Skip to content

What are the Training Arguments for ImageNet Pre-Trained Model? #38

@LeighDavis

Description

@LeighDavis

Getting following error message when running the trained ImageNet model for image classification on my machine, which I downloaded from author's Dropbox link posted in this repo's readme link:

model.load_state_dict(torch.load(PATH, map_location=torch.device("cpu"))[\'state_dict\'])\n', ' File "C:\\Program Files\\Python36\\lib\\site-packages\\torch\\nn\\modules\\module.py", line 1052, in load_state_dict\n self.__class__.__name__, "\\n\\t".join(error_msgs)))\n', 'RuntimeError: Error(s) in loading state_dict for DataParallel:\n\tMissing key(s) in state_dict: "module.features.denseblock_1.denselayer_1.conv_1._count", "module.features.denseblock_1.denselayer_1.conv_1._stage", "module.features.denseblock_1.denselayer_1.conv_1._mask", "module.features.denseblock_1.denselayer_2.conv_1._count", "module.features.denseblock_1.denselayer_2.conv_1._stage", "module.features.denseblock_1.denselayer_2.conv_1._mask", "module.features.denseblock_1.denselayer_3.conv_1._count", "module.features.denseblock_1.denselayer_3.conv_1._stage", "module.features.denseblock_1.denselayer_3.conv_1._mask", "module.features.denseblock_1.denselayer_4.conv_1._count", "module.features.denseblock_1.denselayer_4.conv_1._stage", "module.features.denseblock_1.denselayer_4.conv_1._mask", "module.features.denseblock_2.denselayer_1.conv_1._count", "module.features.denseblock_2.denselayer_1.conv_1._stage", "module.features.denseblock_2.denselayer_1.conv_1._mask", "module.features.denseblock_2.denselayer_2.conv_1._count", "module.features.denseblock_2.denselayer_2.conv_1._stage", "module.features.denseblock_2.denselayer_2.conv_1._mask", "module.features.denseblock_2.denselayer_3.conv_1._count", "module.features.denseblock_2.denselayer_3.conv_1._stage", "module.features.denseblock_2.denselayer_3.conv_1._mask", "module.features.denseblock_2.denselayer_4.conv_1._count", "module.features.denseblock_2.denselayer_4.conv_1._stage", "module.features.denseblock_2.denselayer_4.conv_1._mask", "module.features.denseblock_2.denselayer_5.conv_1._count", "module.features.denseblock_2.denselayer_5.conv_1._stage", "module.features.denseblock_2.denselayer_5.conv_1._mask", "module.features.denseblock_2.denselayer_6.conv_1._count", "module.features.denseblock_2.denselayer_6.conv_1._stage", "module.features.denseblock_2.denselayer_6.conv_1._mask", "module.features.denseblock_3.denselayer_1.conv_1._count", "module.features.denseblock_3.denselayer_1.conv_1._stage", "module.features.denseblock_3.denselayer_1.conv_1._mask", "module.features.denseblock_3.denselayer_2.conv_1._count", "module.features.denseblock_3.denselayer_2.conv_1._stage", "module.features.denseblock_3.denselayer_2.conv_1._mask", "module.features.denseblock_3.denselayer_3.conv_1._count", "module.features.denseblock_3.denselayer_3.conv_1._stage", "module.features.denseblock_3.denselayer_3.conv_1._mask", "module.features.denseblock_3.denselayer_4.conv_1._count", "module.features.denseblock_3.denselayer_4.conv_1._stage", "module.features.denseblock_3.denselayer_4.conv_1._mask", "module.features.denseblock_3.denselayer_5.conv_1._count", "module.features.denseblock_3.denselayer_5.conv_1._stage", "module.features.denseblock_3.denselayer_5.conv_1._mask", "module.features.denseblock_3.denselayer_6.conv_1._count", "module.features.denseblock_3.denselayer_6.conv_1._stage", "module.features.denseblock_3.denselayer_6.conv_1._mask", "module.features.denseblock_3.denselayer_7.conv_1._count", "module.features.denseblock_3.denselayer_7.conv_1._stage", "module.features.denseblock_3.denselayer_7.conv_1._mask", "module.features.denseblock_3.denselayer_8.conv_1._count", "module.features.denseblock_3.denselayer_8.conv_1._stage", "module.features.denseblock_3.denselayer_8.conv_1._mask", "module.features.denseblock_4.denselayer_1.conv_1._count", "module.features.denseblock_4.denselayer_1.conv_1._stage", "module.features.denseblock_4.denselayer_1.conv_1._mask", "module.features.denseblock_4.denselayer_2.conv_1._count", "module.features.denseblock_4.denselayer_2.conv_1._stage", "module.features.denseblock_4.denselayer_2.conv_1._mask", "module.features.denseblock_4.denselayer_3.conv_1._count", "module.features.denseblock_4.denselayer_3.conv_1._stage", "module.features.denseblock_4.denselayer_3.conv_1._mask", "module.features.denseblock_4.denselayer_4.conv_1._count", "module.features.denseblock_4.denselayer_4.conv_1._stage", "module.features.denseblock_4.denselayer_4.conv_1._mask", "module.features.denseblock_4.denselayer_5.conv_1._count", "module.features.denseblock_4.denselayer_5.conv_1._stage", "module.features.denseblock_4.denselayer_5.conv_1._mask", "module.features.denseblock_4.denselayer_6.conv_1._count", "module.features.denseblock_4.denselayer_6.conv_1._stage", "module.features.denseblock_4.denselayer_6.conv_1._mask", "module.features.denseblock_4.denselayer_7.conv_1._count", "module.features.denseblock_4.denselayer_7.conv_1._stage", "module.features.denseblock_4.denselayer_7.conv_1._mask", "module.features.denseblock_4.denselayer_8.conv_1._count", "module.features.denseblock_4.denselayer_8.conv_1._stage", "module.features.denseblock_4.denselayer_8.conv_1._mask", "module.features.denseblock_4.denselayer_9.conv_1._count", "module.features.denseblock_4.denselayer_9.conv_1._stage", "module.features.denseblock_4.denselayer_9.conv_1._mask", "module.features.denseblock_4.denselayer_10.conv_1._count", "module.features.denseblock_4.denselayer_10.conv_1._stage", "module.features.denseblock_4.denselayer_10.conv_1._mask", "module.features.denseblock_5.denselayer_1.conv_1._count", "module.features.denseblock_5.denselayer_1.conv_1._stage", "module.features.denseblock_5.denselayer_1.conv_1._mask", "module.features.denseblock_5.denselayer_2.conv_1._count", "module.features.denseblock_5.denselayer_2.conv_1._stage", "module.features.denseblock_5.denselayer_2.conv_1._mask", "module.features.denseblock_5.denselayer_3.conv_1._count", "module.features.denseblock_5.denselayer_3.conv_1._stage", "module.features.denseblock_5.denselayer_3.conv_1._mask", "module.features.denseblock_5.denselayer_4.conv_1._count", "module.features.denseblock_5.denselayer_4.conv_1._stage", "module.features.denseblock_5.denselayer_4.conv_1._mask", "module.features.denseblock_5.denselayer_5.conv_1._count", "module.features.denseblock_5.denselayer_5.conv_1._stage", "module.features.denseblock_5.denselayer_5.conv_1._mask", "module.features.denseblock_5.denselayer_6.conv_1._count", "module.features.denseblock_5.denselayer_6.conv_1._stage", "module.features.denseblock_5.denselayer_6.conv_1._mask", "module.features.denseblock_5.denselayer_7.conv_1._count", "module.features.denseblock_5.denselayer_7.conv_1._stage", "module.features.denseblock_5.denselayer_7.conv_1._mask", "module.features.denseblock_5.denselayer_8.conv_1._count", "module.features.denseblock_5.denselayer_8.conv_1._stage", "module.features.denseblock_5.denselayer_8.conv_1._mask", "module.classifier.weight", "module.classifier.bias". \n\tUnexpected key(s) in state_dict: "module.features.denseblock_1.denselayer_1.conv_1.index", "module.features.denseblock_1.denselayer_2.conv_1.index", "module.features.denseblock_1.denselayer_3.conv_1.index", "module.features.denseblock_1.denselayer_4.conv_1.index", "module.features.denseblock_2.denselayer_1.conv_1.index", "module.features.denseblock_2.denselayer_2.conv_1.index", "module.features.denseblock_2.denselayer_3.conv_1.index", "module.features.denseblock_2.denselayer_4.conv_1.index", "module.features.denseblock_2.denselayer_5.conv_1.index", "module.features.denseblock_2.denselayer_6.conv_1.index", "module.features.denseblock_3.denselayer_1.conv_1.index", "module.features.denseblock_3.denselayer_2.conv_1.index", "module.features.denseblock_3.denselayer_3.conv_1.index", "module.features.denseblock_3.denselayer_4.conv_1.index", "module.features.denseblock_3.denselayer_5.conv_1.index", "module.features.denseblock_3.denselayer_6.conv_1.index", "module.features.denseblock_3.denselayer_7.conv_1.index", "module.features.denseblock_3.denselayer_8.conv_1.index", "module.features.denseblock_4.denselayer_1.conv_1.index", "module.features.denseblock_4.denselayer_2.conv_1.index", "module.features.denseblock_4.denselayer_3.conv_1.index", "module.features.denseblock_4.denselayer_4.conv_1.index", "module.features.denseblock_4.denselayer_5.conv_1.index", "module.features.denseblock_4.denselayer_6.conv_1.index", "module.features.denseblock_4.denselayer_7.conv_1.index", "module.features.denseblock_4.denselayer_8.conv_1.index", "module.features.denseblock_4.denselayer_9.conv_1.index", "module.features.denseblock_4.denselayer_10.conv_1.index", "module.features.denseblock_5.denselayer_1.conv_1.index", "module.features.denseblock_5.denselayer_2.conv_1.index", "module.features.denseblock_5.denselayer_3.conv_1.index", "module.features.denseblock_5.denselayer_4.conv_1.index", "module.features.denseblock_5.denselayer_5.conv_1.index", "module.features.denseblock_5.denselayer_6.conv_1.index", "module.features.denseblock_5.denselayer_7.conv_1.index", "module.features.denseblock_5.denselayer_8.conv_1.index", "module.classifier.index", "module.classifier.linear.weight", "module.classifier.linear.bias". \n\tsize mismatch for module.features.denseblock_1.denselayer_1.conv_1.conv.weight: copying a param with shape torch.Size([32, 2, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 16, 1, 1]).\n\tsize mismatch for module.features.denseblock_1.denselayer_1.conv_2.conv.weight: copying a param with shape torch.Size([8, 4, 3, 3]) from checkpoint, the shape in current model is torch.Size([8, 8, 3, 3]).\n\tsize mismatch for module.features.denseblock_1.denselayer_2.conv_1.conv.weight: copying a param with shape torch.Size([32, 3, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 24, 1, 1]).\n\tsize mismatch for module.features.denseblock_1.denselayer_2.conv_2.conv.weight: copying a param with shape torch.Size([8, 4, 3, 3]) from checkpoint, the shape in current model is torch.Size([8, 8, 3, 3]).\n\tsize mismatch for module.features.denseblock_1.denselayer_3.conv_1.conv.weight: copying a param with shape torch.Size([32, 4, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 32, 1, 1]).\n\tsize mismatch for module.features.denseblock_1.denselayer_3.conv_2.conv.weight: copying a param with shape torch.Size([8, 4, 3, 3]) from checkpoint, the shape in current model is torch.Size([8, 8, 3, 3]).\n\tsize mismatch for module.features.denseblock_1.denselayer_4.conv_1.conv.weight: copying a param with shape torch.Size([32, 5, 1, 1]) from checkpoint, the shape in current model is torch.Size([32, 40, 1, 1]).\n\tsize mismatch for module.features.denseblock_1.denselayer_4.conv_2.conv.weight: copying a param with shape torch.Size([8, 4, 3, 3]) from checkpoint, the shape in current model is torch.Size([8, 8, 3, 3]).\n\tsize mismatch for module.features.denseblock_2.denselayer_1.conv_1.conv.weight: copying a param with shape torch.Size([64, 6, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 48, 1, 1]).\n\tsize mismatch for module.features.denseblock_2.denselayer_1.conv_2.conv.weight: copying a param with shape torch.Size([16, 8, 3, 3]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).\n\tsize mismatch for module.features.denseblock_2.denselayer_2.conv_1.conv.weight: copying a param with shape torch.Size([64, 8, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 64, 1, 1]).\n\tsize mismatch for module.features.denseblock_2.denselayer_2.conv_2.conv.weight: copying a param with shape torch.Size([16, 8, 3, 3]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).\n\tsize mismatch for module.features.denseblock_2.denselayer_3.conv_1.conv.weight: copying a param with shape torch.Size([64, 10, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 80, 1, 1]).\n\tsize mismatch for module.features.denseblock_2.denselayer_3.conv_2.conv.weight: copying a param with shape torch.Size([16, 8, 3, 3]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).\n\tsize mismatch for module.features.denseblock_2.denselayer_4.conv_1.conv.weight: copying a param with shape torch.Size([64, 12, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 96, 1, 1]).\n\tsize mismatch for module.features.denseblock_2.denselayer_4.conv_2.conv.weight: copying a param with shape torch.Size([16, 8, 3, 3]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).\n\tsize mismatch for module.features.denseblock_2.denselayer_5.conv_1.conv.weight: copying a param with shape torch.Size([64, 14, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 112, 1, 1]).\n\tsize mismatch for module.features.denseblock_2.denselayer_5.conv_2.conv.weight: copying a param with shape torch.Size([16, 8, 3, 3]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).\n\tsize mismatch for module.features.denseblock_2.denselayer_6.conv_1.conv.weight: copying a param with shape torch.Size([64, 16, 1, 1]) from checkpoint, the shape in current model is torch.Size([64, 128, 1, 1]).\n\tsize mismatch for module.features.denseblock_2.denselayer_6.conv_2.conv.weight: copying a param with shape torch.Size([16, 8, 3, 3]) from checkpoint, the shape in current model is torch.Size([16, 16, 3, 3]).\n\tsize mismatch for module.features.denseblock_3.denselayer_1.conv_1.conv.weight: copying a param with shape torch.Size([128, 18, 1, 1]) from checkpoint, the shape in current model is torch.Size([128, 144, 1, 1]).\n\tsize mismatch for module.features.denseblock_3.denselayer_1.conv_2.conv.weight: copying a param with shape torch.Size([32, 16, 3, 3]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).\n\tsize mismatch for module.features.denseblock_3.denselayer_2.conv_1.conv.weight: copying a param with shape torch.Size([128, 22, 1, 1]) from checkpoint, the shape in current model is torch.Size([128, 176, 1, 1]).\n\tsize mismatch for module.features.denseblock_3.denselayer_2.conv_2.conv.weight: copying a param with shape torch.Size([32, 16, 3, 3]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).\n\tsize mismatch for module.features.denseblock_3.denselayer_3.conv_1.conv.weight: copying a param with shape torch.Size([128, 26, 1, 1]) from checkpoint, the shape in current model is torch.Size([128, 208, 1, 1]).\n\tsize mismatch for module.features.denseblock_3.denselayer_3.conv_2.conv.weight: copying a param with shape torch.Size([32, 16, 3, 3]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).\n\tsize mismatch for module.features.denseblock_3.denselayer_4.conv_1.conv.weight: copying a param with shape torch.Size([128, 30, 1, 1]) from checkpoint, the shape in current model is torch.Size([128, 240, 1, 1]).\n\tsize mismatch for module.features.denseblock_3.denselayer_4.conv_2.conv.weight: copying a param with shape torch.Size([32, 16, 3, 3]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).\n\tsize mismatch for module.features.denseblock_3.denselayer_5.conv_1.conv.weight: copying a param with shape torch.Size([128, 34, 1, 1]) from checkpoint, the shape in current model is torch.Size([128, 272, 1, 1]).\n\tsize mismatch for module.features.denseblock_3.denselayer_5.conv_2.conv.weight: copying a param with shape torch.Size([32, 16, 3, 3]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).\n\tsize mismatch for module.features.denseblock_3.denselayer_6.conv_1.conv.weight: copying a param with shape torch.Size([128, 38, 1, 1]) from checkpoint, the shape in current model is torch.Size([128, 304, 1, 1]).\n\tsize mismatch for module.features.denseblock_3.denselayer_6.conv_2.conv.weight: copying a param with shape torch.Size([32, 16, 3, 3]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).\n\tsize mismatch for module.features.denseblock_3.denselayer_7.conv_1.conv.weight: copying a param with shape torch.Size([128, 42, 1, 1]) from checkpoint, the shape in current model is torch.Size([128, 336, 1, 1]).\n\tsize mismatch for module.features.denseblock_3.denselayer_7.conv_2.conv.weight: copying a param with shape torch.Size([32, 16, 3, 3]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).\n\tsize mismatch for module.features.denseblock_3.denselayer_8.conv_1.conv.weight: copying a param with shape torch.Size([128, 46, 1, 1]) from checkpoint, the shape in current model is torch.Size([128, 368, 1, 1]).\n\tsize mismatch for module.features.denseblock_3.denselayer_8.conv_2.conv.weight: copying a param with shape torch.Size([32, 16, 3, 3]) from checkpoint, the shape in current model is torch.Size([32, 32, 3, 3]).\n\tsize mismatch for module.features.denseblock_4.denselayer_1.conv_1.conv.weight: copying a param with shape torch.Size([256, 50, 1, 1]) from checkpoint, the shape in current model is torch.Size([256, 400, 1, 1]).\n\tsize mismatch for module.features.denseblock_4.denselayer_1.conv_2.conv.weight: copying a param with shape torch.Size([64, 32, 3, 3]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).\n\tsize mismatch for module.features.denseblock_4.denselayer_2.conv_1.conv.weight: copying a param with shape torch.Size([256, 58, 1, 1]) from checkpoint, the shape in current model is torch.Size([256, 464, 1, 1]).\n\tsize mismatch for module.features.denseblock_4.denselayer_2.conv_2.conv.weight: copying a param with shape torch.Size([64, 32, 3, 3]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).\n\tsize mismatch for module.features.denseblock_4.denselayer_3.conv_1.conv.weight: copying a param with shape torch.Size([256, 66, 1, 1]) from checkpoint, the shape in current model is torch.Size([256, 528, 1, 1]).\n\tsize mismatch for module.features.denseblock_4.denselayer_3.conv_2.conv.weight: copying a param with shape torch.Size([64, 32, 3, 3]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).\n\tsize mismatch for module.features.denseblock_4.denselayer_4.conv_1.conv.weight: copying a param with shape torch.Size([256, 74, 1, 1]) from checkpoint, the shape in current model is torch.Size([256, 592, 1, 1]).\n\tsize mismatch for module.features.denseblock_4.denselayer_4.conv_2.conv.weight: copying a param with shape torch.Size([64, 32, 3, 3]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).\n\tsize mismatch for module.features.denseblock_4.denselayer_5.conv_1.conv.weight: copying a param with shape torch.Size([256, 82, 1, 1]) from checkpoint, the shape in current model is torch.Size([256, 656, 1, 1]).\n\tsize mismatch for module.features.denseblock_4.denselayer_5.conv_2.conv.weight: copying a param with shape torch.Size([64, 32, 3, 3]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).\n\tsize mismatch for module.features.denseblock_4.denselayer_6.conv_1.conv.weight: copying a param with shape torch.Size([256, 90, 1, 1]) from checkpoint, the shape in current model is torch.Size([256, 720, 1, 1]).\n\tsize mismatch for module.features.denseblock_4.denselayer_6.conv_2.conv.weight: copying a param with shape torch.Size([64, 32, 3, 3]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).\n\tsize mismatch for module.features.denseblock_4.denselayer_7.conv_1.conv.weight: copying a param with shape torch.Size([256, 98, 1, 1]) from checkpoint, the shape in current model is torch.Size([256, 784, 1, 1]).\n\tsize mismatch for module.features.denseblock_4.denselayer_7.conv_2.conv.weight: copying a param with shape torch.Size([64, 32, 3, 3]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).\n\tsize mismatch for module.features.denseblock_4.denselayer_8.conv_1.conv.weight: copying a param with shape torch.Size([256, 106, 1, 1]) from checkpoint, the shape in current model is torch.Size([256, 848, 1, 1]).\n\tsize mismatch for module.features.denseblock_4.denselayer_8.conv_2.conv.weight: copying a param with shape torch.Size([64, 32, 3, 3]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).\n\tsize mismatch for module.features.denseblock_4.denselayer_9.conv_1.conv.weight: copying a param with shape torch.Size([256, 114, 1, 1]) from checkpoint, the shape in current model is torch.Size([256, 912, 1, 1]).\n\tsize mismatch for module.features.denseblock_4.denselayer_9.conv_2.conv.weight: copying a param with shape torch.Size([64, 32, 3, 3]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).\n\tsize mismatch for module.features.denseblock_4.denselayer_10.conv_1.conv.weight: copying a param with shape torch.Size([256, 122, 1, 1]) from checkpoint, the shape in current model is torch.Size([256, 976, 1, 1]).\n\tsize mismatch for module.features.denseblock_4.denselayer_10.conv_2.conv.weight: copying a param with shape torch.Size([64, 32, 3, 3]) from checkpoint, the shape in current model is torch.Size([64, 64, 3, 3]).\n\tsize mismatch for module.features.denseblock_5.denselayer_1.conv_1.conv.weight: copying a param with shape torch.Size([512, 130, 1, 1]) from checkpoint, the shape in current model is torch.Size([512, 1040, 1, 1]).\n\tsize mismatch for module.features.denseblock_5.denselayer_1.conv_2.conv.weight: copying a param with shape torch.Size([128, 64, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).\n\tsize mismatch for module.features.denseblock_5.denselayer_2.conv_1.conv.weight: copying a param with shape torch.Size([512, 146, 1, 1]) from checkpoint, the shape in current model is torch.Size([512, 1168, 1, 1]).\n\tsize mismatch for module.features.denseblock_5.denselayer_2.conv_2.conv.weight: copying a param with shape torch.Size([128, 64, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).\n\tsize mismatch for module.features.denseblock_5.denselayer_3.conv_1.conv.weight: copying a param with shape torch.Size([512, 162, 1, 1]) from checkpoint, the shape in current model is torch.Size([512, 1296, 1, 1]).\n\tsize mismatch for module.features.denseblock_5.denselayer_3.conv_2.conv.weight: copying a param with shape torch.Size([128, 64, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).\n\tsize mismatch for module.features.denseblock_5.denselayer_4.conv_1.conv.weight: copying a param with shape torch.Size([512, 178, 1, 1]) from checkpoint, the shape in current model is torch.Size([512, 1424, 1, 1]).\n\tsize mismatch for module.features.denseblock_5.denselayer_4.conv_2.conv.weight: copying a param with shape torch.Size([128, 64, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).\n\tsize mismatch for module.features.denseblock_5.denselayer_5.conv_1.conv.weight: copying a param with shape torch.Size([512, 194, 1, 1]) from checkpoint, the shape in current model is torch.Size([512, 1552, 1, 1]).\n\tsize mismatch for module.features.denseblock_5.denselayer_5.conv_2.conv.weight: copying a param with shape torch.Size([128, 64, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).\n\tsize mismatch for module.features.denseblock_5.denselayer_6.conv_1.conv.weight: copying a param with shape torch.Size([512, 210, 1, 1]) from checkpoint, the shape in current model is torch.Size([512, 1680, 1, 1]).\n\tsize mismatch for module.features.denseblock_5.denselayer_6.conv_2.conv.weight: copying a param with shape torch.Size([128, 64, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).\n\tsize mismatch for module.features.denseblock_5.denselayer_7.conv_1.conv.weight: copying a param with shape torch.Size([512, 226, 1, 1]) from checkpoint, the shape in current model is torch.Size([512, 1808, 1, 1]).\n\tsize mismatch for module.features.denseblock_5.denselayer_7.conv_2.conv.weight: copying a param with shape torch.Size([128, 64, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).\n\tsize mismatch for module.features.denseblock_5.denselayer_8.conv_1.conv.weight: copying a param with shape torch.Size([512, 242, 1, 1]) from checkpoint, the shape in current model is torch.Size([512, 1936, 1, 1]).\n\tsize mismatch for module.features.denseblock_5.denselayer_8.conv_2.conv.weight: copying a param with shape torch.Size([128, 64, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).\n']

This is the training argument I have used in my image classification prediction script:
args = parser.parse_args(["--model", "condensenet_converted", "-b", "64", "-j", "20", "imagenet", "--stages", "4-6-8-10-8", "--growth", "8-16-32-64-128", "--gpu", "0"]). I have tried both, (C=G=4) and (C=G=8) pre-trained models from this repo. Thank you.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions