From e041a5bfef3175e09652cf1a351bdb470a3fa5bd Mon Sep 17 00:00:00 2001 From: hieuddo Date: Thu, 18 Dec 2025 00:13:03 +0800 Subject: [PATCH] fix: NeuMF act_fn and num_factors parameters --- cornac/models/ncf/backend_pt.py | 3 +-- cornac/models/ncf/recom_neumf.py | 46 +++++++++++++++++--------------- 2 files changed, 25 insertions(+), 24 deletions(-) diff --git a/cornac/models/ncf/backend_pt.py b/cornac/models/ncf/backend_pt.py index a1da0f991..525d442f9 100644 --- a/cornac/models/ncf/backend_pt.py +++ b/cornac/models/ncf/backend_pt.py @@ -1,7 +1,6 @@ import torch import torch.nn as nn - optimizer_dict = { "sgd": torch.optim.SGD, "adam": torch.optim.Adam, @@ -16,7 +15,7 @@ "selu": nn.SELU(), "relu": nn.ReLU(), "relu6": nn.ReLU6(), - "leakyrelu": nn.LeakyReLU(), + "leaky_relu": nn.LeakyReLU(), } diff --git a/cornac/models/ncf/recom_neumf.py b/cornac/models/ncf/recom_neumf.py index 8e3f9ffa4..d07a97df0 100644 --- a/cornac/models/ncf/recom_neumf.py +++ b/cornac/models/ncf/recom_neumf.py @@ -15,8 +15,8 @@ import numpy as np -from .recom_ncf_base import NCFBase from ...exception import ScoreException +from .recom_ncf_base import NCFBase class NeuMF(NCFBase): @@ -59,13 +59,13 @@ class NeuMF(NCFBase): backend: str, optional, default: 'tensorflow' Backend used for model training: tensorflow, pytorch - + early_stopping: {min_delta: float, patience: int}, optional, default: None - If `None`, no early stopping. Meaning of the arguments: - + If `None`, no early stopping. Meaning of the arguments: + - `min_delta`: the minimum increase in monitored value on validation set to be considered as improvement, \ i.e. an increment of less than min_delta will count as no improvement. - + - `patience`: number of epochs with no improvement after which training should be stopped. name: string, optional, default: 'NeuMF' @@ -159,12 +159,13 @@ def from_pretrained(self, pretrained_gmf, pretrained_mlp, alpha=0.5): ######################## def _build_model_tf(self): import tensorflow as tf + from .backend_tf import GMFLayer, MLPLayer - + # Define inputs user_input = tf.keras.layers.Input(shape=(1,), dtype=tf.int32, name="user_input") item_input = tf.keras.layers.Input(shape=(1,), dtype=tf.int32, name="item_input") - + # GMF layer gmf_layer = GMFLayer( num_users=self.num_users, @@ -175,7 +176,7 @@ def _build_model_tf(self): seed=self.seed, name="gmf_layer" ) - + # MLP layer mlp_layer = MLPLayer( num_users=self.num_users, @@ -186,36 +187,36 @@ def _build_model_tf(self): seed=self.seed, name="mlp_layer" ) - + # Get embeddings and element-wise product gmf_vector = gmf_layer([user_input, item_input]) mlp_vector = mlp_layer([user_input, item_input]) - + # Concatenate GMF and MLP vectors concat_vector = tf.keras.layers.Concatenate(axis=-1)([gmf_vector, mlp_vector]) - + # Output layer logits = tf.keras.layers.Dense( 1, kernel_initializer=tf.keras.initializers.LecunUniform(seed=self.seed), name="logits" )(concat_vector) - + prediction = tf.keras.layers.Activation('sigmoid', name="prediction")(logits) - + # Create model model = tf.keras.Model( inputs=[user_input, item_input], outputs=prediction, name="NeuMF" ) - + # Handle pretrained models if self.pretrained: # Get GMF and MLP models gmf_model = self.pretrained_gmf.model mlp_model = self.pretrained_mlp.model - + # Copy GMF embeddings model.get_layer('gmf_layer').user_embedding.set_weights( gmf_model.get_layer('gmf_layer').user_embedding.get_weights() @@ -223,7 +224,7 @@ def _build_model_tf(self): model.get_layer('gmf_layer').item_embedding.set_weights( gmf_model.get_layer('gmf_layer').item_embedding.get_weights() ) - + # Copy MLP embeddings and layers model.get_layer('mlp_layer').user_embedding.set_weights( mlp_model.get_layer('mlp_layer').user_embedding.get_weights() @@ -231,27 +232,27 @@ def _build_model_tf(self): model.get_layer('mlp_layer').item_embedding.set_weights( mlp_model.get_layer('mlp_layer').item_embedding.get_weights() ) - + # Copy dense layers in MLP for i, layer in enumerate(model.get_layer('mlp_layer').dense_layers): layer.set_weights(mlp_model.get_layer('mlp_layer').dense_layers[i].get_weights()) - + # Combine weights for output layer gmf_logits_weights = gmf_model.get_layer('logits').get_weights() mlp_logits_weights = mlp_model.get_layer('logits').get_weights() - + # Combine kernel weights combined_kernel = np.concatenate([ self.alpha * gmf_logits_weights[0], (1.0 - self.alpha) * mlp_logits_weights[0] ], axis=0) - + # Combine bias weights combined_bias = self.alpha * gmf_logits_weights[1] + (1.0 - self.alpha) * mlp_logits_weights[1] - + # Set combined weights to output layer model.get_layer('logits').set_weights([combined_kernel, combined_bias]) - + return model ##################### @@ -264,6 +265,7 @@ def _build_model_pt(self): num_users=self.num_users, num_items=self.num_items, layers=self.layers, + num_factors=self.num_factors, act_fn=self.act_fn, ) if self.pretrained: