@@ -141,7 +141,7 @@ def dsolve(eval_func, X0, Ytarget=[], step_func=None, args=[], tol=0.0001, maxIt
141141
142142 # process inputs and format as arrays in case they aren't already
143143
144- X = np .array (X0 , dtype = np .float_ ) # start off design variable
144+ X = np .array (X0 , dtype = np .float64 ) # start off design variable
145145 N = len (X )
146146
147147 Xs = np .zeros ([maxIter ,N ]) # make arrays to store X and error results of the solve
@@ -152,9 +152,9 @@ def dsolve(eval_func, X0, Ytarget=[], step_func=None, args=[], tol=0.0001, maxIt
152152
153153 # check the target Y value input
154154 if len (Ytarget )== N :
155- Ytarget = np .array (Ytarget , dtype = np .float_ )
155+ Ytarget = np .array (Ytarget , dtype = np .float64 )
156156 elif len (Ytarget )== 0 :
157- Ytarget = np .zeros (N , dtype = np .float_ )
157+ Ytarget = np .zeros (N , dtype = np .float64 )
158158 else :
159159 raise TypeError ("Ytarget must be of same length as X0" )
160160
@@ -193,14 +193,14 @@ def step_func(X, args, Y, oths, Ytarget, err, tol, iter, maxIter):
193193 if len (Xmin )== 0 :
194194 Xmin = np .zeros (N )- np .inf
195195 elif len (Xmin )== N :
196- Xmin = np .array (Xmin , dtype = np .float_ )
196+ Xmin = np .array (Xmin , dtype = np .float64 )
197197 else :
198198 raise TypeError ("Xmin must be of same length as X0" )
199199
200200 if len (Xmax )== 0 :
201201 Xmax = np .zeros (N )+ np .inf
202202 elif len (Xmax )== N :
203- Xmax = np .array (Xmax , dtype = np .float_ )
203+ Xmax = np .array (Xmax , dtype = np .float64 )
204204 else :
205205 raise TypeError ("Xmax must be of same length as X0" )
206206
@@ -209,7 +209,7 @@ def step_func(X, args, Y, oths, Ytarget, err, tol, iter, maxIter):
209209 if len (dX_last )== 0 :
210210 dX_last = np .zeros (N )
211211 else :
212- dX_last = np .array (dX_last , dtype = np .float_ )
212+ dX_last = np .array (dX_last , dtype = np .float64 )
213213
214214 if display > 1 :
215215 print (f"Starting dsolve iterations>>> aiming for Y={ Ytarget } " )
@@ -365,7 +365,7 @@ def dsolve2(eval_func, X0, Ytarget=[], step_func=None, args=[], tol=0.0001, maxI
365365 start_time = time .time ()
366366 # process inputs and format as arrays in case they aren't already
367367
368- X = np .array (X0 , dtype = np .float_ ) # start off design variable
368+ X = np .array (X0 , dtype = np .float64 ) # start off design variable
369369 N = len (X )
370370
371371 Xs = np .zeros ([maxIter ,N ]) # make arrays to store X and error results of the solve
@@ -376,9 +376,9 @@ def dsolve2(eval_func, X0, Ytarget=[], step_func=None, args=[], tol=0.0001, maxI
376376
377377 # check the target Y value input
378378 if len (Ytarget )== N :
379- Ytarget = np .array (Ytarget , dtype = np .float_ )
379+ Ytarget = np .array (Ytarget , dtype = np .float64 )
380380 elif len (Ytarget )== 0 :
381- Ytarget = np .zeros (N , dtype = np .float_ )
381+ Ytarget = np .zeros (N , dtype = np .float64 )
382382 else :
383383 raise TypeError ("Ytarget must be of same length as X0" )
384384
@@ -393,14 +393,14 @@ def dsolve2(eval_func, X0, Ytarget=[], step_func=None, args=[], tol=0.0001, maxI
393393 if len (Xmin )== 0 :
394394 Xmin = np .zeros (N )- np .inf
395395 elif len (Xmin )== N :
396- Xmin = np .array (Xmin , dtype = np .float_ )
396+ Xmin = np .array (Xmin , dtype = np .float64 )
397397 else :
398398 raise TypeError ("Xmin must be of same length as X0" )
399399
400400 if len (Xmax )== 0 :
401401 Xmax = np .zeros (N )+ np .inf
402402 elif len (Xmax )== N :
403- Xmax = np .array (Xmax , dtype = np .float_ )
403+ Xmax = np .array (Xmax , dtype = np .float64 )
404404 else :
405405 raise TypeError ("Xmax must be of same length as X0" )
406406
@@ -454,7 +454,7 @@ def step_func(X, args, Y, oths, Ytarget, err, tols, iter, maxIter):
454454 if len (dX_last )== 0 :
455455 dX_last = np .zeros (N )
456456 else :
457- dX_last = np .array (dX_last , dtype = np .float_ )
457+ dX_last = np .array (dX_last , dtype = np .float64 )
458458
459459 if display > 0 :
460460 print (f"Starting dsolve iterations>>> aiming for Y={ Ytarget } " )
@@ -639,7 +639,7 @@ def dopt(eval_func, X0, tol=0.0001, maxIter=20, Xmin=[], Xmax=[], a_max=1.2, dX_
639639 if len (X0 ) == 0 :
640640 raise ValueError ("X0 cannot be empty" )
641641
642- X = np .array (X0 , dtype = np .float_ ) # start off design variable (optimized)
642+ X = np .array (X0 , dtype = np .float64 ) # start off design variable (optimized)
643643
644644 # do a test call to see what size the results are
645645 f , g , Xextra , Yextra , oths , stop = eval_func (X ) #, XtLast, Ytarget, args)
@@ -657,20 +657,20 @@ def dopt(eval_func, X0, tol=0.0001, maxIter=20, Xmin=[], Xmax=[], a_max=1.2, dX_
657657 if len (Xmin )== 0 :
658658 Xmin = np .zeros (N )- np .inf
659659 elif len (Xmin )== N :
660- Xmin = np .array (Xmin , dtype = np .float_ )
660+ Xmin = np .array (Xmin , dtype = np .float64 )
661661 else :
662662 raise TypeError ("Xmin must be of same length as X0" )
663663
664664 if len (Xmax )== 0 :
665665 Xmax = np .zeros (N )+ np .inf
666666 elif len (Xmax )== N :
667- Xmax = np .array (Xmax , dtype = np .float_ )
667+ Xmax = np .array (Xmax , dtype = np .float64 )
668668 else :
669669 raise TypeError ("Xmax must be of same length as X0" )
670670
671671
672672 if len (dX_last )== N :
673- dX_last = np .array (dX_last , dtype = np .float_ )
673+ dX_last = np .array (dX_last , dtype = np .float64 )
674674 elif len (dX_last )== 0 :
675675 dX_last = np .zeros (N )
676676 else :
@@ -748,7 +748,7 @@ def dopt(eval_func, X0, tol=0.0001, maxIter=20, Xmin=[], Xmax=[], a_max=1.2, dX_
748748
749749 dX = np .zeros (N ) # optimization step size to take
750750
751- X2 = np .array (X , dtype = np .float_ )
751+ X2 = np .array (X , dtype = np .float64 )
752752
753753 Jf = np .zeros ([N ])
754754 Jg = np .zeros ([N ,m ])
@@ -1136,7 +1136,7 @@ def dopt2(eval_func, X0, tol=0.0001, maxIter=20, Xmin=[], Xmax=[], a_max=1.2, dX
11361136 if len (X0 ) == 0 :
11371137 raise ValueError ("X0 cannot be empty" )
11381138
1139- X = np .array (X0 , dtype = np .float_ ) # start off design variable (optimized)
1139+ X = np .array (X0 , dtype = np .float64 ) # start off design variable (optimized)
11401140
11411141 # do a test call to see what size the results are
11421142 f , g , Xextra , Yextra , oths , stop = eval_func (X , args ) #, XtLast, Ytarget, args)
@@ -1154,20 +1154,20 @@ def dopt2(eval_func, X0, tol=0.0001, maxIter=20, Xmin=[], Xmax=[], a_max=1.2, dX
11541154 if len (Xmin )== 0 :
11551155 Xmin = np .zeros (N )- np .inf
11561156 elif len (Xmin )== N :
1157- Xmin = np .array (Xmin , dtype = np .float_ )
1157+ Xmin = np .array (Xmin , dtype = np .float64 )
11581158 else :
11591159 raise TypeError ("Xmin must be of same length as X0" )
11601160
11611161 if len (Xmax )== 0 :
11621162 Xmax = np .zeros (N )+ np .inf
11631163 elif len (Xmax )== N :
1164- Xmax = np .array (Xmax , dtype = np .float_ )
1164+ Xmax = np .array (Xmax , dtype = np .float64 )
11651165 else :
11661166 raise TypeError ("Xmax must be of same length as X0" )
11671167
11681168
11691169 if len (dX_last )== N :
1170- dX_last = np .array (dX_last , dtype = np .float_ )
1170+ dX_last = np .array (dX_last , dtype = np .float64 )
11711171 elif len (dX_last )== 0 :
11721172 dX_last = np .zeros (N )
11731173 else :
@@ -1264,7 +1264,7 @@ def dopt2(eval_func, X0, tol=0.0001, maxIter=20, Xmin=[], Xmax=[], a_max=1.2, dX
12641264
12651265 dX = np .zeros (N ) # optimization step size to take
12661266
1267- X2 = np .array (X , dtype = np .float_ )
1267+ X2 = np .array (X , dtype = np .float64 )
12681268
12691269 Jf = np .zeros ([N ])
12701270 Jg = np .zeros ([N ,m ])
0 commit comments