Skip to content

Issues reproducing for Bios #26

@AntoineGourru

Description

@AntoineGourru

Dear Xudong,

First, a great thanks for your work, this is of high value for people working in fair classification. Kudos !

Second, I have some issue reproducing the results for the Bios dataset.

I used your code to download and preprocess the data : datasets.prepare_dataset("bios", "data/bios")

After that, in src/dataloaders/loaders/Bios.py, I had to comment:

if self.args.protected_task in ["economy", "both"] and self.args.full_label:
#if self.args.protected_task in ["gender", "economy", "both", "intersection"] and self.args.full_label:

Otherwise it couldn't build the datalaoder (because the data built with prepare_dataset does not contain economy_label).

Finally, I run this code:

##############
args = {
"dataset": "Bios_gender",
"emb_size": 768,
"num_classes": 28,
"batch_size": 16,
"data_dir": "data/bios",
"device_id": 0,
"exp_id":"fcl",
}

debias_options = fairlib.BaseOptions()
debias_state = debias_options.get_state(args=args, silence=True)

fairlib.utils.seed_everything(2022)

debias_model = fairlib.networks.get_main_model(debias_state)

debias_model.train_self()

##############

Everything run well, except the model get random results and the loss is not improving over the epochs. Do you have a clue about what is happening ?

For Moji, it works perfectly.

Best regards, and thank you again for your work,

Antoine

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions