Skip to content

example1 result #6

@min13s

Description

@min13s

for the MT-GBM
def mymse2(preds, train_data, ep = 0):
labels = train_data.get_label()
labels2 = labels.reshape((num_labels,-1)).transpose()
preds2 = preds.reshape((num_labels,-1)).transpose()
grad2 = (preds2 - labels2)
grad = grad2 * np.array([20,0.001])
grad = np.sum(grad,axis = 1)
grad2 = grad2.transpose().reshape((-1))
hess = grad * 0. + 1
hess2 = grad2 * 0. + 1
return grad, hess, grad2, hess2

it seems that parameter will change the best mape, rmse,
compared to common lightgbm, it has one more parameter ,

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions