diff --git a/index.html b/index.html index 8b4a733..8426968 100644 --- a/index.html +++ b/index.html @@ -54,7 +54,7 @@

1.1 文献的总结

2. Dapper的分布式跟踪

-

图1:这个路径由用户的X请求发起,穿过一个简单的服务系统。用字母标识的节点代表分布式系统中的不同处理过程。

+

图1:用户请求X在一个简单的服务系统经过的路径。用字母标识的节点代表分布式系统中的不同进程。

分布式服务的跟踪系统需要记录在一次特定的请求后系统中完成的所有工作的信息。举个例子,图1展现的是一个和5台服务器相关的一个服务,包括:前端(A),两个中间层(B和C),以及两个后端(D和E)。当一个用户(这个用例的发起人)发起一个请求时,首先到达前端,然后发送两个RPC到服务器B和C。B会马上做出反应,但是C需要和后端的D和E交互之后再返还给A,由A来响应最初的请求。对于这样一个请求,简单实用的分布式跟踪的实现,就是为服务器上每一次你发送和接收动作来收集跟踪标识符(message identifiers)和时间戳(timestamped events)。

为了将所有记录条目与一个给定的发起者(例如,图1中的RequestX)关联上并记录所有信息,现在有两种解决方案,黑盒(black-box)和基于标注(annotation-based)的监控方案。黑盒方案[1,15,2]假定需要跟踪的除了上述信息之外没有额外的信息,这样使用统计回归技术来推断两者之间的关系。基于标注的方案[3,12,9,16]依赖于应用程序或中间件明确地标记一个全局ID,从而连接每一条记录和发起者的请求。虽然黑盒方案比标注方案更轻便,他们需要更多的数据,以获得足够的精度,因为他们依赖于统计推论。基于标注的方案最主要的缺点是,很明显,需要代码植入。在我们的生产环境中,因为所有的应用程序都使用相同的线程模型,控制流和RPC系统,我们发现,可以把代码植入限制在一个很小的通用组件库中,从而实现了监测系统的应用对开发人员是有效地透明。