diff --git a/R/gg_partial_df.R b/R/gg_partial_df.R index c7bb9d1..57bf189 100644 --- a/R/gg_partial_df.R +++ b/R/gg_partial_df.R @@ -8,7 +8,7 @@ #' multiple partial plot objects in figures. #' #' @export -df_partial = function(part_dta, nvars = NULL, cat_limit = 10, name=NULL) { +gg_partial_df = function(part_dta, nvars = NULL, cat_limit = 10, name=NULL) { ## Prepare the partial dependencies data for panel plots if (is.null(nvars)) { nvars = length(part_dta$plotthis) diff --git a/R/gg_partialpro_df.R b/R/gg_partialpro_df.R index 0965e63..62db225 100644 --- a/R/gg_partialpro_df.R +++ b/R/gg_partialpro_df.R @@ -1,7 +1,7 @@ ##============================================================================= ##============================================================================= #' Split partial lots into continuous or categorical datasets -#' @param part_dta partial plot data from \code{rfsrc::plot.variable} +#' @param part_dta partial plot data from \code{varpro::partialpro} #' @param nvars how many of the partial plot variables to calculate #' @param cat_limit Categorical features are build when there are fewer than #' cat_limit unique features. @@ -10,7 +10,7 @@ #' #' @export #' -df_partialpro = function(part_dta, nvars = NULL, cat_limit=12, name=NULL) { +gg_partialpro_df = function(part_dta, nvars = NULL, cat_limit=10, name=NULL) { ## Prepare the partial pro dependencies data for panel plots if (is.null(nvars)) { nvars = length(part_dta)