diff --git a/IME672_project/Proj.ipynb b/IME672_project/Proj.ipynb
index 4444552..a693f09 100644
--- a/IME672_project/Proj.ipynb
+++ b/IME672_project/Proj.ipynb
@@ -3313,6 +3313,13 @@
"ridge_regressor.fit(x_train,y_train)"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
{
"cell_type": "code",
"execution_count": 57,
@@ -5641,6 +5648,103 @@
"print(\"\\nRMSE:\\n\",rmse_test,rmse_train)"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": 80,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
BayesianRidge()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. "
+ ],
+ "text/plain": [
+ "BayesianRidge()"
+ ]
+ },
+ "execution_count": 80,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from sklearn.linear_model import BayesianRidge\n",
+ "br_reg = BayesianRidge()\n",
+ "br_reg.fit(x_train,y_train)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 83,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([1668.20495034, 1679.94492734, 913.64922033, ..., 1282.17224146,\n",
+ " 473.76584417, 1836.95624818])"
+ ]
+ },
+ "execution_count": 83,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "br_reg.predict(x_test)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 81,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([ 2.14911786e+03, 1.79137805e+02, 1.58422799e+03, -1.76336580e+03,\n",
+ " -2.06966485e+02, -9.64991490e+01, -3.59451467e+01, 1.20811300e+03,\n",
+ " 4.63318397e+02, -1.17801277e+02, -1.73995862e+02, -1.05291009e+02,\n",
+ " -1.45517075e+02, -4.08851312e+02, 1.73110503e+03, -1.37393040e+02,\n",
+ " -1.22026370e+02, -1.03060886e+02, -1.19399700e+02, -1.78063514e+02,\n",
+ " -1.16492327e+02, 2.76553693e-10, -1.45549124e+02, -3.52070971e+01,\n",
+ " -1.81655358e+02, -1.12378682e+02, -1.05109365e+02, -6.32679934e+01,\n",
+ " -1.20354808e+02, -1.21063182e+02, 2.35545128e+00, -1.03861844e+02,\n",
+ " -1.06205028e+02, -1.42506556e+02, -1.08923435e+02, 8.49374765e+00])"
+ ]
+ },
+ "execution_count": 81,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "br_reg.coef_"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 82,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RMSE:\n",
+ " 490.458 491.25\n"
+ ]
+ }
+ ],
+ "source": [
+ "y_pred_train = br_reg.predict(x_train)\n",
+ "y_pred = br_reg.predict(x_test)\n",
+ "rmse_test = float(format(np.sqrt(mean_squared_error(y_test, y_pred)),'.3f'))\n",
+ "rmse_train = float(format(np.sqrt(mean_squared_error(y_train, y_pred_train)),'.3f'))\n",
+ "print(\"\\nRMSE:\\n\",rmse_test,rmse_train)"
+ ]
+ },
{
"cell_type": "code",
"execution_count": null,