-
Notifications
You must be signed in to change notification settings - Fork 39
Description
`import os
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import torch, gc
gc.collect()
torch.cuda.empty_cache()
import deepspeed
DS_CONFIG = "ds_zero2_no_offload.json"
from datasets import Dataset
from modelscope import snapshot_download, AutoTokenizer
from swanlab.integration.transformers import SwanLabCallback
from qwen_vl_utils import process_vision_info
from peft import LoraConfig, TaskType, get_peft_model, PeftModel,get_peft_model_state_dict
from transformers import (
TrainingArguments,
Trainer,
DataCollatorForSeq2Seq,
Qwen2_5_VLForConditionalGeneration,
AutoProcessor,
)
import swanlab
import json
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 多GPU时可指定起始位置/编号
def load_and_convert_data(file_path):
"""加载并转换数据"""
loaded_data = []
with open(file_path, 'r', encoding='utf-8') as file:
for line in file:
loaded_data.append(json.loads(line))
# 将 loaded_data 转换为适合 Dataset 的格式
dataset_dicts = []
for item in loaded_data:
user_content = item[0]['content']
assistant_content = item[1]['content']
# 提取图像和文本信息
image_info = next((x for x in user_content if x['type'] == 'image'), None)
text_info = next((x for x in user_content if x['type'] == 'text'), None)
# 构造新的字典
dataset_entry = {
'role': 'user',
'image_path': image_info['image'] if image_info else None,
'question': text_info['text'] if text_info else None,
'assistant_answer': assistant_content
}
dataset_dicts.append(dataset_entry)
return dataset_dicts
def process_func_batch(examples):
MAX_LENGTH = 2048
input_ids, attention_mask, labels, pixel_values, image_grid_thw = [], [], [], [], []
for example in zip(examples["question"], examples["assistant_answer"], examples["image_path"]):
input_content, output_content, file_path = example
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": f"{file_path}"
},
{"type": "text", "text": input_content},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=False, # 先不填充
return_tensors="pt",
)
inputs_dict = {key: value.tolist() for key, value in inputs.items()}
instruction_input_ids = inputs_dict['input_ids'][0]
instruction_attention_mask = inputs_dict['attention_mask'][0]
response = tokenizer(f"{output_content}", add_special_tokens=False)
response_input_ids = response['input_ids']
response_attention_mask = response['attention_mask']
# 计算剩余可用长度给response
remaining_length = MAX_LENGTH - len(instruction_input_ids) - 1 # 减去一个PAD token的空间
if remaining_length < 0:
# 如果指令部分已经超过最大长度,则需要截断指令部分
truncation_length = len(instruction_input_ids) + remaining_length
instruction_input_ids = instruction_input_ids[:truncation_length]
instruction_attention_mask = instruction_attention_mask[:truncation_length]
remaining_length = 0
# 截断response部分以适应剩余空间
current_input_ids = (
instruction_input_ids + response_input_ids[:remaining_length] + [tokenizer.pad_token_id]
)
current_attention_mask = (
instruction_attention_mask + response_attention_mask[:remaining_length] + [1]
)
current_labels = (
[-100] * len(instruction_input_ids) +
response_input_ids[:remaining_length] +
[tokenizer.pad_token_id]
)
# 填充到MAX_LENGTH
if len(current_input_ids) < MAX_LENGTH:
current_input_ids += [tokenizer.pad_token_id] * (MAX_LENGTH - len(current_input_ids))
current_attention_mask += [0] * (MAX_LENGTH - len(current_attention_mask))
current_labels += [-100] * (MAX_LENGTH - len(current_labels))
input_ids.append(current_input_ids)
attention_mask.append(current_attention_mask)
labels.append(current_labels)
pixel_values.append(inputs_dict['pixel_values'])
image_grid_thw.append(torch.tensor(inputs_dict['image_grid_thw']).squeeze(0))
return {
"input_ids": torch.tensor(input_ids),
"attention_mask": torch.tensor(attention_mask),
"labels": torch.tensor(labels),
"pixel_values": torch.tensor(pixel_values),
"image_grid_thw": torch.stack(image_grid_thw)
}
def predict(messages, model):
# 准备推理
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
device = next(model.parameters()).device
# 将所有张量移动到指定的设备上
for key, value in inputs.items():
inputs[key] = value.to(device)
# 生成输出
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
del inputs
return output_text[0]
在modelscope上下载Qwen2-VL模型到本地目录下
model_dir = snapshot_download("Qwen/Qwen2-VL-2B-Instruct", cache_dir="./", revision="master")
使用Transformers加载模型权重
tokenizer = AutoTokenizer.from_pretrained("/root/autodl-tmp/Qwen/Qwen2.5-VL-7B-Instruct/", use_fast=True)
min_pixels = 2562828
max_pixels = 12802840
processor = AutoProcessor.from_pretrained("/root/autodl-tmp/Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels,use_fast=True)
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
model = Qwen2_5_VLForConditionalGeneration.from_pretrained("/root/autodl-tmp/Qwen/Qwen2.5-VL-7B-Instruct/", torch_dtype=torch.bfloat16,device_map=device_map).to(device)
print("模型加载成功")
model.enable_input_require_grads() # 开启梯度检查点时,要执行该方法/
处理数据集:读取json文件
分别加载 test 和 val 数据集
test_data_path = 'data_side_test.jsonl'
val_data_path = 'data_side_val.jsonl'
test_dataset_dicts = load_and_convert_data(test_data_path)
val_dataset_dicts = load_and_convert_data(val_data_path)
创建 Dataset 对象
test_tmp_dataset = Dataset.from_list(test_dataset_dicts)
val_tmp_dataset = Dataset.from_list(val_dataset_dicts)
indices = list(range(10))
test_tmp_dataset = test_tmp_dataset.select(indices)
indices = list(range(10))
val_tmp_dataset = val_tmp_dataset.select(indices)
test_dataset = test_tmp_dataset.map(process_func_batch, batched=True,batch_size=4)
val_dataset = val_tmp_dataset.map(process_func_batch, batched=True, batch_size=4)
print("Test and Val Datasets have been created.")
配置LoRA
config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
inference_mode=False, # 训练模式
r=64, # Lora 秩
lora_alpha=16, # Lora alaph,具体作用参见 Lora 原理
lora_dropout=0.05, # Dropout 比例
bias="none",
)
print("模型开始转换")
获取LoRA模型
转换模型
peft_model = get_peft_model(model, config)
peft_model.config.use_cache = False
print("模型开始配餐")
配置训练参数
args = TrainingArguments(
output_dir="./output1/Qwen2.5-VL-7B",
per_device_train_batch_size=2,
gradient_accumulation_steps=8,
logging_steps=10,
logging_first_step=5,
num_train_epochs=4,
save_steps=50,
learning_rate=1e-4,
save_on_each_node=True,
gradient_checkpointing=True,
report_to="none",
# bf16=True,
fp16=True,
max_grad_norm=1.0,
label_names=["labels"],
deepspeed=DS_CONFIG
)
print("模型开始回调")
设置SwanLab回调
swanlab_callback = SwanLabCallback(
project="Qwen2.5-VL-finetune",
experiment_name="qwen2.5-vl-detection",
config={
"model": "https://modelscope.cn/models/Qwen/Qwen2.5-VL-7B-Instruct",
"dataset": "side-view",
"github": "https://github.com/datawhalechina/self-llm",
"prompt": "Please provide the bounding box for the following descriptio: ",
"train_data_number": 2000,
"lora_rank": 64,
"lora_alpha": 16,
"lora_dropout": 0.1,
},
)
print("模型开始配置")
配置Trainer
trainer = Trainer(
model=peft_model,
args=args,
train_dataset=test_dataset,
eval_dataset=val_dataset,
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
callbacks=[swanlab_callback],
)
开启模型训练
print("模型开始训练")
trainer.train()
print("模型开始训练1")
trainer.save_model('./output1/Qwen2.5-VL-7B')
print("模型开始训练2")
trainer.save_state()
print("模型训练结束")
====================测试模式===================
配置测试参数
val_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
inference_mode=True, # 训练模式
r=64, # Lora 秩
lora_alpha=16, # Lora alaph,具体作用参见 Lora 原理
lora_dropout=0.05, # Dropout 比例
bias="none",
)
获取测试模型
val_peft_model = PeftModel.from_pretrained(model, model_id="./output1/Qwen2.5-VL-7B/", config=val_config)
创建一个列表来保存所有需要的信息
results_to_save = []
同时创建test_image_list用于swanlab日志记录
test_image_list = []
for item in val_dataset:
# 准备输入消息
messages = [{
"role": "user",
"content": [
{
"type": "image",
"image": item['image_path']
},
{
"type": "text",
"text": item['question']
}
]}]
# 获取模型预测
response = predict(messages, val_peft_model)
messages.append({"role": "assistant", "content": f"{response}"})
# 打印或记录预测信息
print(messages[-1])
# 添加预测结果、原始答案和图片路径到结果列表中
results_to_save.append({
'image_path': item['image_path'],
'question':item['question'],
'original_answer': item['assistant_answer'],
'predicted_answer': response,
})
# 同时添加到test_image_list用于SwanLab日志记录
test_image_list.append(swanlab.Image(item['image_path'], caption=response))
定义保存文件的路径
output_file_path = './predictions_side_results.json'
将结果写入JSON文件
with open(output_file_path, 'w', encoding='utf-8') as file:
json.dump(results_to_save, file, ensure_ascii=False, indent=4)
print(f"Results have been saved to {output_file_path}")
swanlab.init()
使用SwanLab记录预测结果
swanlab.log({"Prediction": test_image_list})
在Jupyter Notebook中运行时要停止SwanLab记录,需要调用swanlab.finish()
swanlab.finish()
`
