整数 $n, k$ 满足 $1 \le k \le n$,计算 $${(n+1)^{\underline{k+1}} \over k (k + 1)} \bmod k。$$ 首先注意到 ${x \over k+1} \bmod k = {x \bmod k}$(因为 ${x\over k+1} \equiv {x \over 1} \pmod{k}$)。 于是问题化为计算 $${(n+1)^{\underline{k+1}} \over k} \bmod k。$$ 若 $k$ 整除 $n + 1$ 则 $k$ 也整除 $n+1 - k$,则答案是 $0$。 否则 $n+1, n, \dots, n+1-k$ 中只有一项能被 $k$ 整除,我们要找到那一项,并查看里面有几个 $k$。 若里面有不止一个 $k$,答案也是 $0$。