+qYcOGOnXqlIKCguzuEeZKLVq0KDeTk5+fLx8fHzVp0qTKml/PCv2Sv7+//P39Xd8wAAColZz6Fdj333+v7t27a8yYMXrqqaf0008/SZJeeeUVzZgxw6UN/lJ0dLRSU1Ptxnbs2KHevXvbzkOqrGbAgAFu6wsAANQtTgWgqVOnqnfv3jp37pwCAwNt4/fee6927txZ7fVcvHhRmZmZyszMlHT1Z+6ZmZnKycmRdPXQ1EMPPWSrnzhxor7//nslJCQoKytLq1atUlJSkl3omjp1qnbs2KGFCxfq6NGjWrhwoT799FNNmzbNmU0FAAA3I8MJTZo0MY4ePWoYhmE0aNDA+OabbwzDMIzs7GwjMDCw2uv57LPPDEnlHuPHjzcMwzDGjx9vDB482O41u3btMnr27Gn4+fkZ7dq1M1asWFFuvR988IHRqVMnw9fX1+jcubORkpLi0PYVFBQYkoyCggKHXgcAADzHke9vp84BKisrU2lpabnxH3/8UQ0bNqz2eu68807bScwVSU5OLjc2ePBgffnll1Wu9/7779f9999f7T4AAIC5OHUIbNiwYXbX1bFYLLp48aKef/55jRo1ylW9AQAAuIVTV4I+deqUhgwZIm9vbx0/fly9e/fW8ePH1bRpU6Wnp6t58+bu6LXGcCVoAADqHrdfCbply5bKzMzU+vXrdfDgQZWVlWnChAn67W9/a3dSNAAAQG3k1AzQzY4ZIAAA6h5Hvr+dOgcoMTFRq1atKje+atUqLVy40JlVAgAA1BinAtDbb7+tzp07lxvv2rWr3nrrrRtuCgAAwJ2cCkB5eXkKCwsrN96sWTPl5ubecFMAAADu5FQACg8P1+eff15u/PPPP1fLli1vuCkAAAB3cupXYI8++qimTZum4uJi/eY3v5Ek7dy5UzNnztQf/vAHlzYIAADgak4FoJkzZ+rs2bN68skndeXKFUlSQECAZs2apTlz5ri0QQAAAFe7oZ/BX7x4UVlZWQoMDFRERIT8/f1d2ZvH8DN4AADqHrdfCPGaBg0aqE+fPjeyCgAAgBrnVAAqLCzUyy+/rJ07dyo/P19lZWV2z3/77bcuaQ4AAMAdnD4JOi0tTXFxcQoLC5PFYnF1XwAAAG7jVADatm2bPvnkEw0cONDV/QAAALidU9cBCgkJUePGjV3dCwAAQI1wKgAtWLBA8+bN06VLl1zdDwAAgNs5dQhs0aJF+uabbxQaGqp27drJ19fX7vkvv/zSJc0BAAC4g1MBaOzYsS5uAwAAoObc0IUQb1ZcCBEAgLqnxi6EePDgQWVlZclisSgyMlI9e/a8kdUBAADUCKcCUH5+vv7P//k/2rVrlxo1aiTDMFRQUKAhQ4Zo/fr1atasmav7BAAAcBmnfgU2efJkWa1WffXVVzp79qzOnTunf/7zn7JarZoyZYqrewQAAHApp84BCg4O1qefflruPmD79+9XTEyMzp8/76r+PIJzgAAAqHsc+f52agaorKys3E/fJcnX17fcfcEAAABqG6cC0G9+8xtNnTpVp06dso2dPHlS06dP11133eWy5gAAANzBqQC0bNkyXbhwQe3atVPHjh11yy23qH379rpw4YLeeOMNV/cIAADgUk79Ciw8PFxffvmlUlNTdfToURmGocjISA0dOtTV/QEAALicQzNAf/vb3xQZGSmr1SpJGjZsmCZPnqwpU6aoT58+6tq1q3bv3u2WRgEAAFzFoQC0ePFiPfbYYxWeWR0cHKzf//73+uMf/+iy5gAAANzBoQB0+PBhjRgxotLnY2JidPDgwRtuCgAAwJ0cCkD/+te/Kvz5+zU+Pj766aefbrgpAAAAd3IoALVq1Ur/+Mc/Kn3+f//3fxUWFnbDTQEAALiTQwFo1KhRmjdvni5fvlzuuZ9//lnPP/+87rnnHpc1BwAA4A4OBaC5c+fq7NmzuvXWW/XKK6/oo48+0pYtW7Rw4UJ16tRJZ8+e1bPPPutQA8uXL1f79u0VEBCgqKioKn9FFh8fL4vFUu7RtWtXW01ycnKFNRWFNgAAYE4OXQcoNDRUe/fu1RNPPKE5c+bo2m3ELBaLhg8fruXLlys0NLTa69uwYYOmTZum5cuXa+DAgXr77bc1cuRIHTlyRG3atClXv2TJEr388su25ZKSEvXo0UMPPPCAXV1QUJCOHTtmNxYQEODIpgIAgJuYUzdDlaRz587pxIkTMgxDERERCgkJcXgd/fr1U69evbRixQrbWJcuXTR27FglJiZe9/WbN2/Wf/3Xfyk7O1tt27aVdHUGaNq0aQ7dkLWoqEhFRUW2ZavVqvDwcG6GCgBAHeL2m6FKUkhIiPr06aO+ffs6FX6uXLmigwcPKiYmxm48JiZGe/furdY6kpKSNHToUFv4uebixYtq27atWrdurXvuuUeHDh2qcj2JiYkKDg62PcLDwx3bGAAAUKc4HYBu1OnTp1VaWlrukFloaKjy8vKu+/rc3Fxt27ZNjz76qN14586dlZycrC1btmjdunUKCAjQwIEDdfz48UrXNWfOHBUUFNgeP/zwg3MbBQAA6gSn7gXmShaLxW7ZMIxyYxVJTk5Wo0aNNHbsWLvx/v37q3///rblgQMHqlevXnrjjTe0dOnSCtfl7+8vf39/x5sHAAB1ksdmgJo2bSpvb+9ysz35+fnXPZHaMAytWrVKcXFx8vPzq7LWy8tLffr0qXIGCAAAmIvHApCfn5+ioqKUmppqN56amqoBAwZU+dq0tDSdOHFCEyZMuO77GIahzMxMLtAIAABsPHoILCEhQXFxcerdu7eio6O1cuVK5eTkaOLEiZKunptz8uRJrVmzxu51SUlJ6tevn7p161ZunfPnz1f//v0VEREhq9WqpUuXKjMzU2+++WaNbBMAAKj9PBqAYmNjdebMGb344ovKzc1Vt27dtHXrVtuvunJzc5WTk2P3moKCAqWkpGjJkiUVrvP8+fN6/PHHlZeXp+DgYPXs2VPp6enq27ev27cHAADUDU5fB+hm5sh1BAAAQO1QI9cBAgAAqKsIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQ8HoCWL1+u9u3bKyAgQFFRUdq9e3eltbt27ZLFYin3OHr0qF1dSkqKIiMj5e/vr8jISG3atMndmwEAAOoQjwagDRs2aNq0aXr22Wd16NAh3XHHHRo5cqRycnKqfN2xY8eUm5tre0RERNiey8jIUGxsrOLi4nT48GHFxcVp3Lhx2rdvn7s3BwAA1BEWwzAMT715v3791KtXL61YscI21qVLF40dO1aJiYnl6nft2qUhQ4bo3LlzatSoUYXrjI2NldVq1bZt22xjI0aMUEhIiNatW1etvqxWq4KDg1VQUKCgoCDHNqoKhmHo5+JSl60PAIC6LNDXWxaLxWXrc+T728dl7+qgK1eu6ODBg5o9e7bdeExMjPbu3Vvla3v27KnLly8rMjJSc+fO1ZAhQ2zPZWRkaPr06Xb1w4cP1+LFiytdX1FRkYqKimzLVqvVgS2pvp+LSxU5b7tb1g0AQF1z5MXhqufnmSjisUNgp0+fVmlpqUJDQ+3GQ0NDlZeXV+FrwsLCtHLlSqWkpGjjxo3q1KmT7rrrLqWnp9tq8vLyHFqnJCUmJio4ONj2CA8Pv4EtAwAAtZ3HZoCu+fXUl2EYlU6HderUSZ06dbItR0dH64cfftBrr72mQYMGObVOSZozZ44SEhJsy1ar1S0hKNDXW0deHO7y9QIAUBcF+np77L09FoCaNm0qb2/vcjMz+fn55WZwqtK/f3+tXbvWttyiRQuH1+nv7y9/f/9qv6ezLBaLx6b6AADAv3nsEJifn5+ioqKUmppqN56amqoBAwZUez2HDh1SWFiYbTk6OrrcOnfs2OHQOgEAwM3No9MRCQkJiouLU+/evRUdHa2VK1cqJydHEydOlHT10NTJkye1Zs0aSdLixYvVrl07de3aVVeuXNHatWuVkpKilJQU2zqnTp2qQYMGaeHChRozZow++ugjffrpp9qzZ49HthEAANQ+Hg1AsbGxOnPmjF588UXl5uaqW7du2rp1q9q2bStJys3Ntbsm0JUrVzRjxgydPHlSgYGB6tq1qz755BONGjXKVjNgwACtX79ec+fO1XPPPaeOHTtqw4YN6tevX41vHwAAqJ08eh2g2spd1wECAADu48j3t8dvhQEAAFDTCEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0fDzdQF1WWlqq4uJiT7cBuJWfn5+8vPh/JQA3FwKQEwzDUF5ens6fP+/pVgC38/LyUvv27eXn5+fpVgDAZQhATrgWfpo3b6569erJYrF4uiXALcrKynTq1Cnl5uaqTZs2/F0HcNMgADmotLTUFn6aNGni6XYAt2vWrJlOnTqlkpIS+fr6erodAHAJDuw76No5P/Xq1fNwJ0DNuHboq7S01MOdAIDrEICcxKEAmAV/1wHcjDwegJYvX6727dsrICBAUVFR2r17d6W1Gzdu1LBhw9SsWTMFBQUpOjpa27dvt6tJTk6WxWIp97h8+bK7NwUAANQRHg1AGzZs0LRp0/Tss8/q0KFDuuOOOzRy5Ejl5ORUWJ+enq5hw4Zp69atOnjwoIYMGaLRo0fr0KFDdnVBQUHKzc21ewQEBNTEJgEAgDrAowHoj3/8oyZMmKBHH31UXbp00eLFixUeHq4VK1ZUWL948WLNnDlTffr0UUREhF566SVFRETo//2//2dXZ7FY1KJFC7tHVYqKimS1Wu0eN7O9e/fK29tbI0aM8HQrAAB4hMcC0JUrV3Tw4EHFxMTYjcfExGjv3r3VWkdZWZkuXLigxo0b241fvHhRbdu2VevWrXXPPfeUmyH6tcTERAUHB9se4eHhjm1MHbNq1SpNnjxZe/bsqXS2DQCAm5nHfgZ/+vRplZaWKjQ01G48NDRUeXl51VrHokWLVFhYqHHjxtnGOnfurOTkZHXv3l1Wq1VLlizRwIEDdfjwYUVERFS4njlz5ighIcG2bLVaHQpBhmHo52LP/EIm0NfboZNUCwsL9f777+uLL75QXl6ekpOTNW/ePDd2CABA7ePx6wD9+svbMIxqfaGvW7dOL7zwgj766CM1b97cNt6/f3/179/ftjxw4ED16tVLb7zxhpYuXVrhuvz9/eXv7+/kFkg/F5cqct726xe6wZEXh6ueX/X/GDds2KBOnTqpU6dO+t3vfqfJkyfrueee45c+AABT8dghsKZNm8rb27vcbE9+fn65WaFf27BhgyZMmKD3339fQ4cOrbLWy8tLffr00fHjx2+455tBUlKSfve730mSRowYoYsXL2rnzp0e7goAgJrlsRkgPz8/RUVFKTU1Vffee69tPDU1VWPGjKn0devWrdMjjzyidevW6e67777u+xiGoczMTHXv3t0lfVck0NdbR14c7rb1X++9q+vYsWPav3+/Nm7cKEny8fFRbGysVq1add0gCQDAzcSjh8ASEhIUFxen3r17Kzo6WitXrlROTo4mTpwo6eq5OSdPntSaNWskXQ0/Dz30kJYsWaL+/fvbZo8CAwMVHBwsSZo/f7769++viIgIWa1WLV26VJmZmXrzzTfdth0Wi8Whw1CekpSUpJKSErVq1co2ZhiGfH19de7cOYWEhHiwOwAAao5Hv7VjY2N15swZvfjii8rNzVW3bt20detWtW3bVpKUm5tr9yult99+WyUlJXrqqaf01FNP2cbHjx+v5ORkSdL58+f1+OOPKy8vT8HBwerZs6fS09PVt2/fGt222qakpERr1qzRokWLyv3y7r777tO7776rSZMmeag7AABqlsUwDMPTTdQ2VqtVwcHBKigoUFBQkN1zly9fVnZ2tu3q1XXF5s2bFRsbq/z8fNts2TXPPvustm7det3LBcCc6urfeQDmU9X39695/FYYqBlJSUkaOnRoufAjXZ0ByszM1JdffumBzgAAqHm1/8QVuMSvr5b9S7169RITgQAAM2EGCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCFWyWCzavHlzlTXx8fEaO3Zstdf53XffyWKxKDMz84Z6w1V33nmnpk2b5uk2AKBO4VYYJhIfH6/z589fN9D8Um5urkJCQiRdDS7t27fXoUOHdPvtt9tqlixZwq00KlDZ/nLWrl27NGTIEJ07d06NGjWyjW/cuFG+vr43vH4AMBMCEKrUokWL69ZUdINVVN+VK1fk5+fn9OsbN27swm4AwBw4BOZChVcKK31cLrlc7dqfi3+uVu2NuvPOOzVlyhTNnDlTjRs3VosWLfTCCy/Y1fzyEFj79u0lST179pTFYtGdd94pqfwhsL/+9a/6j//4DzVq1EhNmjTRPffco2+++cah3oqKijRz5kyFh4fL399fERERSkpKsj2flpamvn37yt/fX2FhYZo9e7ZKSkoc2rbz58/r8ccfV2hoqAICAtStWzd9/PHHtuf37t2rQYMGKTAwUOHh4ZoyZYoKC/+939u1a6eXXnpJjzzyiBo2bKg2bdpo5cqVtuevt78SExPVsmVL3XrrrZKktWvXqnfv3mrYsKFatGihBx98UPn5+ZKuziYNGTJEkhQSEiKLxaL4+Hjbtv7yENi5c+f00EMPKSQkRPXq1dPIkSN1/Phx2/PJyclq1KiRtm/fri5duqhBgwYaMWKEcnNzHfozAoC6jBkgF2qQ2KDS50ZFjNInD35iW27+WnNdKr5UYe3gtoO1K36XbbndknY6fel0uTrj+Rs/7PTnP/9ZCQkJ2rdvnzIyMhQfH6+BAwdq2LBh5Wr379+vvn376tNPP1XXrl0rnbUoLCxUQkKCunfvrsLCQs2bN0/33nuvMjMz5eVVvcz90EMPKSMjQ0uXLlWPHj2UnZ2t06ev7oOTJ09q1KhRio+P15o1a3T06FE99thjCggIsAs5VW1bWVmZRo4cqQsXLmjt2rXq2LGjjhw5Im9vb0nSP/7xDw0fPlwLFixQUlKSfvrpJ02aNEmTJk3S6tWrbe+xaNEiLViwQM8884w+/PBDPfHEExo0aJA6d+5c5f7auXOngoKClJqaajt8eOXKFS1YsECdOnVSfn6+pk+frvj4eG3dulXh4eFKSUnRfffdp2PHjikoKEiBgYEV7rv4+HgdP35cW7ZsUVBQkGbNmqVRo0bpyJEjtkNlly5d0muvvaa//OUv8vLy0u9+9zvNmDFD7777brX+fACgriMAmdxtt92m559/XpIUERGhZcuWaefOnRUGoGbNmkmSmjRpUuWhsfvuu89uOSkpSc2bN9eRI0fUrVu36/b09ddf6/3331dqaqqGDh0qSerQoYPt+eXLlys8PFzLli2TxWJR586dderUKc2aNUvz5s2zhayqtu3TTz/V/v37lZWVZZuB+eV7vPrqq3rwwQdtMysRERFaunSpBg8erBUrViggIECSNGrUKD355JOSpFmzZun111/Xrl271Llz5yr3V/369fWnP/3JLhQ98sgjtv/u0KGDli5dqr59++rixYtq0KCB7VBX8+bN7c4B+qVrwefzzz/XgAEDJEnvvvuuwsPDtXnzZj3wwAOSpOLiYr311lvq2LGjJGnSpEl68cUXr/tnAwA3CwKQC12cc7HS57y9vO2W82fkV1rrZbGfJflu6nc31FdVbrvtNrvlsLAw22EXZ33zzTd67rnn9Pe//12nT59WWVmZJCknJ6daASgzM1Pe3t4aPHhwhc9nZWUpOjpaFovFNjZw4EBdvHhRP/74o9q0aSOp6m3LzMxU69atbeHn1w4ePKgTJ07YzYgYhqGysjJlZ2erS5cu5d7DYrGoRYsW1dp/3bt3LzeDdujQIb3wwgvKzMzU2bNn7fZbZGTkddcpXd03Pj4+6tevn22sSZMm6tSpk7Kysmxj9erVs4UfyTV/7gBQlxCAXKi+X32P1zrq178eslgsti9eZ40ePVrh4eF655131LJlS5WVlalbt266cuVKtV5f2aGdawzDsAs/18Yk2Y1XtW3Xe4+ysjL9/ve/15QpU8o9dy1gXe89qlK/vv2faWFhoWJiYhQTE6O1a9eqWbNmysnJ0fDhw6u93yRV+mu8X++zivrml3wAzIQAhGq7NmNRWlpaac2ZM2eUlZWlt99+W3fccYckac+ePQ69T/fu3VVWVqa0tDTbIbBfioyMVEpKit2X+t69e9WwYUO1atWqWu9x22236ccff9TXX39d4SxQr1699NVXX+mWW25xqPdfqs7+uubo0aM6ffq0Xn75ZYWHh0uSDhw44PD6IiMjVVJSon379tkOgZ05c0Zff/21bdYKAMCvwOCA5s2bKzAwUH/961/1r3/9SwUFBeVqQkJC1KRJE61cuVInTpzQ3/72NyUkJDj0Pu3atdP48eP1yCOPaPPmzcrOztauXbv0/vvvS5KefPJJ/fDDD5o8ebKOHj2qjz76SM8//7wSEhKqfZL14MGDNWjQIN13331KTU1Vdna2tm3bpr/+9a+Srp7Pk5GRoaeeekqZmZm2c2smT55c7e2ozv66pk2bNvLz89Mbb7yhb7/9Vlu2bNGCBQvsatq2bSuLxaKPP/5YP/30ky5eLH/INSIiQmPGjNFjjz2mPXv26PDhw/rd736nVq1aacyYMdXuHQBudgQgVJuPj4+WLl2qt99+Wy1btqzwC9XLy0vr16/XwYMH1a1bN02fPl2vvvqqw++1YsUK3X///XryySfVuXNnPfbYY7afoLdq1Upbt27V/v371aNHD02cOFETJkzQ3LlzHXqPlJQU9enTR//93/+tyMhIzZw50za7cttttyktLU3Hjx/XHXfcoZ49e+q5555TWFhYtddfnf11TbNmzZScnKwPPvhAkZGRevnll/Xaa6/Z1bRq1Urz58/X7NmzFRoaqkmTJlW4rtWrVysqKkr33HOPoqOjZRiGtm7dysUSAeAXLAYH/suxWq0KDg5WQUGBgoKC7J67fPmysrOz1b59e9svgYCbGX/nAdQVVX1//xozQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQE7i3HGYBX/XAdyMCEAO+uXNJAEzuHYl6ms3igWAmwFXgnaQt7e3GjVqZLtvUr169crdlgG4WZSVlemnn35SvXr15OPDxwWAmwefaE64dmdvbh4JM/Dy8lKbNm0I+gBuKgQgJ1gsFoWFhal58+YqLi72dDuAW/n5+VX7FiMAUFcQgG6At7c350UAAFAHefx/65YvX267xH5UVJR2795dZX1aWpqioqIUEBCgDh066K233ipXk5KSosjISPn7+ysyMlKbNm1yV/sAAKAO8mgA2rBhg6ZNm6Znn31Whw4d0h133KGRI0cqJyenwvrs7GyNGjVKd9xxhw4dOqRnnnlGU6ZMUUpKiq0mIyNDsbGxiouL0+HDhxUXF6dx48Zp3759NbVZAACglvPozVD79eunXr16acWKFbaxLl26aOzYsUpMTCxXP2vWLG3ZskVZWVm2sYkTJ+rw4cPKyMiQJMXGxspqtWrbtm22mhEjRigkJETr1q2rVl+O3EwNAADUDo58f3vsHKArV67o4MGDmj17tt14TEyM9u7dW+FrMjIyFBMTYzc2fPhwJSUlqbi4WL6+vsrIyND06dPL1SxevLjSXoqKilRUVGRbLigokHR1RwIAgLrh2vd2deZ2PBaATp8+rdLSUoWGhtqNh4aGKi8vr8LX5OXlVVhfUlKi06dPKywsrNKaytYpSYmJiZo/f3658fDw8OpuDgAAqCUuXLig4ODgKms8/iuwX19bxDCMKq83UlH9r8cdXeecOXOUkJBgWy4rK9PZs2fVpEkTl1/7xGq1Kjw8XD/88AOH19yI/Vwz2M81g/1cc9jXNcNd+9kwDF24cEEtW7a8bq3HAlDTpk3l7e1dbmYmPz+/3AzONS1atKiw3sfHR02aNKmyprJ1SpK/v7/8/f3txho1alTdTXFKUFAQ/7hqAPu5ZrCfawb7ueawr2uGO/bz9WZ+rvHYr8D8/PwUFRWl1NRUu/HU1FQNGDCgwtdER0eXq9+xY4d69+5tu0dXZTWVrRMAAJiPRw+BJSQkKC4uTr1791Z0dLRWrlypnJwcTZw4UdLVQ1MnT57UmjVrJF39xdeyZcuUkJCgxx57TBkZGUpKSrL7ddfUqVM1aNAgLVy4UGPGjNFHH32kTz/9VHv27PHINgIAgNrHowEoNjZWZ86c0Ysvvqjc3Fx169ZNW7duVdu2bSVJubm5dtcEat++vbZu3arp06frzTffVMuWLbV06VLdd999tpoBAwZo/fr1mjt3rp577jl17NhRGzZsUL9+/Wp8+yri7++v559/vtwhN7gW+7lmsJ9rBvu55rCva0Zt2M8evQ4QAACAJ3j8VhgAAAA1jQAEAABMhwAEAABMhwAEAABMhwDkBsuXL1f79u0VEBCgqKgo7d69u8r6tLQ0RUVFKSAgQB06dNBbb71VQ53WbY7s540bN2rYsGFq1qyZgoKCFB0dre3bt9dgt3WXo3+fr/n888/l4+Oj22+/3b0N3iQc3c9FRUV69tln1bZtW/n7+6tjx45atWpVDXVbdzm6n99991316NFD9erVU1hYmB5++GGdOXOmhrqtm9LT0zV69Gi1bNlSFotFmzdvvu5rPPI9aMCl1q9fb/j6+hrvvPOOceTIEWPq1KlG/fr1je+//77C+m+//daoV6+eMXXqVOPIkSPGO++8Y/j6+hoffvhhDXdetzi6n6dOnWosXLjQ2L9/v/H1118bc+bMMXx9fY0vv/yyhjuvWxzdz9ecP3/e6NChgxETE2P06NGjZpqtw5zZz//5n/9p9OvXz0hNTTWys7ONffv2GZ9//nkNdl33OLqfd+/ebXh5eRlLliwxvv32W2P37t1G165djbFjx9Zw53XL1q1bjWeffdZISUkxJBmbNm2qst5T34MEIBfr27evMXHiRLuxzp07G7Nnz66wfubMmUbnzp3txn7/+98b/fv3d1uPNwNH93NFIiMjjfnz57u6tZuKs/s5NjbWmDt3rvH8888TgKrB0f28bds2Izg42Dhz5kxNtHfTcHQ/v/rqq0aHDh3sxpYuXWq0bt3abT3ebKoTgDz1PcghMBe6cuWKDh48qJiYGLvxmJgY7d27t8LXZGRklKsfPny4Dhw4oOLiYrf1Wpc5s59/raysTBcuXFDjxo3d0eJNwdn9vHr1an3zzTd6/vnn3d3iTcGZ/bxlyxb17t1br7zyilq1aqVbb71VM2bM0M8//1wTLddJzuznAQMG6Mcff9TWrVtlGIb+9a9/6cMPP9Tdd99dEy2bhqe+Bz1+N/ibyenTp1VaWlruxquhoaHlbtB6TV5eXoX1JSUlOn36tMLCwtzWb13lzH7+tUWLFqmwsFDjxo1zR4s3BWf28/HjxzV79mzt3r1bPj58vFSHM/v522+/1Z49exQQEKBNmzbp9OnTevLJJ3X27FnOA6qEM/t5wIABevfddxUbG6vLly+rpKRE//mf/6k33nijJlo2DU99DzID5AYWi8Vu2TCMcmPXq69oHPYc3c/XrFu3Ti+88II2bNig5s2bu6u9m0Z193NpaakefPBBzZ8/X7feemtNtXfTcOTvc1lZmSwWi95991317dtXo0aN0h//+EclJyczC3QdjuznI0eOaMqUKZo3b54OHjyov/71r8rOzrbdrxKu44nvQf4XzYWaNm0qb2/vcv83kZ+fXy7dXtOiRYsK6318fNSkSRO39VqXObOfr9mwYYMmTJigDz74QEOHDnVnm3Weo/v5woULOnDggA4dOqRJkyZJuvpFbRiGfHx8tGPHDv3mN7+pkd7rEmf+PoeFhalVq1YKDg62jXXp0kWGYejHH39URESEW3uui5zZz4mJiRo4cKCefvppSdJtt92m+vXr64477tD//M//MEPvIp76HmQGyIX8/PwUFRWl1NRUu/HU1FQNGDCgwtdER0eXq9+xY4d69+4tX19ft/Valzmzn6WrMz/x8fF67733OIZfDY7u56CgIP3jH/9QZmam7TFx4kR16tRJmZmZteaGxLWNM3+fBw4cqFOnTunixYu2sa+//lpeXl5q3bq1W/utq5zZz5cuXZKXl/3XpLe3t6R/z1Dgxnnse9Ctp1ib0LWfWSYlJRlHjhwxpk2bZtSvX9/47rvvDMMwjNmzZxtxcXG2+ms//5s+fbpx5MgRIykpiZ/BV4Oj+/m9994zfHx8jDfffNPIzc21Pc6fP++pTagTHN3Pv8avwKrH0f184cIFo3Xr1sb9999vfPXVV0ZaWpoRERFhPProo57ahDrB0f28evVqw8fHx1i+fLnxzTffGHv27DF69+5t9O3b11ObUCdcuHDBOHTokHHo0CFDkvHHP/7ROHTokO1yA7Xle5AA5AZvvvmm0bZtW8PPz8/o1auXkZaWZntu/PjxxuDBg+3qd+3aZfTs2dPw8/Mz2rVrZ6xYsaKGO66bHNnPgwcPNiSVe4wfP77mG69jHP37/EsEoOpzdD9nZWUZQ4cONQIDA43WrVsbCQkJxqVLl2q467rH0f28dOlSIzIy0ggMDDTCwsKM3/72t8aPP/5Yw13XLZ999lmVn7e15XvQYhjM4wEAAHPhHCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAApvDdd9/JYrEoMzOzyro777xT06ZNq5GeAHgOAQhArRIfHy+LxSKLxSJfX1916NBBM2bMUGFh4Q2tNzw8XLm5uerWrZskadeuXbJYLDp//rxd3caNG7VgwYIbei8AtZ+PpxsAgF8bMWKEVq9ereLiYu3evVuPPvqoCgsLtWLFCqfX6e3trRYtWly3rnHjxk6/B4C6gxkgALWOv7+/WrRoofDwcD344IP67W9/q82bN6uoqEhTpkxR8+bNFRAQoP/4j//QF198YXvduXPn9Nvf/lbNmjVTYGCgIiIitHr1akn2h8C+++47DRkyRJIUEhIii8Wi+Ph4SeUPgZ07d04PPfSQQkJCVK9ePY0cOVLHjx+3PZ+cnKxGjRpp+/bt6tKlixo0aKARI0YoNzfX/TsKgNMIQABqvcDAQBUXF2vmzJlKSUnRn//8Z3355Ze65ZZbNHz4cJ09e1aS9Nxzz+nIkSPatm2bsrKytGLFCjVt2rTc+sLDw5WSkiJJOnbsmHJzc7VkyZIK3zs+Pl4HDhzQli1blJGRIcMwNGrUKBUXF9tqLl26pNdee01/+ctflJ6erpycHM2YMcMNewKAq3AIDECttn//fr333nsaMmSIVqxYoeTkZI0cOVKS9M477yg1NVVJSUl6+umnlZOTo549e6p3796SpHbt2lW4Tm9vb9uhrubNm6tRo0YV1h0/flxbtmzR559/rgEDBkiS3n33XYWHh2vz5s164IEHJEnFxcV666231LFjR0nSpEmT9OKLL7pqFwBwA2aAANQ6H3/8sRo0aKCAgABFR0dr0KBBmjx5soqLizVw4EBbna+vr/r27ausrCxJ0hNPPKH169fr9ttv18yZM7V3794b6iMrK0s+Pj7q16+fbaxJkybq1KmT7T0lqV69erbwI0lhYWHKz8+/ofcG4F4EIAC1zpAhQ5SZmaljx47p8uXL2rhxo4KDgyVJFovFrtYwDNvYyJEj9f3332vatGk6deqU7rrrrhs6FGUYRqXjv+zD19fX7nmLxVLpawHUDgQgALVO/fr1dcstt6ht27a2cHHLLbfIz89Pe/bssdUVFxfrwIED6tKli22sWbNmio+P19q1a7V48WKtXLmywvfw8/OTJJWWllbaR2RkpEpKSrRv3z7b2JkzZ/T111/bvSeAuodzgADUCfXr19cTTzyhp59+Wo0bN1abNm30yiuv6NKlS5owYYIkad68eYqKilLXrl1VVFSkjz/+uNKg0rZtW1ksFn388ccaNWqUAgMD1aBBA7uaiIgIjRkzRo899pjefvttNWzYULNnz1arVq00ZswYt28zAPdhBghAnfHyyy/rvvvuU1xcnHr16qUTJ05o+/btCgkJkXR1VmfOnDm67bbbNGjQIHl7e2v9+vUVrqtVq1aaP3++Zs+erdDQUE2aNKnCutWrVysqKkr33HOPoqOjZRiGtm7dWu6wF4C6xWJwoBoAAJgMM0AAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0/j84uxcXRnvNtgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAYAAABB4NqyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQwVJREFUeJzt3Xl0FHW+9/FPZw9LQthCgLAagQAihC1wBRkhLMoFr0qe60wkijqorBlkUUSR+xhRGQERFCeQYVBADSCPwkBkJAHJgCDhzkhA0GgUkolsaQgSstTzB4ce2yykm+50Qr1f5/Q51q+/Xf2tAro//qq6ymIYhiEAAAAT8fJ0AwAAADWNAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEyHAAQAAEzHx9MN1EZlZWU6deqUGjZsKIvF4ul2AABANRiGoQsXLqhly5by8qp6jocAVIFTp04pPDzc020AAAAn/PDDD2rdunWVNQSgCjRs2FDS1R0YFBTk4W4AAEB1WK1WhYeH277Hq0IAqsC1w15BQUEEIAAA6pjqnL7CSdAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0PBqAEhMT1adPHzVs2FDNmzfX2LFjdezYseu+Li0tTVFRUQoICFCHDh301ltvlatJSUlRZGSk/P39FRkZqU2bNrljEwAAQB3k0QshpqWl6amnnlKfPn1UUlKiZ599VjExMTpy5Ijq169f4Wuys7M1atQoPfbYY1q7dq0+//xzPfnkk2rWrJnuu+8+SVJGRoZiY2O1YMEC3Xvvvdq0aZPGjRunPXv2qF+/ftXur/BKobyveJcb9/byVoBPgF1dZbwsXgr0DXSq9lLxJRmGUWGtxWJRPd96TtX+XPyzyoyySvuo71ffqdrLJZdVWlbqktp6vvVsF7IqKilSSVmJS2oDfQPlZbma+6+UXlFxabFLagN8AuTt5e1wbXFpsa6UXqm01t/HXz5ePg7XlpSVqKikqNJaP28/+Xr7OlxbWlaqyyWXK6319faVn7efw7VlRpl+Lv7ZJbU+Xj7y9/GXdPW+QJeKL7mk1pF/93xGVFzLZwSfETXxGVFdFqOyfxEe8NNPP6l58+ZKS0vToEGDKqyZNWuWtmzZoqysLNvYxIkTdfjwYWVkZEiSYmNjZbVatW3bNlvNiBEjFBISonXr1pVbZ1FRkYqK/v2He+1S2potKaBcuUZFjNInD35iW67/Uv1KPzgHtx2sXfG7bMvNXm2m05dOV1jbu2VvffHYF7bldovb6fuC7yusjWwWqa+e/Mq23HV5Vx356UiFtW2D2+q7ad/Zlvu800cHTh2osLZpvab66emfbMt3Jt+ptO/TKqyt51tPhc/8+8P67vfu1tbjWyuslSTj+X//VXvggwf04ZEPK629OOei7cMwfnO8/nz4z5XW5s/IV7P6zSRJT33ylJYfWF5pbfbUbLVr1E6S9PSOp/VaxmuV1v7ziX+qa/OukqQXdr2g+WnzK63d/+h+9WnVR5L06uevauanMyut/Wz8Z7qz3Z2SpDf3v6lJ2yZVWvvxf3+su2+9W5KUnJmshz96uNLa9+9/Xw90fUCS9MFXH2jch+MqrV09ZrXib4+XJH3y9Se6Z909ldYuG7lMT/V9SpK067tdGvLnIZXWvjL0FT098GlJ0hcnv1DfP/WttPb5wc/rhTtfkCR9lf+Vuq3oVmntjOgZejXmVUnSd+e/U/sl7SutfbL3k3rz7jclST8V/qTmrzWvtHZ8j/FKHpss6WrwaJDYoNLa+yPv1wcPfGBbtsyv/EqzfEZcxWfEv/EZcZW7PyOsVquCg4NVUFBw3Ts51KpzgAoKCiRJjRs3rrQmIyNDMTExdmPDhw/XgQMHVFxcXGXN3r17K1xnYmKigoODbQ9uhAoAwM2t1swAGYahMWPG6Ny5c9q9e3eldbfeeqvi4+P1zDPP2Mb27t2rgQMH6tSpUwoLC5Ofn5+Sk5P14IMP2mree+89Pfzww3YzPddUNgN06qdTFSZIprcrrmV6m+ltDoE5XstnhHO1fEZcxWeEfa0jM0C15maokyZN0v/+7/9qz54916399U3Orv2j/uV4RTWV3RzN399f/v7+5cbr+9W3+wdZmerUOFP7yw8kV9b+8gPUlbW//MB3Za2/j7/8Vf7P50Zr/bz9qn3M2F21vt6+tg8OV9b6ePnIx696/7wdqfX28q7232FHar0sXm6ptVgsbqmV3Pfvns8Ix2v5jHC89mb+jKiuWhGAJk+erC1btig9PV2tW7eusrZFixbKy8uzG8vPz5ePj4+aNGlSZU1oaKhrGwcAAHWSR88BMgxDkyZN0saNG/W3v/1N7dtXfmLjNdHR0UpNTbUb27Fjh3r37i1fX98qawYMGOC65gEAQJ3l0QD01FNPae3atXrvvffUsGFD5eXlKS8vTz///O/jfHPmzNFDDz1kW544caK+//57JSQkKCsrS6tWrVJSUpJmzJhhq5k6dap27NihhQsX6ujRo1q4cKE+/fRTTZs2rSY3DwAA1FIePQm6snNyVq9erfj4eElSfHy8vvvuO+3atcv2fFpamqZPn66vvvpKLVu21KxZszRx4kS7dXz44YeaO3euvv32W3Xs2FH/9//+X/3Xf/1Xtfpy5CQqAABQOzjy/V1rfgVWmxCAAACoe+rsdYAAAABqAgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYDgEIAACYjkcDUHp6ukaPHq2WLVvKYrFo8+bNVdbHx8fLYrGUe3Tt2tVWk5ycXGHN5cuX3bw1AACgrvBoACosLFSPHj20bNmyatUvWbJEubm5tscPP/ygxo0b64EHHrCrCwoKsqvLzc1VQECAOzYBAADUQT6efPORI0dq5MiR1a4PDg5WcHCwbXnz5s06d+6cHn74Ybs6i8WiFi1auKxPAABwc6nT5wAlJSVp6NChatu2rd34xYsX1bZtW7Vu3Vr33HOPDh06VOV6ioqKZLVa7R4AAODmVWcDUG5urrZt26ZHH33Ubrxz585KTk7Wli1btG7dOgUEBGjgwIE6fvx4petKTEy0zS4FBwcrPDzc3e0DAAAPshiGYXi6CenqYatNmzZp7Nix1apPTEzUokWLdOrUKfn5+VVaV1ZWpl69emnQoEFaunRphTVFRUUqKiqyLVutVoWHh6ugoEBBQUEObQcAAPAMq9Wq4ODgan1/e/QcIGcZhqFVq1YpLi6uyvAjSV5eXurTp0+VM0D+/v7y9/d3dZsAAKCWqpOHwNLS0nTixAlNmDDhurWGYSgzM1NhYWE10BkAAKgLPDoDdPHiRZ04ccK2nJ2drczMTDVu3Fht2rTRnDlzdPLkSa1Zs8budUlJSerXr5+6detWbp3z589X//79FRERIavVqqVLlyozM1Nvvvmm27cHAADUDR4NQAcOHNCQIUNsywkJCZKk8ePHKzk5Wbm5ucrJybF7TUFBgVJSUrRkyZIK13n+/Hk9/vjjysvLU3BwsHr27Kn09HT17dvXfRsCAADqlFpzEnRt4shJVAAAoHZw5Pu7Tp4DBAAAcCMIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQ8GoDS09M1evRotWzZUhaLRZs3b66yfteuXbJYLOUeR48etatLSUlRZGSk/P39FRkZqU2bNrlxKwAAQF3j0QBUWFioHj16aNmyZQ697tixY8rNzbU9IiIibM9lZGQoNjZWcXFxOnz4sOLi4jRu3Djt27fP1e0DAIA6ymIYhuHpJiTJYrFo06ZNGjt2bKU1u3bt0pAhQ3Tu3Dk1atSowprY2FhZrVZt27bNNjZixAiFhIRo3bp11erFarUqODhYBQUFCgoKcmQzAACAhzjy/V0nzwHq2bOnwsLCdNddd+mzzz6zey4jI0MxMTF2Y8OHD9fevXsrXV9RUZGsVqvdAwAA3LzqVAAKCwvTypUrlZKSoo0bN6pTp0666667lJ6ebqvJy8tTaGio3etCQ0OVl5dX6XoTExMVHBxse4SHh7ttGwAAgOf5eLoBR3Tq1EmdOnWyLUdHR+uHH37Qa6+9pkGDBtnGLRaL3esMwyg39ktz5sxRQkKCbdlqtRKCAAC4idWpGaCK9O/fX8ePH7ctt2jRotxsT35+frlZoV/y9/dXUFCQ3QMAANy86nwAOnTokMLCwmzL0dHRSk1NtavZsWOHBgwYUNOtAQCAWsqjh8AuXryoEydO2Jazs7OVmZmpxo0bq02bNpozZ45OnjypNWvWSJIWL16sdu3aqWvXrrpy5YrWrl2rlJQUpaSk2NYxdepUDRo0SAsXLtSYMWP00Ucf6dNPP9WePXtqfPsAAEDt5NEAdODAAQ0ZMsS2fO08nPHjxys5OVm5ubnKycmxPX/lyhXNmDFDJ0+eVGBgoLp27apPPvlEo0aNstUMGDBA69ev19y5c/Xcc8+pY8eO2rBhg/r161dzGwYAAGq1WnMdoNqE6wABAFD33PTXAQIAALgRBCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6Ps6+sKysTCdOnFB+fr7Kysrsnhs0aNANNwYAAOAuTgWgv//973rwwQf1/fffyzAMu+csFotKS0td0hwAAIA7OBWAJk6cqN69e+uTTz5RWFiYLBaLq/sCAABwG6cC0PHjx/Xhhx/qlltucXU/AAAAbufUSdD9+vXTiRMnbvjN09PTNXr0aLVs2VIWi0WbN2+usn7jxo0aNmyYmjVrpqCgIEVHR2v79u12NcnJybJYLOUely9fvuF+AQDAzcGpGaDJkyfrD3/4g/Ly8tS9e3f5+vraPX/bbbdVaz2FhYXq0aOHHn74Yd13333XrU9PT9ewYcP00ksvqVGjRlq9erVGjx6tffv2qWfPnra6oKAgHTt2zO61AQEB1eoJAADc/CzGr89irgYvr/ITRxaLRYZhOH0StMVi0aZNmzR27FiHXte1a1fFxsZq3rx5kq7OAE2bNk3nz593uIdrrFargoODVVBQoKCgIKfXAwAAao4j399OzQBlZ2c71ZirlZWV6cKFC2rcuLHd+MWLF9W2bVuVlpbq9ttv14IFC+xmiH6tqKhIRUVFtmWr1eq2ngEAgOc5FYDatm3r6j6csmjRIhUWFmrcuHG2sc6dOys5OVndu3eX1WrVkiVLNHDgQB0+fFgREREVricxMVHz58+vqbYBAICHOXUITJK++eYbLV68WFlZWbJYLOrSpYumTp2qjh07OteIg4fA1q1bp0cffVQfffSRhg4dWmldWVmZevXqpUGDBmnp0qUV1lQ0AxQeHs4hMAAA6hBHDoE59Suw7du3KzIyUvv379dtt92mbt26ad++feratatSU1OdatoRGzZs0IQJE/T+++9XGX6kq+cr9enTR8ePH6+0xt/fX0FBQXYPAABw83LqENjs2bM1ffp0vfzyy+XGZ82apWHDhrmkuYqsW7dOjzzyiNatW6e77777uvWGYSgzM1Pdu3d3W08AAKBucSoAZWVl6f333y83/sgjj2jx4sXVXs/FixftrieUnZ2tzMxMNW7cWG3atNGcOXN08uRJrVmzRtLV8PPQQw9pyZIl6t+/v/Ly8iRJgYGBCg4OliTNnz9f/fv3V0REhKxWq5YuXarMzEy9+eabzmwqAAC4CTl1CKxZs2bKzMwsN56ZmanmzZtXez0HDhxQz549bb/QSkhIUM+ePW0/ac/NzVVOTo6t/u2331ZJSYmeeuophYWF2R5Tp0611Zw/f16PP/64unTpopiYGJ08eVLp6enq27evM5sKAABuQk6dBP3iiy/q9ddf1+zZszVgwABZLBbt2bNHCxcu1B/+8AfNnTvXHb3WGK4DBABA3ePI97dTAcgwDC1evFiLFi3SqVOnJEktW7bU008/rSlTptT5m6MSgAAAqHvcHoB+6cKFC5Kkhg0b3shqahUCEAAAdY/brwT9SzdT8AEAAOZQ7QDUq1cv7dy5UyEhIerZs2eVh7m+/PJLlzQHAADgDtUOQGPGjJG/v7/tv+v6eT4AAMC8bvgcoJsR5wABAFD3uP1WGB06dNCZM2fKjZ8/f14dOnRwZpUAAAA1xqkA9N1336m0tLTceFFRkX788ccbbgoAAMCdHPoV2JYtW2z/vX37dtvtJySptLRUO3fuVPv27V3XHQAAgBs4FIDGjh0rSbJYLBo/frzdc76+vmrXrp0WLVrksuYAAADcwaEAVFZWJklq3769vvjiCzVt2tQtTQEAALiTUxdCzM7OdnUfAAAANcbpK0EXFhYqLS1NOTk5unLlit1zU6ZMueHGAAAA3MWpAHTo0CGNGjVKly5dUmFhoRo3bqzTp0+rXr16at68OQEIAADUak79DH769OkaPXq0zp49q8DAQP3973/X999/r6ioKL322muu7hEAAMClnApAmZmZ+sMf/iBvb295e3urqKhI4eHheuWVV/TMM8+4ukcAAACXcioA+fr62u4FFhoaqpycHElScHCw7b8BAABqK6fOAerZs6cOHDigW2+9VUOGDNG8efN0+vRp/eUvf1H37t1d3SMAAIBLOTUD9NJLLyksLEyStGDBAjVp0kRPPPGE8vPztXLlSpc2CAAA4GoOzwAZhqFmzZqpa9eukqRmzZpp69atLm8MAADAXRyeATIMQxEREdz0FAAA1FkOByAvLy9FRETozJkz7ugHAADA7Zw6B+iVV17R008/rX/+85+u7gcAAMDtLIZhGI6+KCQkRJcuXVJJSYn8/PwUGBho9/zZs2dd1qAnWK1WBQcHq6CgQEFBQZ5uBwAAVIMj399O/Qz+9ddft10HCAAAoK5xKgDFx8e7uA0AAICa49Q5QN7e3srPzy83fubMGXl7e99wUwAAAO7kVACq7LShoqIi+fn53VBDAAAA7ubQIbClS5dKkiwWi/70pz+pQYMGtudKS0uVnp6uzp07u7ZDAAAAF3MoAL3++uuSrs4AvfXWW3aHu/z8/NSuXTu99dZbru0QAADAxRwKQNnZ2ZKkIUOGaOPGjQoJCXFLUwAAAO7k1K/APvvsM1f3AQAAUGOcCkClpaVKTk7Wzp07lZ+fr7KyMrvn//a3v7mkOQAAAHdwKgBNnTpVycnJuvvuu9WtWzcuiggAAOoUp34Gv379er3//vvasGGDFi9erNdff93uUV3p6ekaPXq0WrZsKYvFos2bN1/3NWlpaYqKilJAQIA6dOhQ4UnXKSkpioyMlL+/vyIjI7Vp0yZHNg8AANzknApAfn5+uuWWW274zQsLC9WjRw8tW7asWvXZ2dkaNWqU7rjjDh06dEjPPPOMpkyZopSUFFtNRkaGYmNjFRcXp8OHDysuLk7jxo3Tvn37brhfAABwc3DqZqiLFi3St99+q2XLlrns8JfFYtGmTZs0duzYSmtmzZqlLVu2KCsryzY2ceJEHT58WBkZGZKk2NhYWa1Wbdu2zVYzYsQIhYSEaN26ddXqhZuhAgBQ97j9Zqh79uzRZ599pm3btqlr167y9fW1e37jxo3OrPa6MjIyFBMTYzc2fPhwJSUlqbi4WL6+vsrIyND06dPL1SxevLjS9RYVFamoqMi2bLVaXdo3AACoXZwKQI0aNdK9997r6l6uKy8vT6GhoXZjoaGhKikp0enTpxUWFlZpTV5eXqXrTUxM1Pz5893SMwAAqH2cCkCrV692dR/V9utDbteO4P1yvKKaqg7VzZkzRwkJCbZlq9Wq8PBwV7QLAABqIacCkCSVlJRo165d+uabb/Tggw+qYcOGOnXqlIKCguzuEeZKLVq0KDeTk5+fLx8fHzVp0qTKml/PCv2Sv7+//P39Xd8wAAColZz6Fdj333+v7t27a8yYMXrqqaf0008/SZJeeeUVzZgxw6UN/lJ0dLRSU1Ptxnbs2KHevXvbzkOqrGbAgAFu6wsAANQtTgWgqVOnqnfv3jp37pwCAwNt4/fee6927txZ7fVcvHhRmZmZyszMlHT1Z+6ZmZnKycmRdPXQ1EMPPWSrnzhxor7//nslJCQoKytLq1atUlJSkl3omjp1qnbs2KGFCxfq6NGjWrhwoT799FNNmzbNmU0FAAA3I8MJTZo0MY4ePWoYhmE0aNDA+OabbwzDMIzs7GwjMDCw2uv57LPPDEnlHuPHjzcMwzDGjx9vDB482O41u3btMnr27Gn4+fkZ7dq1M1asWFFuvR988IHRqVMnw9fX1+jcubORkpLi0PYVFBQYkoyCggKHXgcAADzHke9vp84BKisrU2lpabnxH3/8UQ0bNqz2eu68807bScwVSU5OLjc2ePBgffnll1Wu9/7779f9999f7T4AAIC5OHUIbNiwYXbX1bFYLLp48aKef/55jRo1ylW9AQAAuIVTV4I+deqUhgwZIm9vbx0/fly9e/fW8ePH1bRpU6Wnp6t58+bu6LXGcCVoAADqHrdfCbply5bKzMzU+vXrdfDgQZWVlWnChAn67W9/a3dSNAAAQG3k1AzQzY4ZIAAA6h5Hvr+dOgcoMTFRq1atKje+atUqLVy40JlVAgAA1BinAtDbb7+tzp07lxvv2rWr3nrrrRtuCgAAwJ2cCkB5eXkKCwsrN96sWTPl5ubecFMAAADu5FQACg8P1+eff15u/PPPP1fLli1vuCkAAAB3cupXYI8++qimTZum4uJi/eY3v5Ek7dy5UzNnztQf/vAHlzYIAADgak4FoJkzZ+rs2bN68skndeXKFUlSQECAZs2apTlz5ri0QQAAAFe7oZ/BX7x4UVlZWQoMDFRERIT8/f1d2ZvH8DN4AADqHrdfCPGaBg0aqE+fPjeyCgAAgBrnVAAqLCzUyy+/rJ07dyo/P19lZWV2z3/77bcuaQ4AAMAdnD4JOi0tTXFxcQoLC5PFYnF1XwAAAG7jVADatm2bPvnkEw0cONDV/QAAALidU9cBCgkJUePGjV3dCwAAQI1wKgAtWLBA8+bN06VLl1zdDwAAgNs5dQhs0aJF+uabbxQaGqp27drJ19fX7vkvv/zSJc0BAAC4g1MBaOzYsS5uAwAAoObc0IUQb1ZcCBEAgLqnxi6EePDgQWVlZclisSgyMlI9e/a8kdUBAADUCKcCUH5+vv7P//k/2rVrlxo1aiTDMFRQUKAhQ4Zo/fr1atasmav7BAAAcBmnfgU2efJkWa1WffXVVzp79qzOnTunf/7zn7JarZoyZYqrewQAAHApp84BCg4O1qefflruPmD79+9XTEyMzp8/76r+PIJzgAAAqHsc+f52agaorKys3E/fJcnX17fcfcEAAABqG6cC0G9+8xtNnTpVp06dso2dPHlS06dP11133eWy5gAAANzBqQC0bNkyXbhwQe3atVPHjh11yy23qH379rpw4YLeeOMNV/cIAADgUk79Ciw8PFxffvmlUlNTdfToURmGocjISA0dOtTV/QEAALicQzNAf/vb3xQZGSmr1SpJGjZsmCZPnqwpU6aoT58+6tq1q3bv3u2WRgEAAFzFoQC0ePFiPfbYYxWeWR0cHKzf//73+uMf/+iy5gAAANzBoQB0+PBhjRgxotLnY2JidPDgwRtuCgAAwJ0cCkD/+te/Kvz5+zU+Pj766aefbrgpAAAAd3IoALVq1Ur/+Mc/Kn3+f//3fxUWFnbDTQEAALiTQwFo1KhRmjdvni5fvlzuuZ9//lnPP/+87rnnHpc1BwAA4A4OBaC5c+fq7NmzuvXWW/XKK6/oo48+0pYtW7Rw4UJ16tRJZ8+e1bPPPutQA8uXL1f79u0VEBCgqKioKn9FFh8fL4vFUu7RtWtXW01ycnKFNRWFNgAAYE4OXQcoNDRUe/fu1RNPPKE5c+bo2m3ELBaLhg8fruXLlys0NLTa69uwYYOmTZum5cuXa+DAgXr77bc1cuRIHTlyRG3atClXv2TJEr388su25ZKSEvXo0UMPPPCAXV1QUJCOHTtmNxYQEODIpgIAgJuYUzdDlaRz587pxIkTMgxDERERCgkJcXgd/fr1U69evbRixQrbWJcuXTR27FglJiZe9/WbN2/Wf/3Xfyk7O1tt27aVdHUGaNq0aQ7dkLWoqEhFRUW2ZavVqvDwcG6GCgBAHeL2m6FKUkhIiPr06aO+ffs6FX6uXLmigwcPKiYmxm48JiZGe/furdY6kpKSNHToUFv4uebixYtq27atWrdurXvuuUeHDh2qcj2JiYkKDg62PcLDwx3bGAAAUKc4HYBu1OnTp1VaWlrukFloaKjy8vKu+/rc3Fxt27ZNjz76qN14586dlZycrC1btmjdunUKCAjQwIEDdfz48UrXNWfOHBUUFNgeP/zwg3MbBQAA6gSn7gXmShaLxW7ZMIxyYxVJTk5Wo0aNNHbsWLvx/v37q3///rblgQMHqlevXnrjjTe0dOnSCtfl7+8vf39/x5sHAAB1ksdmgJo2bSpvb+9ysz35+fnXPZHaMAytWrVKcXFx8vPzq7LWy8tLffr0qXIGCAAAmIvHApCfn5+ioqKUmppqN56amqoBAwZU+dq0tDSdOHFCEyZMuO77GIahzMxMLtAIAABsPHoILCEhQXFxcerdu7eio6O1cuVK5eTkaOLEiZKunptz8uRJrVmzxu51SUlJ6tevn7p161ZunfPnz1f//v0VEREhq9WqpUuXKjMzU2+++WaNbBMAAKj9PBqAYmNjdebMGb344ovKzc1Vt27dtHXrVtuvunJzc5WTk2P3moKCAqWkpGjJkiUVrvP8+fN6/PHHlZeXp+DgYPXs2VPp6enq27ev27cHAADUDU5fB+hm5sh1BAAAQO1QI9cBAgAAqKsIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQ8HoCWL1+u9u3bKyAgQFFRUdq9e3eltbt27ZLFYin3OHr0qF1dSkqKIiMj5e/vr8jISG3atMndmwEAAOoQjwagDRs2aNq0aXr22Wd16NAh3XHHHRo5cqRycnKqfN2xY8eUm5tre0RERNiey8jIUGxsrOLi4nT48GHFxcVp3Lhx2rdvn7s3BwAA1BEWwzAMT715v3791KtXL61YscI21qVLF40dO1aJiYnl6nft2qUhQ4bo3LlzatSoUYXrjI2NldVq1bZt22xjI0aMUEhIiNatW1etvqxWq4KDg1VQUKCgoCDHNqoKhmHo5+JSl60PAIC6LNDXWxaLxWXrc+T728dl7+qgK1eu6ODBg5o9e7bdeExMjPbu3Vvla3v27KnLly8rMjJSc+fO1ZAhQ2zPZWRkaPr06Xb1w4cP1+LFiytdX1FRkYqKimzLVqvVgS2pvp+LSxU5b7tb1g0AQF1z5MXhqufnmSjisUNgp0+fVmlpqUJDQ+3GQ0NDlZeXV+FrwsLCtHLlSqWkpGjjxo3q1KmT7rrrLqWnp9tq8vLyHFqnJCUmJio4ONj2CA8Pv4EtAwAAtZ3HZoCu+fXUl2EYlU6HderUSZ06dbItR0dH64cfftBrr72mQYMGObVOSZozZ44SEhJsy1ar1S0hKNDXW0deHO7y9QIAUBcF+np77L09FoCaNm0qb2/vcjMz+fn55WZwqtK/f3+tXbvWttyiRQuH1+nv7y9/f/9qv6ezLBaLx6b6AADAv3nsEJifn5+ioqKUmppqN56amqoBAwZUez2HDh1SWFiYbTk6OrrcOnfs2OHQOgEAwM3No9MRCQkJiouLU+/evRUdHa2VK1cqJydHEydOlHT10NTJkye1Zs0aSdLixYvVrl07de3aVVeuXNHatWuVkpKilJQU2zqnTp2qQYMGaeHChRozZow++ugjffrpp9qzZ49HthEAANQ+Hg1AsbGxOnPmjF588UXl5uaqW7du2rp1q9q2bStJys3Ntbsm0JUrVzRjxgydPHlSgYGB6tq1qz755BONGjXKVjNgwACtX79ec+fO1XPPPaeOHTtqw4YN6tevX41vHwAAqJ08eh2g2spd1wECAADu48j3t8dvhQEAAFDTCEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0fDzdQF1WWlqq4uJiT7cBuJWfn5+8vPh/JQA3FwKQEwzDUF5ens6fP+/pVgC38/LyUvv27eXn5+fpVgDAZQhATrgWfpo3b6569erJYrF4uiXALcrKynTq1Cnl5uaqTZs2/F0HcNMgADmotLTUFn6aNGni6XYAt2vWrJlOnTqlkpIS+fr6erodAHAJDuw76No5P/Xq1fNwJ0DNuHboq7S01MOdAIDrEICcxKEAmAV/1wHcjDwegJYvX6727dsrICBAUVFR2r17d6W1Gzdu1LBhw9SsWTMFBQUpOjpa27dvt6tJTk6WxWIp97h8+bK7NwUAANQRHg1AGzZs0LRp0/Tss8/q0KFDuuOOOzRy5Ejl5ORUWJ+enq5hw4Zp69atOnjwoIYMGaLRo0fr0KFDdnVBQUHKzc21ewQEBNTEJgEAgDrAowHoj3/8oyZMmKBHH31UXbp00eLFixUeHq4VK1ZUWL948WLNnDlTffr0UUREhF566SVFRETo//2//2dXZ7FY1KJFC7tHVYqKimS1Wu0eN7O9e/fK29tbI0aM8HQrAAB4hMcC0JUrV3Tw4EHFxMTYjcfExGjv3r3VWkdZWZkuXLigxo0b241fvHhRbdu2VevWrXXPPfeUmyH6tcTERAUHB9se4eHhjm1MHbNq1SpNnjxZe/bsqXS2DQCAm5nHfgZ/+vRplZaWKjQ01G48NDRUeXl51VrHokWLVFhYqHHjxtnGOnfurOTkZHXv3l1Wq1VLlizRwIEDdfjwYUVERFS4njlz5ighIcG2bLVaHQpBhmHo52LP/EIm0NfboZNUCwsL9f777+uLL75QXl6ekpOTNW/ePDd2CABA7ePx6wD9+svbMIxqfaGvW7dOL7zwgj766CM1b97cNt6/f3/179/ftjxw4ED16tVLb7zxhpYuXVrhuvz9/eXv7+/kFkg/F5cqct726xe6wZEXh6ueX/X/GDds2KBOnTqpU6dO+t3vfqfJkyfrueee45c+AABT8dghsKZNm8rb27vcbE9+fn65WaFf27BhgyZMmKD3339fQ4cOrbLWy8tLffr00fHjx2+455tBUlKSfve730mSRowYoYsXL2rnzp0e7goAgJrlsRkgPz8/RUVFKTU1Vffee69tPDU1VWPGjKn0devWrdMjjzyidevW6e67777u+xiGoczMTHXv3t0lfVck0NdbR14c7rb1X++9q+vYsWPav3+/Nm7cKEny8fFRbGysVq1add0gCQDAzcSjh8ASEhIUFxen3r17Kzo6WitXrlROTo4mTpwo6eq5OSdPntSaNWskXQ0/Dz30kJYsWaL+/fvbZo8CAwMVHBwsSZo/f7769++viIgIWa1WLV26VJmZmXrzzTfdth0Wi8Whw1CekpSUpJKSErVq1co2ZhiGfH19de7cOYWEhHiwOwAAao5Hv7VjY2N15swZvfjii8rNzVW3bt20detWtW3bVpKUm5tr9yult99+WyUlJXrqqaf01FNP2cbHjx+v5ORkSdL58+f1+OOPKy8vT8HBwerZs6fS09PVt2/fGt222qakpERr1qzRokWLyv3y7r777tO7776rSZMmeag7AABqlsUwDMPTTdQ2VqtVwcHBKigoUFBQkN1zly9fVnZ2tu3q1XXF5s2bFRsbq/z8fNts2TXPPvustm7det3LBcCc6urfeQDmU9X39695/FYYqBlJSUkaOnRoufAjXZ0ByszM1JdffumBzgAAqHm1/8QVuMSvr5b9S7169RITgQAAM2EGCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCAAAmA4BCFWyWCzavHlzlTXx8fEaO3Zstdf53XffyWKxKDMz84Z6w1V33nmnpk2b5uk2AKBO4VYYJhIfH6/z589fN9D8Um5urkJCQiRdDS7t27fXoUOHdPvtt9tqlixZwq00KlDZ/nLWrl27NGTIEJ07d06NGjWyjW/cuFG+vr43vH4AMBMCEKrUokWL69ZUdINVVN+VK1fk5+fn9OsbN27swm4AwBw4BOZChVcKK31cLrlc7dqfi3+uVu2NuvPOOzVlyhTNnDlTjRs3VosWLfTCCy/Y1fzyEFj79u0lST179pTFYtGdd94pqfwhsL/+9a/6j//4DzVq1EhNmjTRPffco2+++cah3oqKijRz5kyFh4fL399fERERSkpKsj2flpamvn37yt/fX2FhYZo9e7ZKSkoc2rbz58/r8ccfV2hoqAICAtStWzd9/PHHtuf37t2rQYMGKTAwUOHh4ZoyZYoKC/+939u1a6eXXnpJjzzyiBo2bKg2bdpo5cqVtuevt78SExPVsmVL3XrrrZKktWvXqnfv3mrYsKFatGihBx98UPn5+ZKuziYNGTJEkhQSEiKLxaL4+Hjbtv7yENi5c+f00EMPKSQkRPXq1dPIkSN1/Phx2/PJyclq1KiRtm/fri5duqhBgwYaMWKEcnNzHfozAoC6jBkgF2qQ2KDS50ZFjNInD35iW27+WnNdKr5UYe3gtoO1K36XbbndknY6fel0uTrj+Rs/7PTnP/9ZCQkJ2rdvnzIyMhQfH6+BAwdq2LBh5Wr379+vvn376tNPP1XXrl0rnbUoLCxUQkKCunfvrsLCQs2bN0/33nuvMjMz5eVVvcz90EMPKSMjQ0uXLlWPHj2UnZ2t06ev7oOTJ09q1KhRio+P15o1a3T06FE99thjCggIsAs5VW1bWVmZRo4cqQsXLmjt2rXq2LGjjhw5Im9vb0nSP/7xDw0fPlwLFixQUlKSfvrpJ02aNEmTJk3S6tWrbe+xaNEiLViwQM8884w+/PBDPfHEExo0aJA6d+5c5f7auXOngoKClJqaajt8eOXKFS1YsECdOnVSfn6+pk+frvj4eG3dulXh4eFKSUnRfffdp2PHjikoKEiBgYEV7rv4+HgdP35cW7ZsUVBQkGbNmqVRo0bpyJEjtkNlly5d0muvvaa//OUv8vLy0u9+9zvNmDFD7777brX+fACgriMAmdxtt92m559/XpIUERGhZcuWaefOnRUGoGbNmkmSmjRpUuWhsfvuu89uOSkpSc2bN9eRI0fUrVu36/b09ddf6/3331dqaqqGDh0qSerQoYPt+eXLlys8PFzLli2TxWJR586dderUKc2aNUvz5s2zhayqtu3TTz/V/v37lZWVZZuB+eV7vPrqq3rwwQdtMysRERFaunSpBg8erBUrViggIECSNGrUKD355JOSpFmzZun111/Xrl271Llz5yr3V/369fWnP/3JLhQ98sgjtv/u0KGDli5dqr59++rixYtq0KCB7VBX8+bN7c4B+qVrwefzzz/XgAEDJEnvvvuuwsPDtXnzZj3wwAOSpOLiYr311lvq2LGjJGnSpEl68cUXr/tnAwA3CwKQC12cc7HS57y9vO2W82fkV1rrZbGfJflu6nc31FdVbrvtNrvlsLAw22EXZ33zzTd67rnn9Pe//12nT59WWVmZJCknJ6daASgzM1Pe3t4aPHhwhc9nZWUpOjpaFovFNjZw4EBdvHhRP/74o9q0aSOp6m3LzMxU69atbeHn1w4ePKgTJ07YzYgYhqGysjJlZ2erS5cu5d7DYrGoRYsW1dp/3bt3LzeDdujQIb3wwgvKzMzU2bNn7fZbZGTkddcpXd03Pj4+6tevn22sSZMm6tSpk7Kysmxj9erVs4UfyTV/7gBQlxCAXKi+X32P1zrq178eslgsti9eZ40ePVrh4eF655131LJlS5WVlalbt266cuVKtV5f2aGdawzDsAs/18Yk2Y1XtW3Xe4+ysjL9/ve/15QpU8o9dy1gXe89qlK/vv2faWFhoWJiYhQTE6O1a9eqWbNmysnJ0fDhw6u93yRV+mu8X++zivrml3wAzIQAhGq7NmNRWlpaac2ZM2eUlZWlt99+W3fccYckac+ePQ69T/fu3VVWVqa0tDTbIbBfioyMVEpKit2X+t69e9WwYUO1atWqWu9x22236ccff9TXX39d4SxQr1699NVXX+mWW25xqPdfqs7+uubo0aM6ffq0Xn75ZYWHh0uSDhw44PD6IiMjVVJSon379tkOgZ05c0Zff/21bdYKAMCvwOCA5s2bKzAwUH/961/1r3/9SwUFBeVqQkJC1KRJE61cuVInTpzQ3/72NyUkJDj0Pu3atdP48eP1yCOPaPPmzcrOztauXbv0/vvvS5KefPJJ/fDDD5o8ebKOHj2qjz76SM8//7wSEhKqfZL14MGDNWjQIN13331KTU1Vdna2tm3bpr/+9a+Srp7Pk5GRoaeeekqZmZm2c2smT55c7e2ozv66pk2bNvLz89Mbb7yhb7/9Vlu2bNGCBQvsatq2bSuLxaKPP/5YP/30ky5eLH/INSIiQmPGjNFjjz2mPXv26PDhw/rd736nVq1aacyYMdXuHQBudgQgVJuPj4+WLl2qt99+Wy1btqzwC9XLy0vr16/XwYMH1a1bN02fPl2vvvqqw++1YsUK3X///XryySfVuXNnPfbYY7afoLdq1Upbt27V/v371aNHD02cOFETJkzQ3LlzHXqPlJQU9enTR//93/+tyMhIzZw50za7cttttyktLU3Hjx/XHXfcoZ49e+q5555TWFhYtddfnf11TbNmzZScnKwPPvhAkZGRevnll/Xaa6/Z1bRq1Urz58/X7NmzFRoaqkmTJlW4rtWrVysqKkr33HOPoqOjZRiGtm7dysUSAeAXLAYH/suxWq0KDg5WQUGBgoKC7J67fPmysrOz1b59e9svgYCbGX/nAdQVVX1//xozQAAAwHQIQAAAwHQIQAAAwHQIQAAAwHQIQE7i3HGYBX/XAdyMCEAO+uXNJAEzuHYl6ms3igWAmwFXgnaQt7e3GjVqZLtvUr169crdlgG4WZSVlemnn35SvXr15OPDxwWAmwefaE64dmdvbh4JM/Dy8lKbNm0I+gBuKgQgJ1gsFoWFhal58+YqLi72dDuAW/n5+VX7FiMAUFcQgG6At7c350UAAFAHefx/65YvX267xH5UVJR2795dZX1aWpqioqIUEBCgDh066K233ipXk5KSosjISPn7+ysyMlKbNm1yV/sAAKAO8mgA2rBhg6ZNm6Znn31Whw4d0h133KGRI0cqJyenwvrs7GyNGjVKd9xxhw4dOqRnnnlGU6ZMUUpKiq0mIyNDsbGxiouL0+HDhxUXF6dx48Zp3759NbVZAACglvPozVD79eunXr16acWKFbaxLl26aOzYsUpMTCxXP2vWLG3ZskVZWVm2sYkTJ+rw4cPKyMiQJMXGxspqtWrbtm22mhEjRigkJETr1q2rVl+O3EwNAADUDo58f3vsHKArV67o4MGDmj17tt14TEyM9u7dW+FrMjIyFBMTYzc2fPhwJSUlqbi4WL6+vsrIyND06dPL1SxevLjSXoqKilRUVGRbLigokHR1RwIAgLrh2vd2deZ2PBaATp8+rdLSUoWGhtqNh4aGKi8vr8LX5OXlVVhfUlKi06dPKywsrNKaytYpSYmJiZo/f3658fDw8OpuDgAAqCUuXLig4ODgKms8/iuwX19bxDCMKq83UlH9r8cdXeecOXOUkJBgWy4rK9PZs2fVpEkTl1/7xGq1Kjw8XD/88AOH19yI/Vwz2M81g/1cc9jXNcNd+9kwDF24cEEtW7a8bq3HAlDTpk3l7e1dbmYmPz+/3AzONS1atKiw3sfHR02aNKmyprJ1SpK/v7/8/f3txho1alTdTXFKUFAQ/7hqAPu5ZrCfawb7ueawr2uGO/bz9WZ+rvHYr8D8/PwUFRWl1NRUu/HU1FQNGDCgwtdER0eXq9+xY4d69+5tu0dXZTWVrRMAAJiPRw+BJSQkKC4uTr1791Z0dLRWrlypnJwcTZw4UdLVQ1MnT57UmjVrJF39xdeyZcuUkJCgxx57TBkZGUpKSrL7ddfUqVM1aNAgLVy4UGPGjNFHH32kTz/9VHv27PHINgIAgNrHowEoNjZWZ86c0Ysvvqjc3Fx169ZNW7duVdu2bSVJubm5dtcEat++vbZu3arp06frzTffVMuWLbV06VLdd999tpoBAwZo/fr1mjt3rp577jl17NhRGzZsUL9+/Wp8+yri7++v559/vtwhN7gW+7lmsJ9rBvu55rCva0Zt2M8evQ4QAACAJ3j8VhgAAAA1jQAEAABMhwAEAABMhwAEAABMhwDkBsuXL1f79u0VEBCgqKgo7d69u8r6tLQ0RUVFKSAgQB06dNBbb71VQ53WbY7s540bN2rYsGFq1qyZgoKCFB0dre3bt9dgt3WXo3+fr/n888/l4+Oj22+/3b0N3iQc3c9FRUV69tln1bZtW/n7+6tjx45atWpVDXVbdzm6n99991316NFD9erVU1hYmB5++GGdOXOmhrqtm9LT0zV69Gi1bNlSFotFmzdvvu5rPPI9aMCl1q9fb/j6+hrvvPOOceTIEWPq1KlG/fr1je+//77C+m+//daoV6+eMXXqVOPIkSPGO++8Y/j6+hoffvhhDXdetzi6n6dOnWosXLjQ2L9/v/H1118bc+bMMXx9fY0vv/yyhjuvWxzdz9ecP3/e6NChgxETE2P06NGjZpqtw5zZz//5n/9p9OvXz0hNTTWys7ONffv2GZ9//nkNdl33OLqfd+/ebXh5eRlLliwxvv32W2P37t1G165djbFjx9Zw53XL1q1bjWeffdZISUkxJBmbNm2qst5T34MEIBfr27evMXHiRLuxzp07G7Nnz66wfubMmUbnzp3txn7/+98b/fv3d1uPNwNH93NFIiMjjfnz57u6tZuKs/s5NjbWmDt3rvH8888TgKrB0f28bds2Izg42Dhz5kxNtHfTcHQ/v/rqq0aHDh3sxpYuXWq0bt3abT3ebKoTgDz1PcghMBe6cuWKDh48qJiYGLvxmJgY7d27t8LXZGRklKsfPny4Dhw4oOLiYrf1Wpc5s59/raysTBcuXFDjxo3d0eJNwdn9vHr1an3zzTd6/vnn3d3iTcGZ/bxlyxb17t1br7zyilq1aqVbb71VM2bM0M8//1wTLddJzuznAQMG6Mcff9TWrVtlGIb+9a9/6cMPP9Tdd99dEy2bhqe+Bz1+N/ibyenTp1VaWlruxquhoaHlbtB6TV5eXoX1JSUlOn36tMLCwtzWb13lzH7+tUWLFqmwsFDjxo1zR4s3BWf28/HjxzV79mzt3r1bPj58vFSHM/v522+/1Z49exQQEKBNmzbp9OnTevLJJ3X27FnOA6qEM/t5wIABevfddxUbG6vLly+rpKRE//mf/6k33nijJlo2DU99DzID5AYWi8Vu2TCMcmPXq69oHPYc3c/XrFu3Ti+88II2bNig5s2bu6u9m0Z193NpaakefPBBzZ8/X7feemtNtXfTcOTvc1lZmSwWi95991317dtXo0aN0h//+EclJyczC3QdjuznI0eOaMqUKZo3b54OHjyov/71r8rOzrbdrxKu44nvQf4XzYWaNm0qb2/vcv83kZ+fXy7dXtOiRYsK6318fNSkSRO39VqXObOfr9mwYYMmTJigDz74QEOHDnVnm3Weo/v5woULOnDggA4dOqRJkyZJuvpFbRiGfHx8tGPHDv3mN7+pkd7rEmf+PoeFhalVq1YKDg62jXXp0kWGYejHH39URESEW3uui5zZz4mJiRo4cKCefvppSdJtt92m+vXr64477tD//M//MEPvIp76HmQGyIX8/PwUFRWl1NRUu/HU1FQNGDCgwtdER0eXq9+xY4d69+4tX19ft/Valzmzn6WrMz/x8fF67733OIZfDY7u56CgIP3jH/9QZmam7TFx4kR16tRJmZmZteaGxLWNM3+fBw4cqFOnTunixYu2sa+//lpeXl5q3bq1W/utq5zZz5cuXZKXl/3XpLe3t6R/z1Dgxnnse9Ctp1ib0LWfWSYlJRlHjhwxpk2bZtSvX9/47rvvDMMwjNmzZxtxcXG2+ms//5s+fbpx5MgRIykpiZ/BV4Oj+/m9994zfHx8jDfffNPIzc21Pc6fP++pTagTHN3Pv8avwKrH0f184cIFo3Xr1sb9999vfPXVV0ZaWpoRERFhPProo57ahDrB0f28evVqw8fHx1i+fLnxzTffGHv27DF69+5t9O3b11ObUCdcuHDBOHTokHHo0CFDkvHHP/7ROHTokO1yA7Xle5AA5AZvvvmm0bZtW8PPz8/o1auXkZaWZntu/PjxxuDBg+3qd+3aZfTs2dPw8/Mz2rVrZ6xYsaKGO66bHNnPgwcPNiSVe4wfP77mG69jHP37/EsEoOpzdD9nZWUZQ4cONQIDA43WrVsbCQkJxqVLl2q467rH0f28dOlSIzIy0ggMDDTCwsKM3/72t8aPP/5Yw13XLZ999lmVn7e15XvQYhjM4wEAAHPhHCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAAAGA6BCAApvDdd9/JYrEoMzOzyro777xT06ZNq5GeAHgOAQhArRIfHy+LxSKLxSJfX1916NBBM2bMUGFh4Q2tNzw8XLm5uerWrZskadeuXbJYLDp//rxd3caNG7VgwYIbei8AtZ+PpxsAgF8bMWKEVq9ereLiYu3evVuPPvqoCgsLtWLFCqfX6e3trRYtWly3rnHjxk6/B4C6gxkgALWOv7+/WrRoofDwcD344IP67W9/q82bN6uoqEhTpkxR8+bNFRAQoP/4j//QF198YXvduXPn9Nvf/lbNmjVTYGCgIiIitHr1akn2h8C+++47DRkyRJIUEhIii8Wi+Ph4SeUPgZ07d04PPfSQQkJCVK9ePY0cOVLHjx+3PZ+cnKxGjRpp+/bt6tKlixo0aKARI0YoNzfX/TsKgNMIQABqvcDAQBUXF2vmzJlKSUnRn//8Z3355Ze65ZZbNHz4cJ09e1aS9Nxzz+nIkSPatm2bsrKytGLFCjVt2rTc+sLDw5WSkiJJOnbsmHJzc7VkyZIK3zs+Pl4HDhzQli1blJGRIcMwNGrUKBUXF9tqLl26pNdee01/+ctflJ6erpycHM2YMcMNewKAq3AIDECttn//fr333nsaMmSIVqxYoeTkZI0cOVKS9M477yg1NVVJSUl6+umnlZOTo549e6p3796SpHbt2lW4Tm9vb9uhrubNm6tRo0YV1h0/flxbtmzR559/rgEDBkiS3n33XYWHh2vz5s164IEHJEnFxcV666231LFjR0nSpEmT9OKLL7pqFwBwA2aAANQ6H3/8sRo0aKCAgABFR0dr0KBBmjx5soqLizVw4EBbna+vr/r27ausrCxJ0hNPPKH169fr9ttv18yZM7V3794b6iMrK0s+Pj7q16+fbaxJkybq1KmT7T0lqV69erbwI0lhYWHKz8+/ofcG4F4EIAC1zpAhQ5SZmaljx47p8uXL2rhxo4KDgyVJFovFrtYwDNvYyJEj9f3332vatGk6deqU7rrrrhs6FGUYRqXjv+zD19fX7nmLxVLpawHUDgQgALVO/fr1dcstt6ht27a2cHHLLbfIz89Pe/bssdUVFxfrwIED6tKli22sWbNmio+P19q1a7V48WKtXLmywvfw8/OTJJWWllbaR2RkpEpKSrRv3z7b2JkzZ/T111/bvSeAuodzgADUCfXr19cTTzyhp59+Wo0bN1abNm30yiuv6NKlS5owYYIkad68eYqKilLXrl1VVFSkjz/+uNKg0rZtW1ksFn388ccaNWqUAgMD1aBBA7uaiIgIjRkzRo899pjefvttNWzYULNnz1arVq00ZswYt28zAPdhBghAnfHyyy/rvvvuU1xcnHr16qUTJ05o+/btCgkJkXR1VmfOnDm67bbbNGjQIHl7e2v9+vUVrqtVq1aaP3++Zs+erdDQUE2aNKnCutWrVysqKkr33HOPoqOjZRiGtm7dWu6wF4C6xWJwoBoAAJgMM0AAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0CEAAAMB0/j84uxcXRnvNtgAAAABJRU5ErkJggg==", "text/plain": [ "" ] @@ -1541,7 +1541,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAV5NJREFUeJzt3Xd4VGXCxuHfmZLeKCmUQCiJgQQFaQKKIEVEKbqr7oogCq4uoCCoC4IoorLqrqt+u8uuIGABscK6iqKgIoj0IkhoEukQWgoJaTPn+2M0ygJCwiRnZvLc1zUXkzNzZp4cY+bJKe9rmKZpIiIiIuKnbFYHEBEREbkYKjMiIiLi11RmRERExK+pzIiIiIhfU5kRERERv6YyIyIiIn5NZUZERET8msPqAJXN7XZz4MABIiMjMQzD6jgiIiJyAUzTJC8vj7p162Kz/fq+l4AvMwcOHCAxMdHqGCIiIlIBe/fupX79+r/6nIAvM5GRkYBnY0RFRVmcRkRERC5Ebm4uiYmJZZ/jvybgy8xPh5aioqJUZkRERPzMhZwiohOARURExK+pzIiIiIhfU5kRERERvxbw58yIiIj4I7fbTXFxsdUxKo3T6cRut3vltVRmREREfExxcTGZmZm43W6ro1SqmJgYEhISLnocOJUZERERH2KaJgcPHsRut5OYmHjeAeP8kWmaFBQUkJWVBUCdOnUu6vVUZkRERHxIaWkpBQUF1K1bl7CwMKvjVJrQ0FAAsrKyiIuLu6hDToFX90RERPyYy+UCICgoyOIkle+nslZSUnJRr6MyIyIi4oOqw3yC3voeVWZERETEr1laZr766iv69OlD3bp1MQyD+fPnn/a4aZo8/vjj1K1bl9DQULp06cJ3331nTVgRERHxSZaWmfz8fC677DL+/ve/n/XxZ599lueff56///3vrF69moSEBHr06EFeXl4VJxURERFfZenVTNdddx3XXXfdWR8zTZMXXniB8ePHc9NNNwHw6quvEh8fz5w5c7jnnnuqMupZfb71MJ2TY3HYdbRORESqt8GDB5OdnX3GUZaq4LOfwpmZmRw6dIiePXuWLQsODubqq69m+fLl51yvqKiI3Nzc026V4YVF27lr1homzN+MaZqV8h4iIiJyfj47zsyhQ4cAiI+PP215fHw8u3fvPud6U6ZMYdKkSZWaDSA1IRIDmLt6L3GRwYzueUmlv6eIiFQ/pmlyqsRlyXuHOu1+cVWVz5aZn/zvRjRN81c37Lhx4xg9enTZ17m5uSQmJno9V6/0OozqnszfFu3gpc93khAdwm3tG3r9fUREpHo7VeKi+cSFlrz3lieuJSzI56uC7x5mSkhIAH7eQ/OTrKysM/bW/FJwcDBRUVGn3SrLTZfX59o0T5YJ8zezaMvhSnsvEREROTufrVuNGjUiISGBzz77jFatWgGeibeWLFnCM888Y3G6n93Uqh5FJW6+3H6E4XPW8ebdV3B5wxpWxxIRkQAR6rSz5YlrLXtvf2BpmTl58iQ7d+4s+zozM5MNGzZQs2ZNGjRowKhRo3j66adJTk4mOTmZp59+mrCwMG677TYLU5/OMAxGdksm+1QxG/bmcOesVcwb1onGsRFWRxMRkQBgGIZfHOqxkqWHmdasWUOrVq3K9ryMHj2aVq1aMXHiRAAefvhhRo0axbBhw2jTpg379+/n008/JTIy0srYZ3DYbTxyXXMa1w4n51QpA6avJCuv0OpYIiIi1YKlZaZLly6YpnnGbdasWYCnjT7++OMcPHiQwsJClixZQnp6upWRzyk0yM6kvmnERQZzMKeQgdNXkVd4cRNniYiIyPn57AnA/igmLIgn+6cTFeJg2+E8hr66huJSt9WxREREAprKjJfViQ7l8T5pBDtsrMw8zgNvb8Dt1qB6IiIS2GbNmmXJ6L+gMlMpkuMjGXddKjYDPvr2IE8tyLA6koiISMBSmakkrRvW5L6uyQC8siyTaV/tsjiRiIhIYFKZqUTdm8dze/sGADy9IIP/bNhvcSIREZHAozJTyW5pk8h16QmYwIPvbOTrHUetjiQiIhJQVGYqmWEY3NO5CVc0rkmJy+QPr69hy4Ecq2OJiIgEDJWZKmC3GTzUM5VmCZHkF7sYNGMV+04UWB1LREQkIKjMVJEgh42JN6RRPyaUoyeLGTh9JdkFxVbHEhER8XsqM1UoIsTB5P7p1AwLIvNYAXfMWEVhicvqWCIiIn5NZaaK1Y4I5ol+aYQF2dm4L4dhs9fh0qB6IiIiFaYyY4GGtcJ59PpmOGwGn2/N4pF5mzBNFRoREfFPffr0oXv37md97JtvvsEwDNatW1dp768yY5H0ejE82PMSDOCt1Xt5YdEOqyOJiIhUyJAhQ/j888/ZvXv3GY/NmDGDli1bcvnll1fa+6vMWKhT09oMvaoxAC8u3sGclWf+EIiIiPi6G264gbi4OGbNmnXa8oKCAt566y2GDBlSqe/vqNRXl/Pqe1ldjp0s4v31+5kwfzNxkSF0bx5vdSwREfEVpgklFg3n4QwDwzjv0xwOB4MGDWLWrFlMnDgR48d13nnnHYqLixkwYEClxlSZ8QGDOyZxPL+YL7cfYcScdbz5hyto1aCG1bFERMQXlBTA03Wtee9HDkBQ+AU99a677uK5557jyy+/pGvXroDnENNNN91EjRqV+5mmw0w+wDAMRnZLpmViNIWlbgbPXM2uIyetjiUiInLBUlNT6dixIzNmzADg+++/Z+nSpdx1112V/t7aM+MjHHYbj1zXnLHvf8uuo/nc/spK5g/vRFxkiNXRRETESs4wzx4Sq967HIYMGcKIESP4xz/+wcyZM2nYsCHdunWrpHA/054ZHxIaZGdS3zTiIoM5kF3IoFdWcbKo1OpYIiJiJcPwHOqx4nYB58v80i233ILdbmfOnDm8+uqr3HnnnWXnz1QmlRkfExMWxJP904kMcbD1UB5DX11Ncanb6lgiIiLnFRERwa233sojjzzCgQMHGDx4cJW8r8qMD6oTHcqkPmkEO2ys2HWc0W9vwK1RgkVExA8MGTKEEydO0L17dxo0aFAl76ky46OS4yMZ2ysVmwEffnuQpxdkWB1JRETkvDp06IBpmixcuLDK3lNlxoe1SarJiK7JAExflsm0r3ZZnEhERMT3qMz4uB7N47m9vWc33dMLMvjPhv0WJxIREfEtKjN+4JY2iVyXnoAJPPjORpbvPGp1JBEREZ+hMuMHDMPgns5NaN+oJiUuk7tfW8OWAzlWxxIREfEJKjN+wm4zePjaVFITIskvdjFoxir2Z5+yOpaIiFQS0wz8q1i99T2qzPiRIIeNx25Io35MKEdPFnP7tBVkFxRbHUtERLzIbrcDUFwc+L/fCwo8E2g6nc6Leh1NZ+BnIkIcPNEvnTHvbCDzWAF3zFjFW/d0IMRptzqaiIh4gcPhICwsjCNHjuB0OrHZAm+/g2maFBQUkJWVRUxMTFmBqyjDDPD9WLm5uURHR5OTk0NUVJRXX3vv8QIyDuZSJzrUq697IXYfy+fh976loNjFNalxTBvUBrut8oeMFhGRyldcXExmZiZud2CPAB8TE0NCQsJZpzwoz+e39sz4qYa1wplwfTMm/uc7Pt+axSPzNvHnm1pUyRwYIiJSuYKCgkhOTg7oQ01Op/Oi98j8RGXGj7WoF8ODPS/hmU+28tbqvSREhfBAjxSrY4mIiBfYbDZCQkKsjuEXAu9AXDXTqWlt7r6qMQAvLt7BnJW7LU4kIiJStVRmAkCfy+pyU6t6AEyYv5lFWw5bnEhERKTqqMwEiMEdk+iSEovbhOFz1rFu9wmrI4mIiFQJlZkAYRgGI7sl0zIxmqJSN3fOWsWuIyetjiUiIlLpVGYCiMNu45HrmtO4djg5p0oZMH0lWXmFVscSERGpVCozASY0yM6kvmnERQZzMKeQga+sIq+wxOpYIiIilUZlJgDFhAXxZP90IkMcbDuUx9BX11BcGtgDL4mISPWlMhOg6kSHMqlPGsEOGyszj/PA2xtwuwN6sGcREammVGYCWHJ8JGN7pWIz4KNvD/L0ggyrI4mIiHidykyAa5NUkxFdkwGYviyT6Ut3WZxIRETEu1RmqoEezeO5vX0DAJ76KIP/bNhvcSIRERHvUZmpJm5pk8h16QmYwIPvbGT5zqNWRxIREfEKlZlqwjAM7unchPaNalLiMrn79TVkHMyxOpaIiMhFU5mpRuw2g4evTSU1IZL8IhcDX1nF/uxTVscSERG5KCoz1UyQw8ZjN6RRPyaUoyeLuX3aCrILiq2OJSIiUmEqM9VQRIiDJ/qlUyPMSeaxAu6YsYrCEpfVsURERCpEZaaaio0MZnK/dMKC7Gzcl8Ow2etwaVA9ERHxQyoz1VjDWuFMuL4ZDpvB51uzeGTeJkxThUZERPyLykw116JeDGN6pmAAb63eywuLdlgdSUREpFxUZoQrm8Yy9KrGALy4eAdzVu62OJGIiMiFU5kRAPpeVpebWtUDYML8zSzactjiRCIiIhdGZUbKDO6YRJeUWNwmjJizjvV7TlgdSURE5LxUZqSMYRiM7JZMy8RoCkvdDJ65ml1HTlodS0RE5FepzMhpHHYbj1zXnMa1w8k5VcLtr6wkK6/Q6lgiIiLnpDIjZwgNsjOpbxpxkcEcyC5k0CurOFlUanUsERGRs/LpMlNaWsqECRNo1KgRoaGhNG7cmCeeeAK32211tIAXExbEk/3TiQxxsPVQHkNfXUNxqba7iIj4Hp8uM8888wz/+te/+Pvf/05GRgbPPvsszz33HP/3f/9ndbRqoU50KJP6pBHssLFi1zFGv70Bt0YJFhERH+OwOsCv+eabb+jXrx/XX389AElJSbz55pusWbPmnOsUFRVRVFRU9nVubm6l5wxkyfGRjO2VyuSPtvDhtwdJiAphwg3NrY4lIiJSxqf3zFx55ZUsXryY7du3A7Bx40aWLVtG7969z7nOlClTiI6OLrslJiZWVdyA1SapJiO6JgMwfVkm05fusjiRiIjIz3x6z8yf/vQncnJySE1NxW6343K5eOqpp/j9739/znXGjRvH6NGjy77Ozc1VofGCHs3jOZ5fxBsr9/DURxnERgbTr2U9q2OJiIj4dpl56623eOONN5gzZw5paWls2LCBUaNGUbduXe64446zrhMcHExwcHAVJ60ebmmTyLH8Yj7efIgH39lIbEQwHZvWtjqWiIhUcz59mOmhhx5i7Nix/O53v6NFixYMHDiQBx54gClTplgdrVoyDIN7OjehfaOalLhM7n5tDRkHc6yOJSIi1ZxPl5mCggJsttMj2u12XZptIbvN4OFrU0lNiCS/2MXAV1axP/uU1bFERKQa8+ky06dPH5566ik++ugjfvjhB+bNm8fzzz/PjTfeaHW0ai3IYeOxG9KoHxPK0ZPF3D5tBdkFxVbHEhGRasowTdNnBw7Jy8vj0UcfZd68eWRlZVG3bl1+//vfM3HiRIKCgi7oNXJzc4mOjiYnJ4eoqCiv5tt7vICMg7nUiQ716uv6iyN5RYx5ZwMnCkpomRjD3D9cQYjTbnUsEREJAOX5/PbpMuMNKjOVa/exfB5+71sKil1ckxrHtEFtsNsMq2OJiIifK8/nt08fZhLf17BWOBOub4bDZvD51iwembeJAO/HIiLiY1Rm5KK1qBfDmJ4pGMBbq/fywqIdVkcSEZFqRGVGvOLKprEMvaoxAC8u3sGclbstTiQiItWFyox4Td/L6nJTK8+owBPmb2bRlsMWJxIRkepAZUa8anDHJK5OicVtwog561i/54TVkUREJMCpzIhXGYbBqG7JXFo/msJSN4NnrmbXkZNWxxIRkQCmMiNe57DbGN+7GY1qh5NzqoTbX1lJVl6h1bFERCRAqcxIpQgLcjCpbxpxkcEcyC5k0CurOFlUanUsEREJQCozUmlqhAUxuV86kcEOth7KY+iraygu1bxaIiLiXSozUqnqxoTyeN80ghw2Vuw6xui3N2hQPRER8SqVGal0KfGRjOuVis2AD789yNMLMqyOJCIiAURlRqpEm6SaDO/aFIBpSzOZvnSXxYlERCRQqMxIlenZPIEB7RoA8NRHGXywYb/FiUREJBCozEiVurVtIr3SEjCBMe9sZPnOo1ZHEhERP6cyI1XKMAzuvboJ7RvVpMRlcvfra8g4mGN1LBER8WMqM1Ll7DaDh669hEviI8kvcjHwlVXszz5ldSwREfFTKjNiiWCHncf7pFEvJpSjJ4u5fdoKsguKrY4lIiJ+SGVGLBMR4mByv3RqhDnJPFbA4JmrKSxxWR1LRET8jMqMWCo2MpjJ/dIJddrZsDebYbPX4XJrUD0REblwKjNiuYa1wnn0+mY4bAafb81i/LxNGiVYREQumMqM+IQW9WMY3SMFA5i7ei8vLtphdSQREfETKjPiM65KjmXIlY0AeGHxDt5ctcfiRCIi4g9UZsSn9GtZjxtb1QNg/LxNLMo4bHEiERHxdSoz4nPu7JhE55TauE0YMXsd6/ecsDqSiIj4MJUZ8TmGYfBAtxQuqx9NYambwTNXk3k03+pYIiLio1RmxCc57DbG925Oo9rh5JwqYcD0FRzJK7I6loiI+CCVGfFZoUF2JvVNIy4ymAPZhQx8ZSUni0qtjiUiIj5GZUZ8Wo2wICb3SycyxMHWQ3nc/eoaikvdVscSEREfojIjPq9uTCiP90kjyGHjm13HGPPORg2qJyIiZVRmxC+kxEcyrlcqNgP+u/EATy/IsDqSiIj4CJUZ8RttkmoyvGtTAKYtzWT60l0WJxIREV+gMiN+pWfzBAa0awDAUx9l8MGG/RYnEhERq6nMiN+5tW0ivdISMIEx72zkm51HrY4kIiIWUpkRv2MYBvde3YT2jWpS4jIZ+voaMg7mWB1LREQsojIjfsluM3jo2ku4JD6S/CIXg2asZn/2KatjiYiIBVRmxG8FO+w83ieNejGhHMkr4vZpK8guKLY6loiIVDGVGfFrESEOJvdLp0aYk8xjBQyeuZrCEpfVsUREpAqpzIjfi40MZnK/dEKddjbszWb47HW43BpUT0SkulCZkYDQsFY4j17fDIfNYPHWLCbM36RRgkVEqgmVGQkYLerHMLpHCgbw5qq9vLh4h9WRRESkCqjMSEC5KjmWIVc2AuCFRTuYu3qPxYlERKSyqcxIwOnXsh43taoHwCPvb2JxxmGLE4mISGVSmZGANLhjElenxOI2YfjsdWzYc8LqSCIiUklUZiQgGYbBqG7JXFY/msJSN4NnreaHo/lWxxIRkUqgMiMBy2G3Mb53cxrVDie7oIQB01dwJK/I6lgiIuJlKjMS0EKD7Ezqm0ZcZDD7swsZNGMlJ4tKrY4lIiJepDIjAa9GWBCT+6UTGeIg42Aed7+6huJSt9WxRETESxwVXdHtdrNz506ysrJwu0//YOjcufNFBxPxproxoTzeJ41H5m3im13HGPPORl76XUsMw7A6moiIXKQKlZkVK1Zw2223sXv37jNGWTUMA5dLc+OI70mJj2Rsr1Qmf7SF/248QEJUMOOvb251LBERuUgVOsx077330qZNGzZv3szx48c5ceJE2e348ePezijiNW2SajK8a1MApi3NZPrSXRYnEhGRi1WhPTM7duzg3XffpWnTpt7OI1LpejZP4PjJYmav2sNTH2UQFxlM35b1rI4lIiIVVKE9M+3bt2fnzp3eziJSZW5tm0ivtARMYMw7G/lm51GrI4mISAVVaM/Mfffdx5gxYzh06BAtWrTA6XSe9vill17qlXAilcUwDO69ugknCopZmXmcoa+v4d17O9CsTrTV0UREpJwM83/P4L0ANtuZO3QMw8A0TZ87ATg3N5fo6GhycnKIiory6mvvPV5AxsFc6kSHevV1peoUlboYP28z2w7nERsZzH+Gd6JujP57iohYrTyf3xXaM5OZmVmhYCK+Jthh5/E+aTz47kb2Z59iwPSVzBvWkZiwIKujiYjIBapQmWnYsKG3c4hYJiLEweR+6Yx5ZwOZR/MZPHM1c/9wBSFOu9XRRETkAlR4BODvv/+e++67j+7du9OjRw/uv/9+vv/+e29mA2D//v3cfvvt1KpVi7CwMFq2bMnatWu9/j5SvcVGBjO5XzqhTjsb9mYzfPY6XO5yH4EVERELVKjMLFy4kObNm7Nq1SouvfRS0tPTWblyJWlpaXz22WdeC3fixAk6deqE0+nk448/ZsuWLfz1r38lJibGa+8h8pOGtcJ59PpmOGwGi7dmMWH+pjMGhRQREd9ToROAW7VqxbXXXsuf//zn05aPHTuWTz/9lHXr1nkl3NixY/n6669ZunTpBa9TVFREUdHPMyPn5uaSmJioE4Dlgi3dcYTnFm7DBEZ1T2ZU9xSrI4mIVDvlOQG4QntmMjIyGDJkyBnL77rrLrZs2VKRlzyrDz74gDZt2nDzzTcTFxdHq1atmDZt2q+uM2XKFKKjo8tuiYmJXssj1cNVybEMubIRAC8s2sHc1XssTiQiIr+mQmUmNjaWDRs2nLF8w4YNxMXFXWymMrt27WLq1KkkJyezcOFC7r33Xu6//35ee+21c64zbtw4cnJyym579+71Wh6pPvq1rMeNrTyjAj/y/iYWZxy2OJGIiJxLha5muvvuu/nDH/7Arl276NixI4ZhsGzZMp555hnGjBnjtXBut5s2bdrw9NNPA57DW9999x1Tp05l0KBBZ10nODiY4OBgr2WQ6uvOjkkcyy/iq+1HGT57HXP/cAUtG9SwOpaIiPyPCpWZRx99lMjISP76178ybtw4AOrWrcvjjz/O/fff77VwderUoXnz02c1btasGe+9957X3kPkXAzD4IFuKWQXlPDtvhwGz1rN/GGdSKodbnU0ERH5hQodZjIMgwceeIB9+/aVHc7Zt28fI0eOxDAMr4Xr1KkT27ZtO23Z9u3bNc6NVBmH3cb43s1oVDuc7IISBkxfwZG8ovOvKCIiVabC48z8JDIyksjISG9kOcMDDzzAihUrePrpp9m5cydz5szh5ZdfZvjw4ZXyfiJnExbkYFLfNOIig9mfXcigGSvJLyq1OpaIiPzogi/Nvvzyy1m8eDE1atSgVatWv7oHxluXZgN8+OGHjBs3jh07dtCoUSNGjx7N3XfffcHra24m8ZYD2acY885GThaV0rFJLV69qx1O+0X/PSAiImdRKXMz9evXr+zE2n79+nn1cNKvueGGG7jhhhuq5L1Efk3dmFAm9U1j3LxNLP/+GKPf3shLv2tZZf8viIjI2VVo0Dx/oj0z4m1rfjjO5I+24Dbh7qsaMf765udfSUREyqXSB81r3Lgxx44dO2N5dnY2jRs3rshLiviNNkk1Gd61KQDTlmYyfekuixOJiFRvFSozP/zwAy6X64zlRUVF7Nu376JDifi6ns0TuK1dAwCe+iiDDzbstziRiEj1Va5xZj744IOy+wsXLiQ6Orrsa5fLxeLFi2nUqJH30on4sN+1TeR4fjGffHeIMe9sJDYimA5Na1sdS0Sk2ilXmenfvz/gGWfmjjvuOO0xp9NJUlISf/3rX70WTsSXGYbBvVc34Xh+Mat+OM7Q19fw7r0daFYn+vwri4iI15TrMJPb7cbtdtOgQQOysrLKvna73RQVFbFt2zZdeSTVit1m8HCvS7gkPpL8IheDZqzmQPYpq2OJiFQrFTpnJjMzk9q1tTtdBCDYYeexPs2pFxPKkbwiBkxfSXZBsdWxRESqjQrNzQSQn5/PkiVL2LNnD8XFp//i9ub8TCL+IDLEyRP90njwnY1kHs1n8MzVzP3DFYQ47VZHExEJeBUaZ2b9+vX07t2bgoIC8vPzqVmzJkePHiUsLIy4uDh27fKdS1U1zoxUpd3H8nno3W85VeKiW2ocLw9qg92mQfVERMqr0seZeeCBB+jTpw/Hjx8nNDSUFStWsHv3blq3bs1f/vKXCoUWCQQNa4Xz6PXNcNgMFm/NYsL8TQT4uJQiIparUJnZsGEDY8aMwW63Y7fbKSoqIjExkWeffZZHHnnE2xlF/EqL+jGM7pGCAby5ai8vLt5hdSQRkYBWoTLjdDrL5qOJj49nz549AERHR5fdF6nOrkqOZciVnjGXXli0g7mr9f+FiEhlqdAJwK1atWLNmjWkpKTQtWtXJk6cyNGjR3n99ddp0aKFtzOK+KV+LetxLL+Yeev388j7m4iNCKZbs3irY4mIBJwK7Zl5+umnqVOnDgCTJ0+mVq1a/PGPfyQrK4uXX37ZqwFF/NmdHZPonFIbtwnDZ69jw54TVkcSEQk45d4zY5omsbGxpKWlARAbG8uCBQu8HkwkEBiGwQPdUsguKOHbfTkMnrWa+cM6kVQ73OpoIiIBo9x7ZkzTJDk5WRNKilwgh93G+N7NaFQ7nOyCEgZMX8GRvCKrY4mIBIxylxmbzUZycjLHjh2rjDwiASksyMGkvmnERQazP7uQQTNWkl9UanUsEZGAUKFzZp599lkeeughNm/e7O08IgGrRlgQk/ulExHsIONgHne/toYSl9vqWCIifq9CIwDXqFGDgoICSktLCQoKIjT09BFwjx8/7rWAF0sjAIuv2X44j3HzNlFc6qbvZXV58Xcty4Y6EBERj/J8flfo0uy//e1v+uUrUkEp8ZGM65XK5I+28MHGA8RHBTP++uZWxxIR8VsVKjODBw/2cgyR6qVNUk2Gd23K/32+k2lLM0mIDi0bZE9ERMqnQufM2O12srKyzlh+7Ngx7HbNEixyIXo2T+C2dg0AePLDLfx3436LE4mI+KcKlZlznWZTVFREUFDQRQUSqU5+1zaRXmkJmMDotzey4ntdJSgiUl7lOsz00ksvAZ6BwKZPn05ERETZYy6Xi6+++orU1FTvJhQJYIZhcO/VTTieX8yqH44z5LXVvHtvB5rVibY6moiI3yjX1UyNGnmO6e/evZv69eufdkgpKCiIpKQknnjiCdq3b+/9pBWkq5nEHxSVuhg/bzPbDucRGxnMf4Z3om6Mfq5ExMe53bBjIaT0Ai9fGFRpVzNlZmYC0LVrV95//31q1KhR8ZQiUibYYeexPs158N2NHMguZMD0lcwb1pGYMB22FREftugxWP4SXDEcej1tWYwKnTPzxRdfqMiIeFlkiJPJ/dKpEeYk82g+d85cTWGJy+pYIiJnt2Kqp8gARNWxNEqFLs12uVzMmjWLxYsXk5WVhdt9+iimn3/+uVfCiVQ3cZEhPNE3nYff+5b1e7MZPmcdLw9sg92mcZ1ExIdsfh8+Gee5n/5bSL3e0jgV2jMzcuRIRo4cicvlIj09ncsuu+y0m4hUXFLtcCZc3wyHzWBxRhaPzt90zisIRUSqXOZXMO8ewISmPSD1BqsTVWzPzNy5c3n77bfp3bu3t/OICHBp/RhG90jhuYXbmLNqL/FRIYzsnmJ1LBGp7g5thrkDwFUM9dtBp5FQmGN1qortmQkKCqJp06beziIiv3BVcmzZqMB/W7SDt1bvsTiRiFRr2Xth9m+hKBdiU6HLWAiOOP96VaBCZWbMmDG8+OKL2vUtUsn6tazHja3qATDu/U18vvXMkbdFRCpdwXF44zeQdxCiE6HboxBW0+pUZSp0mGnZsmV88cUXfPzxx6SlpeF0Ok97/P333/dKOBGBOzsmcSy/iK+2H2XY7LXMvfsKWjbQ1YQiUkVKTsGbv4Oj2yCsFlzzKETVszrVaSpUZmJiYrjxxhu9nUVEzsIwDB7olkJ2QQnf7sth8KzVzB/WiaTa4VZHE5FA53bBe0Nh70oICocu4yDW987fq1CZmTlzprdziMivcNhtjO/djLHvbyLzaD63T1/JvOGdiI0MtjqaiAQq04SPxsDWD8HmhKvGQL3WVqc6qwqdMwNQWlrKokWL+Pe//01eXh4ABw4c4OTJk14LJyI/CwtyMKlvGnGRwezLPsWgGSvJLyq1OpaIBKqvnoO1MwEDOgyHxl28PmWBt1SozOzevZsWLVrQr18/hg8fzpEjRwB49tlnefDBB70aUER+ViMsiMn90okMcZBxMI+7X1tDict9/hVFRMpj3WvwxVOe+5cPgmZ9wKjw/o9KV+FB89q0acOJEycIDf15Mrwbb7yRxYsXey2ciJypbkwoj/dJI8hhY/n3xxjz9kZdWSgi3rN9Ifx3lOd+s77Q6naw2X91FatVqMwsW7aMCRMmEBR0+iR4DRs2ZP/+/V4JJiLnlhIfybheqdgM+GDjAZ5ekGF1JBEJBPvWwNt3gOmCpKvgimFgd55/PYtVqMy43W5crjMnwNu3bx+RkZEXHUpEzq9NUk2Gd/UMXjltaSavLMu0OJGI+LWjO2H2zVB6CupcBp0fAmeI1akuSIXKTI8ePXjhhRfKvjYMg5MnT/LYY49pigORKtSzeQK3tWsAwJMfbuG/G7VnVEQqIO8wvHETnDoONRtD1/EQEmV1qgtWoUuz//a3v9G1a1eaN29OYWEht912Gzt27KB27dq8+eab3s4oIr/id20TOZ5fzCffHWL02xuJjQjhiia1rI4lIv6iMNczTUH2bohI8AyKFxFndapyqVCZqVu3Lhs2bGDu3LmsXbsWt9vNkCFDGDBgwGknBItI5TMMg3uvbsLx/GJW/XCcIa+t5r17O5Jax3/+qhIRi5QWw9sD4dC3EBIN14yHmo2sTlVuhhngl0Hk5uYSHR1NTk4OUVHe/eW+93gBGQdzqROtAifWKyp1MX7eZrYdziM2Mpj/DO9E3Rj9bIrIObjdMO8e2PQ2OEI8e2SSOpX/dXL2Q3xzz+EpLyrP53eFzpmZMmUKM2bMOGP5jBkzeOaZZyrykiJykYIddh7r05y6MSEcyStiwPSV5BSUWB1LRHzVosc8RcawQ6eR0LCj1YkqrEJl5t///jepqalnLE9LS+Nf//rXRYcSkYqJDHEyuV86NcKcZB7NZ/DMVRSWnHnloYhUcyumwvKXPPfbDoXknj47uu+FqFCZOXToEHXq1DljeWxsLAcPHrzoUCJScXGRITzRN51Qp531e7MZPmcdLndAH00WkfLY/D58Ms5zv8UtcOnNPj8o3vlUqMwkJiby9ddfn7H866+/pm7duhcdSkQuTlLtcCZc3wyHzWBxRhaPzt+kUYJFBDK/8pwngwlNe0DbIWCr0LVAPqVC38HQoUMZNWoUJSUlXHPNNQAsXryYhx9+mDFjxng1oIhUzKX1YxjdI4XnFm5jzqq9JESHcH+3FKtjiYhVDm2GuQPAVQz123nOk3EEW53KKypUZh5++GGOHz/OsGHDKC4uBiAkJIQ//elPjBs3zqsBRaTirkqO5Xh+MdOXZfL8ZzuIjwrh1rYNrI4lIlUte69nLJmiXIhNhS5jITjC6lRec1GXZp88eZKMjAxCQ0NJTk4mONj3Gp4uzRaBV5btYv6GA9gMmH5HW65J9a8BsUTkIhQchxm94Og2iE6EXn+G6Hree31/vTT7JxEREbRt25b09HSfLDIi4nFnp0Z0Tq6N24Rhs9eyYc8JqyOJSFUoOQVv/s5TZMJqecaS8WaR8REVOsyUn5/Pn//8ZxYvXkxWVhZut/u0x3ft2uWVcCLiHTbDYFT3FLJPlfDtvhwGz1rN/GGdSKodbnU0Eaksbhe8NxT2roSgcOgyDmID87y5Cp8AvGTJEgYOHEidOnUw/PjadJHqwmm3Mb53M8a+t4nMY/ncPn0l80d0onaE9qqKBBzThAUPwtYPweaEK8dAvdZWp6o0FSozH3/8MR999BGdOlVg2GMRsUxYkINJfdMY885G9mWfYtArq3jn3g6EB/v/pZki8gtf/QXWzAAM6DAcmnTx60HxzqdC58zUqFGDmjVrejuLiFSBGuFBPNk/nYhgB1sO5nL3a2socbnPv6KI+Id1r8MXT3rutxoIzfqAcVGnyPq8Cn13kydPZuLEiRQUFHg7z6+aMmUKhmEwatSoKn1fkUBTNyaUSX3TCHLYWP79Mca8vVGD6okEgu0L4b8jPfdT+8DlA/1+dN8LUaF9y3/961/5/vvviY+PJykpCafTedrj69at80q4X1q9ejUvv/wyl156qddfW6Q6SomPZOy1l/Dkggw+2HiAhOgQHundzOpYIlJR+9bAO4PBdEHSVZ7DS3bneVcLBBUqM/379/dyjF938uRJBgwYwLRp03jyySer9L1FAlnbRrUY3qUp//fFTl7+ahfxUSEMubKR1bFEpLyO7oTZN0NJASRcCp0fAmeI1amqTIXKzGOPPebtHL9q+PDhXH/99XTv3v28ZaaoqIiioqKyr3Nzcys7nohf65mWwLH8Iuas2suTH24hLjKIPpcF3jgUIgEr7zC8cSOcOu4ZuO6aCRDi3UFifd1FXcKwdu1aMjIyMAyD5s2b06pVK2/lKjN37lzWrVvH6tWrL+j5U6ZMYdKkSV7PIRLIfte2AUdPFvPplsOMfnsjsREhXNGkltWxROR8ivI80xRk74GIBM+geBHVb4TvCp0AnJWVxTXXXEPbtm25//77GTFiBK1bt6Zbt24cOXLEa+H27t3LyJEjeeONNwgJubDdZePGjSMnJ6fstnfvXq/lEQlUhmEwrEtT2ibVoMRlMuS11Ww9qL2aIj6ttBjeuh0OfQvB0XDNeKhZPQ8TV6jM3HfffeTm5vLdd99x/PhxTpw4webNm8nNzeX+++/3Wri1a9eSlZVF69atcTgcOBwOlixZwksvvYTD4cDlcp2xTnBwMFFRUafdROT87DaDP/VKJSU+gvwiFwNnrOJA9imrY4nI2bjd8J/hsOtLcITA1Q9DQgurU1mmQhNNRkdHs2jRItq2bXva8lWrVtGzZ0+ys7O9Ei4vL4/du3eftuzOO+8kNTWVP/3pT6Snp5/3NTTRpEj55BWW8OC7GzmQXUij2uHMH9aJ6LDqcUWEiN/49FFY/hIYdug8BlKus25QPH+daNLtdp9xOTaA0+k8Y56mixEZGUl6evppt/DwcGrVqnVBRUZEyi8yxMnkfunEhDnJPJrP4FmrKCw5cy+oiFhkxVRPkQFoOxSSrw3o0X0vRIXKzDXXXMPIkSM5cOBA2bL9+/fzwAMP0K1bN6+FExFrxEWGMLlvOqFOO+v3ZDN8zjpcbg2qJ2K5ze/DJ+M891vcApfeXC0GxTufCpWZv//97+Tl5ZGUlESTJk1o2rQpjRo1Ii8vj//7v//zdsbTfPnll7zwwguV+h4iAkm1w5lwfTMcNoPFGVk8On+TRgkWsVLmVzDvHsCEpj2g7RCwaV41qOCl2YmJiaxbt47PPvuMrVu3YpomzZs3p3v37t7OJyIWurR+DA90T+Evn25jzqq9JESHcH+3FKtjiVQ/hzbD3AHgKob6baHTSHBoxvuflGvPzOeff07z5s3LBqLr0aMH9913H/fffz9t27YlLS2NpUuXVkpQEbFG55RY7urkudzz+c928NbqPRYnEqlmsvd6xpIpyoXYVOgyDoIjrE7lU8pVZl544QXuvvvus55VHB0dzT333MPzzz/vtXAi4hv6t6pH/5Z1ARj3/iY+35plcSKRaqLgOLzxG8g7CNGJnkHxwmpancrnlKvMbNy4kV69ep3z8Z49e7J27dqLDiUivufOTo24Krk2bhOGzV7Lhj0nrI4kEthKTsGbv4Oj2yCslqfIRGuqkbMpV5k5fPjwWS/J/onD4fDqCMAi4jtshsED3VO4tF40hSVuBs9azQ9H862OJRKY3C54byjsXQlB4Z5DS7E6X+1cylVm6tWrx6ZNm875+LfffkudOnUuOpSI+Can3cb465uRVCuM7IISbp++kqMni86/oohcONOEBQ/C1g/B5oQrx0C91lan8mnlKjO9e/dm4sSJFBYWnvHYqVOneOyxx7jhhhu8Fk5EfE9YkIMn+qYTGxHMvuxTDHplFflFpVbHEgkcX/0F1swADOgwHJp0qfaD4p1PuaYzOHz4MJdffjl2u50RI0ZwySWXYBgGGRkZ/OMf/8DlcrFu3Tri4+MrM3O5aDoDkcqx/8QpHnx3IyeLSunYpBav3tUOp71CQ1eJyE/WvQ4fjPDcbzUIWt/h+4Pi+dt0BvHx8Sxfvpz09HTGjRvHjTfeSP/+/XnkkUdIT0/n66+/9qkiIyKVp16NUB7vk0aQw8by748x5u2NGlRP5GJsXwj/Hem5n9oHLh/o+0XGR5R70LyGDRuyYMECTpw4wc6dOzFNk+TkZGrUqFEZ+UTEh12SEMmfrr2EpxZk8MHGAyREh/BI72ZWxxLxP/vWwjuDwXRB0lWew0t2TfB6oSq8T7hGjRq0bduWdu3aqciIVGPtGtViWJemALz81S5eWZZpcSIRP3N0J8y5GUoKIOFS6PwQOEOsTuVXdIBbRC7atWkJ/L5tIgBPfriFDzceOM8aIgJA3mF44yYoOOY55+SaCRDi3fM7qwOVGRHxit+3a0DP5vGYwANvb2DF98esjiTi24ryPNMUZO+GiATPoHgRcVan8ksqMyLiFYZhMKxLU9om1aDEZTLktdVsPZhrdSwR31RaDG/dDoe+heBouGY81GxkdSq/pTIjIl5jtxn8qVcqKfER5Be5GDhjFQeyT1kdS8S3uN3wn+Gw60twhMDVD0NCC6tT+TWVGRHxqmCHncf7pFE3OoQjeUUMmL6SnIISq2OJ+I5Fj8Gmt8GwQ6f7oWFHqxP5PZUZEfG6yBAnk/ulExPmJPNoPoNnraKwxGV1LBHrrZgKy1/y3G87BJKv1ei+XqAyIyKVIi4qhCf6phPqtLN+TzbD56zD5dagelKNbX4fPhnnud/iZrj0Fg2K5yUqMyJSaRrVDmd871QcNoPFGVk8On+TRgmW6inzK5h3D2BC0+7QdijYyj1urZyDyoyIVKrLEmvwQPcUDGDOqr28tHiH1ZFEqtahzTB3ALiKoX5b6DQKHMFWpwooKjMiUuk6p8RyVyfPZad/W7SDt1bvsTiRSBXJ3usZS6YoF2JTocs4CI6wOlXAUZkRkSrRv1U9+resC8C49zfx+dYsixOJVLKC4/DGbyDvIEQnegbFC6tpdaqApDIjIlXmzk6NuCq5Nm4Ths1ey4Y9J6yOJFI5Sk7Bm7+Do9sgrJanyETXszpVwFKZEZEqYzMMHuiewqX1oikscTN41mp+OJpvdSwR73K74L2hsHclBIV7Di3FplidKqCpzIhIlXLabYy/vhlJtcLILihhwPSVHMkrsjqWiHeYJix4ELZ+CDYnXDkG6rW2OlXAU5kRkSoXFuTgib7pxEYEsz/7FINmrCS/qNTqWCIX76vnYM0MwIArhkGTLhoUrwqozIiIJWqEBzG5XzoRwQ4yDuZx92trKHG5rY4lUnHrXoMvnvLcbzUQmvcFQx+zVUFbWUQsU69GKI/3SSPIYWP598cY8/ZGDaon/mn7QvjvKM/9Zn3h8oEa3bcKqcyIiKUuSYhk7LWXYDPgg40HeHpBhtWRRMpn3xp4+w4wXZB0lefwkt1pdapqRWVGRCzXtlEthndpCsC0pZm8sizT4kQiF+joTphzC5SegjqXQeeHwBlidapqR2VGRHxCz7QEbmuXCMCTH27hvxv3W5xI5DzyDsMbN0LBMajZGLqOh5Aoq1NVSyozIuIzfte2AT2bx2MCo9/eyDc7j1odSeTsCnM90xRk74HIBM+geBFxVqeqtlRmRMRnGIbBsC5NaZtUgxKXydDX15BxMMfqWCKnKy2Gt26HQ99CSLRnj0zNRlanqtZUZkTEp9htBn/qlcol8ZHkF7kYNGM1B7JPWR1LxMPthv8Mg8wl4AiFq/8ECS2sTlXtqcyIiM8Jdth5rE9z6saEcCSviAHTV5JdUGx1LBFYNBE2vQOGHTrdDw06WJ1IUJkRER8VGeJkcr90aoQ5yTyaz+CZqykscVkdS6qzb/4By//Pc7/d3ZByrUb39REqMyLis+IiQ3iibzqhTjsb9mYzbPY6XG4NqicW2PQuLHzEc7/FrdDitxrd14fov4SI+LSk2uE8en0zHDaDz7dmMX7eJo0SLFVr1xKYd6/nftMe0PYusDmszSSnUZkREZ/Xon4Mo3ukYABzV+/lxUU7rI4k1cWhTTB3ALhLILE9XDkKHMFWp5L/oTIjIn7hquRYhlzpufz1hcU7eHPVHosTScA7sRve+C0U50FsM7h6LASFW51KzkJlRkT8Rr+W9bipVT0Axs/bxKIthy1OJAGr4Di88Rs4eQhiGkC3CRBWw+pUcg4qMyLiVwZ3TKJLSixuE0bMWce63SesjiSBprjAM9/SsR0QVhuumQBR9axOJb9CZUZE/IphGIzslkzLxGgKS93cOWsVu46ctDqWBApXKbx7J+xbDUER0PURqJ1idSo5D5UZEfE7DruNR65rTuPa4eScKmXA9JVk5RZaHUv8nWnCh6Ng+ydgD4KrHoS6raxOJRdAZUZE/FJokJ1JfdOIjwrmYE4ht7+ykrzCEqtjiT/7cgqsf90zfkyH4dC4swbF8xMqMyLit2LCgpjcL52oEAfbD59k6KtrKC51Wx1L/NHqV2DJM577l98BqTdoUDw/ov9SIuLX6kSHMqlvOsEOGyszjzNy7nrcGiVYyiPjQ1jwoOd+8/7QagDY7JZGkvJRmRERv9c0LoJHejfDZsDHmw/xxIdbrI4k/mL3N/DeEDDd0LgrtL9Xo/v6IZUZEQkIlzeowchuyQDMWv4DU7/caXEi8XlZGfDmrVBaCPVaw1WjwRlidSqpAJUZEQkY16TGM7hDEgDPfLKN99ftszaQ+K6c/Z5B8QpzoFYydBkLwZFWp5IKUpkRkYBy0+X16HNpHQAefvdblmzLsjiR+JxTJzxFJne/ZzC8bo9CeKzVqeQiqMyISEAxDIOhVzWmU5NalLpN7n1jHd/uy7Y6lviKklPw5m1wJANCa0LXCZ7pCsSvqcyISMCxGQZjel5Cer0oTpW4uGPGKnYfy7c6lljN7YL3hsKe5eAM9xxaim9mdSrxApUZEQlITruNR69vTsNaYZwoKGHAtJUcPVlkdSyximl6Lr/e+iHYnJ6Tfeu3tTqVeInKjIgErLAgB5P7phMbEcy+7FMMfGUlJ4tKrY4lVvjqOVgzAzDgij9Ck64a3TeAqMyISECrER7Ek/3TiQh2kHEwT6MEV0drZ8EXT3nuXz4ImvfV6L4Bxqf/a06ZMoW2bdsSGRlJXFwc/fv3Z9u2bVbHEhE/UzcmlEl90why2Fix6xgPvLVBowRXF1s/gg8f8Nxv1hda3a5B8QKQT5eZJUuWMHz4cFasWMFnn31GaWkpPXv2JD9fJ/KJSPmkxEcyrlcqNgM+2nRQowRXB3tWwLt3eUb3bXQ1XDEM7E6rU0kl8Ol6+sknn5z29cyZM4mLi2Pt2rV07tzZolQi4q/aJNXk/m7JvLBoB7OW/0BcVDDDujS1OpZUhqwMmHOLZ3Tfuq2g84Ma3TeA+XSZ+V85OTkA1KxZ85zPKSoqoqjo5ysWcnNzKz2XiPiPbqnxZOeXMOubH3j2k23ERgRzc5tEq2OJN+XsO310366PaHTfAOfTh5l+yTRNRo8ezZVXXkl6evo5nzdlyhSio6PLbomJ+iUlIqf7Tev69LnMM0rw2Pc38cVWjRIcMAqOw+s3/Ty6b/eJGt23GvCbMjNixAi+/fZb3nzzzV993rhx48jJySm77d27t4oSiog/GXplY65sWhuX2+SPb6xl3e4TVkeSi1VcAHNuhaPbIKyWZ5qCaP1BWx34RZm57777+OCDD/jiiy+oX7/+rz43ODiYqKio024iIv/LZhiM7pHCZfWjKSx1c+esVXx/5KTVsaSiXCXwzmDYtwqCwqHLOIhNtTqVVBGfLjOmaTJixAjef/99Pv/8cxo1amR1JBEJIE67jfG9m9MkNpycU6XcNm0Fh3IKrY4l5WWa8MH9sGMh2IPgqoegXmurU0kV8ukyM3z4cN544w3mzJlDZGQkhw4d4tChQ5w6dcrqaCISIEKD7Ezqm05CdAiHc4sYMH0FOQUlVseS8lj0OGyc4xkIr8N90Phqje5bzfh0mZk6dSo5OTl06dKFOnXqlN3eeustq6OJSACJDnXyZL90YkKdfH8kn8EzV1FY4rI6llyI5X+Hr1/w3G8zBFJ7q8hUQz5dZkzTPOtt8ODBVkcTkQATHxXCE/3SCXXaWb83m3teX0upS9Me+LSNc+HT8Z77LW6By24Fm93aTGIJny4zIiJVqVHtcCbe0Ayn3WDJ9iM8+M5GTFPTHvik7Z/Cf4Z77qf0grZDNE1BNaYyIyLyC+n1Ynj4Ws+0B/M3HOCpjzKsjiT/a+8qeHsQuEuhYSfodD84gq1OJRZSmRER+R9XNK7F8B+nOZi+LJOpX35vcSIpk7UVZt8MpaegzmVw9Z/AGWZ1KrGYyoyIyFn0TEtg0BUNAXjmk628vXqPxYmE7D3w+o1QmP3jNAUTIERjiYnKjIjIOf22dX36XlYX8Ex7sPC7QxYnqsZOHoHX+kPeAYiu7xndN0LTFIiHyoyIyDkYhsHQKxvR9ZJY3CaMmLOOb3YetTpW9VOYC2/cBMe/98yz1G0ixDSwOpX4EJUZEZFfYRgGI7ul0KZhDUpcJkNfW8Pm/dlWx6o+Sgrhzd/DoW8hOBq6jofaKVanEh+jMiMich52m8HY61JpVieS/GIXA19ZRebRfKtjBT5XKbx7F+xeBs5Q6PInqNvS6lTig1RmREQuQLDDzmM3pJFUK4wTBSX8ftoKDuZoapVK43bDB/fBto/A5oQrx0CDDlanEh+lMiMicoHCgx1M7pdOQlQIh3IK+f3LKzh2ssjqWIHHNGHhuJ/nW+o4Appeo2kK5JxUZkREyiEmLIinbkynZngQPxwr4PZXVpJXqIkpverLP8PKf3nut/sDpN7gKTUi56CfDhGRcoqLDOGp/ulEhjjIOJjH4BmamNJrVkyFJX/23G81CFr8VvMtyXmpzIiIVED9GmFM/nFiyrV7svnDa2soLtXElBdl/Wz4ZKznftpv4PKBmm9JLojKjIhIBTWJjSibmPKrHUe57831uNyamLJCvpsPH4zw3E/pBe3/AHanpZHEf6jMiIhchPR6MTxyXTPsNoOF3x1izDsbcKvQlM/2hfDeEDDd0Ohq6DRKE0dKuajMiIhcpDZJNXmo5yWembbXH2DC/M2YpgrNBdm1BN4a6JkBu8EV0PkhcIZYnUr8jMqMiIgXdGpam/uvScYA5qzaw1MfZajQnM+elZ7RfV1FUK81dH0EgiOsTiV+SGVGRMRLujWL596rmwAwfVkmf1u03eJEPuzABpj9WyjJh/gWnhmwgzUDtlSMyoyIiBf1blGHwR2TAHhp8U7+/vkOawP5okOb4PX+UJQLsZd4Jo4Mq2F1KvFjKjMiIl72m8vrc1s7z6zOf/l0Oy9/9b3FiXzI4S3wWj84dQJqNYVukyAi1upU4udUZkREKsHv2zXgljb1AXh6wVZmLMu0OJEPOLIdXusLBcegZmPoMQmiEqxOJQFAZUZEpJLc3r4hv7m8HgBPfLiF1775wdpAVjr2PbzaB/KPQEzSj0WmntWpJECozIiIVBLDMLijQxJ9L6sLwMT/fMcbK3ZbnMoCx76HWTfAyUMQ0wB6PAHRiVankgCiMiMiUokMw2DolY24oUUdACbM38xry3+wNlRVOroDZl0PeQcguj50nwQ1GlidSgKMyoyISCUzDIM/dG5Mn0s9hWbiB98x8+tqcA7NkW0/FpmDnj0xPSZDzUZWp5IApDIjIlIFDMPg7qsa0+/HQ06T/ruF6Ut3WZyqEmVt/fHQ0mGIaQg9n1SRkUqjMiMiUkUMw2DIlY24sZXnxNcnP8rg30sC8LLtw9959sjkZ/14su9kqNHQ6lQSwFRmRESqkGEY3Nkxid+29ly2PeXjrTz/6bbAmfpg31qY2RsKjkKNRnDtZJ0jI5VOZUZEpIoZhsGgKxry+3aeK3pe+nwnkz/c4v+FJnOpZxyZwmyolew5tKSrlqQKqMyIiFjAMAxua9eQIZ0855HM+PoHHn7vW1xuPy002xd65loqPgnxaXDtUxCtcWSkaqjMiIhYqH+retzXtSmGAe+s2ceIOesocbmtjlU+m9+HubdBaaFn9useT0JEnNWppBpRmRERsVjPtAQe7HEJdpvBx5sPMXjmKk4WlVod68KsfBnevQvcpdCgI3R/TJNGSpVTmRER8QGdU2KZ0LsZQXYbX+88xs3/Wk5WXqHVsc7N7YbPJsLHDwEmNOkG3SZAcJTVyaQaUpkREfERbZJqMuXGdCJDHGQczKP/379m15GTVsc6U2kxzLsHvn7R83X6zdD5IXCGWZtLqi2VGRERH5KSEMVffnsZcZHBHMgp5MZ/Lmft7hNWx/pZYS7MuRk2vQ2GHdr9Aa64B5whVieTakxlRkTEx9SNCeWvN19Go9rh5Jwq4ffTVjB//X6rY8GJH2DGtbDrS3CEQOcxcOmtYHNYnUyqOZUZEREfFBMWxDM3XcrlDWIoLnUz6q0NPPvJVtxWXbr9w9fwclfI2gIhNaDbREi5Dmx2a/KI/ILKjIiIjwoNsjPxhjT6/jif0z+//J4/vL6W/Kq+0mntq57B8E4dh5qN4bpnoGFHMIyqzSFyDiozIiI+zG7zTFB5X9emOGwGizIOc9M/l7P3eEHlv7mrBD4eC/+933PpdWJ7T5GJTan89xYpB5UZERE/0DMtgSf7e6502nY4j+tfWsqiLYcq7w1z9ntmvV451fN12m+g+yQIj6289xSpIJUZERE/kVY3mhdubUnj2uHkFpYy9LW1PP3RFu+PGLxzMfz7Kti7wnO5dadR0OGPumJJfJbKjIiIH4mLDOEvN1/GdekJALy8NJNb//0Nh3K8MMCe2wWfPwVv/AYKjkGNJM9hpeb9dMWS+DSVGRERP+O02xjWpSkP9UwhxGlj3Z5srn3hKxZsOljxFz2e6Tms9NWzeEb0vQaufx4SWuhEX/F5KjMiIn6qc0ocL9zSkoY1w8g5VcKw2eu4b846cgpKLvxFTBPWzICpnWDPcs/4Me3/CF3GQVjNygsv4kUqMyIifqxejTD+dmtLbmxVD8OA/357kO5/W8KX27LOv3LuAZj9W/jwASjJh9hU6P1XuPQWsDsrP7yIl6jMiIj4Oafdxl2dGvHMTZcSHxXMkbwiBs9czQNvbeBIXtGZK7hdsHo6/PMK2LkIbE647Da44XlISNNhJfE7KjMiIgGiWZ0o/v77y+n148nB89bvp+tfvmTW15mU/nTF0741MK0rfDQGCnN+HgSv3VBNFCl+S6eni4gEkBCnneFdmtI1JY5/frmT3ccLePy/W1iwcjP/iP+A2B1ve57oDIcWv4EWt0BwhLWhRS6SyoyISABqXjeKF3/XikXrtxO27l8MyvmIiFzP5dvZda8ipuMQqNFQh5QkIKjMiIgEIKOkgITvZjDqu3/jMHIA2ORO4rGSwazblcL19hBGX+GiSQ19DIj/00+xiEgAsZ86Sq2MN6i55TWchUcBKA6vS3aTfhyO6krIFhMOuPhoRyEf7yzk+qahDGkVTsuEIIuTi1ScyoyISAAIOfYdtTbPIOb7/2BzFwNQEhpHduM+5CT1xHSG0xCY1Bl2HHcx49tTrDnk5r87TvHfHadoleBkSMsIejUNwWHToSfxLyozIiJ+ylaUTXTmR9TY8R7hh9eULS+MakReg+7kNLgGMyjyjPWSa9qZ0iWCbUdLeXdbEcv2u1h/qIQRn5wgPtzGTalh3JgaSkotjTUj/kFlRkTEjxglBUTuW0LMznlE7v28bC+MadgoiGtNTsNrKYhvjXkBg95dUtvB+NoOjhW4mbetkI8zSzmc72bq2pNMXXuSZrUd3JQaxvXJodSNtFf2tyZSYYZpmqbVISpTbm4u0dHR5OTkEBUV5dXX3nu8gIyDudSJDvXq64qI/FJQTiaRez8ncu8XhB9agc1VXPZYUUQi+XXak1f/aoqjGoBR8dJR7DJZuqeYRT+UsD7LjesXnw4pNR10bRRC14bBtK4ThNOuQ1Hyo5z9EN/cM2aRF5Xn81t7ZkREfInbRciJbYQdXkPY4bWEH15D0Mm9pz2lJKQ2BfFtyK1/FUU1m1/QXpgLEWQ36NYomG6NgskpdLPohyK+3FPKtuMm24+Xsv34Sf699iThToPWdYLKbi0TnEQEaQxWsY5flJl//vOfPPfccxw8eJC0tDReeOEFrrrqKqtjiYhUnGliLzxOSPYOgk9sI+T4Vs/txFbsJfmnP9WwUxiTzKnaLciPb0NRTFNMR3ClxosOsfGb1FB+kwrZp0xWHihm5YESNhxxk1ds8tWeIr7a45kqwWZA4xoOUms5SK3tJKWmg0tqOakXZdfJxFIlfL7MvPXWW4waNYp//vOfdOrUiX//+99cd911bNmyhQYNGlgdT0TkTG4X9uI8HKeO4DiVhbMgC0fBEZwFB3Hm7SUoby9BeXvOKC1lq9tDKIpuTFF0E07VvIRTtdNxhdS4qENIFyMm1ODaJsFc2yQYl9tk+7FSNh0pZctRF9tPuDlyCnYeL2Xn8VI+3FFYtp7DBnUi7DSItpMY5aBepJ24cBuxYT//GxNiI9ihwiMXx+fPmWnfvj2XX345U6dOLVvWrFkz+vfvz5QpU867fqWdM1OYw4FDh9iZdZK4yBDvva5ItfO/v4LO8ivpf35NGT89x/zl800wTc9jpgm4yx43TPePj7s998v+df38r9uFYZaCuxTDXYrhLvHcXCUY7mJspUUYrkJsriKM0kJspfnYSwqwlZzEVlKArSQPR1E29qIcbMV5P2c8j5KQ2pRE1KM4oi7FkYk/lphGmI4wvxmd9/BJF9uPlbIr28XuXDd78kwOnDQpcV/Y+qEOg6hgg5gQG1HBNsKdhucWZCPMaRDi+OkGwXaDYIeB02bgtIHTbuCwgdNmYLeB3fjpX7DbDAzAbvPsPTIwPP8aP3394+3HzWwYRtnXP235Xz7+S2csupDnBKq8w0TWu4TouslefdmAOWemuLiYtWvXMnbs2NOW9+zZk+XLl591naKiIoqKfp4lNjc3t3LCrX6FuosnUbdyXl1EAoDLEUZpUDSuoChKnRG4giIpCalNcWgcxeEJFIfG43aGYRr/86u4xA0lJ60JXQE1bNA+1nP7icsFRwphf56bwwVwMB+OFUFOEeQUG2QXQ04xuE2DU6Ump0pNDudfYPsRH2Pwx/bH+NON3i0z5eHTZebo0aO4XC7i4+NPWx4fH8+hQ4fOus6UKVOYNGlS5YezOTDtQf/7B6OIVIB5xp++F/I3bdmf07/YB2L84s9oA7Psa+PH5xlg2H7+1zAAG6Zhx7TZfnHfjmlzeO4bDkybHbctCNPm/PHmwG0PwWUPwW0Pxm0Pwe0IweUMx+UIp9QZgdsRhmm7gF+xLhfguoDv178YQFyw53YubhMKSuFkCZwsMcgrhvxSKCw1OOWCwlI45TIocnn6XbEbSlwGxW4odYPL9Pxbahq4fvzaZXpe1/XjDjr3j+/j/vHrH/fZwY+Pmb/cycfpOwFNzrqf8IJ+71/IR0MgfX4Uu6z9Zny6zPzE+J9fdKZpnrHsJ+PGjWP06NFlX+fm5pKYmOj9UJ3uhw4jKC30n7+eRPzbBRScs/5eMM54jvHjcuOc60igMH+sFWcrDmdddgE1JJBKiLeEhVh7uoVPl5natWtjt9vP2AuTlZV1xt6anwQHBxMcXLln+f/EsNkICvPu2DUiIiJSPj49MEBQUBCtW7fms88+O235Z599RseOHS1KJSIiIr7Ep/fMAIwePZqBAwfSpk0bOnTowMsvv8yePXu49957rY4mIiIiPsDny8ytt97KsWPHeOKJJzh48CDp6eksWLCAhg0bWh1NREREfIDPjzNzsSpzbiYRERGpHOX5/Pbpc2ZEREREzkdlRkRERPyayoyIiIj4NZUZERER8WsqMyIiIuLXVGZERETEr6nMiIiIiF9TmRERERG/pjIjIiIifs3npzO4WD8NcJybm2txEhEREblQP31uX8hEBQFfZvLy8gBITEy0OImIiIiUV15eHtHR0b/6nICfm8ntdnPgwAEiIyMxDMOrr52bm0tiYiJ79+7VvE+VSNu5amg7Vw1t56qh7Vw1KnM7m6ZJXl4edevWxWb79bNiAn7PjM1mo379+pX6HlFRUfqfpQpoO1cNbeeqoe1cNbSdq0Zlbefz7ZH5iU4AFhEREb+mMiMiIiJ+TWXmIgQHB/PYY48RHBxsdZSApu1cNbSdq4a2c9XQdq4avrKdA/4EYBEREQls2jMjIiIifk1lRkRERPyayoyIiIj4NZUZERER8WsqM7/in//8J40aNSIkJITWrVuzdOnSX33+kiVLaN26NSEhITRu3Jh//etfVZTU/5VnW7///vv06NGD2NhYoqKi6NChAwsXLqzCtP6rvD/TP/n6669xOBy0bNmycgMGiPJu56KiIsaPH0/Dhg0JDg6mSZMmzJgxo4rS+q/ybufZs2dz2WWXERYWRp06dbjzzjs5duxYFaX1T1999RV9+vShbt26GIbB/Pnzz7uOJZ+FppzV3LlzTafTaU6bNs3csmWLOXLkSDM8PNzcvXv3WZ+/a9cuMywszBw5cqS5ZcsWc9q0aabT6TTffffdKk7uf8q7rUeOHGk+88wz5qpVq8zt27eb48aNM51Op7lu3boqTu5fyrudf5KdnW02btzY7Nmzp3nZZZdVTVg/VpHt3LdvX7N9+/bmZ599ZmZmZporV640v/766ypM7X/Ku52XLl1q2mw288UXXzR37dplLl261ExLSzP79+9fxcn9y4IFC8zx48eb7733ngmY8+bN+9XnW/VZqDJzDu3atTPvvffe05alpqaaY8eOPevzH374YTM1NfW0Zffcc495xRVXVFrGQFHebX02zZs3NydNmuTtaAGlotv51ltvNSdMmGA+9thjKjMXoLzb+eOPPzajo6PNY8eOVUW8gFHe7fzcc8+ZjRs3Pm3ZSy+9ZNavX7/SMgaaCykzVn0W6jDTWRQXF7N27Vp69ux52vKePXuyfPnys67zzTffnPH8a6+9ljVr1lBSUlJpWf1dRbb1/3K73eTl5VGzZs3KiBgQKrqdZ86cyffff89jjz1W2REDQkW28wcffECbNm149tlnqVevHikpKTz44IOcOnWqKiL7pYps544dO7Jv3z4WLFiAaZocPnyYd999l+uvv74qIlcbVn0WBvxEkxVx9OhRXC4X8fHxpy2Pj4/n0KFDZ13n0KFDZ31+aWkpR48epU6dOpWW159VZFv/r7/+9a/k5+dzyy23VEbEgFCR7bxjxw7Gjh3L0qVLcTj0q+JCVGQ779q1i2XLlhESEsK8efM4evQow4YN4/jx4zpv5hwqsp07duzI7NmzufXWWyksLKS0tJS+ffvyf//3f1URudqw6rNQe2Z+hWEYp31tmuYZy873/LMtlzOVd1v/5M033+Txxx/nrbfeIi4urrLiBYwL3c4ul4vbbruNSZMmkZKSUlXxAkZ5fp7dbjeGYTB79mzatWtH7969ef7555k1a5b2zpxHebbzli1buP/++5k4cSJr167lk08+ITMzk3vvvbcqolYrVnwW6s+ts6hduzZ2u/2Mhp+VlXVG4/xJQkLCWZ/vcDioVatWpWX1dxXZ1j956623GDJkCO+88w7du3evzJh+r7zbOS8vjzVr1rB+/XpGjBgBeD50TdPE4XDw6aefcs0111RJdn9SkZ/nOnXqUK9ePaKjo8uWNWvWDNM02bdvH8nJyZWa2R9VZDtPmTKFTp068dBDDwFw6aWXEh4ezlVXXcWTTz6pvedeYtVnofbMnEVQUBCtW7fms88+O235Z599RseOHc+6TocOHc54/qeffkqbNm1wOp2VltXfVWRbg2ePzODBg5kzZ46OeV+A8m7nqKgoNm3axIYNG8pu9957L5dccgkbNmygffv2VRXdr1Tk57lTp04cOHCAkydPli3bvn07NpuN+vXrV2pef1WR7VxQUIDNdvpHnt1uB37ecyAXz7LPwko9vdiP/XTZ3yuvvGJu2bLFHDVqlBkeHm7+8MMPpmma5tixY82BAweWPf+ny9EeeOABc8uWLeYrr7yiS7MvUHm39Zw5c0yHw2H+4x//MA8ePFh2y87Otupb8Avl3c7/S1czXZjybue8vDyzfv365m9/+1vzu+++M5csWWImJyebQ4cOtepb8Avl3c4zZ840HQ6H+c9//tP8/vvvzWXLlplt2rQx27VrZ9W34Bfy8vLM9evXm+vXrzcB8/nnnzfXr19fdgm8r3wWqsz8in/84x9mw4YNzaCgIPPyyy83lyxZUvbYHXfcYV599dWnPf/LL780W7VqZQYFBZlJSUnm1KlTqzix/yrPtr766qtN4IzbHXfcUfXB/Ux5f6Z/SWXmwpV3O2dkZJjdu3c3Q0NDzfr165ujR482CwoKqji1/ynvdn7ppZfM5s2bm6GhoWadOnXMAQMGmPv27avi1P7liy+++NXft77yWWiYpvaviYiIiP/SOTMiIiLi11RmRERExK+pzIiIiIhfU5kRERERv6YyIyIiIn5NZUZERET8msqMiIiI+DWVGREREfFrKjMi4ld++OEHDMNgw4YNv/q8Ll26MGrUqCrJJCLWUpkRkUoxePBgDMPAMAycTieNGzfmwQcfJD8//6JeNzExkYMHD5Keng7Al19+iWEYZGdnn/a8999/n8mTJ1/Ue4mIf3BYHUBEAlevXr2YOXMmJSUlLF26lKFDh5Kfn8/UqVMr/Jp2u52EhITzPq9mzZoVfg8R8S/aMyMilSY4OJiEhAQSExO57bbbGDBgAPPnz6eoqIj777+fuLg4QkJCuPLKK1m9enXZeidOnGDAgAHExsYSGhpKcnIyM2fOBE4/zPTDDz/QtWtXAGrUqIFhGAwePBg48zDTiRMnGDRoEDVq1CAsLIzrrruOHTt2lD0+a9YsYmJiWLhwIc2aNSMiIoJevXpx8ODByt9QInJRVGZEpMqEhoZSUlLCww8/zHvvvcerr77KunXraNq0Kddeey3Hjx8H4NFHH2XLli18/PHHZGRkMHXqVGrXrn3G6yUmJvLee+8BsG3bNg4ePMiLL7541vcePHgwa9as4YMPPuCbb77BNE169+5NSUlJ2XMKCgr4y1/+wuuvv85XX33Fnj17ePDBBythS4iIN+kwk4hUiVWrVjFnzhy6du3K1KlTmTVrFtdddx0A06ZN47PPPuOVV17hoYceYs+ePbRq1Yo2bdoAkJSUdNbXtNvtZYeT4uLiiImJOevzduzYwQcffMDXX39Nx44dAZg9ezaJiYnMnz+fm2++GYCSkhL+9a9/0aRJEwBGjBjBE0884a1NICKVRHtmRKTSfPjhh0RERBASEkKHDh3o3Lkz9913HyUlJXTq1KnseU6nk3bt2pGRkQHAH//4R+bOnUvLli15+OGHWb58+UXlyMjIwOFw0L59+7JltWrV4pJLLil7T4CwsLCyIgNQp04dsrKyLuq9RaTyqcyISKXp2rUrGzZsYNu2bRQWFvL+++8THR0NgGEYpz3XNM2yZddddx27d+9m1KhRHDhwgG7dul3U4R7TNM+5/Jc5nE7naY8bhnHOdUXEd6jMiEilCQ8Pp2nTpjRs2LCsKDRt2pSgoCCWLVtW9rySkhLWrFlDs2bNypbFxsYyePBg3njjDV544QVefvnls75HUFAQAC6X65w5mjdvTmlpKStXrixbduzYMbZv337ae4qIf9I5MyJSpcLDw/njH//IQw89RM2aNWnQoAHPPvssBQUFDBkyBICJEyfSunVr0tLSKCoq4sMPPzxn6WjYsCGGYfDhhx/Su3dvQkNDiYiIOO05ycnJ9OvXj7vvvpt///vfREZGMnbsWOrVq0e/fv0q/XsWkcqlPTMiUuX+/Oc/85vf/IaBAwdy+eWXs3PnThYuXEiNGjUAz96WcePGcemll9K5c2fsdjtz584962vVq1ePSZMmMXbsWOLj4xkxYsRZnzdz5kxat27NDTfcQIcOHTBNkwULFpxxaElE/I9h6oCwiIiI+DHtmRERERG/pjIjIiIifk1lRkRERPyayoyIiIj4NZUZERER8WsqMyIiIuLXVGZERETEr6nMiIiIiF9TmRERERG/pjIjIiIifk1lRkRERPza/wNF+Dak0IOQqwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAV5RJREFUeJzt3Xd4VGXCxuHfmZLeKCkEAqEkBhIUBERAEaSoKEV31V1RRMHVBRQEdUEURVRWXV3125VdQcCGWGFdRVFQEUR6ESQ0iXQILYX0zJzvj9EoCwgJk5yZyXNf11xMzsyZeXKMmSenvK9hmqaJiIiIiJ+yWR1ARERE5FyozIiIiIhfU5kRERERv6YyIyIiIn5NZUZERET8msqMiIiI+DWVGREREfFrDqsDVDe3282+ffuIjIzEMAyr44iIiMhZME2T/Px8EhMTsdl+e99LwJeZffv2kZSUZHUMERERqYLdu3fTqFGj33xOwJeZyMhIwLMxoqKiLE4jIiIiZyMvL4+kpKSKz/HfEvBl5udDS1FRUSozIiIifuZsThHRCcAiIiLi11RmRERExK+pzIiIiIhfC/hzZkRERPyR2+2mtLTU6hjVxul0YrfbvfJaKjMiIiI+prS0lKysLNxut9VRqlVMTAwJCQnnPA6cyoyIiIgPMU2T/fv3Y7fbSUpKOuOAcf7INE0KCwvJzs4GoEGDBuf0eiozIiIiPqS8vJzCwkISExMJCwuzOk61CQ0NBSA7O5u4uLhzOuQUeHVPRETEj7lcLgCCgoIsTlL9fi5rZWVl5/Q6KjMiIiI+qDbMJ+it71FlRkRERPyapWXm66+/pm/fviQmJmIYBnPnzj3hcdM0efTRR0lMTCQ0NJRu3brx/fffWxNWREREfJKlZaagoIALLriAf/zjH6d8/Omnn+a5557jH//4BytXriQhIYFevXqRn59fw0lFRETEV1l6NdNVV13FVVdddcrHTNPk+eefZ/z48Vx33XUAvPrqq8THxzNr1izuvPPOmox6Sl9sPkjXlFgcdh2tExGR2m3w4MHk5OScdJSlJvjsp3BWVhYHDhygd+/eFcuCg4O57LLLWLp06WnXKykpIS8v74RbdXh+wVZun7mKh+ZuxDTNankPEREROTOfHWfmwIEDAMTHx5+wPD4+np07d552vcmTJzNx4sRqzQaQlhCJAcxeuZu4yGBG9z6v2t9TRERqH9M0KSpzWfLeoU67X1xV5bNl5mf/uxFN0/zNDTtu3DhGjx5d8XVeXh5JSUlez3VlRgNG9Uzh7wu28eIX20mIDuGmjk28/j4iIlK7FZW5aDVhviXvvemxKwgL8vmq4LuHmRISEoBf9tD8LDs7+6S9Nb8WHBxMVFTUCbfqct2Fjbgi3ZPlobkbWbDpYLW9l4iIiJyaz9atpk2bkpCQwOeff07btm0Bz8RbixYt4qmnnrI43S+ua9uQkjI3X209xPBZa3jrjou5sEkdq2OJiEiACHXa2fTYFZa9tz+wtMwcP36c7du3V3ydlZXFunXrqFu3Lo0bN2bUqFE8+eSTpKSkkJKSwpNPPklYWBg33XSThalPZBgGI3ukkFNUxrrdOdw2cwVzhnWhWWyE1dFERCQAGIbhF4d6rGTpYaZVq1bRtm3bij0vo0ePpm3btkyYMAGABx54gFGjRjFs2DDat2/P3r17+eyzz4iMjLQy9kkcdhsPXtWSZvXDyS0qZ+C05WTnF1sdS0REpFawtMx069YN0zRPus2cORPwtNFHH32U/fv3U1xczKJFi8jIyLAy8mmFBtmZ2C+d+Khg9ucWc8u0FeQXn9vEWSIiInJmPnsCsD+KCQtiUv8MokIcbDmYz9BXV1Fa7rY6loiISEBTmfGyBtGhPNo3nWCHjeVZR7n3nXW43RpUT0REAtvMmTMtGf0XVGaqRUp8JOOuSsNmwMff7eeJeZlWRxIREQlYKjPVpF2TutzdPQWAV5ZkMfXrHRYnEhERCUwqM9WoZ6t4bu7YGIAn52Xyn3V7LU4kIiISeFRmqtkN7ZO4KiMBE7jv3fV8s+2w1ZFEREQCispMNTMMgzu7NufiZnUpc5n86fVVbNqXa3UsERGRgKEyUwPsNoP7e6fRMiGSglIXg6avYM+xQqtjiYiIBASVmRoS5LAx4Zp0GsWEcvh4KbdMW05OYanVsURERPyeykwNighxMGlABnXDgsg6Usit01dQXOayOpaIiIhfU5mpYfUjgnmsfzphQXbW78nlz2+sptylUYJFRESqSmXGAk3qhfPw1S1x2Ay+3HKIB+dswDQ1SrCIiPinvn370rNnz1M+9u2332IYBmvWrKm291eZsUhGwxjG9E7FAN5ZtYe/f77V6kgiIiJVMmTIEL744gt27tx50mPTp0+nTZs2XHjhhdX2/iozFrqkRSxDL20GwItfbGfW8pN/CERERHzdNddcQ1xcHDNnzjxheWFhIW+//TZDhgyp1vd3VOuryxn1uyCRI8dL+GDtXh6au5G4yBB6toq3OpaIiPgK04Qyi4bzcIaBYZzxaQ6Hg0GDBjFz5kwmTJiA8dM67777LqWlpQwcOLBaY6rM+IDBnZM5WlDKV1sPMWLWGmbdcTEXNqljdSwREfEFZYXwZKI17/3gPggKP6un3n777TzzzDN89dVXdO/eHfAcYrruuuuoU6d6P9N0mMkHGIbByB4ptEmKprjczW0zV7Dj0HGrY4mIiJy1tLQ0OnfuzPTp0wH44YcfWLx4Mbfffnu1v7f2zPgIh93Gg1e1YuwH37HjcAEDpy3nPyO6EBcZYnU0ERGxkjPMs4fEqveuhCFDhjBixAj++c9/MmPGDJo0aUKPHj2qKdwvtGfGh4QG2ZnYL524yGD25xZzy7QV5BeXWR1LRESsZBieQz1W3M7ifJlfu+GGG7Db7cyaNYtXX32V2267reL8meqkMuNjYsKCeHxABpEhDrYczGfoq6soLdegeiIi4vsiIiK48cYbefDBB9m3bx+DBw+ukfdVmfFBDaJDmdg3nWCHjeVZR7n3nXW43RpUT0REfN+QIUM4duwYPXv2pHHjxjXyniozPiolPpKxV6ZhM+Dj7/bzxLxMqyOJiIicUadOnTBNk/nz59fYe6rM+LD2yXUZ0T0FgFeWZDH16x0WJxIREfE9KjM+rlereG7u6NlN9+S8TP6zbq/FiURERHyLyowfuKF9EldlJGAC9727nm+2HbY6koiIiM9QmfEDhmFwZ9fmdGxalzKXyZ9eX8WmfblWxxIREfEJKjN+wm4zeOCKNFomRFJQ6mLQ9BXszSmyOpaIiFQT0wz8q1i99T2qzPiRIIeNCdek0ygmlMPHS7l56jJyCkutjiUiIl5kt9sBKC0N/N/vhYWeCTSdTuc5vY6mM/AzESEOJg3IYMw768k6Usit01fw9p2dCHHarY4mIiJe4HA4CAsL49ChQzidTmy2wNvvYJomhYWFZGdnExMTU1HgqsowA3w/Vl5eHtHR0eTm5hIVFeXV1959tJDM/Xk0iA716uuejZ1HCnjg/e8oLHVxeVocUwe1x26r/iGjRUSk+pWWlpKVlYXbHdgjwMfExJCQkHDKKQ8q8/mtMnMOrCwzABv35vDwf76n3G1yY4ck/npd6xqZA0NERKqf2+0O6ENNTqfzN/fIVObzW4eZ/FhGwxju630eT326mbdX7iYhKoR7e6VaHUtERLzAZrMREhJidQy/EHgH4mqZLi3qc8elzQB4YeE2Zi3faXEiERGRmqUyEwD6XpDIdW0bAvDQ3I0s2HTQ4kQiIiI1R2UmQAzunEy31FjcJoyYtYa1u45ZHUlERKRGqMwECMMwGNkjhTZJ0RSXuxk8YyU7Dh23OpaIiEi1U5kJIA67jQevakWz+uHkFpVx8yvLyc4vtjqWiIhItVKZCTChQXYm9ksnLjKYfTnFDHplBcdLyq2OJSIiUm1UZgJQTFgQjw/IIDLEweYD+Qx9dSWl5YE98JKIiNReKjMBqkF0KBP7phPssLFsx1FGv7MOtzugx0cUEZFaSmUmgKXERzL2yjRsBnz03X6enJdpdSQRERGvU5kJcO2T6zKiewoA05ZkMfXrHRYnEhER8S6VmVqgV6t4bu7YGIAn52Xyn3V7LU4kIiLiPSoztcQN7ZO4KiMBE7jv3fV8s+2w1ZFERES8QmWmljAMgzu7Nqdj07qUuUz+9PoqNu3LtTqWiIjIOVOZqUXsNoMHrkgjLSGSglIXg6avYG9OkdWxREREzonKTC0T5LDxyDXpNIoJ5fDxUm6euoycwlKrY4mIiFSZykwtFBHi4LH+GdQJc5J1pJBbp6+guMxldSwREZEqUZmppWIjg5nUP4OwIDvr9+Qy7M01uDSonoiI+CGVmVqsSb1wHrq6JQ6bwRebs3lwzgZMU4VGRET8i8pMLde6YQxjeqdiAG+v3M3zC7ZZHUlERKRSVGaES1rEMvTSZgC8sHAbs5bvtDiRiIjI2VOZEQD6XZDIdW0bAvDQ3I0s2HTQ4kQiIiJnR2VGKgzunEy31FjcJoyYtYa1u45ZHUlEROSMVGakgmEYjOyRQpukaIrL3QyesZIdh45bHUtEROQ3qczICRx2Gw9e1Ypm9cPJLSrj5leWk51fbHUsERGR01KZkZOEBtmZ2C+duMhg9uUUM+iVFRwvKbc6loiIyCn5dJkpLy/noYceomnTpoSGhtKsWTMee+wx3G631dECXkxYEI8PyCAyxMHmA/kMfXUlpeXa7iIi4nt8usw89dRT/Otf/+If//gHmZmZPP300zzzzDP83//9n9XRaoUG0aFM7JtOsMPGsh1HGf3OOtwaJVhERHyMw+oAv+Xbb7+lf//+XH311QAkJyfz1ltvsWrVqtOuU1JSQklJScXXeXl51Z4zkKXERzL2yjQmfbyJj77bT0JUCA9d08rqWCIiIhV8es/MJZdcwsKFC9m6dSsA69evZ8mSJfTp0+e060yePJno6OiKW1JSUk3FDVjtk+syonsKANOWZDFt8Q6LE4mIiPzCp/fM/OUvfyE3N5e0tDTsdjsul4snnniCP/7xj6ddZ9y4cYwePbri67y8PBUaL+jVKp6jBSW8sXwXT3ycSWxkMP3bNLQ6loiIiG+Xmbfffps33niDWbNmkZ6ezrp16xg1ahSJiYnceuutp1wnODiY4ODgGk5aO9zQPokjBaV8svEA9727ntiIYDq3qG91LBERqeV8+jDT/fffz9ixY/nDH/5A69atueWWW7j33nuZPHmy1dFqJcMwuLNrczo2rUuZy+SO11aRuT/X6lgiIlLL+XSZKSwsxGY7MaLdbtel2Ray2wweuCKNtIRICkpd3PLKCvbmFFkdS0REajGfLjN9+/bliSee4OOPP+bHH39kzpw5PPfcc1x77bVWR6vVghw2HrkmnUYxoRw+XsrNU5eRU1hqdSwREamlDNM0fXbgkPz8fB5++GHmzJlDdnY2iYmJ/PGPf2TChAkEBQWd1Wvk5eURHR1Nbm4uUVFRXs23+2ghmfvzaBAd6tXX9ReH8ksY8+46jhWW0SYphtl/upgQp93qWCIiEgAq8/nt02XGG1RmqtfOIwU88P53FJa6uDwtjqmD2mO3GVbHEhERP1eZz2+fPswkvq9JvXAeurolDpvBF5uzeXDOBgK8H4uIiI9RmZFz1rphDGN6p2IAb6/czfMLtlkdSUREahGVGfGKS1rEMvTSZgC8sHAbs5bvtDiRiIjUFioz4jX9LkjkuraeUYEfmruRBZsOWpxIRERqA5UZ8arBnZO5LDUWtwkjZq1h7a5jVkcSEZEApzIjXmUYBqN6pHBBo2iKy90MnrGSHYeOWx1LREQCmMqMeJ3DbuPBPi1pWj+c3KIybn5lOdn5xVbHEhGRAKUyI9UiLMjBxH7pxEUGsy+nmEGvrOB4SbnVsUREJACpzEi1qRMWxKT+GUSGONh8IJ+hr66itFzzaomIiHepzEi1SowJ5dG+6QQ5bCzbcYTR76zD7dageiIi4j0qM1LtUuMjGXdlGjYDPvpuP0/Oy7Q6koiIBBCVGakR7ZPrMqJ7CgDTlmQxbfEOixOJiEigUJmRGtOrVTw3d2wMwBMfZ/KfdXstTiQiIoFAZUZq1A3tk7gqIwETuO/d9SzdftjqSCIi4udUZqRGGYbBnV2b07FpXcpcJne8vorM/blWxxIRET+mMiM1zm4zeOCKNNISIikocXHLKyvYm1NkdSwREfFTKjNiiSCHjUeuSadhTCiHj5dy89Rl5BSWWh1LRET8kMqMWCYixMGk/hnUCXOSdaSQwTNWUlzmsjqWiIj4GZUZsVRsZDCT+mcQ6rSzbncOw95cg0uD6omISCWozIjlmtQL5+GrW+KwGXyxOZvxczZgmio0IiJydlRmxCe0bhTD6F6pGMDslbt5YcE2qyOJiIifUJkRn3FpSixDLmkKwPMLt/HWil0WJxIREX+gMiM+pX+bhlzbtiEA4+dsYEHmQYsTiYiIr1OZEZ9zW+dkuqbWx23CiDfXsHbXMasjiYiID1OZEZ9jGAb39kjlgkbRFJe7GTxjJVmHC6yOJSIiPkplRnySw25jfJ9WNK0fTm5RGQOnLeNQfonVsURExAepzIjPCg2yM7FfOnGRwezLKeaWV5ZzvKTc6lgiIuJjVGbEp9UJC2JS/wwiQxxsPpDPHa+uorTcbXUsERHxISoz4vMSY0J5tG86QQ4b3+44wph312tQPRERqaAyI34hNT6ScVemYTPgv+v38eS8TKsjiYiIj1CZEb/RPrkuw7u3AGDq4iymLd5hcSIREfEFKjPiV3q3SmDgRY0BeOLjTD5ct9fiRCIiYjWVGfE7N3ZI4sr0BExgzLvr+Xb7YasjiYiIhVRmxO8YhsFdlzWnY9O6lLlMhr6+isz9uVbHEhERi6jMiF+y2wzuv+I8zouPpKDExaDpK9mbU2R1LBERsYDKjPitYIedR/um0zAmlEP5Jdw8dRk5haVWxxIRkRqmMiN+LSLEwaT+GdQJc5J1pJDBM1ZSXOayOpaIiNQglRnxe7GRwUzqn0Go08663TkMf3MNLrcG1RMRqS1UZiQgNKkXzsNXt8RhM1i4OZuH5m7QKMEiIrWEyowEjNaNYhjdKxUDeGvFbl5YuM3qSCIiUgNUZiSgXJoSy5BLmgLw/IJtzF65y+JEIiJS3VRmJOD0b9OQ69o2BODBDzawMPOgxYlERKQ6qcxIQBrcOZnLUmNxmzD8zTWs23XM6kgiIlJNVGYkIBmGwageKVzQKJricjeDZ67kx8MFVscSEZFqoDIjActhtzG+Tyua1g8np7CMgdOWcSi/xOpYIiLiZSozEtBCg+xM7JdOXGQwe3OKGTR9OcdLyq2OJSIiXqQyIwGvTlgQk/pnEBniIHN/Pne8uorScrfVsURExEscVV3R7Xazfft2srOzcbtP/GDo2rXrOQcT8abEmFAe7ZvOg3M28O2OI4x5dz0v/qENhmFYHU1ERM5RlcrMsmXLuOmmm9i5c+dJo6wahoHLpblxxPekxkcy9so0Jn28if+u30dCVDDjr25ldSwRETlHVTrMdNddd9G+fXs2btzI0aNHOXbsWMXt6NGj3s4o4jXtk+syvHsLAKYuzmLa4h0WJxIRkXNVpT0z27Zt47333qNFixbeziNS7Xq3SuDo8VLeXLGLJz7OJC4ymH5tGlodS0REqqhKe2Y6duzI9u3bvZ1FpMbc2CGJK9MTMIEx767n2+2HrY4kIiJVVKU9M3fffTdjxozhwIEDtG7dGqfTecLj559/vlfCiVQXwzC467LmHCssZXnWUYa+vor37upEywbRVkcTEZFKMsz/PYP3LNhsJ+/QMQwD0zR97gTgvLw8oqOjyc3NJSoqyquvvftoIZn782gQHerV15WaU1LuYvycjWw5mE9sZDD/Gd6FxBj99xQRsVplPr+rtGcmKyurSsFEfE2ww86jfdO577317M0pYuC05cwZ1pmYsCCro4mIyFmqUplp0qSJt3OIWCYixMGk/hmMeXcdWYcLGDxjJbP/dDEhTrvV0URE5CxUeQTgH374gbvvvpuePXvSq1cv7rnnHn744QdvZgNg79693HzzzdSrV4+wsDDatGnD6tWrvf4+UrvFRgYzqX8GoU4763bnMPzNNbjclT4CKyIiFqhSmZk/fz6tWrVixYoVnH/++WRkZLB8+XLS09P5/PPPvRbu2LFjdOnSBafTySeffMKmTZt49tlniYmJ8dp7iPysSb1wHr66JQ6bwcLN2Tw0d8NJg0KKiIjvqdIJwG3btuWKK67gr3/96wnLx44dy2effcaaNWu8Em7s2LF88803LF68+KzXKSkpoaTkl5mR8/LySEpK0gnActYWbzvEM/O3YAKjeqYwqmeq1ZFERGqdypwAXKU9M5mZmQwZMuSk5bfffjubNm2qykue0ocffkj79u25/vrriYuLo23btkydOvU315k8eTLR0dEVt6SkJK/lkdrh0pRYhlzSFIDnF2xj9spdFicSEZHfUqUyExsby7p1605avm7dOuLi4s41U4UdO3YwZcoUUlJSmD9/PnfddRf33HMPr7322mnXGTduHLm5uRW33bt3ey2P1B792zTk2raeUYEf/GADCzMPWpxIREROp0pXM91xxx386U9/YseOHXTu3BnDMFiyZAlPPfUUY8aM8Vo4t9tN+/btefLJJwHP4a3vv/+eKVOmMGjQoFOuExwcTHBwsNcySO11W+dkjhSU8PXWwwx/cw2z/3QxbRrXsTqWiIj8jyqVmYcffpjIyEieffZZxo0bB0BiYiKPPvoo99xzj9fCNWjQgFatTpzVuGXLlrz//vteew+R0zEMg3t7pJJTWMZ3e3IZPHMlc4d1Ibl+uNXRRETkV6p0mMkwDO6991727NlTcThnz549jBw5EsMwvBauS5cubNmy5YRlW7du1Tg3UmMcdhvj+7Skaf1wcgrLGDhtGYfyS868ooiI1JgqjzPzs8jISCIjI72R5ST33nsvy5Yt48knn2T79u3MmjWLl19+meHDh1fL+4mcSliQg4n90omLDGZvTjGDpi+noKTc6lgiIvKTs740+8ILL2ThwoXUqVOHtm3b/uYeGG9dmg3w0UcfMW7cOLZt20bTpk0ZPXo0d9xxx1mvr7mZxFv25RQx5t31HC8pp3Pzerx6+0U47ef894CIiJxCtczN1L9//4oTa/v37+/Vw0m/5ZprruGaa66pkfcS+S2JMaFM7JfOuDkbWPrDEUa/s54X/9Cmxv5fEBGRU6vSoHn+RHtmxNtW/XiUSR9vwm3CHZc2ZfzVrc68koiIVEq1D5rXrFkzjhw5ctLynJwcmjVrVpWXFPEb7ZPrMrx7CwCmLs5i2uIdFicSEandqlRmfvzxR1wu10nLS0pK2LNnzzmHEvF1vVslcNNFjQF44uNMPly31+JEIiK1V6XGmfnwww8r7s+fP5/o6OiKr10uFwsXLqRp06beSyfiw/7QIYmjBaV8+v0Bxry7ntiIYDq1qG91LBGRWqdSZWbAgAGAZ5yZW2+99YTHnE4nycnJPPvss14LJ+LLDMPgrsuac7SglBU/HmXo66t4765OtGwQfeaVRUTEayp1mMntduN2u2ncuDHZ2dkVX7vdbkpKStiyZYuuPJJaxW4zeODK8zgvPpKCEheDpq9kX06R1bFERGqVKp0zk5WVRf362p0uAhDssPNI31Y0jAnlUH4JA6ctJ6ew1OpYIiK1RpXmZgIoKChg0aJF7Nq1i9LSE39xe3N+JhF/EBni5LH+6dz37nqyDhcweMZKZv/pYkKcdqujiYgEvCqNM7N27Vr69OlDYWEhBQUF1K1bl8OHDxMWFkZcXBw7dvjOpaoaZ0Zq0s4jBdz/3ncUlbnokRbHy4PaY7dpUD0Rkcqq9nFm7r33Xvr27cvRo0cJDQ1l2bJl7Ny5k3bt2vG3v/2tSqFFAkGTeuE8fHVLHDaDhZuzeWjuBgJ8XEoREctVqcysW7eOMWPGYLfbsdvtlJSUkJSUxNNPP82DDz7o7YwifqV1oxhG90rFAN5asZsXFm6zOpKISECrUplxOp0V89HEx8eza9cuAKKjoyvui9Rml6bEMuQSz5hLzy/YxuyV+v9CRKS6VOkE4LZt27Jq1SpSU1Pp3r07EyZM4PDhw7z++uu0bt3a2xlF/FL/Ng05UlDKnLV7efCDDcRGBNOjZbzVsUREAk6V9sw8+eSTNGjQAIBJkyZRr149/vznP5Odnc3LL7/s1YAi/uy2zsl0Ta2P24Thb65h3a5jVkcSEQk4ld4zY5omsbGxpKenAxAbG8u8efO8HkwkEBiGwb09UskpLOO7PbkMnrmSucO6kFw/3OpoIiIBo9J7ZkzTJCUlRRNKipwlh93G+D4taVo/nJzCMgZOW8ah/BKrY4mIBIxKlxmbzUZKSgpHjhypjjwiASksyMHEfunERQazN6eYQdOXU1BSbnUsEZGAUKVzZp5++mnuv/9+Nm7c6O08IgGrTlgQk/pnEBHsIHN/Pne8tooyl9vqWCIifq9KIwDXqVOHwsJCysvLCQoKIjT0xBFwjx496rWA50ojAIuv2Xown3FzNlBa7qbfBYm88Ic2FUMdiIiIR2U+v6t0afbf//53/fIVqaLU+EjGXZnGpI838eH6fcRHBTP+6lZWxxIR8VtVKjODBw/2cgyR2qV9cl2Gd2/B/32xnamLs0iIDq0YZE9ERCqnSufM2O12srOzT1p+5MgR7HbNEixyNnq3SuCmixoD8PhHm/jv+r0WJxIR8U9VKjOnO82mpKSEoKCgcwokUpv8oUMSV6YnYAKj31nPsh90laCISGVV6jDTiy++CHgGAps2bRoREREVj7lcLr7++mvS0tK8m1AkgBmGwV2XNedoQSkrfjzKkNdW8t5dnWjZINrqaCIifqNSVzM1beo5pr9z504aNWp0wiGloKAgkpOTeeyxx+jYsaP3k1aRrmYSf1BS7mL8nI1sOZhPbGQw/xnehcQY/VyJiI9zu2HbfEi9Erx8YVC1Xc2UlZUFQPfu3fnggw+oU6dO1VOKSIVgh51H+rbivvfWsy+nmIHTljNnWGdiwnTYVkR82IJHYOmLcPFwuPJJy2JU6ZyZL7/8UkVGxMsiQ5xM6p9BnTAnWYcLuG3GSorLXFbHEhE5tWVTPEUGIKqBpVGqdGm2y+Vi5syZLFy4kOzsbNzuE0cx/eKLL7wSTqS2iYsM4bF+GTzw/nes3Z3D8FlrePmW9thtGtdJRHzIxg/g03Ge+xm/h7SrLY1TpT0zI0eOZOTIkbhcLjIyMrjgggtOuIlI1SXXD+ehq1visBkszMzm4bkbTnsFoYhIjcv6GubcCZjQohekXWN1oqrtmZk9ezbvvPMOffr08XYeEQHObxTD6F6pPDN/C7NW7CY+KoSRPVOtjiUitd2BjTB7ILhKodFF0GUkFOdanapqe2aCgoJo0aKFt7OIyK9cmhJbMSrw3xds4+2VuyxOJCK1Ws5uePP3UJIHsWnQbSwER5x5vRpQpTIzZswYXnjhBe36Fqlm/ds05Nq2DQEY98EGvth88sjbIiLVrvAovPE7yN8P0UnQ42EIq2t1qgpVOsy0ZMkSvvzySz755BPS09NxOp0nPP7BBx94JZyIwG2dkzlSUMLXWw8z7M3VzL7jYto01tWEIlJDyorgrT/A4S0QVg8ufxiiGlqd6gRVKjMxMTFce+213s4iIqdgGAb39kglp7CM7/bkMnjmSuYO60Jy/XCro4lIoHO74P2hsHs5BIVDt3EQ63vn71WpzMyYMcPbOUTkNzjsNsb3acnYDzaQdbiAm6ctZ87wLsRGBlsdTUQClWnCx2Ng80dgc8KlY6BhO6tTnVKVzpkBKC8vZ8GCBfz73/8mPz8fgH379nH8+HGvhRORX4QFOZjYL524yGD25BQxaPpyCkrKrY4lIoHq62dg9QzAgE7DoVk3r09Z4C1VKjM7d+6kdevW9O/fn+HDh3Po0CEAnn76ae677z6vBhSRX9QJC2JS/wwiQxxk7s/njtdWUeZyn3lFEZHKWPMafPmE5/6Fg6BlXzCqvP+j2lV50Lz27dtz7NgxQkN/mQzv2muvZeHChV4LJyInS4wJ5dG+6QQ5bCz94Qhj3lmvKwtFxHu2zof/jvLcb9kP2t4MNvtvrmK1KpWZJUuW8NBDDxEUdOIkeE2aNGHv3r1eCSYip5caH8m4K9OwGfDh+n08OS/T6kgiEgj2rIJ3bgXTBcmXwsXDwO4883oWq1KZcbvduFwnT4C3Z88eIiMjzzmUiJxZ++S6DO/uGbxy6uIsXlmSZXEiEfFrh7fDm9dDeRE0uAC63g/OEKtTnZUqlZlevXrx/PPPV3xtGAbHjx/nkUce0RQHIjWod6sEbrqoMQCPf7SJ/67XnlERqYL8g/DGdVB0FOo2g+7jISTK6lRnrUqXZv/973+ne/futGrViuLiYm666Sa2bdtG/fr1eeutt7ydUUR+wx86JHG0oJRPvz/A6HfWExsRwsXN61kdS0T8RXGeZ5qCnJ0QkeAZFC8izupUlVKlMpOYmMi6deuYPXs2q1evxu12M2TIEAYOHHjCCcEiUv0Mw+Cuy5pztKCUFT8eZchrK3n/rs6kNfCfv6pExCLlpfDOLXDgOwiJhsvHQ92mVqeqNMMM8Msg8vLyiI6OJjc3l6go7/5y3320kMz9eTSIVoET65WUuxg/ZyNbDuYTGxnMf4Z3ITFGP5sichpuN8y5Eza8A44Qzx6Z5C6Vf53cvRDfynN4yosq8/ldpXNmJk+ezPTp009aPn36dJ566qmqvKSInKNgh51H+rYiMSaEQ/klDJy2nNzCMqtjiYivWvCIp8gYdugyEpp0tjpRlVWpzPz73/8mLS3tpOXp6en861//OudQIlI1kSFOJvXPoE6Yk6zDBQyesYLispOvPBSRWm7ZFFj6oud+h6GQ0ttnR/c9G1UqMwcOHKBBgwYnLY+NjWX//v3nHEpEqi4uMoTH+mUQ6rSzdncOw2etweUO6KPJIlIZGz+AT8d57re+Ac6/3ucHxTuTKpWZpKQkvvnmm5OWf/PNNyQmJp5zKBE5N8n1w3no6pY4bAYLM7N5eO4GjRIsIpD1tec8GUxo0Qs6DAFbla4F8ilV+g6GDh3KqFGjKCsr4/LLLwdg4cKFPPDAA4wZM8arAUWkas5vFMPoXqk8M38Ls1bsJiE6hHt6pFodS0SscmAjzB4IrlJodJHnPBlHsNWpvKJKZeaBBx7g6NGjDBs2jNLSUgBCQkL4y1/+wrhx47waUESq7tKUWI4WlDJtSRbPfb6N+KgQbuzQ2OpYIlLTcnZ7xpIpyYPYNOg2FoIjrE7lNed0afbx48fJzMwkNDSUlJQUgoN9r+Hp0mwReGXJDuau24fNgGm3duDyNP8aEEtEzkHhUZh+JRzeAtFJcOVfIbqh917fXy/N/llERAQdOnQgIyPDJ4uMiHjc1qUpXVPq4zZh2JurWbfrmNWRRKQmlBXBW3/wFJmwep6xZLxZZHxElQ4zFRQU8Ne//pWFCxeSnZ2N2+0+4fEdO3Z4JZyIeIfNMBjVM5WcojK+25PL4JkrmTusC8n1w62OJiLVxe2C94fC7uUQFA7dxkFsYJ43V+UTgBctWsQtt9xCgwYNMPz42nSR2sJptzG+T0vGvr+BrCMF3DxtOXNHdKF+hPaqigQc04R598Hmj8DmhEvGQMN2VqeqNlUqM5988gkff/wxXbpUYdhjEbFMWJCDif3SGfPuevbkFDHolRW8e1cnwoP9/9JMEfmVr/8Gq6YDBnQaDs27+fWgeGdSpXNm6tSpQ926db2dRURqQJ3wIB4fkEFEsINN+/O447VVlLncZ15RRPzDmtfhy8c999veAi37gnFOp8j6vCp9d5MmTWLChAkUFhZ6O89vmjx5MoZhMGrUqBp9X5FAkxgTysR+6QQ5bCz94Qhj3lmvQfVEAsHW+fDfkZ77aX3hwlv8fnTfs1GlfcvPPvssP/zwA/Hx8SQnJ+N0Ok94fM2aNV4J92srV67k5Zdf5vzzz/f6a4vURqnxkYy94jwen5fJh+v3kRAdwoN9WlodS0Sqas8qeHcwmC5IvtRzeMnuPONqgaBKZWbAgAFejvHbjh8/zsCBA5k6dSqPP/54jb63SCDr0LQew7u14P++3M7LX+8gPiqEIZc0tTqWiFTW4e3w5vVQVggJ50PX+8EZYnWqGlOlMvPII494O8dvGj58OFdffTU9e/Y8Y5kpKSmhpKSk4uu8vLzqjifi13qnJ3CkoIRZK3bz+EebiIsMou8FgTcOhUjAyj8Ib1wLRUc9A9dd/hCEeHeQWF93TpcwrF69mszMTAzDoFWrVrRt29ZbuSrMnj2bNWvWsHLlyrN6/uTJk5k4caLXc4gEsj90aMzh46V8tukgo99ZT2xECBc3r2d1LBE5k5J8zzQFObsgIsEzKF5E7Rvhu0onAGdnZ3P55ZfToUMH7rnnHkaMGEG7du3o0aMHhw4d8lq43bt3M3LkSN544w1CQs5ud9m4cePIzc2tuO3evdtreUQClWEYDOvWgg7JdShzmQx5bSWb92uvpohPKy+Ft2+GA99BcDRcPh7q1s7DxFUqM3fffTd5eXl8//33HD16lGPHjrFx40by8vK45557vBZu9erVZGdn065dOxwOBw6Hg0WLFvHiiy/icDhwuVwnrRMcHExUVNQJNxE5M7vN4C9XppEaH0FBiYtbpq9gX06R1bFE5FTcbvjPcNjxFThC4LIHIKG11aksU6WJJqOjo1mwYAEdOnQ4YfmKFSvo3bs3OTk5XgmXn5/Pzp07T1h22223kZaWxl/+8hcyMjLO+BqaaFKkcvKLy7jvvfXsyymmaf1w5g7rQnRY7bgiQsRvfPYwLH0RDDt0HQOpV1k3KJ6/TjTpdrtPuhwbwOl0njRP07mIjIwkIyPjhFt4eDj16tU7qyIjIpUXGeJkUv8MYsKcZB0uYPDMFRSXnbwXVEQssmyKp8gAdBgKKVcE9Oi+Z6NKZebyyy9n5MiR7Nu3r2LZ3r17uffee+nRo4fXwomINeIiQ5jUL4NQp521u3IYPmsNLrcG1ROx3MYP4NNxnvutb4Dzr68Vg+KdSZXKzD/+8Q/y8/NJTk6mefPmtGjRgqZNm5Kfn8///d//eTvjCb766iuef/75an0PEYHk+uE8dHVLHDaDhZnZPDx3g0YJFrFS1tcw507AhBa9oMMQsGleNajipdlJSUmsWbOGzz//nM2bN2OaJq1ataJnz57eziciFjq/UQz39kzlb59tYdaK3SREh3BPj1SrY4nUPgc2wuyB4CqFRh2gy0hwaMb7n1Vqz8wXX3xBq1atKgai69WrF3fffTf33HMPHTp0ID09ncWLF1dLUBGxRtfUWG7v4rnc87nPt/H2yl0WJxKpZXJ2e8aSKcmD2DToNg6CI6xO5VMqVWaef/557rjjjlOeVRwdHc2dd97Jc88957VwIuIbBrRtyIA2iQCM+2ADX2zOtjiRSC1ReBTe+B3k74foJM+geGF1rU7lcypVZtavX8+VV1552sd79+7N6tWrzzmUiPie27o05dKU+rhNGPbmatbtOmZ1JJHAVlYEb/0BDm+BsHqeIhOtqUZOpVJl5uDBg6e8JPtnDofDqyMAi4jvsBkG9/ZM5fyG0RSXuRk8cyU/Hi6wOpZIYHK74P2hsHs5BIV7Di3F6ny106lUmWnYsCEbNmw47ePfffcdDRo0OOdQIuKbnHYb469uSXK9MHIKy7h52nIOHy8584oicvZME+bdB5s/ApsTLhkDDdtZncqnVarM9OnThwkTJlBcXHzSY0VFRTzyyCNcc801XgsnIr4nLMjBY/0yiI0IZk9OEYNeWUFBSbnVsUQCx9d/g1XTAQM6DYfm3Wr9oHhnUqnpDA4ePMiFF16I3W5nxIgRnHfeeRiGQWZmJv/85z9xuVysWbOG+Pj46sxcKZrOQKR67D1WxH3vred4STmdm9fj1dsvwmmv0tBVIvKzNa/DhyM899sOgna3+v6geP42nUF8fDxLly4lIyODcePGce211zJgwAAefPBBMjIy+Oabb3yqyIhI9WlYJ5RH+6YT5LCx9IcjjHlnvQbVEzkXW+fDf0d67qf1hQtv8f0i4yMqPWhekyZNmDdvHseOHWP79u2YpklKSgp16tSpjnwi4sPOS4jkL1ecxxPzMvlw/T4SokN4sE9Lq2OJ+J89q+HdwWC6IPlSz+EluyZ4PVtV3idcp04dOnTowEUXXaQiI1KLXdS0HsO6tQDg5a938MqSLIsTifiZw9th1vVQVggJ50PX+8EZYnUqv6ID3CJyzq5IT+CPHZIAePyjTXy0ft8Z1hARAPIPwhvXQeERzzknlz8EId49v7M2UJkREa/440WN6d0qHhO49511LPvhiNWRRHxbSb5nmoKcnRCR4BkULyLO6lR+SWVGRLzCMAyGdWtBh+Q6lLlMhry2ks3786yOJeKbykvh7ZvhwHcQHA2Xj4e6Ta1O5bdUZkTEa+w2g79cmUZqfAQFJS5umb6CfTlFVscS8S1uN/xnOOz4ChwhcNkDkNDa6lR+TWVGRLwq2GHn0b7pJEaHcCi/hIHTlpNbWGZ1LBHfseAR2PAOGHbocg806Wx1Ir+nMiMiXhcZ4mRS/wxiwpxkHS5g8MwVFJe5rI4lYr1lU2Dpi577HYZAyhUa3dcLVGZEpFrERYXwWL8MQp121u7KYfisNbjcGlRParGNH8Cn4zz3W18P59+gQfG8RGVGRKpN0/rhjO+ThsNmsDAzm4fnbtAowVI7ZX0Nc+4ETGjREzoMBVulx62V01CZEZFqdUFSHe7tmYoBzFqxmxcXbrM6kkjNOrARZg8EVyk06gBdRoEj2OpUAUVlRkSqXdfUWG7v4rns9O8LtvH2yl0WJxKpITm7PWPJlORBbBp0GwfBEVanCjgqMyJSIwa0bciANokAjPtgA19szrY4kUg1KzwKb/wO8vdDdJJnULywulanCkgqMyJSY27r0pRLU+rjNmHYm6tZt+uY1ZFEqkdZEbz1Bzi8BcLqeYpMdEOrUwUslRkRqTE2w+Denqmc3zCa4jI3g2eu5MfDBVbHEvEutwveHwq7l0NQuOfQUmyq1akCmsqMiNQop93G+KtbklwvjJzCMgZOW86h/BKrY4l4h2nCvPtg80dgc8IlY6BhO6tTBTyVGRGpcWFBDh7rl0FsRDB7c4oYNH05BSXlVscSOXdfPwOrpgMGXDwMmnfToHg1QGVGRCxRJzyISf0ziAh2kLk/nzteW0WZy211LJGqW/MafPmE537bW6BVPzD0MVsTtJVFxDIN64TyaN90ghw2lv5whDHvrNegeuKfts6H/47y3G/ZDy68RaP71iCVGRGx1HkJkYy94jxsBny4fh9Pzsu0OpJI5exZBe/cCqYLki/1HF6yO61OVauozIiI5To0rcfwbi0AmLo4i1eWZFmcSOQsHd4Os26A8iJocAF0vR+cIVanqnVUZkTEJ/ROT+Cmi5IAePyjTfx3/V6LE4mcQf5BeONaKDwCdZtB9/EQEmV1qlpJZUZEfMYfOjSmd6t4TGD0O+v5dvthqyOJnFpxnmeagpxdEJngGRQvIs7qVLWWyoyI+AzDMBjWrQUdkutQ5jIZ+voqMvfnWh1L5ETlpfD2zXDgOwiJ9uyRqdvU6lS1msqMiPgUu83gL1emcV58JAUlLgZNX8m+nCKrY4l4uN3wn2GQtQgcoXDZXyChtdWpaj2VGRHxOcEOO4/0bUViTAiH8ksYOG05OYWlVscSgQUTYMO7YNihyz3QuJPViQSVGRHxUZEhTib1z6BOmJOswwUMnrGS4jKX1bGkNvv2n7D0/zz3L7oDUq/Q6L4+QmVGRHxWXGQIj/XLINRpZ93uHIa9uQaXW4PqiQU2vAfzH/Tcb30jtP69Rvf1IfovISI+Lbl+OA9f3RKHzeCLzdmMn7NBowRLzdqxCObc5bnfohd0uB1sDmszyQlUZkTE57VuFMPoXqkYwOyVu3lhwTarI0ltcWADzB4I7jJI6giXjAJHsNWp5H+ozIiIX7g0JZYhl3guf31+4TbeWrHL4kQS8I7thDd+D6X5ENsSLhsLQeFWp5JTUJkREb/Rv01DrmvbEIDxczawYNNBixNJwCo8Cm/8Do4fgJjG0OMhCKtjdSo5DZUZEfErgzsn0y01FrcJI2atYc3OY1ZHkkBTWuiZb+nINgirD5c/BFENrU4lv0FlRkT8imEYjOyRQpukaIrL3dw2cwU7Dh23OpYEClc5vHcb7FkJQRHQ/UGon2p1KjkDlRkR8TsOu40Hr2pFs/rh5BaVM3DacrLziq2OJf7ONOGjUbD1U7AHwaX3QWJbq1PJWVCZERG/FBpkZ2K/dOKjgtmfW8zNrywnv7jM6ljiz76aDGtf94wf02k4NOuqQfH8hMqMiPitmLAgJvXPICrEwdaDxxn66ipKy91WxxJ/tPIVWPSU5/6Ft0LaNRoUz4/ov5SI+LUG0aFM7JdBsMPG8qyjjJy9FrdGCZbKyPwI5t3nud9qALQdCDa7pZGkclRmRMTvtYiL4ME+LbEZ8MnGAzz20SarI4m/2PktvD8ETDc06w4d79Lovn5IZUZEAsKFjeswskcKADOX/siUr7ZbnEh8XnYmvHUjlBdDw3Zw6WhwhlidSqpAZUZEAsblafEM7pQMwFOfbuGDNXusDSS+K3evZ1C84lyolwLdxkJwpNWppIpUZkQkoFx3YUP6nt8AgAfe+45FW7ItTiQ+p+iYp8jk7fUMhtfjYQiPtTqVnAOVGREJKIZhMPTSZnRpXo9yt8ldb6zhuz05VscSX1FWBG/dBIcyIbQudH/IM12B+DWVGREJODbDYEzv88hoGEVRmYtbp69g55ECq2OJ1dwueH8o7FoKznDPoaX4llanEi9QmRGRgOS023j46lY0qRfGscIyBk5dzuHjJVbHEquYpufy680fgc3pOdm3UQerU4mXqMyISMAKC3IwqV8GsRHB7Mkp4pZXlnO8pNzqWGKFr5+BVdMBAy7+MzTvrtF9A4jKjIgEtDrhQTw+IIOIYAeZ+/M1SnBttHomfPmE5/6Fg6BVP43uG2B8+r/m5MmT6dChA5GRkcTFxTFgwAC2bNlidSwR8TOJMaFM7JdOkMPGsh1HuPftdRoluLbY/DF8dK/nfst+0PZmDYoXgHy6zCxatIjhw4ezbNkyPv/8c8rLy+nduzcFBTqRT0QqJzU+knFXpmEz4OMN+zVKcG2waxm8d7tndN+ml8HFw8DutDqVVAOfrqeffvrpCV/PmDGDuLg4Vq9eTdeuXS1KJSL+qn1yXe7pkcLzC7Yxc+mPxEUFM6xbC6tjSXXIzoRZN3hG901sC13v0+i+Acyny8z/ys3NBaBu3bqnfU5JSQklJb9csZCXl1ftuUTEf/RIiyenoIyZ3/7I059uITYimOvbJ1kdS7wpd8+Jo/t2f1Cj+wY4nz7M9GumaTJ69GguueQSMjIyTvu8yZMnEx0dXXFLStIvKRE50e/aNaLvBZ5Rgsd+sIEvN2uU4IBReBRev+6X0X17TtDovrWA35SZESNG8N133/HWW2/95vPGjRtHbm5uxW337t01lFBE/MnQS5pxSYv6uNwmf35jNWt2HrM6kpyr0kKYdSMc3gJh9TzTFETrD9rawC/KzN13382HH37Il19+SaNGjX7zucHBwURFRZ1wExH5XzbDYHSvVC5oFE1xuZvbZq7gh0PHrY4lVeUqg3cHw54VEBQO3cZBbJrVqaSG+HSZMU2TESNG8MEHH/DFF1/QtGlTqyOJSABx2m2M79OK5rHh5BaVc9PUZRzILbY6llSWacKH98C2+WAPgkvvh4btrE4lNciny8zw4cN54403mDVrFpGRkRw4cIADBw5QVFRkdTQRCRChQXYm9ssgITqEg3klDJy2jNzCMqtjSWUseBTWz/IMhNfpbmh2mUb3rWV8usxMmTKF3NxcunXrRoMGDSpub7/9ttXRRCSARIc6ebx/BjGhTn44VMDgGSsoLnNZHUvOxtJ/wDfPe+63HwJpfVRkaiGfLjOmaZ7yNnjwYKujiUiAiY8K4bH+GYQ67azdncOdr6+m3KVpD3za+tnw2XjP/dY3wAU3gs1ubSaxhE+XGRGRmtS0fjgTrmmJ026waOsh7nt3PaapaQ980tbP4D/DPfdTr4QOQzRNQS2mMiMi8isZDWN44ArPtAdz1+3jiY8zrY4k/2v3CnhnELjLoUkX6HIPOIKtTiUWUpkREfkfFzerx/CfpjmYtiSLKV/9YHEiqZC9Gd68HsqLoMEFcNlfwBlmdSqxmMqMiMgp9E5PYNDFTQB46tPNvLNyl8WJhJxd8Pq1UJzz0zQFD0GIxhITlRkRkdP6fbtG9LsgEfBMezD/+wMWJ6rFjh+C1wZA/j6IbuQZ3TdC0xSIh8qMiMhpGIbB0Eua0v28WNwmjJi1hm+3H7Y6Vu1TnAdvXAdHf/DMs9RjAsQ0tjqV+BCVGRGR32AYBiN7pNK+SR3KXCZDX1vFxr05VseqPcqK4a0/woHvIDgauo+H+qlWpxIfozIjInIGdpvB2KvSaNkgkoJSF7e8soKswwVWxwp8rnJ473bYuQScodDtL5DYxupU4oNUZkREzkKww84j16STXC+MY4Vl/HHqMvbnamqVauN2w4d3w5aPweaES8ZA405WpxIfpTIjInKWwoMdTOqfQUJUCAdyi/njy8s4crzE6liBxzRh/rhf5lvqPAJaXK5pCuS0VGZERCohJiyIJ67NoG54ED8eKeTmV5aTX6yJKb3qq7/C8n957l/0J0i7xlNqRE5DPx0iIpUUFxnCEwMyiAxxkLk/n8HTNTGl1yybAov+6rnfdhC0/r3mW5IzUpkREamCRnXCmPTTxJSrd+Xwp9dWUVquiSnPydo34dOxnvvpv4MLb9F8S3JWVGZERKqoeWxExcSUX287zN1vrcXl1sSUVfL9XPhwhOd+6pXQ8U9gd1oaSfyHyoyIyDnIaBjDg1e1xG4zmP/9Aca8uw63Ck3lbJ0P7w8B0w1NL4MuozRxpFSKyoyIyDlqn1yX+3uf55lpe+0+Hpq7EdNUoTkrOxbB27d4ZsBufDF0vR+cIVanEj+jMiMi4gVdWtTnnstTMIBZK3bxxMeZKjRnsmu5Z3RfVwk0bAfdH4TgCKtTiR9SmRER8ZIeLeO567LmAExbksXfF2y1OJEP27cO3vw9lBVAfGvPDNjBmgFbqkZlRkTEi/q0bsDgzskAvLhwO//4Ypu1gXzRgQ3w+gAoyYPY8zwTR4bVsTqV+DGVGRERL/vdhY246SLPrM5/+2wrL3/9g8WJfMjBTfBafyg6BvVaQI+JEBFrdSrxcyozIiLV4I8XNeaG9o0AeHLeZqYvybI4kQ84tBVe6weFR6BuM+g1EaISrE4lAUBlRkSkmtzcsQm/u7AhAI99tInXvv3R2kBWOvIDvNoXCg5BTPJPRaah1akkQKjMiIhUE8MwuLVTMv0uSARgwn++541lOy1OZYEjP8DMa+D4AYhpDL0eg+gkq1NJAFGZERGpRoZhMPSSplzTugEAD83dyGtLf7Q2VE06vA1mXg35+yC6EfScCHUaW51KAozKjIhINTMMgz91bUbf8z2FZsKH3zPjm1pwDs2hLT8Vmf2ePTG9JkHdplankgCkMiMiUgMMw+COS5vR/6dDThP/u4lpi3dYnKoaZW/+6dDSQYhpAr0fV5GRaqMyIyJSQwzDYMglTbm2refE18c/zuTfiwLwsu2D33v2yBRk/3Sy7ySo08TqVBLAVGZERGqQYRjc1jmZ37fzXLY9+ZPNPPfZlsCZ+mDPapjRBwoPQ52mcMUknSMj1U5lRkSkhhmGwaCLm/DHizxX9Lz4xXYmfbTJ/wtN1mLPODLFOVAvxXNoSVctSQ1QmRERsYBhGNx0UROGdPGcRzL9mx954P3vcLn9tNBsne+Za6n0OMSnwxVPQLTGkZGaoTIjImKhAW0bcnf3FhgGvLtqDyNmraHM5bY6VuVs/ABm3wTlxZ7Zr3s9DhFxVqeSWkRlRkTEYr3TE7iv13nYbQafbDzA4BkrOF5SbnWss7P8ZXjvdnCXQ+PO0PMRTRopNU5lRkTEB3RNjeWhPi0Jstv4ZvsRrv/XUrLzi62OdXpuN3w+AT65HzCheQ/o8RAER1mdTGohlRkRER/RPrkuk6/NIDLEQeb+fAb84xt2HDpudayTlZfCnDvhmxc8X2dcD13vB2eYtbmk1lKZERHxIakJUfzt9xcQFxnMvtxirn1pKat3HrM61i+K82DW9bDhHTDscNGf4OI7wRlidTKpxVRmRER8TGJMKM9efwFN64eTW1TGH6cuY+7avVbHgmM/wvQrYMdX4AiBrmPg/BvB5rA6mdRyKjMiIj4oJiyIp647nwsbx1Ba7mbU2+t4+tPNuK26dPvHb+Dl7pC9CULqQI8JkHoV2OzW5BH5FZUZEREfFRpkZ8I16fT7aT6nl776gT+9vpqCmr7SafWrnsHwio5C3WZw1VPQpDMYRs3mEDkNlRkRER9mt3kmqLy7ewscNoMFmQe57qWl7D5aWP1v7iqDT8bCf+/xXHqd1NFTZGJTq/+9RSpBZUZExA/0Tk/g8QGeK522HMzn6hcXs2DTgep7w9y9nlmvl0/xfJ3+O+g5EcJjq+89RapIZUZExE+kJ0bz/I1taFY/nLzicoa+tponP97k/RGDty+Ef18Ku5d5LrfuMgo6/VlXLInPUpkREfEjcZEh/O36C7gqIwGAlxdnceO/v+VArhcG2HO74Isn4I3fQeERqJPsOazUqr+uWBKfpjIjIuJnnHYbw7q14P7eqYQ4bazZlcMVz3/NvA37q/6iR7M8h5W+fhrPiL6Xw9XPQUJrnegrPk9lRkTET3VNjeP5G9rQpG4YuUVlDHtzDXfPWkNuYdnZv4hpwqrpMKUL7FrqGT+m45+h2zgIq1t94UW8SGVGRMSPNawTxt9vbMO1bRtiGPDf7/bT8++L+GpL9plXztsHb/4eProXygogNg36PAvn3wB2Z/WHF/ESlRkRET/ntNu4vUtTnrrufOKjgjmUX8LgGSu59+11HMovOXkFtwtWToOXLobtC8DmhAtugmueg4R0HVYSv6MyIyISIFo2iOIff7yQK386OXjO2r10/9tXzPwmi/Kfr3jaswqmdoePx0Bx7i+D4F00VBNFit/S6ekiIgEkxGlneLcWdE+N46WvtrPzaCGP/ncT85Zv5J/xHxK77R3PE53h0Pp30PoGCI6wNrTIOVKZEREJQK0So3jhD21ZsHYrYWv+xaDcj4nI81y+nZN4KTGdh0CdJjqkJAFBZUZEJAAZZYUkfD+dUd//G4eRC8AGdzKPlA1mzY5UrraHMPpiF83r6GNA/J9+ikVEAoi96DD1Mt+g7qbXcBYfBqA0PJGc5v05GNWdkE0m7HPx8bZiPtlezNUtQhnSNpw2CUEWJxepOpUZEZEAEHLke+ptnE7MD//B5i4FoCw0jpxmfclN7o3pDKcJMLErbDvqYvp3Raw64Oa/24r477Yi2iY4GdImgitbhOCw6dCT+BeVGRERP2UrySE662PqbHuf8IOrKpYXRzUlv3FPchtfjhkUedJ6KXXtTO4WwZbD5by3pYQle12sPVDGiE+PER9u47q0MK5NCyW1nsaaEf+gMiMi4keMskIi9ywiZvscInd/UbEXxjRsFMa1I7fJFRTGt8M8i0HvzqvvYHx9B0cK3czZUswnWeUcLHAzZfVxpqw+Tsv6Dq5LC+PqlFASI+3V/a2JVJlhmqZpdYjqlJeXR3R0NLm5uURFRXn1tXcfLSRzfx4NokO9+roiIr8WlJtF5O4viNz9JeEHlmFzlVY8VhKRREGDjuQ3uozSqMZgVL10lLpMFu8qZcGPZazNduP61adDal0H3ZuG0L1JMO0aBOG061CU/CR3L8S38oxZ5EWV+fzWnhkREV/idhFybAthB1cRdnA14QdXEXR89wlPKQupT2F8e/IaXUpJ3VZntRfmbATZDXo0DaZH02Byi90s+LGEr3aVs+Woydaj5Ww9epx/rz5OuNOgXYOgilubBCcRQRqDVazjF2XmpZde4plnnmH//v2kp6fz/PPPc+mll1odS0Sk6kwTe/FRQnK2EXxsCyFHN3tuxzZjLys48amGneKYFIrqt6Ygvj0lMS0wHcHVGi86xMbv0kL5XRrkFJks31fK8n1lrDvkJr/U5OtdJXy9yzNVgs2AZnUcpNVzkFbfSWpdB+fVc9Iwyq6TiaVG+HyZefvttxk1ahQvvfQSXbp04d///jdXXXUVmzZtonHjxlbHExE5mduFvTQfR9EhHEXZOAuzcRQewlm4H2f+boLydxOUv+uk0lKxuj2EkuhmlEQ3p6jueRTVz8AVUuecDiGdi5hQgyuaB3NF82BcbpOtR8rZcKicTYddbD3m5lARbD9azvaj5Xy0rbhiPYcNGkTYaRxtJynKQcNIO3HhNmLDfvk3JsRGsEOFR86Nz58z07FjRy688EKmTJlSsaxly5YMGDCAyZMnn3H9ajtnpjiXfQcOsD37OHGRId57XZFa539/BZ3iV9L//Joyfn6O+evnm2CansdME3BXPG6Y7p8ed3vuV/zr+uVftwvDLAd3OYa7HMNd5rm5yjDcpdjKSzBcxdhcJRjlxdjKC7CXFWIrO46trBBbWT6OkhzsJbnYSvN/yXgGZSH1KYtoSGlEIqWRST+VmKaYjjC/GZ334HEXW4+UsyPHxc48N7vyTfYdNylzn936oQ6DqGCDmBAbUcE2wp2G5xZkI8xpEOL4+QbBdoNgh4HTZuC0gdNu4LCB02Zgt4Hd+PlfsNsMDMBu8+w9MjA8/xo/f/3T7afNbBhGxdc/b/lfP/5rJy06m+cEqvyDRDY8j+jEFK++bMCcM1NaWsrq1asZO3bsCct79+7N0qVLT7lOSUkJJSW/zBKbl5dXPeFWvkLiwokkVs+ri0gAcDnCKA+KxhUURbkzAldQJGUh9SkNjaM0PIHS0HjczjBM439+FZe5oey4NaGroI4NOsZ6bj9zueBQMezNd3OwEPYXwJESyC2B3FKDnFLILQW3aVBUblJUbnKw4Czbj/gYgz93PMJfrvVumakMny4zhw8fxuVyER8ff8Ly+Ph4Dhw4cMp1Jk+ezMSJE6s/nM2BaQ/63z8YRaQKzJP+9D2bv2kr/pz+1T4Q41d/RhuYFV8bPz3PAMP2y7+GAdgwDTumzfar+3ZMm8Nz33Bg2uy4bUGYNudPNwduewguewhuezBuewhuRwguZzguRzjlzgjcjjBM21n8inW5ANdZfL/+xQDigj2303GbUFgOx8vgeJlBfikUlENxuUGRC4rLochlUOLy9LtSN5S5DErdUO4Gl+n5t9w0cP30tcv0vK7rpx107p/ex/3T1z/ts4OfHjN/vZOPE3cCmpxyP+FZ/d4/m4+GQPr8KHVZ+834dJn5mfE/v+hM0zxp2c/GjRvH6NGjK77Oy8sjKSnJ+6G63AOdRlBe7D9/PYn4t7MoOKf8vWCc9Bzjp+XGadeRQGH+VCtOVRxOuewsakgglRBvCQux9nQLny4z9evXx263n7QXJjs7+6S9NT8LDg4mOLh6z/L/mWGzERTm3bFrREREpHJ8emCAoKAg2rVrx+eff37C8s8//5zOnTtblEpERER8iU/vmQEYPXo0t9xyC+3bt6dTp068/PLL7Nq1i7vuusvqaCIiIuIDfL7M3HjjjRw5coTHHnuM/fv3k5GRwbx582jSpInV0URERMQH+Pw4M+eqOudmEhERkepRmc9vnz5nRkRERORMVGZERETEr6nMiIiIiF9TmRERERG/pjIjIiIifk1lRkRERPyayoyIiIj4NZUZERER8WsqMyIiIuLXfH46g3P18wDHeXl5FicRERGRs/Xz5/bZTFQQ8GUmPz8fgKSkJIuTiIiISGXl5+cTHR39m88J+LmZ3G43+/btIzIyEsMwvPraeXl5JCUlsXv3bs37VI20nWuGtnPN0HauGdrONaM6t7NpmuTn55OYmIjN9ttnxQT8nhmbzUajRo2q9T2ioqL0P0sN0HauGdrONUPbuWZoO9eM6trOZ9oj8zOdACwiIiJ+TWVGRERE/JrKzDkIDg7mkUceITg42OooAU3buWZoO9cMbeeaoe1cM3xlOwf8CcAiIiIS2LRnRkRERPyayoyIiIj4NZUZERER8WsqMyIiIuLXVGZ+w0svvUTTpk0JCQmhXbt2LF68+Defv2jRItq1a0dISAjNmjXjX//6Vw0l9X+V2dYffPABvXr1IjY2lqioKDp16sT8+fNrMK3/quzP9M+++eYbHA4Hbdq0qd6AAaKy27mkpITx48fTpEkTgoODad68OdOnT6+htP6rstv5zTff5IILLiAsLIwGDRpw2223ceTIkRpK65++/vpr+vbtS2JiIoZhMHfu3DOuY8lnoSmnNHv2bNPpdJpTp041N23aZI4cOdIMDw83d+7cecrn79ixwwwLCzNHjhxpbtq0yZw6darpdDrN9957r4aT+5/KbuuRI0eaTz31lLlixQpz69at5rhx40yn02muWbOmhpP7l8pu55/l5OSYzZo1M3v37m1ecMEFNRPWj1VlO/fr18/s2LGj+fnnn5tZWVnm8uXLzW+++aYGU/ufym7nxYsXmzabzXzhhRfMHTt2mIsXLzbT09PNAQMG1HBy/zJv3jxz/Pjx5vvvv28C5pw5c37z+VZ9FqrMnMZFF11k3nXXXScsS0tLM8eOHXvK5z/wwANmWlraCcvuvPNO8+KLL662jIGistv6VFq1amVOnDjR29ECSlW384033mg+9NBD5iOPPKIycxYqu50/+eQTMzo62jxy5EhNxAsYld3OzzzzjNmsWbMTlr344otmo0aNqi1joDmbMmPVZ6EOM51CaWkpq1evpnfv3ics7927N0uXLj3lOt9+++1Jz7/iiitYtWoVZWVl1ZbV31VlW/8vt9tNfn4+devWrY6IAaGq23nGjBn88MMPPPLII9UdMSBUZTt/+OGHtG/fnqeffpqGDRuSmprKfffdR1FRUU1E9ktV2c6dO3dmz549zJs3D9M0OXjwIO+99x5XX311TUSuNaz6LAz4iSar4vDhw7hcLuLj409YHh8fz4EDB065zoEDB075/PLycg4fPkyDBg2qLa8/q8q2/l/PPvssBQUF3HDDDdURMSBUZTtv27aNsWPHsnjxYhwO/ao4G1XZzjt27GDJkiWEhIQwZ84cDh8+zLBhwzh69KjOmzmNqmznzp078+abb3LjjTdSXFxMeXk5/fr14//+7/9qInKtYdVnofbM/AbDME742jTNk5ad6fmnWi4nq+y2/tlbb73Fo48+yttvv01cXFx1xQsYZ7udXS4XN910ExMnTiQ1NbWm4gWMyvw8u91uDMPgzTff5KKLLqJPnz4899xzzJw5U3tnzqAy23nTpk3cc889TJgwgdWrV/Ppp5+SlZXFXXfdVRNRaxUrPgv159Yp1K9fH7vdflLDz87OPqlx/iwhIeGUz3c4HNSrV6/asvq7qmzrn7399tsMGTKEd999l549e1ZnTL9X2e2cn5/PqlWrWLt2LSNGjAA8H7qmaeJwOPjss8+4/PLLayS7P6nKz3ODBg1o2LAh0dHRFctatmyJaZrs2bOHlJSUas3sj6qynSdPnkyXLl24//77ATj//PMJDw/n0ksv5fHHH9fecy+x6rNQe2ZOISgoiHbt2vH555+fsPzzzz+nc+fOp1ynU6dOJz3/s88+o3379jidzmrL6u+qsq3Bs0dm8ODBzJo1S8e8z0Jlt3NUVBQbNmxg3bp1Fbe77rqL8847j3Xr1tGxY8eaiu5XqvLz3KVLF/bt28fx48crlm3duhWbzUajRo2qNa+/qsp2LiwsxGY78SPPbrcDv+w5kHNn2WdhtZ5e7Md+vuzvlVdeMTdt2mSOGjXKDA8PN3/88UfTNE1z7Nix5i233FLx/J8vR7v33nvNTZs2ma+88oouzT5Lld3Ws2bNMh0Oh/nPf/7T3L9/f8UtJyfHqm/BL1R2O/8vXc10diq7nfPz881GjRqZv//9783vv//eXLRokZmSkmIOHTrUqm/BL1R2O8+YMcN0OBzmSy+9ZP7www/mkiVLzPbt25sXXXSRVd+CX8jPzzfXrl1rrl271gTM5557zly7dm3FJfC+8lmoMvMb/vnPf5pNmjQxg4KCzAsvvNBctGhRxWO33nqredlll53w/K+++sps27atGRQUZCYnJ5tTpkyp4cT+qzLb+rLLLjOBk2633nprzQf3M5X9mf41lZmzV9ntnJmZafbs2dMMDQ01GzVqZI4ePdosLCys4dT+p7Lb+cUXXzRbtWplhoaGmg0aNDAHDhxo7tmzp4ZT+5cvv/zyN3/f+spnoWGa2r8mIiIi/kvnzIiIiIhfU5kRERERv6YyIyIiIn5NZUZERET8msqMiIiI+DWVGREREfFrKjMiIiLi11RmRERExK+pzIiIX/nxxx8xDIN169b95vO6devGqFGjaiSTiFhLZUZEqsXgwYMxDAPDMHA6nTRr1oz77ruPgoKCc3rdpKQk9u/fT0ZGBgBfffUVhmGQk5NzwvM++OADJk2adE7vJSL+wWF1ABEJXFdeeSUzZsygrKyMxYsXM3ToUAoKCpgyZUqVX9Nut5OQkHDG59WtW7fK7yEi/kV7ZkSk2gQHB5OQkEBSUhI33XQTAwcOZO7cuZSUlHDPPfcQFxdHSEgIl1xyCStXrqxY79ixYwwcOJDY2FhCQ0NJSUlhxowZwImHmX788Ue6d+8OQJ06dTAMg8GDBwMnH2Y6duwYgwYNok6dOoSFhXHVVVexbdu2isdnzpxJTEwM8+fPp2XLlkRERHDllVeyf//+6t9QInJOVGZEpMaEhoZSVlbGAw88wPvvv8+rr77KmjVraNGiBVdccQVHjx4F4OGHH2bTpk188sknZGZmMmXKFOrXr3/S6yUlJfH+++8DsGXLFvbv388LL7xwyvcePHgwq1at4sMPP+Tbb7/FNE369OlDWVlZxXMKCwv529/+xuuvv87XX3/Nrl27uO+++6phS4iIN+kwk4jUiBUrVjBr1iy6d+/OlClTmDlzJldddRUAU6dO5fPPP+eVV17h/vvvZ9euXbRt25b27dsDkJycfMrXtNvtFYeT4uLiiImJOeXztm3bxocffsg333xD586dAXjzzTdJSkpi7ty5XH/99QCUlZXxr3/9i+bNmwMwYsQIHnvsMW9tAhGpJtozIyLV5qOPPiIiIoKQkBA6depE165dufvuuykrK6NLly4Vz3M6nVx00UVkZmYC8Oc//5nZs2fTpk0bHnjgAZYuXXpOOTIzM3E4HHTs2LFiWb169TjvvPMq3hMgLCysosgANGjQgOzs7HN6bxGpfiozIlJtunfvzrp169iyZQvFxcV88MEHREdHA2AYxgnPNU2zYtlVV13Fzp07GTVqFPv27aNHjx7ndLjHNM3TLv91DqfTecLjhmGcdl0R8R0qMyJSbcLDw2nRogVNmjSpKAotWrQgKCiIJUuWVDyvrKyMVatW0bJly4plsbGxDB48mDfeeIPnn3+el19++ZTvERQUBIDL5TptjlatWlFeXs7y5csrlh05coStW7ee8J4i4p90zoyI1Kjw8HD+/Oc/c//991O3bl0aN27M008/TWFhIUOGDAFgwoQJtGvXjvT0dEpKSvjoo49OWzqaNGmCYRh89NFH9OnTh9DQUCIiIk54TkpKCv379+eOO+7g3//+N5GRkYwdO5aGDRvSv3//av+eRaR6ac+MiNS4v/71r/zud7/jlltu4cILL2T79u3Mnz+fOnXqAJ69LePGjeP888+na9eu2O12Zs+efcrXatiwIRMnTmTs2LHEx8czYsSIUz5vxowZtGvXjmuuuYZOnTphmibz5s076dCSiPgfw9QBYREREfFj2jMjIiIifk1lRkRERPyayoyIiIj4NZUZERER8WsqMyIiIuLXVGZERETEr6nMiIiIiF9TmRERERG/pjIjIiIifk1lRkRERPyayoyIiIj4tf8HS/BPYvB3zHYAAAAASUVORK5CYII=", "text/plain": [ "" ] @@ -1585,7 +1585,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.13.5" + "version": "3.10.18" } }, "nbformat": 4, diff --git a/environment.yml b/environment.yml index 155b7b8e..f88797b1 100644 --- a/environment.yml +++ b/environment.yml @@ -3,7 +3,7 @@ channels: - conda-forge - defaults dependencies: - - jupyter-book + - jupyter-book<2 - jupytext # necessary to open MyST files using BinderHub https://jupyterbook.org/en/stable/interactive/launchbuttons.html#launchbuttons-binder - sphinx-tags - matplotlib