diff --git a/Duvall Pinkney Data Science Project.ipynb b/Duvall Pinkney Data Science Project.ipynb index a7fbace..2580a4d 100644 --- a/Duvall Pinkney Data Science Project.ipynb +++ b/Duvall Pinkney Data Science Project.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Duvall Pinkney Project\n", + "Duvall Pinkney Project Spring 2021\n", "\n", "Step 1: Choose your dataset\n", "Choose any interesting dataset that meets these criteria:\n", @@ -33,7 +33,7 @@ "b) Create a new repository for your project. See main Project page or Project sub-channel in the Video section for an introductory video to GitHub that shows how to create a new repository, add a file, and update a file.\n", "\n", "c) Upload your data file to this repository. See main Project page or Project sub-channel in the Video section for an introductory video to GitHub that shows how to create a new repository, add a file, and update a file.\n", - "\n", + "https://github.com/Dpinkney001/Data-Science-MAT328-Project-Spring-2021\n", "\n", "\n", "Item\n", @@ -99,7 +99,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -114,7 +114,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -123,7 +123,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -709,7 +709,7 @@ "[153954 rows x 29 columns]" ] }, - "execution_count": 3, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -720,7 +720,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -935,7 +935,7 @@ "max 1.000000 4.223769e+06 " ] }, - "execution_count": 4, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -946,7 +946,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -970,22 +970,22 @@ { "data": { "text/plain": [ - "array([[,\n", - " ,\n", - " ],\n", - " [,\n", - " ,\n", - " ],\n", - " [,\n", - " ,\n", - " ],\n", - " [,\n", - " ,\n", - " ]],\n", + "array([[,\n", + " ,\n", + " ],\n", + " [,\n", + " ,\n", + " ],\n", + " [,\n", + " ,\n", + " ],\n", + " [,\n", + " ,\n", + " ]],\n", " dtype=object)" ] }, - "execution_count": 5, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, @@ -1008,25 +1008,679 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "url = \"NYPD_Motor_Vehicle_Collisions_-_Crashes (bronx only).csv\"\n", + "df = pd.read_csv(url)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, "metadata": {}, "outputs": [ { - "ename": "AttributeError", - "evalue": "'Series' object has no attribute 'valuse_counts'", + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DATETIMEBOROUGHZIP CODELATITUDELONGITUDELOCATIONON STREET NAMECROSS STREET NAMEOFF STREET NAMENUMBER OF PERSONS INJUREDNUMBER OF PERSONS KILLEDNUMBER OF PEDESTRIANS INJUREDNUMBER OF PEDESTRIANS KILLEDNUMBER OF CYCLIST INJUREDNUMBER OF CYCLIST KILLEDNUMBER OF MOTORIST INJUREDNUMBER OF MOTORIST KILLEDCONTRIBUTING FACTOR VEHICLE 1CONTRIBUTING FACTOR VEHICLE 2CONTRIBUTING FACTOR VEHICLE 3CONTRIBUTING FACTOR VEHICLE 4CONTRIBUTING FACTOR VEHICLE 5COLLISION_IDVEHICLE TYPE CODE 1VEHICLE TYPE CODE 2VEHICLE TYPE CODE 3VEHICLE TYPE CODE 4VEHICLE TYPE CODE 5
106/08/201710:00BRONX10458.0NaNNaNNaNEAST FORDHAM ROADBELMONT AVENUENaN0.00.0000000Following Too CloselyUnspecifiedNaNNaNNaN3686573SPORT UTILITY / STATION WAGONPASSENGER VEHICLENaNNaNNaN
1705/25/20179:00BRONX10458.040.860060-73.891136(40.86006, -73.891136)3 AVENUEEAST 189 STREETNaN1.00.0100000Driver Inattention/DistractionNaNNaNNaNNaN3679454PASSENGER VEHICLENaNNaNNaNNaN
3205/18/201711:00BRONX10458.0NaNNaNNaNFORDHAM ROADSOUTHERN BLVDNaN0.00.0000000Following Too CloselyUnspecifiedNaNNaNNaN3674817PASSENGER VEHICLEPASSENGER VEHICLENaNNaNNaN
3405/30/20170:00BRONX10458.040.863960-73.894600(40.86396, -73.8946)VALENTINE AVENUEEAST 192 STREETNaN0.00.0000000Failure to Yield Right-of-WayUnspecifiedNaNNaNNaN3682928BusNaNNaNNaNNaN
3706/09/20177:30BRONX10458.040.868366-73.889810(40.868366, -73.88981)EAST 197 STREETBRIGGS AVENUENaN0.00.0000000Turning ImproperlyUnspecifiedNaNNaNNaN3687220SPORT UTILITY / STATION WAGONNaNNaNNaNNaN
..........................................................................................
15393906/12/201320:43BRONX10458.040.864256-73.888123(40.8642556, -73.8881227)WEBSTER AVENUEEAST 195 STREETNaN1.00.0000010UnspecifiedNaNNaNNaNNaN111680MOTORCYCLENaNNaNNaNNaN
15394206/12/201322:03BRONX10458.040.869522-73.889893(40.8695216, -73.8898927)EAST 198 STREETVALENTINE AVENUENaN0.00.0000000Driver Inattention/DistractionUnspecifiedNaNNaNNaN111681PASSENGER VEHICLESPORT UTILITY / STATION WAGONNaNNaNNaN
15394606/10/201311:45BRONX10458.040.856435-73.886816(40.8564346, -73.8868164)EAST 188 STREETARTHUR AVENUENaN0.00.0000000UnspecifiedUnspecifiedNaNNaNNaN101467PASSENGER VEHICLEPASSENGER VEHICLENaNNaNNaN
15394806/09/201311:00BRONX10458.040.861831-73.892852(40.861831, -73.8928519)MARION AVENUEEAST FORDHAM ROADNaN0.00.0000000Driver Inattention/DistractionUnspecifiedNaNNaNNaN111655SPORT UTILITY / STATION WAGONSPORT UTILITY / STATION WAGONNaNNaNNaN
15395306/09/201318:10BRONX10458.040.862259-73.895884(40.8622592, -73.8958844)VALENTINE AVENUEEAST FORDHAM ROADNaN0.00.0000000UnspecifiedUnspecifiedNaNNaNNaN93557PASSENGER VEHICLEPASSENGER VEHICLENaNNaNNaN
\n", + "

8729 rows × 29 columns

\n", + "
" + ], + "text/plain": [ + " DATE TIME BOROUGH ZIP CODE LATITUDE LONGITUDE \\\n", + "1 06/08/2017 10:00 BRONX 10458.0 NaN NaN \n", + "17 05/25/2017 9:00 BRONX 10458.0 40.860060 -73.891136 \n", + "32 05/18/2017 11:00 BRONX 10458.0 NaN NaN \n", + "34 05/30/2017 0:00 BRONX 10458.0 40.863960 -73.894600 \n", + "37 06/09/2017 7:30 BRONX 10458.0 40.868366 -73.889810 \n", + "... ... ... ... ... ... ... \n", + "153939 06/12/2013 20:43 BRONX 10458.0 40.864256 -73.888123 \n", + "153942 06/12/2013 22:03 BRONX 10458.0 40.869522 -73.889893 \n", + "153946 06/10/2013 11:45 BRONX 10458.0 40.856435 -73.886816 \n", + "153948 06/09/2013 11:00 BRONX 10458.0 40.861831 -73.892852 \n", + "153953 06/09/2013 18:10 BRONX 10458.0 40.862259 -73.895884 \n", + "\n", + " LOCATION ON STREET NAME \\\n", + "1 NaN EAST FORDHAM ROAD \n", + "17 (40.86006, -73.891136) 3 AVENUE \n", + "32 NaN FORDHAM ROAD \n", + "34 (40.86396, -73.8946) VALENTINE AVENUE \n", + "37 (40.868366, -73.88981) EAST 197 STREET \n", + "... ... ... \n", + "153939 (40.8642556, -73.8881227) WEBSTER AVENUE \n", + "153942 (40.8695216, -73.8898927) EAST 198 STREET \n", + "153946 (40.8564346, -73.8868164) EAST 188 STREET \n", + "153948 (40.861831, -73.8928519) MARION AVENUE \n", + "153953 (40.8622592, -73.8958844) VALENTINE AVENUE \n", + "\n", + " CROSS STREET NAME OFF STREET NAME \\\n", + "1 BELMONT AVENUE NaN \n", + "17 EAST 189 STREET NaN \n", + "32 SOUTHERN BLVD NaN \n", + "34 EAST 192 STREET NaN \n", + "37 BRIGGS AVENUE NaN \n", + "... ... ... \n", + "153939 EAST 195 STREET NaN \n", + "153942 VALENTINE AVENUE NaN \n", + "153946 ARTHUR AVENUE NaN \n", + "153948 EAST FORDHAM ROAD NaN \n", + "153953 EAST FORDHAM ROAD NaN \n", + "\n", + " NUMBER OF PERSONS INJURED NUMBER OF PERSONS KILLED \\\n", + "1 0.0 0.0 \n", + "17 1.0 0.0 \n", + "32 0.0 0.0 \n", + "34 0.0 0.0 \n", + "37 0.0 0.0 \n", + "... ... ... \n", + "153939 1.0 0.0 \n", + "153942 0.0 0.0 \n", + "153946 0.0 0.0 \n", + "153948 0.0 0.0 \n", + "153953 0.0 0.0 \n", + "\n", + " NUMBER OF PEDESTRIANS INJURED NUMBER OF PEDESTRIANS KILLED \\\n", + "1 0 0 \n", + "17 1 0 \n", + "32 0 0 \n", + "34 0 0 \n", + "37 0 0 \n", + "... ... ... \n", + "153939 0 0 \n", + "153942 0 0 \n", + "153946 0 0 \n", + "153948 0 0 \n", + "153953 0 0 \n", + "\n", + " NUMBER OF CYCLIST INJURED NUMBER OF CYCLIST KILLED \\\n", + "1 0 0 \n", + "17 0 0 \n", + "32 0 0 \n", + "34 0 0 \n", + "37 0 0 \n", + "... ... ... \n", + "153939 0 0 \n", + "153942 0 0 \n", + "153946 0 0 \n", + "153948 0 0 \n", + "153953 0 0 \n", + "\n", + " NUMBER OF MOTORIST INJURED NUMBER OF MOTORIST KILLED \\\n", + "1 0 0 \n", + "17 0 0 \n", + "32 0 0 \n", + "34 0 0 \n", + "37 0 0 \n", + "... ... ... \n", + "153939 1 0 \n", + "153942 0 0 \n", + "153946 0 0 \n", + "153948 0 0 \n", + "153953 0 0 \n", + "\n", + " CONTRIBUTING FACTOR VEHICLE 1 CONTRIBUTING FACTOR VEHICLE 2 \\\n", + "1 Following Too Closely Unspecified \n", + "17 Driver Inattention/Distraction NaN \n", + "32 Following Too Closely Unspecified \n", + "34 Failure to Yield Right-of-Way Unspecified \n", + "37 Turning Improperly Unspecified \n", + "... ... ... \n", + "153939 Unspecified NaN \n", + "153942 Driver Inattention/Distraction Unspecified \n", + "153946 Unspecified Unspecified \n", + "153948 Driver Inattention/Distraction Unspecified \n", + "153953 Unspecified Unspecified \n", + "\n", + " CONTRIBUTING FACTOR VEHICLE 3 CONTRIBUTING FACTOR VEHICLE 4 \\\n", + "1 NaN NaN \n", + "17 NaN NaN \n", + "32 NaN NaN \n", + "34 NaN NaN \n", + "37 NaN NaN \n", + "... ... ... \n", + "153939 NaN NaN \n", + "153942 NaN NaN \n", + "153946 NaN NaN \n", + "153948 NaN NaN \n", + "153953 NaN NaN \n", + "\n", + " CONTRIBUTING FACTOR VEHICLE 5 COLLISION_ID \\\n", + "1 NaN 3686573 \n", + "17 NaN 3679454 \n", + "32 NaN 3674817 \n", + "34 NaN 3682928 \n", + "37 NaN 3687220 \n", + "... ... ... \n", + "153939 NaN 111680 \n", + "153942 NaN 111681 \n", + "153946 NaN 101467 \n", + "153948 NaN 111655 \n", + "153953 NaN 93557 \n", + "\n", + " VEHICLE TYPE CODE 1 VEHICLE TYPE CODE 2 \\\n", + "1 SPORT UTILITY / STATION WAGON PASSENGER VEHICLE \n", + "17 PASSENGER VEHICLE NaN \n", + "32 PASSENGER VEHICLE PASSENGER VEHICLE \n", + "34 Bus NaN \n", + "37 SPORT UTILITY / STATION WAGON NaN \n", + "... ... ... \n", + "153939 MOTORCYCLE NaN \n", + "153942 PASSENGER VEHICLE SPORT UTILITY / STATION WAGON \n", + "153946 PASSENGER VEHICLE PASSENGER VEHICLE \n", + "153948 SPORT UTILITY / STATION WAGON SPORT UTILITY / STATION WAGON \n", + "153953 PASSENGER VEHICLE PASSENGER VEHICLE \n", + "\n", + " VEHICLE TYPE CODE 3 VEHICLE TYPE CODE 4 VEHICLE TYPE CODE 5 \n", + "1 NaN NaN NaN \n", + "17 NaN NaN NaN \n", + "32 NaN NaN NaN \n", + "34 NaN NaN NaN \n", + "37 NaN NaN NaN \n", + "... ... ... ... \n", + "153939 NaN NaN NaN \n", + "153942 NaN NaN NaN \n", + "153946 NaN NaN NaN \n", + "153948 NaN NaN NaN \n", + "153953 NaN NaN NaN \n", + "\n", + "[8729 rows x 29 columns]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "zipcode_filter = df['ZIP CODE'] == 10458\n", + "df[zipcode_filter]" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[,\n", + " ,\n", + " ],\n", + " [,\n", + " ,\n", + " ],\n", + " [,\n", + " ,\n", + " ],\n", + " [,\n", + " ,\n", + " ]],\n", + " dtype=object)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAAEVCAYAAABzI+XSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd5hV1bXAfwvpDIg4ijQdFcXGs2DFlPGpCJaAMYn6LJBITKImGs2LJBpFo4klGvvLU5+CxsTeomDjMXlqrKioRKOoiBRRkDYjRWC9P9Y+M2fOnFtmuDN3Zu76fd/57r377LL2Xnvvtds5V1QVx3EcxylVOhRbAMdxHMcpJm4IHcdxnJLGDaHjOI5T0rghdBzHcUoaN4SO4zhOSeOG0HEcxylp3BA6juM4JY0bQqfkEZE5InJIhnsiIh+KyD9jblNFpDpcX4nI2tjvP4lIpYjMC35nxe6tF5HVsd+/FpGJIvLnlHRVRAaH71Uh3EoRWSEiM0Rkgoh0ifmfGGSpjl3LCl9arZtMuhSR4SLyv6EMl4vI30Rkl9j9ylDmNybCPSci42K/+4nILSKyIJTxhyIySUR2CvcrQjwd86gn40TkuWx5CHGvDXKvFJG3ReT3IrJpzP+4ULeqE1f/ghRqCVCShlBE/kNEXg2VZWGosF8L93YRkUdDY1kpItNFZHgsbG1FT4k3tVML9+KVu7OIXCUi84IMH4nIH9P8ht8DReQuEVkiIjUi8rKIHJmIX0XkLRHpEHO7REQm5SiLevnJp+GVGN8AtgS2E5F9AFR1lKqWqWoZcBdwRfRbVX8cD6yqu8b8PgucEfP7u0bIcYaq9gT6AecAxwFTRERifu6JxV2mqr2bnu32g4gcADwFPAL0B7YFZgLPi8h2Ma81wMkiUpEhns2BfwDdga8DPYG9gL8Dhyb9N6ae5OCKoPstgO8D+wfZe8T8vJDQfZmqLmhEGiVNyRlCETkbuAb4HdAX2Bq4CRgtItsDzwNvYY2lP/AQ8FRoTIXiV8DewL5YYzoIeD2DvH2A54C1wK5AOfBH4C8i8p2E9/5YB7mx5NPwSoWxWAc6JXwvKqpao6pVwLeAA4AjiitRm+AK4A5VvVZVV6rqF6p6PvAiMDHmbxkwCbgwQzw/B1YAJ6nqB2osU9XbVfX6ZpQfAFVdraqvYLrfHGubTgEoKUMYZjUXA6er6oOhU/lKVf+mqv+JNYoXVPW80FhWqup1wJ3A5QUUZR/gIVVdEBrTHFW9I4PfnwPVwCmq+qmqrlLVvwKXAlclZgRXABelzVabQqk3PBHpDnwHG83fBRwnIp2LK5WhqnOBV7GZiZOBoMPhwH0pt++l4UzuUuAYERmS4v8QrN1uKKyUjUNVVwJP47ovGCVlCLERdFdslpfGoWRuMAeGRlUIXgTOFpHTRGRowpilyfRASuO7F5vN7hhzexAbsY4rkJxASTe8bwNrsGW1x4COtK4Z2AKgT+z390RkWeyaXizBWhF9sH5uYcq9hdgKSy2q+inwJ2zAnKQc+DT6ISLfCuW8UkSeKpzIeZHU/f4J3X/QwvK0aUrNEG4OLFbVdRnul5O5wXQANiuQHL/HZpgnYKP6+SKSadktm0zR/QgFfgNcILGDFAUi2fBKgbHAvaq6TlXXYAONQi+PrgM6xR1EJPr9VY6wA4AvYr/vVdXeseugAsrZVlkKbMD2VpP0AxanuF8OHCYiuyfcl8TjUdVHwz7sz4GmrBQ00H2gE43X/YsJ3W/fBHlKllIzhEuA8ixLh4vJ3GA2YI1qo1HV9ap6o6oeCPTGlmNuE5GdGylTdD8e9xRgLnBqIWSNkWx47RoRGQj8O3CiiHwqIp9iy6SHi0h59tCNYi5QkXDbFlgPzM8i3yBgGHYAx8mAqtYALwDfTbn9PWBaSpgl2DmC3yZuTQPGxA+kbSRzga3jK0Jh1WlL4ONMgUSkDFumdd0XiFIzhC8Aq4ExGe4/Q+YG84KqfllogcKe342Ykd0lxcsz2J5FUlffAz4B3ksJcz5wHna6baMpkYbXSUS6Rhe2H/oeMATYI1w7AvOA4wuY7hPAEBE5SUQ6hcNRvwPuT1u5EJHuIvJN7ADPy9ghHqc+SV1OAMaKyM9EpKeIbCYil2BbJRdliONqbG9x54TbZsCdIrK9GD2xutEUXsL6owlB1h7AZdgqUQNDKCJdRGQY8DDWX9zexHSdBCVlCFV1OXABcKOIjAmdSicRGSUiV2CNYriIXCoifUKj+SlwMnBuIrou8cYWM1QdEu4NlihF5Cyx55a6iT1vNBY7PZp2cvSPQC/gf0RkqxDn8Zih+09N+UPJcKrwLTZyGa/EGt4UYFXsGgvcFA4o1V7Y/lHBlkdV9TPgcOBHwGfA28By4CcJrzeIyEpgETZbeQAYmdg7PlYaPku2ZaFkbUMkdTkSOAzb812IGZk9ga+p6vtpEajqCuzwWZ+Y22LsBPVq7CT3SuANrO0m9ZWTsNx+BFCJDbA+xE5+fy/Rrn8ZdP8FcAcwAxgeZrsRB6Tofp/GylSyqGrJXdTtzdVgm9+PYxULYDfsYMQK7LRmFdZgorAV2F5c8joEO3WadJ8Xws0BDgnff4RV5uXYke2XgSNjadT6Db+3Bv6KNYQa4BVgdCJPCgyO/d4vuE3KURZRfjqG35OwRzVWhrRmYXsmvYutN7/88suv5rhE1f+h3nEcxyldSmpp1HEcx3GSuCEsAUTkhJT9g2oRmVVs2RzHcYqNL406juM4JU1BXsXV2igvL9eKigoAampq6NGjdb8isz3IOGPGjMWqukVLyRPXMbSNMoS2IWcmGYut45amLehqY0nmsaV13Goo9mmd5riGDRumEdOnT9fWTnuQEXhVi6TjfORrLbQFOTPJWGwdtzRtQVcbSzKPLa3j1nK1yxlhGhUTHs96f85lrekVko7T/GRqE+cMXce4CY+3ujaRqw2Dt2OnaZSMIXQaR7LTiTrHCO9wHMdpL/ipUcdxHKekaTZDKCKDxP7d/R0RmSUiZwb3PiLytIi8Hz43C+4iIteJyGwReVNE9orFNTb4fz/LvzQ4juM4TqNpzqXRdcA5qvpaeDHtDBF5GvuvvGmqepmITMBeiHsuMArYIVz7Af8F7BdeQnwh9o/uGuJ5VFUL8k8QpUg+ey2O4zilQrPNCFV1oaq+Fr6vBN7B/spnNDA5eJtM3T9BjAbuCIeXXgR6i0g/7GW5T6v9Y/xS7A9iRzaX3I7jOE5p0SJ7hCJSgb3t/SWgr6ouBDOW2H9vgRnJT2LB5gW3TO6O4ziOs9E0+6nR8F92DwBnqeqK2H9QNvCa4qZZ3JPpnEr4M9q+fftSVVUFQHV1NVVVVZwzNNOf0huR/2IQydhS5CqLNPp2qx+umOXlOI5TSJrVEIpIJ8wI3qWqDwbnRSLST1UXhqXPz4L7PGBQLPhAYEFwr0y4VyXTUtWbgZsB9t57b62stCBVVVVUVlbWO/qfxpwTKrPeb04iGVuKXGWRxjlD13HVW3XVpZjl5TiOU0ia89SoAP8DvKOqV8duPUrdH5uOxf5pO3I/OZwe3R9YHpZOnwRGhH+V3gwYEdwcx3EcZ6NpzhnhgcBJwFsi8kZw+zVwGXCviJwCzAW+G+5Nwf6pezbwJfB9AFX9QkR+i/0ZLcDFqvpFM8rtOI7jlBDNZghV9TnS9/cADk7xr8DpGeK6DbitcNI5juM4juFvlnEcx3FKGjeEzkZRUVHB0KFDAXYRkVfB3x7U3nAdO+0dN4TORjN9+nSAf6rq3sFpAvb2oB2AaeE31H970KnY24OIvT1oP2Bf4MKoY3VaB65jpz3j/z7RDmkFr1AbTd0jL5Oxx13OJfb2IOBFEYneHlRJeHsQQHgV30jgry0rttMIXMdOu8FnhM5GISKMGDECYOfwUgPwtwe1K1zHTnvHZ4TORvH888/Tv39/ROR94HQReTeL92Z5exC0/Nt5mkprkjPTG4aitwhFcl555ZWUl5dz0EEHFVXH+bwRqZBl25p01VyUQh7zwQ2hs1H0798/+roOeAzb/2nRtwdBy7+dp6m0JjkzvWEoeotQytuDiqrjfN6IVMg3HrUmXTUXpZDHfPClUafJ1NTUsHLlyuhnB+ytP2/jbw9qN7iOnVLAZ4ROk1m0aBFHH3109HNn4BJVfUJEXsHfHtQucB07pYAbQqfJbLfddsycORMAEZmlqpcCqOoS/O1B7QLXsVMK+NKo4ziOU9K4IXQcx3FKGjeEjuM4TknjhtBxHMcpadwQOo7jOCWNG0LHcRynpHFD6DiO45Q0bggdx3GcksYNoeM4jlPSuCF0HMdxSho3hI7jOE5J44bQcRzHKWncEDqO4zgljRtCx3Ecp6RxQ+g4juOUNG4IHcdxnJLG/5g3TyomPJ7Tz5zLjmgBSRzHcZxC4jNCx3Ecp6RpM4ZQREaKyL9EZLaITCi2PE7hcR23b1y/TmulTSyNisgmwI3AocA84BUReVRV/1lcyVqefJZo2yKu4/aN69dp1ahqoy5gDrAI6BFzGw9Uhe8VgAIdE+EmAZeE7+OCn6sTfsYE90mJuL4E1oV0bwLOA34Vk2cVUB1dW2yxhaqq3n777dqhQwft0aOHSudu2mmLCt3imAt0m3Mfy3gNOvNuLdtjlHbo0VulYxftVL6Nbj7qzHp+Num1pUrHziqdutZeA06brGksX75czzzzTB00aJD26NFDt99+ez3zzDN17ty5OnjwYJ08ebJOnz691v/EiRN1+PDhun79el2wYIH+4Ac/0K222krLysp0yJAhuunw43XQz+/Xbc59TAHtf+rNDfKw+eFnaZcBu9T+7nvC5dql/04qnbtrh65l2mXAzrrVyVdr72+cXCs/m3RSpEPt706bb10vvz17bar9TrlJAd36Px/RW265Rfv27auAPvTQQxrpHBhs1apW5zOBS2I6X5lB528CTwLXhN/RtRZ4AOgU/Fcm7iug3/jGN1RVdciQIfXcu3XrpieffLKuXr06VT+qqkuXLtUf//jH2rdvX+3WrZvutttuetttt9Xzs80222jXrl21R48etdf8+fMbrfMBAwbo5Mn160ounV9wwQVaXV2toVD1/fffb5Dm7bffrgceeGDt72effVa7dOmiIqK9e/fW4cOH68svv6xjxoypbRN06Gjl1LFLPZ3v+/WDtNcBx6qq6pVXXqmAnnnmmQq8CghwPWbMFHguXFFb3RDaY9RWI72dFu5HbXVNuG4I9WRdQqertt9+e/3oo48UsDbcqat26N5bu22/j275vd+mttWm6m369OkK6NFHH13P7Y033lBAv/nNb9a6b9iwQa+44godPHiwdu3aVQcNGqTnnntubR0bOXJkbVodO3bUTp061f7+0Y9+1KQ617dvXx07dqyuXLmy9v7YsWP1vPPOq/1966236pAhQ7SsrEy33HJLPfzww3XFihVZ5TnqqKPqpRl0PA54TvPs82N+DgnfJwJ/Vm1gOxQYHL5XAatDXVgMPAj0i/mdCHwV79eBZYm4aoL7EmAacGwyzXwvCZHmjYjMAXoCV6nq74LbeOBEVa0UkQrgo9AA1sXCTQLmqer5IjIOOB/oBmwT+RORB4FdgRdUdVwsrmOBEcCvsc5yViiUM4I844HtgFNDckOAfwGbA/2At4N7OTAI63TXp2UP2AlTwNzw2RPYFvgUqwwAQzHFr8xVXCG+dcAnmOI7Altgxn09sD2wEPgM6Br8vxvS3gVT9HzMIHQCtsIqzipgWMjbmkS6m4e8/gtb/v63kJ8vgkw9Q/yrMoRJMjTI/VlIf0bwOyDE92WIsxPWIb6vqhJ0vifwN2A2cGkI3yWh85FBvudCfs/EGuO+Id+nA78M6ZwD7Bhkj88mykO57BpkejvkvT/QF9PVeyl5a2mdlwVZZwU/zalzDfIswjqNr4Aewe+/QrkMxPQZZydgBbAg5ucrYDnwEHBAKKvBwOchzIlYW/0Ya4/RwGayql4jIhcCFwIjVPUZETkJ2C+04UlAn3DdgbXjcmCbUE67xmTsGPwNCOW3isLorSfWh4CV7/ogQ1egd4g/ahuDgE1DfmuCn20xfX2QiLciuC+IuTWlznXE6v1yrG4k4y7D+pL3QplsEuReig1OMskTtZuIbYD/BMar6tcgd58f8zM+6HYiZvBOjBeEiCiwg6rOFpEqzFjeKiK9gXuBz1X1hOA3NY4McZUDo4CrgRtU9aK0MFlprOXEFDMB61R7J0cH5D8jfA54AjgiuPXBKsGVNJwRHgvcGtyuAKYD1ydHIimyjiM2AwG6h/j2yeD/FKyz75FwPxbrnHrlSjMRbjxWqcuy+LmROgP1HDAhuF8CvAV0yBK2doSVku/nwve9iY2kssRVGyaDzucByyLdhrx9ilW+z2Pu2WaEb2GGIanzuZghuJW6GeFYbOaxS/h9h9bNCNclyx94NXy+ixnipM5XA0cWW+fYiPtG4L7m1jm52+ovSG+ri6lrq5GfJ4FngNewDjdqq8kZYW05YW315vD9QqxDju6dRF0bngQ8Sv1ZSKS3b2WQ8d4QX1nCval6q8Tq+J+A02O6mgdcECuzHTAjuW8i/CBscPLvCfdJUVlubJ0L5fl4WtxBTw/nkc968hDaTba+IFc9SspK/jPC8bF7pwGzYr9T48jWDoDvYO1881zlkLyaeljm1ZCRXzQxfMQdwMnh+3HAIzQc6YKNgAaJSH/gMGwqvCDFX0bCHsX3sdHXxxm8HQpMVdWahPsD2KjvgMakCRwCPKGq1Vn8nIuN0qM0royFfVBVN2QKmCfvAetFZLKIjBKRzZoYTw3wYor7l1jH3ph4kjpXbJQ6KOZvIGZQTsM6nv9rpLxJnb8OfD3FW7F0vg/NrHNstC/A82x8W+2Nze7/HWuDmdoqALG2GtWZz4MsEQPJ0IYTepuf5gdbTRLq1xlout4i4n3SptiMNC7nwdjK1svxQKr6CZbXQ/NIo9F1TkQGYrOe2RnifAk4TEQuEpEDRaRLHnI0hkL1+Q0Qkc2Bb5M5b/nyCDYY37exATfm1OgFwE9FZIuNiOMhoFJENsUq3x0Z/D2GdRLzsY53CDaCjHhYRJbFrh/G7pWJyDJspPAHbDr/WYZ0yrFlynqoLeMtDvfT0nw4Q3ybp8WXiLsamxEdDZyiqtGSbc6w+aCqK4CvYcbmFuBzEXlURPo2Ibqrw2d5wv0v4fOwPOJYRbrOq7HRdq/w+xLgt9iy6LvYDCBiE+BpEdHowpYeI7ZL6hwb/PRJkadYOj+d5tc5wNlYB3quiOyyEdHuDHTG6lG2tro18DDWVmuA+4N7tKz4SNDNJcCvYm11FHBg0OU64FpMb0sypNMjfNbT6UboLQr/D6CPiAzB9JHMZ2p9CSykYdtIo7F1biW2zP4ZNrNOk/tZzJjsBTwOLBGRq8OgolAUos+Pc52ILKcuzz9N3P9eol+fni0yVf0qxJXWzrPSZEOoqm9jBip5DDraF+yUcO+EjfDicazClHY+UK6qz2dIrhw4Chsx7IwtHcyK3R+jqr1j1y2xe7NVtTewGWY802YFEYuxPcV6iEhHGq6lx9MckyG+JWnxpXBb+IznKd+wOVHVd1R1nKoOBHbD9s2uaWQ0j1O3x/bLxL0vw+fF1B/1d6L+/oQGt6TOO2AzmDMw4wDW6LbAlt0+x5bRI9YDh6qqRBe2/xjxYYrOB2BLO0laWuc3h89Zic98wuaNqr6DyX48pvMV2IGEOJEBTrbVD0i0VeBIoAtwN9nb6lzsAFR3bCYa6W09VheWYvm8QFV7xdrqVOD5oMue2OwoW1uN6lw9nW6E3uLcidXFjthgPU5qfQn0S6SbicbWuZ7Y0u1OZDG0qjpVVY/CDMFobIlzfA5Zbs5xPx5/pj4/yToSdUpEot/xevUzVd0U28/eDFsliHNvol8/KFuiIY0tSG/nWdnY5wgvBH6IdTIRC7HMViT8bkv6kuQd2AGIO7MlpKpTVHUH4EBg67BBmg+LQvhqbJntJBHZM4PfZ4BRItIj4X4MtgyUtjSYjWew5YpkfEn+miHs0SJS0Gc9VfVdbJ9gt0YGnRL7Pp50nW9OnSED03l8+WcN1pDvI+hcRARbgqpR1SnA5OD396q6GKtf+wIHZNO5qjZo0DGdn4ztmz2bErRFdZ4mZyJsc+n8emzGHddbtOdbkQiynoZt9R/YIYqRwBt5pLkKq2dxvSkwTlW3V9VLs4StbavYHnEaX4b4Pkm4N1Vvce4M6T+gql8m7v0vtk1Tb/lNRAYB+2OnF3PR6Dqnqn/HyvMPuSJX1Q2qOi3ImrWd56iPaaT1+Unmkt7/rydlqVtV38JWCG4M/UFTGY0Z4ZdzeUyyUQ1OVWcD9wA/i7mtx0Zzl4rI5iLSSUSOxyr01JRo/o6tmV+fK72w7n0StlGfackkm7xLsAMZF2Twcie2OX6fiFQE2Q8DrgMmquryRiZ5J9ZQHxCRnUSkQyiTX4vI4TnCXo0tE04WkW0ARGRAWO74t5i/ziLSNXbVWwoJ6Z4T9hiiBns8G9dR3Eu6zj8njBZjOp8XC7cG28s4Epvh/zfWuW6g7vRhko+wMqyhkToXke5YRxAd056S4q3d6hxbQo50fijwPjG9YYZkCfm31euw1YCRIvKdLPnoJCK9sBnJp5jBjd+Ly57a8cXa6pmJvPUVkTOwpdRPgHsLpLd42h8B38Qe00reew87UHOXiOwvIpuIyK5Y/X9GVZ/JI4mm1rlrgENFZI/kDREZLSLHichmYuwb8rAx7bwBaX1+Ck8AQ0TkpJC3PsDvgPs19iRBgsnAltjhqEYhIn1E5ATsrMLloe40ikKMPC+mbr0+4jRsevomtq59BnZScFHCH2pMU9Vs09llIlKNze4OAL6l4ZhQ4G8iUh27kssZca4BDk90LJEsa7C9yE+wDnsF1jmdp6pXJv3nIhbfu8DTIb6XsVnRSznCfgEMx2ZaL4V9gmnY8en4pvIsbN8tur6fiGolsF+IIzrw8jY2I2sql5Cu85nYshYEnWNGKK6rY7EK/z9BjoOx5bbk4yxxnX+JderR3kSDPUIRiZfn9qG8FmH6noQZmAaj43au837YoyuRzo+mod5m07i2eiWmw0nYDDPJ1tiAYzl2sGIr7AQgmN6mJGR/Mtw7HJs9Rm14Maa7ynB/Wai/bwW/38UO7xREbyl5fU5VMx3IOwMz0n/GBlhPYAdJjskz7ibVOVX9HFtB+03K7aXYTO39EN+fgStV9a58ZGokaX0+hHYezmAcDvwIq1NvY/XhJ5kiVNW12EAgnrdjE/16tYhsGbs/M/QRs7FVqp+raqZJTna0kcdM28qFLeH8KxTShGLLkyLfIOwxkHewju3MYsuURdZNsFOXjzUh7IPAWaWm60z6xfZvnsY6rKeBzVqBrPX0iy1jvRRkvAfoXGwZW7AsJmLLd2+E6/DYvV+FOvYv4LBiy7qR+Sxom8EGU3sUO19NvdrMu0Ybg9S9zmkUtsxzvGzcibnmYB1wjqrujO0tnN4KZYw4E+vQG4WIDMBOL75acInq0mitus6k3wnANLX97mnkPnjQEiT1eznwxyDjUuy5t1Lij6q6R7imAATdHYc93D8SuCm5JN1WKHSbEZFDscHU+4WRsOVpl4YQO1wxW1U/VJty341tpLYaVHWhqr4Wvq/EOqJsG9BFIewtHoEtBTUm3GnYLON2VX2uOWQLtEpdZ9HvaOoOBE3GTlgWjaR+w57dv1P32EPRZWwljAbuVtU1anuIs2nC82qthIK1GRG5Gzt5+kNt+Fxkm6G9GsIB1D9NNo9WaGQixF4ltyc59pCKxDXYAYlGPeStqjep6paqem7ziFVLq9d1Qr99VXUhmLHE9kuLSVK/m2NvIooONbS68mwBzhCRN0XkNql7AUWrr2eNoGB5UdXjVHVbVb03t+/WS3s1hGkn0TTFreiISBl24uwstQehWw0iciTwmaom30XZmmjVum6D+m3V5VkIROQZEXk75RoN/Bf2Crk9sMeCroqCpUTVVsulPeWlIDT6pdttgfLycq2oqKjnVlNTQ48euR7nKz5tVc4ZM2YsVtVCvXEiJ0kdt5Vyg7Yjq+u4cLQV2Vtax62GYp/WaY5r2LBhmiT+V0etmbYqJykv723OK6njtlJuqm1HVtdx4Wgrsre0jlvL1Sb+mLcQvDV/OeOy/KntnMuOaEFpnFLG62LTyFVu4GXnNI32ukfoOI7jOHnhhtBxHMcpadwQOo7jOCWNG0LHcRynpHFD6DiO45Q0bggdx3GcksYNoeM4jlPSuCF0HMdxSho3hI7jOE5J44bQcRzHKWncEDqO4zgljRtCx3GyUlFRwdChQwF2EZFXAUSkj4g8LSLvh8/NgruIyHUiMjv8p99eUTwiMjb4f19ExhYnN47TEDeEjuPkZPr06QD/VNW9g9MEYJqq7gBMC78BRgE7hOtU7P/9EJE+wIXAftg/pF8Y+9Nbxykqbggdx2kKo4HJ4ftkYEzM/Y7wrz4vAr1FpB9wGPC0qn6hqkuBp4GRLS2046TRrH/DJCJzgJXAemCdqu4dRob3ABXAHOB7qrpURAS4Fjgc+BIYp6qvhXjGAueHaC9R1ck4rYKKigp69uwJYdnMddz+EBFGjBgBsLOInKqqNwN9VXUhgKouFJEtg/cBwCex4POCWyb3ZFqnYjNJ+vbtS1VVVe29vt3gnKHrssoa99+aqK6ubrWyOc1sCAMHqeri2O9oSeUyEZkQfp9L/SWV/bAllf1iSyp7AwrMEJFHw6jSaQVMnz6dLbbYIm3ZzHXcDnj++efp378/IvI+cLqIvJvFu6S4aRb3+g5mZG8G2HvvvbWysrL23vV3PcJVb2XvsuacUJn1frGoqqoinhendVGMpVFfUmn/uI7bEf3794++rgMewvb4FgXdET4/C37mAYNiwQcCC7K4O07Rae4ZoQJPiYgC/12sJRXIvazSWpYt2soSSiTnmjVrGD58OBR52aytlBu0rbo4depUVJXu3buDDZxHABcDjwJjgcvC5yMh2KPAGSJyNzbrXx7qwJPA72IHZEYAv2q53DhOZprbEB6oqgtCR/h0sZZUIPeySmtZUmkrSyiRnDNmzGgVy2ZtpdygbdXFrbfemqOPPjpy2nn6NXoAACAASURBVBnbv31CRF4B7hWRU4C5wHeDnynYHvBsbB/4+wCq+oWI/BZ4Jfi7WFW/aKGsOE5WmtUQquqC8PmZiNRbUgmjxHyXVCoT7lXNKbeTP4lls8dwHbcrtttuO2bOnAmAiMxS1UsBVHUJcHDSv6oqcHpaXKp6G3Bb80nrOE2j2fYIRaSHiPSMvmNLIW9Tt6QCDZdUTg4P5O5PWFIBngRGiMhmYVllRHBzikxNTQ0rV66MfkbLZq5jx3HaFM05I+wLPGQn5ukI/MWXVNoXixYt8mUzx3HaPM1mCFX1Q2D3FHdfUmkn+LKZ4zjtAX+zjOM4jlPSuCF0HMdxSho3hI7jOE5J44bQcRzHKWncEDqO4zgljRtCx3Ecp6RxQ+g4juOUNG4IHcdxnJLGDaHjOI5T0rghdBzHcUoaN4SO4zhOSeOG0HEcxylp3BA6juM4JY0bQsdxHKekcUPoOI7jlDTN+ce8BUVERgLXApsAt6rqZUUWySkwruP2TUvot2LC41nvz7nsiEIn6bQD2sSMUEQ2AW4ERgG7AMeLyC7FlcopJK7j9o3r12nNtJUZ4b7A7PCv94jI3cBo4J9FlcopJK7j9k2r0G+uGSP4rLEUEVXN7UlkDtAN2E5Va4LbeOBEVa0UkQrgI6CTqq6LhZsEzFPV80VkHHA78EdVPTvmZwzwEDBZVcfF4qoJXmqA14H5qnpKCPM5sBmwOibmK0BPYHOgAtgQ3NcA84FOwOIMWdwEGBDi7BDCLAKWxPwMDXHEC+xt4KtEXD2BHYFlwAcx927YSLga+FfMvS+wBdA5xLUamB3S2QEoC/4kfEbpLwHmpsguwc/MWBnsjg16NoSrI1am0f0KoHuQeUH4vXmIZz2mgw+BIcGfxtKJ5AL4DHgAOFNVvwo6/1MsnqgcPgJ2BqYDw4EvQz66AqNV9VEROQnYT1XPEJGJwGDg/4CfhPyWp6Qf140kPjcA64CVwEJMx5GuonL4KtxbguljaOxexBxgaSijPrE014by+zSW12RdjFiA1a8yYGDIN5ju5wK9gH4x+SUWx1pgFjAs5tYhfI/rfLfw+XYsL2+Fz89DOhUhvgUhPoJc88L3wSHunqFMumA63i7kewPwBXA/QedQ218MwspzHXW6fQe4AvifcK9zSOs0rF38GbgYODXIuR4zlFEdLw9lsSrIMzBRBlC/rNfRsM2uAHpTv+5okKcGa0dtQefrsbKPdAXWPpdQv5+LdB/pPM4wrCzjg5GdgftUdRyAiJwC/CdW/l8CrwLHqerKRFyISBXwZ1W9NfyuxPr2n6jq3SKiwA6qOjtq06p6Yko8c4DxqvpMwr0S+N8gR5xDVfWFkP7+mC4VeB+4D7M5a5Lp1ENVc15YRVgC/DrmNh6oCt8rQsIdE+EmAZeE7+OwDn5+3B/wIGYYJqXFBWyJdZwvxMJ8DjyUQdZxwHPhewfgR1gjez2D/86YcqcA22INZyRWac9OlMEheZRVJdZZfApsHnO/OuSzKuZ2fVDWAZhx2hVrjI+kxFtbljlkX4Q1lsdj/hYDM8P3fUL5/i4R90zgEuCbwHKs0czHjPRYrDOs1VWI8/oUXb0OnBXTxWrgEKyDeRn4S8z/c8Dc8P30EFc11lGdBFwf7k3EOslM+V0KfJLUVaIubAJsD9yEGcPdgq7mhfsCjME6z13IUKcz1O2uoVynY4anR7IuJsK+inV8y4Djg2zdgBHAv2Wqzwl3xToSsM5wPfBg7P6/gH8l2tRFWDv+AjNq8TxEg5UvYvpZAHwc4poayvrw4DeqF9vGdR4r/5lYZ0Yo51VYh/6LoPeTQvyTgs6PjHSR0GFc558Az2Pt83Pq170FIY1Ds7XZSOdRucZ0fhhwZ4hz9zag88FY+/xh7H5VVOYxtwvjOk+JbwnwHzG3S6jri78ZdL5n+N0n6LxnhvKpTT/kaxlwdAb5J2JGM5O9adDXEmuveaTfI/h/A5hGmPRluhqzR3gl8AsR6d2IMEk+xUalhwGISB9sRvBopgCq+hlW+QfGnDtSf7aWKewGrHL3wBp+GicBWwPfVdWPVPUrVX0C+BlwsYj0ypVOCmuBh4HjoHZ/5HvAXZEHEdkBGwmfoKovqOo6VZ2FDRZGisi/55FOA9mxzuBu4HARGZQS5vPwuUeGOPfBZrJzMV3tq6qTMaOTj66exgxJnF7YSG4WtoqwLhkW68jAdLUDpu8FCT+Z8nsD0D+brlR1vap+oKqnAX/HGmL8vqrqw5hRbdTelaquVtVXgG9hM4Lv5xFsxxD2r0G2Var6lKq+2Zi0A+uwsj08R/s8ETgfGzEflXJ/LtZORoXfgg1uHsVmYy9QN3tYqqqTVfUj0nWeJJqJjw6/B2Lt5B+YzgdkCFercyyfGtrnReF+z/C5FjPamep1KjGd9wR+E5wvyCNcUXWuqrOxfjFXfk8mu86vAC4SkbRtsn2wCcjrIc0vgs4bzAbjiMiRwL2YgX0oh3zNgqrWqGoVpp8DgKzr3Y0xhK9iFvcXTRUucAemHDBD8Qi2TJWKiPTHpvZdRWRbEemMNZwXciUUDND3sUqwNoO3Q4GpGpZ8YzyAjfoOyJVOBuL5PAzrqOId+8HY6OblRLivgBeDXLnIJPskbPR1eUqYrcLn7AxxvoTNlrYOcowL7vnq6rAQLqIDNht+CfhBGJyk8Xb4/Aorp+NoaHQz5ffZkE6+unoQ+HpC9g4icjQ2G30rz3jqETqIp5NxZ+A9YL2ITBaRUSKyWVPSDHTCDMl7ZG+fA7FB0r3U1c04S7AZQGQQumHGcQ02gDoMOCvc6wwZdZ5G1P72xpbXj8NmKV/DdL4oQ7hMOp8aPvcPn12wmW+mep1KBp1/Ld/wxdK5iOwU0syYXxH5Orl1/iC2XDwu5d5LwGEicpGIHCgimSYTcY7CVm++o6pT8vDfrKjqXMx2ZdVPY0+NXgD8VES2aKpg2JpxpYhsiinmjgz+FovIMmz6XwP8GHgS22eoAa4VkWWx64exsPuHsKuBP2Aj4ZsypFOOjVTrEWYti8P9iIdj6T2cLZOq+g+gj4gMyZDP1HSBm4N7ecq9vGSnbu9mTExXu4nISuoGEBelhENVn8WWPHtgnd4xInJDSh7ei31P6ur+2L2OwDbACcDSFF0NDGGjmcZibC/w3jBDzie/D0afIa4ybEZ+E1YXkrpagC3zgM0kl4V0LwROUtX4Hu7iRD3bOSX9THET0o+H/wC4WVVXYB2uArcAn4vIoyLSN0f8cV4TkRqgP7YUOZbs7fMJVV2KLU+Pom6fKs7ZwLAQh1K3z/0Z8G3q9h5rRGQ16Ton+LsulO1jWH36Cbb8uic2O9oDM4gnYstoacR1XhVzj/bk7heRVdgArwNwe6J9xtvsMmxm0B+rG/uRrvMt24DO3wnlkalfA6sPU+M6F5EtE34UG/hckDR0oS/4NrAX8DiwRESuDhOMTByE9Q3P55+lRtE/UbbLRKRHjjBJ/TSgUYZQVd/GKvWExK1oqatTwr0TicMkqroKK9TzgXJVzVRg5araGxs9Pg+co6o7qur22B7WGFXtHbtuiYV9MYTdDJtVfF1Vb86QzmLqNqlrCUsF5dTfeI6nOSZDfHHuBM7AKkdyiSA13SBnPzIf7MkZB6bX3tgoPdLV26raE1tigrqZYTxMpKu3sIbWBxt8nIIdlIrrKm4Ik7p6InZvLdZYvwIOStHVvBB29/D7QVXdXlUvbUR+v411jN8OcVVjez+nYXUhqasB2EABYEGQqY+q7qGqdyf8lifq2Tsp6WeKm5B+PPz2UV1U1XdUdZyqDsQMR3/gmhzxx9kLM/qfY4ccPia9fUbLXveGdF/AZnqDadg+H8bK+a9YJ/lZ7N5U7GwA2B7Ql8BPaahzsBn+z4I+jgRqwgzhXExX+2P183XSR+vRQZe4zv8RkzfqjL8TymApdpZgy0T7rNdPYH3PAqxuvJRB55+1AZ0fixnyVCMgIt2wtn5XSDfS+X8k/Qa9zMUOKSXvTVXVo7C+YDQ2cxyf9BfjN9gKwsN5ziAby4JE2fZOWS1IktRPA5ryHOGFwA+pv6a/EKugFQm/22KNM8kdwDmYochKMJyTgANEJJ9ZUjxsNVbhTxKRPTN4ewYbKSUr1DGYQnMt+WTjzpD+FFVNnnT6X2CQiOwbdwz7evtjG7y5yCT71zHZz8Z0FR/BPYTNGK9NhOlNQldhGfNybObwUS5hsujqIeAy4GkR2S0tLHUnwU5sgq6i/Oarq6Ox5dSCIiJl2AGPRsetqu9iZZepfDKFU6zs/omt2ETts3PM237h83oR+VREPsXa706kt8/fY0v372ZJejpWh4fQuPZZgxmi32L18A5sH3Bwwl90qjWu83h/Eu1jvqSq67HlvbVYe9tYnsvXY7F0rqr3Yqs7mfYzj8b25m9K6DxteRRsYnIeNphNS3ODqk7DdJ5N3hrsQNWm2Gw9OTlqUUJ/Oowc+mm0IQybtPdgh0kit/XYntqlIrK5iHQSkeOxDfSpKdH8HVv7vz5XemFUcRJ20CbnAZkUeZcAt5K5wtyJnSK7T0QqguyHAdcBE1V1eWPTjKX9EXby6ryUe+9hjxbcJSL7i8gmIrIrVo7PaOLocL6yY0brjCD7G5iuag+RBF09gi1PfzOE2RY7BThVREZjHecmIiJYJ7scO/KelWy6UtUrMOP7TFguzsQkYKKIdA1XVEc7YDOa+cADIrJjSn4z6iqU77Yicj12mix1abgpiEgXERmGLccuxR4TyhVmJxE5R0QGht+DsNOETR143Y2N6KsxnccPl52MPf7yArY6sTf2mEIP0gc41wKvYYYyYpCIHEddXdoHq9uv0vj2OR87eLUz1nHeii3jxbkHW5p/CavjT2EG/r7QPi8M/lbEwtwN/FJE0pZ8MxLVDeoOUP02jzCtQeeXAaeKSHJ1B6w8b8POV+wRrgOBPURkaNJzOFjyFjE9iMhoETlORDYTY19M51nlDfumI7HZ7l+yLKV2iLXzrokZZKfEvUY98y4i3UXkm1hf9zJ26jir0DkvEsdZsWeEVlP/UYDNsAo9H6sYzwMHxu6PI+VIsDY8sltB3TH6amzv4O/APgl5VsX8VBMep0imgynkgxDnNRnS7wP8N7Zhvwo72JI8hlyvDLKUVSUZjvgSe+Qk/O6ALRXNxpaC1mPLXF1Twk4i8fhEBtnXAlcldKWExydiuvpn8L80hI3K/xvh3lfYSb/3gF/Gwl6HrQAswzq+jLqi7vGJuK7Wht/bU//xiUjvyesQrINKuq8Pl2Izi3hdqKHu8Ym43y+BycDOeegqkqc6cZ0d08faUEY1oc5cDvSO1buFIY41iTj2wQYfc2N6/zTosVdCjnHkPko/J+R3KnBV0PkG7LGHASGNA2nYPl/A9tBHhvhWAxNCnPsFt0nY9kKU13WxMl+T1HlMnvUhvuqg71Xx/AC/DPGMo+4E6aeJtjEBe7xoRUh7fUh3EdZu4o9PRGUwC/hpln7iWeoen1hPXX35GNvnbLLOY/lbnwi/AWvjs7AlumhfdX5TdR5zm0po74THB2I6H5oSxxTgD2nxxXUe6wumYcvTDfqClLiriPWbWN80E1ue7UD9OjuRhm16XkxvyXuXYO012dargWNi6a8Osq7Elt3PI6U/bSB7Lg9t+cKWBD/AHgDuHJSyS7HlyiDrN7D1/7eLLUsOOfsBe4XvPUPjaPEyxY59R532BODyDP6qiyBbznqHLeH9KXw/DrinSPrMR9ZxwA3NLMe3gDeaKmNrvkLHXl5sOfzKfLWJd41uBLWvdVLVtdjSyegcYYqCqv4fOTZ0WwOqulBVXwvfV2KHajI9A9acjMZmd4TPfA4vtRT51Lu4/PcDB4el6Jam6G0kLHsdgy2zplF0GZ32TXs3hAOwt1FEzKM4nXa7ROx1eHti+zgtTV9VXQhmnLEHv9PoKiKvisiLYq/zawnyqXe1ftQe1VmOPZjd0uTbRo4RkTdF5H5Jf1FDkxB7jOoL7LnVTPu2bb0dK/CUiMwQkQYnM53i01Zeut1U0kbY2uJStEPCabkHsFdrrcjlv4lpPEPDxzwg5fBRFrZW1QUish3wvyLylqp+kDPUxpFPvWstdTMfOf4G/FVV14jIj7GZbD5vPsqJ2gGnXG9vai1l1VQODHVwS+zk9LthBchpJbR3QzgPOzgQkfbaLqeRhNOaDwB3qeqDufw3FVU9JIsMi0Skn6ouFJF+xJ53S8SxIHx+KPZS3j2p/zL05iCfehf5mReWBqOZUUuTU1a1k9cRt5D+xqLmpE2341gd/ExEHsKWet0QtiLy+veJtkZ5eblWVFTUc6upqaFHj1wvICg+bVXOGTNmLFbVjXnjUKNI6ri1lFt7lmPGjBmLsUc0zlXV/XP531haq47zoa3IWux23Goo9mmd5riGDRumSaZPn97ArTXSVuUEXtUi6ri1lFt7lgN7/GQ6sJOWsI7zoa3IWux23Fqu9r40Wstb85czLsufcvqfcbZtcukXXMcF4J+qelCxEncdO81Fez816jiO4zhZcUPoOI7jlDRuCB3HcZySxg2h4ziOU9K4IXQcx3FKGjeEjuM4TknjhtBxHMcpadwQOo7jOCWNG0LHcRynpHFD6DiO45Q0bggdx3GcksYNoeM4jlPSuCF0NoqKigqGDh0KsIuIvAogIn1E5GkReT98bhbcRUSuE5HZ4d/O94riEZGxwf/7IjK2OLlxHKcUcUPobDTTp08H+2eCvYPTBGCaqu4ATAu/AUYBO4TrVOC/wAwncCGwH/anpRdGxtNxHKe5aVZDKCJzROQtEXnDZwslxWhgcvg+GRgTc78j/PXZi0Dv8O/yhwFPq+oXqroUeBoY2dJCO+n4rN9p77TE/xEepKqLY7+j2cJlIjIh/D6X+rOF/bDZwn6x2cLegAIzROTR0GE6RUZEGDFiBMDOInKqqt4M9FXVhQCqulBEtgzeBwCfxILPC26Z3JNpnYrNJOnbty9VVVW19/p2g3OGrssqa9x/c1FdXd0i6bSkHKtXr+baa69lzJgxabN+b8dOm6cYf8w7GqgM3ycDVVgDqp0tAC+KSDRbqCTMFgBEJJot/LVlxXbSeP755+nfvz8i8j5wuoi8m8W7pLhpFvf6DmZkbwbYe++9tbKysvbe9Xc9wlVvZa/Oc06ozHq/EFRVVRGXq1gUUo6uXbty4IEHJp29HTvthuY2hAo8JSIK/HexZguQe8bQGkbx0HpmFLmIy/nee+8BrAMew/b4FolIv6DffsBnIdg8YFAsmoHAguBemXCvaj7pncbgs/7G0xbbcSnT3IbwQFVdEBrJ08WaLUDuGUNLzBbyobXMKHJRVVXFPvvsw4YNG+jZsyfYfvMI4GLgUWAscFn4fCQEexQ4Q0TuxpbNlodO9Engd7EDMiOAX7Vcbpxs+Ky/8bSldtwW5GxumvWwjKouCJ+fAQ8Rmy0ANGK2kObuFJlFixbxta99jd133x1gZ+BxVX0CM4CHho7z0PAbYArwITAbuAU4DSAsl/0WeCVcF0dLaE7x6d+/f/R1Hd6OnXZIsxlCEekhIj2j79go/23qZgvQcLZwcjh1tj9htgA8CYwQkc3CjGFEcHOKzHbbbcfMmTOZOXMmwCxVvRRAVZeo6sGqukP4/CK4q6qerqrbq+pQVX01iktVb1PVweG6vTg5cpLU1NSwcuXK6Gc06/d27LQrmnNptC/wkIhE6fxFVZ8QkVeAe0XkFGAu8N3gfwpwODZb+BL4PthsQUSi2QL4bMFxWoxFixZx9NFHRz93Bi7xduy0N5rNEKrqh8DuKe5LgINT3BU4PUNctwG3FVpGx3GyE836AUSk3qwfb8dOO8HfLOM4juOUNG4IHcdxnJLGDaHjOI5T0rghdBzHcUoaN4SO4zhOSeOG0HEcxylp3BA6juM4JY0bQsdxHKekcUPoOI7jlDRuCB3HcZySxg2h4ziOU9K4IXQcx3FKGjeEjuM4TknjhtBxHMcpadwQOo7jOCVNc/4xb0ERkZHAtcAmwK2qelmRRXIKTLF1XDHh8Zx+5lx2RAtI0j4ptn4dJxNtYkYoIpsANwKjgF2A40Vkl+JK5RQS13H7xvXrtGZyGkIRmSMii0SkR8xtvIhUhe8VIqIi0jERbpKIXBK+jwt+rk74GRPcJyXiqg7XIhG5CTgAmB3+9f49rCG9HvN3Qyyd9a+//jq9evVi991357HHHsuavw2rq1ny5I1stdVWdO/enaFDh3L77bfX81NRUUG3bt0oKyurvRYsWNAgrqqqKjp06EBZWRk9e/ZkyJAhtXHNmTMHEakXR1lZGffccw8A48aNo3PnzowaNYo+ffpw6KGH8u6779bGvXbtWs455xwGDhxIWVkZ2267LT//+c/rpT9p0iSGDh1K9+7d2WqrrfjJT37CsmXLau9PnDgREeG+++6rdVu3bh0iwpw5cwCYN28ePXr0oEOHDvTq1YuhQ4cyadIkbr31ViorK2vzctBBBzFt2jQGDhwY1+enIrJORAbFdH6/iMyJ+Xk70nnw84qIKLAS2AZ4AVgMvAqMDv40dq0TkZq5c+cCMH78eESEn504ho8vP5KPLz+Kj/9wNOtWLrH8/NcPmHvVt5n7x+/Su3dvhg8fztVXX82Pf/zjrDqvDXf1d2qvKM5sOj/55JMbrfOysrKi6/yYY46hvLycTTfdtFbnaYhIpYjMi/3uLCIPisjzItJLRCaKyJ9j91VEBgP7Etqwqq7F2vGUDGlUicjq119/vbbMjjrqKABWz32Tjy8/qlYn824cy+cPX8aahe+lygtw1113NdBBWVkZIsLFF18MQGVlJbfeemuqTuPtOI0VK1Zw1llnsfXWW1NWVsbgwYO54YYbWLx4ca2ffPTUqVMnevbsSc+ePdlxxx0544wzWLhwYa2fuFzx64UXXsgom5MfoqrZPVgn1hO4SlV/F9zGAyeqaqWIVAAfAZ1UdV0s3CRgnqqeLyLjgPOBbsA2kT8ReRDYFXhBVccl4xKRLYEngTeA9ao6PshzN1CmqmfE0jsV+BVQHpz+Fb4PAt4ENsM62HrZA3YCvgLmhs+ewLbAp8Ci4G8oMAfrrLMRhX0z/O4NbA/MAjaEeGZkCFsBrA3XEswodAWinrEf0Av4MMjZOaQX9c59ga2w8lsJdAK2Dp/vAgr0B7YM4WfF0h4GvBXS3hHoEfx/CiwPcXQGNsfKtXPIy3ux/G4DrA8y/hn4B6bz3kC1qlYAiMjnwd8TQBVwOrA3cCwwAvg18AnwbJC7DBgDfAcYAlwUykWDLNtgup2H6Teu8/XU190mIb7tgXUh/kLrfGtgCxqn8wVYXSykzj8P5ZGvzlcB84PM3UIcKxLybgN8F/izqg4UkS7AA0B34ChVrRGRicBgVT0RzBACOwB7ACNVdXxwvxk4UlX7xxMI7fiqkMeovkWUA2uoX96dsPLeCnif3PqKxzUA+GcomyEhzcVkb8erE/FEfcg6rN6uxractglxLSf/ttkl+JHwvT9WX9+hfj2N5CoE5dTvF7dR1S0KGH/bQFWzXlhnMAH4Augd3MYDVeF7BabIjolwk4BLwvdxwHNY53dEcOuDdTxXApMyxQVcATyN7SlE8lwGXJ8i6zjgudjv7iG+fYBXU/yfAnwG9Ei4HwtUA71iaR6SR1lVYsY/7vY51omnllOyvCI5gcOBmtj9x4CzMoTtFeT9XsK9LOTvB+H3ROAuYCYwNrh1DHJVhN/VWMecj84Pjuc36PPvWGP/ZdD5K8CimM7XhnowKejrlRDXsTEdL8cGP9cHf8ui8k8pl1uD/6jcanWeprug8y+wDn+3Quscm8k2Suex34XU+UeN1PkeufIaz28o56ewgWq32P2JmKGMfiswGDOgt8bcbwYWZEijChif4v5qsrxj924gpY1niH9PrI5WpqWZlkak05S4xmODp7KkrE1om39O+Nkk6O0PmeTa2CvfMmvvV757hK+GivKLPP1n4g7g5PD9OOARbISXioj0Bw4DXsZG+RHlWGedkbAn8X1sJPVxBm+HAlNVtSbh/gA2Mj8gWxo50u8gIkdjo8m3Ghm2B3A8MDvm/CJwtoicJiJDRURi94YHeR+Mx6Oq1cBULJ+1zsBvgAtFpFNK8i9iBqsMeInG63wlcAs2iwMbxJSF78dho891KeHmA4OCzrths5F6Os5QLvH7+er8b1hn/vWYe0F0jum7Nei8V9yZ3Dq/UUSOE5Gt8xC3S0hjNfAtVV2VR5h51G/Dm2GDokLxILBXfAsnDRHpDdyPDUCqckWaRzs+BHgilHsajWmbJPysx/rIr2fy4xSGxhyWuQD4qYhszLT5IaBSRDbFDOIdGfwtFpFlWOdYA/wB2EFEtg33vw/8SkSWheuHsbD7h7CrQ7gTVfWzDOmUAwuTjmpLt9EyW8TDsfQezpLH/iH9xcCFwEmqGl/eWRyLZ5mI7By79wtsCWkl8DXgpNi93wOXAydgA5P5IjI2lo/FGluajrEwkQ9U9VFshDs+xf93scHJidhS5a9EJGNjzcDvQz66Y7PCrjGdf5ohzGNYpxItzw0EHg33NsUMajXwH8C2CZ33wpb61mEzgy/y0PkCzOADBdV5fxqp8xC20Dqvt2efh86fxYzlRyLyhojskyW/PbEBw2RVzTiQTfAKoQ2LSGdgP2xmnonrEmX22xzxR8vLvTN5CAOJycDb2EpTNnK144jNSelDYjSqbaZQr55GciWurMbfyU3ehlBV38Y6qwmJW5GCkyPNTtjIPB7HKuBxbO+oXFWfz5Bcuar2xjrS50OYM7BlmAFYA+ylqr3DdUss7Ish7GZYRxqNpm5OSWcxtg9TD7GDP8m18zGx9MYkw8RYEPz0UdU9VPXutLzFrndi9/4AnIYtqa3C9i0AGx2q6o2qeiDW2C8Fbgud6mKgXBIHlgL9aLg3CqaD87DRai2quhRYinWYfbElwgcTBGfquAAAEZtJREFUYSOdb5JwF2wv93NgGrYPshb4MqRXTv19p3XUddjlwFHYjKgztlwd7Wktx0bO22B7RqckdL4C+BHWQd8L3EdmIp0PINYRF0rn2FJmo3Qe6msFhdV5WqedUeeqOkFVd8V0/gY2CJCUOAhpHwdMFpHDMvipRzAEURt+B1vl+TJLkJ8lyuw3pLfhiAHYzHdZFj/nArthS8TZD0fkbscRS0jpQ2KyNqVtxqlXT2Nyxa/kilZjyFamJUNjH5+4EPghppyIhZjBq0j43Zb05ak7gHOAO3MlFgznJGz0+bKq7ojNGP6SR9hqzKicJCJ7qmqawp8BRqWMqI7BZkUv5kqn0Kjqzao6FzgTuFZEuqX4WaWqN2IGaxfspOUa4NtxfyFfozCjlIzjaczonJZFlsVY51WG7fNERDrfKhGkK3UHOaZiM7lh2Kw+TedzidUlVZ0C7I4dctlSRJIz2YzlEsqtns4zZOsZzOAOwGarEQXReYZ6lk+4Quu8gRyN0PkfsJltnyz+HsT6gvtF5KBc+Qthpqjqjqq6PTaobhQ5yvZo4LVMRkFEKrFBwHdUNZuxbCzPAIcl+5CYrI1umzE/HbC6+mwB5a1HU+tre6NRhlBVZwP3AD+Lua3H9lcuFZHNRaSTiByPNdapKdH8HRvdX58rvXAq7SRsOa3h2fXc8i7BDlNckMHLndjexX1ij250CiPc64CJqrq8sWkWitBpLQBOBRCRs8SOrncTkY5hiawn8HqQ8yLgehEZGfJRgc2M5pF50HEedqilFhG5HJvNdxCRnsCR2IyrdikypvPxwV+k8x7YshPYaH9+iH816Tp/ibo94i6hc7gSO0SQqvNkuaTcz6hzEemFjcB7hDhWus5N5yKyW0ijJ/AT7FGHrG1OVf+KDZQeEZEDs3jtLCJdY1e0kiAJ965Z4miAGANE5EKsLv46g79+2Enzs1T19cakkQd3YqdFHxCRncT2FDcXkV+LyOFN0VPwszPwV2yweXXSj1NYmvJA/cVYRxLnNGz6/ibWiZ2BnQ5dlPCHGtNUNdv+wDIRqcZOYx2AbcjHlzL+JnXPEFaLyENZ4roGOFxE/i1FljXYvtQnWKe8Aqt056nqlVni3BiWJWQ/O4vfK4FfhgHBKuxY+adYZ346cIzas5Wo6hVYR/CHkI+XQr4OzrSPE5amX044d8eO2z+CHdvfBjv4kqbzldhSWqTzN6m/9LkAm92R0LkGtzXYfi/Y/t9KzOB+QhadY8tbl4VyAegVL1OsIz8ipvO/icjKEO+52BLhFFznEd2x/ftl1On8W/lkTFUnY7P9x0Vk3wzeZoW8RFek8+EJ91WxJcQbEmUWfwSlf9BzNbb3OBQ7AfpUhvR/iNXTaxNxVovIn/LJZyZifci72D72Cqx8yzF9NEZPx4Z8LcO2dZYAw1Q1fmisf0oejtmYPDjkfnyiLV3ASGxvZDYwIeV+F2xGOxurjBWtWNZx2OGGN8LV4Dh5C8h4G2bk3s5wX7CZ1GzMCO6VR5yvYXtvLVaWLVRWg4Dp2P7XLODMItatTYDXgceKJUNz6rO1tOO20IaDHAVvx+3tKroABVT2JsAHwHbYYYuZwC4JP6cBfwrfjwPuacWyjgNuKHKZfgPYK0sDOhxb/hZgf+ClHPHtio38t2nJsmyhsuoXdSDY8uV7xZAjpH82to/e5gxhW2nHbaUNBzkK2o7b49Um3jWaJ8lXON0NjE74GY0dnwZ7lujgLCfjmpN8ZC06qvp/ZD/iPhq4Q40Xgd5hP6YBYe/xKeBcVc30jF9TaBVlqaoLVfW18H0lNjMckD1U4RGRgcAR2D5pW6SttONWUe/yoZDtuL3SngzhAGzdPWIeDTuiWj9qx7mXY88BtTT5yApwjIi8Kfa+zkEp94tNvvlAVc9V1QGqel2xZGgpwmGIPQl7RC3MNdhhmA1FSLsQtJV23F7aMLTCNtTStCdDmDYiTD4rlI+fliAfOf6G7X38G3ZEe3LDIEWnNZRna5ChFhEpw07UnqWqyXd1NnfaRwKfqWqmd5u2BdpKO24vbRhaR3kWlZwv3W4riMgB2PH3w8rLy7WioqLe/ZqaGnr0aJsvYGgLss+YMWMxtvxSqarZ3rRREJI6bgtlFNFWZE3KOWPGjMXazC9kztaO20q5QduRNU3HtGA7bjUUe5OyUBf2hpIPgW2HDRumSaZPn97Ara3QFmQnvC1EW0jfSR23hTKKaCuyJuWkBV7QnK0dt5Vy0/9v795j5CrLOI5/f5ZruQjYUNiWUBoaQ00FywaKJGRrZRVIWquQlGigqKkKBDVGqf9IRA2QamJAIhZtrBcq2IgstFAq0hCJ1BZobQEJC1QsxRbBFAoGbXj847xbhunM7uxlZs6Z8/skk51zmZlnzntOn8477zxvFCfWGm3c0us4L7fCzFA/lMimbRoo4WStdyLZ6DSzEfN13HalvI47JhHCvhJdq7u7u/fr793y4m4WLl5V97Hbrr+gmaGVwZMRsbFdLz5U+4LbuCgGu46LosD/3rT1Om6XThosY2ZmNmxOhGZmVmpOhGZmVmpOhGZmVmpOhGZmVmpOhGZmVmpOhGZmVmpNTYSStknaImmTpI1p3TGS1kp6Jv09Oq2XpBsl9acitTMrnufStP8zaZZuMzOzMdGKT4SzI+K0iOhOy4uBByJiGvBAWgY4D5iWbouAH0OWOIFrgDPJpj65ZiB5mpmZjVY7ukYr5xJbDnyiYn2tObE+BqyNiFcj4t/AWrKZoc3MzEat2YkwgPslPSppUVo3MVJV8/T32LS+3pxYpZ8ry8zMmqfZtUbPjogdko4F1kr62yD71psTq6G5slKiXQQwceJE1q1b967tEw+Fr83YW/fFq/fPkz179uQ6PjOzImtqIoyIHenvLkl3kn3Ht1PS8RHxUur63JV23w5UzuA8GdiR1vdUrV9X47WWAksBuru7o6en513bb/r1XfxgS/23u+3TPXW3tdu6deuofj9mZjY2mtY1KukwSUcM3Ad6ga1AHzAw8vNS4K50vw+4JI0enQXsTl2na4BeSUenQTK9eIqW3JgyZQozZswAmO6RwZ3JbWydrpnfEU4E/iRpM/AXYFVE3AdcD5wr6Rng3LQMsJpsQs5+4FbgcoCIeBX4DrAh3a5N6ywnHnzwQcimb/HI4A7lNrZO1rSu0Yh4Dji1xvpXgDk11gdwRZ3nWgYsG+sYrWnm8U539nKyruyrqRgZDDwiaWBkcA9pZDCApIGRwStaG7YNg9vYOoYry9ioSKK3txfgFI8M7kxuY+t0HTVDvbXeww8/TFdXF6mr+4p2jQwealQw5GdkcFFGAQ/EuWTJEiZMmMDs2bPb2sZFOW5QnFHqRTqmzeREaKPS1dU1cHcvcA9tGhk81KhgyM/I4KKMAq4RZ1vbuCjHDYozSr1Ix7SZ3DVqI/bGG2/w+uuvDyy+B48M7jhuYysDfyK0Edu5cyfz588fWDwF+G5E3CdpA3CHpM8BLwAXpX1WA+eTjQx+E7gMspHBkgZGBoNHBueG29jKwInQRmzq1Kls3rwZAElPRMT3wCODO4nb2MrAXaNmZlZqToRmZlZqToRmZlZqToRmZlZqToRmZlZqToRmZlZqToRmZlZqToRmZlZqToRmZlZqToRmZlZqLrGWTFm8atDt266/oEWRmJlZK/kToZmZlZoToZmZlZoToZmZlZoToZmZlZoToZmZlVphEqGkj0t6WlK/pMXtjsfGntu4s7l9La8K8fMJSeOAm4Fzge3ABkl9EfFkq2IY6ucV4J9YjEYe2tiax+1reVaIRAicAfRHxHMAkn4DzANydRH5t4ijUog2thFz+1puFSURTgL+UbG8HTizcgdJi4BFaXGPpKernmMC8K+mRdgA3TDih7Y99gacOMrHj7aNhzxGozj+Y60I7Qn7xzmaNh6yfWH0bZwjg8aa43NxtNdxIRUlEarGunjXQsRSYGndJ5A2RkT3WAfWCkWOfRhG1cZFOkZFiXWM4xyyfcFt3GpFibPZijJYZjtwQsXyZGBHm2Kx5nAbdza3r+VWURLhBmCapJMkHQQsAPraHJONLbdxZ3P7Wm4Voms0IvZKuhJYA4wDlkXEE8N8mrrdpgVQ5NgbMgZtXKRjVJRYxyzOEl7DRYm1KHE2lSL266Y3MzMrjaJ0jZqZmTWFE6GZmZVaxyfCIpd1krRN0hZJmyRtbHc8eTBUe0o6WNLtaft6SVNaH2VDcS6U9HJq202SPt+mOJdJ2iVpa53tknRjeh9/lTSzyfG8v+KYbJL0mqSvVO3TI2l3xT7famZMg8T6VUlPSNoqaYWkQ6q25+JcTLEMFWsuzse2iYiOvZF9Kf8sMBU4CNgMTG93XMOIfxswod1x5OXWSHsClwO3pPsLgNtzGudC4Ec5OKbnADOBrXW2nw/cS/Y7wFnA+hYfx38CJ1at7wHuafNxmwQ8Dxyalu8AFlbt0/ZzcRix5uJ8bNet0z8R7ivrFBH/BQbKOlkxNdKe84Dl6f5KYI6kWj/mbqbCnHcR8RDw6iC7zAN+EZlHgKMkHd+a6JgDPBsRf2/R6w3XAcChkg4AxrP/7yLzcC4OGCrWUuv0RFirrNOkNsUyEgHcL+nRVHqq7Bppz337RMReYDfwvpZEVyOGpN5596nU3bhS0gk1tudBO6+hBcCKOtvOkrRZ0r2SPtCiePaJiBeB7wMvAC8BuyPi/qrd8nAuNhorFON8bIpOT4QNlXXKsbMjYiZwHnCFpHPaHVCbNdKeeWjzRmK4G5gSER8E/sA7nxzypi3HM/3ofi7w2xqbHyPrLj0VuAn4fbPjqSbpaLJPfCcBXcBhkj5TvVuNh7b8358GYy3K+dgUnZ4IC13WKSJ2pL+7gDvJutzKrJH23LdP6gZ6L4N3/TXDkHFGxCsR8VZavBU4vUWxDVe7rqHzgMciYmf1hoh4LSL2pPurgQMlTWhBTJU+CjwfES9HxP+A3wEfrtonD+ciNBBrgc7Hpuj0RFjYsk6SDpN0xMB9oBeoObKvRBppzz7g0nT/QuCPkUYDtNCQcVZ9zzYXeKqF8Q1HH3BJGj06i6xb7aUWvO7F1OkWlXTcwHdtks4g+3fslRbEVOkFYJak8SmWOezfhnk4F6GBWAt0PjZFIUqsjVSMTVmndpkI3Jmu9wOA2yLivvaG1F712lPStcDGiOgDfgb8UlI/2f++F+Q0zqskzQX2pjgXtjpOAEkryEZhTpC0HbgGOBAgIm4BVpONHO0H3gQua0FM48km8P1CxbovVsR0IfAlSXuB/wALWp1gImK9pJVk3bR7gceBpXk7F4cRay7Ox3ZxiTUzMyu1Tu8aNTMzG5QToZmZlZoToZmZlZoToZmZlZoToZlZC0i6KBW+fltS9yD7DVWw/SZJeyqWR1QwW9I4SY9Lumdk76hzOBGamY2xNEPGz6tWbwU+CTw0yOPGATeTFRSYDlwsaXrF9m7gqBoPvT0iTku3nzYY5pcp2e8F63EiNDNrgYh4KiKeHmK3ugXbU5JcAnyj0deU9HVJG1IN0W9XrJ8MXAA0mjQ7mhOhmVl+DFbk/Eqgr05ln/0KZkvqBaaRJdfTgNMr6hX/kCyhvt2E91A4HV1ZxsyslSStBw4GDgeOkbQpbbo6ItY08hQ11oWkLuAisipA1e4GVkTEW6kCz3LgI2RlGXvJKsmQYpom6UhgV0Q8KqnW85WOE6GZ2RiJiDMh+46QbPLbhcN8inpFzj8EnAz0p7KL4yX1R8TJEVFZZ/VW4IZ0X8B1EfGTyheQdB0wV9L5wCHAkZJ+FRHVM1KUhrtGzczyo2bB9ohYFRHHRcSUiJgCvBkRJ8OgBbPXAJ+VdHjab5KkYyPimxExOT3PArJi4KVNguBEaGbWEpLmp8LmZwGrJK1J67skrYZ9E/gOFGx/CrijgYkCrko/y9gMXEUqmJ0m370N+LOkLcBK4Iixf2fF56LbZmZWav5EaGZmpeZEaGZmpeZEaGZmpeZEaGZmpeZEaGZmpeZEaGZmpeZEaGZmpfZ/OE6WZ4E5PIoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "my_neigborhood_data = df[zipcode_filter]\n", + "my_neigborhood_data.hist()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "ename": "ValueError", + "evalue": "x and y must be the same size", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mbronxData_zipcode\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mbronxData\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'ZIP CODE'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvaluse_counts\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[0mbronxData_zipcode\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mhist\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\pandas\\core\\generic.py\u001b[0m in \u001b[0;36m__getattr__\u001b[1;34m(self, name)\u001b[0m\n\u001b[0;32m 5177\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_info_axis\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_can_hold_identifiers_and_holds_name\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5178\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 5179\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mobject\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mname\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 5180\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5181\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m__setattr__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mname\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;31mAttributeError\u001b[0m: 'Series' object has no attribute 'valuse_counts'" + "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mscatter\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m\"Time\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m\"COLLISION_ID\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdata\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mdf\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mzipcode_filter\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\matplotlib\\pyplot.py\u001b[0m in \u001b[0;36mscatter\u001b[1;34m(x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, verts, edgecolors, plotnonfinite, data, **kwargs)\u001b[0m\n\u001b[0;32m 2814\u001b[0m \u001b[0mverts\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mverts\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0medgecolors\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0medgecolors\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2815\u001b[0m plotnonfinite=plotnonfinite, **({\"data\": data} if data is not\n\u001b[1;32m-> 2816\u001b[1;33m None else {}), **kwargs)\n\u001b[0m\u001b[0;32m 2817\u001b[0m \u001b[0msci\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0m__ret\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2818\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0m__ret\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\matplotlib\\__init__.py\u001b[0m in \u001b[0;36minner\u001b[1;34m(ax, data, *args, **kwargs)\u001b[0m\n\u001b[0;32m 1589\u001b[0m args_and_kwargs.get(label_namer), auto_label)\n\u001b[0;32m 1590\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1591\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0mnew_args\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mnew_kwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1592\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1593\u001b[0m \u001b[0minner\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__doc__\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_add_data_doc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0minner\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__doc__\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mreplace_names\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\matplotlib\\cbook\\deprecation.py\u001b[0m in \u001b[0;36mwrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 356\u001b[0m \u001b[1;34mf\"%(removal)s. If any parameter follows {name!r}, they \"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 357\u001b[0m f\"should be pass as keyword, not positionally.\")\n\u001b[1;32m--> 358\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 359\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 360\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mwrapper\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\matplotlib\\axes\\_axes.py\u001b[0m in \u001b[0;36mscatter\u001b[1;34m(self, x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, verts, edgecolors, plotnonfinite, **kwargs)\u001b[0m\n\u001b[0;32m 4389\u001b[0m \u001b[0my\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mma\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mravel\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4390\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msize\u001b[0m \u001b[1;33m!=\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msize\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 4391\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"x and y must be the same size\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 4392\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4393\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0ms\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mValueError\u001b[0m: x and y must be the same size" ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAALWUlEQVR4nO3df6idh13H8fdnSaNQ5wbrFUYS16CZNU6h9hI394eVTUg6SECKJDD8QVn+MfqHQ4gotUT8Y50wUDI1aNmcuBj3h15Gtky0KogduWFda1IClzjNNZPebaVQpkvLvv5xj+3h5tx7nmTn9tpv3i8InOd5vjn3W2jfPDz3nttUFZKkN743bfUCkqTZMOiS1IRBl6QmDLokNWHQJakJgy5JTUwNepInkjyf5F/XuZ4kv59kKckzSX589mtKkqYZcof+CeDABtcPAntHf44Bf/idryVJulVTg15V/wR8Y4ORw8Cf1aqngLcmefusFpQkDbN9Bu+xE7g2drw8OvfVtYNJjrF6F8/dd9/9wH333TeDLy9Jd46LFy9+rarmJl2bRdAz4dzE3ydQVaeB0wDz8/O1uLg4gy8vSXeOJP++3rVZ/JTLMrB77HgXcH0G7ytJugWzCPoC8POjn3Z5N/BiVd30uEWStLmmPnJJ8mngQeCeJMvAbwN3AVTVHwHngIeAJeCbwC9t1rKSpPVNDXpVHZ1yvYBfntlGkqTb4idFJakJgy5JTRh0SWrCoEtSEwZdkpow6JLUhEGXpCYMuiQ1YdAlqQmDLklNGHRJasKgS1ITBl2SmjDoktSEQZekJgy6JDVh0CWpCYMuSU0YdElqwqBLUhMGXZKaMOiS1IRBl6QmDLokNWHQJakJgy5JTRh0SWrCoEtSEwZdkpow6JLUhEGXpCYMuiQ1YdAlqQmDLklNGHRJamJQ0JMcSHIlyVKSExOuf3+SJ5N8KckzSR6a/aqSpI1MDXqSbcAp4CCwDziaZN+asd8CzlbV/cAR4OOzXlSStLEhd+j7gaWqulpVN4AzwOE1MwV87+j1W4Drs1tRkjTEkKDvBK6NHS+Pzo17DPhgkmXgHPArk94oybEki0kWV1ZWbmNdSdJ6hgQ9E87VmuOjwCeqahfwEPCpJDe9d1Wdrqr5qpqfm5u79W0lSesaEvRlYPfY8S5ufqTyCHAWoKr+Bfhu4J5ZLChJGmZI0C8Ae5PsSbKD1W96LqyZ+Q/gfQBJfpjVoPtMRZJeR1ODXlWvAMeB88BzrP40y6UkJ5McGo19GPhQki8DnwZ+sarWPpaRJG2i7UOGquocq9/sHD/36Njry8B7Z7uaJOlW+ElRSWrCoEtSEwZdkpow6JLUhEGXpCYMuiQ1YdAlqQmDLklNGHRJasKgS1ITBl2SmjDoktSEQZekJgy6JDVh0CWpCYMuSU0YdElqwqBLUhMGXZKaMOiS1IRBl6QmDLokNWHQJakJgy5JTRh0SWrCoEtSEwZdkpow6JLUhEGXpCYMuiQ1YdAlqQmDLklNGHRJasKgS1ITg4Ke5ECSK0mWkpxYZ+bnklxOcinJX8x2TUnSNNunDSTZBpwCfgZYBi4kWaiqy2Mze4HfAN5bVS8k+b7NWliSNNmQO/T9wFJVXa2qG8AZ4PCamQ8Bp6rqBYCqen62a0qSphkS9J3AtbHj5dG5ce8E3pnkn5M8leTApDdKcizJYpLFlZWV29tYkjTRkKBnwrlac7wd2As8CBwF/iTJW2/6S1Wnq2q+qubn5uZudVdJ0gaGBH0Z2D12vAu4PmHmb6rq5ar6N+AKq4GXJL1OhgT9ArA3yZ4kO4AjwMKamb8GfhogyT2sPoK5OstFJUkbmxr0qnoFOA6cB54DzlbVpSQnkxwajZ0Hvp7kMvAk8OtV9fXNWlqSdLNUrX0c/vqYn5+vxcXFLfnakvRGleRiVc1PuuYnRSWpCYMuSU0YdElqwqBLUhMGXZKaMOiS1IRBl6QmDLokNWHQJakJgy5JTRh0SWrCoEtSEwZdkpow6JLUhEGXpCYMuiQ1YdAlqQmDLklNGHRJasKgS1ITBl2SmjDoktSEQZekJgy6JDVh0CWpCYMuSU0YdElqwqBLUhMGXZKaMOiS1IRBl6QmDLokNWHQJakJgy5JTRh0SWpiUNCTHEhyJclSkhMbzD2cpJLMz25FSdIQU4OeZBtwCjgI7AOOJtk3Ye7NwK8CX5z1kpKk6Ybcoe8HlqrqalXdAM4AhyfM/Q7wOPA/M9xPkjTQkKDvBK6NHS+Pzr0qyf3A7qr67EZvlORYksUkiysrK7e8rCRpfUOCngnn6tWLyZuAjwEfnvZGVXW6quaran5ubm74lpKkqYYEfRnYPXa8C7g+dvxm4F3APyT5CvBuYMFvjErS62tI0C8Ae5PsSbIDOAIs/N/Fqnqxqu6pqnur6l7gKeBQVS1uysaSpImmBr2qXgGOA+eB54CzVXUpyckkhzZ7QUnSMNuHDFXVOeDcmnOPrjP74He+liTpVvlJUUlqwqBLUhMGXZKaMOiS1IRBl6QmDLokNWHQJakJgy5JTRh0SWrCoEtSEwZdkpow6JLUhEGXpCYMuiQ1YdAlqQmDLklNGHRJasKgS1ITBl2SmjDoktSEQZekJgy6JDVh0CWpCYMuSU0YdElqwqBLUhMGXZKaMOiS1IRBl6QmDLokNWHQJakJgy5JTRh0SWrCoEtSE4OCnuRAkitJlpKcmHD915JcTvJMkr9L8o7ZrypJ2sjUoCfZBpwCDgL7gKNJ9q0Z+xIwX1U/BnwGeHzWi0qSNjbkDn0/sFRVV6vqBnAGODw+UFVPVtU3R4dPAbtmu6YkaZohQd8JXBs7Xh6dW88jwOcmXUhyLMliksWVlZXhW0qSphoS9Ew4VxMHkw8C88BHJ12vqtNVNV9V83Nzc8O3lCRNtX3AzDKwe+x4F3B97VCS9wO/CfxUVX1rNutJkoYacod+AdibZE+SHcARYGF8IMn9wB8Dh6rq+dmvKUmaZmrQq+oV4DhwHngOOFtVl5KcTHJoNPZR4HuAv0rydJKFdd5OkrRJhjxyoarOAefWnHt07PX7Z7yXJOkW+UlRSWrCoEtSEwZdkpow6JLUhEGXpCYMuiQ1YdAlqQmDLklNGHRJasKgS1ITBl2SmjDoktSEQZekJgy6JDVh0CWpCYMuSU0YdElqwqBLUhMGXZKaMOiS1IRBl6QmDLokNWHQJakJgy5JTRh0SWrCoEtSEwZdkpow6JLUhEGXpCYMuiQ1YdAlqQmDLklNGHRJasKgS1ITBl2SmhgU9CQHklxJspTkxITr35XkL0fXv5jk3lkvKkna2NSgJ9kGnAIOAvuAo0n2rRl7BHihqn4Q+BjwkVkvKkna2JA79P3AUlVdraobwBng8JqZw8AnR68/A7wvSWa3piRpmu0DZnYC18aOl4GfWG+mql5J8iLwNuBr40NJjgHHRocvJblyO0tLm+we1vy7K/0/8o71LgwJ+qQ77bqNGarqNHB6wNeUtkySxaqa3+o9pFs15JHLMrB77HgXcH29mSTbgbcA35jFgpKkYYYE/QKwN8meJDuAI8DCmpkF4BdGrx8G/r6qbrpDlyRtnqmPXEbPxI8D54FtwBNVdSnJSWCxqhaAPwU+lWSJ1TvzI5u5tLTJfCyoN6R4Iy1JPfhJUUlqwqBLUhMGXe0leVuSp0d//ivJf45ev5Tk41u9nzQrPkPXHSXJY8BLVfV7W72LNGveoeuOleTBJJ8dvX4sySeTfCHJV5L8bJLHkzyb5PNJ7hrNPZDkH5NcTHI+ydu39p9Ceo1Bl17zA8AHWP3dRH8OPFlVPwr8N/CBUdT/AHi4qh4AngB+d6uWldYa8tF/6U7xuap6OcmzrH7m4vOj888C9wI/BLwL+NvR757bBnx1C/aUJjLo0mu+BVBV307y8tinnb/N6n8rAS5V1Xu2akFpIz5ykYa7AswleQ9AkruS/MgW7yS9yqBLA43+fwAPAx9J8mXgaeAnt3Yr6TX+2KIkNeEduiQ1YdAlqQmDLklNGHRJasKgS1ITBl2SmjDoktTE/wJhmFW64H/+kAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" } ], "source": [ - "bronxData_zipcode = bronxData['ZIP CODE'].valuse_counts()\n", - "bronxData_zipcode.hist()" + "plt.scatter(x = \"TIME\", y = \"COLLISION_ID\", data = df[zipcode_filter])" ] }, { @@ -1034,9 +1688,7 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "bronx_filtered_data = " - ] + "source": [] } ], "metadata": {