Skip to content

SDTurbo - 'MultiHeadAttention_0' Failed to run JSEP kernel #13

@cyrildiagne

Description

@cyrildiagne

Hi!

Thank you for this great work.

I'm trying to run SDTurbo with diffusers.js.

I've followed the instructions from this issue to export the model to ONNX.

154. # optimization_options.enable_qordered_matmul = False
155. optimization_options.enable_packed_qkv = False # not supported on webgpu
156. optimization_options.enable_packed_kv = False # not supported on webgpu
 python Stable-Diffusion-ONNX-FP16/conv_sd_to_onnx.py \
 --model_path "stabilityai/sd-turbo" \
 --output_path "./model/sdturbo-fp16"  \
 --fp16
Full log of the export
2024-01-11 22:52:11.126633: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
2024-01-11 22:52:11.126680: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
2024-01-11 22:52:11.128271: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
2024-01-11 22:52:13.292449: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
Loading pipeline components...: 100% 5/5 [00:42<00:00,  8.53s/it]
You have disabled the safety checker for <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
/usr/local/lib/python3.10/dist-packages/transformers/modeling_attn_mask_utils.py:66: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if input_shape[-1] > 1 or self.sliding_window is not None:
/usr/local/lib/python3.10/dist-packages/transformers/modeling_attn_mask_utils.py:137: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if past_key_values_length > 0:
/usr/local/lib/python3.10/dist-packages/transformers/models/clip/modeling_clip.py:273: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
/usr/local/lib/python3.10/dist-packages/transformers/models/clip/modeling_clip.py:281: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
/usr/local/lib/python3.10/dist-packages/transformers/models/clip/modeling_clip.py:313: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
/usr/local/lib/python3.10/dist-packages/torch/onnx/symbolic_opset9.py:5856: UserWarning: Exporting aten::index operator of advanced indexing in opset 17 is achieved by combination of multiple ONNX operators, including Reshape, Transpose, Concat, and Gather. If indices include negative values, the exported graph will produce incorrect results.
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/diffusers/models/unet_2d_condition.py:915: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if dim % default_overall_up_factor != 0:
/usr/local/lib/python3.10/dist-packages/diffusers/models/downsampling.py:135: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  assert hidden_states.shape[1] == self.channels
/usr/local/lib/python3.10/dist-packages/diffusers/models/downsampling.py:144: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  assert hidden_states.shape[1] == self.channels
/usr/local/lib/python3.10/dist-packages/diffusers/models/upsampling.py:149: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  assert hidden_states.shape[1] == self.channels
/usr/local/lib/python3.10/dist-packages/diffusers/models/upsampling.py:165: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if hidden_states.shape[0] >= 64:
/usr/local/lib/python3.10/dist-packages/diffusers/models/unet_2d_condition.py:1206: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if not return_dict:
/usr/local/lib/python3.10/dist-packages/diffusers/models/autoencoders/autoencoder_kl.py:265: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if not return_dict:
/usr/local/lib/python3.10/dist-packages/torch/onnx/_internal/jit_utils.py:307: UserWarning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied. (Triggered internally at ../torch/csrc/jit/passes/onnx/constant_fold.cpp:179.)
  _C._jit_pass_onnx_node_shape_type_inference(node, params_dict, opset_version)
/usr/local/lib/python3.10/dist-packages/torch/onnx/utils.py:702: UserWarning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied. (Triggered internally at ../torch/csrc/jit/passes/onnx/constant_fold.cpp:179.)
  _C._jit_pass_onnx_graph_shape_type_inference(
/usr/local/lib/python3.10/dist-packages/torch/onnx/utils.py:1209: UserWarning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied. (Triggered internally at ../torch/csrc/jit/passes/onnx/constant_fold.cpp:179.)
  _C._jit_pass_onnx_graph_shape_type_inference(
/usr/local/lib/python3.10/dist-packages/diffusers/models/autoencoders/autoencoder_kl.py:306: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if not return_dict:
2024-01-11 23:02:48.140679604 [W:onnxruntime:, transformer_memcpy.cc:74 ApplyImpl] 1 Memcpy nodes are added to the graph main_graph for CUDAExecutionProvider. It might have negative impact on performance (including unable to run CUDA graph). Set session_options.log_severity_level=1 to see the detail logs before this message.
2024-01-11 23:02:48.143225771 [W:onnxruntime:, session_state.cc:1166 VerifyEachNodeIsAssignedToAnEp] Some nodes were not assigned to the preferred execution providers which may or may not have an negative impact on performance. e.g. ORT explicitly assigns shape related ops to CPU to improve perf.
2024-01-11 23:02:48.143247983 [W:onnxruntime:, session_state.cc:1168 VerifyEachNodeIsAssignedToAnEp] Rerunning with verbose output on a non-minimal build will show node assignments.
2024-01-11 23:02:58.092696522 [W:onnxruntime:, session_state.cc:1166 VerifyEachNodeIsAssignedToAnEp] Some nodes were not assigned to the preferred execution providers which may or may not have an negative impact on performance. e.g. ORT explicitly assigns shape related ops to CPU to improve perf.
2024-01-11 23:02:58.092735644 [W:onnxruntime:, session_state.cc:1168 VerifyEachNodeIsAssignedToAnEp] Rerunning with verbose output on a non-minimal build will show node assignments.
ONNX pipeline saved to model/sdturbo-fp16
Loading pipeline components...:   0% 0/6 [00:00<?, ?it/s]2024-01-11 23:03:10.174160414 [W:onnxruntime:, transformer_memcpy.cc:74 ApplyImpl] 1 Memcpy nodes are added to the graph main_graph for CUDAExecutionProvider. It might have negative impact on performance (including unable to run CUDA graph). Set session_options.log_severity_level=1 to see the detail logs before this message.
2024-01-11 23:03:10.178587318 [W:onnxruntime:, session_state.cc:1166 VerifyEachNodeIsAssignedToAnEp] Some nodes were not assigned to the preferred execution providers which may or may not have an negative impact on performance. e.g. ORT explicitly assigns shape related ops to CPU to improve perf.
2024-01-11 23:03:10.178615811 [W:onnxruntime:, session_state.cc:1168 VerifyEachNodeIsAssignedToAnEp] Rerunning with verbose output on a non-minimal build will show node assignments.
Loading pipeline components...:  33% 2/6 [00:00<00:01,  2.19it/s]2024-01-11 23:03:11.979303480 [W:onnxruntime:, transformer_memcpy.cc:74 ApplyImpl] 1 Memcpy nodes are added to the graph main_graph for CUDAExecutionProvider. It might have negative impact on performance (including unable to run CUDA graph). Set session_options.log_severity_level=1 to see the detail logs before this message.
2024-01-11 23:03:11.983210207 [W:onnxruntime:, session_state.cc:1166 VerifyEachNodeIsAssignedToAnEp] Some nodes were not assigned to the preferred execution providers which may or may not have an negative impact on performance. e.g. ORT explicitly assigns shape related ops to CPU to improve perf.
2024-01-11 23:03:11.983247143 [W:onnxruntime:, session_state.cc:1168 VerifyEachNodeIsAssignedToAnEp] Rerunning with verbose output on a non-minimal build will show node assignments.
Loading pipeline components...:  67% 4/6 [00:02<00:01,  1.85it/s]2024-01-11 23:03:16.868251774 [W:onnxruntime:, transformer_memcpy.cc:74 ApplyImpl] 3 Memcpy nodes are added to the graph main_graph for CUDAExecutionProvider. It might have negative impact on performance (including unable to run CUDA graph). Set session_options.log_severity_level=1 to see the detail logs before this message.
2024-01-11 23:03:16.881676989 [W:onnxruntime:, session_state.cc:1166 VerifyEachNodeIsAssignedToAnEp] Some nodes were not assigned to the preferred execution providers which may or may not have an negative impact on performance. e.g. ORT explicitly assigns shape related ops to CPU to improve perf.
2024-01-11 23:03:16.881703685 [W:onnxruntime:, session_state.cc:1168 VerifyEachNodeIsAssignedToAnEp] Rerunning with verbose output on a non-minimal build will show node assignments.
Loading pipeline components...:  83% 5/6 [00:07<00:02,  2.13s/it]2024-01-11 23:03:17.788958820 [W:onnxruntime:, session_state.cc:1166 VerifyEachNodeIsAssignedToAnEp] Some nodes were not assigned to the preferred execution providers which may or may not have an negative impact on performance. e.g. ORT explicitly assigns shape related ops to CPU to improve perf.
2024-01-11 23:03:17.788983933 [W:onnxruntime:, session_state.cc:1168 VerifyEachNodeIsAssignedToAnEp] Rerunning with verbose output on a non-minimal build will show node assignments.
Loading pipeline components...: 100% 6/6 [00:16<00:00,  2.79s/it]
ONNX pipeline is loadable

Everything seems to export and load properly in the browser with webgpu. And I'm also able to run the text-encoder & vae-decoder of the exported model with webgpu without issue.

However, when I try to run a step of the unet, I get this error:

ort.webgpu.min.js:10 Uncaught (in promise) Error: failed to call OrtRun(). ERROR_CODE: 1, ERROR_MESSAGE: Non-zero status code returned while running MultiHeadAttention node. Name:'MultiHeadAttention_0' Status Message: Failed to run JSEP kernel
    at t.checkLastError (ort.webgpu.min.js:10:491501)
    at t.run (ort.webgpu.min.js:10:486314)
    at async t.OnnxruntimeWebAssemblySessionHandler.run (ort.webgpu.min.js:10:477016)
    at async a.run (ort.webgpu.min.js:10:1152723)
    ...

It's not clear why this operator fails as it seems supported & running fine in sd21. Is it a known issue? Any pointer would be welcome!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions