diff --git a/WORKSHOP_THEMES_ANALYSIS.md b/WORKSHOP_THEMES_ANALYSIS.md
new file mode 100644
index 0000000..f6e0e35
--- /dev/null
+++ b/WORKSHOP_THEMES_ANALYSIS.md
@@ -0,0 +1,463 @@
+# QLS-MiCM Workshop Themes Analysis
+
+*Analysis Date: January 2026*
+
+This document provides a comprehensive analysis of the current QLS-MiCM workshop offerings, identifies thematic categories, and recommends missing topics for future development.
+
+---
+
+## Current Workshop Inventory
+
+The QLS-MiCM organization currently hosts **37 repositories** covering various computational biology and data science topics.
+
+---
+
+## Proposed Learning Pathways (Ready to Use)
+
+Based on existing workshops, here are populated learning pathways following the template format:
+
+
+
+### Additional Pathways
+
+
+
+---
+
+## Proposed NEW Pathways (To Be Developed)
+
+These pathways represent gaps in the current offerings:
+
+
+
+ | 🆕 Reproducible Research |
+ 🆕 Multi-Omics |
+ 🆕 Cloud & HPC |
+ 🆕 Microbiome |
+
+
+
+ 1. IntroToGitHub (exists)
+ 2. 🚧 Containerization (Docker)
+ 3. 🚧 Workflow Managers
+ 4. 🚧 FAIR Data Principles
+ |
+
+ 1. RNA-seq pathway (exists)
+ 2. 🚧 ATAC-seq Analysis
+ 3. 🚧 Spatial Transcriptomics
+ 4. 🚧 Multi-Omics Integration
+ |
+
+ 1. Intro-to-UNIX (exists)
+ 2. 🚧 Intro to HPC (SLURM)
+ 3. 🚧 Cloud Computing Basics
+ 4. 🚧 Nextflow/Snakemake
+ |
+
+ 1. UNIX + Python (exists)
+ 2. 🚧 16S rRNA Analysis
+ 3. 🚧 Shotgun Metagenomics
+ 4. 🚧 QIIME2 Workshop
+ |
+
+
+ | Pre-requisites |
+
+
+ | Programming Basics |
+ R Track + RNA-seq |
+ UNIX + Python |
+ UNIX + Python/R |
+
+
+
+---
+
+## Workshop Themes & Categories
+
+### Theme 1: Programming Fundamentals
+*Foundation skills for computational work*
+
+| Workshop | Language | Description |
+|----------|----------|-------------|
+| IntroToPython | Python | Python fundamentals |
+| IntroToR | R | R programming basics |
+| Intro-to-UNIX | Shell | Command-line computing |
+| Intro-to-MATLAB | MATLAB | MATLAB introduction |
+| Exploring_MATLAB | MATLAB | Extended MATLAB exploration |
+| HowToThinkInCode | - | Computational thinking concepts |
+| IntroToGitHub | R | Version control basics |
+| intermediate_python_fall_2023 | Python | Intermediate Python skills |
+
+**Coverage Assessment:** ✅ Strong coverage of major scientific computing languages
+
+---
+
+### Theme 2: Data Processing & Wrangling
+*Handling and transforming data*
+
+| Workshop | Language | Description |
+|----------|----------|-------------|
+| DataProcessingInPython | Python | Data manipulation with Python |
+| Data_Wrangling_Fall2022 | R | Data wrangling techniques |
+| DataProcessingForGenetics | Python | Genetics-specific data processing |
+
+**Coverage Assessment:** ⚠️ Moderate - could expand with more domain-specific data handling
+
+---
+
+### Theme 3: Statistics & Visualization
+*Statistical methods and data presentation*
+
+| Workshop | Language | Description |
+|----------|----------|-------------|
+| StatsInR | R | Statistical analysis fundamentals |
+| Advanced-Data-Visualization | R | Advanced visualization (most popular: 9 stars) |
+| 2022_Dim_Reduction | Python | Dimensionality reduction techniques |
+
+**Coverage Assessment:** ⚠️ Moderate - statistics coverage could be expanded
+
+---
+
+### Theme 4: RNA Sequencing & Transcriptomics
+*Bulk RNA-seq analysis pipeline*
+
+| Workshop | Language | Description |
+|----------|----------|-------------|
+| Introduction-to-RNA-seq | Shell | RNA-seq basics |
+| RNA-seq-Data-Processing | Python | RNA-seq data processing |
+| Statistical-Foundations-of-RNA-seq | R | Statistical methods for RNA-seq |
+| Differential-Gene-Expression-Analysis | HTML/R | DGE analysis |
+| BootcampF22_RNAseqQuantification | - | RNA-seq quantification |
+| BootcampF22_IntroRNAseqFormats | - | RNA-seq file formats |
+| BootcampF22_LongRead_RNAseq | - | Long-read sequencing |
+| Transcriptomics-Bootcamp-2022 | - | Comprehensive bootcamp |
+| ngsintro_summer2022 | HTML | NGS formats and preprocessing |
+
+**Coverage Assessment:** ✅ Excellent - comprehensive RNA-seq curriculum
+
+---
+
+### Theme 5: Single-Cell Analysis
+*Single-cell technologies*
+
+| Workshop | Language | Description |
+|----------|----------|-------------|
+| Single-Cell-RNA-seq | R | Single-cell RNA-seq analysis |
+| BootcampF22_Intro_Singlecell | HTML | Introduction to single-cell |
+| BootcampF22_singleCell_Clustering_trajectoryInference | - | Clustering & trajectory analysis |
+
+**Coverage Assessment:** ✅ Good foundation coverage
+
+---
+
+### Theme 6: Genetics & Genomics
+*Genetic variation and association studies*
+
+| Workshop | Language | Description |
+|----------|----------|-------------|
+| GWAS-and-Polygenic-Risk-Scores | Python | GWAS and PRS analysis |
+| Intro_PRS | R | Introduction to PRS |
+| ChIP_seq | - | ChIP-seq analysis (forked) |
+| Proteogenomics | HTML | Proteogenomics approaches |
+
+**Coverage Assessment:** ⚠️ Moderate - could expand variant analysis
+
+---
+
+### Theme 7: Machine Learning & AI
+*ML/AI applications in life sciences*
+
+| Workshop | Language | Description |
+|----------|----------|-------------|
+| Summer23-Intro-to-ML-with-Python | Python | ML fundamentals |
+| SupervisedML | Python | Supervised learning methods |
+| Fall23_Intro-to-CNNs | Python | Convolutional neural networks |
+
+**Coverage Assessment:** ⚠️ Limited - significant expansion opportunity
+
+---
+
+### Theme 8: Structural Biology & Simulations
+*Molecular structures and dynamics*
+
+| Workshop | Language | Description |
+|----------|----------|-------------|
+| IntroToMolecularSimulations | Python | Molecular dynamics basics |
+| ImageProcessingInMATLAB | MATLAB | Image processing for biology |
+
+**Coverage Assessment:** ❌ Minimal - major gap area
+
+---
+
+## Gap Analysis: Missing Topics
+
+### High Priority (Essential for Modern Computational Biology)
+
+#### 1. **Deep Learning & Neural Networks Expansion**
+- Transformer models for biology (protein language models, genomic foundation models)
+- Graph neural networks for molecular data
+- Generative AI applications in drug discovery
+- Natural language processing for biomedical text mining
+
+#### 2. **Cloud Computing & High-Performance Computing**
+- Introduction to HPC clusters (SLURM, PBS)
+- Cloud computing for bioinformatics (AWS, Google Cloud, Azure)
+- Containerization (Docker, Singularity) for reproducible research
+- Workflow managers (Nextflow, Snakemake)
+
+#### 3. **Multi-Omics Integration**
+- Integrative multi-omics analysis
+- Spatial transcriptomics
+- ATAC-seq and chromatin accessibility
+- Metabolomics data analysis
+- Epigenomics (DNA methylation, histone modifications)
+
+#### 4. **Reproducibility & Best Practices**
+- Reproducible research practices
+- Data management and FAIR principles
+- Scientific computing best practices
+- Literate programming (R Markdown, Quarto, Jupyter best practices)
+
+### Medium Priority (Valuable Additions)
+
+#### 5. **Variant Analysis & Clinical Genomics**
+- Variant calling and annotation
+- Structural variant analysis
+- Clinical interpretation of variants
+- Pharmacogenomics
+
+#### 6. **Structural Bioinformatics**
+- Protein structure prediction (AlphaFold, ESMFold)
+- Molecular docking
+- Structure-based drug design
+- Cryo-EM data processing
+
+#### 7. **Metagenomics & Microbiome**
+- 16S rRNA analysis
+- Shotgun metagenomics
+- Microbiome data analysis with QIIME2
+- Functional annotation of microbial communities
+
+#### 8. **Systems Biology**
+- Pathway analysis
+- Network biology
+- Gene regulatory networks
+- Metabolic modeling
+
+### Lower Priority (Specialized Topics)
+
+#### 9. **Time Series & Longitudinal Data**
+- Time series analysis for biological data
+- Longitudinal study design and analysis
+- Dynamic modeling
+
+#### 10. **Advanced Statistics**
+- Bayesian statistics for biology
+- Causal inference methods
+- Survival analysis in clinical research
+- Mixed effects models
+
+#### 11. **Image Analysis**
+- Deep learning for biological image analysis
+- Cell segmentation and tracking
+- Histopathology image analysis
+- High-content screening analysis
+
+#### 12. **Database & Data Engineering**
+- SQL for biological databases
+- Building and querying biological databases
+- APIs for biological data retrieval
+- Data pipelines and ETL
+
+---
+
+## Recommendations Summary
+
+### Immediate Development Priorities
+
+| Rank | Workshop Topic | Rationale |
+|------|---------------|-----------|
+| 1 | **Workflow Managers (Nextflow/Snakemake)** | Critical for reproducible pipelines; bridges all sequencing workshops |
+| 2 | **Intro to HPC & Cloud Computing** | Essential skill gap; enables larger-scale analyses |
+| 3 | **Multi-Omics Integration** | Builds on strong RNA-seq foundation |
+| 4 | **AlphaFold & Protein Structure Prediction** | High interest topic; minimal structural biology coverage |
+| 5 | **Spatial Transcriptomics** | Natural extension of single-cell expertise |
+
+### Suggested Workshop Series
+
+**Series A: From Sequences to Systems**
+1. Intro to RNA-seq (existing)
+2. Single-Cell RNA-seq (existing)
+3. *NEW: Spatial Transcriptomics*
+4. *NEW: Multi-Omics Integration*
+
+**Series B: Reproducible Bioinformatics**
+1. IntroToGitHub (existing)
+2. *NEW: Containerization with Docker/Singularity*
+3. *NEW: Workflow Managers*
+4. *NEW: HPC & Cloud Computing*
+
+**Series C: AI for Life Sciences**
+1. Intro to ML (existing)
+2. Supervised ML (existing)
+3. CNNs (existing)
+4. *NEW: Deep Learning for Genomics*
+5. *NEW: Protein Language Models & AlphaFold*
+
+**Series D: Genomic Variation**
+1. GWAS & PRS (existing)
+2. *NEW: Variant Calling & Annotation*
+3. *NEW: Clinical Genomics Interpretation*
+
+---
+
+## Current Strengths
+
+1. **RNA-seq Pipeline**: Comprehensive coverage from basics to advanced analysis
+2. **Programming Languages**: Good coverage of R, Python, MATLAB, and Shell
+3. **Single-Cell**: Solid foundation with room to grow
+4. **Accessibility**: Materials are public and well-organized
+
+## Areas for Growth
+
+1. **Reproducibility Infrastructure**: Containers, workflows, version control expansion
+2. **AI/ML Depth**: Current coverage is introductory; deeper content needed
+3. **Structural Biology**: Minimal coverage despite field importance
+4. **Cloud/HPC**: Missing critical computational infrastructure skills
+5. **Multi-Omics**: Siloed by data type; integration workshops needed
+
+---
+
+## Appendix: Complete Repository List
+
+| Repository | Primary Language | Stars | Theme |
+|------------|-----------------|-------|-------|
+| Advanced-Data-Visualization | R | 9 | Statistics & Viz |
+| SupervisedML | Python | - | Machine Learning |
+| Workshop_Template | - | - | Infrastructure |
+| DataProcessingInPython | Python | - | Data Processing |
+| Exploring_MATLAB | MATLAB | - | Programming |
+| IntroToPython | Python | - | Programming |
+| Single-Cell-RNA-seq | R | 2 | Single-Cell |
+| Statistical-Foundations-of-RNA-seq | R | 3 | RNA-seq |
+| Introduction-to-RNA-seq | Shell | - | RNA-seq |
+| RNA-seq-Data-Processing | Python | - | RNA-seq |
+| Differential-Gene-Expression-Analysis | HTML | - | RNA-seq |
+| DataProcessingForGenetics | Python | - | Genetics |
+| GWAS-and-Polygenic-Risk-Scores | Python | - | Genetics |
+| Proteogenomics | HTML | - | Genetics |
+| IntroToR | R | - | Programming |
+| StatsInR | R | - | Statistics |
+| Intro-to-UNIX | Shell | 2 | Programming |
+| Intro-to-MATLAB | MATLAB | - | Programming |
+| HowToThinkInCode | - | - | Programming |
+| IntroToGitHub | R | - | Programming |
+| IntroToMolecularSimulations | Python | 2 | Structural |
+| Fall23_Intro-to-CNNs | Python | - | Machine Learning |
+| Summer23-Intro-to-ML-with-Python | Python | 2 | Machine Learning |
+| Transcriptomics-Bootcamp-2022 | - | 3 | RNA-seq |
+| intermediate_python_fall_2023 | Python | - | Programming |
+| ImageProcessingInMATLAB | MATLAB | - | Structural |
+| ChIP_seq | - | - | Genetics |
+| BootcampF22_RNAseqQuantification | - | - | RNA-seq |
+| BootcampF22_IntroRNAseqFormats | - | - | RNA-seq |
+| BootcampF22_Intro_Singlecell | HTML | - | Single-Cell |
+| BootcampF22_singleCell_Clustering_trajectoryInference | - | - | Single-Cell |
+| BootcampF22_LongRead_RNAseq | - | - | RNA-seq |
+| Data_Wrangling_Fall2022 | R | - | Data Processing |
+| ngsintro_summer2022 | HTML | - | RNA-seq |
+| Intro_PRS | R | - | Genetics |
+| 2022_Dim_Reduction | Python | - | Statistics |
+
+---
+
+*Document prepared for QLS-MiCM workshop planning*